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Residual properties of groups

Let P be a property of groups, e.g.: being finite, a finite solvable
group, a finite nilpotent group, a finite p-group (p prime) . . .

A group G is said to be residually P if for every g ∈ G, g 6= 1
there exists a morphism α : G→ P to a group P with property
P such that α(g) 6= 1.

Example

The group Z is residually p for every prime p: any non-zero
k ∈ Z is non-zero in Z/peZ, where e > 0 is such that pe 6 |k .

Non-example

The group G = 〈a,b : a−1b2a = b3〉 is not residually finite.
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Residual properties of groups

Properties of residually finite groups G

1 G finitely generated⇒ G is Hopfian: every surjective
morphism G→ G is injective.

2 G finitely presented⇒ G has solvable word problem.
3 G embeds into its profinite completion as a dense

subgroup.

Residually p is a strong property; e.g.:

Every non-abelian subgroup of a residually p group has a
quotient isomorphic to Fp × Fp.
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Residual properties and low-dimensional topology

Let N be a 3-manifold.

(All manifolds assumed to be connected and compact, but no
assumptions on orientability or type of the boundary.)

Examples

S3, S1 × S1 × S1, RP3, S3 \ tubular neighborhood of a knot, . . .

We are interested in residual properties of the finitely presented
group π1(N).

Theorem (Thurston & Hempel 1987, + Perelman)

π1(N) is residually finite: for every homotopically non-trivial
loop γ : [0,1]→ N there is a finite-sheeted covering Ñ → N and
some lifting [0,1]→ Ñ of γ which is not a loop.
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Residual properties and low-dimensional topology

Remarks

• Let S be a surface. Then π1(S) is residually finite
(Baumslag, 1962), in fact, residually p for every prime p.

• Given any finitely presented group G there exists a smooth
4-manifold M with π1(M) = G.

Question
Is π1(N) always residually p?
residually nilpotent? residually
solvable? π1(N) = 〈x , y : x2 = y3〉
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Residual properties and low-dimensional topology

Non-example

Suppose N = S3 \ ν(K ) where K ⊆ S3 is a knot. Then

π1(N) residually p ⇐⇒ π1(N) ∼= Z ⇐⇒
Dehn’s
Theorem

K trivial.

Let π1(N)
α−→ P be a morphism onto a p-group P. Then α

induces a surjective morphism

H1(π1(N); Fp)→ H1(P; Fp),

hence
# generators of P = dimFp H1(P; Fp) 6 1,

so P = Z/pkZ for some k . Thus α factors through

π1(N)→ π1(N)ab = Z.
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Virtually residually p groups

Definition
Given a property P, a group G is virtually P if G has a
finite-index subgroup which is P.

Example

Every finitely generated abelian group contains a free abelian
subgroup of finite index, hence is virtually [residually p for all p].
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Virtually residually p groups

Theorem (A & Friedl)

For all but finitely many primes p, π1(N) is virtually residually p.

Corollary

1 For all but finitely many primes p, Aut(π1(N)) is virtually
residually p. (Hence Aut(π1(N)) is virtually torsion-free, so
there is a bound on the size of its finite subgroups.)

2 If N is closed and aspherical (i.e., πn(N) = 0 for all n > 2),
then there is a bound on the size of finite groups of
self-homeomorphisms of N having a common fixed point.

More substantial application of our main theorem in the recent
proof by Friedl & Vidussi of a conjecture of Taubes.
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Virtually residually p groups

Our theorem can also be seen as evidence of the following:

Conjecture (Thurston?)

π1(N) is linear, i.e., there is an embedding

π1(N) ↪→ GL(n,C) (for some n).

This is due to the following theorem:

Theorem (Malcev)

Let G 6 GL(n,C) be finitely generated. Then G is virtually
residually p for all but finitely many primes p.
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Virtually residually p groups

Proof.
Pick a finitely generated subring R ⊆ C with G ⊆ GL(n,R).

For
all but finitely many p there is a maximal ideal m ⊆ R such that
char(R/m) = p. Let

Gi := ker(G→ GL(n,R)→ GL(n,R/mi)) /G.

Then [G : Gi ] <∞ and
⋂

i Gi = {1}. Claim: G1 is residually p.
We will show that for A ∈ Gi , i > 1 we have Ap ∈ Gi+1. Let
A ∈ Gi , so A = id +B where B ∈ (mi)n×n. Then

Ap = (id +B)p = id + pB + 1
2p(p − 1)B2 + · · ·+ pBp−1 + Bp︸ ︷︷ ︸

all entries in mi+1

.
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Virtually residually p groups

Write R = Z[X ]/(f1, . . . , fn), X = (X1, . . . ,XN).

