Degree Bounds for Gröbner Bases in Algebras of Solvable Type

Matthias Aschenbrenner
University of California, Los Angeles

(joint with Anton Leykin)

Algebras of Solvable Type

- ... introduced by Kandri-Rody \& Weispfenning (1990);
- ... form a class of associative algebras over fields which generalize
- commutative polynomial rings;
- Weyl algebras;
- universal enveloping algebras of f. d. Lie algebras;
- ... are sometimes also called polynomial rings of solvable type or PBW-algebras (Poincaré-Birkhoff-Witt).

Weyl Algebras

Systems of linear PDE with polynomial coefficients can be represented by left ideals in the Weyl algebra

$$
A_{n}(\mathbb{C})=\mathbb{C}\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle
$$

the \mathbb{C}-algebra generated by the x_{i}, ∂_{j} subject to the relations:

$$
x_{j} x_{i}=x_{i} x_{j}, \quad \partial_{j} \partial_{i}=\partial_{i} \partial_{j}
$$

and

$$
\partial_{j} x_{i}= \begin{cases}x_{i} \partial_{j} & \text { if } i \neq j \\ x_{i} \partial_{j}+1 & \text { if } i=j\end{cases}
$$

The Weyl algebra acts naturally on $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\left(\partial_{i}, f\right) \mapsto \frac{\partial f}{\partial x_{i}}, \quad\left(x_{i}, f\right) \mapsto x_{i} f
$$

Universal Enveloping Algebras

Let \mathfrak{g} be a Lie algebra over a field K. The universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} is the K-algebra obtained by imposing the relations

$$
g \otimes h-h \otimes g=[g, h]_{\mathfrak{g}}
$$

on the tensor algebra of the K-linear space \mathfrak{g}.

Poincaré-Birkhoff-Witt Theorem: the canonical morphism

$$
\mathfrak{g} \rightarrow U(\mathfrak{g})
$$

is injective, and \mathfrak{g} generates the K-algebra $U(\mathfrak{g})$.

If \mathfrak{g} corresponds to a Lie group G, then $U(\mathfrak{g})$ can be identified with the algebra of left-invariant differential operators on G.

Affine Algebras and Monomials

Let R be a K-algebra, and $x=\left(x_{1}, \ldots, x_{N}\right) \in R^{N}$. Write

$$
x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}} \quad \text { for a multi-index } \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{N}^{N}
$$

We say that R is affine with respect to x if the family $\left\{x^{\alpha}\right\}$ of monomials in x is a basis of R as K-linear space.
Suppose R is affine w.r.t. x. Each $f \in R$ can be uniquely written
$f=\sum_{\alpha} f_{\alpha} \chi^{\alpha} \quad\left(f_{\alpha} \in K\right.$, with $f_{\alpha}=0$ for all but finitely many $\left.\alpha\right)$.
Hence we can talk about the degree of non-zero $f \in R$.
We also have a monoid structure on the set x^{\diamond} of monomials:

$$
x^{\alpha} * x^{\beta}:=x^{\alpha+\beta}
$$

Affine Algebras and Monomials

A monomial ordering of \mathbb{N}^{N} is a total ordering of \mathbb{N}^{N} compatible with + in \mathbb{N}^{N} with smallest element 0 .

Example

The lexicographic and reverse lexicographic orderings:

$$
\alpha<_{\text {rlex }} \beta: \quad \alpha \neq \beta \text { and } \alpha_{i}>\beta_{i} \text { for the last } i \text { with } \alpha_{i} \neq \beta_{i} .
$$

A monomial ordering \leqslant of \mathbb{N}^{N} yields an ordering of x^{\diamond} :

$$
x^{\alpha} \leqslant x^{\beta} \quad \Longleftrightarrow \quad \alpha \leqslant \beta
$$

Hence we can talk about the leading monomial $\operatorname{Im}(f)=x^{\lambda}$ of a non-zero element $f \in R$:

$$
f=f_{\lambda} x^{\lambda}+\sum_{\alpha<\lambda} f_{\alpha} x^{\alpha}, \quad f_{\lambda} \neq 0
$$

Affine Algebras and Monomials

Examples

- $K[x]$ is affine with respect to $x=\left(x_{1}, \ldots, x_{N}\right)$.
- $A_{n}(K)$ is affine with respect to $\left(x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right)$.
- $U(\mathfrak{g})$ is affine with respect to a basis $\left(x_{1}, \ldots, x_{N}\right)$ of \mathfrak{g}.

