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Final remarks and questions.

o Let S(Z,2")=22"+ Z? (the “Schwarzian”). Whenever y is

a non-zero solution to the linear differential equation
Y'=fY,
then z =2 y! satisfies §(z,2") = f.

e The cut in R((z~"))'® determined by p = S(A\, \) € L
describes when Y = fY has a non-zero solution in an H-
subfield of R((z~ 1)L, for f € R((z~1))*E. (Macintyre-
Marker-van den Dries.)

o Let P(Z,7,..., Z(")) £ R{Z}, non-constant. Up to multipli-
cation by some monomial m € £, the sum of the first w non-

zero terms of the series P(A, A, ..., /\(")) € I is either of the
form Aolog,a or polog,x, for some r > 0. (Ecalle.)

¢ How can one detect in an H-field whether it has a Liouville
extension with a gap?
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Final remarks and questions.

o Let S(Z,2")=22"+ Z? (the “Schwarzian”). Whenever y is

a non-zero solution to the linear differential equation
Y'=fY,
then z =2 y! satisfies §(z,2") = f.

e The cut in R((z~"))'® determined by p = S(A\, \) € L
describes when Y = fY has a non-zero solution in an H-
subfield of R((z~ 1)L, for f € R((z~1))*E. (Macintyre-
Marker-van den Dries.)

o Let P(Z,7,..., Z(")) £ R{Z}, non-constant. Up to multipli-
cation by some monomial m € £, the sum of the first w non-

zero terms of the series P(A, X', ..., AUY) € IL is either of the
form Aolog,x or polog, x, for some 7 > 0. (Ecalle.)

¢ How can one detect in an H-field whether it has a Liouville
extension with a gap?
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I. Transseries

lll. Gaps in H-Fields
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A reminder on Laurent series

The field R((x 1)) of (formal) Laurent series over R in
descending powers of x consists of all series

f(x) = apx" +ap 1x" '+t axtapta i x ' ta x4

infinite part of f infinitesimal part of f
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A reminder on Laurent series

The field R((x 1)) of (formal) Laurent series over R in
descending powers of x consists of all series

f(x) = apx" +ap 1x" '+t axtapta i x ' ta x4

infinite part of f infinitesimal part of f

Order R((x~")) so that x > IR, and differentiate so that x’ = 1.

Exponentiation for finite elements of R(x 1)) can be defined:

exp(ay+a_1x ' +ax?4...)

o0
1 —1 -2
=@ (@ x T haaxZ )
n=0

=e®(14+bix "+ byx2+...) forsuitable by, by, ... € R.
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e There is no natural exponential function on all of R(x~1)):
such an operation should satisfy exp x > x" for all n.
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e There is no natural exponential function on all of R(x~1)):
such an operation should satisfy exp x > x" for all n.

e x~' has no antiderivative log x in R(x~")).
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A reminder on Laurent series

Defects of R(x~ 1))

e There is no natural exponential function on all of R(x~1)):
such an operation should satisfy exp x > x" for all n.

e x~' has no antiderivative log x in R((x~")).
o R(x~ ")), as a differential field, defines Z.



To remove these defects, we extend R((x ")) to the ordered
field T of transseries:
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logarithmic-exponential monomials), arranged from left to
right in decreasing order, with real coefficients; e.qg.:

e —8e** +5xV2_(log X)™ +1-+x T Hx 24 x 34 pe X px e X,
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Transseries

To remove these defects, we extend R(x 1)) to the ordered
field T of transseries: series of transmonomials (or
logarithmic-exponential monomials), arranged from left to
right in decreasing order, with real coefficients; e.qg.:

e —8e** +5xV2_(log X)™ +1-+x T Hx 24 x 34 pe X px e X,

The reversed order type of the set of transmonomials that occur
in a given transseries can be any countable ordinal.

L+ 1 +... are excluded.

e® ege,

Series like T + & +

A nonzero transseries is declared positive if its leading
coefficient is positive. (Just like in R(x~1)).)



e Every f €T, f # 0, has a multiplicative inverse in T:
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e Every f €T, f # 0, has a multiplicative inverse in T:
1

1
X — x2e—X

_ 1 —X 2 —-2x | ..
X(1—Xe_x)_x (1+xe ™ +x%e ¥ +..4)

= x T te X fxe 4.

