Definable Extension Theorems in O-minimal Structures

Matthias Aschenbrenner University of California, Los Angeles

O-minimality

- Basic definitions and examples
- Geometry of definable sets
- Why o-minimal geometry?
- 2 Definable extension theorems
 - The Whitney Extension Problem

O-minimal structures were introduced 30 years in order to provide an analogue of the model-theoretic tameness notion of *strong minimality* in an ordered context ("o-minimal" = "order-minimal").

We are mainly interested in o-minimal expansions of real closed ordered fields.

Throughout this talk, we fix an expansion R of a real closed ordered field $(R; 0, 1, +, \times, <)$. If you like, think of $R = \mathbb{R}$, the usual ordered field of reals.

Unless said otherwise, "definable" means "definable in R, possibly with parameters." As usual, a map $f: S \to R^n$, where $S \subseteq R^m$, is called definable if its graph $\Gamma(f) \subseteq R^{m+n}$ is.

Definition

One says that R is **o-minimal** if all definable subsets of R are finite unions of singletons and (open) intervals.

That is, R is o-minimal if the only one-variable sets definable in R are those that are already definable in the reduct (R; <) of R.

Basic examples (many more are known)

- $\mathbb{R}_{alg} = (\mathbb{R}; 0, 1, +, \times, <)$ [TARSKI, 1940s]; the definable sets are the *semialgebraic* sets;
- $\mathbb{R}_{an} = \mathbb{R}_{alg} \cup \{f : [-1,1]^n \to \mathbb{R} \text{ restricted analytic, } n \in \mathbb{N}^{\geq 1}\}$ [VAN DEN DRIES, 1980s]; the definable sets are the *globally* (sometimes called *finitely*) *subanalytic* sets;
- $\mathbb{R}_{\mathrm{exp}} = \mathbb{R}_{\mathrm{alg}} \cup \{\text{exp}\}$ [WILKIE, 1990s].

O-minimality: Geometry of definable sets

In the following we assume that *R* is o-minimal.

Definition

 (i_1, \ldots, i_n) -cells in \mathbb{R}^n are defined inductively on n as follows:

- For n = 0, the set $R^0 = {\text{pt}}$ is an ()-cell in R^0 ;
- Let $C \subseteq \mathbb{R}^n$ be an (i_1, \ldots, i_n) -cell $(i_k \in \{0, 1\})$.
 - An $(i_1, \ldots, i_n, 0)$ -cell is the graph $\Gamma(f)$ of a continuous definable function $f: C \to R$.
 - An $(i_1, \ldots, i_n, 1)$ -cell is a set

 $(f,g)_C := \{(x,y) \in R^n \times R : x \in C, \ f(x) < y < g(x)\}$

where $f, g: C \to R \cup \{\pm \infty\}$ are continuous definable functions with f < g on C (i.e., f(x) < g(x) for all $x \in C$).

So for n = 1, a (0)-cell is a singleton $\{r\}$ ($r \in R$), and a (1)-cell is an interval (a, b) where $-\infty \leq a < b \leq +\infty$.

Cell Decomposition Theorem (VAN DEN DRIES, PILLAY-STEINHORN; 1980s)

- Given definable subsets S₁,..., S_k of ℝⁿ there exists a finite partition 𝒞 of Rⁿ into cells such that each S_i is a union of some C ∈ 𝒞.
- If f: E → R (E ⊆ Rⁿ) is a definable function, then there is a finite partition C of E into cells so that f ↾ C is continuous, for every C ∈ C.
- As a consequence, every definable set has only finitely many *definably* connected components.
- In this theorem one can also achieve differentiability up to some fixed finite order.

Cell Decomposition yields that *R* has *built-in Skolem functions:*

Corollary (VAN DEN DRIES)

Let $(S_a)_{a \in A}$ be a definable family of nonempty subsets $S_a \subseteq R^n$, where $A \subseteq R^N$; that is,

$$S = \left\{ (a, x) : a \in A, \ x \in S_a \right\} \subseteq \mathbb{R}^{N+n}$$

is definable. Then there is a definable map $f: A \to R^n$ such that $f(a) \in S_a$ for all $a \in A$.