These affine algebras are specified by a commutation system $\mathcal{R}=\left(R_{i j}\right)$ in the free K-algebra $K\langle X\rangle$:

$$
\begin{aligned}
R_{i j}= & X_{j} X_{i}-c_{i j} X_{i} X_{j}-P_{i j} \\
& \text { where } 0 \neq c_{i j} \in K \text { and } P_{i j} \in \bigoplus_{\alpha} K X^{\alpha} \text { for } 1 \leqslant i<j \leqslant N .
\end{aligned}
$$

Algebras of Solvable Type

Definition

The K-algebra R is of solvable type with respect to x and \leqslant if
(1) R is affine with respect to x, and
(2) for $1 \leqslant i<j \leqslant N$ there are $0 \neq c_{i j} \in K$ and $p_{i j} \in R$ with

$$
x_{j} x_{i}=c_{i j} x_{i} x_{j}+p_{i j} \quad \text { and } \quad \operatorname{Im}\left(p_{i j}\right)<x_{i} x_{j} .
$$

We call the K-algebra R of solvable type quadric if $\operatorname{deg}\left(p_{i j}\right) \leqslant 2$ for all i, j and homogeneous if $p_{i j}=0$ or $\operatorname{deg}\left(p_{i j}\right)=2$ for all i, j.

Key Property of Solvable Type Algebras

$$
\operatorname{Im}(f \cdot g)=\operatorname{Im}(f) * \operatorname{Im}(g) \quad \text { for non-zero } f, g \in R .
$$

In particular, R is an integral domain.

Algebras of Solvable Type

Quadric algebras of solvable type can be homogenized:

Example (Homogenization of the Weyl Algebra)

$$
A_{n}^{*}(K)=K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}, t\right\rangle
$$

with relations

$$
\begin{array}{ll}
x_{j} x_{i}=x_{i} x_{j}, & \partial_{j} \partial_{i}=\partial_{i} \partial_{j}, \\
\partial_{j} x_{i}=x_{i} \partial_{j} & \\
\partial_{i} x_{i}=x_{i} \partial_{i}+t^{2}, & \\
x_{i} t=t x_{i}, & \partial_{i} t=t \partial_{i},
\end{array}
$$

is homogeneous of solvable type w.r.t. the lexicographic product of any monomial ordering of $\mathbb{N}^{2 n}$ and the usual ordering of \mathbb{N}.

Examples of homogeneous algebras of solvable type include all Clifford algebras.

Algebras of Solvable Type

Suppose R is a homogeneous algebra of solvable type. Then R is naturally graded:

$$
R=\bigoplus_{d} R_{(d)} \quad \text { where } R_{(d)}=\bigoplus_{|\alpha|=d} K x^{\alpha} .
$$

For a homogeneous K-linear subspace $V=\bigoplus_{d} V_{(d)}$ of R, the Hilbert function $H_{V}: \mathbb{N} \rightarrow \mathbb{N}$ of V is defined by

$$
H_{V}(d):=\operatorname{dim}_{K} V_{(d)} \quad \text { for each } d
$$

If $/$ is a homogeneous ideal of R, then there is a polynomial $P \in \mathbb{Q}[T]$ such that $H_{l}(d)=P(d)$ for all $d \gg 0$, called the Hilbert polynomial of l.

Gröbner Bases in Algebras of Solvable Type

Gröbner basis theory ...

- ... provides a general method for computing with polynomials in several indeterminates, which has emerged in the last 40 years;
- ...subsumes well-known algorithms for polynomials (Gaussian elimination, Euclidean algorithm, etc.);
- ... is usually developed for commutative polynomial rings, but generalizes to algebras of solvable type.

