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Residual properties of groups

Let P be a property of groups, e.g.: being finite, a finite solvable
group, a finite nilpotent group, a finite p-group (p prime) ...

A group G is said to be residually P if for every g € G, g # 1

there exists a morphism «: G — P to a group P with property
P such that a(g) # 1.

The group Z is residually p for every prime p: any non-zero
k € Z is non-zero in Z/p®Z, where e > 0 is such that p® /k.
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Residual properties of groups

Let P be a property of groups, e.g.: being finite, a finite solvable
group, a finite nilpotent group, a finite p-group (p prime) ...

A group G is said to be residually P if for every g € G, g # 1

there exists a morphism «: G — P to a group P with property
P such that a(g) # 1.

The group Z is residually p for every prime p: any non-zero
k € Z is non-zero in Z/p®7Z, where e > 0 is such that p® }k.

The group G = (a,b : a 'b?a = b3) is not residually finite.
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@ G finitely generated = G is Hopfian: every surjective
morphism G — G is injective.
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Residual properties of groups

Properties of residually finite groups G

© G finitely generated = G is Hopfian: every surjective
morphism G — G is injective.

@® G finitely presented = G has solvable word problem.

© G embeds into its profinite completion as a dense
subgroup.

Residually p is a strong property; e.g.:

Every non-abelian subgroup of a residually p group has a
quotient isomorphic to Fp x Fp.



Let N be a 3-manifold.
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Let N be a [smooth = PL = topological] 3-manifold.
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Residual properties and low-dimensional topology

Let N be a [smooth = PL = topological] 3-manifold.

(All manifolds assumed to be connected and compact, but no
assumptions on orientability or type of the boundary.)

S8, S x S' x S', RP3, S8\ tubular neighborhood of a knot, . ...

We are interested in residual properties of the finitely presented
group m1(N).

Theorem (Thurston & Hempel 1987, + Perelman)

m1(N) is residually finite: for every homotopically non-trivial
loop ~: [0, 1] — N there is a finite-sheeted covering N — N and
some lifting [0, 1] — N of « which is not a loop.



Residual properties and low-dimensional topology

Remarks

e Let S be a surface. Then 71(S) is residually finite
(Baumslag, 1962), in fact, residually p for every prime p.



Residual properties and low-dimensional topology

Remarks

e Let S be a surface. Then 71(S) is residually finite
(Baumslag, 1962), in fact, residually p for every prime p.

e Given any finitely presented group G there exists a smooth
4-manifold M with 71 (M) = G.



Residual properties and low-dimensional topology

Remarks

e Let S be a surface. Then 71(S) is residually finite
(Baumslag, 1962), in fact, residually p for every prime p.

e Given any finitely presented group G there exists a smooth
4-manifold M with 71 (M) = G.

Question

Is 1 (N) always residually p? < Q)

residually nilpotent? residually
solvable? m(N) = (x,y : x* = y°)
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Residual properties and low-dimensional topology

Suppose N = S3\ v(K) where K C S is a knot. Then

m1(N) residually p <= m1(N) =2 Z <= K trivial.
Dehn’s
Theorem

Let 71(N) < P be a morphism onto a p-group P. Then «
induces a surjective morphism

Hi(m1(N); Fp) — Hi(P;Fp),
hence
# generators of P = dimy, H;(P;Fp) < 1,

so P = Z/p*Z for some k. Thus « factors through

m1(N) — m1(N)ap = Z.



Given a property P, a group G is virtually P if G has a
finite-index subgroup which is P.
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Virtually residually p groups

Definition

Given a property P, a group G is virtually P if G has a
finite-index subgroup which is P.

Every finitely generated abelian group contains a free abelian

subgroup of finite index, hence is virtually [residually p for all p].




For all but finitely many primes p, w1 (N) is virtually residually p.
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Virtually residually p groups

Theorem (A & Friedl)
For all but finitely many primes p, w1 (N) is virtually residually p.

Corollary

@ For all but finitely many primes p, Aut(wy(N)) is virtually
residually p. (Hence Aut(m(N)) is virtually torsion-free, so
there is a bound on the size of its finite subgroups.)

® I/f N is closed and aspherical (i.e., mn(N) = 0 for all n > 2),
then there is a bound on the size of finite groups of
self-homeomorphisms of N having a common fixed point.

More substantial application of our main theorem in the recent
proof by Friedl & Vidussi of a conjecture of Taubes.
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Virtually residually p groups

Our theorem can also be seen as evidence of the following:

m1(N) is linear, i.e., there is an embedding

m1(N) — GL(n,C) (for some n).

This is due to the following theorem:

Theorem (Malcev)

Let G < GL(n, C) be finitely generated. Then G is virtually
residually p for all but finitely many primes p.



Pick a finitely generated subring R C C with G C GL(n, R).
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Pick a finitely generated subring R C C with G C GL(n, R). For
all but finitely many p there is a maximal ideal m C R such that
char(R/m) = p. Let
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Write R = Z[X]/(f, ..

L) X = (X Xn).
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1¢(f,..

., Tn)Fp[X] for all but finitely many p. This follows from:

To see this, we may restrict to algebraically closed K.
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Virtually residually p groups

Write R = Z[X]/(fi,...,f), X = (X1, ..., Xn). Enough to show:
1 ¢ (f,...,1)Fp[X] for all but finitely many p. This follows from:
There exists a € N such that for every field K,
1e(fy,....fhH)K[X]=
1="Ffiy;+ -+ fhyn for some y; € K[X] of degree < a.

To see this, we may restrict to algebraically closed K. Suppose
for each « there is an algebraically closed field K, such that

1€ (fi,...,f)K.[X] (hence Vi (fi,..., fn) = 0), but
1# fiyy + -+ foyn for all y; € K, [X] of degree < a.
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Write R = Z[X]/(f1,...,fa), X = (X1, ..., Xn). Enough to show:
1 ¢ (f,...,1)Fp[X] for all but finitely many p. This follows from:

There exists a € N such that for every field K,

1e(fy,...,[H)K[X]=
1="Ffiy;+ -+ fhyn for some y; € K[X] of degree < a.

To see this, we may restrict to algebraically closed K. Suppose
for each « there is an algebraically closed field K, such that

1€ (f,...,H)K.[X] (hence Vi (fi,...,fr) =0), but
1# fiyy + -+ foyn for all y; € K, [X] of degree < a.

Then a non-principal ultraproduct K = [, K./U is an
algebraically closed field such that Vk(f;, ..., f,) = 0 and
1¢(fi,...,f)K[X], contradicting Hilbert’s Nullstellensatz.
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Virtually residually p groups

Using similar techniques we show an approximation result
which plays an important role in our proof:
Theorem

Let R be a finitely generated subring of C. For all but finitely
many p there exists a maximal ideal m C R such that R, is
unramified regular of mixed characteristic p (in particular,
char(R/m') = p' for all i > 0).

e p=2=m=(v2), m2 = (2), hence char(R/m?2) = 2. X

e p=+1mod 8 = there is a € Z with @® = 2, and
m=(p,a—V2)orm=(p,a+v2).V

e p=+3mod8= R/pRis afieldand m = pR. v/
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point, and the following:

Proposition
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Virtually residually p groups

The theorem is a consequence of the fact that a reduced
algebra over a field whose regular locus is open has a regular
point, and the following:

Proposition

Let R C C be finitely generated. Then for all but finitely many
primes p, the ring R/pR is reduced.

(Uses that the property of fi, ..., f, € Z[Xq, ..., Xy] to generate
aradical ideal in K[ X1, ..., Xp] is constructible, in the
coefficients of the f;, uniformly for each perfect field K; van den
Dries & Schmidt.)

The analogous statement for being an integral domain is false:
R = Z[X]/(X* + 1) is a domain, but R/pR = Fp[X]/(X* 4+ 1) is
never a domain.
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N is prime if N = Ny#N, = Ny = S® or N, = S°.
Prime Decomposition

Every closed orientable 3-manifold N can be

S

d d ted
ecomposed as a connected sum @
N = Ni# - #Ni Q)

of prime 3-manifolds N; (H. Kneser), and the

N; are unique up to permutation (Milnor).

Note: 7T1(N) = 7T1(N1) koo *7T1(Nk).

N = 82 x S is prime, but for technical

reasons it’s best to exclude it among prime
3-manifolds, which we do from now on.



Suppose N is closed, prime, and
orientable.
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Some 3-manifold topology

N Seifert fibered: locally looks like it’s obtained from a solid
cylinder . ..

.. by rotating around an angle of Ziqp and gluing:
Gam)

Well-known: N Seifert fibered = 71(N) linear (over Z).




