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Introduction

| will give a—mainly historical —overview of the development of a fas-
cinating subject on the borderline of algebra and analysis.

At the end of my talk | will be reporting on very recent joint work with
Lou van den Dries and Joris van der Hoeven.

This, in some sense, brings to a conclusion investigations started more
than a hundred years ago by G. H. Hardy (1877-1947), who dreamt of
an all-inclusive, maximally stable algebra of “totally formal-

izable functions”. (Jean Ecalle, 1993)

| will try to explain how one can interpret this statement, how our the-
orems (at least partially) realize this dream, and the role of mathemat-
ical logic in the endeavor.



du Bois-Reymond

Our story, however, begins with

‘ Paul du Bois-Reymond (1831-1889) ‘

® born in Berlin into a family from Neuchatel
(then Prussian);

e studies in Ziirich, Kbnigsberg, Berlin;

e initially pursued medicine like his famous
brother Emile (1818-1896);

® PhD with E. Kummer in Berlin: De aequilibrio
fluidorum (1853);

® taught Gymnasium in Berlin, then professor in
Heidelberg (1865);

® held professorships in Freiburg, Tiibingen, and
Technische Hochschule Charlottenburg, Berlin.




du Bois-Reymond

Nowadays, he is mainly remembered for his work in the calculus of
variations, and for giving the first example of a continuous function
whose Fourier series diverges at a point.

He also had an abiding interest in the philosophy of mathematics, in
particular concerning the continuum and the concept of function.

Around 1870 he begun studying the possible growth behaviors of—
real-valued, one-variable, continuous—functions.



Sur la grandeur
relative des infinis des fonctions.

(par PauL pu Bois-REYMOND, professeur ¢ I Université
de Freiburg en Bade.)

On s’occupera dans ce petit mémoire de la limite du rapport de deux
fonctions f(x) et (x), ces fonctions devenant infinies ou s'annulant pour
x=occ. Notre but ne sera pas d’établir la valeur finie, quand elle existe,

) : 3
2.((—;)~ Mais nous nous proposons premidrement de
développer quelques vues générales, d’ailleurs en partie connues, concernant

la suite continue des fonctions ordonnées suivant les limites de leurs quo-
tients et I'analogie de cette suite avec la suite des bres réels (art. I),

et secondement (art. IT) de démontrer certains théordmes, qui peuvent servir
dlogf(@)
ax

de la limite ou rapport

4 classer les fonctions selon la limite du rapport » et qui, en dé-

terminant dans un grand nombre de cas la vitesse avec laquelle la dérivée
s’approche de l'infini, lorsque celle de la fonction primitive est donnée, pour-
ront 8tre utiles dans la théorie de la convergence des integrales: savoir
quand, la fonction étant donnée en série, il n’est pas permis de la diffé-
rentier membre & membre, ou quand la fonction n’est connue que par cer-
taines propriétés suffisantes pour la solution du probleme (¥).

The “Infinitarcalctl”

We will occupy ourselves
in this little memoir with
the limit of the ratio of two
functions f(x) and o(x),
these functions becom-
ing infinite or vanishing
for t =00 [...] We first
propose to develop some
general viewpoints, some
already known, about the
continuous sequence of
functions ordered accord-
ing to the limits of their
quotients and the analogy
of that sequence with the
sequence of real numbers,

[...]



The “Infinitarcalctl”

He introduced the following useful notations, for (eventually non-van-
ishing) functions f, ¢: (a,+00) — R:

, S
=y = tlg-noom_o’
f<p = tETm%GR\{O}.

So for example,
logz <z < e® < e

z=<zP(p>1)

cx" =< zx" (e,r € R, c#0) —

but  f Ao, fEe, oA S
for f = z(2 +sinz), p = x.



The “Infinitarcalctl”

Main motivation: to construct an ideal series that can serve as a bound-
ary between convergent and divergent series. (Similarly for integrals.)

Comparison with Bertrand’s series

Can the convergence/divergence of all series with positive terms be
settled by comparison with a real multiple of a series of the form

1
; nlognloglogn---log,,_; n(log,, n)?

(meN, p eR)
where log,, = loglog - - - log (m times)?
(Converges for p > 1, diverges for p < 1.)

He later shows (Crelle’s Journal, 1873) that the answer is “no” (in the
process inventing the “diagonal argument” a bit earlier than Cantor).