Gröbner Bases in Algebras of Solvable Type

General Idea

Let R be an algebra of solvable type.

$$
F=\left\{f_{1}, \ldots, f_{n}\right\} \subseteq R
$$

(input set)
Buchberger's algorithm

$$
G=\left\{g_{1}, \ldots, g_{m}\right\} \subseteq R
$$

(output set)
The sets F and G generate the same (left) ideal of R.

Gröbner Bases in Algebras of Solvable Type

Reduction of Elements of R

$f \underset{g}{\longrightarrow} h$ if h is obtained from f by subtracting a multiple $c x^{\beta} g$ of the non-zero element $g \in R$ which cancels a non-zero term of f.

We say that f is reducible with respect to G if $f \underset{G}{\longrightarrow} h$ for some h, and reduced w.r.t. G otherwise. Each chain

$$
f_{0} \underset{G}{\longrightarrow} f_{1} \underset{G}{\longrightarrow} \cdots \quad\left(f_{i} \neq 0\right)
$$

is finite. So for every f there is some r such that $f \xrightarrow[G]{*} r$ and r is reduced w.r.t. G, called a G-normal form of f.

Gröbner Bases in Algebras of Solvable Type

Definition

A finite subset G of an ideal / of R is called a Gröbner basis of / if every element of R has a unique G-normal form $\mathrm{nf}_{G}(f)$.

Suppose G is a Gröbner basis of I. Then the map $f \mapsto \mathrm{nf}_{G}(f)$ is K-linear, and $R=I \oplus \operatorname{nf}_{G}(R)$. A basis of $\mathrm{nf}_{G}(R)$: all $w \in x^{\circ}$ which are not $*$-multiples of some $\operatorname{Im}(g)$ with $g \in G \backslash\{0\}$.

Each ideal I of R has a Gröbner basis. In fact, there exists an

- effective characterization of Gröbner bases (Buchberger's criterion), and
- an algorithm to obtain a Gröbner basis from a given finite set of generators for I (Buchberger's algorithm).

Gröbner Bases in Algebras of Solvable Type

Applications of Gröbner Bases

- decide ideal membership:

$$
f \in I \Longleftrightarrow f \stackrel{*}{G} 0
$$

- construct generators for solutions to homogeneous equations:

$$
y_{1} f_{1}+\cdots+y_{n} f_{n}=0
$$

- . . . many more (in D-module theory), e.g.:
- talk by Anton Leykin (computing local cohomology);
- book by Saito-Sturmfels-Takayama (computing hypergeometric integrals).

Some authors prefer the term Janet basis if $R=A_{m}(K)$.

Complexity of Gröbner Bases

Suppose $R=K\left[x_{1}, \ldots, x_{N}\right]$ is commutative. Fix a monomial ordering of \mathbb{N}^{N}. Let $f_{1}, \ldots, f_{n} \in R$ be of maximal degree d, and $I=\left(f_{1}, \ldots, f_{n}\right)$.

Lower Degree Bound (Mayr \& Meyer, 1982)

One can choose the f_{i} such that every Gröbner basis of I contains a polynomial of degree $\geqslant d^{2 O(N)}$.

Upper Degree Bound (Bayer, Möller \& Mora, Giusti, 1980s)

Suppose K has characteristic zero. There is a Gröbner basis of I all of whose elements are of degree $\leqslant d^{2^{O(N)}}$.

Complexity of Gröbner Bases

Strategy of the Proof

(1) Homogenize: $R \rightsquigarrow R^{*}=K[x, t], I \rightsquigarrow I^{*}=\left(f_{1}^{*}, \ldots, f_{n}^{*}\right)$.
(2) Place I^{*} into generic coordinates.
(3) In generic coordinates, the degrees of polynomials in a Gröbner basis of I^{*} w.r.t. revlex ordering are $\leqslant(2 d)^{2^{N}}$.
4) This bound also serves as a bound on the regularity of I^{*}. (A homogeneous ideal J has regularity r if for every degree r homogeneous polynomial f, the ideal (J, f) has different Hilbert polynomial.)
(5) A homogeneous ideal of R^{*} with regularity r has its Macaulay constant b_{1} bounded by $(r+2 N+4)^{(2 N+4)^{N+1}}$.
(6) For any monomial ordering, the degree of polynomials in a Gröbner basis of I^{*} is bounded by $\max \left\{r, b_{1}\right\}$.
(7) Specialize l^{*} back to l by setting $t=1$.

