Homework 3

Metamathematics II Math 503, Spring 2006 Due April 28.

- 1. Let \mathcal{L} be a numerical language and Σ be a set of \mathcal{L} -sentences. Suppose $\Sigma \vdash S^m 0 \neq S^n 0$ whenever $m \neq n$. (This condition is satisfied for $\Sigma = N$.) Show that if the function $F: \mathbb{N}^m \to \mathbb{N}$ is Σ -represented by the \mathcal{L} -formula $\varphi(x_1, \ldots, x_m, y)$, then the graph of F (as a subset of \mathbb{N}^{m+1}) is Σ -represented by $\varphi(x_1, \ldots, x_m, y)$.
- 2. Suppose $\mathcal{A} \models \mathbb{N}$. Show that there is a unique $\mathcal{L}(\mathbb{N})$ -embedding $\iota : \mathcal{N} \to \mathcal{A}$, and show that ι satisfies, for all $a \in A$ and $n \in \mathbb{N}$:
 - (a) if $a <^{\mathcal{A}} \iota(n)$, then $a = \iota(m)$ for some $m \in \mathbb{N}$ with m < n;

(b) if $a \notin \iota(\mathbb{N})$, then $\iota(n) <^{\mathcal{A}} a$.

- 3. Suppose Σ is a computable and consistent set of sentences in the finite numerical language \mathcal{L} . Show that every Σ -representable set $R \subseteq \mathbb{N}^n$ is computable. (You may appeal to the Church-Turing thesis.)
- 4. Suppose \mathcal{L} is a finite numerical language and $\Sigma \supseteq N$ is consistent.
 - (a) Show that $\lceil Th(\Sigma) \rceil$ is not Σ -representable.
 - (b) A truth definition for Σ is an \mathcal{L} -formula t(y) such that for all \mathcal{L} -sentences σ ,

 $\Sigma \vdash \sigma \longleftrightarrow t(S^n 0), \quad \text{where } n = \ulcorner \sigma \urcorner.$

Show that there is no truth definition for Σ . (Hint: use the Fixed Point Lemma.)