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Overview

I. Asymptotic Differential Algebra

In the previous lecture, JORIS introduced a variety of
interesting differential fields (of transseries, germs of
functions, . . . ) equipped with asymptotic structure, such
as ordering and dominance. We will now introduce an
algebraic framework to unify these examples and to
study their general properties.

II. The Main Results

We’ll give statements of our main theorems, though
leaving some definitions as black boxes for JORIS’ next
lecture.

III. The Next Lectures



I. Asymptotic Differential Algebra



Differential fields

Let K be a differential field (always of characteristic 0), with
derivation ∂. As usual

f 0 = ∂(f ), f 00 = ∂2(f ), . . . , f (n) = ∂n(f ), . . .

The constant field of K is C = CK = {f 2 K : f 0 = 0}.

For f 6= 0 let f † := f 0/f be the logarithmic derivative of f . Note

(f · g)† = f † + g† for f , g 6= 0.

The ring of differential polynomials (= d-polynomials) in
Y1, . . . ,Yn with coefficients in K is denoted by K{Y1, . . . ,Yn}.

For � 6= 0, we denote by K � the compositional conjugate

of K by �: the field K equipped with the derivation ��1∂.

For every P 2 K{Y} there is a P� 2 K �{Y} with P(y) = P�(y)
for all y . (This will play an important role later.)



Valued differential fields
A valued differential field is a differential field K equipped with
a valuation v : K⇥ ! � = �K , extended by v(0) :=1 > �. Put

O := {f : vf > 0}, O := {f : vf > 0}, res(K ) := O/O.

In our context it is often more natural to encode v in terms of its
associated dominance relation:

f 4 g :() vf > vg “g dominates f ”.

We also use:

f � g :() f 4 g & g 64 f “g strictly dominates f ”
f ⇣ g :() f 4 g & g 4 f
f ⇠ g :() f � g � g “asymptotic equivalence”

The derivation of K is small if ∂O ✓ O. (This implies the
continuity of ∂.) Then ∂O ✓ O, so we get a derivation on res(K ).



Valued differential fields

Examples

1 For K = T:

(�,+,6) ⇠= �{transmonomials}, · ,<�.

2 For K = R(`0, `1, . . . ) ✓ T:

� =
M

n

Zen, en = v`n, `n = log log · · · log| {z }
n times

x ,

en < m en+1 < 0 for all m > 0 and all n.

In both cases O = R+ O, so res(K ) ⇠= R.



Valued differential fields
An ordered differential field is a differential field K equipped
with an ordering making it an ordered field. We can then turn K
into a valued field with dominance relation

f 4 g :() |f | 6 c|g| for some c 2 C.

Example

Let K be a HARDY field. Then K becomes an ordered field via

f > 0 :() f (t) > 0, eventually.

For g 6= 0, we have:

f 4 g () lim
t!+1

f (t)
g(t)

2 R, f � g () lim
t!+1

f (t)
g(t)

= 0,

f ⇣ g () lim
t!+1

f (t)
g(t)

2 R⇥, f ⇠ g () lim
t!+1

f (t)
g(t)

= 1.
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Asymptotic fields
A valued differential field K is an asymptotic field if

for all nonzero f , g 6⇣ 1, f 4 g () f 0 4 g0.

We say that K is of H-type (or H-asymptotic) if in addition

for all nonzero f , g � 1, f 4 g =) f † < g†.

Examples

• Let K be a HARDY field. Then for nonzero f , g 6⇣ 1:

f 4 g () lim
t!+1

f (t)
g(t)

2 R ()
L’HÔPITAL

lim
t!+1

f 0(t)
g0(t)

2 R () f 0 4 g0.

So K is asymptotic. One can check that K is of H-type.
• Every valued differential subfield of T is H-asymptotic.



Asymptotic fields

Let K be an asymptotic field. We can define functions

� 6= := � \ {0}! �

by

� = vg 7! �0 := vg0, � = vg 7!  (�) := �† := �0 � � = vg†.

