Degree Bounds for Gröbner Bases in Algebras of Solvable Type

Matthias Aschenbrenner University of California, Los Angeles

(joint with Anton Leykin)

UCLA

- ... introduced by Kandri-Rody & Weispfenning (1990);
- ... form a class of associative algebras over fields which generalize
 - commutative polynomial rings;
 - Weyl algebras;
 - universal enveloping algebras of f. d. Lie algebras;
- ... are sometimes also called *polynomial rings of solvable type* or *PBW-algebras* (Poincaré-Birkhoff-Witt).

Weyl Algebras

Systems of linear PDE with polynomial coefficients can be represented by left ideals in the *Weyl algebra*

$$A_n(\mathbb{C}) = \mathbb{C}\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle,$$

the \mathbb{C} -algebra generated by the x_i , ∂_j subject to the relations:

$$x_j x_i = x_i x_j, \qquad \partial_j \partial_i = \partial_i \partial_j$$

and

$$\partial_j x_i = \begin{cases} x_i \partial_j & \text{if } i \neq j \\ x_i \partial_j + 1 & \text{if } i = j. \end{cases}$$

The Weyl algebra acts naturally on $\mathbb{C}[x_1, \ldots, x_n]$:

$$(\partial_i, f) \mapsto \frac{\partial f}{\partial x_i}, \qquad (x_i, f) \mapsto x_i f.$$

Let \mathfrak{g} be a Lie algebra over a field *K*. The *universal enveloping* algebra $U(\mathfrak{g})$ of \mathfrak{g} is the *K*-algebra obtained by imposing the relations

$$g \otimes h - h \otimes g = [g, h]_{\mathfrak{g}}$$

on the tensor algebra of the K-linear space g.

Poincaré-Birkhoff-Witt Theorem: the canonical morphism

 $\mathfrak{g}
ightarrow U(\mathfrak{g})$

is injective, and \mathfrak{g} generates the *K*-algebra $U(\mathfrak{g})$.

If \mathfrak{g} corresponds to a Lie group *G*, then $U(\mathfrak{g})$ can be identified with the algebra of left-invariant differential operators on *G*.

Affine Algebras and Monomials

Let *R* be a *K*-algebra, and $x = (x_1, \ldots, x_N) \in \mathbb{R}^N$. Write

 $x^{\alpha} := x_1^{\alpha_1} \cdots x_N^{\alpha_N}$ for a multi-index $\alpha = (\alpha_1, \dots, \alpha_N) \in \mathbb{N}^N$.

We say that *R* is affine with respect to *x* if the family $\{x^{\alpha}\}$ of monomials in *x* is a basis of *R* as *K*-linear space.

Suppose *R* is affine w.r.t. *x*. Each $f \in R$ can be uniquely written

$$f = \sum_{\alpha} f_{\alpha} x^{\alpha}$$
 ($f_{\alpha} \in K$, with $f_{\alpha} = 0$ for all but finitely many α).

Hence we can talk about the degree of non-zero $f \in R$.

We also have a monoid structure on the set x^{\diamond} of monomials:

$$\mathbf{X}^{\alpha} * \mathbf{X}^{\beta} := \mathbf{X}^{\alpha+\beta}.$$

Affine Algebras and Monomials

A monomial ordering of \mathbb{N}^N is a total ordering of \mathbb{N}^N compatible with + in \mathbb{N}^N with smallest element 0.

Example

The lexicographic and reverse lexicographic orderings:

 $\alpha <_{\mathsf{rlex}} \beta : \qquad \alpha \neq \beta \text{ and } \alpha_i > \beta_i \text{ for the last } i \text{ with } \alpha_i \neq \beta_i.$

A monomial ordering \leq of \mathbb{N}^N yields an ordering of x^\diamond :

$$\mathbf{X}^{\alpha} \leqslant \mathbf{X}^{\beta} \qquad \Longleftrightarrow \qquad \alpha \leqslant \beta$$

Hence we can talk about the leading monomial $Im(f) = x^{\lambda}$ of a non-zero element $f \in R$:

$$f = f_{\lambda} x^{\lambda} + \sum_{\alpha < \lambda} f_{\alpha} x^{\alpha}, \qquad f_{\lambda} \neq 0.$$

Examples

- K[x] is affine with respect to $x = (x_1, \ldots, x_N)$.
- $A_n(K)$ is affine with respect to $(x_1, \ldots, x_n, \partial_1, \ldots, \partial_n)$.
- $U(\mathfrak{g})$ is affine with respect to a basis (x_1, \ldots, x_N) of \mathfrak{g} .

