Residual Properties of 3-Manifold Groups

Matthias Aschenbrenner University of California, Los Angeles

(joint with Stefan Friedl, University of Warwick)

The authors back in 1979

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The authors back in 1979

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Residual properties of groups

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let \mathcal{P} be a property of groups, e.g.: being finite, a finite solvable group, a finite nilpotent group, a finite *p*-group (*p* prime) ...

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let \mathcal{P} be a property of groups, e.g.: being finite, a finite solvable group, a finite nilpotent group, a finite *p*-group (*p* prime) ...

A group *G* is said to be *residually* \mathcal{P} if for every $g \in G$, $g \neq 1$ there exists a morphism $\alpha : G \to P$ to a group *P* with property \mathcal{P} such that $\alpha(g) \neq 1$.

うして 山田 マイボット ボット シックション

Let \mathcal{P} be a property of groups, e.g.: being finite, a finite solvable group, a finite nilpotent group, a finite *p*-group (*p* prime) ...

A group *G* is said to be *residually* \mathcal{P} if for every $g \in G$, $g \neq 1$ there exists a morphism $\alpha \colon G \to P$ to a group *P* with property \mathcal{P} such that $\alpha(g) \neq 1$.

Example

The group \mathbb{Z} is residually p for every prime p: any non-zero $k \in \mathbb{Z}$ is non-zero in $\mathbb{Z}/p^e\mathbb{Z}$, where e > 0 is such that $p^e \not| k$.

うして 山田 マイボット ボット シックション

Let \mathcal{P} be a property of groups, e.g.: being finite, a finite solvable group, a finite nilpotent group, a finite *p*-group (*p* prime) ...

A group *G* is said to be *residually* \mathcal{P} if for every $g \in G$, $g \neq 1$ there exists a morphism $\alpha \colon G \to P$ to a group *P* with property \mathcal{P} such that $\alpha(g) \neq 1$.

Example

The group \mathbb{Z} is residually p for every prime p: any non-zero $k \in \mathbb{Z}$ is non-zero in $\mathbb{Z}/p^e\mathbb{Z}$, where e > 0 is such that $p^e \not| k$.

Non-example

The group $G = \langle a, b : a^{-1}b^2a = b^3 \rangle$ is not residually finite.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Properties of residually finite groups G

1 *G* finitely generated \Rightarrow *G* is *Hopfian*: every surjective morphism $G \rightarrow G$ is injective.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Properties of residually finite groups G

- **1** *G* finitely generated \Rightarrow *G* is *Hopfian*: every surjective morphism $G \rightarrow G$ is injective.
- **2** *G* finitely presented \Rightarrow *G* has solvable word problem.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Properties of residually finite groups G

- **1** *G* finitely generated \Rightarrow *G* is *Hopfian*: every surjective morphism $G \rightarrow G$ is injective.
- **2** *G* finitely presented \Rightarrow *G* has solvable word problem.
- G embeds into its profinite completion as a dense subgroup.

うして 山田 マイボット ボット シックション

Properties of residually finite groups G

- **1** *G* finitely generated \Rightarrow *G* is *Hopfian*: every surjective morphism $G \rightarrow G$ is injective.
- **2** *G* finitely presented \Rightarrow *G* has solvable word problem.
- G embeds into its profinite completion as a dense subgroup.

Residually *p* is a strong property; e.g.:

Every non-abelian subgroup of a residually *p* group has a quotient isomorphic to $\mathbb{F}_p \times \mathbb{F}_p$.

Let N be a 3-manifold.

Let N be a [smooth = PL = topological] 3-manifold.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Let N be a [smooth = PL = topological] 3-manifold.

(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Let N be a [smooth = PL = topological] 3-manifold.

(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Examples

 $S^3, S^1 \times S^1 \times S^1, \mathbb{RP}^3, S^3 \setminus$ tubular neighborhood of a knot, . . .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let N be a [smooth = PL = topological] 3-manifold.

(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Examples

 S^3 , $S^1 \times S^1 \times S^1$, \mathbb{RP}^3 , $S^3 \setminus$ tubular neighborhood of a knot, . . .

We are interested in residual properties of the finitely presented group $\pi_1(N)$.

Let N be a [smooth = PL = topological] 3-manifold.

(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Examples

 $S^3, S^1 \times S^1 \times S^1, \mathbb{RP}^3, S^3 \setminus$ tubular neighborhood of a knot, . . .

We are interested in residual properties of the finitely presented group $\pi_1(N)$.

Theorem (Thurston & Hempel 1987, + Perelman)

 $\pi_1(N)$ is residually finite.

< □ > < □ > < 亘 > < 亘 > < 亘 > ○ < ♡ < ♡

Let N be a [smooth = PL = topological] 3-manifold.

(All manifolds assumed to be connected and compact, but no assumptions on orientability or type of the boundary.)

Examples

 S^3 , $S^1 \times S^1 \times S^1$, \mathbb{RP}^3 , $S^3 \setminus$ tubular neighborhood of a knot, . . .

We are interested in residual properties of the finitely presented group $\pi_1(N)$.

Theorem (Thurston & Hempel 1987, + Perelman)

 $\pi_1(N)$ is residually finite: for every homotopically non-trivial loop $\gamma: [0, 1] \to N$ there is a finite-sheeted covering $\widetilde{N} \to N$ and some lifting $[0, 1] \to \widetilde{N}$ of γ which is not a loop.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remarks

 Let S be a surface. Then π₁(S) is residually finite (Baumslag, 1962), in fact, residually p for every prime p.