Enough to show:
1 /∈ (f1, . . . , fn)Fp[X ] for all but finitely many p. This follows from:

There exists α ∈ N such that for every field K ,

1 ∈ (f1, . . . , fn)K [X ]⇒
1 = f1y1 + · · ·+ fnyn for some yi ∈ K [X ] of degree 6 α.

To see this, we may restrict to algebraically closed K . Suppose
for each α there is an algebraically closed field Kα such that

1 ∈ (f1, . . . , fn)Kα[X ] (hence VKα(f1, . . . , fn) = ∅), but
1 6= f1y1 + · · ·+ fnyn for all yi ∈ Kα[X ] of degree 6 α.

Then a non-principal ultraproduct K =
∏

α Kα/U is an
algebraically closed field such that VK (f1, . . . , fn) = ∅ and
1 /∈ (f1, . . . , fn)K [X ], contradicting Hilbert’s Nullstellensatz.
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Virtually residually p groups

Using similar techniques we show an approximation result
which plays an important role in our proof:

Theorem
Let R be a finitely generated subring of C. For all but finitely
many p there exists a maximal ideal m ⊆ R such that Rm is
unramified regular of mixed characteristic p.

(in particular,
char(R/mi) = pi for all i > 0).

Example: R = Z[
√

2] ⊆ C, m ⊆ R maximal with p ∈ m

• p = 2⇒ m = (
√

2), m2 = (2), hence char(R/m2) = 2. %
• p ≡ ±1 mod 8⇒ there is α ∈ Z with α2 = 2, and

m = (p, α−
√

2) or m = (p, α +
√

2). !

• p ≡ ±3 mod 8⇒ R/pR is a field and m = pR. !
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Virtually residually p groups

The theorem is a consequence of the fact that a reduced
algebra over a field whose regular locus is open has a regular
point, and the following:

Proposition

Let R ⊆ C be finitely generated. Then for all but finitely many
primes p, the ring R/pR is reduced.

(Uses that the property of f1, . . . , fn ∈ Z[X1, . . . ,XN ] to generate
a radical ideal in K [X1, . . . ,Xn] is constructible, in the
coefficients of the fi , uniformly for each perfect field K ; van den
Dries & Schmidt.)

The analogous statement for being an integral domain is false:
R = Z[X ]/(X 4 + 1) is a domain, but R/pR = Fp[X ]/(X 4 + 1) is
never a domain.
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Some 3-manifold topology

N is prime if N = N1#N2 ⇒ N1 = S3 or N2 = S3.

Prime Decomposition

Every closed orientable 3-manifold N can be
decomposed as a connected sum

N = N1# · · ·#Nk

of prime 3-manifolds Ni (H. Kneser), and the
Ni are unique up to permutation (Milnor).

Note: π1(N) = π1(N1) ∗ · · · ∗ π1(Nk ).

N = S2 × S1 is prime, but for technical
reasons it’s best to exclude it among prime
3-manifolds, which we do from now on.
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Some 3-manifold topology

JSJ (or Torus) Decomposition

Suppose N is closed, prime, and
orientable.

Then there are pairwise
disjoint, incompressible 2-tori

T1, . . . ,Tn ⊆ N

that cut N into pieces which are either
• Seifert fibered, or
• atoroidal.

• T incompressible in N: π1(T )→ π1(N) is injective;
• N atoroidal: every incompressible 2-torus T ⊆ N is isotopic

to a surface in ∂N.
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Some 3-manifold topology

N Seifert fibered: locally looks like it’s obtained from a solid
cylinder . . .

. . . by rotating around an angle of 2πp
q and gluing:

Well-known: N Seifert fibered⇒ π1(N) linear (over Z).
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Some 3-manifold topology

Part of the Geometrization Conjecture (proved by Perelman)

Suppose N is prime and atoroidal with π1(N) infinite. Then N is
hyperbolic (its interior admits a complete Riemannian metric of
constant curvature −1), so

N = H3/Γ where Γ 6 PSL(2,C) discrete torsion-free.

There is a lifting

SL(2,C)

��
π1(N) ∼= Γ //

44iiiiiiiii
PSL(2,C) = SL(2,C)/(center)
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Our proof

Suppose N is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of N gives rise to a description of
π1(N) as the fundamental group π1(G) of a graph of groups G:
• the vertex groups Gv are the π1’s of the various JSJ

components of N (hence linear);
• the edge groups Ge are π1(Ti) ∼= Z⊕ Z.

Need to understand residual properties of π1(G).

It is much easier to be residually finite than residually p

The amalgamated product G1 ∗H G2 of finite groups G1, G2
over a common subgroup H is always residually finite. If G1, G2
are p-groups, G1 ∗H G2 might not be residually p. (Higman)
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Our proof

Useful criterion for π1(G) with finite vertex groups to be
residually p:

There exists a morphism

π1(G)

injective on ver-
tex groups−−−−−−−−−→ P (p-group).



Our proof

Let N be a 3-manifold.

Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all
of whose Seifert fibered JSJ components are S1 × F for some
orientable surface F . [As in Hempel’s proof.]

2. Existence of suitable filtrations. For all but finitely many p,
after passing to a finite cover of N, we can achieve that the
lower central p-filtration γp(Gv ) of each vertex group Gv
intersects to γp(Ge) on Ge, and separates each Ge. [Needs the
approximation theorem above as well as some computations due to
Lubotzky & Shalev.]

3. Criterion for being residually p. It is enough to show that
π1(G/γp

n (G)) is residually p for each n. [By construction of the
filtrations.]
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Lubotzky & Shalev.]

3. Criterion for being residually p. It is enough to show that
π1(G/γp

n (G)) is residually p for each n. [By construction of the
filtrations.]



Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all
of whose Seifert fibered JSJ components are S1 × F for some
orientable surface F . [As in Hempel’s proof.]

2. Existence of suitable filtrations. For all but finitely many p,
after passing to a finite cover of N, we can achieve that the
lower central p-filtration γp(Gv ) of each vertex group Gv
intersects to γp(Ge) on Ge, and separates each Ge. [Needs the
approximation theorem above as well as some computations due to
Lubotzky & Shalev.]

3. Criterion for being residually p. It is enough to show that
π1(G/γp

n (G)) is residually p for each n.

[By construction of the
filtrations.]



Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all
of whose Seifert fibered JSJ components are S1 × F for some
orientable surface F . [As in Hempel’s proof.]

2. Existence of suitable filtrations. For all but finitely many p,
after passing to a finite cover of N, we can achieve that the
lower central p-filtration γp(Gv ) of each vertex group Gv
intersects to γp(Ge) on Ge, and separates each Ge. [Needs the
approximation theorem above as well as some computations due to
Lubotzky & Shalev.]

3. Criterion for being residually p. It is enough to show that
π1(G/γp

n (G)) is residually p for each n. [By construction of the
filtrations.]



Our proof

Gp := G/γp
2 (G) has vertex groups H1(Gv ; Fp) and edge groups

Fp ⊕ Fp which are Fp-linear spaces.

4. Reduction to Gp. Let T be a maximal subtree of the graph
underlying G. Then π1(Gp) is an iterated HNN extension of
π1(Gp|T ). Replacing π1(Gp|T ) by the fiber sum Σ of Gp|T , we
obtain π∗1(Gp,T ), a “partial abelianization of π1(Gp) along T .”
Show:

π∗1(Gp,T ) residually p ⇒ all π∗1(γp
n (G)/γp

n+1(G),T ) residually p

⇒ all π1(G/γp
n (G)) residually p.

[Main ingredients:

• a refinement of an amalgamation theorem by Higman, for which
we need some facts on group rings;

• a criterion for HNN extensions to be residually p by Chatzidakis.]
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Our proof

5. Unfolding G. Sufficient condition for π∗1(Gp,T ) residually p:
all identification isomorphisms between associated subgroups
in the iterated HNN extension π∗1(Gp,T ) of Σ are the identity.

Show that one can pass to finite cover of N to achieve this,
using kernel of

π1(N) = π1(G)→ Aut(Σ)

obtained by extending each identification map in Gp to an
automorphism of the Fp-linear space Σ.
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Our proof

Simple (but untypical) example: G has a single vertex v and a
single (topological) edge.

Then with H := H1(Gv ; Fp) we have

π1(Gp) = π∗1(Gp,T ) = 〈H, t | t−1At = ϕ(B)〉 (A,B 6 H).

Extend ϕ : A→ B to ϕ̃ ∈ Aut(H) and let s = order(ϕ̃):
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