These affine algebras are specified by a *commutation system* $\mathcal{R} = (R_{ij})$ in the free *K*-algebra $K\langle X \rangle$:

$$\begin{aligned} R_{ij} &= X_j X_i - c_{ij} X_i X_j - P_{ij} \\ \text{where } 0 \neq c_{ij} \in K \text{ and } P_{ij} \in \bigoplus_{\alpha} KX^{\alpha} \text{ for } 1 \leqslant i < j \leqslant N. \end{aligned}$$

Definition

The *K*-algebra *R* is of solvable type with respect to *x* and \leq if

- **1** *R* is affine with respect to *x*, and
- 2 for $1 \leq i < j \leq N$ there are $0 \neq c_{ij} \in K$ and $p_{ij} \in R$ with

 $x_j x_i = c_{ij} x_i x_j + p_{ij}$ and $\operatorname{Im}(p_{ij}) < x_i x_j$.

We call the *K*-algebra *R* of solvable type quadric if deg $(p_{ij}) \le 2$ for all *i*, *j* and homogeneous if $p_{ij} = 0$ or deg $(p_{ij}) = 2$ for all *i*, *j*.

Key Property of Solvable Type Algebras

 $\operatorname{Im}(f \cdot g) = \operatorname{Im}(f) * \operatorname{Im}(g)$ for non-zero $f, g \in R$.

In particular, *R* is an integral domain.

Algebras of Solvable Type

Quadric algebras of solvable type can be homogenized:

Example (Homogenization of the Weyl Algebra)

$$\boldsymbol{A}_{\boldsymbol{n}}^{*}(\boldsymbol{K}) = \boldsymbol{K}\langle \boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{\boldsymbol{n}},\partial_{1},\ldots,\partial_{\boldsymbol{n}},\boldsymbol{t}\rangle$$

with relations

$$\begin{array}{ll} x_j x_i = x_i x_j, & \partial_j \partial_i = \partial_i \partial_j, \\ \partial_j x_i = x_i \partial_j & \text{if } i \neq j \\ \partial_i x_i = x_i \partial_i + t^2, \\ x_i t = t x_i, & \partial_i t = t \partial_i, \end{array}$$

is homogeneous of solvable type w.r.t. the lexicographic product of any monomial ordering of \mathbb{N}^{2n} and the usual ordering of \mathbb{N} .

Examples of homogeneous algebras of solvable type include all Clifford algebras.

Suppose R is a homogeneous algebra of solvable type. Then R is naturally graded:

$$R = \bigoplus_{d} R_{(d)}$$
 where $R_{(d)} = \bigoplus_{|\alpha|=d} K x^{\alpha}$.

For a homogeneous *K*-linear subspace $V = \bigoplus_d V_{(d)}$ of *R*, the Hilbert function $H_V \colon \mathbb{N} \to \mathbb{N}$ of *V* is defined by

$$H_V(d) := \dim_K V_{(d)}$$
 for each d .

If *I* is a homogeneous ideal of *R*, then there is a polynomial $P \in \mathbb{Q}[T]$ such that $H_I(d) = P(d)$ for all $d \gg 0$, called the Hilbert polynomial of *I*.

Gröbner basis theory ...

- ... provides a general method for computing with polynomials in several indeterminates, which has emerged in the last 40 years;
- ... subsumes well-known algorithms for polynomials (Gaussian elimination, Euclidean algorithm, etc.);
- ... is usually developed for commutative polynomial rings, but generalizes to algebras of solvable type.

General Idea

Let *R* be an algebra of solvable type.

$$F = \{f_1, \dots, f_n\} \subseteq R$$
 (input set)

$$\bigcup Buchberger's algorithm$$

$$G = \{g_1, \dots, g_m\} \subseteq R$$
 (output set)

The sets F and G generate the same (left) ideal of R.

Reduction of Elements of R

 $f \xrightarrow{g} h$ if *h* is obtained from *f* by subtracting a multiple $cx^{\beta}g$ of the non-zero element $g \in R$ which cancels a non-zero term of *f*.