Complexity of Gröbner Bases

It was generally believed that that in the case of Weyl algebras, a similar upper bound should hold: the associated graded algebra of $R=A_{m}(K)$,

$$
\operatorname{gr} R=\bigoplus(\operatorname{gr} R)_{(d)} \quad \text { where }(\operatorname{gr} R)_{(d)}=R_{(\leqslant d)} / R_{(<d)},
$$

is commutative:

$$
\operatorname{gr} R=K\left[y_{1}, \ldots, y_{m}, \delta_{1}, \ldots, \delta_{m}\right] \quad \text { where } y_{i}=\operatorname{gr} x_{i}, \delta_{i}=\operatorname{gr} \partial_{i}
$$

In fact, for degree-compatible \leqslant there is a close connection between Gröbner bases of I and Gröbner bases of

$$
\operatorname{gr} I=\{\operatorname{gr} f: f \in I\} .
$$

But:

$$
I=\left(f_{1}, \ldots, f_{n}\right) \nRightarrow \operatorname{gr} I=\left(\operatorname{gr} f_{1}, \ldots, \operatorname{gr} f_{n}\right)
$$

Complexity of Gröbner Bases

The technique of using generic coordinates also seems problematic.

However, using entirely with combinatorial tools (cone decompositions, sometimes called Stanley decompositions) one can show (no assumptions on char K):

Theorem (Dubé, 1990)

Suppose $R=K\left[x_{1}, \ldots, x_{N}\right]$ and f_{1}, \ldots, f_{n} are as above. There is a Gröbner basis for $I=\left(f_{1}, \ldots, f_{n}\right)$ which consists of polynomials of degree at most

$$
D(N, d)=2\left(\frac{d^{2}}{2}+d\right)^{2^{N-1}}
$$

Main Result

Suppose R is a quadric K-algebra of solvable type with respect to $x=\left(x_{1}, \ldots, x_{N}\right)$ and \leqslant. Let $f_{1}, \ldots, f_{n} \in R$ be of degree $\leqslant d$.

Theorem

The ideal $I=\left(f_{1}, \ldots, f_{n}\right)$ has a Gröbner basis whose elements have degree at most $D(N, d)$.

A similar result was independently and simultaneously proved for $R=A_{m}(K)$ by Chistov \& Grigoriev.

A general (non-explicit) uniform degree bound for Gröbner bases in algebras of solvable type had earlier been established by Kredel \& Weispfenning (1990).

Main Result

Corollary 1

Suppose \leqslant is degree-compatible.
(1) If there are $y_{1}, \ldots, y_{n} \in R$ such that

$$
y_{1} f_{1}+\cdots+y_{n} f_{n}=f
$$

then there are such y_{i} of degree at most $\operatorname{deg}(f)+D(N, d)$.
(2) The left module of solutions to the homogeneous equation

$$
y_{1} f_{1}+\cdots+y_{n} f_{n}=0
$$

is generated by solutions of degree at most $3 D(N, d)$.

For $R=K[x]$, this is due to G. Hermann (1926), corrected by Seidenberg (1974). For $R=A_{m}(K)$, part (1) generalizes a result of Grigoriev (1990).

Main Result

Corollary 2

Suppose \leqslant is degree-compatible. If there are a finite index set J and $y_{i j}, z_{i j} \in R$ such that

$$
f=\sum_{j \in J} y_{1 j} f_{1} z_{1 j}+\cdots+\sum_{j \in J} y_{n j} f_{n} z_{n j}
$$

then there are such J and $y_{i j}, z_{i j}$ with

$$
\operatorname{deg}\left(y_{i j}\right), \operatorname{deg}\left(z_{i j}\right) \leqslant \operatorname{deg}(f)+D(2 N, d) .
$$

There is also a notion of Gröbner basis of two-sided ideals, with a corresponding degree bound. Note that $A_{m}(K)$ is simple.