The pair (�, ), with  (0) :=1, is an asymptotic couple, i.e.,
(AC1)  (↵+ �) > min

�
 (↵), (�)

�
;

(AC2)  (k↵) =  (↵) for all k 2 Z 6=;
(AC3) 0 < ↵ < � =) ↵0 < �0.

We say that (�, ) is of H-type, or H-asymptotic, if in addition
(HC) 0 < ↵ 6 � =)  (↵) >  (�).



Asymptotic fields

Example

Suppose K = R(`0, `1, `2, . . . ), so

� =
M

n

Zen where en = v`n < 0.

We have

`0n =
�
log `n�1

�0
=
`0n�1
`n�1

=) `0n =
1

`0 · · · `n�1

=) `†n =
1

`0 · · · `n
Thus

(�>)† =

⇢
v
✓

1
`0

◆
, v

✓
1
`0`1

◆
, . . . , v

✓
1

`0 · · · `n

◆
, . . .

�



Asymptotic fields

Here is a picture of a typical H-asymptotic couple.

� "

! �
�

�0

�† = �0 � �

We always have (�>)† < (�>)0 . (Even if (�, ) is not of H-type.)

What happens near the little circle is important.



Asymptotic fields
Let (�, ) be an H-asymptotic couple. Exactly one of the
following statements holds:

1 (�>)† < � < (�>)0 for a (necessarily unique) �.
We call such � a gap in (�, ).

2 (�>)† has a largest element.
We say that (�, ) is grounded.

3 (�>)† has no supremum; equivalently: � = (� 6=)0.
We say that (�, ) has asymptotic integration.

We use similar terminology for H-asymptotic fields.

Examples

1 K = R (but there are also more interesting examples);

2 K = R(`0, . . . , `n): then max (�>)† = v
✓

1
`0 · · · `n

◆
;

3 K = R(`0, `1, `2, . . . ), or K = T.



Asymptotic fields

The class of asymptotic fields is very robust, e.g., closed under
• taking substructures, compositional conjugation;
• algebraic extensions;
• coarsening and specialization.

Definition
Let � be a convex subgroup of �, with ordered quotient group
�̇ := �/�. Then K with its valuation replaced by

K⇥ v��! �
� 7! �+��������! �̇

is an asymptotic field, called the coarsening of K by �.



Asymptotic fields

The class of asymptotic fields is very robust, e.g., closed under
• taking substructures, compositional conjugation;
• algebraic extensions;
• coarsening and specialization.

Important special case

Suppose K is H-asymptotic. Then

�[ :=
�
� : �† > 0

 

is a convex subgroup of �. More generally, so is

�[� :=
�
� : �† > v�

 
for � 2 K⇥.

If K = T, then �[ =
�

vf : f 2 T⇥, f n � ex for all n
 

.
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Differential-valued fields

Let K be an asymptotic field. Then C ✓ O and

c 7! c + O : C ! res(K ) = O/O is injective.

Definition
We say that K is d-valued if O = C + O; equivalently, for each
f ⇣ 1 there is some c 2 C with f ⇠ c.

These were defined and first studied by ROSENLICHT (1980s),
who in the process also introduced asymptotic couples.

The class of d-valued fields is not as robust as that of
asymptotic fields, for example, not closed under taking
substructures: consider

Q
⇣p

2 + x�1
⌘
✓ T.
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H-fields

Definition
Let K be an ordered differential field. Then K is an H-field if

(H1) f � 1 ) f † > 0; and
(H2) for each f ⇣ 1 there is some c 2 C with f ⇠ c.

Every H-field, as valued differential field, is H-asymptotic and
d-valued (by (H2)).
Each compositional conjugate K � of an H-field K with � 2 K ,
� > 0, is an H-field.

Examples

• every ordered differential subfield K ◆ R of T;
• every HARDY field K ◆ R.



