Residual Properties of 3-Manifold Groups

Matthias Aschenbrenner University of California, Los Angeles

(joint with Stefan Friedl, University of Warwick)

The authors back in 1979 . .

The authors back in 1979 . .

Residual properties of groups

Let \mathcal{P} be a property of groups, e.g.: being finite, a finite solvable group, a finite nilpotent group, a finite p-group (p prime) ...

Residual properties of groups

Let \mathcal{P} be a property of groups, e.g.: being finite, a finite solvable group, a finite nilpotent group, a finite p-group (p prime) ...

A group G is said to be residually \mathcal{P} if for every $g \in G, g \neq 1$ there exists a morphism $\alpha: G \rightarrow P$ to a group P with property \mathcal{P} such that $\alpha(g) \neq 1$.

Residual properties of groups

Let \mathcal{P} be a property of groups, e.g.: being finite, a finite solvable group, a finite nilpotent group, a finite p-group (p prime) ...

A group G is said to be residually \mathcal{P} if for every $g \in G, g \neq 1$ there exists a morphism $\alpha: G \rightarrow P$ to a group P with property \mathcal{P} such that $\alpha(g) \neq 1$.

Example

The group \mathbb{Z} is residually p for every prime p : any non-zero $k \in \mathbb{Z}$ is non-zero in $\mathbb{Z} / p^{e} \mathbb{Z}$, where $e>0$ is such that $p^{e} \chi k$.

Residual properties of groups

Let \mathcal{P} be a property of groups, e.g.: being finite, a finite solvable group, a finite nilpotent group, a finite p-group (p prime) ...

A group G is said to be residually \mathcal{P} if for every $g \in G, g \neq 1$ there exists a morphism $\alpha: G \rightarrow P$ to a group P with property \mathcal{P} such that $\alpha(g) \neq 1$.

Example

The group \mathbb{Z} is residually p for every prime p : any non-zero $k \in \mathbb{Z}$ is non-zero in $\mathbb{Z} / p^{e} \mathbb{Z}$, where $e>0$ is such that $p^{e} \chi k$.

Non-example

The group $G=\left\langle a, b: a^{-1} b^{2} a=b^{3}\right\rangle$ is not residually finite.

Residual properties of groups

Properties of residually finite groups G

(1) G finitely generated $\Rightarrow G$ is Hopfian: every surjective morphism $G \rightarrow G$ is injective.

Residual properties of groups

Properties of residually finite groups G

(1) G finitely generated $\Rightarrow G$ is Hopfian: every surjective morphism $G \rightarrow G$ is injective.
(2) G finitely presented $\Rightarrow G$ has solvable word problem.

Residual properties of groups

Properties of residually finite groups G

(1) G finitely generated $\Rightarrow G$ is Hopfian: every surjective morphism $G \rightarrow G$ is injective.
(2) G finitely presented $\Rightarrow G$ has solvable word problem.
(3) G embeds into its profinite completion as a dense subgroup.

Residual properties of groups

Properties of residually finite groups G

(1) G finitely generated $\Rightarrow G$ is Hopfian: every surjective morphism $G \rightarrow G$ is injective.
(2) G finitely presented $\Rightarrow G$ has solvable word problem.
(3) G embeds into its profinite completion as a dense subgroup.

Residually p is a strong property; e.g.:
Every non-abelian subgroup of a residually p group has a quotient isomorphic to $\mathbb{F}_{p} \times \mathbb{F}_{p}$.

Residual properties and low-dimensional topology

Let N be a 3-manifold.

Residual properties and low-dimensional topology

Let N be a [smooth = PL = topological] 3-manifold.

Residual properties and low-dimensional topology

Let N be a [smooth = PL = topological] 3-manifold.
(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Residual properties and low-dimensional topology

Let N be a [smooth = PL = topological] 3-manifold.
(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Examples

$S^{3}, S^{1} \times S^{1} \times S^{1}, \mathbb{R P}^{3}, S^{3} \backslash$ tubular neighborhood of a knot, \ldots

Residual properties and low-dimensional topology

Let N be a [smooth = PL = topological] 3-manifold.
(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Examples

$S^{3}, S^{1} \times S^{1} \times S^{1}, \mathbb{R P}^{3}, S^{3} \backslash$ tubular neighborhood of a knot, \ldots
We are interested in residual properties of the finitely presented group $\pi_{1}(N)$.

Residual properties and low-dimensional topology

Let N be a [smooth = PL = topological] 3-manifold.
(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Examples

$S^{3}, S^{1} \times S^{1} \times S^{1}, \mathbb{R P}^{3}, S^{3} \backslash$ tubular neighborhood of a knot, \ldots
We are interested in residual properties of the finitely presented group $\pi_{1}(N)$.

Theorem (Thurston \& Hempel 1987, + Perelman)
$\pi_{1}(N)$ is residually finite.

Residual properties and low-dimensional topology

Let N be a [smooth = PL = topological] 3-manifold.
(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Examples

$S^{3}, S^{1} \times S^{1} \times S^{1}, \mathbb{R P}^{3}, S^{3} \backslash$ tubular neighborhood of a knot, \ldots
We are interested in residual properties of the finitely presented group $\pi_{1}(N)$.

Theorem (Thurston \& Hempel 1987, + Perelman)

$\pi_{1}(N)$ is residually finite: for every homotopically non-trivial loop $\gamma:[0,1] \rightarrow N$ there is a finite-sheeted covering $\widetilde{N} \rightarrow N$ and some lifting $[0,1] \rightarrow \widetilde{N}$ of γ which is not a loop.

Residual properties and low-dimensional topology

Remarks

- Let S be a surface. Then $\pi_{1}(S)$ is residually finite (Baumslag, 1962), in fact, residually p for every prime p.