Holonomic Ideals

Return to $R=A_{m}(K)$, and assume char $K=0$. Then

$$
m \leqslant \operatorname{dim} R / I<2 m \quad \text { (Bernstein Inequality). }
$$

Here, $\operatorname{dim} R / I=1+$ degree of the Hilbert polynomial of R / I. Ideals I with $\operatorname{dim} R / I=m$ are called holonomic.

In analogy with 0-dimensional ideals in $K[x]$, one would expect a single-exponential degree bound for Gröbner bases of holonomic ideals. (Known in special cases.)

There is a close connection
holonomic ideals of $R \leftrightarrow 0$-dim. ideals of $R_{m}(K)=K(x) \otimes_{K[x]} R$.
Only a doubly-exponential bound on the leading coefficient of the Kolchin polynomial of $R_{m}(K) / R_{m}(K) /$ is known. (Grigoriev, 2005)

Cone Decompositions

Suppose R is a homogeneous algebra of solvable type and M a homogeneous K-linear subspace of R.

- Monomial cone: a pair (w, y) with $w \in x^{\curvearrowright}$ and $y \subseteq x$.

$$
C(w, y):=K \text {-linear span of } w * y^{\circ} .
$$

- \mathcal{D} is a monomial cone decomposition of M if $C(w, y) \subseteq M$ for every $(w, y) \in \mathcal{D}$ and

$$
M=\bigoplus_{(w, y) \in \mathcal{D}} C(w, y) .
$$

- Cone: a triple (w, y, h), where $h \in R$ is homogeneous.

$$
C(w, y, h):=C(w, y) h=\{g h: g \in C(w, y)\} \subseteq R .
$$

- \mathcal{D} is a cone decomposition of M if $C(w, y, h) \subseteq M$ for every $(w, y, h) \in \mathcal{D}$ and $M=\oplus_{(w, y, h) \in \mathcal{D}} C(w, y, h)$.

Cone Decompositions

For an ideal / of R with Gröbner basis G, one can construct a monomial cone decomposition for $\mathrm{nf}_{G}(R)$. (Stanley, Sturmfels \& White ...) In fact:

$$
\mathcal{D}^{+}:=\{(w, y, h) \in \mathcal{D}: y \neq \emptyset\}
$$

\mathcal{D} is d-standard if $\forall(w, y, h) \in \mathcal{D}^{+}$:

- $\operatorname{deg}(w)+\operatorname{deg}(h) \geqslant d$;
- if $d \leqslant d^{\prime} \leqslant \operatorname{deg}(w)+\operatorname{deg}(h)$, then there is some $\left(w^{\prime}, y^{\prime}, h^{\prime}\right) \in \mathcal{D}^{+}$ with $\operatorname{deg}\left(w^{\prime}\right)+\operatorname{deg}\left(h^{\prime}\right)=d^{\prime}$ and $\# y^{\prime} \geqslant \# y$.

Cone Decompositions

For an ideal / of R with Gröbner basis G, one can construct a monomial cone decomposition for $\mathrm{nf}_{G}(R)$. (Stanley, Sturmfels \& White ...) In fact:

$\mathrm{nf}_{G}(R)$ admits a 0-standard monomial cone decomposition \mathcal{D} with the property that the $g \in G$ with

$$
\operatorname{deg}(g) \leqslant 1+\operatorname{deg}(\mathcal{D})
$$

are still a Gröbner basis of I.
(Dubé)

Cone Decompositions

A cone decomposition \mathcal{D} is exact if \mathcal{D} is d-standard for some d and for every d^{\prime} there is at most one $(w, y, h) \in \mathcal{D}^{+}$with $\operatorname{deg}(w)+\operatorname{deg}(h)=d^{\prime}$.

