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O-minimality: Basic definitions and examples

O-minimal structures were introduced 30 years in order to
provide an analogue of the model-theoretic tameness notion of
strong minimality in an ordered context (“o-minimal” =
“order-minimal”).

We are mainly interested in o-minimal expansions of real
closed ordered fields.

Throughout this talk, we fix an expansion R of a real closed
ordered field (R; 0, 1,+,×, <). If you like, think of R = R, the
usual ordered field of reals.

Unless said otherwise, “definable” means “definable in R,
possibly with parameters.” As usual, a map f : S → Rn, where
S ⊆ Rm, is called definable if its graph Γ(f) ⊆ Rm+n is.



O-minimality: Basic definitions and examples

Definition
One says that R is o-minimal if all definable subsets of R are
finite unions of singletons and (open) intervals.

That is, R is o-minimal if the only one-variable sets definable in
R are those that are already definable in the reduct (R;<) of R.

Basic examples (many more are known)

• Ralg = (R; 0, 1,+,×, <) [TARSKI, 1940s]; the definable sets
are the semialgebraic sets;

• Ran = Ralg ∪
{
f : [−1, 1]n → R restricted analytic, n ∈ N>1

}
[VAN DEN DRIES, 1980s]; the definable sets are the
globally (sometimes called finitely ) subanalytic sets;

• Rexp = Ralg ∪ {exp} [WILKIE, 1990s].



O-minimality: Geometry of definable sets

In the following we assume that R is o-minimal.

Definition
(i1, . . . , in)-cells in Rn are defined inductively on n as follows:
• For n = 0, the set R0 = {pt} is an ( )-cell in R0;
• Let C ⊆ Rn be an (i1, . . . , in)-cell (ik ∈ {0, 1}).

• An (i1, . . . , in, 0)-cell is the graph Γ(f) of a continuous
definable function f : C → R.

• An (i1, . . . , in, 1)-cell is a set

(f, g)C :=
{

(x, y) ∈ Rn ×R : x ∈ C, f(x) < y < g(x)
}

where f, g : C → R ∪ {±∞} are continuous definable
functions with f < g on C (i.e., f(x) < g(x) for all x ∈ C).

So for n = 1, a (0)-cell is a singleton {r} (r ∈ R), and a (1)-cell
is an interval (a, b) where −∞ 6 a < b 6 +∞.



O-minimality: Geometry of definable sets

Cell Decomposition Theorem
(VAN DEN DRIES, PILLAY-STEINHORN; 1980s)

• Given definable subsets S1, . . . , Sk of Rn there exists a
finite partition C of Rn into cells such that each Si is a
union of some C ∈ C .

• If f : E → R (E ⊆ Rn) is a definable function, then there is
a finite partition C of E into cells so that f � C is
continuous, for every C ∈ C .

• As a consequence, every definable set has only finitely
many definably connected components.

• In this theorem one can also achieve differentiability up to
some fixed finite order.



O-minimality: Geometry of definable sets

Cell Decomposition yields that R has built-in Skolem functions:

Corollary (VAN DEN DRIES)

Let (Sa)a∈A be a definable family of nonempty subsets
Sa ⊆ Rn, where A ⊆ RN ; that is,

S =
{

(a, x) : a ∈ A, x ∈ Sa
}
⊆ RN+n

is definable. Then there is a definable map f : A→ Rn such
that f(a) ∈ Sa for all a ∈ A.

As a consequence, one obtains curve selection: for each
definable E ⊆ Rn and x ∈ cl(E) \ E, there is a continuous
definable injective map γ : (0, ε)→ E, for some ε ∈ R>0, such
that lim

t→0+
γ(t) = x.



O-minimality: Geometry of definable sets

Many of the other classical topological finiteness theorems for
semialgebraic sets and maps (triangulation, trivialization, etc.)
continue to hold for definable sets in R. One can develop a kind
of “tame topology” (no pathologies) in R.

Definition
For an (i1, . . . , in)-cell C, set dim(C) := i1 + · · ·+ in.

For a definable subset E of Rn, set

dim(E) := max
{

dim(C) : C ⊆ E, C is a cell
}
,

where max(∅) = −∞.

This notion of dimension is very well-behaved (no space-filling
curves, etc.). For example, if E, E′ are definable and there is a
definable bijection between E and E′, then dim(E) = dim(E′).



O-minimality: Geometry of definable sets

A deeper analysis of the geometric properties of definable sets
usually involves gaining some control on the growth of
derivatives. Let Ω ⊆ Rd be open, d > 1, and ∂Ω = cl(Ω) \ Ω.

Definition
Let f : Ω→ Rl, l > 1, be definable and Cm. One says that f is
Λm-regular if there exists L > 0 such that

‖Dαf(x)‖ 6 L

d(x, ∂Ω)|α|−1
for all x ∈ Ω, α ∈ Nd, 1 6 |α| 6 m.

Here Dα = ∂α1

∂x
α1
1

· · · ∂αd
∂x
αd
d

, |α| = α1 + · · ·+αd for α = (α1, . . . , αd).

Also declare each map R0 → Rl and the constant functions
±∞ to be Λm-regular.

For example, f(x) = 1
x is not Λ1-regular on Ω = (0,+∞).



O-minimality: Geometry of definable sets

Standard open Λm-regular cells in Rn are defined inductively:
1 n = 0: R0 is the only standard open Λm-regular cell in R0;
2 n > 1: a set of the form (f, g)D where f, g : D → R ∪ {±∞}

are definable Λm-regular functions such that f < g, and D
is a standard open Λm-regular cell in Rn−1.

A standard Λm-regular cell in Rn is either
1 a standard open Λm-regular cell in Rn; or
2 the graph of a definable Λm-regular map D → Rn−d, where
D is a standard open Λm-regular cell in Rd, and 0 6 d < n.

Thus standard Λm-regular cells in Rn are particular kinds of
(1, . . . , 1, 0, . . . , 0)-cells in Rn.

Call E ⊆ Rn a Λm-regular cell in Rn if there is an R-linear
orthogonal isomorphism φ of Rn such that φ(E) is a standard
Λm-regular cell in Rn.



O-minimality: Geometry of definable sets

Definition
A Λm-regular stratification of Rn is a finite partition D of Rn

into Λm-regular cells such that each ∂D (D ∈ D) is a union of
sets from D . Given E1, . . . , EN ⊆ Rn, such a Λm-regular
stratification D of Rn is said to be compatible with E1, . . . , EN
if each Ei is a union of sets from D .

Theorem (A. FISCHER, 2007)

Let E1, . . . , EN be definable subsets of Rn. Then there exists a
Λm-regular stratification D of Rn, compatible with E1, . . . , EN .

Moreover, one has quite some fine control over the cells in D ;
e.g., they can additionally chosen to be Lipschitz (with rational
Lipschitz constant depending only on n).



O-minimality: Geometry of definable sets

At the root of this is a simple calculus lemma due to GROMOV

(phrased here in R):

Lemma
Let h : I → R be a C2-function on an interval I in R such that
h, h′′ are semidefinite. Let t ∈ I and r > 0 with [t− r, t+ r] ⊆ I.
Then ∣∣h′(t)∣∣ 6 1

r
sup

{
|h(ξ)| : ξ ∈ [t− r, t+ r]

}
.



O-minimality: Why o-minimal geometry?

O-minimality

General model-theore-
tic properties of o-mi-
nimal structures

• valuation theory;

• definable groups;

• asymptotic
expansions; . . .

Construction of examples

• elimination theory;

• resolution of
singularities; . . .

Geometry of definable sets

Applications

Case in point:

PILA-WILKIE

(2006)



Definable extension theorems

For now, let’s work in R = R.

By an extension problem we will mean a situation of the
following kind:

Let C be a class of [definable] functions Rn → R. Find a
necessary and sufficient condition for some given function
E → R, were E ⊆ Rn, to have an extension to a [definable]
function from C.

Earlier, A. FISCHER and I had looked at a definable version of
Kirszbraun’s Theorem, which concerns the extension of
Lipschitz functions with a given Lipschitz constant. (Here,
o-minimality turned out to be an unnecessarily strong tameness
assumption on R.)



Definable extension theorems: The Whitney Extension Problem

From now on, E ⊆ Rn is closed, and α ranges over Nn.

Definition
A jet of order m on E is a family F = (Fα)|α|6m of continuous
functions Fα : E → R. For f ∈ Cm(Rn), we obtain a jet

JmE (f) := (Dαf � E)|α|6m

of order m on E.

Question
Let F be a jet of order m on E. What is a necessary and
sufficient condition to guarantee the existence of a Cm-function
f : Rn → R such that JmE (f) = F?



Definable extension theorems: The Whitney Extension Problem

Let F = (Fα)|α|6m be a jet of order m on E and a ∈ E.

Tma F (x) :=
∑
|α|6m

Fα(a)

α!
(x− a)α, Rma F := F − JmE (Tma F ).

Definition
A jet F of order m is a Cm-Whitney field (F ∈ Em(E)) if
for x0 ∈ E and |α| 6 m,

(Rmx F )α(y) = o(|x− y|m−|α|) as E 3 x, y → x0.

By Taylor’s Formula, JmE (f) is a Cm-Whitney field, for each
f ∈ Cm(Rn).



Definable extension theorems: The Whitney Extension Problem

Whitney Extension Theorem (H. WHITNEY, 1934)

For every F ∈ Em(E), there is an f ∈ Cm(Rn) with JmE (f) = F .

Proof outline

• Decompose Rn \E into countably many cubes with disjoint
interior satisfying some inequality regarding their diameter
and distance from E. (Whitney decomposition)

• Use this to get a “special” partition of unity (φi) on Rn \ E.
• Pick ai ∈ E such that d(ai, supp(φi)) = d(E, supp(φi)).

• f(x) =

F
0(x), if x ∈ E;∑

i∈N
φi(x)Tmai F (x), if x /∈ E.



Definable extension theorems: The Whitney Extension Problem

Theorem (KURDYKA & PAWŁUCKI, 1997)

Let F ∈ Em(E) be subanalytic. Then there is a subanalytic
Cm-function f : Rn → R such that JmE (f) = F .

Their proof used tools very specific to the subanalytic context
(e.g., reduction to the case E compact; Whitney arc property).

Theorem (PAWŁUCKI, 2008)

Let E ⊆ Rn be definable in R. There is a linear extension
operator

Em
def(E)→ Cm(Rn)

which is a finite composition of operators each of which either
preserves definability or is an integration with respect to a
parameter.



Definable extension theorems: The Whitney Extension Problem

Theorem (A. THAMRONGTHANYALAK, 2012)

Let F ∈ Em(E) be definable. Then there is a definable
Cm-function f : Rn → R such that JmE (f) = F .

The construction is uniform (for definable families of Whitney
fields), and works for any R, not just R = R.

The proof follows the outline of the construction of PAWŁUCKI,
combining it with the results on Λm-stratification by FISCHER.

A key step is the Λm-regular Separation Theorem (proved by
PAWŁUCKI for R = R), which we explain next.



Definable extension theorems: The Whitney Extension Problem

Definition
Let P,Q,Z ⊆ Rn be definable. Then P,Q are Z-separated if

(∃C > 0)(∀x ∈ Rn) d(x, P ) + d(x,Q) > C · d(x, Z).

x

y

P

Q
x

y

P ′

Q′

P and Q are {(0, 0)}-separated; P ′ and Q′ not {(0, 0)}-separated.



Definable extension theorems: The Whitney Extension Problem

For E′ ⊆ cl(E) and ε > 0, let

∆ε(E) :=
{
x ∈ Rn : d(x,E) < εd(x,E′)

}
;

∆ε(E) := ∆ε(E, ∂E).

∆ε((−1, 1)× {0})

(−1, 1)× {0}

Proposition (PAWŁUCKI)

Let Ei ⊇ E′i (i = 1, . . . , s) be closed definable subsets of Rn.
Suppose Ei, Ej are E′i-separated for every i 6= j.

Let F ∈ Em(E1 ∪ · · · ∪Es) be flat on E′1 ∪ · · · ∪E′s, and ε > 0 be
small enough. Let fi be a definable Cm-extension of F � Ei,
m-flat outside ∆ε(Ei, E

′
i).

Then
∑

i fi is a Cm-extension of F .



Definable extension theorems: The Whitney Extension Problem

Definition
A Λm-pancake in Rn is a finite
disjoint union of graphs of definable
Lipschitz Λm-regular maps
Ω→ Rn−d, where Ω ⊆ Rd is an
open Λm-regular cell.

x

y

Λm-regular Separation Theorem

Let E ⊆ Rn be definable. Then E = M1 ∪ · · · ∪Ms ∪A where
1 each Mi is a Λm-pancake in a suitable coordinate system,

dimMi = dimE, and A is a definable, small, closed;
2 cl(Mi), cl(Mj) are ∂Mi-separated for i 6= j;
3 cl(Mi), A are ∂Mi-separated.



Definable extension theorems: The Whitney Extension Problem

Whitney actually asked a quite different question (and
answered it for n = 1):

Whitney’s Extension Problem

Let f : X → R be a continuous function, where X is a closed
subset of Rn. How can we determine whether f is the
restriction of a Cm-function on Rn?

A complete answer was only given by C. FEFFERMAN in the
early 2000s. BIERSTONE & MILMAN (2009): what about the
definable case?

An answer in the case m = 1 was found earlier by G. GLAESER

in 1958, and simplified by B. KLARTAG and N. ZOBIN (2007).

The latter can be made to work definably
(A. & THAMRONGTHANYALAK, 2013).



Definable extension theorems: The Whitney Extension Problem

Definition
Let f : E → R and H ⊆ E × (R×Rn) be definable. We say that
H is a holding space for f if

1 Hx is an affine subspace of R×Rn or Hx is empty, for
every x ∈ E;

2 whenever F ∈ C1(Rn) is definable with F � E = f ,{(
x, F (x),

∂F

∂x1
(x), . . . ,

∂F

∂xn
(x)

)
: x ∈ E

}
⊆ H.

Identify R×Rn with the space Pn of linear polynomials in n
indeterminates over R. Think of a holding space for f as a
collection of potential Taylor polynomials of definable
C1-extensions of f .
We always have the trivial holding space H0 := E ×Pn.



Definable extension theorems: The Whitney Extension Problem

Let H ⊆ E ×Pn be definable.

Definition (the (GLAESER) refinement H̃ of H)

(x0, p0) ∈ H̃ :⇐⇒ (x0, p0) ∈ H and

(∀ε > 0) (∃δ > 0) (∀x1, x2 ∈ E∩Bδ(x0)) (∃p1 ∈ H(x1), p2 ∈ H(x2))

|Dα(pi − pj)(xi)| 6 ε ‖xi − xj‖1−|α| for i, j = 0, 1, 2 and |α| 6 1.

We say that H is stable under refinement if H̃ = H.

Routine to show:
• H(x) affine subspace for each x ∈ X ⇒ H̃(x) = ∅, or H̃(x)

is an affine subspace of Pn;
• f extends to a definable C1-function Rn → R⇒ every

holding space for f is stable;
• dim H̃(x0) 6 lim inf

X3x→x0
dimH(x).



Definable extension theorems: The Whitney Extension Problem

As a consequence, the sequence (Hl) where

H0 = trivial holding space for f, Hl+1 := H̃l

eventually stabilizes (in fact, for l = 2 dim Pn + 1 = 2n+ 3). Let
H be the eventual value of this sequence.

Lemma (consequence of Definable Whitney Extension)

The function f extends to a definable C1-function on Rn iff there
is a continuous Skolem function for the definable family (Hx).

It is useful to think of (Hx) as a set-valued map

x 7→ H(x) = Hx : E ⇒ R×Rn.

If H(x) 6= ∅ for each x ∈ E, then H is lower semi-continuous in
the sense of the following definition.



Definable extension theorems: The Whitney Extension Problem

Let E ⊆ Rm and T ⇒ Rn be a set-valued map.

Definition
One says that T is lower semi-continuous (l.s.c.) if, for every
x ∈ E, y ∈ T (x), and neighborhood V of y, there is a
neighborhood U of x such that T (x′) ∩ V 6= ∅ for all x′ ∈ U ∩ E.

l.s.c. not l.s.c.



Definable extension theorems: The Whitney Extension Problem

Theorem (Definable Michael’s Selection Theorem)

Let E be a closed subset of Rn and T : E ⇒ Rm be a definable
l.s.c. set-valued map such that T (x) is nonempty, closed, and
convex for every x ∈ E. Then T has a continuous definable
Skolem function.

Classically, this theorem is shown by a nonconstructive iterative
procedure.

It does also hold for bounded E in the category of semilinear
sets and maps (using a different proof).



Definable extension theorems: The Whitney Extension Problem

Corollary

Let (fa)a∈A, A ⊆ RN , be a definable family of functions
fa : Ea → R, where Ea ⊆ Rn is closed. Then there is a
definable A∗ ⊆ A such that for all a ∈ A,

a ∈ A∗ ⇐⇒ fa extends to a definable C1-function on Rn.

Moreover, there is a definable family (f̃a)a∈A∗ of C1-functions
on Rn such that

f̃a � Ea = fa for each a ∈ A∗.