The “Infinitarcalctl”

The iterates of the logarithm form a “scale” of infinitely growing func-
tions which are linearly ordered under <:

oo <log,,x<log, jx<--<logr<x<e® <e <-..

® Such scales resemble the real number line somewhat:
given f < g there is always some h with f < h < g.
® But they are inherently non-archimedean: (log z)" < z for all n.
® And of course, we already saw that in general none of the
relations f < ¢, f =< ¢, or ¢ < f might hold.

Du Bois-Reymond states (without proof):

Il n’aura pas lieu, si les fonctions f(x) et @ (x) sont composées algébri-
quement de puissances, racines, exponentielles, et opérations pareilles.

This does not happen if the functions f () and ¢(x) are composed
of powers, roots, exponentials, and similar operations.



The “Infinitarcalctl”

Throughout his life he further developed these ideas to compute with
functions belonging to a common scale like the one above, in particu-
lar to determine their “infinity”: the equivalence class w. r. t. <.

Ueber asymptotische Werthe, infipitive Approximationen und
infinitire Auflosung von (leichungen.

Von Paur vt Bors-Revmoxo in Titbingen.

Ich habe mich entschlossen, diese Fortsetzung meiner Unler-
suchungen i{ibér das Unendlichwerden der Functionen®) in deulscher
Sprache zu verdffentlichen, nachdem ich meine Schen iiberwunden,
das Wort ,unendlich¥, wie die Franzosen ihr infini, substantivisch zu
gebrauchen®*). Ich schmeichle mir sogar, durch dieses ,Unendlich®
unseren nathematischen Wortschatz in dankenswerther Weise zu be-
reichern.

| decided to publish this continuation of my research on functions
becoming infinite in German after | overcame my aversion to using
the word ‘infinite’ as a substantive, like the French their ‘infini’. |
even flatter myself that, by this ‘infinite’, | have enriched our math-
ematical vocabulary in a noteworthy way.



The “Infinitarcalcal”

In this long paper in Mathematische Annalen (1875), he took first steps
towards treating
was man das praktische Problem der ganzen

Theorie nennen kann, der Bestimmung des Unendlich nicht explicite
gegebener Functionen.

what one can call the practical problem of the whole theory,
the determination of the infinity of a non-explicitly given function.

Unfortunately, du Bois-Reymond faced vociferous opposition by Georg
Cantor, who accused him of trying to
infect mathematics with the cholera bacillus of infinitesi-
mals. (Letter to Vivanti, 1893)

Perhaps for this reason, his work was mainly forgotten until it was re-

vived by | F. Hausdorff |and | G. H. Hardy | early in the 20th century.




Hardy’s work




Hardy’s work

Hardy put du Bois-Reymond’s ideas on a firm
footing.

In particular, he constructed the field of
logarithmico-exponential (LE) functions:

real-valued functions built up from constants
and the variable = using +, X, -+, exponenti-
ation, and logarithms.

P 1
xﬁ, e’ +x2, sinhz = %(em —e ), log (ac + 1) ,
x_

He showed that such a function, when defined on aninterval (a, +00),
has eventually constant sign, and its derivative is also an LE-function.



Hardy’s work

Like Cantor, Hardy remained critical of du Bois Reymond’s attempts to
compute with “infinities”:

But little application, however, has yet been found for any such system of
notation; and the whole matter appears to be rather of the nature of
a mathematical curiosity.

But he did recognize the significance of these ideas for analysis:
exponential scales. No function has yet presented itself in analysis

the laws of whose increase, in so far as they can be stated at all, cannot
be stated, so to say, in logarithmico-exponential terms.

Nevertheless, the collection of LE-functions lacks some closure prop-
erties that make it useful for a comprehensive theory.

For example, f e dz is not an LE-function. (Liouville, 1830s)



Hardy’s work

SOME RESULTS CONCERNING THE BEHAVIOUR AT INFINITY
OF A REAL AND CONTINUOUS SOLUTION OF AN ALGE-
BRAIC DIFFERENTIAL EQUATION OF THE FIRST ORDER

By G. H. Harby.

[Received August 22nd, 1911.—Read December 8th, 1910.]

Perhaps motivated by this, Hardy undertook first studies on the asymp-
totic behavior of solutions y = y(t) to order 1 differential equations

P(y,y’) =0 where P is a polynomial with coefficients in R(z).