H-fields

Recall that T is real closed, as well as closed under
exponentiation and integration. This motivates the following:

Definition
Let K be an H-field. We say that K is LIOUVILLE closed if

1 K is real closed;
2 for each f 2 K there is some y 2 K with y 6= 0, y† = f ; and
3 for each g 2 K there is some z 2 K with z 0 = g.

A LIOUVILLE closure of an H-field K is a minimal LIOUVILLE
closed H-field extension of K .

Theorem
Every H-field K has exactly one or exactly two LIOUVILLE
closures, up to isomorphism over K .



H-fields

What can go wrong when forming LIOUVILLE closures may be
seen from the asymptotic couple (�, ) of K . Recall that exactly
one of the following holds:

1 K has a gap �: (�>)† < � < (�>)0

2 K is grounded: (�>)† has a largest element.
3 K has asymptotic integration: (�>)† has no supremum.

In 1 we have two LIOUVILLE closures: if � = vg, then we have
a choice when adjoining

R
g: make it � 1 or � 1.

In 2 we have one LIOUVILLE closure: if vg = max (�>)†, thenR
g � 1 in each LIOUVILLE closure of K .

In 3 we may have one or two LIOUVILLE closures.



Order 2 linear differential equations in transseries
Since T is LIOUVILLE CLOSED, each linear differential equation

y 0 + fy = g (f , g 2 T)

has a nonzero solution y 2 T. What other kinds of algebraic
differential equations have solutions in T?

Examples (2nd order linear)

• y 00 = �y has no solution y 2 T⇥;
• y 00 = xy has two R-linearly independent solutions in T:

Ai =
e�⇠

2⇡1/2x1/4

X

n

(�1)n an

⇠n

Bi =
e⇠

⇡1/2x1/4

X

n

(�1)n an

⇠n (⇠ = 2
3x3/2, an 2 R).



Order 2 linear differential equations in transseries
Let K be a LIOUVILLE closed H-field. For f 2 K and y 2 K⇥,

4y 00 + fy = 0 () !(2y†) = f

where !(z) := �(2z 0 + z2).

Hence

!(K ) =
�

f 2 K : 4y 00 + fy = 0 for some y 2 K⇥ .

Example (K = T)

gn := `†n =
1

`0 · · · `n
ln := �g†n =

1
`0

+
1
`0`1

+ · · ·+ 1
`0`1 · · · `n

wn := !(ln) =
1
`2

0
+

1
(`0`1)2 + · · ·+ 1

(`0`1 · · · `n)2



Order 2 linear differential equations in transseries
One can show that the sequence (wn) is cofinal in !(T), and
that !(T) is downward closed in T (as a consequence of the
newtonianitynewtonianity of T).

1
`0`1···

1
`0

+ 1
`0`1

+ · · ·

1
`2

0
+ 1

(`0`1)2
+ · · ·

T

T
0

!

Definition
Call an H-field K with asymptotic integration w-free if !(K ) has
no supremum in K . (This is not quite the definition of w-free
used in our book, but equivalent to it for LIOUVILLE closed K .)



Newtonianity

Newtonian is a version of “d-henselian” satisfied by T, which
says that certain kinds of d-polynomials in one variable over K
have a zero y 4 1 in K . The definition involves compositional
conjugation.

It guarantees, for example, that the PAINLEVÉ II equation

y 00 = 2y3 + xy + ↵ (↵ 2 C, x 0 = 1)

has a solution in y 4 1 in K .

We chose the adjective “newtonian” since it is this property that
allows us to develop a NEWTON diagram method for differential
polynomials.

w-freeness and newtonianity will be discussed in more detail in
JORIS’ next talk.



II. The Main Results



The main results

From now on, we view each H-field K as a (model-theoretic)
structure where we single out the primitives

0, 1, +, · , ∂ (derivation), 6 (ordering), 4 (dominance).

Theorem A
The following statements about K axiomatize a model complete
theory T nl: K is

1 a LIOUVILLE closed H-field;
2 w-free;
3 newtonian.

Moreover, T is a model of these axioms.