Remarks

- Let S be a surface. Then π₁(S) is residually finite (Baumslag, 1962), in fact, residually p for every prime p.
- Given any finitely presented group *G* there exists a smooth 4-manifold *M* with $\pi_1(M) = G$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remarks

- Let S be a surface. Then π₁(S) is residually finite (Baumslag, 1962), in fact, residually p for every prime p.
- Given any finitely presented group *G* there exists a smooth 4-manifold *M* with $\pi_1(M) = G$.

Question

Is $\pi_1(N)$ always residually *p*? residually nilpotent? residually solvable?

$$\bigotimes_{\pi_1(N) = \langle x, y : x^2 = y^3 \rangle}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Non-example

Suppose $N = S^3 \setminus \nu(K)$ where $K \subseteq S^3$ is a knot. Then

 $\pi_1(N)$ residually $p \iff \pi_1(N) \cong \mathbb{Z} \iff K$ trivial. Dehn's Theorem

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Non-example

Suppose $N = S^3 \setminus \nu(K)$ where $K \subseteq S^3$ is a knot. Then

$$\pi_1(N)$$
 residually $p \iff \pi_1(N) \cong \mathbb{Z} \iff K$ trivial.
Dehn's
Theorem

・ コ ト ・ 同 ト ・ ヨ ト ・ ヨ ト - ヨ

Sac

Let $\pi_1(N) \xrightarrow{\alpha} P$ be a morphism onto a *p*-group *P*.

Non-example

Suppose $N = S^3 \setminus \nu(K)$ where $K \subseteq S^3$ is a knot. Then

$$\pi_1(N)$$
 residually $p \iff \pi_1(N) \cong \mathbb{Z} \iff K$ trivial.
Dehn's
Theorem

Let $\pi_1(N) \xrightarrow{\alpha} P$ be a morphism onto a *p*-group *P*. Then α induces a surjective morphism

$$H_1(\pi_1(N); \mathbb{F}_p) \to H_1(P; \mathbb{F}_p),$$

Non-example

Suppose $N = S^3 \setminus \nu(K)$ where $K \subseteq S^3$ is a knot. Then

$$\pi_1(N)$$
 residually $p \iff \pi_1(N) \cong \mathbb{Z} \iff K$ trivial.
Dehn's
Theorem

Let $\pi_1(N) \xrightarrow{\alpha} P$ be a morphism onto a *p*-group *P*. Then α induces a surjective morphism

$$H_1(\pi_1(N); \mathbb{F}_p) \to H_1(P; \mathbb{F}_p),$$

hence

generators of
$$P = \dim_{\mathbb{F}_p} H_1(P; \mathbb{F}_p) \leq 1$$
,

Non-example

Suppose $N = S^3 \setminus \nu(K)$ where $K \subseteq S^3$ is a knot. Then

$$\pi_1(N)$$
 residually $p \iff \pi_1(N) \cong \mathbb{Z} \iff K$ trivial.
Dehn's
Theorem

Let $\pi_1(N) \xrightarrow{\alpha} P$ be a morphism onto a *p*-group *P*. Then α induces a surjective morphism

$$H_1(\pi_1(N); \mathbb{F}_p) \to H_1(P; \mathbb{F}_p),$$

hence

generators of
$$P = \dim_{\mathbb{F}_p} H_1(P; \mathbb{F}_p) \leq 1$$
,

so $P = \mathbb{Z}/p^k\mathbb{Z}$ for some k.

Non-example

Suppose $N = S^3 \setminus \nu(K)$ where $K \subseteq S^3$ is a knot. Then

$$\pi_1(N)$$
 residually $p \iff \pi_1(N) \cong \mathbb{Z} \iff K$ trivial.
Dehn's
Theorem

Let $\pi_1(N) \xrightarrow{\alpha} P$ be a morphism onto a *p*-group *P*. Then α induces a surjective morphism

$$H_1(\pi_1(N); \mathbb{F}_p) \to H_1(P; \mathbb{F}_p),$$

hence

generators of $P = \dim_{\mathbb{F}_p} H_1(P; \mathbb{F}_p) \leq 1$,

so $P = \mathbb{Z}/p^k\mathbb{Z}$ for some *k*. Thus α factors through

$$\pi_1(N) \to \pi_1(N)_{ab} = \mathbb{Z}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

Definition

Given a property \mathcal{P} , a group *G* is *virtually* \mathcal{P} if *G* has a finite-index subgroup which is \mathcal{P} .

うして 山田 マイボット ボット シックション

Definition

Given a property \mathcal{P} , a group *G* is *virtually* \mathcal{P} if *G* has a finite-index subgroup which is \mathcal{P} .

Example

Every finitely generated abelian group contains a free abelian subgroup of finite index, hence is virtually [residually p for all p].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (A & Friedl)

For all but finitely many primes p, $\pi_1(N)$ is virtually residually p.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (A & Friedl)

For all but finitely many primes p, $\pi_1(N)$ is virtually residually p.

Corollary

For all but finitely many primes p, Aut(π₁(N)) is virtually residually p. (Hence Aut(π₁(N)) is virtually torsion-free, so there is a bound on the size of its finite subgroups.)

うして 山田 マイボット ボット シックション

Theorem (A & Friedl)

For all but finitely many primes p, $\pi_1(N)$ is virtually residually p.

Corollary

- For all but finitely many primes p, Aut(π₁(N)) is virtually residually p. (Hence Aut(π₁(N)) is virtually torsion-free, so there is a bound on the size of its finite subgroups.)
- If N is closed and aspherical (i.e., π_n(N) = 0 for all n ≥ 2), then there is a bound on the size of finite groups of self-homeomorphisms of N having a common fixed point.

Theorem (A & Friedl)

For all but finitely many primes p, $\pi_1(N)$ is virtually residually p.

Corollary

- For all but finitely many primes p, Aut(π₁(N)) is virtually residually p. (Hence Aut(π₁(N)) is virtually torsion-free, so there is a bound on the size of its finite subgroups.)
- If N is closed and aspherical (i.e., π_n(N) = 0 for all n ≥ 2), then there is a bound on the size of finite groups of self-homeomorphisms of N having a common fixed point.

More substantial application of our main theorem in the recent proof by Friedl & Vidussi of a conjecture of Taubes.

うして 山田 マイボット ボット シックション

Our theorem can also be seen as evidence of the following:

うして 山田 マイボット ボット シックション

Our theorem can also be seen as evidence of the following:

This is due to the following theorem:

Theorem (Malcev)

Let $G \leq GL(n, \mathbb{C})$ be finitely generated. Then G is virtually residually p for all but finitely many primes p.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$.
◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$.

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$. Let

 $G_i := \ker(G \to \operatorname{GL}(n, R) \to \operatorname{GL}(n, R/\mathfrak{m}^i)) \triangleleft G.$

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$. Let

$$G_i := \ker(G \to \operatorname{GL}(n, R) \to \operatorname{GL}(n, R/\mathfrak{m}^i)) \triangleleft G_i$$

Then $[G: G_i] < \infty$ and $\bigcap_i G_i = \{1\}$.

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$. Let

$$G_i := \ker(G \to \operatorname{GL}(n, R) \to \operatorname{GL}(n, R/\mathfrak{m}^i)) \triangleleft G$$

Then $[G: G_i] < \infty$ and $\bigcap_i G_i = \{1\}$. Claim: G_1 is residually p.

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$. Let

$$G_i := \ker(G \to \operatorname{GL}(n, R) \to \operatorname{GL}(n, R/\mathfrak{m}^i)) \triangleleft G$$

Then $[G : G_i] < \infty$ and $\bigcap_i G_i = \{1\}$. *Claim*: G_1 is residually p. We will show that for $A \in G_i$, $i \ge 1$ we have $A^p \in G_{i+1}$.

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$. Let

$$G_i := \ker(G \to \operatorname{GL}(n, R) \to \operatorname{GL}(n, R/\mathfrak{m}^i)) \triangleleft G$$

Then $[G: G_i] < \infty$ and $\bigcap_i G_i = \{1\}$. *Claim*: G_1 is residually p. We will show that for $A \in G_i$, $i \ge 1$ we have $A^p \in G_{i+1}$. Let $A \in G_i$, so A = id + B where $B \in (\mathfrak{m}^i)^{n \times n}$.

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$. Let

$$G_i := \ker(G \to \operatorname{GL}(n, R) \to \operatorname{GL}(n, R/\mathfrak{m}^i)) \triangleleft G$$

Then $[G: G_i] < \infty$ and $\bigcap_i G_i = \{1\}$. *Claim*: G_1 is residually p. We will show that for $A \in G_i$, $i \ge 1$ we have $A^p \in G_{i+1}$. Let $A \in G_i$, so A = id + B where $B \in (\mathfrak{m}^i)^{n \times n}$. Then

$$A^{p} = (\mathrm{id} + B)^{p} = \mathrm{id} + \underbrace{pB + \frac{1}{2}p(p-1)B^{2} + \dots + pB^{p-1} + B^{p}}_{\text{all entries in } \mathrm{m}^{i+1}}$$

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many p there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$. Let

$$G_i := \ker(G \to \operatorname{GL}(n, R) \to \operatorname{GL}(n, R/\mathfrak{m}^i)) \triangleleft G$$

Then $[G: G_i] < \infty$ and $\bigcap_i G_i = \{1\}$. *Claim*: G_1 is residually p. We will show that for $A \in G_i$, $i \ge 1$ we have $A^p \in G_{i+1}$. Let $A \in G_i$, so A = id + B where $B \in (\mathfrak{m}^i)^{n \times n}$. Then

$$A^{p} = (\mathrm{id} + B)^{p} = \mathrm{id} + \underbrace{pB + \frac{1}{2}p(p-1)B^{2} + \dots + pB^{p-1} + B^{p}}_{p-1}.$$

all entries in \mathfrak{m}^{i+1}

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

Pick a finitely generated subring $R \subseteq \mathbb{C}$ with $G \subseteq GL(n, R)$. For all but finitely many *p* there is a maximal ideal $\mathfrak{m} \subseteq R$ such that $char(R/\mathfrak{m}) = p$. Let

$$G_i := \ker(G
ightarrow \operatorname{GL}(n, R)
ightarrow \operatorname{GL}(n, R/\mathfrak{m}^i)) \triangleleft G$$