Residual properties and low-dimensional topology

Remarks

- Let S be a surface. Then $\pi_{1}(S)$ is residually finite (Baumslag, 1962), in fact, residually p for every prime p.
- Given any finitely presented group G there exists a smooth 4-manifold M with $\pi_{1}(M)=G$.

Residual properties and low-dimensional topology

Remarks

- Let S be a surface. Then $\pi_{1}(S)$ is residually finite (Baumslag, 1962), in fact, residually p for every prime p.
- Given any finitely presented group G there exists a smooth 4-manifold M with $\pi_{1}(M)=G$.

Question

Is $\pi_{1}(N)$ always residually p ? residually nilpotent? residually solvable?

$$
\pi_{1}(N)=\left\langle x, y: x^{2}=y^{3}\right\rangle
$$

Residual properties and low-dimensional topology

Non-example

Suppose $N=S^{3} \backslash \nu(K)$ where $K \subseteq S^{3}$ is a knot. Then

$$
\pi_{1}(N) \text { residually } p \Longleftrightarrow \pi_{1}(N) \cong \mathbb{Z} \underset{\substack{\text { Dehn's } \\ \text { Theorem }}}{\Longleftrightarrow} K \text { trivial. }
$$

Residual properties and low-dimensional topology

Non-example

Suppose $N=S^{3} \backslash \nu(K)$ where $K \subseteq S^{3}$ is a knot. Then

$$
\pi_{1}(N) \text { residually } p \Longleftrightarrow \pi_{1}(N) \cong \mathbb{Z} \underset{\substack{\text { Dehn's } \\ \text { Theorem }}}{\Longleftrightarrow} K \text { trivial. }
$$

Let $\pi_{1}(N) \xrightarrow{\alpha} P$ be a morphism onto a p-group P.

Residual properties and low-dimensional topology

Non-example

Suppose $N=S^{3} \backslash \nu(K)$ where $K \subseteq S^{3}$ is a knot. Then

$$
\pi_{1}(N) \text { residually } p \Longleftrightarrow \pi_{1}(N) \cong \mathbb{Z} \underset{\substack{\text { Denn's } \\ \text { Theorem }}}{\Longleftrightarrow} K \text { trivial. }
$$

Let $\pi_{1}(N) \xrightarrow{\alpha} P$ be a morphism onto a p-group P. Then α induces a surjective morphism

$$
H_{1}\left(\pi_{1}(N) ; \mathbb{F}_{p}\right) \rightarrow H_{1}\left(P ; \mathbb{F}_{p}\right),
$$

Residual properties and low-dimensional topology

Non-example

Suppose $N=S^{3} \backslash \nu(K)$ where $K \subseteq S^{3}$ is a knot. Then

$$
\pi_{1}(N) \text { residually } p \Longleftrightarrow \pi_{1}(N) \cong \mathbb{Z} \underset{\substack{\text { Denn's } \\ \text { Theorem }}}{\Longleftrightarrow} K \text { trivial. }
$$

Let $\pi_{1}(N) \xrightarrow{\alpha} P$ be a morphism onto a p-group P. Then α induces a surjective morphism

$$
H_{1}\left(\pi_{1}(N) ; \mathbb{F}_{p}\right) \rightarrow H_{1}\left(P ; \mathbb{F}_{p}\right),
$$

hence

$$
\# \text { generators of } P=\operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(P ; \mathbb{F}_{p}\right) \leqslant 1 \text {, }
$$

Residual properties and low-dimensional topology

Non-example

Suppose $N=S^{3} \backslash \nu(K)$ where $K \subseteq S^{3}$ is a knot. Then

$$
\pi_{1}(N) \text { residually } p \Longleftrightarrow \pi_{1}(N) \cong \mathbb{Z} \underset{\substack{\text { Denn's } \\ \text { Theorem }}}{\Longleftrightarrow} K \text { trivial. }
$$

Let $\pi_{1}(N) \xrightarrow{\alpha} P$ be a morphism onto a p-group P. Then α induces a surjective morphism

$$
H_{1}\left(\pi_{1}(N) ; \mathbb{F}_{p}\right) \rightarrow H_{1}\left(P ; \mathbb{F}_{p}\right),
$$

hence
$\#$ generators of $P=\operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(P ; \mathbb{F}_{p}\right) \leqslant 1$,
so $P=\mathbb{Z} / p^{k} \mathbb{Z}$ for some k.

Residual properties and low-dimensional topology

Non-example

Suppose $N=S^{3} \backslash \nu(K)$ where $K \subseteq S^{3}$ is a knot. Then

$$
\pi_{1}(N) \text { residually } p \Longleftrightarrow \pi_{1}(N) \cong \mathbb{Z} \underset{\substack{\text { Denn's } \\ \text { Theorem }}}{\Longleftrightarrow} K \text { trivial. }
$$

Let $\pi_{1}(N) \xrightarrow{\alpha} P$ be a morphism onto a p-group P. Then α induces a surjective morphism

$$
H_{1}\left(\pi_{1}(N) ; \mathbb{F}_{p}\right) \rightarrow H_{1}\left(P ; \mathbb{F}_{p}\right),
$$

hence

$$
\text { \# generators of } P=\operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(P ; \mathbb{F}_{p}\right) \leqslant 1 \text {, }
$$

so $P=\mathbb{Z} / p^{k} \mathbb{Z}$ for some k. Thus α factors through

$$
\pi_{1}(N) \rightarrow \pi_{1}(N)_{\mathrm{ab}}=\mathbb{Z} .
$$

Virtually residually p groups

Definition

Given a property \mathcal{P}, a group G is virtually \mathcal{P} if G has a finite-index subgroup which is \mathcal{P}.

Virtually residually p groups

Definition

Given a property \mathcal{P}, a group G is virtually \mathcal{P} if G has a finite-index subgroup which is \mathcal{P}.

Example

Every finitely generated abelian group contains a free abelian subgroup of finite index, hence is virtually [residually p for all p].

Virtually residually p groups

Theorem (A \& Friedl)

For all but finitely many primes $p, \pi_{1}(N)$ is virtually residually p.

Virtually residually p groups

Theorem (A \& Friedl)

For all but finitely many primes $p, \pi_{1}(N)$ is virtually residually p.

Corollary

(1) For all but finitely many primes p, $\operatorname{Aut}\left(\pi_{1}(N)\right)$ is virtually residually p. (Hence $\operatorname{Aut}\left(\pi_{1}(N)\right)$ is virtually torsion-free, so there is a bound on the size of its finite subgroups.)

Virtually residually p groups

Theorem (A \& Friedl)

For all but finitely many primes $p, \pi_{1}(N)$ is virtually residually p.

Corollary

(1) For all but finitely many primes p, $\operatorname{Aut}\left(\pi_{1}(N)\right)$ is virtually residually p. (Hence $\operatorname{Aut}\left(\pi_{1}(N)\right)$ is virtually torsion-free, so there is a bound on the size of its finite subgroups.)
(2) If N is closed and aspherical (i.e., $\pi_{n}(N)=0$ for all $n \geqslant 2$), then there is a bound on the size of finite groups of self-homeomorphisms of N having a common fixed point.

Virtually residually p groups

Theorem (A \& Friedl)

For all but finitely many primes $p, \pi_{1}(N)$ is virtually residually p.

Corollary

(1) For all but finitely many primes p, $\operatorname{Aut}\left(\pi_{1}(N)\right)$ is virtually residually p. (Hence $\operatorname{Aut}\left(\pi_{1}(N)\right)$ is virtually torsion-free, so there is a bound on the size of its finite subgroups.)
(2) If N is closed and aspherical (i.e., $\pi_{n}(N)=0$ for all $n \geqslant 2$), then there is a bound on the size of finite groups of self-homeomorphisms of N having a common fixed point.

More substantial application of our main theorem in the recent proof by Friedl \& Vidussi of a conjecture of Taubes.

Virtually residually p groups

Our theorem can also be seen as evidence of the following:

Conjecture (Thurston?)

$\pi_{1}(N)$ is linear, i.e., there is an embedding

$$
\pi_{1}(N) \hookrightarrow \mathrm{GL}(n, \mathbb{C}) \quad(\text { for some } n) .
$$

Virtually residually p groups

Our theorem can also be seen as evidence of the following:

Conjecture (Thurston?)

$\pi_{1}(N)$ is linear, i.e., there is an embedding

$$
\pi_{1}(N) \hookrightarrow \mathrm{GL}(n, \mathbb{C}) \quad(\text { for some } n) .
$$

This is due to the following theorem:

Theorem (Malcev)

Let $G \leqslant \mathrm{GL}(n, \mathbb{C})$ be finitely generated. Then G is virtually residually p for all but finitely many primes p.

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq G L(n, R)$.

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq \mathrm{GL}(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$.

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq G L(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$. Let

$$
G_{i}:=\operatorname{ker}\left(G \rightarrow \mathrm{GL}(n, R) \rightarrow \mathrm{GL}\left(n, R / \mathfrak{m}^{i}\right)\right) \triangleleft G .
$$

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq G L(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$. Let

$$
G_{i}:=\operatorname{ker}\left(G \rightarrow \mathrm{GL}(n, R) \rightarrow \mathrm{GL}\left(n, R / \mathfrak{m}^{i}\right)\right) \triangleleft G
$$

Then $\left[G: G_{i}\right]<\infty$ and $\bigcap_{i} G_{i}=\{1\}$.

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq \mathrm{GL}(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$. Let

$$
G_{i}:=\operatorname{ker}\left(G \rightarrow \mathrm{GL}(n, R) \rightarrow \mathrm{GL}\left(n, R / \mathfrak{m}^{i}\right)\right) \triangleleft \mathrm{G} .
$$

Then $\left[G: G_{i}\right]<\infty$ and $\bigcap_{i} G_{i}=\{1\}$. Claim: G_{1} is residually p.

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq \mathrm{GL}(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$. Let

$$
G_{i}:=\operatorname{ker}\left(G \rightarrow \operatorname{GL}(n, R) \rightarrow \mathrm{GL}\left(n, R / \mathfrak{m}^{i}\right)\right) \triangleleft G .
$$

Then $\left[G: G_{i}\right]<\infty$ and $\bigcap_{i} G_{i}=\{1\}$. Claim: G_{1} is residually p. We will show that for $A \in G_{i}, i \geqslant 1$ we have $A^{p} \in G_{i+1}$.

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq \mathrm{GL}(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$. Let

$$
G_{i}:=\operatorname{ker}\left(G \rightarrow \operatorname{GL}(n, R) \rightarrow \mathrm{GL}\left(n, R / \mathrm{m}^{i}\right)\right) \triangleleft G .
$$

Then [$\left.G: G_{i}\right]<\infty$ and $\bigcap_{i} G_{i}=\{1\}$. Claim: G_{1} is residually p. We will show that for $A \in G_{i}, i \geqslant 1$ we have $A^{p} \in G_{i+1}$. Let $A \in G_{i}$, so $A=\mathrm{id}+B$ where $B \in\left(\mathfrak{m}^{i}\right)^{n \times n}$.

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq \mathrm{GL}(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$. Let

$$
G_{i}:=\operatorname{ker}\left(G \rightarrow \operatorname{GL}(n, R) \rightarrow \mathrm{GL}\left(n, R / \mathrm{m}^{i}\right)\right) \triangleleft G .
$$

Then $\left[G: G_{i}\right]<\infty$ and $\bigcap_{i} G_{i}=\{1\}$. Claim: G_{1} is residually p. We will show that for $A \in G_{i}, i \geqslant 1$ we have $A^{p} \in G_{i+1}$. Let $A \in G_{i}$, so $A=\mathrm{id}+B$ where $B \in\left(\mathfrak{m}^{i}\right)^{n \times n}$. Then

$$
A^{p}=(\text { id }+B)^{p}=\text { id }+\underbrace{p B+\frac{1}{2} p(p-1) B^{2}+\cdots+p B^{p-1}+B^{p}}_{\text {all entries in } \mathrm{m}^{\prime+1}} .
$$

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq \mathrm{GL}(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$. Let

$$
G_{i}:=\operatorname{ker}\left(G \rightarrow \operatorname{GL}(n, R) \rightarrow \mathrm{GL}\left(n, R / \mathfrak{m}^{i}\right)\right) \triangleleft G .
$$

Then $\left[G: G_{i}\right]<\infty$ and $\bigcap_{i} G_{i}=\{1\}$. Claim: G_{1} is residually p. We will show that for $A \in G_{i}, i \geqslant 1$ we have $A^{p} \in G_{i+1}$. Let $A \in G_{i}$, so $A=\mathrm{id}+B$ where $B \in\left(\mathfrak{m}^{i}\right)^{n \times n}$. Then

$$
A^{p}=(\mathrm{id}+B)^{p}=\mathrm{id}+\underbrace{p B+\frac{1}{2} p(p-1) B^{2}+\cdots+p B^{p-1}+B^{p}}_{\text {all entries in } \mathrm{m}^{i+1}} .
$$

Virtually residually p groups

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq \mathrm{GL}(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $\operatorname{char}(R / \mathfrak{m})=p$. Let

$$
G_{i}:=\operatorname{ker}\left(G \rightarrow \operatorname{GL}(n, R) \rightarrow \mathrm{GL}\left(n, R / \mathrm{m}^{i}\right)\right) \triangleleft G .
$$

Then [$\left.G: G_{i}\right]<\infty$ and $\bigcap_{i} G_{i}=\{1\}$. Claim: G_{1} is residually p. We will show that for $A \in G_{i}, i \geqslant 1$ we have $A^{p} \in G_{i+1}$. Let $A \in G_{i}$, so $A=\mathrm{id}+B$ where $B \in\left(\mathfrak{m}^{i}\right)^{n \times n}$. Then

$$
A^{p}=(\text { id }+B)^{p}=\text { id }+\underbrace{p B+\frac{1}{2} p(p-1) B^{2}+\cdots+p B^{p-1}+B^{p}}_{\text {all entries in } \mathrm{m}^{\prime+1}} .
$$

Virtually residually p groups

Write $R=\mathbb{Z}[X] /\left(f_{1}, \ldots, f_{n}\right), X=\left(X_{1}, \ldots, X_{N}\right)$.

Virtually residually p groups

Write $R=\mathbb{Z}[X] /\left(f_{1}, \ldots, f_{n}\right), X=\left(X_{1}, \ldots, X_{N}\right)$. Enough to show:
$1 \notin\left(f_{1}, \ldots, f_{n}\right) \mathbb{F}_{p}[X]$ for all but finitely many p.

Virtually residually p groups

Write $R=\mathbb{Z}[X] /\left(f_{1}, \ldots, f_{n}\right), X=\left(X_{1}, \ldots, X_{N}\right)$. Enough to show: $1 \notin\left(f_{1}, \ldots, f_{n}\right) \mathbb{F}_{p}[X]$ for all but finitely many p. This follows from:

There exists $\alpha \in \mathbb{N}$ such that for every field K,

$$
1 \in\left(f_{1}, \ldots, f_{n}\right) K[X] \Rightarrow
$$

$$
1=f_{1} y_{1}+\cdots+f_{n} y_{n} \text { for some } y_{i} \in K[X] \text { of degree } \leqslant \alpha .
$$

Virtually residually p groups

Write $R=\mathbb{Z}[X] /\left(f_{1}, \ldots, f_{n}\right), X=\left(X_{1}, \ldots, X_{N}\right)$. Enough to show:
$1 \notin\left(f_{1}, \ldots, f_{n}\right) \mathbb{F}_{p}[X]$ for all but finitely many p. This follows from:
There exists $\alpha \in \mathbb{N}$ such that for every field K,

$$
\begin{aligned}
& 1 \in\left(f_{1}, \ldots, f_{n}\right) K[X] \Rightarrow \\
& \quad 1=f_{1} y_{1}+\cdots+f_{n} y_{n} \text { for some } y_{i} \in K[X] \text { of degree } \leqslant \alpha .
\end{aligned}
$$

To see this, we may restrict to algebraically closed K.

Virtually residually p groups

Write $R=\mathbb{Z}[X] /\left(f_{1}, \ldots, f_{n}\right), X=\left(X_{1}, \ldots, X_{N}\right)$. Enough to show: $1 \notin\left(f_{1}, \ldots, f_{n}\right) \mathbb{F}_{p}[X]$ for all but finitely many p. This follows from:

There exists $\alpha \in \mathbb{N}$ such that for every field K,

$$
\begin{aligned}
& 1 \in\left(f_{1}, \ldots, f_{n}\right) K[X] \Rightarrow \\
& \quad 1=f_{1} y_{1}+\cdots+f_{n} y_{n} \text { for some } y_{i} \in K[X] \text { of degree } \leqslant \alpha .
\end{aligned}
$$

To see this, we may restrict to algebraically closed K. Suppose for each α there is an algebraically closed field K_{α} such that

$$
\begin{aligned}
& \left.1 \in\left(f_{1}, \ldots, f_{n}\right) K_{\alpha}[X] \text { (hence } V_{K_{\alpha}}\left(f_{1}, \ldots, f_{n}\right)=\emptyset\right) \text {, but } \\
& \quad 1 \neq f_{1} y_{1}+\cdots+f_{n} y_{n} \text { for all } y_{i} \in K_{\alpha}[X] \text { of degree } \leqslant \alpha .
\end{aligned}
$$

Virtually residually p groups

Write $R=\mathbb{Z}[X] /\left(f_{1}, \ldots, f_{n}\right), X=\left(X_{1}, \ldots, X_{N}\right)$. Enough to show: $1 \notin\left(f_{1}, \ldots, f_{n}\right) \mathbb{F}_{p}[X]$ for all but finitely many p. This follows from:

There exists $\alpha \in \mathbb{N}$ such that for every field K,

$$
\begin{aligned}
& 1 \in\left(f_{1}, \ldots, f_{n}\right) K[X] \Rightarrow \\
& \quad 1=f_{1} y_{1}+\cdots+f_{n} y_{n} \text { for some } y_{i} \in K[X] \text { of degree } \leqslant \alpha .
\end{aligned}
$$

To see this, we may restrict to algebraically closed K. Suppose for each α there is an algebraically closed field K_{α} such that

$$
\begin{aligned}
& \left.1 \in\left(f_{1}, \ldots, f_{n}\right) K_{\alpha}[X] \text { (hence } V_{K_{\alpha}}\left(f_{1}, \ldots, f_{n}\right)=\emptyset\right) \text {, but } \\
& \quad 1 \neq f_{1} y_{1}+\cdots+f_{n} y_{n} \text { for all } y_{i} \in K_{\alpha}[X] \text { of degree } \leqslant \alpha .
\end{aligned}
$$

Then a non-principal ultraproduct $K=\prod_{\alpha} K_{\alpha} / \mathcal{U}$ is an algebraically closed field such that $V_{K}\left(f_{1}, \ldots, f_{n}\right)=\emptyset$ and $1 \notin\left(f_{1}, \ldots, f_{n}\right) K[X]$, contradicting Hilbert's Nullstellensatz.

Virtually residually p groups

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let R be a finitely generated subring of \mathbb{C}. For all but finitely many p there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic p.

Virtually residually p groups

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let R be a finitely generated subring of \mathbb{C}. For all but finitely many p there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic p (in particular, $\operatorname{char}\left(R / \mathfrak{m}^{i}\right)=p^{i}$ for all $\left.i>0\right)$.

Virtually residually p groups

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let R be a finitely generated subring of \mathbb{C}. For all but finitely many p there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic p (in particular, $\operatorname{char}\left(R / \mathfrak{m}^{i}\right)=p^{i}$ for all $\left.i>0\right)$.

Example: $R=\mathbb{Z}[\sqrt{2}] \subseteq \mathbb{C}, \mathfrak{m} \subseteq R$ maximal with $p \in \mathfrak{m}$

Virtually residually p groups

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let R be a finitely generated subring of \mathbb{C}. For all but finitely many p there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic p (in particular, $\operatorname{char}\left(R / \mathfrak{m}^{i}\right)=p^{i}$ for all $\left.i>0\right)$.

Example: $R=\mathbb{Z}[\sqrt{2}] \subseteq \mathbb{C}, \mathfrak{m} \subseteq R$ maximal with $p \in \mathfrak{m}$

- $p=2 \Rightarrow \mathfrak{m}=(\sqrt{2}), \mathfrak{m}^{2}=(2)$, hence $\operatorname{char}\left(R / \mathfrak{m}^{2}\right)=2 . X$

Virtually residually p groups

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let R be a finitely generated subring of \mathbb{C}. For all but finitely many p there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic p (in particular, $\operatorname{char}\left(R / \mathfrak{m}^{i}\right)=p^{i}$ for all $\left.i>0\right)$.

Example: $R=\mathbb{Z}[\sqrt{2}] \subseteq \mathbb{C}, \mathfrak{m} \subseteq R$ maximal with $p \in \mathfrak{m}$

- $p=2 \Rightarrow \mathfrak{m}=(\sqrt{2}), \mathfrak{m}^{2}=(2)$, hence $\operatorname{char}\left(R / \mathfrak{m}^{2}\right)=2$.
- $p \equiv \pm 1 \bmod 8 \Rightarrow$ there is $\alpha \in \mathbb{Z}$ with $\bar{\alpha}^{2}=2$, and

$$
\mathfrak{m}=(p, \alpha-\sqrt{2}) \text { or } \mathfrak{m}=(p, \alpha+\sqrt{2}) \text {. }
$$

Virtually residually p groups

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let R be a finitely generated subring of \mathbb{C}. For all but finitely many p there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic p (in particular, $\operatorname{char}\left(R / \mathfrak{m}^{i}\right)=p^{i}$ for all $\left.i>0\right)$.

Example: $R=\mathbb{Z}[\sqrt{2}] \subseteq \mathbb{C}, \mathfrak{m} \subseteq R$ maximal with $p \in \mathfrak{m}$

- $p=2 \Rightarrow \mathfrak{m}=(\sqrt{2}), \mathfrak{m}^{2}=(2)$, hence $\operatorname{char}\left(R / \mathfrak{m}^{2}\right)=2$.
- $p \equiv \pm 1 \bmod 8 \Rightarrow$ there is $\alpha \in \mathbb{Z}$ with $\bar{\alpha}^{2}=2$, and

$$
\mathfrak{m}=(p, \alpha-\sqrt{2}) \text { or } \mathfrak{m}=(p, \alpha+\sqrt{2}) .
$$

- $p \equiv \pm 3 \bmod 8 \Rightarrow R / p R$ is a field and $\mathfrak{m}=p R$.

Virtually residually p groups

The theorem is a consequence of the fact that a reduced algebra over a field whose regular locus is open has a regular point, and the following:

Proposition

Let $R \subseteq \mathbb{C}$ be finitely generated. Then for all but finitely many primes p, the ring $R / p R$ is reduced.

Virtually residually p groups

The theorem is a consequence of the fact that a reduced algebra over a field whose regular locus is open has a regular point, and the following:

Proposition

Let $R \subseteq \mathbb{C}$ be finitely generated. Then for all but finitely many primes p, the ring $R / p R$ is reduced.
(Uses that the property of $f_{1}, \ldots, f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{N}\right]$ to generate a radical ideal in $K\left[X_{1}, \ldots, X_{n}\right]$ is constructible, in the coefficients of the f_{i}, uniformly for each perfect field K; van den Dries \& Schmidt.)

Virtually residually p groups

The theorem is a consequence of the fact that a reduced algebra over a field whose regular locus is open has a regular point, and the following:

Proposition

Let $R \subseteq \mathbb{C}$ be finitely generated. Then for all but finitely many primes p, the ring $R / p R$ is reduced.
(Uses that the property of $f_{1}, \ldots, f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{N}\right]$ to generate a radical ideal in $K\left[X_{1}, \ldots, X_{n}\right]$ is constructible, in the coefficients of the f_{i}, uniformly for each perfect field K; van den Dries \& Schmidt.)
The analogous statement for being an integral domain is false: $R=\mathbb{Z}[X] /\left(X^{4}+1\right)$ is a domain, but $R / p R=\mathbb{F}_{p}[X] /\left(X^{4}+1\right)$ is never a domain.

Some 3-manifold topology

N is prime if $N=N_{1} \# N_{2} \Rightarrow N_{1}=S^{3}$ or $N_{2}=S^{3}$.

Some 3-manifold topology

N is prime if $N=N_{1} \# N_{2} \Rightarrow N_{1}=S^{3}$ or $N_{2}=S^{3}$.

Some 3-manifold topology

$$
N \text { is prime if } N=N_{1} \# N_{2} \Rightarrow N_{1}=S^{3} \text { or } N_{2}=S^{3} .
$$

Prime Decomposition

Every closed orientable 3-manifold N can be decomposed as a connected sum

$$
N=N_{1} \# \cdots \# N_{k}
$$

of prime 3-manifolds N_{i} (H. Kneser), and the N_{i} are unique up to permutation (Milnor).

Some 3-manifold topology

$$
N \text { is prime if } N=N_{1} \# N_{2} \Rightarrow N_{1}=S^{3} \text { or } N_{2}=S^{3} .
$$

Prime Decomposition

Every closed orientable 3-manifold N can be decomposed as a connected sum

$$
N=N_{1} \# \cdots \# N_{k}
$$

of prime 3-manifolds N_{i} (H. Kneser), and the N_{i} are unique up to permutation (Milnor).

Note: $\pi_{1}(N)=\pi_{1}\left(N_{1}\right) * \cdots * \pi_{1}\left(N_{k}\right)$.

Some 3-manifold topology

$$
N \text { is prime if } N=N_{1} \# N_{2} \Rightarrow N_{1}=S^{3} \text { or } N_{2}=S^{3} .
$$

Prime Decomposition

Every closed orientable 3-manifold N can be decomposed as a connected sum

$$
N=N_{1} \# \cdots \# N_{k}
$$

of prime 3-manifolds N_{i} (H. Kneser), and the N_{i} are unique up to permutation (Milnor).

Note: $\pi_{1}(N)=\pi_{1}\left(N_{1}\right) * \cdots * \pi_{1}\left(N_{k}\right)$.
$N=S^{2} \times S^{1}$ is prime, but for technical reasons it's best to exclude it among prime
 3-manifolds, which we do from now on.

Some 3-manifold topology

JSJ (or Torus) Decomposition

Suppose N is closed, prime, and orientable.

Some 3-manifold topology

JSJ (or Torus) Decomposition

Suppose N is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

$$
T_{1}, \ldots, T_{n} \subseteq N
$$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.

Some 3-manifold topology

JSJ (or Torus) Decomposition

Suppose N is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

$$
T_{1}, \ldots, T_{n} \subseteq N
$$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.
- T incompressible in $N: \pi_{1}(T) \rightarrow \pi_{1}(N)$ is injective;

Some 3-manifold topology

JSJ (or Torus) Decomposition

Suppose N is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

$$
T_{1}, \ldots, T_{n} \subseteq N
$$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.
- T incompressible in $N: \pi_{1}(T) \rightarrow \pi_{1}(N)$ is injective;
- N atoroidal: every incompressible 2-torus $T \subseteq N$ is isotopic to a surface in ∂N.

Some 3-manifold topology

JSJ (or Torus) Decomposition

Suppose N is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

$$
T_{1}, \ldots, T_{n} \subseteq N
$$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.
- T incompressible in $N: \pi_{1}(T) \rightarrow \pi_{1}(N)$ is injective;
- N atoroidal: every incompressible 2-torus $T \subseteq N$ is isotopic to a surface in ∂N.

Some 3-manifold topology

N Seifert fibered: locally looks like it's obtained from a solid cylinder...

\ldots by rotating around an angle of $\frac{2 \pi p}{q}$ and gluing:

Some 3-manifold topology

N Seifert fibered: locally looks like it's obtained from a solid cylinder...

\ldots by rotating around an angle of $\frac{2 \pi p}{q}$ and gluing:

Well-known: N Seifert fibered $\Rightarrow \pi_{1}(N)$ linear (over \mathbb{Z}).

Some 3-manifold topology

JSJ (or Torus) Decomposition

Suppose N is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

$$
T_{1}, \ldots, T_{n} \subseteq N
$$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.

Some 3-manifold topology

Part of the Geometrization Conjecture (proved by Perelman)

Suppose N is prime and atoroidal with $\pi_{1}(N)$ infinite. Then N is hyperbolic (its interior admits a complete Riemannian metric of constant curvature -1), so

$$
N=\mathbb{H}^{3} /\ulcorner\text { where } \Gamma \leqslant \operatorname{PSL}(2, \mathbb{C}) \text { discrete torsion-free. }
$$

Some 3-manifold topology

Part of the Geometrization Conjecture (proved by Perelman)

Suppose N is prime and atoroidal with $\pi_{1}(N)$ infinite. Then N is hyperbolic (its interior admits a complete Riemannian metric of constant curvature -1), so

$$
N=\mathbb{H}^{3} / \Gamma \text { where } \Gamma \leqslant \mathrm{PSL}(2, \mathbb{C}) \text { discrete torsion-free. }
$$

There is a lifting

Our proof

Suppose N is closed, prime and orientable.

Our proof

Suppose N is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of N gives rise to a description of $\pi_{1}(N)$ as the fundamental group $\pi_{1}(\mathcal{G})$ of a graph of groups \mathcal{G} :

Our proof

Suppose N is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of N gives rise to a description of $\pi_{1}(N)$ as the fundamental group $\pi_{1}(\mathcal{G})$ of a graph of groups \mathcal{G} :

- the vertex groups G_{v} are the π_{1} 's of the various JSJ components of N (hence linear);

Our proof

Suppose N is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of N gives rise to a description of $\pi_{1}(N)$ as the fundamental group $\pi_{1}(\mathcal{G})$ of a graph of groups \mathcal{G} :

- the vertex groups G_{v} are the π_{1} 's of the various JSJ components of N (hence linear);
- the edge groups G_{e} are $\pi_{1}\left(T_{i}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Our proof

Suppose N is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of N gives rise to a description of $\pi_{1}(N)$ as the fundamental group $\pi_{1}(\mathcal{G})$ of a graph of groups \mathcal{G} :

- the vertex groups G_{v} are the π_{1} 's of the various JSJ components of N (hence linear);
- the edge groups G_{e} are $\pi_{1}\left(T_{i}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Need to understand residual properties of $\pi_{1}(\mathcal{G})$.

Our proof

Suppose N is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of N gives rise to a description of $\pi_{1}(N)$ as the fundamental group $\pi_{1}(\mathcal{G})$ of a graph of groups \mathcal{G} :

- the vertex groups G_{V} are the π_{1} 's of the various JSJ components of N (hence linear);
- the edge groups G_{e} are $\pi_{1}\left(T_{i}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Need to understand residual properties of $\pi_{1}(\mathcal{G})$.
It is much easier to be residually finite than residually p
The amalgamated product $G_{1} * H G_{2}$ of finite groups G_{1}, G_{2} over a common subgroup H is always residually finite. If G_{1}, G_{2} are p-groups, $G_{1} * H G_{2}$ might not be residually p. (Higman)

Our proof

Useful criterion for $\pi_{1}(\mathcal{G})$ with finite vertex groups to be residually p :

There exists a morphism

$$
\pi_{1}(\mathcal{G}) \xrightarrow{\substack{\text { injective on ver- } \\ \text { tex groups }}} P(p \text {-group })
$$

Our proof

Let N be a 3-manifold.

Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^{1} \times F$ for some orientable surface F.

Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^{1} \times F$ for some orientable surface F. [As in Hempel's proof.]

Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^{1} \times F$ for some orientable surface F. [As in Hempel's proof.]
2. Existence of suitable filtrations. For all but finitely many p, after passing to a finite cover of N, we can achieve that the lower central p-filtration $\gamma^{p}\left(G_{v}\right)$ of each vertex group G_{v} intersects to $\gamma^{p}\left(G_{e}\right)$ on G_{e}, and separates each G_{e}.

Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^{1} \times F$ for some orientable surface F. [As in Hempel's proof.]
2. Existence of suitable filtrations. For all but finitely many p, after passing to a finite cover of N, we can achieve that the lower central p-filtration $\gamma^{p}\left(G_{v}\right)$ of each vertex group G_{v} intersects to $\gamma^{p}\left(G_{e}\right)$ on G_{e}, and separates each G_{e}. [Needs the approximation theorem above as well as some computations due to Lubotzky \& Shalev.]

Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^{1} \times F$ for some orientable surface F. [As in Hempel's proof.]
2. Existence of suitable filtrations. For all but finitely many p, after passing to a finite cover of N, we can achieve that the lower central p-filtration $\gamma^{p}\left(G_{v}\right)$ of each vertex group G_{v} intersects to $\gamma^{p}\left(G_{e}\right)$ on G_{e}, and separates each G_{e}. [Needs the approximation theorem above as well as some computations due to Lubotzky \& Shalev.]
3. Criterion for being residually p. It is enough to show that $\pi_{1}\left(\mathcal{G} / \gamma_{n}^{p}(\mathcal{G})\right)$ is residually p for each n.

Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^{1} \times F$ for some orientable surface F. [As in Hempel's proof.]
2. Existence of suitable filtrations. For all but finitely many p, after passing to a finite cover of N, we can achieve that the lower central p-filtration $\gamma^{p}\left(G_{v}\right)$ of each vertex group G_{v} intersects to $\gamma^{p}\left(G_{e}\right)$ on G_{e}, and separates each G_{e}. [Needs the approximation theorem above as well as some computations due to Lubotzky \& Shalev.]
3. Criterion for being residually p. It is enough to show that $\pi_{1}\left(\mathcal{G} / \gamma_{n}^{p}(\mathcal{G})\right)$ is residually p for each n. [By construction of the filtrations.]

Our proof

$\mathcal{G}_{p}:=\mathcal{G} / \gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}\left(G_{v} ; \mathbb{F}_{p}\right)$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p}-linear spaces.

Our proof

$\mathcal{G}_{p}:=\mathcal{G} / \gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}\left(G_{v} ; \mathbb{F}_{p}\right)$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p}-linear spaces.
4. Reduction to \mathcal{G}_{p}. Let T be a maximal subtree of the graph underlying \mathcal{G}. Then $\pi_{1}\left(\mathcal{G}_{p}\right)$ is an iterated HNN extension of $\pi_{1}\left(\mathcal{G}_{p} \mid T\right)$.