� (The inclusion of 4 is necessary.)



The main results

The theory T nl is not complete. It has exactly two completions:
• T nl

small: small derivation;
• T nl

large: large derivation.

Thus T nl
small = Th(T).

Corollary

T is decidable; in particular: there is an algorithm which, given
d-polynomials P1, . . . ,Pm 2 Q(x){Y1, . . . ,Yn}, decides whether
P1(y) = · · · = Pm(y) = 0 for some y 2 Tn.

There is no such algorithm if T is replaced by its H-subfield of
exponential transseries.



The main results

Theorem A is the main step towards a quantifier elimination
for T, in a slightly extended language.

Let L◆
L,W be our language L = {0, 1, +, · , ∂, 6, 4} augmented

by a unary function symbol ◆ and unary predicates L, W.

Extend T nl to the L◆
L,W-theory T nl,◆

L,W by adding as defining
axioms for these new symbols the universal closures of

⇥
a 6= 0 �! a · ◆(a) = 1

⇤
&
⇥
a = 0 �! ◆(a) = 0

⇤
,

L(a)  ! 9y⇥y � 1 & a = �y††⇤,
W(a)  ! 9y⇥y 6= 0 & 4y 00 + ay = 0

⇤
.

For a model K of T nl this makes both L(K ) and W(K ) = !(K )
downward closed.



The main results

Example (K = T)

f 2 L(T) , f < ln =
1
`0

+
1
`0`1

+ · · ·+ 1
`0`1 · · · `n for some n,

f 2 W(T) , f < wn =
1
`20

+
1
`2

0`
2
1
+ · · ·+ 1

`20`
2
1 · · · `2

n
for some n.

Theorem B
T nl,◆

L,W admits quantifier elimination.

The predicates L and W act as switchmen when constructing
extensions of K : If an element g in an H-field extension of K
solving g† = �l 2 K is a gap, then L(l) tells us to chooseR

g � 1, while ¬L(l) forces
R

g � 1. Likewise, W controls what
happens when we adjoin l with !(l) = w 2 K .



III. The Next Lectures



Lecture 3 JORIS will discuss the main “machine” behind the
proof of our theorems: the NEWTON diagram
method.

Lecture 4 I will sketch the main steps in the proofs of
Theorems A and B, and give some applications.

Lecture 5 LOU will speak about further developments.
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I. Newtonization



Reminders from the last lecture

Let K be a d-valued field of H-type with asymptotic integration.
Recall that C ⇠= res(K ). Suppose for simplicity that � is divisible
and K is equipped with a “monomial group” M.

From JORIS’ last lecture recall the definition of the NEWTON
polynomial NP 2 C{Y} 6= of P 2 K{Y} 6=: eventually

P� = d · NP + RP where d = d� 2 M and RP �[
� d.

If K is w-free, then NP 2 C[Y ](Y 0)N, and NP doesn’t change if
we pass from K to an extension (of d-valued fields of H-type).

We put ndeg P := deg NP (the NEWTON degree of P).

We say that K is newtonian if every P 2 K{Y} with ndeg P = 1
has a zero in O. (Mostly useful in combination with w-freeness.)



Constructing immediate extensions

Some reminders from general valuation theory

Let (a⇢) be an ordinal-indexed sequence in K . Then

1 (a⇢) pseudoconverges to a 2 K if v(a � a⇢) is eventually
strictly increasing; notation: a⇢  a;

2 (a⇢) is divergent if it has no pseudolimit in K ;
3 (a⇢) is a pseudocauchy sequence in K if eventually

⌧ > � > ⇢ =) a⌧ � a� � a� � a⇢;

equivalently: (a⇢) has a pseudolimit in an extension of K .

Declare (a⇢) ⇠ (b�) if (a⇢), (b�) have the same pseudolimits in
all extensions of K , and set

a := cK (a⇢) = equivalence class of (a⇢).



Constructing immediate extensions

Let L be an extension of K . Then C ✓ CL, and naturally � ,! �L.

