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Introduction

I will give a—mainly historical—overview of the development of a fas-
cinating subject on the borderline of algebra and analysis.

At the end of my talk I will be reporting on very recent joint work with
Lou van den Dries and Joris van der Hoeven.

This, in some sense, brings to a conclusion investigations started more
than a hundred years ago by G. H. Hardy (1877–1947), who dreamt of

an all-inclusive, maximally stable algebra of “totally formal-
izable functions”. (Jean Écalle, 1993)

I will try to explain how one can interpret this statement, how our the-
orems (at least partially) realize this dream, and the role of mathemat-
ical logic in the endeavor.



du Bois-Reymond

Our story, however, begins with

Paul du Bois-Reymond (1831–1889)

• born in Berlin into a family from Neuchâtel
(then Prussian);
• studies in Zürich, Königsberg, Berlin;
• initially pursued medicine like his famous
brother Émile (1818–1896);
• PhD with E. Kummer in Berlin: De aequilibrio
fluidorum (1853);
• taught Gymnasium in Berlin, then professor in
Heidelberg (1865);
• held professorships in Freiburg, Tübingen, and
Technische Hochschule Charlottenburg, Berlin.



du Bois-Reymond

Nowadays, he is mainly remembered for his work in the calculus of
variations, and for giving the first example of a continuous function
whose Fourier series diverges at a point.

He also had an abiding interest in the philosophy of mathematics, in
particular concerning the continuum and the concept of function.

Around 1870 he begun studying the possible growth behaviors of—
real-valued, one-variable, continuous—functions.



The “Infinitärcalcül”

We will occupy ourselves
in this little memoir with
the limit of the ratio of two
functions f(x) and ϕ(x),
these functions becom-
ing infinite or vanishing
for x =∞ [. . . ] We first
propose to develop some
general viewpoints, some
already known, about the
continuous sequence of
functions ordered accord-
ing to the limits of their
quotients and the analogy
of that sequence with the
sequence of real numbers,
[. . . ]



The “Infinitärcalcül”

He introduced the following useful notations, for (eventually non-van-
ishing) functions f, ϕ : (a,+∞)→ R:

f ≺ ϕ :⇐⇒ lim
t→+∞

f(t)

ϕ(t)
= 0,

f � ϕ :⇐⇒ lim
t→+∞

f(t)

ϕ(t)
∈ R \ {0}.

So for example,
log x ≺ x ≺ ex ≺ ee

x

x ≺ xp (p > 1)

cxr � xr (c, r ∈ R, c 6= 0)

but f 6≺ ϕ, f 6� ϕ, ϕ 6≺ f
for f = x(2 + sinx), ϕ = x.



The “Infinitärcalcül”

Mainmotivation: to construct an ideal series that can serve as a bound-
ary between convergent and divergent series. (Similarly for integrals.)

Comparison with Bertrand’s series
Can the convergence/divergence of all series with positive terms be
settled by comparison with a real multiple of a series of the form

∑
n

1

n log n log logn · · · logm−1 n(logm n)p
(m ∈ N, p ∈ R)

where logm = log log · · · log (m times)?

(Converges for p > 1, diverges for p 6 1.)

He later shows (Crelle’s Journal, 1873) that the answer is “no” (in the
process inventing the “diagonal argument” a bit earlier than Cantor).



The “Infinitärcalcül”

The iterates of the logarithm form a “scale” of infinitely growing func-
tions which are linearly ordered under≺:

· · · ≺ logm x ≺ logm−1 x ≺ · · · ≺ log x ≺ x ≺ ex ≺ ee
x ≺ · · ·

• Such scales resemble the real number line somewhat:
given f ≺ g there is always some h with f ≺ h ≺ g.
• But they are inherently non-archimedean: (log x)n ≺ x for all n.
• And of course, we already saw that in general none of the
relations f ≺ ϕ, f � ϕ, or ϕ ≺ f might hold.

Du Bois-Reymond states (without proof):

This does not happen if the functions f(x) andϕ(x) are composed
of powers, roots, exponentials, and similar operations.



The “Infinitärcalcül”

Throughout his life he further developed these ideas to compute with
functions belonging to a common scale like the one above, in particu-
lar to determine their “infinity”: the equivalence class w. r. t.�.

I decided to publish this continuation of my research on functions
becoming infinite in German after I overcamemy aversion to using
the word ‘infinite’ as a substantive, like the French their ‘infini’. I
even flattermyself that, by this ‘infinite’, I have enriched ourmath-
ematical vocabulary in a noteworthy way.



The “Infinitärcalcül”

In this long paper inMathematische Annalen (1875), he took first steps
towards treating

what one can call the practical problem of the whole theory,
the determination of the infinity of a non-explicitly given function.

Unfortunately, du Bois-Reymond faced vociferous opposition byGeorg
Cantor, who accused him of trying to

infect mathematics with the cholera bacillus of infinitesi-
mals. (Letter to Vivanti, 1893)

Perhaps for this reason, his work was mainly forgotten until it was re-
vived by F. Hausdorff and G. H. Hardy early in the 20th century.



Hardy’s work

ORDERS OF INFINITY
THE ' INFINITARCALCUL ' OF
PAUL DU BOIS-REYMOND

by

G. H. HARDY, M.A., F.R.S.

Fellow and Lecturer of Trinity College, Cambridge

Cambridge :

at the University Press

1910



Hardy’s work

Hardy put du Bois-Reymond’s ideas on a firm
footing.

In particular, he constructed the field of
logarithmico-exponential (LE) functions:

real-valued functions built up from constants
and the variable x using +,×,÷, exponenti-
ation, and logarithms.

x
√
2, ee

x +x2
, sinhx = 1

2(ex− e−x), log

(
x+ 1

x− 1

)
, . . .

He showed that such a function, when defined on an interval (a,+∞),
has eventually constant sign, and its derivative is also an LE-function.



Hardy’s work

Like Cantor, Hardy remained critical of du Bois Reymond’s attempts to
compute with “infinities”:

26 LOGARITHMICO-EXPONENTIAL SCALES

commutative law of addition, and the associative law of multiplication. But

multiplication is no longer commutative, and only distributive on one side*.

He would denote the orders of

by o>+7i, n+^ 2<&)
>

a> - 2
>

w2
>

W
'2' J

tt'2'*
'

But little application, however, has yet been found for any such system of

notation ; and the whole matter appears to be rather of the nature of

a mathematical curiosity.

V.

FUNCTIONS WHICH DO NOT CONFORM TO ANY LOGARITHMICO-
EXPONENTIAL SCALE.

1. WE saw in i. ( 2) that, given two increasing functions <f> and fy

(< )>- j/f), we can always construct an increasing function./ which is, for

an infinity of values of x increasing beyond all limit, of the order of

<, and for another infinity of values of x of the order of
i/r. The actual

construction of such functions by means of explicit formulae we left till

later. We shall now consider the matter more in detail, with special

reference to the case in which <j> and \f/ are ^-functions.

We shall say that f is an irregularly increasing function (fonction
a croissance irregul&re) if we can find two .//-functions < and

\jr (< )>- A)

such that

#1, #2 ,
... and #/, #2', ... being any two indefinitely increasing sequences

of values of x. We shall also say that ' the increase of/ is irregular
'

and that 'the logarithmico-exponential scales are inapplicable toy.
1

The phrase
'

fonction a croissance irregulibre
' has been denned by various

writers in various senses. Borelt originally defined / to be d croissance

regultire if

(

or in other words if llf<*> alx or llf^ lx.

This definition was of course designed to meet the particular needs of the

*
(a + &) c = ac + be, but in general a (b + c)

= ab + ac.

f Lemons wr lesfonctions entitre*, p. 107.

But he did recognize the significance of these ideas for analysis:
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For simplicity let us take =
, a = l. Then the equations of Q^Q^+i and

f Qzn + 1 Qtn + 2 are respectively

say. Now (iv. 1)

and a function /, such that An -</-</* for all values of n, transcends the

logarithmico-exponential scales. But / clearly satisfies these relations, and
so its increase is incapable of exact measurement by these scales.

It is easily verified that AnAn# -< ex and pnp.nx > e? for all values of n.

Hence it is clear a priori that any increasing solution of (1) must satisfy

This kind of 'graphical' method may also be employed to define functions

whose increase, like that of the function considered under (i) above, is slower

than that of any logarithm or more rapid than that of any exponential. It

can be employed, for example, to solve the equation

and it can be proved that the increase of a function such that
<f> (2*)

is slower than that of any logarithm (vii. 3).

6. The importance of the logarithmico-exponential scales.

As we have seen in the earlier paragraphs of this section/ it is possible,

in a variety of ways, to construct functions whose increase cannot be

measured by any .//-function. It is none the less true that no one yet

has succeeded in denning a mode of increase genuinely independent of

all logarithmico-exponential modes. Our irregularly increasing func-

tions oscillate, according to a logarithmico-exponential law of oscillation,

between two logarithmico-exponential functions; the functions of 5

were constructed expressly to fill certain gaps in the logarithmico-

exponential scales. No function has yet presented itself in analysis

the laws of whose increase, in so far as they can be stated at all, cannot

be stated, so to say, in logarithmico-exponential terms.

It would be natural to expect that the arithmetical functions which

occur in the theory of the distribution of primes might give rise to

genuinely new modes of increase. But, so far as analysis has gone, the

evidence is the other way.

Thus if we denote by & (x} the number of prime numbers less than x, it is

known that

/ \
x

& (x) <^>
-,
- .

logo?
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Nevertheless, the collection of LE-functions lacks some closure prop-
erties that make it useful for a comprehensive theory.

For example,
∫

ex
2
dx is not an LE-function. (Liouville, 1830s)



Hardy’s work

ALGEBRAIC DIFFERENTIAL EQUATIONS OF THE FIRST ORDER. 451

SOME EESULTS CONCERNING THE BEHAVIOUR AT INFINITY
OF A REAL AND CONTINUOUS SOLUTION OF AN ALGE-
BRAIC DIFFERENTIAL EQUATION OF THE FIRST ORDER

By G. H. HARDY.

[Received August 22nd, 1911.—Read December 8th, 1910.]

I.

1. The results obtained in this paper have reference to the algebraic
differential equation

(1) f(x, y, y') = 2Ax»y*y" = 0,

where m, n, p are positive integers. I suppose that this equation possesses
a solution

(2) y = y(x),

which is real and possesses a continuous derivative for x > xQ* The
problem is to specify as completely as possible the various ways in which
y may behave as x -» oo.

This problem was first attacked by Borel, in his Memoire sur Us Series
DivergentesA Borel proved that the equation (1) cannot have a solution
y, such that .

y > e = e.2(x)
for values of x surpassing all limit. He proved further that

(3) fix, y, y', y") = 0

cannot have a solution y such that

y > ea (x)

for values of x surpassing all limit; j and there is no doubt of the truth of

• I.e., for all values of x from some value onwards (" Orders of Infinity," Camb. Math.
Tracts, No. 12, p. 6). We assume the existenco of such a solution : it is not part of the
problem to consider conditions for its existence.

t Annales de I'Ecole Normale, t. 16, pp. 26 et seq.
J The proof is not complete, but its general lines are clearly indicated.

2 G 2

Perhapsmotivatedby this, Hardy undertookfirst studies on the asymp-
totic behavior of solutions y = y(t) to order 1 differential equations

P (y, y′) = 0 where P is a polynomial with coefficients in R(x).

5x2y9(y′)3 − (2x3 + 1)y′ + 2y2 − 4 = 0



The modern setting: Hardy fields

This is due to Bourbaki (1951).

Focussing at behavior near infinity

We say that continuous functions f , g
have the same germ at +∞ if they
agree on some half-line (a,+∞).

The germ of f is its equivalence class
with respect to the equivalence rela-
tion of “having the same germ.”

One can add and multiply germs in the natural way: they form a com-
mutative ring C.
Call a germ f differentiable if it has a representative which is a C1

function, and then denote by f ′ the germ of the derivative.
The differentiable germs form a subring C1 of C.



The modern setting: Hardy fields

Definition (Bourbaki)
A Hardy field is a subfield of C1
which is closed under taking
derivatives.

Easy examples
Q ⊆ R ⊆ R(x) ⊆ R(x, ex) ⊆ R(x, ex, log x)

This innocuous-looking definition has a wealth of consequences.



The modern setting: Hardy fields

LetH be a Hardy field and f ∈ H . Then

f 6= 0 =⇒ 1

f
∈ H =⇒

{
f(t) > 0 eventually, or

f(t) < 0 eventually.

Consequently:
• H carries an ordering makingH an ordered field:

f > 0 :⇐⇒ f(t) > 0 eventually;

• f is eventually monotonic, and

lim
t→+∞

f(t) ∈ R ∪ {±∞} exists.

So a germ like sinx cannot be in a Hardy field.



The modern setting: Hardy fields

Recall du Bois-Reymond’s notations:

f ≺ g ⇐⇒ lim
t→+∞

f(t)

g(t)
= 0, f � g ⇐⇒ lim

t→+∞

f(t)

g(t)
∈ R\{0}.

In a Hardy field, for all f, g 6= 0 exactly one of the relations

f ≺ g, f � g, g ≺ f

holds. The map

f 7→
(
equivalence class of f
with respect to�

)
(for f ∈ H , f 6= 0)

is an example of a valuation onH .

This allows us to harness the tools of valuation theory, awell-developed
chapter of algebra, for the study of Hardy fields.



Examples of functions in Hardy fields

erf(x) =
2√
π

∫ x

0
e−t

2
dt

Γ(x) =

∫ ∞
0

tx−1 e−t dt

Ai, Bi are R-linearly indepen-
dent solutions to y′′ − xy = 0



Algebraic differential equations over Hardy fields

Let P ∈ H[Y0, Y1, . . . , Yr] be a polynomial of positive degree.
When is there some y in a Hardy field extension ofH solving
the equation P (y) = P (y, y′, . . . , y(r)) = 0?

Some answers in basic cases were given over the decades by Haus-
dorff, Hardy, Bourbaki, Rosenlicht, Boshernitzan . . . For example:

Every solution y (in C1) of an equation

y′ + fy = g (f, g ∈ H)

is contained in some Hardy field extension ofH .

HenceH(R) andH(x) are Hardy fields, and if h ∈ H , then so are

H(
∫
h), H(eh), H(log h) when h > 0.

( =⇒ Hardy’s field of LE-functions is indeed a Hardy field!)



The ultimate extension result

We can now state our recent theorem, an intermediate value property
for algebraic differential equations:

Theorem (A.–van den Dries–van der Hoeven)
Let f < g inH be such that

P (f) < 0 < P (g).

Then there is some y in a Hardy field extendingH satisfying

P (y) = 0 and f < y < g.

In a sense, this theorem justifies du Bois-Reymond’s intuition that his
“orders of infinity” do sharemanypropertieswith the real continuum—
but probably not in a way that he envisaged.



The ultimate extension result

The analogy with R and C = R + Ri (where i =
√
−1) goes further:

Corollary

1 There are y, z in a Hardy field extension ofH such that
P (y + zi) = 0.

2 If P has odd degree, then there is some y in a Hardy field
extension ofH with P (y) = 0.

Thus for example, there is some y satisfying

(y′′)5 +
√

2 ex (y′′)4y′′′ − x log x y2y′′ + yy′ − Γ = 0

in a Hardy field containing R, ex, log x, Γ!



The ultimate extension result

The main applications of our theorem are to
systems of algebraic differential equations
(including asymptotic side conditions).

But as a byproduct, even for linear differential
equations of order 2 like the Bessel equation

x2y′′ + xy′ + (x2 − α2)y = 0 (α ∈ R)

it can give useful new information:

Corollary
There is a unique germ φ in a Hardy field with φ− x 4 1/x such that
the solutions of the Bessel equation are exactly the germs of the form

y =
c√
xφ′

cos(φ+ d) (c, d ∈ R).



Under the hood of the proof

It is conceptually easier to focus onmaximal Hardy fields—those that
cannot be extended further.

The key is to show is that these all share the same logical properties
as the differential field T of transseries.

Transseries are formal objects which can be
used to model the complete asymptotic
behavior of germs in Hardy fields: not just their
“infinities”, in du Bois-Reymond’s parlance.

They were invented by the analyst Jean Écalle
(and independently, by the logicians Dahn and
Göring) in the 1980s, and are based on Hans
Hahn’s “generalized power series” (1907).



Under the hood of the proof601 

Uber die niehtarehimedisehen GroBensysteme 
von 

Hans Hahn in Wien. 

(Vorgelegt in der Sitzung am 7. Mlirz 1907.) 

Das Studium der nichtarchimedischen Grof3ensysteme geht 
zurlick auf P. Du Bois-Reymond 1 und O. Stolz.2 Ausflihr-
lich finden sich einige hieher gehOrende Fragen behandelt in 
der von der Accademia dei Lincei preisgekronten Schrift von 
R. Bettazzi: Teoria delle grandezze.s In seinen mathematisch 
und phiIosophisch bedeutungsvollen lOFondamenti di geo-
metria" 4 baute sodann G. Veronese eine Geometrie auf ohne 
Benlitzung des archimedischen Axioms und kam spater, anUiB-
Iich verschiedener gegen sein Werk gerichteter Einwande, 
\viederhoIt auf den Gegenstand zurlick.5 Weitere Unter-
suchungen liber nichtarchimedische Grof3ensysteme rlihren 
von T. Levi-Civita her,s der sich eine arithmetische Dar-
stellung des Veronese'schen Kontinuums Zllm Ziele setzte und 
dabei zu Resultaten von grof3er Allgemeinheit geflihrt wurde. 
Ferner sei hier noch eine Arbeit von A. Schoenflies genannt,7 
von der weiter llnten eingehender Zll sprechen sein wi rd. 

Unter einem nichtarchimedischen Grof3ensystem wird im 
folgenden ein System einfach geordneter Grof3en verstanden, 
in dem eine gewissen sechs Forderungen genligende Addition 
definiert ist und in dem das Axiom des Archimedes nicht gilt. 

1 Ann., 8 (1.875),11 (1877). 
2 Math. Ann., 18 (1881), p. 269; 22 39 (1891). 
3 Pisa, 1891. 
4, Padua, 1891, deutsch von A. Schepp, Leipzig, 1894. 
5 Math. Ann., 47 (18!,l6); Rend. Line. (5), 6 (1897); (5), 7 (1898). 
6 Atti ist. Ven. (7),4 (1892/93); Rend. Line. (5), 7 (1898). 
7 Jahresber. deutseh. Math. Ver., 15 (1906). 

-445-



Under the hood of the proof

About six years ago, we finished the proof
of a theorem complete describing the el-
ementary theory of T.

This essentially amounts to establishing
an elimination theory for systems of alge-
braic differential equations over T.

Abraham Robinson taught us how to ap-
proach such “logical” results algebraically.

The proof of our theorem, besides refine-
ments of the tools fromour book, requires
analytic arguments in an essential way:
• fixed point theorems;
• uniform distribution mod 1

The details are lengthy. . . .



Coda

Corollary (obtained using Gödel’s Completeness Theorem)

There is an algorithm which takes as input a polynomial

P ∈ R(x)[Y0, . . . , Yr]

and decides whether there is some y in a Hardy field such that

P (y) = P (y, y′, . . . , y(r)) = 0.

Worksmuchmore generally, e.g., for systems, also involving<,≺, like:

x2y′′1 − (y′3)
7 ≺ y2, y22 = 4y3 + (3x5 + 1)y1 − 9, y3 < x.

Challenge

Devise such a “practical” algorithm!



Coda

|00198||

In short, it is simply impossi-
ble to determine from the out-
set with certainty the direc-
tion that will lead to the solu-
tion of remote problems, and
in mathematics, as everywhere else, the natural and most expedient course
of science is this: to pursue the most interesting problems for their own sake,
unconcerned about the apparent regard of practical applicability. The appli-
cations will then appear by themselves.

It is a kind of philosophy with positive results; but
it is also an art in the deepest sense of the word.