As a consequence, one obtains *curve selection*: for each definable $E \subseteq R^n$ and $x \in \operatorname{cl}(E) \setminus E$, there is a continuous definable injective map $\gamma \colon (0, \varepsilon) \to E$, for some $\varepsilon \in R^{>0}$, such that $\lim_{t \to 0^+} \gamma(t) = x$.

Many of the other classical topological finiteness theorems for semialgebraic sets and maps (triangulation, trivialization, etc.) continue to hold for definable sets in R. One can develop a kind of "tame topology" (no pathologies) in R.

Definition

For an (i_1, \ldots, i_n) -cell C, set $\dim(C) := i_1 + \cdots + i_n$.

For a definable subset E of \mathbb{R}^n , set

$$\dim(E) := \max \{ \dim(C) : C \subseteq E, C \text{ is a cell} \},\$$

where $\max(\emptyset) = -\infty$.

This notion of dimension is very well-behaved (no space-filling curves, etc.). For example, if E, E' are definable and there is a definable bijection between E and E', then $\dim(E) = \dim(E')$.

O-minimality: Geometry of definable sets

A deeper analysis of the *geometric* properties of definable sets usually involves gaining some control on the growth of derivatives. Let $\Omega \subseteq R^d$ be open, $d \ge 1$, and $\partial \Omega = \operatorname{cl}(\Omega) \setminus \Omega$.

Definition

Let $f: \Omega \to R^l$, $l \ge 1$, be definable and C^m . One says that f is Λ^m -regular if there exists L > 0 such that

$$\|D^{\alpha}f(x)\| \leqslant \frac{L}{d(x,\partial\Omega)^{|\alpha|-1}} \quad \text{for all } x \in \Omega, \, \alpha \in \mathbb{N}^d, \, 1 \leqslant |\alpha| \leqslant m.$$

Here
$$D^{\alpha} = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_d}}{\partial x_d^{\alpha_d}}, |\alpha| = \alpha_1 + \cdots + \alpha_d$$
 for $\alpha = (\alpha_1, \dots, \alpha_d)$.

Also declare each map $R^0\to R^l$ and the constant functions $\pm\infty$ to be $\Lambda^m\text{-regular.}$

For example, $f(x) = \frac{1}{x}$ is not Λ^1 -regular on $\Omega = (0, +\infty)$.

O-minimality: Geometry of definable sets

Standard open Λ^m -regular cells in \mathbb{R}^n are defined inductively:

- 1 n = 0: R^0 is the only standard open Λ^m -regular cell in R^0 ;
- **2** $n \ge 1$: a set of the form $(f,g)_D$ where $f,g: D \to R \cup \{\pm \infty\}$ are definable Λ^m -regular functions such that f < g, and D is a standard open Λ^m -regular cell in \mathbb{R}^{n-1} .
- A standard Λ^m -regular cell in \mathbb{R}^n is either
 - **1** a standard open Λ^m -regular cell in \mathbb{R}^n ; or

2 the graph of a definable Λ^m -regular map $D \to R^{n-d}$, where D is a standard open Λ^m -regular cell in R^d , and $0 \le d < n$. Thus standard Λ^m -regular cells in R^n are particular kinds of $(1, \ldots, 1, 0, \ldots, 0)$ -cells in R^n .

Call $E \subseteq R^n$ a Λ^m -regular cell in R^n if there is an R-linear orthogonal isomorphism ϕ of R^n such that $\phi(E)$ is a standard Λ^m -regular cell in R^n .

Definition

A Λ^m -regular stratification of \mathbb{R}^n is a finite partition \mathscr{D} of \mathbb{R}^n into Λ^m -regular cells such that each ∂D ($D \in \mathscr{D}$) is a union of sets from \mathscr{D} . Given $E_1, \ldots, E_N \subseteq \mathbb{R}^n$, such a Λ^m -regular stratification \mathscr{D} of \mathbb{R}^n is said to be **compatible with** E_1, \ldots, E_N if each E_i is a union of sets from \mathscr{D} .

Theorem (A. FISCHER, 2007)

Let E_1, \ldots, E_N be definable subsets of \mathbb{R}^n . Then there exists a Λ^m -regular stratification \mathscr{D} of \mathbb{R}^n , compatible with E_1, \ldots, E_N .

Moreover, one has quite some fine control over the cells in \mathscr{D} ; e.g., they can additionally chosen to be Lipschitz (with rational Lipschitz constant depending only on n).

At the root of this is a simple calculus lemma due to GROMOV (phrased here in \mathbb{R}):

Lemma

Let $h: I \to \mathbb{R}$ be a C^2 -function on an interval I in \mathbb{R} such that h, h'' are semidefinite. Let $t \in I$ and r > 0 with $[t - r, t + r] \subseteq I$. Then

$$|h'(t)| \leq \frac{1}{r} \sup \left\{ |h(\xi)| : \xi \in [t-r,t+r] \right\}.$$

O-minimality: Why o-minimal geometry?

For now, let's work in $R = \mathbb{R}$.

By an **extension problem** we will mean a situation of the following kind:

Let \mathcal{C} be a class of [definable] functions $\mathbb{R}^n \to \mathbb{R}$. Find a necessary and sufficient condition for some given function $E \to \mathbb{R}$, were $E \subseteq \mathbb{R}^n$, to have an extension to a [definable] function from \mathcal{C} .

Earlier, A. FISCHER and I had looked at a definable version of Kirszbraun's Theorem, which concerns the extension of Lipschitz functions with a given Lipschitz constant. (Here, o-minimality turned out to be an unnecessarily strong tameness assumption on R.)

Definable extension theorems: The Whitney Extension Problem

From now on, $E \subseteq \mathbb{R}^n$ is closed, and α ranges over \mathbb{N}^n .

Definition

A jet of order m on E is a family $F = (F^{\alpha})_{|\alpha| \leq m}$ of continuous functions $F^{\alpha} \colon E \to \mathbb{R}$. For $f \in C^m(\mathbb{R}^n)$, we obtain a jet

 $J_E^m(f) := (D^{\alpha}f \restriction E)_{|\alpha| \leqslant m}$

of order m on E.

Question

Let *F* be a jet of order *m* on *E*. What is a necessary and sufficient condition to guarantee the existence of a C^m -function $f: \mathbb{R}^n \to \mathbb{R}$ such that $J_E^m(f) = F$?

Definable extension theorems: The Whitney Extension Problem

Let
$$F = (F^{\alpha})_{|\alpha| \leq m}$$
 be a jet of order m on E and $a \in E$.

$$T_a^m F(x) := \sum_{|\alpha| \leqslant m} \frac{F^{\alpha}(a)}{\alpha!} (x-a)^{\alpha}, \quad R_a^m F := F - J_E^m(T_a^m F).$$

Definition

A jet *F* of order *m* is a C^m -Whitney field ($F \in \mathscr{E}^m(E)$) if for $x_0 \in E$ and $|\alpha| \leq m$,

$$(R_x^m F)^{\alpha}(y) = o(|x - y|^{m - |\alpha|}) \quad \text{as } E \ni x, y \to x_0.$$

By Taylor's Formula, $J_E^m(f)$ is a C^m -Whitney field, for each $f \in C^m(\mathbb{R}^n)$.

Whitney Extension Theorem (H. WHITNEY, 1934)

For every $F \in \mathscr{E}^m(E)$, there is an $f \in C^m(\mathbb{R}^n)$ with $J^m_E(f) = F$.

Proof outline

- Decompose ℝⁿ \ E into countably many cubes with disjoint interior satisfying some inequality regarding their diameter and distance from E. (Whitney decomposition)
- Use this to get a "special" partition of unity (ϕ_i) on $\mathbb{R}^n \setminus E$.
- Pick $a_i \in E$ such that $d(a_i, \operatorname{supp}(\phi_i)) = d(E, \operatorname{supp}(\phi_i))$.

•
$$f(x) = \begin{cases} F^0(x), & \text{if } x \in E;\\ \sum_{i \in \mathbb{N}} \phi_i(x) T^m_{a_i} F(x), & \text{if } x \notin E. \end{cases}$$

Theorem (KURDYKA & PAWŁUCKI, 1997)

Let $F \in \mathscr{E}^m(E)$ be subanalytic. Then there is a subanalytic C^m -function $f \colon \mathbb{R}^n \to \mathbb{R}$ such that $J^m_E(f) = F$.

Their proof used tools very specific to the subanalytic context (e.g., reduction to the case E compact; Whitney arc property).

Theorem (PAWŁUCKI, 2008)

Let $E \subseteq \mathbb{R}^n$ be definable in \mathbf{R} . There is a linear extension operator

$$\mathscr{E}^m_{\operatorname{def}}(E) \to C^m(\mathbb{R}^n)$$

which is a finite composition of operators each of which either preserves definability or is an integration with respect to a parameter.

Theorem (A. THAMRONGTHANYALAK, 2012)

Let $F \in \mathscr{E}^m(E)$ be definable. Then there is a definable C^m -function $f \colon \mathbb{R}^n \to \mathbb{R}$ such that $J^m_E(f) = F$.

The construction is uniform (for definable families of Whitney fields), and works for any R, not just $R = \mathbb{R}$.

The proof follows the outline of the construction of PAWŁUCKI, combining it with the results on Λ^m -stratification by FISCHER.

A key step is the Λ^m -regular Separation Theorem (proved by PAWŁUCKI for $R = \mathbb{R}$), which we explain next.

Definition

Let $P, Q, Z \subseteq \mathbb{R}^n$ be definable. Then P, Q are Z-separated if

$$(\exists C > 0) (\forall x \in \mathbb{R}^n) \ d(x, P) + d(x, Q) \ge C \cdot d(x, Z).$$

P and Q are $\{(0,0)\}$ -separated;

P' and Q' not $\{(0,0)\}$ -separated.

Definable extension theorems: The Whitney Extension Problem

For $E' \subseteq cl(E)$ and $\varepsilon > 0$, let $\Delta_{\varepsilon}(E) := \{x \in \mathbb{R}^n : d(x, E) < \varepsilon d(x, E')\};$ $\Delta_{\varepsilon}(E) := \Delta_{\varepsilon}(E, \partial E).$

Proposition (PAWŁUCKI)

Let $E_i \supseteq E'_i$ (i = 1, ..., s) be closed definable subsets of \mathbb{R}^n . Suppose E_i , E_j are E'_i -separated for every $i \neq j$.

Let $F \in \mathscr{E}^m(E_1 \cup \cdots \cup E_s)$ be flat on $E'_1 \cup \cdots \cup E'_s$, and $\varepsilon > 0$ be small enough. Let f_i be a definable C^m -extension of $F \upharpoonright E_i$, *m*-flat outside $\Delta_{\varepsilon}(E_i, E'_i)$.

Then $\sum_i f_i$ is a C^m -extension of F.

Definition

A Λ^m -pancake in \mathbb{R}^n is a finite disjoint union of graphs of definable Lipschitz Λ^m -regular maps $\Omega \to \mathbb{R}^{n-d}$, where $\Omega \subseteq \mathbb{R}^d$ is an open Λ^m -regular cell.

Λ^m -regular Separation Theorem

Let $E \subseteq R^n$ be definable. Then $E = M_1 \cup \cdots \cup M_s \cup A$ where

- **1** each M_i is a Λ^m -pancake in a suitable coordinate system, $\dim M_i = \dim E$, and A is a definable, small, closed;
- **2** $cl(M_i)$, $cl(M_j)$ are ∂M_i -separated for $i \neq j$;
- **3** $cl(M_i)$, *A* are ∂M_i -separated.

Definable extension theorems: The Whitney Extension Problem

Whitney actually asked a quite different question (and answered it for n = 1):

Whitney's Extension Problem

Let $f: X \to \mathbb{R}$ be a continuous function, where X is a closed subset of \mathbb{R}^n . How can we determine whether f is the restriction of a C^m -function on \mathbb{R}^n ?

A complete answer was only given by C. FEFFERMAN in the early 2000s. BIERSTONE & MILMAN (2009): what about the definable case?

An answer in the case m = 1 was found earlier by G. GLAESER in 1958, and simplified by B. KLARTAG and N. ZOBIN (2007).

The latter can be made to work definably (A. & THAMRONGTHANYALAK, 2013).

Definition

Let $f: E \to R$ and $H \subseteq E \times (R \times R^n)$ be definable. We say that H is a **holding space for** f if

- 1 H_x is an affine subspace of $R \times R^n$ or H_x is empty, for every $x \in E$;
- 2 whenever $F \in C^1(\mathbb{R}^n)$ is definable with $F \upharpoonright E = f$,

$$\left\{\left(x,F(x),\frac{\partial F}{\partial x_1}(x),\ldots,\frac{\partial F}{\partial x_n}(x)\right):x\in E\right\}\subseteq H.$$

Identify $R \times R^n$ with the space \mathscr{P}_n of linear polynomials in n indeterminates over R. Think of a holding space for f as a collection of potential Taylor polynomials of definable C^1 -extensions of f.

We always have the **trivial** holding space $H_0 := E \times \mathscr{P}_n$.

Definable extension theorems: The Whitney Extension Problem

Let $H \subseteq E \times \mathscr{P}_n$ be definable.

Definition (the (GLAESER) refinement H of H)

 $(x_0, p_0) \in \widetilde{H} :\iff (x_0, p_0) \in H$ and

 $(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x_1, x_2 \in E \cap B_{\delta}(x_0)) (\exists p_1 \in H(x_1), p_2 \in H(x_2))$ $|D^{\alpha}(p_i - p_j)(x_j)| \leq \varepsilon ||x_i - x_j||^{1 - |\alpha|} \text{ for } i, j = 0, 1, 2 \text{ and } |\alpha| \leq 1.$

We say that H is **stable** under refinement if $\tilde{H} = H$.

Routine to show:

- H(x) affine subspace for each $x \in X \Rightarrow \widetilde{H}(x) = \emptyset$, or $\widetilde{H}(x)$ is an affine subspace of \mathscr{P}_n ;
- *f* extends to a definable C¹-function Rⁿ → R ⇒ every holding space for *f* is stable;
- dim $\widetilde{H}(x_0) \leq \liminf_{X \ni x \to x_0} \dim H(x).$

As a consequence, the sequence (H_l) where

 $H_0 =$ trivial holding space for f, $H_{l+1} := \widetilde{H}_l$

eventually stabilizes (in fact, for $l = 2 \dim \mathscr{P}_n + 1 = 2n + 3$). Let *H* be the eventual value of this sequence.

Lemma (consequence of Definable Whitney Extension)

The function f extends to a definable C^1 -function on \mathbb{R}^n iff there is a continuous Skolem function for the definable family (H_x) .

It is useful to think of (H_x) as a **set-valued map**

$$x \mapsto H(x) = H_x \colon E \rightrightarrows R \times R^n.$$

If $H(x) \neq \emptyset$ for each $x \in E$, then *H* is lower semi-continuous in the sense of the following definition.

Let $E \subseteq R^m$ and $T \rightrightarrows R^n$ be a set-valued map.

Definition

One says that *T* is **lower semi-continuous (l.s.c.)** if, for every $x \in E, y \in T(x)$, and neighborhood *V* of *y*, there is a neighborhood *U* of *x* such that $T(x') \cap V \neq \emptyset$ for all $x' \in U \cap E$.

Theorem (Definable Michael's Selection Theorem)

Let *E* be a closed subset of \mathbb{R}^n and $T: E \rightrightarrows \mathbb{R}^m$ be a definable *l.s.c.* set-valued map such that T(x) is nonempty, closed, and convex for every $x \in E$. Then *T* has a continuous definable Skolem function.

Classically, this theorem is shown by a nonconstructive iterative procedure.

It does also hold for *bounded* E in the category of semilinear sets and maps (using a different proof).

Corollary

Let $(f_a)_{a \in A}$, $A \subseteq \mathbb{R}^N$, be a definable family of functions $f_a \colon E_a \to \mathbb{R}$, where $E_a \subseteq \mathbb{R}^n$ is closed. Then there is a definable $A_* \subseteq A$ such that for all $a \in A$,

 $a \in A_* \iff f_a$ extends to a definable C^1 -function on \mathbb{R}^n .

Moreover, there is a definable family $(\tilde{f}_a)_{a \in A_*}$ of C^1 -functions on R^n such that

$$f_a \upharpoonright E_a = f_a$$
 for each $a \in A_*$.