If CL = C and �L = �, then L is an immediate extension of K .
In this case, every a 2 L \ K is a pseudolimit of a divergent
pc-sequence in K .

Conversely, we can always adjoin pseudolimits in immediate
extensions, as we now explain.

We introduce a classification of pc-sequences (a⇢) in K :
1 d-algebraic type over K : P(b�) 0 for some P 2 K{Y}

and pc-sequence (b�) ⇠ (a⇢) in K ;
2 d-transcendental type over K: not of d-algebraic type.

Any P as in 1 , chosen so that Q(b�) 6 0 whenever Q 2 K{Y}
has lower complexity than P and (b�) ⇠ (a⇢), is a minimal

d-polynomial of (a⇢) over K .



Constructing immediate extensions

Theorem (d-analogues of KAPLANSKY’s theorems)

Let (a⇢) be a divergent pc-sequence in K .
1 Suppose (a⇢) is of d-algebraic type over K with minimal

d-polynomial P over K .
There is some a in an immediate extension of K with
a⇢  a and P(a) = 0, and for each b in an extension of K
with a⇢  b and P(b) = 0 there is a K -isomorphism
K hai ! K hbi with a 7! b.

2 Suppose (a⇢) is of d-transcendental type over K .
There is some a in an immediate extension of K with
a⇢  a, and for each b in an extension of K with a⇢  b
there is a K -isomorphism K hai ! K hbi with a 7! b.

A consequence: if K is w-free and has no proper immediate
d-algebraic extension, then K is newtonian.



Reducing to NEWTON degree 1

The proof of the following important fact uses the full machinery
of NEWTON diagrams, including its most complicated part
(“unraveling”: differential TSCHIRNHAUS transformations) for
dealing with “almost multiple zeros” (only hinted at by JORIS in
his last lecture):

Theorem
Suppose K is w-free. Let (a⇢) be a divergent pc-sequence in K
with minimal d-polynomial P over K . Then ndega P = 1, i.e.,

ndeg P+a⇢,⇥(a⇢+1�a⇢) = 1 for sufficiently large ⇢.

We now discuss how these facts can be used to embed K into
a newtonian d-valued field in a “minimal” way.



Newtonization

Definition (an analogue of henselization of valued fields)

A newtonization of K is a newtonian extension of K which
K -embeds into each newtonian extension of K .

Theorem
Suppose K is w-free. Then K has a newtonization. Moreover,
if L is a newtonization of K , then

• L is an immediate extension of K ;
• no proper differential subfield of L containing K is

newtonian.

We note the following consequence, which is a key ingredient
for the proof of our main results.



NEWTON-LIOUVILLE closure

Corollary

Suppose K is an w-free H-field. There is a newtonian Liouville
closed H-field extension K nl of K which embeds over K into
each newtonian Liouville closed H-field extension of K . Any
such K nl is d-algebraic over K . Its constant field is a real
closure of C.

We call K nl the NEWTON-LIOUVILLE closure of K .

If K is w-free, then each d-algebraic H-field extension of K is
w-free, and hence K has a unique LIOUVILLE closure up to
isomorphism over K .

Thus one can obtain K nl by alternating newtonization with
taking LIOUVILLE closures.



Main ingredients for obtaining a newtonization
These are the results on constructing immediate extensions,
the theorem on “reduction to ndeg 1”, and the following:

Lemma
Suppose K is newtonian. Let (a⇢) be a pc-sequence in K and
P 2 K{Y} with ndega P = 1:

ndeg P+a⇢,⇥(a⇢+1�a⇢) = 1 for sufficiently large ⇢.

Then there is some a 2 K with P(a) = 0 and a⇢  a.

By our assumptions, for sufficiently large ⇢ we get z⇢ 2 K with

P(z⇢) = 0 and z⇢ � a⇢ 4 a⇢+1 � a⇢.

We claim that for large enough ⇢ we can upgrade this to “⇣”
(and so take a := z⇢ for large enough ⇢). For this one shows
that the zeros of P can’t “accumulate.”