Then $[G: G_i] < \infty$ and $\bigcap_i G_i = \{1\}$. *Claim*: G_1 is residually p. We will show that for $A \in G_i$, $i \ge 1$ we have $A^p \in G_{i+1}$. Let $A \in G_i$, so A = id + B where $B \in (\mathfrak{m}^i)^{n \times n}$. Then

$$A^{p} = (\mathrm{id} + B)^{p} = \mathrm{id} + \underbrace{pB + \frac{1}{2}p(p-1)B^{2} + \dots + pB^{p-1} + B^{p}}_{p-1}.$$

all entries in \mathfrak{m}^{i+1}

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Write
$$R = \mathbb{Z}[X]/(f_1, ..., f_n), X = (X_1, ..., X_N).$$

Write $R = \mathbb{Z}[X]/(f_1, \ldots, f_n)$, $X = (X_1, \ldots, X_N)$. Enough to show: $1 \notin (f_1, \ldots, f_n)\mathbb{F}_p[X]$ for all but finitely many *p*.

うして 山田 マイボット ボット シックション

Write $R = \mathbb{Z}[X]/(f_1, ..., f_n)$, $X = (X_1, ..., X_N)$. Enough to show: $1 \notin (f_1, ..., f_n)\mathbb{F}_p[X]$ for all but finitely many *p*. This follows from:

There exists $\alpha \in \mathbb{N}$ such that for every field *K*,

$$1 \in (f_1, \dots, f_n) \mathcal{K}[X] \Rightarrow$$

$$1 = f_1 y_1 + \dots + f_n y_n \text{ for some } y_i \in \mathcal{K}[X] \text{ of degree} \leqslant \alpha.$$

うして 山田 マイボット ボット シックション

Write $R = \mathbb{Z}[X]/(f_1, ..., f_n)$, $X = (X_1, ..., X_N)$. Enough to show: $1 \notin (f_1, ..., f_n)\mathbb{F}_p[X]$ for all but finitely many *p*. This follows from:

There exists $\alpha \in \mathbb{N}$ such that for every field *K*,

$$1 \in (f_1, \dots, f_n) \mathcal{K}[X] \Rightarrow$$

$$1 = f_1 y_1 + \dots + f_n y_n \text{ for some } y_i \in \mathcal{K}[X] \text{ of degree} \leqslant \alpha.$$

To see this, we may restrict to algebraically closed K.

うして 山田 マイボット ボット シックション

Write $R = \mathbb{Z}[X]/(f_1, ..., f_n)$, $X = (X_1, ..., X_N)$. Enough to show: $1 \notin (f_1, ..., f_n)\mathbb{F}_p[X]$ for all but finitely many *p*. This follows from:

There exists $\alpha \in \mathbb{N}$ such that for every field *K*,

$$1 \in (f_1, \dots, f_n) \mathcal{K}[X] \Rightarrow$$

$$1 = f_1 y_1 + \dots + f_n y_n \text{ for some } y_i \in \mathcal{K}[X] \text{ of degree} \leqslant \alpha.$$

To see this, we may restrict to algebraically closed *K*. Suppose for each α there is an algebraically closed field K_{α} such that

$$1 \in (f_1, \ldots, f_n) \mathcal{K}_{\alpha}[X]$$
 (hence $V_{\mathcal{K}_{\alpha}}(f_1, \ldots, f_n) = \emptyset$), but
 $1 \neq f_1 y_1 + \cdots + f_n y_n$ for all $y_i \in \mathcal{K}_{\alpha}[X]$ of degree $\leq \alpha$.

Write $R = \mathbb{Z}[X]/(f_1, ..., f_n)$, $X = (X_1, ..., X_N)$. Enough to show: $1 \notin (f_1, ..., f_n)\mathbb{F}_p[X]$ for all but finitely many *p*. This follows from:

There exists $\alpha \in \mathbb{N}$ such that for every field *K*,

$$1 \in (f_1, \dots, f_n) \mathcal{K}[X] \Rightarrow$$

$$1 = f_1 y_1 + \dots + f_n y_n \text{ for some } y_i \in \mathcal{K}[X] \text{ of degree} \leqslant \alpha.$$

To see this, we may restrict to algebraically closed *K*. Suppose for each α there is an algebraically closed field K_{α} such that

$$1 \in (f_1, \ldots, f_n) \mathcal{K}_{\alpha}[X]$$
 (hence $V_{\mathcal{K}_{\alpha}}(f_1, \ldots, f_n) = \emptyset$), but
 $1 \neq f_1 y_1 + \cdots + f_n y_n$ for all $y_i \in \mathcal{K}_{\alpha}[X]$ of degree $\leq \alpha$.

Then a non-principal ultraproduct $K = \prod_{\alpha} K_{\alpha}/\mathcal{U}$ is an algebraically closed field such that $V_K(f_1, \ldots, f_n) = \emptyset$ and $1 \notin (f_1, \ldots, f_n) K[X]$, contradicting Hilbert's Nullstellensatz.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let R be a finitely generated subring of \mathbb{C} . For all but finitely many p there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic p.

うして 山田 マイボット ボット シックション

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let *R* be a finitely generated subring of \mathbb{C} . For all but finitely many *p* there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic *p* (in particular, char(R/\mathfrak{m}^i) = p^i for all i > 0).

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let *R* be a finitely generated subring of \mathbb{C} . For all but finitely many *p* there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic *p* (in particular, char(R/\mathfrak{m}^i) = p^i for all i > 0).

Example: $R = \mathbb{Z}[\sqrt{2}] \subseteq \mathbb{C}$, $\mathfrak{m} \subseteq R$ maximal with $p \in \mathfrak{m}$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

SQA

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let *R* be a finitely generated subring of \mathbb{C} . For all but finitely many *p* there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic *p* (in particular, char(R/\mathfrak{m}^i) = p^i for all i > 0).

Example: $R = \mathbb{Z}[\sqrt{2}] \subseteq \mathbb{C}$, $\mathfrak{m} \subseteq R$ maximal with $p \in \mathfrak{m}$

• $p = 2 \Rightarrow \mathfrak{m} = (\sqrt{2}), \mathfrak{m}^2 = (2), \text{ hence char}(R/\mathfrak{m}^2) = 2. \checkmark$

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let *R* be a finitely generated subring of \mathbb{C} . For all but finitely many *p* there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic *p* (in particular, char(R/\mathfrak{m}^i) = p^i for all i > 0).

Example: $R = \mathbb{Z}[\sqrt{2}] \subseteq \mathbb{C}$, $\mathfrak{m} \subseteq R$ maximal with $p \in \mathfrak{m}$

• $p = 2 \Rightarrow \mathfrak{m} = (\sqrt{2}), \mathfrak{m}^2 = (2), \text{ hence char}(R/\mathfrak{m}^2) = 2. \checkmark$

•
$$p \equiv \pm 1 \mod 8 \Rightarrow$$
 there is $\alpha \in \mathbb{Z}$ with $\overline{\alpha}^2 = 2$, and $\mathfrak{m} = (p, \alpha - \sqrt{2})$ or $\mathfrak{m} = (p, \alpha + \sqrt{2})$.

Using similar techniques we show an approximation result which plays an important role in our proof:

Theorem

Let *R* be a finitely generated subring of \mathbb{C} . For all but finitely many *p* there exists a maximal ideal $\mathfrak{m} \subseteq R$ such that $R_{\mathfrak{m}}$ is unramified regular of mixed characteristic *p* (in particular, char(R/\mathfrak{m}^i) = p^i for all i > 0).

Example: $R = \mathbb{Z}[\sqrt{2}] \subseteq \mathbb{C}$, $\mathfrak{m} \subseteq R$ maximal with $p \in \mathfrak{m}$

- $p = 2 \Rightarrow \mathfrak{m} = (\sqrt{2}), \mathfrak{m}^2 = (2), \text{ hence char}(R/\mathfrak{m}^2) = 2. \checkmark$
- $p \equiv \pm 1 \mod 8 \Rightarrow$ there is $\alpha \in \mathbb{Z}$ with $\overline{\alpha}^2 = 2$, and $\mathfrak{m} = (p, \alpha \sqrt{2})$ or $\mathfrak{m} = (p, \alpha + \sqrt{2})$.
- $p \equiv \pm 3 \mod 8 \Rightarrow R/pR$ is a field and $\mathfrak{m} = pR$.

うして 山田 マイボット ボット シックション

The theorem is a consequence of the fact that a reduced algebra over a field whose regular locus is open has a regular point, and the following:

Proposition

Let $R \subseteq \mathbb{C}$ be finitely generated. Then for all but finitely many primes p, the ring R/pR is reduced.

うして 山田 マイボット ボット シックション

The theorem is a consequence of the fact that a reduced algebra over a field whose regular locus is open has a regular point, and the following:

Proposition

Let $R \subseteq \mathbb{C}$ be finitely generated. Then for all but finitely many primes p, the ring R/pR is reduced.

(Uses that the property of $f_1, \ldots, f_n \in \mathbb{Z}[X_1, \ldots, X_N]$ to generate a radical ideal in $K[X_1, \ldots, X_n]$ is constructible, in the coefficients of the f_i , uniformly for each perfect field K; van den Dries & Schmidt.)

The theorem is a consequence of the fact that a reduced algebra over a field whose regular locus is open has a regular point, and the following:

Proposition

Let $R \subseteq \mathbb{C}$ be finitely generated. Then for all but finitely many primes p, the ring R/pR is reduced.

(Uses that the property of $f_1, \ldots, f_n \in \mathbb{Z}[X_1, \ldots, X_N]$ to generate a radical ideal in $K[X_1, \ldots, X_n]$ is constructible, in the coefficients of the f_i , uniformly for each perfect field K; van den Dries & Schmidt.)

The analogous statement for being an integral domain is false: $R = \mathbb{Z}[X]/(X^4 + 1)$ is a domain, but $R/pR = \mathbb{F}_p[X]/(X^4 + 1)$ is never a domain.

・ロト・西ト・モート ヨー うへの

N is prime if $N = N_1 \# N_2 \Rightarrow N_1 = S^3$ or $N_2 = S^3$.

N is prime if $N = N_1 \# N_2 \Rightarrow N_1 = S^3$ or $N_2 = S^3$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

N is prime if
$$N=N_1\#N_2\Rightarrow N_1=S^3$$
 or $N_2=S^3.$

Prime Decomposition

Every closed orientable 3-manifold *N* can be decomposed as a connected sum

 $N = N_1 \# \cdots \# N_k$

of prime 3-manifolds N_i (H. Kneser), and the N_i are unique up to permutation (Milnor).

= 990

・ロト ・国ト ・ヨト ・

N is prime if
$$N=N_1\#N_2\Rightarrow N_1=S^3$$
 or $N_2=S^3.$

Prime Decomposition

Every closed orientable 3-manifold *N* can be decomposed as a connected sum

$$N=N_1\#\cdots\#N_k$$

of prime 3-manifolds N_i (H. Kneser), and the N_i are unique up to permutation (Milnor).

Note:
$$\pi_1(N) = \pi_1(N_1) * \cdots * \pi_1(N_k)$$
.

Sac

・ロト ・ 四ト ・ 日ト ・ 日ト

N is prime if
$$N=N_1\#N_2\Rightarrow N_1=S^3$$
 or $N_2=S^3.$

Prime Decomposition

Every closed orientable 3-manifold *N* can be decomposed as a connected sum

 $N = N_1 \# \cdots \# N_k$

of prime 3-manifolds N_i (H. Kneser), and the N_i are unique up to permutation (Milnor).

Note:
$$\pi_1(N) = \pi_1(N_1) * \cdots * \pi_1(N_k)$$
.
 $N = S^2 \times S^1$ is prime, but for technical
reasons it's best to exclude it among prime
3-manifolds, which we do from now on.

= 990

・ロト ・国ト ・ヨト ・

Suppose *N* is closed, prime, and orientable.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶

ъ

990

Suppose *N* is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

 $T_1,\ldots,T_n\subseteq N$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

-

SQA

Suppose *N* is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

 $T_1,\ldots,T_n\subseteq N$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

SQA

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.
 - *T* incompressible in *N*: $\pi_1(T) \rightarrow \pi_1(N)$ is injective;

Suppose *N* is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

 $T_1,\ldots,T_n\subseteq N$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.
 - *T* incompressible in *N*: $\pi_1(T) \rightarrow \pi_1(N)$ is injective;
 - *N* atoroidal: every incompressible 2-torus *T* ⊆ *N* is isotopic to a surface in ∂*N*.

Suppose *N* is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

 $T_1,\ldots,T_n\subseteq N$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.
 - *T* incompressible in *N*: $\pi_1(T) \rightarrow \pi_1(N)$ is injective;
 - *N* atoroidal: every incompressible 2-torus *T* ⊆ *N* is isotopic to a surface in ∂*N*.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

900

N Seifert fibered: locally looks like it's obtained from a solid cylinder . . .

... by rotating around an angle of $\frac{2\pi\rho}{q}$ and gluing:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

N Seifert fibered: locally looks like it's obtained from a solid cylinder . . .

... by rotating around an angle of $\frac{2\pi\rho}{q}$ and gluing:

Well-known: *N* Seifert fibered $\Rightarrow \pi_1(N)$ linear (over \mathbb{Z}).
JSJ (or Torus) Decomposition

Suppose *N* is closed, prime, and orientable. Then there are pairwise disjoint, incompressible 2-tori

$$T_1,\ldots,T_n\subseteq N$$

that cut N into pieces which are either

- Seifert fibered, or
- atoroidal.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

SQA

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Part of the Geometrization Conjecture (proved by Perelman)

Suppose *N* is prime and atoroidal with $\pi_1(N)$ infinite. Then *N* is *hyperbolic* (its interior admits a complete Riemannian metric of constant curvature -1), so

 $N = \mathbb{H}^3/\Gamma$ where $\Gamma \leq \mathsf{PSL}(2,\mathbb{C})$ discrete torsion-free.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Part of the Geometrization Conjecture (proved by Perelman)

Suppose *N* is prime and atoroidal with $\pi_1(N)$ infinite. Then *N* is *hyperbolic* (its interior admits a complete Riemannian metric of constant curvature -1), so

 $N = \mathbb{H}^3/\Gamma$ where $\Gamma \leq \mathsf{PSL}(2,\mathbb{C})$ discrete torsion-free.

There is a lifting

$$\pi_1(N) \cong \Gamma \longrightarrow \mathsf{PSL}(2,\mathbb{C}) = \mathsf{SL}(2,\mathbb{C})/(\mathsf{center})$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Suppose *N* is closed, prime and orientable.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Suppose *N* is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of *N* gives rise to a description of $\pi_1(N)$ as the fundamental group $\pi_1(\mathcal{G})$ of a graph of groups \mathcal{G} :

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose *N* is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of *N* gives rise to a description of $\pi_1(N)$ as the fundamental group $\pi_1(\mathcal{G})$ of a graph of groups \mathcal{G} :

the vertex groups G_v are the π₁'s of the various JSJ components of N (hence linear);

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose *N* is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of *N* gives rise to a description of $\pi_1(N)$ as the fundamental group $\pi_1(\mathcal{G})$ of a graph of groups \mathcal{G} :

- the vertex groups G_ν are the π₁'s of the various JSJ components of N (hence linear);
- the *edge groups* G_e are $\pi_1(T_i) \cong \mathbb{Z} \oplus \mathbb{Z}$.

