Gaps in H-Fields

Matthias Aschenbrenner University of California, Los Angeles

・ロト・西ト・ヨト・ヨー シック・

The last silde of my talk in Ravello, 2002

Final remarks and questions.

• Let $S(Z, Z') = 2Z' + Z^2$ (the "Schwarzian"). Whenever y is a non-zero solution to the linear differential equation

$$Y'' = fY,$$

then $z = 2 y^{\dagger}$ satisfies S(z, z') = f.

- The cut in $\mathbb{R}((x^{-1}))^{\text{LE}}$ determined by $\varrho = S(\lambda, \lambda') \in \mathbb{L}$ describes when Y'' = f Y has a non-zero solution in an *H*-subfield of $\mathbb{R}((x^{-1}))^{\text{LE}}$, for $f \in \mathbb{R}((x^{-1}))^{\text{LE}}$. (Macintyre-Marker-van den Dries.)
- Let $P(Z, Z', ..., Z^{(n)}) \in \mathbb{R}\{Z\}$, non-constant. Up to multiplication by some monomial $\mathfrak{m} \in \mathfrak{L}$, the sum of the first ω non-zero terms of the series $P(\lambda, \lambda', ..., \lambda^{(n)}) \in \mathbb{L}$ is either of the form $\lambda \circ \log_r x$ or $\varrho \circ \log_r x$, for some $r \ge 0$. (Écalle.)
- How can one detect in an *H*-field whether it has a Liouville extension with a gap?

The last silde of my talk in Ravello, 2002

Final remarks and questions.

• Let $S(Z, Z') = 2Z' + Z^2$ (the "Schwarzian"). Whenever y is a non-zero solution to the linear differential equation

$$Y'' = fY,$$

then $z = 2 y^{\dagger}$ satisfies S(z, z') = f.

- The cut in $\mathbb{R}((x^{-1}))^{\text{LE}}$ determined by $\varrho = S(\lambda, \lambda') \in \mathbb{L}$ describes when Y'' = f Y has a non-zero solution in an *H*-subfield of $\mathbb{R}((x^{-1}))^{\text{LE}}$, for $f \in \mathbb{R}((x^{-1}))^{\text{LE}}$. (Macintyre-Marker-van den Dries.)
- Let $P(Z, Z', ..., Z^{(n)}) \in \mathbb{R}\{Z\}$, non-constant. Up to multiplication by some monomial $\mathfrak{m} \in \mathfrak{L}$, the sum of the first ω non-zero terms of the series $P(\lambda, \lambda', ..., \lambda^{(n)}) \in \mathbb{L}$ is either of the form $\lambda \circ \log_r x$ or $\varrho \circ \log_r x$, for some $r \ge 0$. (Écalle.)
- How can one detect in an *H*-field whether it has a Liouville extension with a gap?

I. Transseries

II. H-Fields

III. Gaps in H-Fields

I. Transseries

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The field $\mathbb{R}((x^{-1}))$ of (formal) **Laurent series** over \mathbb{R} in *descending* powers of *x* consists of all series

$$f(x) = \underbrace{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x}_{\text{infinite part of } f} + a_0 + \underbrace{a_{-1} x^{-1} + a_{-2} x^{-2} + \dots}_{\text{infinitesimal part of } f}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The field $\mathbb{R}((x^{-1}))$ of (formal) **Laurent series** over \mathbb{R} in *descending* powers of *x* consists of all series

$$f(x) = \underbrace{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x}_{\text{infinite part of } f} + a_0 + \underbrace{a_{-1} x^{-1} + a_{-2} x^{-2} + \dots}_{\text{infinitesimal part of } f}$$

Order $\mathbb{R}((x^{-1}))$ so that $x > \mathbb{R}$, and differentiate so that x' = 1.

The field $\mathbb{R}((x^{-1}))$ of (formal) **Laurent series** over \mathbb{R} in *descending* powers of *x* consists of all series

$$f(x) = \underbrace{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x}_{\text{infinite part of } f} + a_0 + \underbrace{a_{-1} x^{-1} + a_{-2} x^{-2} + \dots}_{\text{infinitesimal part of } f}$$

Order $\mathbb{R}((x^{-1}))$ so that $x > \mathbb{R}$, and differentiate so that x' = 1. Exponentiation for *finite* elements of $\mathbb{R}((x^{-1}))$ can be defined:

$$\begin{split} &\exp(a_0 + a_{-1}x^{-1} + a_{-2}x^{-2} + \cdots) \\ &= e^{a_0}\sum_{n=0}^{\infty} \frac{1}{n!}(a_{-1}x^{-1} + a_{-2}x^{-2} + \cdots)^n \\ &= e^{a_0}(1 + b_1x^{-1} + b_2x^{-2} + \cdots) \quad \text{for suitable } b_1, b_2, \ldots \in \mathbb{R}. \end{split}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Defects of $\mathbb{R}((x^{-1}))$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Defects of $\mathbb{R}((x^{-1}))$

There is no natural exponential function on *all* of ℝ((x⁻¹)): such an operation should satisfy exp x > xⁿ for all n.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Defects of $\mathbb{R}((x^{-1}))$

- There is no natural exponential function on *all* of ℝ((x⁻¹)): such an operation should satisfy exp x > xⁿ for all n.
- x^{-1} has no antiderivative log x in $\mathbb{R}((x^{-1}))$.

うして 山田 マイボット ボット シックション

Defects of $\mathbb{R}((x^{-1}))$

- There is no natural exponential function on *all* of ℝ((x⁻¹)): such an operation should satisfy exp x > xⁿ for all n.
- x^{-1} has no antiderivative log x in $\mathbb{R}((x^{-1}))$.
- $\mathbb{R}((x^{-1}))$, as a differential field, defines \mathbb{Z} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

To remove these defects, we extend $\mathbb{R}((x^{-1}))$ to the ordered field \mathbb{T} of **transseries**:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

To remove these defects, we extend $\mathbb{R}((x^{-1}))$ to the ordered field \mathbb{T} of **transseries**: series of **transmonomials** (or **logarithmic-exponential** monomials), arranged from left to right in decreasing order, with real coefficients; e.g.:

$$e^{e^{x}} - 3e^{x^{2}} + 5x^{\sqrt{2}} - (\log x)^{\pi} + 1 + x^{-1} + x^{-2} + x^{-3} + \dots + e^{-x} + x^{-1}e^{-x}$$

うして 山田 マイボマ エリア しょう

To remove these defects, we extend $\mathbb{R}((x^{-1}))$ to the ordered field \mathbb{T} of **transseries**: series of **transmonomials** (or **logarithmic-exponential** monomials), arranged from left to right in decreasing order, with real coefficients; e.g.:

$$e^{e^{x}} - 3e^{x^{2}} + 5x^{\sqrt{2}} - (\log x)^{\pi} + 1 + x^{-1} + x^{-2} + x^{-3} + \dots + e^{-x} + x^{-1}e^{-x}$$

The reversed order type of the set of transmonomials that occur in a given transseries can be any countable ordinal.