Main ingredients for obtaining a newtonization
These are the results on constructing immediate extensions,
the theorem on “reduction to ndeg 1”, and the following:

Lemma
Suppose K is newtonian. Let (a⇢) be a pc-sequence in K and
P 2 K{Y} with ndega P = 1:

ndeg P+a⇢,⇥(a⇢+1�a⇢) = 1 for sufficiently large ⇢.

Then there is some a 2 K with P(a) = 0 and a⇢  a.

With not too much extra work, this lemma also yields:

Corollary (assuming K w-free)

K is newtonian () K has no proper immediate d-al-
gebraic extension.



II. Strategy for the Proof of the Main Results



Recapitulation of Theorem A

Let L = {0, 1, +, · , ∂, 6, 4} and let

T nl = the theory of newtonian LIOUVILLE closed H-fields,

that is, the L-theory axiomatized by
• the axioms for LIOUVILLE closed H-fields;
• the w-freeness axiom; and
• the axiom scheme of newtonianity.

Every H-field extends to a model of T nl, and in JORIS’ lectures
we heard that T |= T nl.

Theorem A
T nl is model complete. (Hence T nl is the model companion of
the theory of H-fields.)



Strategy for the proof of Theorem A
By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

L

K

66

E

✓

OO
i

AA Let E be an w-free H-subfield of some
K |= T nl, and let i be an embedding of E
into a very saturated L |= T nl. Then i
extends to an embedding K ,! L.

We first make some preliminary reductions. First,

CL is real closed, very saturated ) i |CE extends to j : C ,! CL

) j to E(C) ,! L.

Since E(C) is d-algebraic over E , it remains w-free.



Strategy for the proof of Theorem A
By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

L

K

66

E

✓

OO
i

AA Let E be an w-free H-subfield of some
K |= T nl such that CE = C, and let i be an
embedding of E into a very saturated
L |= T nl. Then i extends to an embedding
K ,! L.

Next, suppose �<E is not cofinal in �<. Take y 2 K>, y⇤ 2 L>

with
�<E < vy < 0, �<iE < vy⇤ < 0.

Now Ehyi is grounded, but it extends to an w-free H-field
“Ehyiw = Ehy , log y , log log y , . . .i” in a canonical way.

So i extends to an embedding Ehyiw ,! L with y 7! y⇤.



Strategy for the proof of Theorem A
By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

L

K

66

E

✓

OO
i

AA Let E be an w-free H-subfield of some
K |= T nl such that CE = C and �<E is cofinal
in �<, and let i be an embedding of E into a
very saturated L |= T nl. Then i extends to an
embedding K ,! L.

This has the nice consequence that now we don’t need to worry
about preserving w-freeness anymore: every differential
subfield of K containing E is an w-free H-subfield of K .



Strategy for the proof of Theorem A
By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

L

K

66

E

✓

OO
i

AA Let E be an w-free H-subfield of some
K |= T nl such that CE = C and �<E is cofinal
in �<, and let i be an embedding of E into a
very saturated L |= T nl. Then i extends to an
embedding K ,! L.

Now we have the following three cases:
1 E is not newtonian and LIOUVILLE closed;
2 E is newtonian and LIOUVILLE closed, and there is some

y 2 K \ E such that Ehyi|E is immediate;
3 E is newtonian and LIOUVILLE closed, but there is no

y 2 K \ E such that Ehyi|E is immediate.



Strategy for the proof of Theorem A

L

K

66

E

✓

OO
i

AA

Case 1

E is not newtonian and LIOUVILLE closed.

Then we can extend i to an embedding Enl ,! L of the
NEWTON-LIOUVILLE closure Enl of E inside K .



Strategy for the proof of Theorem A

L

K

66

E

✓

OO
i

AA
Case 2

E is newtonian and LIOUVILLE closed, and
we have y 2 K \ E with Ehyi|E immediate.

Take a divergent pc-sequence (a⇢) in E such that a⇢  y .

