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Abstract. An elimination result for mixed real-integer systems of linear equa-

tions is established, and used to give a short proof for an adaptation of Farkas’
Lemma by Köppe and Weismantel [4]. An extension of the elimination theo-

rem to a quantifier elimination result is indicated.

Let A be an m × n-matrix with real entries and b ∈ Rm. (In the following, we
think of elements of the various euclidean spaces Rk as column vectors.) If b is not
contained in the closed convex cone C generated by the columns of A, then b can
be separated from C by a hyperplane. More precisely, the following are equivalent:

(1) There is no column vector x = (x1, . . . , xn)t ∈ Rn with Ax = b and x ≥ 0
(i.e., xi ≥ 0 for every i = 1, . . . , n).

(2) There is some y ∈ Rm such that ytA ≥ 0 and ytb < 0.
That is, b is contained in C = {Ax : x ∈ Rn, x ≥ 0} if and only if ytb ≥ 0
for all y ∈ Rm with ytA ≥ 0. This statement about linear inequalities, known
as Farkas’ Lemma [3], underlies the duality theorem of linear programming, and
plays an important role in game theory (zero-sum two-person games) and nonlinear
programming (Kuhn-Tucker theorem); see [14]. As befits such a fundamental fact,
many proofs of Farkas’ Lemma are known, but it is still considered a “pedagogical
annoyance” because some parts of it are easy to verify while the main result cannot
be proved in an elementary way ([2], p. 503). In [9], however, Scowcroft gave such
an elementary proof, rendering it an immediate application of the Fourier-Motzkin
elimination algorithm for systems of linear inequalities in ordered vector spaces over
ordered fields. The methods of elimination theory find their most general setting
in model theory. Indeed, one of the main results of [9], obtained by employing
model-theoretic techniques, is a variant of Farkas’ Lemma over the integers, giving
a necessary and sufficient condition (of “Farkas’ Lemma type”) for the existence of
a solution x ∈ Nn of the system Ax = b. Here A and b are assumed to have integer
entries. (Later, Scowcroft also found a constructive proof [10].)

Now, the literature already contains other variants of “Farkas’ Lemma for the
integers,” most notably the following fact, which plays a role in integer programming
analogous to Farkas’ Lemma in linear programming (see [17]):

Proposition 1 (Kronecker [6]). Assume that A and b have rational entries. Sup-
pose that the implication ytA ∈ Zn ⇒ ytb ∈ Z holds for every y ∈ Qm. Then there
is some x ∈ Zn such that Ax = b.
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While reviewing [9] for Mathematical Reviews, I noticed that an adaptation of the
argument used for Farkas’ Lemma in [9] also gives rise to a short proof, reproduced
below, of the proposition above. In fact, one also easily obtains the following “mixed
real-integer version” of Farkas’ Lemma, which was first shown (in slightly weaker
form) in [4]. Here and below, we let d ∈ {0, . . . , n}.

Theorem 2. Suppose A and b have rational entries. The following are equivalent:
(1) There is x ∈ Qn with x1, . . . , xd ∈ Z such that Ax = b.
(2) There is x ∈ Rn with x1, . . . , xd ∈ Z such that Ax = b.
(3) For every y ∈ Rm, if ytA ∈ Zd × {0}n−d, then ytb ∈ Z.
(4) For every y ∈ Qm, if ytA ∈ Zd × {0}n−d, then ytb ∈ Z.

The implications from (1) to (2) and from (3) to (4) are trivial, and (2) ⇒ (3)
is equally immediate: if x ∈ Rn with x1, . . . , xd ∈ Z satisfies Ax = b and y ∈ Rm

satisfies ytA ∈ Zd × {0}n−d, then ytb = yt(Ax) = (ytA)x ∈ Z. Thus we only really
need to prove that (4) implies (1). As in [9], for this we use an elimination result,
which may be seen as an analogue of Fourier-Motzkin elimination for mixed real-
integer systems of linear equations, and which might be of independent interest.
More generally, let (V,M) range over all pairs consisting of a Q-linear space V and
an arbitrary distinguished subgroup M of V ; the result will be applied below to
(V,M) = (Q, Z) (but might also be useful, for instance, in the case V = Rm and
M = an arbitrary lattice in Rm).

Proposition 3. There is an algorithm which, given a finite system Φ(X, Y ) of
conditions of the form

f(X, Y ) ∈ aM

where f(X, Y ) is a homogeneous linear form in the tuples of indeterminates X =
(X1, . . . , Xn), Y = (Y1, . . . , Yk) with rational coefficients and a is an integer (pos-
sibly zero), constructs a system Γ(Y ) consisting of finitely many conditions of the
form

g(Y ) ∈ aM

where g(Y ) is a homogeneous linear form in Y with rational coefficients and a is
an integer (again, possibly zero), with the property that for all (V,M) and y ∈ V k:

y satisfies Γ if and only if

there is an x ∈ V n with x1, . . . , xd ∈ M such that (x, y) satisfies Φ.

Thus, in the system Φ the indeterminates x have been eliminated. In mathe-
matical logic, results such as these go under the name of quantifier elimination.

To see how (4) ⇒ (1) in Theorem 2 follows, suppose that statement (4) holds,
i.e., ytA ∈ Zd × {0}n−d ⇒ ytb ∈ Z, for every y ∈ Qm. Note that then ytA = 0 ⇒
ytb = 0, for every y ∈ Qm. (This is because the set of rational numbers of the form
ytb for some y ∈ Qm with ytA = 0 is a Q-linear subspace of Q, and hence trivial
since it is contained in Z, by (4).) Applying Proposition 3 to the system Φ given
by Ax = y and the pair (V,M) = (Q, Z), we obtain an r×m-matrix C (for some r)
and an s×m-matrix D (for some s) with rational entries, such that for any y ∈ Zm:

(∗) there is x ∈ Qn with x1, . . . , xd ∈ Z such that Ax = y

if and only if Cy ∈ Zr and Dy = 0.
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We now want to prove that there is some x ∈ Qn solving the system

Ax = b & x1, . . . , xd ∈ Z.

By (∗), this means that we need to show Cb ∈ Zr and Db = 0, that is, ctb ∈ Z
and dtb = 0 for every row ct of C and every row dt of D. By assumption this holds
provided ctA ∈ Zd × {0}n−d and dtA = 0 for every such ct and dt; equivalently,
with a1, . . . , an ∈ Zm denoting the columns of A, if

(1) Cai ∈ Zr, Dai = 0 for i = 1, . . . , d, and
(2) Cai = 0, Dai = 0 for i = d + 1, . . . , n.

Clearly (1) follows from (∗), since Aei = ai, where ei is the ith standard basis vector
of Qn. So if d = n (the case of Proposition 1) we are already done. In general, to
show (2) use the same argument, with (∗) replaced by

(∗∗) CAx = 0 and DAx = 0 for all x ∈ Qn with x1 = · · · = xd = 0.

To see (∗∗) note that by (∗) the Q-linear subspace of Qr consisting of all vectors of
the form CAx with x ∈ Qn and x1 = · · · = xd = 0 is contained in Zr, hence trivial.

We now prove Proposition 3. First, by multiplying both sides of every condition
f(X, Y ) ∈ aZ in Φ, where f 6= 0, with a common denominator of all nonzero coeffi-
cients of f , we may achieve that every f has integer coefficients. Next successively
eliminate from Φ the conditions f(X, Y ) ∈ aM with nonzero a by iterating the fol-
lowing step: if Φ contains such a condition, introduce a new indeterminate X0 and
replace the condition f(X, Y ) ∈ aZ in Φ by the equation f(X, Y )− aX0 = 0; then
for any x ∈ V n and y ∈ V k with x1, . . . , xd ∈ Md, the tuple (x, y) satisfies Φ if and
only if there is x0 ∈ M such that (x′, y), where x′ = (x0, . . . , xn), satisfies the new
system Φ′. Now rename the indeterminates X0, . . . , Xn into resp. X1, . . . , Xn+1 in
Φ′, and replace Φ by Φ′ and d by d + 1.

Hence we may assume that Φ is given by AX = CY where A is an m × n-
matrix and C is an m × k-matrix, both having integer entries. (Here we think
of X and Y as column vectors of indeterminates.) It is well-known that one can
construct an m×m-matrix P and an n× n-matrix Q, both having integer entries
and being invertible over Z, such that D := PAQ ∈ Zm×n is a diagonal matrix
(Smith normal form). Thus for every y ∈ V k, the existence of x ∈ V n such that
Ax = Cy is equivalent to the existence of z ∈ V n such that Dz = (PC)y, and
similarly with “Mn” in place of “V n”. Thus in both the case where d = 0 (no
integrality requirements on the xi) or d = n (all xi are required to be integral) we
may, after replacing (A,C) by (D,PC), reduce to the case that A is a diagonal
matrix. Suppose for a moment that indeed d = 0 or d = n, and A is diagonal, with
diagonal entries a1, . . . , aµ (where µ := min{m,n}). Let also ct

1, . . . , c
t
m be the rows

of C. Then the ith equation of Φ has the form{
ct
iY = aiXi if i ∈ {1, . . . , µ},

ct
iY = 0 if i ∈ {µ + 1, . . . ,m}.

Thus in the case d = 0, the system Γ obtained from Φ by deleting all equations
of the form ct

iY = aiXi with nonzero ai does the job. For d = n, which is the
case used in the proof of Kronecker’s theorem (Proposition 1), a system Γ with
the required property may be obtained from Φ by simply replacing each condition
ct
iY = aiXi by ct

iY ∈ aiM .
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Thus we have shown Proposition 3 in both the cases d = 0 and d = n. The
general case now follows by first eliminating the variables Xd+1, . . . , Xn from Φ,
using the case d = 0, and then eliminating the integral variables X1, . . . , Xn from
the resulting system, using the case d = n.

It is clear from the proof just given that Proposition 3 remains true if Z is
replaced by a principal ideal domain R, Q with its fraction field, and (V,M) ranges
over all pairs consisting of a K-linear space V and an R-submodule M of V . (This
is because the only relevant property of Z used in the proof of Proposition 3 is that
every matrix over Z is equivalent to a diagonal matrix, and this continues to hold
over principal ideal domains.) Thus Theorem 2 remains true if Z is replaced by a
principal ideal domain which is not a field, Q with its fraction field K, and R with
any K-linear space extending K.

Proposition 3 may also be generalized in a different direction. In order to explain
this, we first define:

Definition 4. A real-integer system of linear conditions in X with d integral vari-
ables (short: a real-integer system) is a finite collection Φ = Φ(X) of conditions
either of the type

(�) f(X) ∈ aM or f(X) /∈ aM

where f(X) is a homogeneous linear form in X = (X1, . . . , Xn) with integer coef-
ficients, and a is an integer (with a = 0 allowed). A solution of such a real-integer
system Φ in a given pair (V,M) is a tuple x = (x1, . . . , xn) where x1, . . . , xd ∈ M
and xd+1, . . . , xn ∈ V , satisfying each of the conditions specified in Φ.

Proposition 3 deals exclusively with positive real-integer systems, i.e., systems
E as above in which no conditions (�) of the form f(X) /∈ aM appear. It may be
rephrased as saying: given a positive real-integer system Φ in (X, Y ) with d integral
variables X1, . . . , Xd, one can constructively obtain a positive real-integer system
Γ in Y with no integral variables such that for any (V,M), a tuple y ∈ V k can be
expanded to a solution (x, y) to the system Φ if and only if y is a solution to Γ. An
analogue of this fact for general real-integer systems holds. However, we have to
place some restrictions on the admissible pairs (V,M): for example, consider the
system Φ = Φ(X) with n = d > 1 and k = 0 given by

(1/n)(Xi −Xj) /∈ M for 1 ≤ i < j ≤ n,

which has a solution in (Q, Z), but not in the trivial pair (0, 0). This turns out to
be the only obstruction:

Definition 5. We call (V,M) a real-integer structure if |M/pM | = p for every
prime number p.

Clearly (Q, Z) and (R, Z) are real-integer structures. More exotic examples may
be obtained as follows: let V be a nontrivial Q-linear space, v an arbitrary nonzero
vector in V , and W a Q-linear subspace of V with Qv ∩ W = {0}; then (V,M)
where M = Zv⊕W is a real-integer structure. Every torsion-free abelian group M
with |M/pM | = p arises as the distinguished subgroup of a real-integer structure
(V,M) (take V = the divisible hull of M). It is easy to see that if (V,M) is a
real-integer structure, then |aM/bM | = a/b for all nonzero integers a, b with b|a.
Note also that V 6= M (since the abelian group V is divisible, whereas M isn’t)



AN ELIMINATION THEOREM FOR MIXED REAL-INTEGER SYSTEMS 5

and M is infinite (since a finite abelian group is p-divisible for every prime p not
dividing its order). For later use, we also observe:

Lemma 6. Let a ∈ Qn be nonzero and q ∈ Q. Then for every real-integer structure
(V,M) and v ∈ V there exist infinitely many x ∈ V n such that atx /∈ v + qM .

Proof. It is enough to show this for n = 1, a = 1. The case q = 0 is clear, and
if q 6= 0, then for every real-integer structure (V,M), the set V \ (v + qM) is in
bijection with the infinite set V \M . �

Here now is the promised version of Proposition 3 for real-integer systems:

Proposition 7. There is an algorithm which computes, upon input of a real-integer
system Φ in (X, Y ) with d integral variables, finitely many real-integer systems
Γ1, . . . ,Γr in Y with no integral variables, such that for every real-integer structure
(V,M) and every y ∈ V k, the following are equivalent:

(1) There is some x ∈ V n such that (x, y) is a solution of Φ in (V,M);
(2) there is some i ∈ {1, . . . , r} such that y is a solution of Γi in (V,M).

This result is at the same time more general and less precise than Proposition 3:
it applies to arbitrary real-integer systems (rather than only positive ones); however,
this comes at the cost of having to restrict to solvability in real-integer structures
(rather than arbitrary pairs (V,M)), and possibly having to introduce more than
one system Γi. It is a variation of a classical result due to Szmielew [13] (with a
simpler proof for the special case required here in [18]):

Proposition 8. Given a real-integer system Φ in the n+k integral variables (X, Y ),
one can construct finitely many real-integer systems Γ1, . . . ,Γr in the k integral
variables Y such that the statements (1) and (2) in Proposition 7 are equivalent for
every real-integer structure (V,M) and every y ∈ Mk.

To show how this implies Proposition 7, we may assume, as in the beginning of
the proof of Proposition 3, that Φ is given to us in the form

AX = CY & f1(X) + g1(Y ) /∈ d1M & · · · & fl(X) + gl(Y ) /∈ dlM

where A is an m×n-matrix, C is an m× k-matrix (for some m), both with integer
entries, the fj , gj are homogeneous linear forms with integer coefficients, and dj ∈
Z. Moreover, as in the proof of Proposition 3, it is enough to show two special
cases, formulated in the next two lemmas, in the situation where A is a diagonal
matrix. Let a1, . . . , aµ, where µ := min{m,n}, be the diagonal entries of A, and
let ct

1, . . . , c
t
m be the rows of C.

Lemma 9. Proposition 7 holds provided we restrict to real-integer systems Φ with
no integral variables.

Proof. After replacing, for every i with ai 6= 0, each occurrence of Xi in the condi-
tions fj(X) + gj(Y ) /∈ djM by (1/ai)ct

iY , we may reduce to A = the zero matrix.
After reordering, we may also assume that f1, . . . , fs 6= 0 and fs+1 = · · · = fl = 0.
Then, by Lemma 6, a single system Γi, namely

Cy = 0 & g1(Y ) /∈ d1M & · · · & gs(Y ) /∈ dsM,

does the job. �

Lemma 10. Proposition 7 holds for Φ with d = n integral variables.
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Proof. For every i with ai 6= 0, replace each occurrence of Xi in the conditions
fj(X) + gj(Y ) /∈ djM by (1/ai)ct

iY , and each equation aiXi = ct
iY in the system

AX = CY by the condition ct
iY ∈ aiM . The resulting real-integer system has

the same solutions in every real-integer structure as the original system Φ. After
changing notation, we may assume it has the form

Ψ(Y ) & f1(X) + g1(Y ) /∈ d1M & · · · & fl(X) + gl(Y ) /∈ dlM

where Ψ is a real-integer system in Y . Now let Z = (Z1, . . . , Zl) be a tuple of new
indeterminates, and let J range over subsets of {1, . . . , l}. Let ΨJ(X, Z) be the
real-integer system (with n integral variables) consisting of the conditions

fj(X) + Zj /∈ djM (j ∈ J).

Applying Proposition 8, we find real-integer systems

ΨJ,1(Z), . . . ,ΨJ,tJ
(Z) (for some integer tJ ≥ 0)

with the following property: for each real-integer structure (V,M) and z ∈ M l,

z is a solution to one of ΨJ,1, . . . ,ΨJ,tJ
if and only if

there is an x ∈ Mn such that (x, z) is a solution to ΨJ .

Now for each J and s = 1, . . . , tJ let ΓJ,s(Y ) be the real-integer system (without
integral variables) consisting of the following conditions:

(1) Ψ(Y ),
(2) gj(Y ) /∈ M (j ∈ {1, . . . , l} \ J),
(3) gj(Y ) ∈ M (j ∈ J), and
(4) ΦJ,s(g1(Y ), . . . , gl(Y )).

It is easily seen that the systems ΓJ,s have the required property. �

By Proposition 7 (applied in the case k = 0) there is an algorithm which decides,
upon input of a real-integer system φ in X, whether Φ has a solution in some (or
equivalently, every) real-integer structure. This should be contrasted with [1], which
shows that no analogous result holds if (V,M) ranges over arbitrary abelian groups
V with distinguished subgroup M .

Proposition 7 also has a completely model-theoretic proof (we won’t give it here)
which avoids manipulations with real-integer systems and replaces them with proofs
of extension statements for morphisms of real-integer structures. For other model-
theoretic aspects of torsion-free abelian groups with distinguished subgroup see [5]
(with simplifications in [8]).

An elimination theorem for mixed real-integer systems incorporating (possibly
inhomogeneous) inequalities was first proved by Skolem [11] (see also [12], III.4, Ex-
ercise 15), and later independently rediscovered by Miller [7] and Weispfenning [15].
For other applications of a related elimination result (for Presburger arithmetic) to
integer programming see [16].
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4. M. Köppe and R. Weismantel, Cutting planes from a mixed integer Farkas lemma, Oper. Res.

Lett. 32 (2004), no. 3, 207–211.

5. G. T. Kozlov and A. I. Kokorin, The elementary theory of Abelian groups without torsion
with a predicate selecting a subgroup, Algebra and Logic 8 (1969), 182–190.
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