«O» «Fr «=»r «
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e Every f €T, f # 0, has a multiplicative inverse in T:
1 B 1
X —Xx2e X

x(1 — xe=X)

= x (1 +xe ™ 4 x%e™2 4.
= x T te X fxe 4.
As an ordered field, T is a real closed extension of R.
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e Every f € T can be differentiated term by term:
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e Every f € T can be differentiated term by term:
(e—x+e—x2+e—x3+‘ )/

—(e ¥ +2xe ¥ +3x2e " +

).
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Computations in T

e Every f € T can be differentiated term by term:
(e—X+€—x2+e_x3+‘ . )/ _ *(€_X+2X€_X2+3X2€_XS+. B )

We obtain a derivation on the field T, that is, a map
f— f: T — T with the properties

(f+9)=f+g, (f-9)=Ff-g+f-¢g.
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Computations in T

Every f € T can be differentiated term by term:
(e—X+€—x2+e_x3+‘ . )/ _ *(€_X+2X€_X2+3X2€_XS+. B )

We obtain a derivation on the field T, that is, a map
f— f: T — T with the properties

(f+g)=Ff+g, (f-9)=f-g+f-¢g
The constant field: {fe T: f =0} =R.

Every f € T has an antiderivative in T:

X S
o _ Iy—1-n_x :
/ X dx = const+ E nix e (d|verges).

n=0



e Given f, g € T with g > R, we can “substitute g for x in f”
to obtain fo g = f(g(x)) € T.
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e Given f, g € T with g > R, we can “substitute g for x in f”
to obtain fo g = f(g(x)) € T. The set

TR .= {feT:f>R}
is a group under composition.
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to obtain fo g = f(g(x)) € T. The set
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is a group under composition. The Chain Rule holds:

/

(fog) =(fog)-g forf,geT,g>R.



Computations in T

e Given f, g € T with g > R, we can “substitute g for x in f”
to obtain fo g = f(g(x)) € T. The set

T>® .= {fcT:f>R}
is a group under composition. The Chain Rule holds:

/

(fog) =(fog)-g forf,geT,g>R.

e We have a canonical isomorphism
f— exp(f): (T,+,0,<) = (T>°, -, 1,X)

with inverse g — log(g), extending the exponentiation of
finite Laurent series.



Computations in T

e The iterates of exp,
ep i= X, eq := expx, ep = exp(exp(x)), ...

form an increasing cofinal sequence in T. Their formal
inverses

by := X, l1 :=log x, ¢> :=log(log(x)), ...

form a decreasing coinitial sequence in T>E,



Computations in T

e The iterates of exp,
ep i= X, eq := expx, ep = exp(exp(x)), ...

form an increasing cofinal sequence in T. Their formal
inverses

by := X, l1 :=log x, ¢> :=log(log(x)), ...

form a decreasing coinitial sequence in T>E,

e The structure
(T, +, -, <,exp)

is an elementary extension of
Rexp —(R + ',\,r*_>€)

(Wilkie.)
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Origins and Applications of Transseries

Transseries ...

« were introduced independently by Ecalle (Hilbert's
16th Problem) and by Dahn and Géring (Tarski’s Problem
0N Rexp);
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Origins and Applications of Transseries
Transseries ...

« were introduced independently by Ecalle (Hilbert's
16th Problem) and by Dahn and Géring (Tarski’s Problem
0N Rexp);

e give very exact asymptotics for solutions of algebraic
differential equations over R;

e many functions occurring in analysis have an asymptotic
expansion as transseries; for example, many (all?), which
are definable in an exponentially bounded o-minimal
expansion of (R, +, -, <), like Rexp.



From now on,

T = the ordered differential field of transseries.
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The T-Conjecture

From now on,
T = the ordered differential field of transseries.

View T as a model-theoretic structure in the language 0, 1, +, -,
d (for the derivation of T) and <.

The T-Conjecture (A., van den Dries, van der Hoeven)

T is model-complete.

In fact, we have a strengthened version of this conjecture,
which states that T has quantifier elimination in a certain
natural expansion of the language specified above.

Recently we have become optimistic that we are getting closer
to a proof of this conjecture. (Most of the rest of this talk is joint
work with van den Dries and van der Hoeven.)



Il. H-Fields
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Let K be an ordered differential field, with constant field

C=Cx:={feK:f =0}
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H-Fields

Let K be an ordered differential field, with constant field
C=Cx:={feK:f =0}
We define

f<xg <= 3ceC:|f|<clgl “gdominates f’
| <c

f<g < VceCO:|f el “g strictly dominates £



H-Fields

Let K be an ordered differential field, with constant field
C=Cx:={feK:f =0}
We define

f<xg <= 3ceC:|f|<clgl “gdominates f’

| <
f<g <= VYceC:|f<c|g “g strictly dominates f.”

Definition
We call K an H-field provided that
(H1) f>C=1f >0;

(H2) fx1=f—c=<1forsomec e C;
(H3) f<1=1f <1.



Every ordered differential subfield K O R of T is an H-field.
(For example, K = R(x~)).)
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H-Fields

Every ordered differential subfield K © R of T is an H-field.
(For example, K = R((x~1)).)

To prove the T-Conjecture we need to show that the
existentially closed H-fields are exactly the H-fields that share
certain deeper first-order properties with T.



H-Fields

Every ordered differential subfield K © R of T is an H-field.
(For example, K = R((x~1)).)

To prove the T-Conjecture we need to show that the
existentially closed H-fields are exactly the H-fields that share
certain deeper first-order properties with T.

In this talk we concentrate on one particular such property:

w-freeness.



Liouville closed H-Fields

The real closure of an H-field is again an H-field. We call a real
closed H-field K Liouville closed, if for every a, b € K there is
anonzero y € K with y’ + ay = b.
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Liouville closed H-Fields

The real closure of an H-field is again an H-field. We call a real
closed H-field K Liouville closed, if for every a, b € K there is
anonzero y € K with y’ + ay = b.

For example, T is Liouville closed.

A Liouville closure of an H-field K is a minimal Liouville
closed H-field extension of K.

Theorem (A.-van den Dries, 2002)

Every H-field has exactly one or exactly two Liouville closures.

Whether there are one or two Liouville closures depends on an
important trichotomy in the class of H-fields.



Let K be an H-field.

Define an equivalence relation < on K* = K'\ {0}:

fxg <« fxgandgxf.
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Trichotomy for H-Fields

Let K be an H-field.
Define an equivalence relation < on K* = K '\ {0}:
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vf+ vg = v(fg), vi>vg <— f=xg.
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Trichotomy for H-Fields
Let K be an H-field.

Define an equivalence relation < on K* = K'\ {0}:
fxg —

fxgandg=xf.
The equivalence classes vf are elements of an ordered abelian
group I =Tk := v(K*):

vf+ vg = v(fg),

vizvg < f<g.
The map f — vf: K* — T is a valuation.

For K =T: (I,+,<) = (group of transmonomials, -, :=).




The derivation o induces a map

v=vfry =v(f):

r#:.=r\{0} »r.

!
o K
Y= -y
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The derivation o induces a map

v=vfry =v(f):

r#:=r\{0} —T.
Wesetl:={y —~y:~veTl#}. Thenlt < (r=0Y.

!
o K
Y= -y

«O» «FHr «=>»
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Exactly one of the following statements holds:
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Exactly one of the following statements holds:

@ ' <~ < (I>%) for a (necessarily unique) ~.
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Exactly one of the following statements holds:

@ ' <~ < (I>%) for a (necessarily unique) ~.

@® 't has a largest element.
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Trichotomy for H-Fields

Exactly one of the following statements holds:

@ ' <~ < (I>%) for a (necessarily unique) ~.

@® 't has a largest element.
@® sup T’ does not exist; equivalently: T = (I'”)’.
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Trichotomy for H-Fields
Exactly one of the following statements holds:

@ ' <~ < (I>%) for a (necessarily unique) ~.
We call such v a gap in K.

@® 't has a largest element.

@® sup Tt does not exist; equivalently: T = (T'7)'.

We say that K has asymptotic integration.

O K=C;
O K=R(x ")

©® K =T (or any other Liouville closed K).




Trichotomy for H-Fields

Exactly one of the following statements holds:
@ ' <~ < (I>%) for a (necessarily unique) ~.
We call such v a gap in K.
@® 't has a largest element.

@ supTlT does not exist; equivalently: T = (I7)’.
We say that K has asymptotic integration.

In Case 1 we have two Liouville closures: if v = vg, then we
have a choice when adjoining [ g: make it > 1 or < 1.

In Case 2 we have one Liouville closure.

Obviously, Case 1 poses an obstacle for the proof of any kind of
quantifier elimination. And what happens in Case 37
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Gaps under Liouville Extensions

How do gaps arise under Liouville extensions?

Let K be a real closed H-field.
e If K is Liouville closed, then K does not have a gap.
o lf L=K(y)withy' =fe K (y= [f),then

L has a gap if and only if K has a gap.
o IfL:K(z)withz;«éO,zT:geK(z:expfg),then
L may have a gap even if K does not have a gap.

Here z' := Zz//z for z # 0in K.

One can detect in K already whether some g € K creates a
gap over K, i.e., z=exp [ gisagap in K(z).



can have a gap.

It is instructive to consider H-subfields K 2 R of T: no such K
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Gaps under Liouville Extensions

It is instructive to consider H-subfields K © R of T: no such K
can have a gap. Suppose K contains the iterated logarithms
o = X, Lhy1 = log ¢y Consider the “pseudo-cauchy sequence”

1 1 1 1
—— —fﬂ - N -_—
n SN + Lol + Lol1ls Tt boly - ln

in T. Then for A € K,
A is a “pseudo-limit” of (A,) <= —A creates a gap over K.
This gap is z = exp(/ —\), and then
R< [z< - <Up<---<ly <ty foralln,
which is impossible by construction of T.
(But (An) does have a pseudo-limit A = iojo m in some
n—

larger valued field.)
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Gaps under Liouville Extensions

The property that (A,) does not have a pseudo-limit in T can be
converted into a vV3-statement about T, and this statement has
the desired property:

Proposition

The following are equivalent, for a real closed H-field K :
O vi3g[g-1&f—g':=gl].
® K has asymptotic integration, and no element of K creates
a gap.

We say that K is A-free if it satisfies the condition in the
proposition.



It is now natural to wonder whether the occurrence of gaps is
concentrated in Liouville extensions:
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Gaps under Liouville Extensions

It is now natural to wonder whether the occurrence of gaps is
concentrated in Liouville extensions:
If K is a Liouville closed H-field and

Ky)=KWy.y.y",...)

an H-field extension of K with a gap, is then y
necessarily differentially franscendental over K ?

The content of my talk at Ravello 2002 was that the answer, in
general, is “no.” (Used a larger transseries field than T.)

In the meantime we have reached a better understanding of
when an H-field can have a differentially algebraic H-field
extension with a gap.



Let K be a real closed H-field with asymptotic integration.
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Let K be a real closed H-field with asymptotic integration. Set

w(z) = -27 - 22

for z € K.
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o-freeness

Let K be a real closed H-field with asymptotic integration. Set

w(z) =27 —Z% forz e K.

Theorem (~ 2013)

Suppose K satisfies
viaglg = 1 & f —w(—g™) = (g")?].

Then no differentially algebraic H-field extension of K has a
gap.



o-freeness

Let K be a real closed H-field with asymptotic integration. Set

w(z) =27 —Z% forz e K.

Theorem (~ 2013)
Suppose K satisfies
viaglg = 1 & f —w(—g™) = (g")?].
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o-freeness

Let K be a real closed H-field with asymptotic integration. Set

w(z) =27 —Z% forz e K.

Theorem (~ 2013)
Suppose K satisfies
viaglg = 1 & f —w(—g™) = (g")?].
Then no differentially algebraic H-field extension of K has a
gap.
We call K o-free if it satisfies the above V3-condition.

Corollary
If K is o-free, then K has exactly one Liouville closure.



pc-sequence.

The V3-condition defining w-freeness also arises from a certain

4«0 «F>r « =) 4

>

DA



The V3-condition defining w-freeness also arises from a certain
pc-sequence. Let us work in T again.

«O» «Fr «=»r «

>

DA



o-freeness

The v3-condition defining w-freeness also arises from a certain
pc-sequence. Let us work in T again. Then

1 1 1 1

op = w(hn) = — + + +ot
n = wlkn) 27 (bot)2 " (Lolr£2)? (Colq -+ Cn)?

is a pc-sequence in T without pc-limit in T.



o-freeness

The v3-condition defining w-freeness also arises from a certain
pc-sequence. Let us work in T again. Then

1 1 1 1

op = w(hn) = — + + +ot
n = wlkn) 27 (bot)2 " (Lolr£2)? (Colq -+ Cn)?

is a pc-sequence in T without pc-limit in T. Translating this fact
into a first-order sentence results in the definition of w-freeness.



o-freeness

The v3-condition defining w-freeness also arises from a certain
pc-sequence. Let us work in T again. Then

o (An) 1+ 1 + 1 TR 1
::w = 5 PR -
' VB ()2 (Golrl2)? (bols -~ Ln)?

is a pc-sequence in T without pc-limit in T. Translating this fact
into a first-order sentence results in the definition of w-freeness.

The proof of the theorem has two main ingredients:

© a proof that every pc-sequence in K has a pseudolimit in
some H-field extension Lof K with', =T, C, = C;



o-freeness

The v3-condition defining w-freeness also arises from a certain
pc-sequence. Let us work in T again. Then

o (An) 1+ 1 + 1 TR 1
::w = 5 PR -
' VB ()2 (Golrl2)? (bols -~ Ln)?

is a pc-sequence in T without pc-limit in T. Translating this fact
into a first-order sentence results in the definition of w-freeness.

The proof of the theorem has two main ingredients:

© a proof that every pc-sequence in K has a pseudolimit in
some H-field extension Lof K with', =T, C, = C;

® Newton polynomials.



o-freeness

The v3-condition defining w-freeness also arises from a certain
pc-sequence. Let us work in T again. Then

onim ) =t Ly
::w = 5 PR -
' VB ()2 (Golrl2)? (bols -~ Ln)?

is a pc-sequence in T without pc-limit in T. Translating this fact
into a first-order sentence results in the definition of w-freeness.

The proof of the theorem has two main ingredients:

© a proof that every pc-sequence in K has a pseudolimit in
some H-field extension Lof K with', =T, C, = C;

@® Newton polynomials.
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In K =T every differential polynomial P € K{Y} can be
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into one with a “dominant term” of the form
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Newton Polynomials

In the following K{Y} = K[Y, Y’,...] is the ring of differential
polynomials over K.

In K =T every differential polynomial P € K{Y} can be
transformed, by applying finitely many transformations

f—ft:=foeX =1,
into one with a “dominant term” of the form

(co+ciY+--+cmY™ - (Y) (Cg,...,Cm ER).

General H-fields K have no operation like f — f71.
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But there is a substitute: compositional conjugation.

 Replacing the derivation o of K by ¢~ 9 (¢ € K*) yields a
new differential field K¢, and

e rewriting P in terms of ¢—19 yields P? € K¢{Y} such that

P?(y) = P(y) forally € K.
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Newton Polynomials

But there is a substitute: compositional conjugation.

 Replacing the derivation o of K by ¢~ 9 (¢ € K*) yields a
new differential field K¢, and

e rewriting P in terms of ¢—19 yields P? € K¢{Y} such that
P?(y) = P(y) forally € K.
Only use ¢ for which K¢ is again an H-field: ¢ > 0, v¢ < (0.

Theorem (~ 2009)

Let P € K{Y}, P # 0. Then there exists Np € C{Y}, Np # 0,
so that for all ¢ with sufficiently large v¢:

P? =dNp + R, e KX, Re K*{Y}, R<0.

We call Np the Newton polynomial of P.



Unfortunately (?) it is not always the case (like in T) that
Np € C[Y](Y")N. But we now understand exactly when it is.
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Newton Polynomials

Unfortunately (?) it is not always the case (like in T) that
Np € C[Y](Y")N. But we now understand exactly when it is.

Theorem (~ 2011)
K o-free <= Npc C[Y|(Y)" forall0+# P c K{Y}.

The proof of this theorem involves a deeper study of
compositional conjugation.