Some 3-manifold topology

JSJ (or Torus) Decomposition

Suppose N is closed, prime, and
orientable. Then there are pairwise

disjoint, incompressible 2-tori N WE
C )
To.... . TACN o o-p

that cut N into pieces which are either
o Seifert fibered, or
e atoroidal.



Some 3-manifold topology

Part of the Geometrization Conjecture (proved by Perelman)

Suppose N is prime and atoroidal with 71(N) infinite. Then N is
hyperbolic (its interior admits a complete Riemannian metric of
constant curvature —1), so

N = H3/T where I < PSL(2, C) discrete torsion-free.



Some 3-manifold topology

Part of the Geometrization Conjecture (proved by Perelman)

Suppose N is prime and atoroidal with 71(N) infinite. Then N is
hyperbolic (its interior admits a complete Riemannian metric of
constant curvature —1), so

N = H3/T where I < PSL(2, C) discrete torsion-free.

There is a lifting

/7
—
—
—~
-
—
—

m1(N) =T —~ PSL(2,C) = SL(2,C)/(center)



Suppose N is closed, prime and orientable.
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Suppose N is closed, prime and orientable.

The JSJ Decomposition of N gives rise to a description of

m1(N) as the fundamental group 71 (G) of a graph of groups G:
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e the vertex groups G, are the m’s of the various JSJ
components of N (hence linear);
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Our proof

Suppose N is closed, prime and orientable.

Graphs of groups
The JSJ Decomposition of N gives rise to a description of
m1(N) as the fundamental group 71 (G) of a graph of groups G:

e the vertex groups G, are the m’s of the various JSJ
components of N (hence linear);

e the edge groups Ge are m1(T;)) = Z & Z.

Need to understand residual properties of 71(G).

The amalgamated product Gy x4 G» of finite groups Gy, Go
over a common subgroup H is always residually finite. If Gy, Go
are p-groups, Gy xy Go might not be residually p. (Higman)




There exists a morphism

injective on ver-
tex groups
m(G)

P (p-group).
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Let N be a 3-manifold.
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Our proof

Let N be a 3-manifold. Five steps:

1. First reductions. Reduce to N closed, orientable, prime, all
of whose Seifert fibered JSJ components are S' x F for some
orientable surface F. [As in Hempel’s proof.]

2. Existence of suitable filtrations. For all but finitely many p,
after passing to a finite cover of N, we can achieve that the
lower central p-filtration v°(Gy) of each vertex group Gy
intersects to 7°(Ge) on Ge, and separates each Ge. [Needs the
approximation theorem above as well as some computations due to
Lubotzky & Shalev.]

3. Criterion for being residually p. It is enough to show that
71(G/7h(G)) is residually p for each n. [By construction of the
filtrations.]



Gp := G/75(G) has vertex groups H(Gy; Fp) and edge groups
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Our proof

Gp := G/75(G) has vertex groups Hi(Gy;Fp) and edge groups
Fp @ IFp which are Fp-linear spaces.

4. Reduction to G,. Let T be a maximal subtree of the graph
underlying G. Then 71(Gp) is an iterated HNN extension of
71(Gp| T). Replacing 71(Gp| T) by the fiber sum X of G| T, we
obtain 73(Gp, T), a “partial abelianization of 71(Gp) along T
Show:

mi(Gp, T) residually p = all 7§(v5(G)/~5.1(G), T) residually p
= all m(G/v5(G)) residually p.

[Main ingredients:

¢ arefinement of an amalgamation theorem by Higman, for which
we need some facts on group rings;

e a criterion for HNN extensions to be residually p by Chatzidakis.]
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5. Unfolding G. Sufficient condition for 7} (Gp, T) residually p:
all identification isomorphisms between associated subgroups
in the iterated HNN extension 7 (Gp, T) of X are the identity.

Show that one can pass to finite cover of N to achieve this,
using kernel of
1 (N) = m1(G) — Aut(¥)

obtained by extending each identification map in G, to an
automorphism of the FFp-linear space .
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Our proof

Simple (but untypical) example: G has a single vertex v and a
single (topological) edge. Then with H := H;(Gy; Fp) we have

m1(Gp) = 75 (Gp, T) = (H, t|t 1At = p(B))  (A,B<H).
Extend ¢: A — Bto ¢ € Aut(H) and let s = order(p):

T HXx2 ¢

| Y |

,H ~—~ Hxi Hx0
w\* /Aso
Hx(i+1) Hx(s—1)