By saturation, take z 2 L with i(a⇢) z.

Since E is has no proper immediate d-algebraic extension, (a⇢)
is of d-transcendental type over E .

Thus i extends to Ehyi ,! L with y 7! z.



Strategy for the proof of Theorem A

L

K

66

E

✓

OO
i

AA
Case 3

E is newtonian and LIOUVILLE closed, and
for no y 2 K \ E is Ehyi|E immediate.

In this case it turns out that for each f 2 K \ E , the cut of f in
the ordered set E uniquely determines the isomorphism type
of Ehf i over E (and so we can again appeal to saturation).

Let’s look at this case in some more detail.

Here we are approximating f by iterated exponential integrals.



Strategy for the proof of Theorem A

Setting

Let E ✓ K be an extension of w-free newtonian LIOUVILLE
closed H-fields with CE = C, and suppose E is maximal in K :
for no y 2 K \ E is Ehyi|E immediate.

Then no divergent pc-sequence in E has a pseudolimit in K .

Definition
Let f 2 K \E . Then v(f �E) ✓ � has a largest element, and we
call b 2 E a best approximation to f if

v(f � b) = max v(f � E).

Note that then v(f � b) /2 �E since C = CE .



Strategy for the proof of Theorem A

Setting

Let E ✓ K be an extension of w-free newtonian LIOUVILLE
closed H-fields with CE = C, and suppose E is maximal in K :
for no y 2 K \ E is Ehyi|E immediate.

Let f 2 K \ E . Pick a best approximation b0 2 E to f0 := f . Then
f1 := (f0 � b0)

† /2 E since E is LIOUVILLE closed and CE = C.
So we can take a best approximation b1 to f1, etc.

We get sequences (fn) in K \ E and (an), (bn) in E such that
• a†

n = bn is a best approximation to fn, and
• fn+1 = (fn � bn)†.

“ f = b0 + e
R

f1 = b0 + e
R

b1 + e
R

f2
= · · · ”.



Strategy for the proof of Theorem A

Setting

Let E ✓ K be an extension of w-free newtonian LIOUVILLE
closed H-fields with CE = C, and suppose E is maximal in K :
for no y 2 K \ E is Ehyi|E immediate.

Then for each P 2 E{Y} one can expand P(f ) 2 K as a
polynomial in the “monomials”

mn := (fn � bn)/an+1 2 Ehf i.

Using this one gets detailed information about the asymptotic
couple of Ehf i: with µn := vmn 2 �Ehf i,

• �Ehf i = �E �L
n
Zµn, and �<E is cofinal in �<Ehf i;

•  
�
�>Ehf i

�
=  (�>E ) [

�
µ†

0 < µ†
1 < · · · with µ†

n /2 �E .

All this turns out to only depend on the cut of f in E !



The completions of T nl

Before we move on to Theorem B, we record:

Corollary

The completions of T nl are T nl
small = Th(T) and T nl

large.

To see this, we note that the w-free H-field E := Q(`0, `1, . . . )
embeds into each LIOUVILLE closed H-field with small
derivation, in particular into T.

So the NEWTON-LIOUVILLE closure

Tda :=
�

f 2 T : f is d-algebraic
 

of E inside T is a prime model of T nl
small.

Similarly, the NEWTON-LIOUVILLE closure of E� (� = x�2), is a
prime model of T nl

large.



Recapitulation of Theorem B

Let L◆
L,W = L [ {◆, L, W} and let

T nl,◆
L,W = T nl + the universal closures of

⇥
a 6= 0 �! a · ◆(a) = 1

⇤
&

⇥
a = 0 �! ◆(a) = 0

⇤
,

L(a)  ! 9y⇥y � 1 & a = �y††⇤,
W(a)  ! 9y⇥y 6= 0 & 4y 00 + ay = 0

⇤
.

We denote L◆
L,W-structures by boldface letters: K = (K ,L,W).

Theorem B
T nl,◆

L,W admits quantifier elimination.