The operation P — P? can be viewed as a triangular
K-algebra automorphism of K{Y} = K[Y,Y’,...] = K®{Y}:

DA



Compositional Conjugation

The operation P — P? can be viewed as a triangular
K-algebra automorphism of K{Y} = K[Y,Y’,...] = K?{Y}:
yo=yvy
(Y)? = oY’
(Y//)¢ — ¢2 Yy + ¢’Y’
(Y///)¢> — ¢3 Ym + 3¢¢/ Yy + ¢1/ Y/,



Compositional Conjugation

The operation P — P? can be viewed as a triangular
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Such triangular automorphisms can be treated with Lie
theoretic methods.



Compositional Conjugation

The operation P — P? can be viewed as a triangular

K-algebra automorphism of K{Y} = K[Y,Y’,...] = K?{Y}:
Yo=Y
(V') =gV’

(Y//)¢> — ¢2yl/+¢lyl
(Y///)¢> — ¢3 Ym +3¢¢’Y”—|—¢”Y’,

Such triangular automorphisms can be treated with Lie
theoretic methods. Every triangular automorphism ¢ of K{Y'}
can be represented by an upper triangular matrix M, € KN<N,
whose matrix logarithm log(M, ) represents a K-linear
derivation of K{Y'}.
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A special role is played by ¢ = 1/x where x’ = 1. The matrix
M~ = (T ;) representing
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has the entries

Tij= (—1y~! m (signed Stirling numbers of the first kind).
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Compositional Conjugation

A special role is played by ¢ = 1/x where x’ = 1. The matrix
M~ = (T ;) representing

P(Y) — PYX(Y, xY',x2Y",...)
has the entries
Tij= (=)~ m (signed Stirling numbers of the first kind).

lts matrix logarithm is

00 0 O 0O 0 ©
R

0 -3 2 -3 4

15

log(Mr) = o -6 5 -7
0 —10 10

0 —15




Let K O Q be a commutative ring. There is a group embedding

f— [f]: (z+ Z2K][Z]], o) — (unitriangular matrices in KN .).
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Compositional Conjugation

Fact (Jabotinsky, 1940s)

Let K © Q be a commutative ring. There is a group embedding

f— [f]: (z+ 22K][Z]], ©) — (unitriangular matrices in K<V, .).

100 0 0
1 6 f f,

1 3f, 4f+3R2
[f] = 1 6h

1

is called the iteration matrix of f = z + 3 fZ].
n=2



Compositional Conjugation

The matrix log[[f] has a simple form: it is the infinitesimal
iteration matrix (h) of some h= 3" hyZ € Z2K][[Z]]:
n=2

00 O O 0
0 h hs ha
0 3hy 4h - |

{n) = 0 6hy --- with (h)j = (;_1,1) Pj-it1-
0

Ecalle calls h = itlog(f) the iterative logarithm of f:

itlog(f o g) = itlog(f) + itlog(g) iffog=gof.



Compositional Conjugation
10 0

0
1

0 ...
1 2 _6 ...

1 -3 11 ...
My = (Tj) = 1 -6 ...

Then My = [log(1 + z)] and

itlog (log(1 + 2)) = —1

22+1z3_1z4+gz5_1126
2! 2 3! 2 4! 3 5!
= —itlog (62—1).

1260 "



The sequence
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The sequence
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is very irregular: its exponential generating function
itlog(e® — 1) is
o differentially transcendental (Boshernitzan-Rubel 1986);

¢ has radius of convergence 0 (Baker 1958; Lewin 1965).
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Compositional Conjugation

The sequence
2 11 _3 _ 11 29 493 _ 2711
0,1,-

2727 T3 12> 47 62401207 6 o
is very irregular: its exponential generating function
itlog(e? — 1) is
o differentially transcendental (Boshernitzan-Rubel 1986);
¢ has radius of convergence 0 (Baker 1958; Lewin 1965).

A common generalization of these facts holds true:
Theorem (A.-Bergweiler)

itlog(e? — 1) is differentially transcendental over C{z}.

(If f € z+ Z2C[[Z]] is a non-linear entire function, then itlog(f) is
differentially transcendental over the ring of entire functions.)



But this would be the topic of another talk . . .



Thank you!