We say that *f* is reducible with respect to *G* if $f \xrightarrow{G} h$ for some *h*, and reduced w.r.t. *G* otherwise. Each chain

$$f_0 \xrightarrow{G} f_1 \xrightarrow{G} \cdots (f_i \neq 0)$$

is finite. So for every *f* there is some *r* such that $f \xrightarrow[G]{*} r$ and *r* is reduced w.r.t. *G*, called a *G*-normal form of *f*.

Definition

A finite subset G of an ideal I of R is called a Gröbner basis of I if every element of R has a unique G-normal form $nf_G(f)$.

Suppose *G* is a Gröbner basis of *I*. Then the map $f \mapsto \text{nf}_G(f)$ is *K*-linear, and $R = I \oplus \text{nf}_G(R)$. A basis of $\text{nf}_G(R)$: all $w \in x^\diamond$ which are not *-multiples of some Im(g) with $g \in G \setminus \{0\}$.

Each ideal *I* of *R* has a Gröbner basis. In fact, there exists an

- effective characterization of Gröbner bases (*Buchberger's criterion*), and
- an algorithm to obtain a Gröbner basis from a given finite set of generators for *I* (*Buchberger's algorithm*).

Gröbner Bases in Algebras of Solvable Type

Applications of Gröbner Bases

• decide ideal membership:

$$f \in I \iff f \stackrel{*}{\longrightarrow} 0$$

construct generators for solutions to homogeneous equations:

$$y_1f_1+\cdots+y_nf_n=0$$

- ... many more (in *D*-module theory), e.g.:
 - talk by Anton Leykin (computing local cohomology);
 - book by Saito-Sturmfels-Takayama (computing hypergeometric integrals).

Some authors prefer the term *Janet basis* if $R = A_m(K)$.

Suppose $R = K[x_1, ..., x_N]$ is commutative. Fix a monomial ordering of \mathbb{N}^N . Let $f_1, ..., f_n \in R$ be of maximal degree d, and $l = (f_1, ..., f_n)$.

Lower Degree Bound (Mayr & Meyer, 1982)

One can choose the f_i such that every Gröbner basis of I contains a polynomial of degree $\ge d^{2^{O(N)}}$.

Upper Degree Bound (Bayer, Möller & Mora, Giusti, 1980s)

Suppose *K* has characteristic zero. There is a Gröbner basis of *I* all of whose elements are of degree $\leq d^{2^{O(N)}}$.

Complexity of Gröbner Bases

Strategy of the Proof

1 Homogenize: $R \rightsquigarrow R^* = K[x, t], I \rightsquigarrow I^* = (f_1^*, \dots, f_n^*).$

2 Place I* into generic coordinates.

- In generic coordinates, the degrees of polynomials in a Gröbner basis of *I*^{*} w.r.t. revlex ordering are ≤ (2*d*)^{2^N}.
- This bound also serves as a bound on the *regularity* of *I**. (A homogeneous ideal *J* has regularity *r* if for every degree *r* homogeneous polynomial *f*, the ideal (*J*, *f*) has different Hilbert polynomial.)
- **6** A homogeneous ideal of R^* with regularity *r* has its *Macaulay constant b*₁ bounded by $(r + 2N + 4)^{(2N+4)^{N+1}}$.
- For any monomial ordering, the degree of polynomials in a Gröbner basis of *I** is bounded by max{*r*, *b*₁}.
- **7** Specialize I^* back to I by setting t = 1.

Complexity of Gröbner Bases

It was generally believed that that in the case of Weyl algebras, a similar upper bound should hold: the *associated graded* algebra of $R = A_m(K)$,

$$\operatorname{gr} R = igoplus_d (\operatorname{gr} R)_{(d)}$$
 where $(\operatorname{gr} R)_{(d)} = R_{(\leqslant d)}/R_{(< d)}$,

is commutative:

gr
$$\mathbf{R} = \mathbf{K}[\mathbf{y}_1, \dots, \mathbf{y}_m, \delta_1, \dots, \delta_m]$$
 where $\mathbf{y}_i = \operatorname{gr} \mathbf{x}_i, \, \delta_i = \operatorname{gr} \partial_i$.

In fact, for degree-compatible \leq there is a close connection between Gröbner bases of *I* and Gröbner bases of

$$\operatorname{gr} I = {\operatorname{gr} f : f \in I}.$$

But:

$$I = (f_1, \ldots, f_n) \not\Rightarrow \operatorname{gr} I = (\operatorname{gr} f_1, \ldots, \operatorname{gr} f_n).$$

The technique of using generic coordinates also seems problematic.