Our proof

$\mathcal{G}_{p}:=\mathcal{G} / \gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}\left(G_{v} ; \mathbb{F}_{p}\right)$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p}-linear spaces.
4. Reduction to \mathcal{G}_{p}. Let T be a maximal subtree of the graph underlying \mathcal{G}. Then $\pi_{1}\left(\mathcal{G}_{p}\right)$ is an iterated HNN extension of $\pi_{1}\left(\mathcal{G}_{p} \mid T\right)$. Replacing $\pi_{1}\left(\mathcal{G}_{p} \mid T\right)$ by the fiber sum Σ of $\mathcal{G}_{p} \mid T$, we obtain $\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$, a "partial abelianization of $\pi_{1}\left(\mathcal{G}_{p}\right)$ along T."

Our proof

$\mathcal{G}_{p}:=\mathcal{G} / \gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}\left(G_{v} ; \mathbb{F}_{p}\right)$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p}-linear spaces.
4. Reduction to \mathcal{G}_{p}. Let T be a maximal subtree of the graph underlying \mathcal{G}. Then $\pi_{1}\left(\mathcal{G}_{p}\right)$ is an iterated HNN extension of $\pi_{1}\left(\mathcal{G}_{p} \mid T\right)$. Replacing $\pi_{1}\left(\mathcal{G}_{p} \mid T\right)$ by the fiber sum Σ of $\mathcal{G}_{p} \mid T$, we obtain $\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$, a "partial abelianization of $\pi_{1}\left(\mathcal{G}_{p}\right)$ along T." Show:
$\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$ residually $p \quad \Rightarrow \quad$ all $\pi_{1}^{*}\left(\gamma_{n}^{p}(\mathcal{G}) / \gamma_{n+1}^{p}(\mathcal{G}), T\right)$ residually p $\Rightarrow \quad$ all $\pi_{1}\left(\mathcal{G} / \gamma_{n}^{p}(\mathcal{G})\right)$ residually p.

Our proof

$\mathcal{G}_{p}:=\mathcal{G} / \gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}\left(G_{v} ; \mathbb{F}_{p}\right)$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p}-linear spaces.
4. Reduction to \mathcal{G}_{p}. Let T be a maximal subtree of the graph underlying \mathcal{G}. Then $\pi_{1}\left(\mathcal{G}_{p}\right)$ is an iterated HNN extension of $\pi_{1}\left(\mathcal{G}_{p} \mid T\right)$. Replacing $\pi_{1}\left(\mathcal{G}_{p} \mid T\right)$ by the fiber sum Σ of $\mathcal{G}_{p} \mid T$, we obtain $\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$, a "partial abelianization of $\pi_{1}\left(\mathcal{G}_{p}\right)$ along T." Show:
$\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$ residually $p \quad \Rightarrow \quad$ all $\pi_{1}^{*}\left(\gamma_{n}^{p}(\mathcal{G}) / \gamma_{n+1}^{p}(\mathcal{G}), T\right)$ residually p $\Rightarrow \quad$ all $\pi_{1}\left(\mathcal{G} / \gamma_{n}^{p}(\mathcal{G})\right)$ residually p.
[Main ingredients:

- a refinement of an amalgamation theorem by Higman, for which we need some facts on group rings;
- a criterion for HNN extensions to be residually p by Chatzidakis.]

Our proof

5. Unfolding \mathcal{G}. Sufficient condition for $\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$ residually p : all identification isomorphisms between associated subgroups in the iterated HNN extension $\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$ of Σ are the identity.

Our proof

5. Unfolding \mathcal{G}. Sufficient condition for $\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$ residually p : all identification isomorphisms between associated subgroups in the iterated HNN extension $\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)$ of Σ are the identity.

Show that one can pass to finite cover of N to achieve this, using kernel of

$$
\pi_{1}(N)=\pi_{1}(\mathcal{G}) \rightarrow \operatorname{Aut}(\Sigma)
$$

obtained by extending each identification map in \mathcal{G}_{p} to an automorphism of the \mathbb{F}_{p}-linear space Σ.

Our proof

Simple (but untypical) example: \mathcal{G} has a single vertex v and a single (topological) edge.

Our proof

Simple (but untypical) example: \mathcal{G} has a single vertex v and a single (topological) edge. Then with $H:=H_{1}\left(G_{v} ; \mathbb{F}_{p}\right)$ we have

$$
\pi_{1}\left(\mathcal{G}_{p}\right)=\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)=\left\langle H, t \mid t^{-1} A t=\varphi(B)\right\rangle \quad(A, B \leqslant H)
$$

Our proof

Simple (but untypical) example: \mathcal{G} has a single vertex v and a single (topological) edge. Then with $H:=H_{1}\left(G_{v} ; \mathbb{F}_{p}\right)$ we have

$$
\pi_{1}\left(\mathcal{G}_{p}\right)=\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)=\left\langle H, t \mid t^{-1} A t=\varphi(B)\right\rangle \quad(A, B \leqslant H)
$$

Extend $\varphi: A \rightarrow B$ to $\widetilde{\varphi} \in \operatorname{Aut}(H)$ and let $s=\operatorname{order}(\widetilde{\varphi})$:

Our proof

Simple (but untypical) example: \mathcal{G} has a single vertex v and a single (topological) edge. Then with $H:=H_{1}\left(G_{v} ; \mathbb{F}_{p}\right)$ we have

$$
\pi_{1}\left(\mathcal{G}_{p}\right)=\pi_{1}^{*}\left(\mathcal{G}_{p}, T\right)=\left\langle H, t \mid t^{-1} A t=\varphi(B)\right\rangle \quad(A, B \leqslant H)
$$

Extend $\varphi: A \rightarrow B$ to $\widetilde{\varphi} \in \operatorname{Aut}(H)$ and let $s=\operatorname{order}(\widetilde{\varphi})$:

