Homework 3
 Metamathematics II

Math 503, Spring 2006 Due April 28.

1. Let \mathcal{L} be a numerical language and Σ be a set of \mathcal{L}-sentences. Suppose $\Sigma \vdash S^{m} 0 \neq S^{n} 0$ whenever $m \neq n$. (This condition is satisfied for $\Sigma=\mathrm{N}$.) Show that if the function $F: \mathbb{N}^{m} \rightarrow \mathbb{N}$ is Σ-represented by the \mathcal{L}-formula $\varphi\left(x_{1}, \ldots, x_{m}, y\right.$), then the graph of F (as a subset of $\left.\mathbb{N}^{m+1}\right)$ is Σ-represented by $\varphi\left(x_{1}, \ldots, x_{m}, y\right)$.
2. Suppose $\mathcal{A} \models \mathrm{N}$. Show that there is a unique $\mathcal{L}(\mathrm{N})$-embedding $\iota: \mathcal{N} \rightarrow \mathcal{A}$, and show that ι satisfies, for all $a \in A$ and $n \in \mathbb{N}$:
(a) if $a<\mathcal{A} \iota(n)$, then $a=\iota(m)$ for some $m \in \mathbb{N}$ with $m<n$;
(b) if $a \notin \iota(\mathbb{N})$, then $\iota(n)<^{\mathcal{A}} a$.
3. Suppose Σ is a computable and consistent set of sentences in the finite numerical language \mathcal{L}. Show that every Σ-representable set $R \subseteq \mathbb{N}^{n}$ is computable. (You may appeal to the Church-Turing thesis.)
4. Suppose \mathcal{L} is a finite numerical language and $\Sigma \supseteq \mathrm{N}$ is consistent.
(a) Show that $\ulcorner\mathrm{Th}(\Sigma)\urcorner$ is not Σ-representable.
(b) A truth definition for Σ is an \mathcal{L}-formula $t(y)$ such that for all \mathcal{L}-sentences σ,

$$
\Sigma \vdash \sigma \longleftrightarrow t\left(S^{n} 0\right), \quad \text { where } n=\ulcorner\sigma\urcorner \text {. }
$$

Show that there is no truth definition for Σ.
(Hint: use the Fixed Point Lemma.)