However, using entirely with combinatorial tools (*cone decompositions*, sometimes called *Stanley decompositions*) one can show (no assumptions on char *K*):

Theorem (Dubé, 1990)

Suppose $R = K[x_1, ..., x_N]$ and $f_1, ..., f_n$ are as above. There is a Gröbner basis for $I = (f_1, ..., f_n)$ which consists of polynomials of degree at most

$$D(N,d) = 2\left(\frac{d^2}{2} + d\right)^{2^{N-1}}$$

Main Result

Suppose *R* is a quadric *K*-algebra of solvable type with respect to $x = (x_1, ..., x_N)$ and \leq . Let $f_1, ..., f_n \in R$ be of degree $\leq d$.

Theorem

The ideal $I = (f_1, ..., f_n)$ has a Gröbner basis whose elements have degree at most D(N, d).

A similar result was independently and simultaneously proved for $R = A_m(K)$ by Chistov & Grigoriev.

A general (non-explicit) uniform degree bound for Gröbner bases in algebras of solvable type had earlier been established by Kredel & Weispfenning (1990).

Corollary 1

Suppose \leq is degree-compatible.

1 If there are $y_1, \ldots, y_n \in R$ such that

$$y_1f_1+\cdots+y_nf_n=f,$$

then there are such y_i of degree at most deg(f) + D(N, d). 2 The left module of solutions to the homogeneous equation

$$y_1f_1+\cdots+y_nf_n=0$$

is generated by solutions of degree at most 3D(N, d).

For R = K[x], this is due to G. Hermann (1926), corrected by Seidenberg (1974). For $R = A_m(K)$, part (1) generalizes a result of Grigoriev (1990).

Corollary 2

Suppose \leq is degree-compatible. If there are a finite index set J and $y_{ij}, z_{ij} \in R$ such that

$$f = \sum_{j \in J} y_{1j} f_1 z_{1j} + \dots + \sum_{j \in J} y_{nj} f_n z_{nj}$$

then there are such J and y_{ij} , z_{ij} with

 $\deg(y_{ij}), \deg(z_{ij}) \leqslant \deg(f) + D(2N, d).$

There is also a notion of Gröbner basis of two-sided ideals, with a corresponding degree bound. Note that $A_m(K)$ is simple.

Holonomic Ideals

Return to $R = A_m(K)$, and assume char K = 0. Then

 $m \leq \dim R/I < 2m$ (Bernstein Inequality).

Here, dim R/I = 1 + degree of the Hilbert polynomial of R/I.

Ideals I with dim R/I = m are called *holonomic*.

In analogy with 0-dimensional ideals in K[x], one would expect a single-exponential degree bound for Gröbner bases of holonomic ideals. (Known in special cases.)

There is a close connection

holonomic ideals of $R \leftrightarrow 0$ -dim. ideals of $R_m(K) = K(x) \otimes_{K[x]} R$.

Only a doubly-exponential bound on the leading coefficient of the Kolchin polynomial of $R_m(K)/R_m(K)I$ is known. (Grigoriev, 2005)

Cone Decompositions

Suppose R is a homogeneous algebra of solvable type and M a homogeneous K-linear subspace of R.

• Monomial cone: a pair (w, y) with $w \in x^{\diamond}$ and $y \subseteq x$.

C(w, y) := K-linear span of $w * y^{\diamond}$.

D is a monomial cone decomposition of *M* if *C*(*w*, *y*) ⊆ *M* for every (*w*, *y*) ∈ *D* and

$$M=\bigoplus_{(w,y)\in\mathcal{D}}C(w,y).$$

• Cone: a triple (w, y, h), where $h \in R$ is homogeneous.

$$C(w, y, h) := C(w, y)h = \{gh : g \in C(w, y)\} \subseteq R.$$

• \mathcal{D} is a cone decomposition of M if $C(w, y, h) \subseteq M$ for every $(w, y, h) \in \mathcal{D}$ and $M = \bigoplus_{(w, y, h) \in \mathcal{D}} C(w, y, h)$.

For an ideal *I* of *R* with Gröbner basis *G*, one can construct a monomial cone decomposition for $nf_G(R)$. (Stanley, Sturmfels & White ...) In fact:

$$\mathcal{D}^+ := \big\{ (w, y, h) \in \mathcal{D} : y \neq \emptyset \big\}$$

 \mathcal{D} is *d*-standard if \forall (*w*, *y*, *h*) $\in \mathcal{D}^+$:

- $\deg(w) + \deg(h) \ge d;$
- if $d \leq d' \leq \deg(w) + \deg(h)$, then there is some $(w', y', h') \in \mathcal{D}^+$ with $\deg(w') + \deg(h') = d'$ and $\#y' \geq \#y$.

For an ideal *I* of *R* with Gröbner basis *G*, one can construct a monomial cone decomposition for $nf_G(R)$. (Stanley, Sturmfels & White ...) In fact:

 $\operatorname{nf}_G(R)$ admits a 0-standard monomial cone decomposition $\mathcal D$ with the property that the $g \in G$ with

$$\deg(g) \leqslant \mathsf{1} + \deg(\mathcal{D})$$

are still a Gröbner basis of *I*. (Dubé)

A cone decomposition \mathcal{D} is exact if \mathcal{D} is *d*-standard for some *d* and for every *d'* there is *at most one* $(w, y, h) \in \mathcal{D}^+$ with $\deg(w) + \deg(h) = d'$.

Given a *d*-standard cone decomposition \mathcal{D} of *M*, one can construct an exact *d*-standard decomposition \mathcal{D}' of *M* with $deg(\mathcal{D}') \ge deg(\mathcal{D})$. Suppose $I = (f_1, ..., f_n)$ where the f_i are homogeneous of degree at most $d = \deg(f_1)$. Then *I* also admits a *d*-standard cone decomposition: Write

$$I = (f_1) \oplus \operatorname{nf}_{G_2}(R) f_2 \oplus \cdots \oplus \operatorname{nf}_{G_n}(R) f_n$$

where G_i is a Gröbner basis of $((f_1, \ldots, f_{i-1}) : f_i)$.

Let \mathcal{D} be a cone decomposition of M which is d-standard for some d, and let $d_{\mathcal{D}}$ be the smallest such d.

• The Macaulay constants $b_0 \ge \cdots \ge b_{N+1} = d_D$ of D:

$$b_i := \min \left\{ d_{\mathcal{D}}, 1 + \deg \mathcal{D}_i \right\} = \begin{cases} d_{\mathcal{D}} & \text{if } \mathcal{D}_i = \emptyset \\ 1 + \deg \mathcal{D}_i & \text{otherwise.} \end{cases}$$

where $\mathcal{D}_i := \{(w, y, h) \in \mathcal{D} : \#y \ge i\}.$

 For *M* = nf_G(*R*), where *G* is a Gröbner basis of *I*, the Macaulay constants of all 0-standard decompositions are the same; for *d* ≥ *b*₀:

$$H_M(d) = {d - b_{N+1} + N \choose N} - 1 - \sum_{i=1}^N {d - b_i + i - 1 \choose i}.$$

Macaulay Constants

Theorem

Suppose $f_1, \ldots, f_n \in R$ are homogeneous of degree at most d. Then $I = (f_1, \ldots, f_n)$ has a Gröbner basis G whose elements have degree at most

$$D(N-1,d) = 2\left(\frac{d^2}{2}+d\right)^{2^{N-2}}$$

Let

- a_i = Macaulay constants for a 0-standard exact cone decomposition of $nf_G(R)$.
- b_i = Macaulay constants for a *d*-standard cone decomposition of *l*.

Macaulay Constants

Theorem

Suppose $f_1, \ldots, f_n \in R$ are homogeneous of degree at most d. Then $I = (f_1, \ldots, f_n)$ has a Gröbner basis G whose elements have degree at most

$$D(N-1,d) = 2\left(\frac{d^2}{2}+d\right)^{2^{N-2}}$$

Using that

$$H_I(d) + H_{\mathrm{nf}_G(R)}(d) = H_R(d) = {d+N-1 \choose N-1},$$

one may show

$$a_j + b_j \leqslant D(N-j,d)$$
 for $j = 1, \dots, N-2$.

Theorem

Suppose $f_1, \ldots, f_n \in R$ are homogeneous of degree at most d. Then $I = (f_1, \ldots, f_n)$ has a Gröbner basis G whose elements have degree at most

$$D(N-1,d) = 2\left(\frac{d^2}{2}+d\right)^{2^{N-2}}$$

In particular,

$$a_1+b_1 \leq D := D(N-1,d).$$

Degrees of elements in G are bounded by a_0 , but another argument shows

$$\max\{a_0, b_0\} = \max\{a_1, b_1\} \leqslant D. \quad \Box$$