Given a d-standard cone decomposition \mathcal{D} of M, one can construct an exact d-standard decomposition \mathcal{D}^{\prime} of M with $\operatorname{deg}\left(\mathcal{D}^{\prime}\right) \geqslant \operatorname{deg}(\mathcal{D})$.

Cone Decompositions

Suppose $I=\left(f_{1}, \ldots, f_{n}\right)$ where the f_{i} are homogeneous of degree at most $d=\operatorname{deg}\left(f_{1}\right)$. Then I also admits a d-standard cone decomposition: Write

$$
I=\left(f_{1}\right) \oplus \operatorname{nf}_{G_{2}}(R) f_{2} \oplus \cdots \oplus \operatorname{nf}_{G_{n}}(R) f_{n}
$$

where G_{i} is a Gröbner basis of $\left(\left(f_{1}, \ldots, f_{i-1}\right)\right.$: $\left.f_{i}\right)$.

Macaulay Constants

Let \mathcal{D} be a cone decomposition of M which is d-standard for some d, and let d_{D} be the smallest such d.

- The Macaulay constants $b_{0} \geqslant \cdots \geqslant b_{N+1}=d_{\mathcal{D}}$ of \mathcal{D} :

$$
b_{i}:=\min \left\{d_{\mathcal{D}}, 1+\operatorname{deg} \mathcal{D}_{i}\right\}= \begin{cases}d_{\mathcal{D}} & \text { if } \mathcal{D}_{i}=\emptyset \\ 1+\operatorname{deg} \mathcal{D}_{i} & \text { otherwise }\end{cases}
$$

where $\mathcal{D}_{i}:=\{(w, y, h) \in \mathcal{D}: \# y \geqslant i\}$.

- For $M=\operatorname{nf}_{G}(R)$, where G is a Gröbner basis of I, the Macaulay constants of all 0-standard decompositions are the same; for $d \geqslant b_{0}$:

$$
H_{M}(d)=\binom{d-b_{N+1}+N}{N}-1-\sum_{i=1}^{N}\binom{d-b_{i}+i-1}{i}
$$

Macaulay Constants

Theorem

Suppose $f_{1}, \ldots, f_{n} \in R$ are homogeneous of degree at most d. Then $I=\left(f_{1}, \ldots, f_{n}\right)$ has a Gröbner basis G whose elements have degree at most

$$
D(N-1, d)=2\left(\frac{d^{2}}{2}+d\right)^{2^{N-2}}
$$

Let
$a_{i}=$ Macaulay constants for a 0-standard exact cone decomposition of $\mathrm{nf}_{G}(R)$.
$b_{i}=$ Macaulay constants for a d-standard cone decomposition of I.

Macaulay Constants

Theorem

Suppose $f_{1}, \ldots, f_{n} \in R$ are homogeneous of degree at most d. Then $I=\left(f_{1}, \ldots, f_{n}\right)$ has a Gröbner basis G whose elements have degree at most

$$
D(N-1, d)=2\left(\frac{d^{2}}{2}+d\right)^{2^{N-2}}
$$

Using that

$$
H_{l}(d)+H_{\mathrm{nf}_{G}(R)}(d)=H_{R}(d)=\binom{d+N-1}{N-1},
$$

one may show

$$
a_{j}+b_{j} \leqslant D(N-j, d) \quad \text { for } j=1, \ldots, N-2 .
$$

Macaulay Constants

Theorem

Suppose $f_{1}, \ldots, f_{n} \in R$ are homogeneous of degree at most d. Then $I=\left(f_{1}, \ldots, f_{n}\right)$ has a Gröbner basis G whose elements have degree at most

$$
D(N-1, d)=2\left(\frac{d^{2}}{2}+d\right)^{2^{N-2}}
$$

In particular,

$$
a_{1}+b_{1} \leqslant D:=D(N-1, d) .
$$

Degrees of elements in G are bounded by a_{0}, but another argument shows

$$
\max \left\{a_{0}, b_{0}\right\}=\max \left\{a_{1}, b_{1}\right\} \leqslant D . \square
$$