522y (y/)3 — (22° + 1)y + 22 —4 =0

It would, however, be exceedingly interesting to see how far the
methods used in the paper will go in proving the analogous results
immediately suggested for equations of order higher than the first. Here
I do not go beyond the first order, but I hope to return to the subject at
a later opportunity.




The modern setting: Hardy fields

This is due to Bourbaki (1951).

Focussing at behavior near infinity

We say that continuous functions f, g w%ﬁ
have the same germ at +oo if they 7.~ '
agree on some half-line (a, +00).

The germ of f is its equivalence class
with respect to the equivalence rela-
tion of “having the same germ.”

One can add and multiply germs in the natural way: they form a com-
mutative ring C.

Call a germ f differentiable if it has a representative which is a C!
function, and then denote by f’ the germ of the derivative.

The differentiable germs form a subring C! of C.



The modern setting: Hardy fields

A
D ﬁ .. . CORPS DE HARDY, FONCTIONS (H). =7~V £
enn |t|0n (Bourba kl) Le but de ce chapitre est essentiellement 1'étude d'un ensemble
de fonctions élémentaires, dont 1'intérSt est de servir en quelque
. . .
A Hardy ﬁeld is a subfield of Cl sorte de termes de comparsigon dans 1'étude au voisinage d'un point
. . . des fonotions de varisble réelle qui se présentent dens los diverses
WhICh IS Closed under taklng parties de 1'Analyse (voir oh.V). Cet ensemble est un cas partiou-
derlvatlves. lier d'ensembles de fonctions de varisble réelle que nous désigne-
rons sous le nom de orps de Hardy, et dont nous commencerons par
donner la définition et les principales propriétée.

Easy examples
Q C R C R(z) C R(z,e*) C R(z,e", logx)

This innocuous-looking definition has a wealth of consequences.



The modern setting: Hardy fields
Let H be a Hardy field and f € H. Then

1
f#0 = -—-€H =

{ f(t) > 0 eventually, or
/

f(t) < 0eventually.

Consequently:

® H carries an ordering making H an ordered field:
f>0 = f(t) > 0 eventually;
e fis eventually monotonic, and
li RU{x ists.
Jim f(t) € RU{£o0} exists

So a germ like sin x cannot be in a Hardy field.



The modern setting: Hardy fields

Recall du Bois-Reymond’s notations:

1) ¢ g\ (o},

f<g << lim — =0, fxg<:>t£+moog(t)

In a Hardy field, for all f, g # 0 exactly one of the relations

=<9, fxg g=<f

holds. The map

s (equivalence class of f) (for f € H, f #0)

with respect to =<

is an example of a valuation on H.

This allows us to harness the tools of valuation theory, a well-developed
chapter of algebra, for the study of Hardy fields.



Examples of functions in Hardy fields

erfix)

Bitx)

Ai, Bi are R-linearly indepen-
o dent solutions to "/ — xy = 0




Algebraic differential equations over Hardy fields

Let P € H[Yy, Y1, ..., Y,] be a polynomial of positive degree.
When is there some y in a Hardy field extension of H solving
the equation P(y) = P(y,y/,...,y")) = 0?

Some answers in basic cases were given over the decades by Haus-
dorff, Hardy, Bourbaki, Rosenlicht, Boshernitzan ... For example:

]
Every solution 7 (in C') of an equation

y+fy=9 (f,g€H)
is contained in some Hardy field extension of H.

Hence H(R) and H (x) are Hardy fields, and if h € H, then so are
H([h), H(e"), H(logh)whenh > 0.
(== Hardy'’s field of LE-functions is indeed a Hardy field!)



The ultimate extension result

We can now state our recent theorem, an intermediate value property
for algebraic differential equations:

Theorem (A.-van den Dries-van der Hoeven)
Let f < gin H be such that

P(f) <0< P(g).
Then there is some y in a Hardy field extending H satisfying

Ply)=0 and f<y<y.

In a sense, this theorem justifies du Bois-Reymond’s intuition that his
“orders of infinity” do share many properties with the real continuum—
but probably not in a way that he envisaged.



The ultimate extension result

The analogy with R and C = R + Ri (where i = \/—1) goes further:

Corollary

@ There are y, z in a Hardy field extension of H such that
P(y+zi) =0.

@ If P has odd degree, then there is some y in a Hardy field
extension of H with P(y) = 0.