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:
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AA Let E be a substructure of some K |= T nl,◆
L,W

and let i be an embedding of E into a very
saturated L |= T nl,◆

L,W. Then i extends to an
embedding K ,! L.

In order to tackle this, we need to first investigate the
substructures of models of T nl,◆

L,W.

Since we included ◆ in L◆
L,W, such substructures are valued

ordered differential fields.

However, they are not automatically H-fields pre-H-fields.



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:
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AA Let E be a substructure of some K |= T nl,◆
L,W

and let i be an embedding of E into a very
saturated L |= T nl,◆

L,W. Then i extends to an
embedding K ,! L.

The pairs (L,W) of subsets of a pre-H-field E such that
E = (E ,L,W) embeds into a model of T nl,◆

L,W are characterized by
the axioms for LW-cuts in E . We show:

• every w-free pre-H-field has just one LW-cut;
• E has an extension E⇤ = (E⇤, . . . ), where E⇤ is an w-free

H-field, which embeds over E into any model of T nl,◆
L,W

extending E .



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:

L

K

66
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✓

OO
i

AA Let E be a substructure of some K |= T nl,◆
L,W

and let i be an embedding of E into a very
saturated L |= T nl,◆

L,W. Then i extends to an
embedding K ,! L.

These two facts allow us to focus henceforth, for embedding
purposes, on w-free H-fields, and we can forget about LW-cuts.

Theorem B now follows from the embedding theorem that we
used in proving Theorem A. (The embedding theorem is
somewhat stronger than model completeness of T nl, since E
there is only assumed to be w-free.)



III. Applications



Statements

Corollary

1 T is o-minimal at +1: if X ✓ T is definable, then there is
some f 2 T with (f ,+1) ✓ X or (f ,+1) \ X = ;.

2 All definable subsets of Rn ✓ Tn are semialgebraic.
3 T has NIP.

An instance of 1 : if P is a one-variable d-polynomial over T,
then there is some f 2 T and � 2 {±1} with sign P(y) = � for
all y > f . (Related to old theorems of BOREL, HARDY, . . . )

An illustration of 2 : the set of (c0, . . . , cn) 2 Rn+1 such that

c0y + c1y 0 + · · ·+ cny (n) = 0, 0 6= y � 1

has a solution in T is a semialgebraic subset of Rn+1.

One can strengthen 3 to “T is distal” (of infinite dp-rank).



Proof technique

Eliminate the primitives 4, L, W, ◆ using “ideal” elements, thus
reducing quantifier-free formulas to a very simple form:

Let K |= T nl. In an immediate H-field extension L of K we find
some element l with

L(K ) < l < K \ L(K ),

so W(K ) < w := !(l) < K \ W(K ).

Next take some c⇤ in an H-field extension L⇤ of L with

C < c⇤ < K>C .

Then for each 0-definable X ✓ K n there is a quantifier-free
formula ' in the language LOR of ordered rings such that

X =
�

a 2 K n : L⇤ |= '
�
a, a0, . . . , a(r), l,w, c⇤� .



Proof technique

We illustrate this by establishing 3 through reduction to NIP for
real closed fields: Suppose R ✓ K m ⇥ K n is 0-definable and
independent. We just do the case m = n = 1. Thus for every
N > 1 there are a1, . . . , aN 2 K and bI 2 K (I ✓ {1, . . . ,N}) with

R(ai , bI) () i 2 I.

Take a quantifier-free LOR-formula ' such that for all a, b 2 K :

R(a, b) () L⇤ |= '
�
a, a0, . . . , a(r), b, b0, . . . , b(r), l,w, c⇤�.

Thus the relation R⇤ ✓ (L⇤)r+1 ⇥ (L⇤)r+4 given by

R⇤(a0, . . . , ar , b0, . . . , br+3) () L⇤ |= '(a0, . . . , ar , b0, . . . , br+3)

is independent and (q.f.-) definable in the LOR-structure L⇤. E