うして 山田 マイボマ エリア しょう

To remove these defects, we extend $\mathbb{R}((x^{-1}))$ to the ordered field \mathbb{T} of **transseries**: series of **transmonomials** (or **logarithmic-exponential** monomials), arranged from left to right in decreasing order, with real coefficients; e.g.:

$$e^{e^{x}} - 3e^{x^{2}} + 5x^{\sqrt{2}} - (\log x)^{\pi} + 1 + x^{-1} + x^{-2} + x^{-3} + \dots + e^{-x} + x^{-1}e^{-x}.$$

The reversed order type of the set of transmonomials that occur in a given transseries can be any countable ordinal.

Series like
$$\frac{1}{x} + \frac{1}{e^x} + \frac{1}{e^{e^x}} + \frac{1}{e^{e^{e^x}}} + \cdots$$
 are excluded.

うして 山田 マイボマ エリア しょう

To remove these defects, we extend $\mathbb{R}((x^{-1}))$ to the ordered field \mathbb{T} of **transseries**: series of **transmonomials** (or **logarithmic-exponential** monomials), arranged from left to right in decreasing order, with real coefficients; e.g.:

$$e^{e^{x}} - 3e^{x^{2}} + 5x^{\sqrt{2}} - (\log x)^{\pi} + 1 + x^{-1} + x^{-2} + x^{-3} + \dots + e^{-x} + x^{-1}e^{-x}$$

The reversed order type of the set of transmonomials that occur in a given transseries can be any countable ordinal.

Series like
$$\frac{1}{x} + \frac{1}{e^x} + \frac{1}{e^{e^x}} + \frac{1}{e^{e^x}} + \cdots$$
 are excluded.

A nonzero transseries is declared positive if its leading coefficient is positive. (Just like in $\mathbb{R}((x^{-1}))$.)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

• Every $f \in \mathbb{T}$, $f \neq 0$, has a *multiplicative inverse* in \mathbb{T} :

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

• Every $f \in \mathbb{T}$, $f \neq 0$, has a *multiplicative inverse* in \mathbb{T} :

$$\frac{1}{x - x^2 e^{-x}} = \frac{1}{x(1 - x e^{-x})} = x^{-1}(1 + x e^{-x} + x^2 e^{-2x} + \cdots)$$
$$= x^{-1} + e^{-x} + x e^{-2x} + \cdots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• Every $f \in \mathbb{T}$, $f \neq 0$, has a *multiplicative inverse* in \mathbb{T} :

$$\frac{1}{x - x^2 e^{-x}} = \frac{1}{x(1 - x e^{-x})} = x^{-1}(1 + x e^{-x} + x^2 e^{-2x} + \cdots)$$
$$= x^{-1} + e^{-x} + x e^{-2x} + \cdots$$

As an ordered field, $\mathbb T$ is a real closed extension of $\mathbb R.$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

• Every $f \in \mathbb{T}$ can be *differentiated* term by term:

Computations in $\ensuremath{\mathbb{T}}$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

• Every $f \in \mathbb{T}$ can be *differentiated* term by term:

$$(e^{-x}+e^{-x^2}+e^{-x^3}+\cdots)' = -(e^{-x}+2xe^{-x^2}+3x^2e^{-x^3}+\cdots).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Every $f \in \mathbb{T}$ can be *differentiated* term by term:

$$(e^{-x}+e^{-x^2}+e^{-x^3}+\cdots)' = -(e^{-x}+2xe^{-x^2}+3x^2e^{-x^3}+\cdots).$$

We obtain a derivation on the field \mathbb{T} , that is, a map $f \mapsto f' : \mathbb{T} \to \mathbb{T}$ with the properties

$$(f+g)=f'+g', \quad (f\cdot g)'=f'\cdot g+f\cdot g'.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• Every $f \in \mathbb{T}$ can be *differentiated* term by term:

$$(e^{-x}+e^{-x^2}+e^{-x^3}+\cdots)' = -(e^{-x}+2xe^{-x^2}+3x^2e^{-x^3}+\cdots).$$

We obtain a derivation on the field \mathbb{T} , that is, a map $f \mapsto f' : \mathbb{T} \to \mathbb{T}$ with the properties

$$(f+g)=f'+g', \quad (f\cdot g)'=f'\cdot g+f\cdot g'.$$

The constant field: $\{f \in \mathbb{T} : f' = 0\} = \mathbb{R}$.

• Every $f \in \mathbb{T}$ can be *differentiated* term by term:

$$(e^{-x}+e^{-x^2}+e^{-x^3}+\cdots)' = -(e^{-x}+2xe^{-x^2}+3x^2e^{-x^3}+\cdots).$$

We obtain a derivation on the field \mathbb{T} , that is, a map $f \mapsto f' : \mathbb{T} \to \mathbb{T}$ with the properties

$$(f+g)=f'+g', \quad (f\cdot g)'=f'\cdot g+f\cdot g'.$$

The constant field: $\{f \in \mathbb{T} : f' = 0\} = \mathbb{R}$.

• Every $f \in \mathbb{T}$ has an *antiderivative* in \mathbb{T} :

• Every $f \in \mathbb{T}$ can be *differentiated* term by term:

$$(e^{-x}+e^{-x^2}+e^{-x^3}+\cdots)' = -(e^{-x}+2xe^{-x^2}+3x^2e^{-x^3}+\cdots).$$

We obtain a derivation on the field \mathbb{T} , that is, a map $f \mapsto f' \colon \mathbb{T} \to \mathbb{T}$ with the properties

$$(f+g)=f'+g', \quad (f\cdot g)'=f'\cdot g+f\cdot g'.$$

The constant field: $\{f \in \mathbb{T} : f' = 0\} = \mathbb{R}$.

• Every $f \in \mathbb{T}$ has an *antiderivative* in \mathbb{T} :

$$\int \frac{e^x}{x} dx = \text{const} + \sum_{n=0}^{\infty} n! x^{-1-n} e^x \quad \text{(diverges)}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Given f, g ∈ T with g > R, we can "substitute g for x in f" to obtain f ∘ g = f(g(x)) ∈ T.

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ □ ● の < @

 Given f, g ∈ T with g > R, we can "substitute g for x in f" to obtain f ∘ g = f(g(x)) ∈ T. The set

$$\mathbb{T}^{>\mathbb{R}} := \{ f \in \mathbb{T} : f > \mathbb{R} \}$$

is a group under composition.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

 Given f, g ∈ T with g > R, we can "substitute g for x in f" to obtain f ∘ g = f(g(x)) ∈ T. The set

$$\mathbb{T}^{>\mathbb{R}} := \{ f \in \mathbb{T} : f > \mathbb{R} \}$$

is a group under composition. The Chain Rule holds:

$$(f\circ g)'=(f'\circ g)\cdot g' \quad ext{ for } f,g\in\mathbb{T},\,g>\mathbb{R}.$$

 Given f, g ∈ T with g > R, we can "substitute g for x in f" to obtain f ∘ g = f(g(x)) ∈ T. The set

$$\mathbb{T}^{>\mathbb{R}} := \{ f \in \mathbb{T} : f > \mathbb{R} \}$$

is a group under composition. The Chain Rule holds:

$$(f\circ g)'=(f'\circ g)\cdot g' \quad ext{ for } f,g\in\mathbb{T},\,g>\mathbb{R}.$$

• We have a canonical isomorphism

$$f\mapsto \exp(f)\colon (\mathbb{T},+,0,\leqslant) o(\mathbb{T}^{>0},\,\cdot\,,1,\leqslant)$$

with inverse $g \mapsto \log(g)$, extending the exponentiation of finite Laurent series.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• The iterates of exp,

$$\mathbf{e}_0 := x, \ \mathbf{e}_1 := \exp x, \ \mathbf{e}_2 := \exp(\exp(x)), \ \dots$$

form an increasing cofinal sequence in $\ensuremath{\mathbb{T}}.$ Their formal inverses

$$\ell_0 := x, \ \ell_1 := \log x, \ \ell_2 := \log(\log(x)), \ \dots$$

form a decreasing coinitial sequence in $\mathbb{T}^{>\mathbb{R}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• The iterates of exp,

$$\mathbf{e}_0 := x, \ \mathbf{e}_1 := \exp x, \ \mathbf{e}_2 := \exp(\exp(x)), \ \dots$$

form an increasing cofinal sequence in $\ensuremath{\mathbb{T}}.$ Their formal inverses

$$\ell_0 := x, \ \ell_1 := \log x, \ \ell_2 := \log(\log(x)), \ \dots$$

form a decreasing coinitial sequence in $\mathbb{T}^{>\mathbb{R}}$.

The structure

$$(\mathbb{T}, +, \cdot, \leqslant, exp)$$

is an elementary extension of

$$\mathbb{R}_{\mathsf{exp}} := (\mathbb{R}, +, \cdot, \leqslant, r \mapsto e^{r}).$$

(Wilkie.)

・ロト・西ト・モート ヨー うへの

Transseries ...

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Transseries ...

 were introduced independently by Écalle (Hilbert's 16th Problem) and by Dahn and Göring (Tarski's Problem on ℝ_{exp});

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Transseries ...

- were introduced independently by Écalle (Hilbert's 16th Problem) and by Dahn and Göring (Tarski's Problem on ℝ_{exp});
- give very exact asymptotics for solutions of algebraic differential equations over ℝ;

Transseries ...

- were introduced independently by Écalle (Hilbert's 16th Problem) and by Dahn and Göring (Tarski's Problem on ℝ_{exp});
- give very exact asymptotics for solutions of algebraic differential equations over ℝ;
- many functions occurring in analysis have an asymptotic expansion as transseries; for example, many (all?), which are definable in an exponentially bounded o-minimal expansion of (ℝ, +, ·, ≤), like ℝ_{exp}.
The T-Conjecture

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From now on,

 $\mathbb{T} =$ the ordered differential field of transseries.

The T-Conjecture

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

From now on,

$\mathbb{T} = \text{ the ordered differential field of transseries.}$

View \mathbb{T} as a model-theoretic structure in the language 0, 1, +, ·, ∂ (for the derivation of \mathbb{T}) and \leq .

うして 山田 マイボット ボット シックション

From now on,

$\mathbb{T} =$ the *ordered differential field* of transseries.

View \mathbb{T} as a model-theoretic structure in the language 0, 1, +, ·, ∂ (for the derivation of \mathbb{T}) and \leq .

The T-Conjecture (A., van den Dries, van der Hoeven)

 ${\mathbb T}$ is model-complete.

From now on,

$\mathbb{T} =$ the *ordered differential field* of transseries.

View \mathbb{T} as a model-theoretic structure in the language 0, 1, +, ·, ∂ (for the derivation of \mathbb{T}) and \leq .

The T-Conjecture (A., van den Dries, van der Hoeven)

${\mathbb T}$ is model-complete.

In fact, we have a strengthened version of this conjecture, which states that \mathbb{T} has quantifier elimination in a certain natural expansion of the language specified above.

Recently we have become optimistic that we are getting closer to a proof of this conjecture. (Most of the rest of this talk is joint work with van den Dries and van der Hoeven.)

II. H-Fields

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

H-Fields

▲□▶▲□▶▲□▶▲□▶ □ りへぐ

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Let K be an ordered differential field, with constant field

$$C = C_K := \{f \in K : f' = 0\}.$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Let K be an ordered differential field, with constant field

$$C = C_K := \{f \in K : f' = 0\}.$$

We define

$$f \preccurlyeq g : \iff \exists c \in C^{>0} : |f| \leqslant c|g|$$
 "g dominates f"
 $f \prec g : \iff \forall c \in C^{>0} : |f| \leqslant c|g|$ "g strictly dominates f."

Let K be an ordered differential field, with constant field

$$C = C_K := \{f \in K : f' = 0\}.$$

We define

$$f \preccurlyeq g : \iff \exists c \in C^{>0} : |f| \leqslant c|g|$$
 "g dominates f"
 $f \prec g : \iff \forall c \in C^{>0} : |f| \leqslant c|g|$ "g strictly dominates f."

Definition

We call K an H-field provided that

(H1)
$$f > C \Rightarrow f' > 0$$
;
(H2) $f \preccurlyeq 1 \Rightarrow f - c \prec 1$ for some $c \in C$;
(H3) $f \prec 1 \Rightarrow f' \prec 1$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ 釣々ぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Every ordered differential subfield $K \supseteq \mathbb{R}$ of \mathbb{T} is an *H*-field. (For example, $K = \mathbb{R}((x^{-1}))$.)

うして 山田 マイボット ボット シックション

Every ordered differential subfield $K \supseteq \mathbb{R}$ of \mathbb{T} is an *H*-field. (For example, $K = \mathbb{R}((x^{-1}))$.)

To prove the \mathbb{T} -Conjecture we need to show that the existentially closed *H*-fields are exactly the *H*-fields that share certain deeper first-order properties with \mathbb{T} .

うして 山田 マイボット ボット シックション

Every ordered differential subfield $K \supseteq \mathbb{R}$ of \mathbb{T} is an *H*-field. (For example, $K = \mathbb{R}((x^{-1}))$.)

To prove the \mathbb{T} -Conjecture we need to show that the existentially closed *H*-fields are exactly the *H*-fields that share certain deeper first-order properties with \mathbb{T} .

In this talk we concentrate on one particular such property:

ω-freeness.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The real closure of an *H*-field is again an *H*-field. We call a real closed *H*-field *K* **Liouville closed**, if for every $a, b \in K$ there is a nonzero $y \in K$ with y' + ay = b.