うして 山田 マイボット ボット シックション

Suppose *N* is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of *N* gives rise to a description of $\pi_1(N)$ as the fundamental group $\pi_1(\mathcal{G})$ of a graph of groups \mathcal{G} :

- the vertex groups G_ν are the π₁'s of the various JSJ components of N (hence linear);
- the *edge groups* G_e are $\pi_1(T_i) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Need to understand residual properties of $\pi_1(\mathcal{G})$.

Suppose *N* is closed, prime and orientable.

Graphs of groups

The JSJ Decomposition of *N* gives rise to a description of $\pi_1(N)$ as the fundamental group $\pi_1(\mathcal{G})$ of a graph of groups \mathcal{G} :

- the vertex groups G_v are the π₁'s of the various JSJ components of N (hence linear);
- the *edge groups* G_e are $\pi_1(T_i) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Need to understand residual properties of $\pi_1(\mathcal{G})$.

It is much easier to be residually finite than residually p

The amalgamated product $G_1 *_H G_2$ of finite groups G_1 , G_2 over a common subgroup *H* is always residually finite. If G_1 , G_2 are *p*-groups, $G_1 *_H G_2$ might not be residually *p*. (Higman)

Useful criterion for $\pi_1(\mathcal{G})$ with finite vertex groups to be residually p:

There exists a morphism

$$\pi_1(\mathcal{G}) \xrightarrow{\text{tex groups}} \mathcal{P}(\rho\text{-group}).$$

▲□▶▲□▼▲□▼▲□▼ ● ● ●

Let *N* be a 3-manifold.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Let *N* be a 3-manifold. Five steps:

1. First reductions. Reduce to *N* closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^1 \times F$ for some orientable surface *F*.

Let *N* be a 3-manifold. Five steps:

1. First reductions. Reduce to *N* closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^1 \times F$ for some orientable surface *F*. [As in Hempel's proof.]

うして 山田 マイボット ボット シックション

Let *N* be a 3-manifold. Five steps:

1. First reductions. Reduce to *N* closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^1 \times F$ for some orientable surface *F*. [As in Hempel's proof.]

2. Existence of suitable filtrations. For all but finitely many p, after passing to a finite cover of N, we can achieve that the lower central p-filtration $\gamma^p(G_v)$ of each vertex group G_v intersects to $\gamma^p(G_e)$ on G_e , and separates each G_e .

うして 山田 マイボット ボット シックション

Let *N* be a 3-manifold. Five steps:

1. First reductions. Reduce to *N* closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^1 \times F$ for some orientable surface *F*. [As in Hempel's proof.]

2. Existence of suitable filtrations. For all but finitely many p, after passing to a finite cover of N, we can achieve that the lower central p-filtration $\gamma^p(G_v)$ of each vertex group G_v intersects to $\gamma^p(G_e)$ on G_e , and separates each G_e . [Needs the approximation theorem above as well as some computations due to Lubotzky & Shalev.]

Let *N* be a 3-manifold. Five steps:

1. First reductions. Reduce to *N* closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^1 \times F$ for some orientable surface *F*. [As in Hempel's proof.]

2. Existence of suitable filtrations. For all but finitely many p, after passing to a finite cover of N, we can achieve that the lower central p-filtration $\gamma^p(G_v)$ of each vertex group G_v intersects to $\gamma^p(G_e)$ on G_e , and separates each G_e . [Needs the approximation theorem above as well as some computations due to Lubotzky & Shalev.]

3. Criterion for being residually *p*. It is enough to show that $\pi_1(\mathcal{G}/\gamma_n^p(\mathcal{G}))$ is residually *p* for each *n*.

Let *N* be a 3-manifold. Five steps:

1. First reductions. Reduce to *N* closed, orientable, prime, all of whose Seifert fibered JSJ components are $S^1 \times F$ for some orientable surface *F*. [As in Hempel's proof.]

2. Existence of suitable filtrations. For all but finitely many p, after passing to a finite cover of N, we can achieve that the lower central p-filtration $\gamma^p(G_v)$ of each vertex group G_v intersects to $\gamma^p(G_e)$ on G_e , and separates each G_e . [Needs the approximation theorem above as well as some computations due to Lubotzky & Shalev.]

3. Criterion for being residually *p***.** It is enough to show that $\pi_1(\mathcal{G}/\gamma_n^p(\mathcal{G}))$ is residually *p* for each *n*. [By construction of the filtrations.]

 $\mathcal{G}_{p} := \mathcal{G}/\gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}(G_{v}; \mathbb{F}_{p})$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p} -linear spaces.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\mathcal{G}_{p} := \mathcal{G}/\gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}(G_{v}; \mathbb{F}_{p})$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p} -linear spaces.

4. Reduction to \mathcal{G}_{ρ} . Let *T* be a maximal subtree of the graph underlying \mathcal{G} . Then $\pi_1(\mathcal{G}_{\rho})$ is an iterated HNN extension of $\pi_1(\mathcal{G}_{\rho}|T)$.

うして 山田 マイボット ボット シックション

 $\mathcal{G}_{p} := \mathcal{G}/\gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}(G_{v}; \mathbb{F}_{p})$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p} -linear spaces.