Thus for example, there is some y satisfying
( ) _’_\@e (//)4 " xlognyy”—l—yy—F:O

in a Hardy field containing R, ¢*, log =, I'!



The ultimate extension result

A TREATISE ON THE
THEORY OF

The main applications of our theorem are to 1 Funcrions

systems of algebraic differential equations
(including asymptotic side conditions).

But as a byproduct, even for linear differential
equations of order 2 like the Bessel equation

22y +xy + (22 — )y =0 (e € R)

Loam RR!DGh

it can give useful new information: s 798 vy e

Corollary

There is a unique germ ¢ in a Hardy field with ¢ — x < 1/x such that
the solutions of the Bessel equation are exactly the germs of the form

y = \/7 cos(¢ + d) (¢c,d € R).



Under the hood of the proof

It is conceptually easier to focus on maximal Hardy fields—those that
cannot be extended further.

The key is to show is that these all share the same logical properties
as the differential field T of transseries.

Transseries are formal objects which can be
used to model the complete asymptotic
behavior of germs in Hardy fields: not just their
“infinities”, in du Bois-Reymond’s parlance.

They were invented by the analyst Jean Ecalle
(and independently, by the logicians Dahn and
Goring) in the 1980s, and are based on Hans
Hahn'’s “generalized power series” (1907).




Under the hood of the proof

Uber die nichtarchimedischen Grofensysteme

von Jean Ecalle

Hans Hahn in Wien.

Introduction aux

(Vorgelegt in der Sitzung am 7. Mirz 1907.) fonctions analysables

Das Studium der nichtarchimedischen Gro! y geht conjecture de Dulac
zuriick auf P. Du Bois-Reymond?! und O. Stolz.? Ausfiihr-

of the EP department

e 11 ormeues oes seimsers wr pes aws

=

CERN TH Institute on “Resurgence and
Transseries in Quantum, Gauge and String
Theories

00 ol 87 2014

]S

e

The gol o this CERN Tnsiute

g theoey




Under the hood of the proof

About six years ago, we finished the proof
of a theorem complete describing the el-
ementary theory of T.

This essentially amounts to establishing
an elimination theory for systems of alge-
braic differential equations over T.

Abraham Robinson taught us how to ap-
proach such “logical” results algebraically.

The proof of our theorem, besides refine-
ments of the tools from our book, requires
analytic arguments in an essential way:

e fixed point theoremes;
® uniform distribution mod 1
The details are lengthy. ...



Coda

Corollary (obtained using Godel’s Completeness Theorem)

There is an algorithm which takes as input a polynomial
P e R(x)[Yy,..., Y]
and decides whether there is some vy in a Hardy field such that

P(y) = P(y,y/, ... ,y(r)) =0.

Works much more generally, e.g., for systems, also involving <, <, like:

22y — () <y, YR =dys+ (B2 + Dy -9, yz <.

Challenge

Devise such a “practical” algorithm!



Coda

Was will die Mathematik und was will der Mathematiker?

Rede') beim Antritt der ordentlichen
Professur der Mathematik an der Universitit Tiibingen (1874) gebalten von
Paur pu Bors-REvmonp.

Aus dem handschriftlichen Nachlasse mitgeteilt von E. Lampe in Charlottenburg.

In short, it is simply impossi- Kurzum, es ist eben unmbglich, sich von vornherein dio Richtung
. sicher vorzuzeichnen, die zur Lisung entfernt liegender Probleme fiihrt,
ble to determ’ne from the out- und in der Mathematik ist, wie {iberall, der natiirliche und zweck-

. . . _ miBigste Gang der Wi T die i testen Aufgaben, unbe-

Set W,th Certa,nty the dlreC kilmmert um den scheinbar niichstliegenden Vorteil der Praxis, sondern
t,‘on that W”’ Iead to the SOIU' um ihrer selbst willen zu verfolgen Dm Anwondu.ngen ergeben slch
dann von selbst I .l FRAY hos PSRN R B SLUGER, St S

tion of remote problems, and

in mathematics, as everywhere else, the natural and most expedient course
of science is this: to pursue the most interesting problems for their own sake,
unconcerned about the apparent regard of practical applicability. The appli-
cations will then appear by themselves.

Sie bildet eine eigene Art Philosophie mit positivem Resultate; sie |st
sber auch eine Kunst im tiefsten Sinne des Wortes!) [

It is a kind of philosophy with positive results; but
it is also an art in the deepest sense of the word.