The real closure of an *H*-field is again an *H*-field. We call a real closed *H*-field *K* **Liouville closed**, if for every $a, b \in K$ there is a nonzero $y \in K$ with y' + ay = b.

For example, \mathbb{T} is Liouville closed.

The real closure of an *H*-field is again an *H*-field. We call a real closed *H*-field *K* **Liouville closed**, if for every $a, b \in K$ there is a nonzero $y \in K$ with y' + ay = b.

For example, \mathbb{T} is Liouville closed.

A **Liouville closure** of an *H*-field *K* is a minimal Liouville closed *H*-field extension of *K*.

うして 山田 マイボット ボット シックション

The real closure of an *H*-field is again an *H*-field. We call a real closed *H*-field *K* **Liouville closed**, if for every $a, b \in K$ there is a nonzero $y \in K$ with y' + ay = b.

For example, \mathbb{T} is Liouville closed.

A **Liouville closure** of an *H*-field *K* is a minimal Liouville closed *H*-field extension of *K*.

Theorem (A.-van den Dries, 2002)

Every H-field has exactly one or exactly two Liouville closures.

The real closure of an *H*-field is again an *H*-field. We call a real closed *H*-field *K* **Liouville closed**, if for every $a, b \in K$ there is a nonzero $y \in K$ with y' + ay = b.

For example, \mathbb{T} is Liouville closed.

A **Liouville closure** of an *H*-field *K* is a minimal Liouville closed *H*-field extension of *K*.

Theorem (A.-van den Dries, 2002)

Every H-field has exactly one or exactly two Liouville closures.

Whether there are one or two Liouville closures depends on an important trichotomy in the class of *H*-fields.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Let K be an H-field.

Define an equivalence relation \asymp on $K^{\times} = K \setminus \{0\}$:

$$f \asymp g : \iff f \preccurlyeq g \text{ and } g \preccurlyeq f.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Let K be an H-field.

Define an equivalence relation \asymp on $K^{\times} = K \setminus \{0\}$:

$$f \asymp g : \iff f \preccurlyeq g \text{ and } g \preccurlyeq f.$$

The equivalence classes *vf* are elements of an ordered abelian group $\Gamma = \Gamma_{\mathcal{K}} := v(\mathcal{K}^{\times})$:

$$vf + vg = v(fg), \quad vf \ge vg \iff f \preccurlyeq g.$$

Let K be an H-field.

Define an equivalence relation \asymp on $K^{\times} = K \setminus \{0\}$:

$$f \asymp g : \iff f \preccurlyeq g \text{ and } g \preccurlyeq f.$$

The equivalence classes *vf* are elements of an ordered abelian group $\Gamma = \Gamma_{\mathcal{K}} := v(\mathcal{K}^{\times})$:

$$vf + vg = v(fg), \quad vf \geqslant vg \iff f \preccurlyeq g.$$

The map $f \mapsto vf \colon K^{\times} \to \Gamma$ is a valuation.

うして 山田 マイボット ボット シックション

Let K be an H-field.

Define an equivalence relation \asymp on $K^{\times} = K \setminus \{0\}$:

$$f \asymp g : \iff f \preccurlyeq g \text{ and } g \preccurlyeq f.$$

The equivalence classes *vf* are elements of an ordered abelian group $\Gamma = \Gamma_{\mathcal{K}} := v(\mathcal{K}^{\times})$:

$$vf + vg = v(fg), \quad vf \ge vg \iff f \preccurlyeq g.$$

The map $f \mapsto vf \colon K^{\times} \to \Gamma$ is a valuation.

Example

For $K = \mathbb{T}$: $(\Gamma, +, \leqslant) \cong$ (group of transmonomials, \cdot, \succcurlyeq).

The derivation ∂ induces a map

$$\gamma = vf \mapsto \gamma' = v(f'): \quad \Gamma^{\neq} := \Gamma \setminus \{0\} \to \Gamma.$$

The derivation ∂ induces a map

$$\gamma = vf \mapsto \gamma' = v(f'): \quad \Gamma^{\neq} := \Gamma \setminus \{0\} \to \Gamma.$$

We set $\Gamma^{\dagger} := \{\gamma' - \gamma : \gamma \in \Gamma^{\neq}\}.$ Then $\Gamma^{\dagger} < (\Gamma^{>0})'.$

Exactly one of the following statements holds:

• $\Gamma^{\dagger} < \gamma < (\Gamma^{>0})'$ for a (necessarily unique) γ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- 1 $\Gamma^{\dagger} < \gamma < (\Gamma^{>0})'$ for a (necessarily unique) γ .
- **2** Γ^{\dagger} has a largest element.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1 $\Gamma^{\dagger} < \gamma < (\Gamma^{>0})'$ for a (necessarily unique) γ .
- **2** Γ^{\dagger} has a largest element.
- **3** sup Γ^{\dagger} does not exist; equivalently: $\Gamma = (\Gamma^{\neq})'$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Γ[†] < γ < (Γ^{>0})' for a (necessarily unique) γ.
 We call such γ a gap in K.
- **2** Γ^{\dagger} has a largest element.
- **3** sup Γ^{\dagger} does not exist; equivalently: $\Gamma = (\Gamma^{\neq})'$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Γ[†] < γ < (Γ^{>0})' for a (necessarily unique) γ.
 We call such γ a gap in K.
- **2** Γ^{\dagger} has a largest element.
- **3** sup Γ^{\dagger} does not exist; equivalently: $\Gamma = (\Gamma^{\neq})'$. We say that *K* has **asymptotic integration**.

うして 山田 マイボット ボット シックション

Exactly one of the following statements holds:

- Γ[†] < γ < (Γ^{>0})' for a (necessarily unique) γ.
 We call such γ a gap in K.
- **2** Γ^{\dagger} has a largest element.
- **3** sup Γ[†] does not exist; equivalently: Γ = (Γ[≠])'. We say that *K* has **asymptotic integration**.

Examples

K = C;
 K = ℝ((x⁻¹));
 K = T (or any other Liouville closed K).

Exactly one of the following statements holds:

- Γ[†] < γ < (Γ^{>0})' for a (necessarily unique) γ.
 We call such γ a gap in K.
- **2** Γ^{\dagger} has a largest element.
- **3** sup Γ[†] *does not exist; equivalently:* Γ = (Γ[≠])'. We say that *K* has **asymptotic integration**.

In Case 1 we have *two* Liouville closures: if $\gamma = vg$, then we have a choice when adjoining $\int g$: make it \succ 1 or \prec 1.

In Case 2 we have one Liouville closure.

Obviously, Case 1 poses an obstacle for the proof of any kind of quantifier elimination. And what happens in Case 3?

III. Gaps in H-Fields

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How do gaps arise under Liouville extensions?

Let K be a real closed H-field.

• If *K* is Liouville closed, then *K* does not have a gap.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How do gaps arise under Liouville extensions?

Let K be a real closed H-field.

- If *K* is Liouville closed, then *K* does not have a gap.
- If L = K(y) with $y' = f \in K$ $(y = \int f)$, then

L has a gap if and only if K has a gap.

How do gaps arise under Liouville extensions?

Let *K* be a real closed *H*-field.

- If *K* is Liouville closed, then *K* does not have a gap.
- If L = K(y) with $y' = f \in K$ $(y = \int f)$, then

L has a gap if and only if K has a gap.

• If L = K(z) with $z \neq 0, z^{\dagger} = g \in K$ $(z = \exp \int g)$, then

L may have a gap even if K does not have a gap.

Here $z^{\dagger} := z'/z$ for $z \neq 0$ in K.

One can detect in *K* already whether some $g \in K$ creates a gap over *K*, i.e., $z = \exp \int g$ is a gap in K(z).

It is instructive to consider *H*-subfields $K \supseteq \mathbb{R}$ of \mathbb{T} : no such *K* can have a gap.
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

It is instructive to consider *H*-subfields $K \supseteq \mathbb{R}$ of \mathbb{T} : no such *K* can have a gap. Suppose *K* contains the iterated logarithms $\ell_0 = x$, $\ell_{n+1} = \log \ell_n$.

うして 山田 マイボマ エリア しょう

It is instructive to consider *H*-subfields $K \supseteq \mathbb{R}$ of \mathbb{T} : no such *K* can have a gap. Suppose *K* contains the iterated logarithms $\ell_0 = x$, $\ell_{n+1} = \log \ell_n$. Consider the "pseudo-cauchy sequence"

$$\lambda_n := -\ell_n^{\dagger \dagger} = \frac{1}{\ell_0} + \frac{1}{\ell_0 \ell_1} + \frac{1}{\ell_0 \ell_1 \ell_2} + \dots + \frac{1}{\ell_0 \ell_1 \dots \ell_n}$$

in \mathbb{T} .

うして 山田 マイボマ エリア しょう

It is instructive to consider *H*-subfields $K \supseteq \mathbb{R}$ of \mathbb{T} : no such *K* can have a gap. Suppose *K* contains the iterated logarithms $\ell_0 = x$, $\ell_{n+1} = \log \ell_n$. Consider the "pseudo-cauchy sequence"

$$\lambda_n := -\ell_n^{\dagger \dagger} = \frac{1}{\ell_0} + \frac{1}{\ell_0 \ell_1} + \frac{1}{\ell_0 \ell_1 \ell_2} + \dots + \frac{1}{\ell_0 \ell_1 \dots \ell_n}$$

in \mathbb{T} . Then for $\lambda \in K$,

 λ is a "pseudo-limit" of $(\lambda_n) \iff -\lambda$ creates a gap over K.

It is instructive to consider *H*-subfields $K \supseteq \mathbb{R}$ of \mathbb{T} : no such *K* can have a gap. Suppose *K* contains the iterated logarithms $\ell_0 = x$, $\ell_{n+1} = \log \ell_n$. Consider the "pseudo-cauchy sequence"

$$\lambda_n := -\ell_n^{\dagger \dagger} = \frac{1}{\ell_0} + \frac{1}{\ell_0 \ell_1} + \frac{1}{\ell_0 \ell_1 \ell_2} + \dots + \frac{1}{\ell_0 \ell_1 \dots \ell_n}$$

in \mathbb{T} . Then for $\lambda \in K$,

 λ is a "pseudo-limit" of $(\lambda_n) \iff -\lambda$ creates a gap over *K*. This gap is $z = \exp(\int -\lambda)$, and then

 $\mathbb{R} < \int z < \cdots < \ell_n < \cdots < \ell_1 < \ell_0$ for all n,

which is impossible by construction of $\ensuremath{\mathbb{T}}.$

It is instructive to consider *H*-subfields $K \supseteq \mathbb{R}$ of \mathbb{T} : no such *K* can have a gap. Suppose K contains the iterated logarithms $\ell_0 = x, \ell_{n+1} = \log \ell_n$. Consider the "pseudo-cauchy sequence"

$$\lambda_n := -\ell_n^{\dagger \dagger} = \frac{1}{\ell_0} + \frac{1}{\ell_0 \ell_1} + \frac{1}{\ell_0 \ell_1 \ell_2} + \dots + \frac{1}{\ell_0 \ell_1 \dots \ell_n}$$

in \mathbb{T} . Then for $\lambda \in K$.

 λ is a "pseudo-limit" of $(\lambda_n) \iff -\lambda$ creates a gap over K. This gap is $z = \exp(\int -\lambda)$, and then

$$\mathbb{R} < \int z < \cdots < \ell_n < \cdots < \ell_1 < \ell_0$$
 for all *n*,

which is impossible by construction of \mathbb{T} .

(But (λ_n) does have a pseudo-limit $\lambda = \sum_{n=0}^{\infty} \frac{1}{\ell_0 \ell_1 \cdots \ell_n}$ in some larger valued field.) くってい 山 マット 山 マット シック

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The property that (λ_n) does not have a pseudo-limit in \mathbb{T} can be converted into a $\forall \exists$ -statement about \mathbb{T} , and this statement has the desired property:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The property that (λ_n) does not have a pseudo-limit in \mathbb{T} can be converted into a $\forall \exists$ -statement about \mathbb{T} , and this statement has the desired property:

Proposition

The following are equivalent, for a real closed H-field K:

- 2 *K* has asymptotic integration, and no element of *K* creates a gap.

The property that (λ_n) does not have a pseudo-limit in \mathbb{T} can be converted into a $\forall \exists$ -statement about \mathbb{T} , and this statement has the desired property:

Proposition

The following are equivalent, for a real closed H-field K:

- 2 *K* has asymptotic integration, and no element of *K* creates a gap.

We say that *K* is λ -free if it satisfies the condition in the proposition.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

It is now natural to wonder whether the occurrence of gaps is concentrated in Liouville extensions:

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

It is now natural to wonder whether the occurrence of gaps is concentrated in Liouville extensions:

If K is a Liouville closed H-field and

$$K\langle y\rangle = K(y, y', y'', \dots)$$

an H-field extension of K with a gap, is then y necessarily differentially transcendental over K?

うして 山田 マイボマ エリア しょう

It is now natural to wonder whether the occurrence of gaps is concentrated in Liouville extensions:

If K is a Liouville closed H-field and

$$K\langle y\rangle = K(y, y', y'', \dots)$$

an H-field extension of K with a gap, is then y necessarily differentially transcendental over K?

The content of my talk at Ravello 2002 was that the answer, in general, is "no." (Used a larger transseries field than \mathbb{T} .)

It is now natural to wonder whether the occurrence of gaps is concentrated in Liouville extensions:

If K is a Liouville closed H-field and

$$K\langle y\rangle = K(y, y', y'', \dots)$$

an H-field extension of K with a gap, is then y necessarily differentially transcendental over K?

The content of my talk at Ravello 2002 was that the answer, in general, is "no." (Used a larger transseries field than \mathbb{T} .)

In the meantime we have reached a better understanding of when an H-field can have a differentially algebraic H-field extension with a gap.

Let K be a real closed H-field with asymptotic integration.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Let K be a real closed H-field with asymptotic integration. Set

$$\omega(z) := -2z' - z^2$$
 for $z \in K$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let *K* be a real closed *H*-field with asymptotic integration. Set

$$\omega(z) := -2z' - z^2 \quad \text{for } z \in K.$$

Theorem (\sim 2013)

Suppose K satisfies

$$\forall f \exists g [g \succ 1 \& f - \omega(-g^{\dagger \dagger}) \succcurlyeq (g^{\dagger})^2].$$

Then no differentially algebraic H-field extension of K has a gap.

Let *K* be a real closed *H*-field with asymptotic integration. Set

$$\omega(z) := -2z' - z^2 \quad \text{for } z \in K.$$

Theorem (\sim 2013)

Suppose K satisfies

$$\forall f \exists g [g \succ 1 \& f - \omega(-g^{\dagger \dagger}) \succcurlyeq (g^{\dagger})^2].$$

Then no differentially algebraic H-field extension of K has a gap.

We call *K* ω -free if it satisfies the above $\forall \exists$ -condition.

Let K be a real closed H-field with asymptotic integration. Set

$$\omega(z) := -2z' - z^2 \quad \text{for } z \in K.$$

Theorem (\sim 2013)

Suppose K satisfies

$$\forall f \exists g [g \succ 1 \& f - \omega(-g^{\dagger \dagger}) \succcurlyeq (g^{\dagger})^2].$$

Then no differentially algebraic H-field extension of K has a gap.

We call *K* ω -free if it satisfies the above $\forall \exists$ -condition.

Corollary

If K is ω -free, then K has exactly one Liouville closure.

The $\forall \exists$ -condition defining ω -freeness also arises from a certain pc-sequence.

The $\forall \exists$ -condition defining ω -freeness also arises from a certain pc-sequence. Let us work in \mathbb{T} again.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The $\forall \exists$ -condition defining ω -freeness also arises from a certain pc-sequence. Let us work in \mathbb{T} again. Then

$$\omega_n := \omega(\lambda_n) = \frac{1}{\ell_0^2} + \frac{1}{(\ell_0 \ell_1)^2} + \frac{1}{(\ell_0 \ell_1 \ell_2)^2} + \dots + \frac{1}{(\ell_0 \ell_1 \dots \ell_n)^2}$$

is a pc-sequence in \mathbb{T} without pc-limit in \mathbb{T} .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

The $\forall \exists$ -condition defining ω -freeness also arises from a certain pc-sequence. Let us work in \mathbb{T} again. Then

$$\omega_n := \omega(\lambda_n) = \frac{1}{\ell_0^2} + \frac{1}{(\ell_0 \ell_1)^2} + \frac{1}{(\ell_0 \ell_1 \ell_2)^2} + \dots + \frac{1}{(\ell_0 \ell_1 \dots \ell_n)^2}$$

is a pc-sequence in $\mathbb T$ without pc-limit in $\mathbb T.$ Translating this fact into a first-order sentence results in the definition of ω -freeness.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The $\forall \exists$ -condition defining ω -freeness also arises from a certain pc-sequence. Let us work in \mathbb{T} again. Then

$$\omega_n := \omega(\lambda_n) = \frac{1}{\ell_0^2} + \frac{1}{(\ell_0 \ell_1)^2} + \frac{1}{(\ell_0 \ell_1 \ell_2)^2} + \dots + \frac{1}{(\ell_0 \ell_1 \dots \ell_n)^2}$$

is a pc-sequence in $\mathbb T$ without pc-limit in $\mathbb T.$ Translating this fact into a first-order sentence results in the definition of ω -freeness.

The proof of the theorem has two main ingredients:

1 a proof that every pc-sequence in *K* has a pseudolimit in some *H*-field extension *L* of *K* with $\Gamma_L = \Gamma$, $C_L = C$;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The $\forall \exists$ -condition defining ω -freeness also arises from a certain pc-sequence. Let us work in \mathbb{T} again. Then

$$\omega_n := \omega(\lambda_n) = \frac{1}{\ell_0^2} + \frac{1}{(\ell_0 \ell_1)^2} + \frac{1}{(\ell_0 \ell_1 \ell_2)^2} + \dots + \frac{1}{(\ell_0 \ell_1 \dots \ell_n)^2}$$

is a pc-sequence in $\mathbb T$ without pc-limit in $\mathbb T.$ Translating this fact into a first-order sentence results in the definition of ω -freeness.

The proof of the theorem has two main ingredients:

- **1** a proof that every pc-sequence in *K* has a pseudolimit in some *H*-field extension *L* of *K* with $\Gamma_L = \Gamma$, $C_L = C$;
- 2 Newton polynomials.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The $\forall \exists$ -condition defining ω -freeness also arises from a certain pc-sequence. Let us work in \mathbb{T} again. Then

$$\omega_n := \omega(\lambda_n) = \frac{1}{\ell_0^2} + \frac{1}{(\ell_0 \ell_1)^2} + \frac{1}{(\ell_0 \ell_1 \ell_2)^2} + \dots + \frac{1}{(\ell_0 \ell_1 \dots \ell_n)^2}$$

is a pc-sequence in $\mathbb T$ without pc-limit in $\mathbb T.$ Translating this fact into a first-order sentence results in the definition of ω -freeness.

The proof of the theorem has two main ingredients:

- **1** a proof that every pc-sequence in *K* has a pseudolimit in some *H*-field extension *L* of *K* with $\Gamma_L = \Gamma$, $C_L = C$;
- Newton polynomials.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

In the following $K{Y} = K[Y, Y', ...]$ is the ring of differential polynomials over *K*.

In the following $K{Y} = K[Y, Y', ...]$ is the ring of differential polynomials over K.

In $K = \mathbb{T}$ every differential polynomial $P \in K\{Y\}$ can be transformed, by applying finitely many transformations

 $f\mapsto f\uparrow:=f\circ \boldsymbol{e}^{\boldsymbol{x}}=f(\boldsymbol{e}^{\boldsymbol{x}}),$

into one with a "dominant term" of the form

$$(c_0 + c_1 Y + \cdots + c_m Y^m) \cdot (Y')^n$$
 $(c_0, \ldots, c_m \in \mathbb{R}).$

In the following $K{Y} = K[Y, Y', ...]$ is the ring of differential polynomials over K.

In $K = \mathbb{T}$ every differential polynomial $P \in K\{Y\}$ can be transformed, by applying finitely many transformations

 $f\mapsto f\uparrow:=f\circ \boldsymbol{e}^{\boldsymbol{x}}=f(\boldsymbol{e}^{\boldsymbol{x}}),$

into one with a "dominant term" of the form

$$(c_0 + c_1 Y + \cdots + c_m Y^m) \cdot (Y')^n$$
 $(c_0, \ldots, c_m \in \mathbb{R}).$

General *H*-fields *K* have no operation like $f \mapsto f\uparrow$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

But there is a substitute: compositional conjugation.

- Replacing the derivation ∂ of K by φ⁻¹∂ (φ ∈ K[×]) yields a new differential field K^φ, and
- rewriting *P* in terms of $\phi^{-1}\partial$ yields $P^{\phi} \in K^{\phi}\{Y\}$ such that

 $P^{\phi}(y) = P(y)$ for all $y \in K$.

うして 山田 マイボマ エリア しょう

But there is a substitute: compositional conjugation.

- Replacing the derivation ∂ of K by φ⁻¹∂ (φ ∈ K[×]) yields a new differential field K^φ, and
- rewriting *P* in terms of $\phi^{-1}\partial$ yields $P^{\phi} \in K^{\phi}\{Y\}$ such that

$$P^{\phi}(y) = P(y)$$
 for all $y \in K$.

Only use ϕ for which K^{ϕ} is again an *H*-field: $\phi > 0$, $v\phi < (\Gamma^{>0})'$.

But there is a substitute: compositional conjugation.

- Replacing the derivation ∂ of K by φ⁻¹∂ (φ ∈ K[×]) yields a new differential field K^φ, and
- rewriting *P* in terms of $\phi^{-1}\partial$ yields $P^{\phi} \in K^{\phi}\{Y\}$ such that

$$P^{\phi}(y) = P(y)$$
 for all $y \in K$.

Only use ϕ for which K^{ϕ} is again an *H*-field: $\phi > 0$, $v\phi < (\Gamma^{>0})'$.

Theorem (\sim 2009)

Let $P \in K\{Y\}$, $P \neq 0$. Then there exists $N_P \in C\{Y\}$, $N_P \neq 0$, so that for all ϕ with sufficiently large $v\phi$:

 $P^{\phi} = \mathfrak{d} N_P + R, \qquad \mathfrak{d} \in K^{\times}, \ R \in K^{\phi} \{Y\}, \ R \prec \mathfrak{d}.$

We call N_P the Newton polynomial of P.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Unfortunately (?) it is not always the case (like in \mathbb{T}) that $N_P \in C[Y](Y')^{\mathbb{N}}$. But we now understand exactly when it is.

Unfortunately (?) it is not always the case (like in \mathbb{T}) that $N_P \in C[Y](Y')^{\mathbb{N}}$. But we now understand exactly when it is.

Theorem (\sim 2011)

 $K \text{ } \omega \text{-free} \quad \Longleftrightarrow \quad N_P \in C[Y](Y')^{\mathbb{N}} \text{ for all } 0 \neq P \in K\{Y\}.$

うして 山田 マイボット ボット シックション

Unfortunately (?) it is not always the case (like in \mathbb{T}) that $N_P \in C[Y](Y')^{\mathbb{N}}$. But we now understand exactly when it is.

Theorem (\sim 2011)

 $K \text{ } \omega \text{-free} \quad \Longleftrightarrow \quad N_P \in C[Y](Y')^{\mathbb{N}} \text{ for all } 0 \neq P \in K\{Y\}.$

The proof of this theorem involves a deeper study of compositional conjugation.

Compositional Conjugation

The operation $P \mapsto P^{\phi}$ can be viewed as a **triangular** *K*-algebra automorphism of $K\{Y\} = K[Y, Y', ...] = K^{\phi}\{Y\}$:

Compositional Conjugation

The operation $P \mapsto P^{\phi}$ can be viewed as a **triangular** *K*-algebra automorphism of $K\{Y\} = K[Y, Y', ...] = K^{\phi}\{Y\}$:

$$\begin{aligned} \mathbf{Y}^{\phi} &= \mathbf{Y} \\ (\mathbf{Y}')^{\phi} &= \phi \mathbf{Y}' \\ (\mathbf{Y}'')^{\phi} &= \phi^{2} \mathbf{Y}'' + \phi' \mathbf{Y}' \\ (\mathbf{Y}''')^{\phi} &= \phi^{3} \mathbf{Y}''' + 3\phi \phi' \mathbf{Y}'' + \phi'' \mathbf{Y}', \\ &\vdots \end{aligned}$$

Compositional Conjugation

The operation $P \mapsto P^{\phi}$ can be viewed as a **triangular** *K*-algebra automorphism of $K\{Y\} = K[Y, Y', ...] = K^{\phi}\{Y\}$:

$$\begin{split} Y^{\phi} &= Y \\ (Y')^{\phi} &= \phi Y' \\ (Y'')^{\phi} &= \phi^2 Y'' + \phi' Y' \\ (Y''')^{\phi} &= \phi^3 Y''' + 3\phi \phi' Y'' + \phi'' Y', \\ &: \end{split}$$

Such triangular automorphisms can be treated with Lie theoretic methods.

.
The operation $P \mapsto P^{\phi}$ can be viewed as a **triangular** *K*-algebra automorphism of $K\{Y\} = K[Y, Y', ...] = K^{\phi}\{Y\}$:

$$Y^{\phi} = Y$$

$$(Y')^{\phi} = \phi Y'$$

$$(Y'')^{\phi} = \phi^{2} Y'' + \phi' Y'$$

$$(Y''')^{\phi} = \phi^{3} Y''' + 3\phi \phi' Y'' + \phi'' Y',$$

$$\vdots$$

Such triangular automorphisms can be treated with Lie theoretic methods. Every triangular automorphism σ of $K\{Y\}$ can be represented by an upper triangular matrix $M_{\sigma} \in K^{\mathbb{N} \times \mathbb{N}}$, whose matrix logarithm $\log(M_{\sigma})$ represents a *K*-linear derivation of $K\{Y\}$.

A special role is played by $\phi = 1/x$ where x' = 1. The matrix $M_{\Upsilon} = (\Upsilon_{ij})$ representing

$$P(Y) \mapsto P^{1/x}(Y, xY', x^2Y'', \dots)$$

has the entries

$$\Upsilon_{ij} = (-1)^{j-i} \begin{bmatrix} j \\ i \end{bmatrix}$$
 (signed Stirling numbers of the first kind).

A special role is played by $\phi = 1/x$ where x' = 1. The matrix $M_{\Upsilon} = (\Upsilon_{ii})$ representing

$$P(Y) \mapsto P^{1/x}(Y, xY', x^2Y'', \dots)$$

has the entries

$$\Upsilon_{ij} = (-1)^{j-i} \begin{bmatrix} j \\ i \end{bmatrix}$$
 (signed Stirling numbers of the first kind).

Its matrix logarithm is

$$\log(M_{\Upsilon}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & -1 & \frac{1}{2} & -\frac{1}{2} & \frac{2}{3} & -\frac{11}{12} & \cdots \\ & 0 & -3 & 2 & -\frac{5}{2} & 4 & \cdots \\ & 0 & -6 & 5 & -\frac{15}{2} & \cdots \\ & 0 & -10 & 10 & \cdots \\ & & 0 & -15 & \cdots \\ & & & \ddots & \ddots \end{pmatrix}.$$

SQA

A special role is played by $\phi = 1/x$ where x' = 1. The matrix $M_{\Upsilon} = (\Upsilon_{ij})$ representing

$$P(Y) \mapsto P^{1/x}(Y, xY', x^2Y'', \dots)$$

has the entries

$$\Upsilon_{ij} = (-1)^{j-i} \begin{bmatrix} j \\ i \end{bmatrix}$$
 (signed Stirling numbers of the first kind).

Its matrix logarithm is

$$\log(M_{\Upsilon}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & -1 & \frac{1}{2} & -\frac{1}{2} & \frac{2}{3} & -\frac{11}{12} & \cdots \\ & 0 & -3 & 2 & -\frac{5}{2} & 4 & \cdots \\ & & 0 & -6 & 5 & -\frac{15}{2} & \cdots \\ & & 0 & -10 & 10 & \cdots \\ & & & 0 & -15 & \cdots \\ & & & & \ddots & \ddots \end{pmatrix}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fact (Jabotinsky, 1940s)

Let $K \supseteq \mathbb{Q}$ be a commutative ring. There is a group embedding

 $f \mapsto \llbracket f \rrbracket : (z + z^2 K[[z]], \circ) \to ($ unitriangular matrices in $K^{\mathbb{N} \times \mathbb{N}}, \cdot).$

うして 山田 マイボマ エリア しょう

Fact (Jabotinsky, 1940s) Let $K \supseteq \mathbb{Q}$ be a commutative ring. There is a group embedding $f \mapsto \llbracket f \rrbracket : (z + z^2 K[[z]], \circ) \rightarrow ($ unitriangular matrices in $K^{\mathbb{N} \times \mathbb{N}}, \cdot).$

$$\llbracket f \rrbracket = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ & 1 & f_2 & f_3 & f_4 & \cdots \\ & & 1 & 3f_2 & 4f_3 + 3f_2^2 & \cdots \\ & & & 1 & 6f_2 & \cdots \\ & & & & 1 & \cdots \\ & & & & & \ddots \end{pmatrix}$$

is called the **iteration matrix** of $f = z + \sum_{n \ge 2} f_n \frac{z^n}{n!}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The matrix log $\llbracket f \rrbracket$ has a simple form: it is the **infinitesimal** iteration matrix $\langle\!\langle h \rangle\!\rangle$ of some $h = \sum_{n=2}^{\infty} h_n \frac{z^n}{n!} \in z^2 \mathcal{K}[[z]]$:

$$\langle\!\langle h \rangle\!\rangle = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \cdots \\ & 0 & h_2 & h_3 & h_4 & \cdots \\ & 0 & 3h_2 & 4h_3 & \cdots \\ & & 0 & 6h_2 & \cdots \\ & & & 0 & \cdots \\ & & & & \ddots \end{pmatrix} \quad \text{with } \langle\!\langle h \rangle\!\rangle_{ij} = \binom{j}{(j-i+1)} h_{j-i+1}.$$

Écalle calls h = itlog(f) the **iterative logarithm** of f:

 $itlog(f \circ g) = itlog(f) + itlog(g)$ if $f \circ g = g \circ f$.

Example

$$M_{\Upsilon} = (\Upsilon_{ij}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \cdots \\ & 1 & -1 & 2 & -6 & \cdots \\ & & 1 & -3 & 11 & \cdots \\ & & & 1 & -6 & \cdots \\ & & & & 1 & \cdots \\ & & & & \ddots \end{pmatrix}, \ \Upsilon_{ij} = (-1)^{j-i} \begin{bmatrix} j \\ j \end{bmatrix}.$$

Then $M_{\Upsilon} = \llbracket \log(1+z) \rrbracket$ and

$$itlog\left(\log(1+z)\right) = -\frac{1}{2!} \frac{z^2}{2!} + \frac{1}{2} \frac{z^3}{3!} - \frac{1}{2} \frac{z^4}{4!} + \frac{2}{3} \frac{z^5}{5!} - \frac{11}{12} \frac{z^6}{6!} + \cdots \\ = -itlog\left(e^z - 1\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The sequence

$0, 1, -\frac{1}{2}, \frac{1}{2}, -\frac{2}{3}, \frac{11}{12}, -\frac{3}{4}, -\frac{11}{6}, \frac{29}{4}, \frac{493}{12}, -\frac{2711}{6}, \dots$ is very irregular:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The sequence

 $0, 1, -\frac{1}{2}, \frac{1}{2}, -\frac{2}{3}, \frac{11}{12}, -\frac{3}{4}, -\frac{11}{6}, \frac{29}{4}, \frac{493}{12}, -\frac{2711}{6}, \dots$ is very irregular: its exponential generating function $itlog(e^z - 1)$ is

- differentially transcendental (Boshernitzan-Rubel 1986);
- has radius of convergence 0 (Baker 1958; Lewin 1965).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The sequence

 $0, 1, -\frac{1}{2}, \frac{1}{2}, -\frac{2}{3}, \frac{11}{12}, -\frac{3}{4}, -\frac{11}{6}, \frac{29}{4}, \frac{493}{12}, -\frac{2711}{6}, \dots$ is very irregular: its exponential generating function itlog($e^z - 1$) is

- differentially transcendental (Boshernitzan-Rubel 1986);
- has radius of convergence 0 (Baker 1958; Lewin 1965).
- A common generalization of these facts holds true:

The sequence

 $0, 1, -\frac{1}{2}, \frac{1}{2}, -\frac{2}{3}, \frac{11}{12}, -\frac{3}{4}, -\frac{11}{6}, \frac{29}{4}, \frac{493}{12}, -\frac{2711}{6}, \dots$ is very irregular: its exponential generating function itlog($e^z - 1$) is

- differentially transcendental (Boshernitzan-Rubel 1986);
- has radius of convergence 0 (Baker 1958; Lewin 1965).

A common generalization of these facts holds true:

Theorem (A.-Bergweiler)

itlog($e^z - 1$) is differentially transcendental over $\mathbb{C}\{z\}$.

(If $f \in z + z^2 \mathbb{C}[[z]]$ is a non-linear entire function, then itlog(f) is differentially transcendental over the ring of entire functions.)

But this would be the topic of another talk

・ロト・4回ト・モン・モン・モージへで

Thank you!

・ロト・4回ト・4回ト・目 うへの