4. Reduction to \mathcal{G}_p . Let *T* be a maximal subtree of the graph underlying \mathcal{G} . Then $\pi_1(\mathcal{G}_p)$ is an iterated HNN extension of $\pi_1(\mathcal{G}_p|T)$. Replacing $\pi_1(\mathcal{G}_p|T)$ by the fiber sum Σ of $\mathcal{G}_p|T$, we obtain $\pi_1^*(\mathcal{G}_p, T)$, a "partial abelianization of $\pi_1(\mathcal{G}_p)$ along *T*."

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\mathcal{G}_{p} := \mathcal{G}/\gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}(G_{v}; \mathbb{F}_{p})$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p} -linear spaces.

4. Reduction to \mathcal{G}_{p} . Let *T* be a maximal subtree of the graph underlying \mathcal{G} . Then $\pi_1(\mathcal{G}_p)$ is an iterated HNN extension of $\pi_1(\mathcal{G}_p|T)$. Replacing $\pi_1(\mathcal{G}_p|T)$ by the fiber sum Σ of $\mathcal{G}_p|T$, we obtain $\pi_1^*(\mathcal{G}_p, T)$, a "partial abelianization of $\pi_1(\mathcal{G}_p)$ along *T*." Show:

$$\pi_1^*(\mathcal{G}_p, T) \text{ residually } p \implies all \ \pi_1^*(\gamma_n^p(\mathcal{G})/\gamma_{n+1}^p(\mathcal{G}), T) \text{ residually } p$$
$$\implies all \ \pi_1(\mathcal{G}/\gamma_n^p(\mathcal{G})) \text{ residually } p.$$

 $\mathcal{G}_{p} := \mathcal{G}/\gamma_{2}^{p}(\mathcal{G})$ has vertex groups $H_{1}(G_{v}; \mathbb{F}_{p})$ and edge groups $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$ which are \mathbb{F}_{p} -linear spaces.

4. Reduction to \mathcal{G}_{p} . Let *T* be a maximal subtree of the graph underlying \mathcal{G} . Then $\pi_1(\mathcal{G}_p)$ is an iterated HNN extension of $\pi_1(\mathcal{G}_p|T)$. Replacing $\pi_1(\mathcal{G}_p|T)$ by the fiber sum Σ of $\mathcal{G}_p|T$, we obtain $\pi_1^*(\mathcal{G}_p, T)$, a "partial abelianization of $\pi_1(\mathcal{G}_p)$ along *T*." Show:

$$\begin{aligned} \pi_1^*(\mathcal{G}_p, T) \text{ residually } p &\Rightarrow \quad all \ \pi_1^*(\gamma_n^p(\mathcal{G})/\gamma_{n+1}^p(\mathcal{G}), T) \text{ residually } p \\ &\Rightarrow \quad all \ \pi_1(\mathcal{G}/\gamma_n^p(\mathcal{G})) \text{ residually } p. \end{aligned}$$

[Main ingredients:

- a refinement of an amalgamation theorem by Higman, for which we need some facts on group rings;
- a criterion for HNN extensions to be residually p by Chatzidakis.]

うして 山田 マイボット ボット シックション

5. Unfolding \mathcal{G} . Sufficient condition for $\pi_1^*(\mathcal{G}_p, T)$ residually p: all identification isomorphisms between associated subgroups in the iterated HNN extension $\pi_1^*(\mathcal{G}_p, T)$ of Σ are the identity.

5. Unfolding \mathcal{G} . Sufficient condition for $\pi_1^*(\mathcal{G}_p, T)$ residually p: all identification isomorphisms between associated subgroups in the iterated HNN extension $\pi_1^*(\mathcal{G}_p, T)$ of Σ are the identity.

Show that one can pass to finite cover of *N* to achieve this, using kernel of

$$\pi_1(N) = \pi_1(\mathcal{G}) o \mathsf{Aut}(\Sigma)$$

obtained by extending each identification map in \mathcal{G}_p to an automorphism of the \mathbb{F}_p -linear space Σ .

Simple (but untypical) example: G has a single vertex v and a single (topological) edge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Simple (but untypical) example: \mathcal{G} has a single vertex v and a single (topological) edge. Then with $H := H_1(G_v; \mathbb{F}_p)$ we have

$$\pi_1(\mathcal{G}_{\rho}) = \pi_1^*(\mathcal{G}_{\rho}, T) = \langle H, t \mid t^{-1}At = \varphi(B) \rangle \qquad (A, B \leqslant H).$$

Simple (but untypical) example: \mathcal{G} has a single vertex v and a single (topological) edge. Then with $H := H_1(G_v; \mathbb{F}_p)$ we have

$$\pi_1(\mathcal{G}_p) = \pi_1^*(\mathcal{G}_p, T) = \langle H, t \mid t^{-1}At = \varphi(B) \rangle \qquad (A, B \leqslant H).$$

Extend $\varphi \colon A \to B$ to $\widetilde{\varphi} \in Aut(H)$ and let $s = order(\widetilde{\varphi})$:

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

3

SQA

Simple (but untypical) example: \mathcal{G} has a single vertex v and a single (topological) edge. Then with $H := H_1(G_v; \mathbb{F}_p)$ we have

$$\pi_1(\mathcal{G}_p) = \pi_1^*(\mathcal{G}_p, T) = \langle H, t \mid t^{-1}At = \varphi(B) \rangle \qquad (A, B \leqslant H).$$

Extend $\varphi \colon A \to B$ to $\widetilde{\varphi} \in Aut(H)$ and let $s = order(\widetilde{\varphi})$:

