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ABSTRACT. In 1934, Whitney gave a necessary and sufficient condition on a jet of
order m on a closed subset E of R™ to be the jet of order m of a C™-function;
jets satisfying this condition are known as C™-Whitney fields. Later, Pawhlucki
and Kurdyka proved that subanalytic C"-Whitney fields are jets of order m of
sybanalytic C"-functions. Here, we work in an o-minimal expansion of a real
closed field and prove a definable version of Whitney’s Extension Theorem: every
definable C"™-Whitney field is a jet of order m of a definable C™-function.

INTRODUCTION

Whitney’s Extension Theorem, which can be considered as a partial converse of Tay-
lor’s Theorem, was proved by H. Whitney in 1934. (See [7, 10] for the proof, and
[11, 12] for related problems.) It roughly says that if f: F — R, where E is a closed
subset of R™, can be approximated by Taylor polynomials of degree m in a certain
uniform way (as entailed by Taylor’s Formula), then f can be extended to a C™-
function on R”. A C™-Whitney field on E encodes the data relevant for such an
approximation of f. The present paper is motivated by the work of K. Kurdyka
and W. Pawtucki [6], who proved a version of Whitney’s Extension Theorem in the
category of subanalytic functions.

Throughout this paper, let R be a real closed ordered field and R be an o-minimal
expansion of R in a language .£. Moreover, “definable” always means “definable in R,
possibly with parameters.” As usual, a map is called definable if its graph is. In the
main bulk of the paper, we assume that the reader is familiar with the basic definitions
and facts concerning o-minimal structures; see, e.g., [1, 2]. For the purposes of this
introduction, the reader can think of the special case where R is the usual ordered
field of real numbers R, so the sets definable in R are precisely the semialgebraic
sets (i.e., defined by finite boolean combinations of polynomial inequalities). In this
paper, we prove Whitney’s Extension Theorem for definable C"*-Whitney fields.

Theorem (Whitney’s Extension Theorem). Let F' be a definable C™-Whitney field
on a closed subset E of R™. Then for each ¢ > m, F' has a definable C™-extension
which is C? on R™\ E.

Let us make precise what we mean by a definable C™-Whitney field and an ex-

tension of such a Whitney field. Let £ C R"™ be definable. A (definable) jet of
order m on E is a family F' = (F'%)|y<m Where each F*: E — R is a definable
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continuous function. If F' is a jet of order m on E and E’ C F is definable, then
FIE = (FYE)jaj<m is a jet of order m on E’. If E is open, then for each de-
finable C™-function f: £ — R, we obtain a jet J"(f) = (D“f)|qj<m of order m

on E. Here, « = (aq,...,a,) ranges over N, and we let D¢ = % e % and
1 n
la] == a1 + -+ ay. Now for every x € R", a € E, and F a jet of order m on E, set
(z —a)"

TP = Y Fa)
|la|<m

R"F(z) = F — J™(T™F(z)).

We say that a jet F' of order m is a definable C"-Whitney field on E (F € &™(E))
if, for all zp € E and |a| < m, we have

(REF)*(y) = ollz —y" ™) as B3 wy — a0
equivalently, if for all for zop € E and z € R",
T F(2) — T, F(2)| = o(|z — 2| + |y — 2|™) as E 3 x,y — xp.

(See [7].) Note that if F € &™(FE) and E' C E is definable, then F|E' € &™(E’).
Also, if FE is open and f: F — R is a definable C™-function, then J"(f) is a C"™-
Whitney field, by Taylor’s Theorem. Given F € &™(FE), we say that a definable
C™-function f: R™ — R is an extension of F if J™(f)[E = F.

An immediate consequence of the theorem above is the following;:

Corollary. Suppose that E is regular closed (i.e., E equals the closure of its interior).
Let f: E — R be a definable function such that for each x € E there is an open
neighborhood U of x in R™ and an extension of f[(ENU) to a definable C™-function
U — R. Then f extends to a definable C™-function R"* — R.

Key ingredients in the construction of Kurdyka and Pawlucki are partitions of
unity and 1-regularity, which are not generally available in o-minimal expansions
of real closed fields. In the case where R = R is the usual ordered field of reals,
their method only applies in the situation where E is compact. In [9], Pawtucki
introduced a new algorithm to extend C™-Whitney fields on £ C R™. However, this
new construction doesn’t preserve definability in a given o-minimal expansion of R,
due to its use of integration. (Pawhucki’s extension operator, on the other hand, has
the virtue of being linear.) In this paper we still follow Pawlucki’s five-step strategy
for extending C"-Whitney fields from [9], while combining it with Fischer’s A™-
regular Stratification Theorem from [3]. This theorem allows us to prove analogues
of Pawlucki’s main lemmas (such as his “A™-regular Decomposition Theorem”) in
our given o-minimal structure R.

Organization of the paper. In the first section, we focus on geometry of definable
sets. First, we show some basic facts which will be repeatedly used throughout this
paper. Then important terminology, such as A™-regularity and e-flatness, will be
introduced. Once all necessary terminology is ready, we will state the main result
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of [3], which is an important tool in later proofs. Also, several modifications of lemmas
in [3] will be provided in this section.

In Sections 2 and 3, we study the separation property of a pair of subset of R™
and prove the A™-regular Separation Theorem, which is a purely o-minimal version
of the A™-regular Decomposition Theorem from [8]. The proof of the A™-regular
Decomposition Theorem in that paper involves concepts which are not valid in a
general o-minimal context, for example, the length of rectificable curves. In our
situation, these concepts will be replaced by control over differences between tangent
spaces (e-flatness). In Section 3, the notion of A™-pancake, which is central for
the statement of A™-regular Separation Theorem, will be given, followed by the full
statement of this theorem and its proof.

In Section 4, we study properties of C"*-Whitney fields and related concepts. The
main results of this section are special cases of Whitney’s Extension Theorem. Let
Q) € R? be open and definable. We work with a definable C™-Whitney field F :=
(F%)|aj<m on € x {0}}, and we show that if each function F*:  — R is A™-regular
as defined in Section 1, then F' has a definable C"™-extension.

In the last two sections, we follow Pawlucki’s five-step strategy from [9]. How-
ever, as we mentioned earlier, Pawlucki’s construction doesn’t preserves definability.
Integration and 1-regularity are key in his construction and they are not generally
available in a fixed general o-minimal structure. These two concepts will be replaced
by Fischer’s A"-regular Stratification Theorem, the special cases established in Sec-
tion 4, and pervasive use of e-flatness.

Conventions and notations. Throughout this paper, d, k, m, n, and ¢ will range
over the set N = {0,1,2,3,...} of natural numbers. Given amap f: X — Y we write
L(f)={(z,f(z):ze X} CX XY

for the graph of f. Let
C(X):={f: X = R: f is continuous and definable},
Coo(X) := C(X) U {+00, —00},

where +00 and —oo are considered as constant functions on X. For f,g € Coo(X)
we write f < g if f(z) < g(z) for all x € X, and in this case we set

(f.g9):={(z,r) € X xR: f(z) <r < g(z)}.
Similarly an interval in R is a set of the form
(a,b) :={re R:a<r<b} wherea,b€ Riooc = RU{—00,400} and a < b.

For a set S C R™ we denote by cl.S = cl(S) the closure, by 0S5 = 9(S5) = cl(5) \ S
the frontier, and by int S = int(S) the interior of S. We denote the Euclidean norm
on R™ by || - || and the associated metric by (z,y) — d(z,y) := ||z —y||. For X C R,
we say that f: X — R™ is Lipschitz if there is a rational L > 0 such that

If(@) = fWIl < Liz -yl  forallz,ye X.
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Given € R", for a non-empty definable set S C R" let d(x,S) := infyesd(x,y) €
RZ° be the distance between z and S, and d(z, () := +oco. Given a collection € of
subsets of R", we let ¢° := {C € € : C is open}.

Acknowledgements. The results in this paper are part of the author’s PhD thesis
at UCLA, written under the guidance of Matthias Aschenbrenner. We would like
to thank W. Pawlucki for an email exchange clarifying some arguments in [6]. The
author acknowledges support by a Queen Sirikit Scholarship.

1. PRELIMINARIES

In this section we introduce notations, terminologies, and basic facts which will be
used repeatedly throughout this paper. Our notations mainly follow [3].

Definition 1.1. Let X C FE be definable subsets of R".

(1) We say that X is a small subset of F if dim(X) < dim(F). We will often
just write “X is small” if the ambient set F is clear from the context.
(2) We say that X is a large subset of £ (X € E) if £\ X is small.

Note that if the definable set X is a large subset of the definable set FE, and Y is
any definable set of dimension dim(Y’) = dim(FE), then X NY is non-empty (and,
actually, a large subset of V).

Definition 1.2. Let E be a definable subset of R™. For each = € E, we say that F is
of local dimension d (dim,(FE) = d) if there exists a definable open neighborhood
V of X in R™ such that dim(E NU) = d for every definable open neighborhood U of
x in V. Moreover, we say that F is of constant local dimension d if dim,(E) = d
for every = € E, equivalently, for every x € E and every definable open neighborhood
Vof z in R, dim(E NV) =d. (Note that then dim(E) = d.) We also say that E is

of constant local dimension if F is of constant local dimension d for some d € N.

The next proposition gives a condition ensuring that the closure of the graph of a
continuous definable map may be recovered from its restriction to a large set. This
fact will be useful in reducing later proofs to simpler cases.

Proposition 1.3. Let ¢: Q — R™ be a continuous definable map, where ) is a non-
empty definable subset of RF of constant local dimension, and let U € Q be definable.
Then clT'(p) = clT(plU).

Proof. Let E := clT'(¢). It is enough to show that F C clI'(p|U). Let = € E. Let

V be a definable open neighborhood of . Then V NT(p) # 0. Note that 7(V N

I'(p)), where m: R*"™ — R is the natural projection onto the first & coordinates,

is of dimension d (since 2 is of constant local dimension). Since U & 2, the set

UNnn(VNT(p)) is non-empty. In particular, V NT(p[U) # 0. Since V is arbitrary,

x € cl(¢lU). O
N

Remark. Let E = J clT'(p;) where each €; is an open definable subset of R¥ and
i=1

;i ; — R™ is continuous and definable. Then by Proposition 1.3, we can replace
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the ¢; by suitable restrictions to reduce to the case that for all 7, j with Q; N §; # ()
we have €; = ;.

One of our main tools is Fischer’s theorem [3] on the existence of A™-stratifications.
We now state this theorem, and also prove some modifications of a few lemmas
from [3]. For this, we need some definitions. In the following, we assume m > 1.

Definition 1.4. Let f = (f1,...,fn): @ — R™ be a C"-map, where 2 is a non-
empty open subset of R?, with d > 1. We say that f is A™-regular if there is some
L € R”Y such that

L
Here and in the rest of the paper, for a = (o, ..., aq) € N¢ we set
o™ 0™
D~ laf == a1 + -+ + ag,

and we let D*f := (D%fy,...,D%f,) if |a| <m (so D°f = f).
We also define every map R’ — R™ to be A™-regular.

Notation. Let Q C R? be definable and open. Set
A" (Q) :={f: Q— R: f is definable and A"-regular},
AL () :== A"(Q) U {—00, +00},

where 400 and —oco are considered as constant functions on €.

Definition 1.5. Standard open A"-regular cells in R" are defined inductively
on n as follows:
(1) n=0: R° is the standard open A™-regular cell in R’;
(2) n > 1: aset of the form (f,g) where f,g € AZ (D) such that f < g, and D is
a standard open A™-regular cell in R" 1.
We say that a subset of R" is a standard A™-regular cell in R" if it is either a
standard open A"-regular cell in R™ or one of the following;:
(1) a singleton; or
(2) the graph of a definable A™-regular map D — R"~ % where D is a standard
open A™-regular cell in R?, and 1 < d < n.
A subset E C R" is called a A™-regular cell in R" if there is a linear orthogonal
transformation ¢: R™ — R"™ such that ¢(F) is a standard A"-regular cell in R™.

Even though in a general o-minimal expansion of a real closed field, we do not
have a notion of angle (between two vectors) available, a substitute is provided by
the terminology introduced in [3], which we recall next.

Definition 1.6. Let R™*" be the space of all n x n matrices with entries from R,
where n > 1, equipped with the operator norm || - ||. For each d < n, let

H,q={A€R™": A" = A, A% = A, tr(A) =d}
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be the subset of R™*™ consisting of the matrices (with respect to the standard basis
of R™) of orthogonal projections of R™ onto a subspace of R", having trace d. Note
that H,, 4 is an algebraic subset of R™*" (where R"*" is identified with R"™ as usual)
and hence definable. Consider

6 Hyax Hyg R, 0(A,B)=||B*A|  where B* =id - B,
In [3] it is shown that J is a metric on H,, 4. For A € Hj,, 4 and € > 0 let
B(A)={B €H,q:6(B,A) <e}
be the open ball of radius € centered at A in H, 4, and let
B (A)={B€H,q:0(B,A) <e}

be the closed ball of radius € centered at A in H, 4. Fischer [3] also showed that for
any rational € > 0, H,, 4 can be covered by finitely many balls of radius e.

In the rest of this section, € ranges over rational numbers.

Definition 1.7. Let M a definable d-dimensional (embedded) C'-submanifold of R".
We view the tangent bundle T'(M) of M as a subbundle of T'(R") = R" x R" in the
natural way. Define 7p/: M — H, 4 by letting 7a7(z) be the matrix (w.r.t. the
standard basis of R™) of the orthogonal projection R" — T, (M). Let A € H,, 4 and
e > 0. We say that M is e-flat with respect to A if 7p;(M) C B.(A).

A d-dimensional C'-graph is a subset M C R™ which, in a suitable coordinate
system, is the graph of a definable C'-map Q — R"~¢, where  is a definable open
subset of R%. Note that every d-dimensional C''-graph M is a definable d-dimensional
C'-submanifold of R™, hence the previous definition applies to M. Given A € H,, g
and € > 0, we also call a closed definable subset F of R"™ e-flat with respect to A
if £ is the closure of a finite disjoint union of d-dimensional C'-graphs in R", each of
which is e-flat with respect to A.

A standard A™-regular cell of dimension d is called e-flat if it is e-flat with respect
to the projection of R™ onto the first d coordinates. In addition, we call a A™-regular
cell e-flat if there is a linear orthogonal transformation ¢: R™ — R™ such that the
image of this set under ¢ is an e-flat standard A™-regular cell.

Remark. Every d-dimensional C'-cell in R" is a d-dimensional C'-graph.

Proof. We will prove this remark by induction on n. For n = 0, this remark is trivial.
Suppose that, for every d < n, every d-dimensional C'-cell in R" is a d-dimensional
Cl-graph, and let d < n+1 and C be a d-dimensional C'-cell in R"*!. If C is an open
cell, then C is the graph of the map C' — RY; it is obviously an (n + 1)-dimensional
Cl-graph. Suppose that C is not an open cell, i.e., d < n.

Suppose first that C' = I'(f) where D is a d-dimensional C'-cell in R™ and f: D —
R is a definable C'-function. By induction hypothesis, D is a d-dimensional C'-
graph. After suitably changing the first n coordinates, we may assume that there is
a definable C'-map ¢: Q — R"¢ such that D = I'(¢). Defining h: Q — R"~9*+1 by

h(z) = (¢(z), f(z,o(x))) for every z € €,
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we then have C =T'(h).

Now suppose that C' = (f, g) where where D is a (d — 1)-dimensional C'-cell in R"
and f,g: D — R are definable C'-functions with f < ¢g. By the same argument as in
the above case, we may also assume that D = I'() where ¢: Q — R" ¢ is a definable
C'-map, Q C R open. Let

E:={(z,t) € Qx R: f(z,p(x)) <t < gz, p(x))},

a C'-cell in R4, and define h: E — R"¢ by h(z,t) := ¢(x) for every (z,t) € E.
Define T': R**1 — R"*! by

T(z1,. s Tpy1) = (1, oy Ty Tyt 1y T 1y -« Tn)-
Then T'(C) =T'(h). O

Let f = (f1,...,fn): @ — R™ be a C'-map, where Q is an open subset of R?,
and let eq,...,eq be the standard basis of R?. For each v € R%, let D, f denote the

directional derivative of f with respect to the vector v and, for i =1,...,d,
of o Ifn
=D, f= e .
ox; of (8@ ox;

Remark. Let 0 < € < % and f: Q — R" be a definable C'-map, where Q is an

open subset of R, such that cl(I'(f)) is e-flat. Then all partial derivatives of f are
bounded by \/16_7

Proof. Let a € Q and A: R™"™ — R be the orthogonal projection onto the tangent
space T,(M) C R™" where M := cl(I'(f)). Then, for each i and w; = g—i(a) (so
(es,w;) € T,(M)), we have

[l _ - marewor® _
ol et
Therefore, %(G)HS 16_52' .

In the following we will identify each matrix A € R™™ (where n > 1) with the
R-linear map R™ — R" that is represented by A (with respect to the standard basis
of R™).

Lemma 1.8. Let E be a closed definable subset of R"™ of constant local dimension d
which is e-flat w.r.t. A € H,, 4. Suppose X is a closed definable subset of R" such
that E\ X # (0. Then cl(E \ X) is of constant local dimension d and e-flat w.r.t. A.

Proof. We may assume that A = 7 is the natural projection of R™ onto its subspace
R x {0}"79. Let x € cI(E'\ X) and let U be an open definable neighborhood of z.
Then ) #UN(E\X) =(U\X)NE. Picky € (U\X)NE. Since U\ X is open, there
is an open definable neighborhood V' C U \ X of y such that V' N E is of dimension d.
Then (U \ X) N E is also of dimension d. Therefore, cl(E \ X) is of constant local
dimension d.
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To show that cl(£\ X) is e-flat, write E = (J;c; cl(I'(¢;)) as the closure of a finite
disjoint union of d-dimensional C*-graphs I'(p;) in R", each of which is e-flat w.r.t. A,
where ¢;: Q; — R" % is a definable C'-map on a non-empty open definable Q; C R?.
Obviously, cl(E\ X) = U cl(I'(¢i) \ X). Consider

el

C; = m(cl(T(gi) \ X)) € R x {0},
We may assume that C; # (). Then C; is of constant local dimension d. By Proposi-
tion 1.3,

cl (F(gpi [int(C’i))) =cl (F(goi fC’l)) =cl (F((pi) \X)

This completes the proof. O
Definition 1.9. By a A™-regular stratification of R" we mean a finite partition
2 of R" into A™-regular cells such that each 0D (D € 2) is a union of sets from Z.
Given € > 0 and definable Eq,..., Exy C R", such a A™-regular stratification & of

R™ is said to be e-flat if each D € 2 is an e-flat A™-regular cell, and compatible
with Fi,..., Ey if each E; is a union of sets from 2.

With these definitions ready, we can now state the main result of [3]:

Theorem 1.10 (Fischer, [3, Theorem 1.4]). Let Ei,...,En be definable subsets
of R™. Then for each ¢ > 0 there exists an e-flat A™-regular stratification of R™
which is compatible with Eq, ..., EN.

The following lemma essentially goes back to Gromov [4] (see [6, Section 2]). Recall
that a function taking values in R is said to be semidefinite if it is either non-negative
on its domain or non-positive on its domain.

Lemma 1.11. Let h: I — R be a definable C?-function on an interval I in R such
that h, h" are semidefinite. Let t € I and r > 0 such that [t — r,t + 7] C I. Then

WD) < ~sup {Ih()] € € [t 7t 4]},

Proof. Without loss of generality, assume h” < 0 on I. By the Mean Value Theorem,
since I’ is decreasing,

h(t) — h(t —r) > rinf {R'(&) : £ € [t — 7, t]} =rR' (1),
h(t+71) —h(t) <rsup {R'(§): £ € [t,t+ 7]} =rh(1).
Since h is semidefinite,
(h(8) = h(t = )], Bt + 1) — h(t)] < sup { |h(E)| : € € [t — 7yt + 7]},
which implies the claim. Il

For the sake of completeness, we include a proof of the following application of
Lemma 1.11 from [3]. In the rest of this section, we fix a non-empty definable open
set Q C R?, and o ranges over N%.
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Lemma 1.12. Let f: Q — R be a definable C™V-function such that D*f is semi-
definite for |a| < m + 1. Then there is an L € Q>0 such that

o L
D% ()| < 2y sup { 1£(0)] 0 € Qo — ] < ro)
o
for|al <m,ueQ, and 0 < ro < d(u,0).

Proof. We proceed by induction on |«|. This is trivial if || = 0, so assume we
have shown the claim for some o where || < m — 1, and let j € {1,...,d}. Let
u € Q, and fix 0 < 79 < d(u,08). For each r € (0,79), define h,: [-5,5] = R
by h.(§) = Df(u + €e;) where e; € R? is the jth standard basis vector of R%.
For w € R? with [|w —ul| < 5, we have w € Q and d(w,dQ) > 2. By induction
hypothesis,

D ()] < o sup {£(0) v € . lo—wl < 3
L
<( /2|a|sup{]f v eQ,|v—w| <ro}.
By Lemma 1.11,
| D f(u)| = |h.(0)] < /2sup{\h Eeft—5,t+ %]}

olal+1r

r(ro)lel

| /\

sup{|f |1veQ,|lv—w| <r}.

Taking r — 7o yields

a+te 2| |+1L
’D if(u ‘ < |a|+1 sup{|f UEQ,HU—w||<T0}.
This finishes the inductive step and this proof. O

In [3], Lemma 1.12 is used in the proof of the following proposition:

Proposition 1.13 (Fischer, [3, Proposition 2.1]). Let f: Q — R be a definable C™ -
function. There are a definable open large subset U of Q and some L € Q>0 with

D f(u) sup { |f(v)] 1 v € U, |lu— vl < d(u,0U)}

T aUlal
for o] <m andu e U.

Here, we follow the same idea and use Lemma 1.12 to prove a modification of
Proposition 1.13.

Lemma 1.14. Let fi,..., fr: @ — R be continuous definable functions. There is
a A™-reqular stratification 9 of R% compatible with Q and some L € Q>0 with the
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following property: for each D € 2° which is contained in 2, each f;[D is C™ and

D fiw)] <

(ugD)m'sup{ |fi(v)] 1 v € D, |lu—v| < d(u,0D)}

for |a] <m and u € D.

Proof. By the C™*1-Cell Decomposition Theorem, take a cell decomposition € of R?
compatible with € such that f;]C is C™*! for each C € €° contained in 2. For
C € €¢° contained in Q and |a| <m+ 1,7 € {1,...,k}, set

Cf ={z € C:D*fi(z) > 0}.

Next, apply Theorem 1.10 to obtain a A™-regular stratification 2 of R¢ compatible
with all C’s and all C' € ¢°. By Lemma 1.12, 2 has the required properties. O

Corollary 1.15. Let fi,..., fr: @ — R be Lipschitz definable functions. There is a
A™-reqular stratification 9 of R® compatible with Q such that, for each D € 2° with
D CQ, each f;|D is A™-reqular.

Proof. First, by Smooth Cell Decomposition, we may assume that every f; is C*.

Since all f; are Lipschitz, the partial derivatives D7 f; := gf are bounded for i =

1,....,kand j=1,...,d. Take Ly > 1 with ‘Djf,(a?)‘ < Ly for all x € Q. Then apply
Lemma 1.14 to these DJf;’s; therefore, we get a A™-regular stratification 2 of R?
compatible with 2 and L > 1 with the following property: for each D € 2° which is
contained in €2, each (Djfi) IDis C™ 1 and

‘DO‘(Djfi sup{ ‘(Djfi)(v)‘ v € D |lu—v| < d(u,(‘?D)}

L
<
L- Lo
= d(u,dD)ll

for |a] <m —1 and u € D. Since the above inequalities hold for all j =1,...,d, for
each D € 2° which is contained in €2, each f;[D is C™ and

L- Lo
(e Vi <
1D filw)l < d(u, dD)lel=1

thus each f;[D is A™-regular. O

for 1 <|a| <m and u € D;

The previous lemma and corollary immediately imply:

Corollary 1.16. Let fi,..., fr: @ = R™ be continuous definable maps. There is a
A™-reqular stratification 2 of R compatible with Q and some L € Q>° such that for
each D C Q in 2°, each restriction f;[D is C™ and

ID% fi(u)ll < — sup { [|fi(v)] : v € D, |lu —v|| < d(u,0D)}

L
(u, dD)lel
for |a] <m and u € D.
Moreover, if f; is Lipschitz, then f;[D is A" -reqular, for each D € 2° with D C ).

In [3], the following useful lemma was shown:
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Lemma 1.17 (Fischer, [3, Lemma 3.8]). Let 0 < e < d% , and suppose ) is an open
el-flat standard A'-reqular cell in R®. Then, for each pair a,b € Q, there exists a
definable C'-path ~: [0, ||b — al|] "(t) — HZ l ’ <e€
for 0 <t <|b—adl.

This lemma implies that for every e small enough, every definable C'-map 2 — R"
with bounded derivatives, where Q C R is an e-flat open Al-regular cell, is Lipschitz;
more precisely:

Corollary 1.18. Let 0 < e < 23 and suppose Q is an €*-flat standard A'-regular
32d2

cell in R%. Let f: Q — R™ be a definable C'-map. Suppose all derivatives of f are
bounded by L € Q>°. Then f is Lipschitz.

Proof. Let a,b € Q). By Lemma 1.17, there is a definable C'-path ~: [0, ||b — al|] — £
‘ < efor 0 <t < |b—al. By the Mean

IIb all
Value Theorem,

1) = f(@)[ = [[(f oy)(lIb = all) = (f oy)(O)]
<(14e)(vVd+1)L-||b—al.
O

The next lemma implies that the graph of every definable C'-map whose derivatives
are bounded by a rational number is e-flat w.r.t. a projection map, for some e:

Lemma 1.19. Let M := I‘(f) where f: Q — R" is a definable C*-map. Suppose that
there is L € R”° such that H ‘ < L for everyj=1,...,d. Letr := \/% Then
v (M) C By(r), where 7: Rd+” — R s the natural projection onto R x {0},

Proof. Let a € M and let A: R™™ — R4 be the orthogonal projection onto the
tangent space T,(M) C R™" of M at a. If v € R? with ||| = 1, then || D, f(a)| <
VvnL. So for (v,w) € T,(M) € R* x R" where |v|| = 1,
(A = wA) (v, w)|| = ||(v,w) = (v,0)]| = [Jw]| = | Duf(a)]| < V/nL.
Consider (v, w) € A(R™") where ||v|| = 1. Since z % RZ% — R" is increasing,
(A =7 w)|* __[IDof(@* _ nL '
(v, w)]|? L+ | Dof(a)l* ~ 1 +nl?
For any (v,w) € R*™ set (v/,w') = A(v,w), so ||(v/,w)| < ||(v,w)]|. Since A% = A,
(A —7mA) (v, w)l| _ (A7) (@ )] _ [(A—7) @ )] - VoL
(v, w) [[(v, w) - (v, w)| ~ V1+nL?

nL
Hence §(A, ) < \/% O

We end this section by a technical lemma which will be used in Section 2.

Lemma 1.20. Let f1,..., fr: E — R be definable functions, where E C R™, and let
K € R>Y. Then there are




12 ATHIPAT THAMRONGTHANYALAK

(1) a finite family (E,) of definable sets partitioning E and,
(2) a family (M,,) (same index set) of elements of {K,2K,..., 28K},
such that, for each i =1,...,k and p, either |f;| < M, on E, or |fi| > 2M, on E,,.

Proof. Let A be the power set of {1,...,k}, and for each § € A and L € R”Y, set
Q6, L) ={(y1,.-.,yx) € R¥ : jys| < Lifi€d, |y;| >2Lifi ¢ 5}
By induction on k, it is easy to show that
RF = J{Q(6,2K):6€A, j=0,....k}.
Take f: E — RF where f = (f1,..., fx) and set
Esj =1 (f(B)NQ,2K)), Ms; =2'K  for§€ Aand j=0,...,k.
One easily sees that the families (Es;) and (M;;) have the desired property. O
2. SEPARATION

In this section, we still assume that e ranges over rational numbers. The following
important definition goes back to Malgrange’s regularly situated condition (see [7]):

Definition 2.1. Let P,Q,Z C R"™ be definable. We say that P and @ are Z-
separated if there exists some C € R™? such that

d(z,Q) > Cd(x, Z) for every x € P.
Equivalently, there is a C' > 0 such that
d(z,P) +d(z,Q) > C'd(z, Z) for every x € R".

Y )
Pl
P J
= T
T Q ) o

FIGURE 1. P and @ are {(0,0)}-separated (left); P’ and Q" are not
{(0,0)}-separated (right).

Our goal in this section is the following theorem, which will become a main tool
in the proof of the A™-regular Separation Theorem in the next section:

Theorem 2.2. Let E be a closed definable subset of R™ of dimension d. Let 0 < € <
N

Loand Ay,... Ay € H,, 4 such that |J Be(A;) = H,, 4. Fiz A € Q with
i=1

32n2
(n — d)2d(n—d)¢2
0<AKL .
\/1 + (n — d)2d(n—d)¢2

Then there are definable closed subsets E1,...,En and B of R" such that
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(1) E=E1U---UENUB;

(2) each E; is of dimension d and A-flat w.r.t. A;, and B is small;

(3) for all i # j, the intersection E; N E; is a small subset of E, and there is a
small definable set Z;; C E; U Ej; such that E;, E; are Z;j-separated; and

(4) for every i there is a small definable set Z; C E; U B such that E;, B are
Z;-separated.

We give the proof of this theorem at the end of the section, after some preparations.
The following proposition contains simple but important properties of Z-separation
which will be repeatedly used throughout this and the next sections. All sets in the
statement of the proposition are assumed to be definable.

Proposition 2.3 (Pawtlucki, [8, Proposition 2]).
(1) If P, Q are Z-separated, P' C P, Q' C Q and Z C Z', then P', Q' are
7' -separated.
N N N
(2) If P;, Q; are Z;-separated (i = 1,...,N), then U P;, U Qi are | Z;-
i=1 i=1 i=1

separated.
(3) If P, Q are S-separated and S, Q are T-separated, then P, QQ are T-separated.

Even though we are working in a more general setting than in [8], the proofs of the
above proposition and the following lemma and corollaries also work in our context,
and for this reason, we omit them.

Lemma 2.4 (Pawtlucki, [8, Lemma 6]). Let f: Q — R" be a definable Lipschitz map
on an open set @ C R%. Then T'(f) and (RY\ Q) x R™ are OT'(f)-separated.

Corollary 2.5 (Pawtucki, [8, Corollary to Lemma 6]). Let f: Q — R™ be as in the
above lemma. Then, for any definable subset S of (R?\ Q) x R", the sets T'(f) and S
are OT'(f)-separated.

Corollary 2.6. Let Cy and Cs be disjoint open cells in R*. Then Cy x {0} and
Cy x {0} are (0Cy x {0}")-separated.

Using the above, we now show that the separation property behaves nicely for
graphs of definable Lipschitz maps and open cells.

Definition 2.7. Let I = (a,b) where a,b € Ry, a < b, be an interval, I # R. Call
a definable C'-path A = (A1,...,\,): I — R" an admissible arc in R" if for all 4, j,
(1) A\; and X} are of constant sign;
(2) either [N;| >1on I or |\;| <1 on I;
(3) either [Xi| < [N[ on I or [A{| > |A)| on [.
For such an admissible arc A, let
v(A) :==min {i : [A]| > |X}] on I, for all j}.
We say that an admissible arc X is fast if |\ ( )\)| > 1 on I, and slow otherwise.

In [8], it is proved that if R expands the ordered field of real numbers, then the
graph I" of a fast admissible arc in R™ and the set R x {0}" are OI'-separated. For-
tunately, the idea of the proof also works in our more general context. For the
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convenience of the reader, we include detailed proofs of this and other some facts
from [8] as warm-up exercises.

Lemma 2.8 (Pawlucki, [8, Lemma 4]). Let A: I = (a,b) — R" be a fast admissible
arc in R™. Let \(t) = (t,\(t)) fort € I, and T = R x {0} C R'*". Then, fort € I,

= [[Fo - e

d(\(t),T) >

where

(1) if a,b € R, then c) = a i |)\V()\).| 18 ancreasing;
b;  otherwise

(2) if a = —o0, then ¢\ = b; and
(3) if b= +o00, then c\ = a.

Proof. Set v = v()), and first assume —oco < a < b < +00. Replacing A by —\ or
+A(a + b —t) if necessary, we may assume that A\, > 0 and A}, > 1 on (a,b). Then
cx = a and so [A\,(t) — A(s)| > |t — s|. Note that A\(cy) always exists. Hence
1 ~ ~

ORGP
— [A0) - M@
For the rest, we may assume b = +00. (Replace by A by ¢ — A(b—t) otherwise.) We
see that either A\, >0, A, > 1 or A\, <0, A\, < —1. The proofs in these two cases are
similar to the above case. g

d(N(6),T) = [IA®)]| = A(t) > A (t) — Au(a) >

Furthermore, given two definable C'-maps whose fiberwise differences yield a fast
admissible arc, one of the maps being Lipschitz entails that their graphs are separated
with respect to the frontier of the graph of the other map:

Lemma 2.9 (Pawhucki, [8, Lemma 5]). Let C' = (a, ) be an open cell in R* where
a,B: D = Ris, and not both o = —oco and B = +oo. Let f,g: C — R"™ be C'-maps.
Assume f is Lipschitz, and for all u € D, the map

At (@), Bw)) = R, Xuly) = g(u,y) — f(u,y)
is a fast admissible arc in R™. Then I'(f), I'(g) are 0I'(g)-separated.
Proof. Let x = (u,y) € C. By the above lemma,

d((y: Mu()), (alw), B(u)) x {0}") >
Hence
d((z, g(x) = f(2)),cl(C) x {0}") = d((y, \u(¥)). ((u), B(u)) x {0})

> 0 ) = (e Ml

and thus, letting f be the continuous extension of f to cl(C),
d((z,9(x) = f(x)),cl(C) x {0}") >

(2. g() ~ F@)) ~ (wersgluser,) ~ Fluern))]

W% 1y Au()) = (exus Aulex I
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For z € cl(C), w € R™, set f*(z,w) = (z,w+ f(z)) and [~ (z,w) = (z,w — f(z)).
Then f* and f~ are L-Lipschitz maps cl(C) x R® — R™, for some L € R>%. Let

now z € C, and take (2, f(z')) € T'(f) such that
d((xa g(:):)), F(f)) = d((l‘, g(x))7 (xlvf(x/)))

Then
A((2.9(x)).T(1)) = d((z.9()). (', 7(a)))
> 2d(f (@ g(@), J (@ T@)
= 24 ((@,9(2) ~ 1(@), (,0))
> 2d((,9(e) — f(2)),I(C) x {0})

> L\/T% H(-f,g(-f) - f(x)) - (U, cAu,g(u,c)\u) —?(u}cAu))H

1 —
> o @) - nen, o)
> e dl(@.(0). 00 ().

Hence I'(f), I'(g) are OI'(g)-separated. O

The above lemma gives a condition on maps into R" guaranteeing that their graphs
are separated. Now, it is quite naturally to ask for a similar condition on a finite
number of maps instead of a pair of maps. The following lemma contains such a
condition:

Lemma 2.10 (Pawlucki, [8, Lemma 7]). Let 0 < € < 322% and (2,) be a finite
family of disjoint non-empty definable €*-flat open A'-regular cells in R®. For every
w, let fu,: Q, — R* (v=1,...,n,) be definable Cl-maps whose graphs are pairwise
disjoint and M, € Q= such that, for every v € {1,...,n,}, i € {1,...,n}, and
je{l,...,d}, either ‘%f—;y’” <M, onQ, or ‘%“J’” > 2M,, on Q. Set

8 v
8= { )+ | %

and assume that A # 0, and f,, is Lipschitz for each (u,v) € A. Consider the
definable sets

< M, for all1, j},

> 2M,, for some z} (j=1,...,d),

A=J{0(fw) : (mv) € A},
B =J{T(fw): (mv) €A} (G=1,....d),
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d
and let B = |J Bj. Then for every definable B' C B and S C (R4\ UQ,) x R,
Jj=1 I
there is a small definable Z C cl(A) Ucl(B’) such that cl(A), B'US are Z-separated.

Proof. By Corollary 1.18, f,, is Lipschitz for every (u,v) € A. Let B* C B be
definable. If, for all j, cl(A), (B'N B;) U S are Z;-separated for some definable Z; C
cl(A) Ucl(B' N By), then by Proposition 2.3, we're done. Therefore, we may assume
that B’ C B; and can also assume that j = d. Applying the C'-Cell Decomposition
Theorem, we may further assume that

B/ — U {F(h,u,’l//) . lah;ﬂy/i

Oy

> QML/M for some 1} urT

where dim(7) < d, (QL/) is a finite family of disjoint non-empty definable open subsets
of R", and h,s,s: @, — R" (V' =1,...,n,) are such that

(1) T < (RI\UQ,) x R";
L

(2) Q, C Q, for some p;
(3) by = fLu 1€, for some v € {1,...,n,};
(4) M}, = M), whenever ), C €.
So, it is enough to assume that B’ = By (and then Z; U T works for cl(A) and

BsUTUS). Next, by the Cell Decomposition Theorem and Proposition 1.3, we may
assume that €2, is a cell, and, setting

Guvu(x) = fu(u,x) — fu(u,z)  where (p,v) € A, (u, V) € Ay,

we may assume further that each g, : (au(u), B,(u)) — R™ is an admissible arc
in R"™. Note that g,,,, is fast. By Corollary 2.5 and Lemma 2.9,

Z= |J 0r(fuw)UdAC cl(A)Ucl(B)

(“7V)€Ad

has the required property. [l

Even though the conditions in the previous lemma look very messy, this lemma
turns out to provide a simple and intuitive method for dividing sets into components
which are separable with respect to small sets. In order to gain a better understand-
ing, the reader is advised to draw some graphs of continuous function in R? and try
to separate them. To avoid the lengthy conditions in the lemma above, we introduce
a more powerful proposition.

Proposition 2.11. Let E be a definable closed subset of R™ of dimension d and C

be a definable closed subset of E of constant local dimension d. Let A € H, 4 and

0 <e< —Lg, and suppose C is e-flat w.r.t. A. Let A be as in Theorem 2.2. Then
32n2

there exists a definable closed subset X of E of constant local dimension d such that

C C X, X is A-flat w.r.t. A, and for every definable Y C E \ X there is a small
definable set Z C X Ucl(Y) such that X, cl(Y) are Z-separated.
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Proof. Without loss of generality, assume A = 7 is the natural projection onto R? x

{0}~ Write C = |J cl(T'(f.w)) where f,,: Q, — R" 9, each Q, is an e’flat open
214

Al-regular cell in RY, and each cl(T'(f,,)) is e-flat w.r.t. 7. Then for any unit vector

d | Dv fu (a)]? e 1
v € R* we have 1+||Dul}w(a)|\2 < € and hence || D, fu(a)|| < i Take a C*-cell

decomposition ¢ of R™ compatible with the I'(f,,)’s, C, and E. Then 7(%) is a cell
decomposition of R?. (Here we identify R? x {0}"~¢ with R? in the natural way.)
Let

¢'={D' en(€¢)°: D' CQ, for some p}.

Take
Ey:= |J Ena }(D)), E»:=E\E,
D'e%’
and write By = |J T'(Fpr) where Fy: Q) — R4 are C'.

Claim. C C cl(Ey).

Proof of the claim. Let ¢ € C. Since C is of constant local dimension d, U N C' is of
dimension d for any neighborhood U of ¢ small enough. Let U be such a neighborhood
of ¢. Then (U N C) is also of dimension d (because C' is a finite union of graphs).
Therefore, there is D € €’ such that D N7w(U N C) is of dimension d, which implies
that E1 NU is non-empty. Since this holds for all sufficiently small neighborhoods U

of ¢, we obtain ¢ € cl(E1). O
Let K = % and s = d(n — d). For each y/, v/, applying Lemma 1.20 to Mggfi

(tef{l,...,n—d}, j € {1,...,d}), we can decompose QL, = L)\JB/J/)\ such that for
each A, there is K < M/, < 2°K such that for each 4, j, either
OFM/,,/Z-

Lj

OF w'i

al'j

By the A™-regular Stratification Theorem and Proposition 1.3, we may assume that
the €,’s are e-flat and, for each 4, j, either

SMM/)\ on BMQ\ or '

> 2Mu’)\ on BN/)\'

ale/i aF’u/V/Z‘
‘81’] < M, on Q;,/ or ' 2, > 2M,, on QL/.
Since QL, is e-flat, by Lemma 1.17, F,,, is Lipschitz for each v/ such that for all 4
and 7, 82‘2;’” < M, on Q’H,. Let
OF 1.
A= (V) | < M, for all i, j ¢,
ij

8Fu/,,/i

> 2M,, for some 1} (j=1,...,4d),
Ly

- fot
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be similar to the A and A; in Lemma 2.10, and set
X o= J{dT(Fu) : (W) € A},

U{r ) (W V) €N (G=1,...,d),

and B := By U---U By. Since C' C cl(El) A # (. Therefore, by Lemma 1.19, X
is A-flat w.r.t. 7. Since || D, fu(a)| < \/7 for any v € R? and \/j < ==, we
obtain C C X.

To prove the separation condition, let Y be a definable subset of F, disjoint from X.
Applying Lemma 2.10 to

B'=YynB, S=Yn|R\{J@,xRrR")],
W
we obtain a small definable Z C X Ucl(B’) € X Ucl(Y) such that X, Y are Z-
separated. O

Now, we have all ingredients for the proof of Theorem 2.2.

Proof of Theorem 2.2. By the C'-Cell Decomposition Theorem, let ¢ be a C'-cell
decomposition of R" compatible with E. Let €, be the set of C' € € with dim(C) = d,
and set

=J{a@©):ce%}, E=E\E"

Obviously, dim(E*) < d. Since each C € % is a d-dimensional C'-graph, the map
7o cl(C) — H,, 4 is defined. Apply the C-Cell Decomposition Theorem again, to
obtain a C'-cell decomposition 2 of R™ compatible with the C' € %; of dimension d
and the sets TC_I(Bg(Ai)) where C € yandi=1,...,N. Fori=1,..., N, let

Dy = {D € 2:dim(D)=d, D C TEI(BG(Ai)) for some C € ‘Kd},
= J{aD): D e 24}.

Thus E° = U E?, and EY is e-flat w.r.t. A; and closed of constant local dimension d.

The separatlon conditions (3) and (4) in Theorem 2.2 in general do not hold for
the EY in place of E;. In order to overcome this problem, we will inductively pick
definable closed sets X;, Y; (i =1,...,N), such that the following conditions hold:

(1) X1 2 EY and X; D EX\(X1 U+ U X;-1),

(2) either dlm( ;) =d and X; is A-flat w.r.t. A; or X; =0,

B) Y1 =F\X;and Y; =cl(Yi—1) \ X;,

(4) X C c(Y),

(5) for every definable Y/ C Y}, there is a small definable set Z/ C X; U cl(Y”)

such that X, cl(Y”) are Z'-separated.

If B =0, let X; =0 and Y; = E. If EY # (), by Proposition 2.11, let X; be a
definable closed subset of E containing EY, which is of constant local dimension d
and A-flat w.r.t. Ay, and Y7 = E'\ X; such that, for Y’ C Y7, there is a small definable
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set Z' C X7 Ucl(Y’) such that Xy, cl(Y’) are Z’-separated. Note that if Y7 # (), then
Next, suppose X1, Y1,...,X;,Y; have been constructed already, where ¢ < N. If
EY \(X1U---UX;) = 0, let Xiq = 0 and Y = Y;. Assume EY, |\ (X1U---UX;) # 0.
By Lemma 1.8, EY,; \ (X; U---U Xj;) is of constant local dimension d and e-flat
w.r.t. A;iy1. By Proposition 2.11, cl(Y;) = X;4+1 UYj41 where Y;11 = cl(Y;) \ Xi4+1 and
Xi+1 is a definable closed subset of cl(Y;) of constant local dimension d which is A-flat
w.r.t. A;11 and contains E?+1 \(X1U---UXj;), and for every definable Y’ C Y1, there
is a small definable set Z' C X, 1 Ucl(Y”) such that X;11, cl(Y’) are Z'-separated.

By repeating this procedure N — 1 times, we arrive at the decomposition £ =
XiU---UXyUYy. Letd,j € {1,...,N}, i < j; since X; C cl(Y;), we can pick a
small definable Zgj C X; U X such that X;, X; are Zgj—separated. Since Y C cl(Y;)
for all i, we can also find a small definable Z] C X; U Yy such that X;, Yy are
Z!-separated.

Claim. Yy is small.
Proof of the claim. Note E? C XjU---UX; and then E° C X; U---U Xxn. Since
Yy C cl(Y;) for all 7, we have
YN X,; C CI(YVi) NnX; = Cl(Yi) \ Y, = 8(1/1),
hence Yy N X; is small. Therefore
dim(Yy) = dim (Yy N (X1 U -+ U X))
< max (dim(Yy N X1),...,dim(Yy N Xy)) < d.

Similarly, we also get that X; N X; is small.
To finish the proof, let £; = X;, B=YNyUE*, Z;; = Zgj and Z; = Z] U E*. O

3. THE A™-REGULAR SEPARATION THEOREM

We begin with the definition of A™-pancake (which should perhaps more precisely be
called “stack of pancakes”):

Definition 3.1. Let E be a definable subset of R™ of dimension d. We say that E is
a A-pancake if F is a finite disjoint union of graphs of Lipschitz, A"-regular maps
Q — R" % on a common domain 2, which is an open A™-regular cell in R?.

In this section we show the following:

Theorem 3.2 (A™-regular Separation Theorem). Let E be a definable closed subset

of R™ of dimension d. There is a finite partition E = My U---U MsU A such that
(1) each M; is a A™-pancake of dimension d in a suitable coordinate system;

) A is a small, closed, definable subset of F;

) for all i # j, cl(M;), cl(M;) are OM;-separated; and

)

(2
(3
(4) for each i, cl(M;), A are OM;-separated.
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FIGURE 2. An example of a A™-pancake in R?.

We start by proving a special case of Theorem 3.2, and then the full theorem.

Lemma 3.3. Let d < n, let S be a definable subset of R" with dim(S) < d, and let
E be a finite union of closures of graphs of definable C'-maps Q@ — R"% on open
subsets 0 of R, whose derivatives are bounded by a rational. Set E' = EU S, and
let Z be a small definable subset of E' which contains S. Then there is a partition
E' =Ny U---UN; UB where

(1) N; C E is a A™-pancake in a suitable coordinate system;
(2) B is a small closed definable subset of E' containing Z;
(3) for alli # j, cl(N;), cl(N;) are ON;-separated; and

(4) for each i, cl(N;), B are ON;-separated.

S

Proof. Write E = |J cl(I'(;)) where each ¢;: ©; — R""¢ has bounded derivatives
i=1

and Q; is an open subset of RY. First first show that we can assume that each
@; is Lipschitz and that Q; N Q; # 0 = Q; = Q;, for i,j € {1,...,s}. To see
this, let 0 < € < 32d+/2 be a rational number, and by the A™-regular Stratification
Theorem 1.10, take an e?-flat A™-regular stratification 2 of R? compatible with
each €);. Since ¢; has bounded derivatives, ¢;[D is Lipschitz, for each D € 2°, by
Corollary 1.18. Now use Proposition 1.3 and replace each ¢; by the ;[ D where
D € 9° is a subset of ;.

Let © := 7(Z), where 7 is the projection R” — R? onto the first d coordinates.
Then dim(©) < d. By Theorem 1.10 and Corollary 1.16, we can take a A"-regular
stratification 2 of R? compatible with cl(Q), where Q := Q; U --- U Q;, as well as
with the ; and O, so that ¢;[D is A™-regular for each D € 2° with D C ;. For

each D € 2°, let
Ep=Ent YD), Ip={ie{l,...,s}:DC O},

so Ep = U T'(p;[D). Note that, by Proposition 1.3, |J cl(EFp) = E. Let
i€Ilp Dege
Ny,...,N; be an enumeration of the sets Ep with D € 2°, and
B:=E\(Niu---UN)=F\ |J Ep=2u | 9Ep;
Dege Dege
thus B is small and Z C B.
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It remains to show the separability conditions. Let D € 2°. For i € Ip, since ;[ D
is Lipschitz, by Lemma 2.4, cl(T'(@; [ D)) and (R%\ D) x R"~% are OT'(; | D)-separated.
By Proposition 2.3, this yields the claim. U

Proof of Theorem 3.2. Let € be any rational number with 0 < € <3 3/2 and A be as
in Theorem 2.2. According to the remark following Definition 1.6, take Aq,..., AN €
H,, 4 such that H, 4 = BA(A1) U---U Ba(An). By Theorem 2.2, there are Closed
definable subsets F71,..., Ex, B of E such that

(1) E=E,U---UENUB;

(2) each E; is A-flat w.r.t. A; € H,, 4, and B is small;

(3) for i # j, E; N Ej is small and there is a small definable Z;; C E; U E; such

that F;, E; are Z;;-separated;
(4) for each i, there is a small definable Z; C E; U B such that E;, B are Z;-

separated.
Let S=2Z1U---ZnyU | Zjj, and for i € {1,...,N} let
1#]
SZ':SUUEZ‘QEJ‘, EZ{:EZ‘US.

J#i

By Lemma 3.3, for each i € {1,..., N}, there is a partition E; = Nj U---U Ntii U B!
such that, with «, 8 ranging over {1,...,t;}:

(1) N! C E; is a A™-pancake in a suitable coordinate system;

(2) Bl is a small, closed subset of E! containing S;;

(3) for a # B3, cl(NL), cl(Nﬁ) are 8]\7Z -separated; and,

(4) cl(NL), Bt are ON!-separated.
Set A= B'U---UBY UB. Then

N t; N
E=JUWiuB)uB= (UUN@)UA.

i=1a=1 i=1a=1
In the following, let 4,5 € {1,...,N}, a € {1,...,t;} and B € {1,...,t;}.

Note that N N Né = 0 for i # j. We already know that N¢, Né are ON.-
separated for o # 3. Suppose i # j; we will show that N?, Né are ON!-separated.
Since Né C FE; and Ng C Ej, Né,Ng; are Zij—separated. Since Z;; C B, Né, Z;j are
ON!-separated. Thus by Proposition 2.3, N/ Nj are ON{ separated

Since N} C E; and Z; C B', N}, B are Z; separated and N, Z; are ON -separated,
and so N!, B are ON, é—separated. Moreover, as a result of the previous lemma, N!, B
are ON!-separated. Since N} C FE; and B; CE;US, Ni, BJ are S-separated. Since
S C B', N}, S are ON}-separated. Hence N, B7 are N!-separated. This implies
that N, A are ON!-separated. g

4. PRELIMINARIES ON WHITNEY FIELDS

In this section, we show some basic facts about Whitney fields needed in the proof of
our Definable Whitney Extension Theorem in the final two sections of this paper.
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Hestenes’ Lemma. The classical incarnation of the first theorem in this section is
one of the keys to the study of C""-Whitney fields. Here, we give a purely o-minimal
proof of this fact. (See [5, Lemma 1] for the classical result.) Recall that & (E)
denotes the R-linear space of definable C™-Whitney fields on a definable subset E of
R™ as defined in the introduction.

Theorem 4.1 (Definable Hestenes’ Lemma). Let Q be a definable open subset of R™.
Let F = (FO‘)MSW be a jet of order m on ). Let E be a closed definable subset of
Q such that FIE € &™(E) and FI(Q\ E) € &™(Q\ E). Then f := F° is C™ on
and D*f = F* on Q. In particular, F € &™(Q).

Proof. Let eq,...,e, € N" be the standard basis of R". Note that if F? is C! on
Q and 2= = FO* for |8] < m and i € {1,...,n}, then f is clearly C™ on Q
and D®f = F on Q for every |a| < m. Consider the jets Fjg := (F'“),>p of order
m — |B], for || < m. We have F3|E € 8™ B(E) and F3[(Q\ E) € &™18(Q\ E).
Hence, it is sufficient to show that f is of class C'!' on R"™ and, for every a € R" and
ie{l,...,n}, g—gfi(a) = F“(a); i.e., for every € > 0, there is § > 0 such that

(1) |fla+t-e)—(fla)+ F(a)-t)] <e-|t] for 0 < |t] < é.

Let @ € R" and ¢ € {1,...,n}. Since c’% = F% on R"™\ E (by the definition of
definable C"-Whitney fields), we may assume that a € E. Let € > 0 be given. For
z,y € R" set

(z,y) ={z+t-(y—xz):t€(0,1)}.
By the Cell Decomposition Theorem, there is o > 0 such that either (a,a + dpe;) is
contained in F, or in Q\ E. If (a,a+dpe;) C E, then, since a € E and F[E € &™(E),
there is 0 < §1 < dg such that

|lfla+t-e)—(fla)+ F(a)-t)| <e-t for 0 < t < 4y,

so (1) holds with 6 = §;. Now suppose (a,a + dpe;) € Q\ E. By continuity of F¢,
we may assume that

|F“(z) — F%(a)| < e for every z € (a,a+ dpe;).

Let t € (0,80). Since f is C' on Q\ E with g—g{i = F¢ on Q\ E, by the Mean Value
Theorem,

|f(a+t-ei) — (f(a)—l—Fei(a)i)‘ < ‘(Fef(ﬁ) —Fe"(a)) -t’ some £ € (a,a+t-e;)
<e€-t.

Therefore, there is §; > 0 such that
|fla+t-e)—(f(a)+ F(a)-t)| <e-t for 0 <t < dy.
By the same argument, we can also find d9 > 0 such that
|fla—t-e)— (f(a)+ F(a)-(—t))| <e-t for 0 <t < do.
Then (1) holds with § = min{d;, d2}. O
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Let E C R", E' C R" be definable and ¢ = (p1,..-5¢n): U — U be definable
and C™, where U C R™, U’ C R" are open definable neighborhoods of E, E’, respec-
tively, such that ¢(E’) C E. Then ¢ induces an R-linear map F — ¢*F: &™(E) —
E™(E") as follows: suppose a’ € E', a = p(d') € E, and view

mrE= Y o=

al
la|<m

as an element of the polynomial ring R[x; — ai,..., =y — ay]. Then ¢*F is the jet
of order m on E’ such that for each a’ € E’, the Taylor polynomial T7/'¢*F can be
obtained by substituting T"¢; € R[] — a),...,x, — al,] for x; in the polynomial
T"F and dropping the terms of degree > m in 2’ — a’. It is easy to verify that p*F
is a (definable) C"™-Whitney field on E’ (the pullback of F under ¢).

If f: U — R is a definable C"™-function, then ¢*(J™(f)) = J™(f o ¢). Moreover,
if By C E, E{ C E’ are definable such that ¢(E]) C Ej, then

(0*F)E] = ¢*(FIE1) for all FF € &™(E).
If ¢: U"” — U’ is another definable C™-map and E” C U” definable with o(E") C F’,
then (p o ¢)" = (¢)" 0 p".

Given a pair E' C FE of definable subsets of R", we say that a jet F' of order m
on E is flat on E' if F|E' = 0, and we let &™(FE, E’) be the subspace of &™(F)
consisting of the definable C™-Whitney fields on E which are flat on FE'.

Proposition 4.2 (Kurdyka & Pawtucki, [6, Proposition 3]). Let U be a definable
open subset of R" and E is a definable closed subset of U such that cl(E) and OU
are (cl(E) N OU)-separated. Let ¢: U — R"™ be a definable A™-reqular map with
continuous extension @: cl(U) — R™ to cl(U). Let E' be a definable closed subset
of R" containing ¢(E) and F' = (F)|4<m be a jet of order m on E' such that, for
every xo' € p(OE’) and |a] < m,
Fo(z) = o(d(z, oE")™ o) as E' 52— x'.
Then, for any o € OF and |a| < m,
(¢*F)*(z) = o(d(z,0E)™ 1) as E' 3 2 — .

‘We use this proposition to show:

Corollary 4.3. Let Q C R? be definable and open and E := Q2 x {0} C R Suppose
that : Q x R — R is a definable A™-regular map and B: cl(Q) x R' — RI* s
the continuous extension of p. Assume further that 9(OE) = 0(¢(E)). Let F €
E™(cl(p(E)),0(¢(E))). For each | < m, define F*: cl(E) —» R by

Fa(q:) p— {(@*F)a(x)7 ifv € E;

0, otherwise.

Let §*F := (F")4j<m- Then @*F € &™(cl(E),OF).
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Proof. By Proposition 4.2, for every gy € 0N and |a| < m,
(p*F)*(z,0) = o(d(x,ﬁﬁ)m_|0‘|) as Q3 x — xo.

Therefore, *F is a jet of order m on cl(E). Thus, it is sufficient to show that p*F
has the C"-Whitney field property.

Let 29 € cl(R2) and a € N with |a| < m and k := m — |a|. For each v =
(1, . --,7a) € N with |y| < k, define G: R* — R by

o) = {(SD*F)W;U’O)’ it e o

0, otherwise
where 5 = (v1,...,74,0,...,0) € Nt Let G, := (Gad)py|<k- Clearly, G, [ € &EF ()
and Go[(R?\ Q) € &F(R?\ Q). By Hestenes’ Lemma, GO is C™ and so G, €
&F(RY, R4\ Q). Therefore,

(REZ,O) (a*F))a(ya 0) = (R?Ga)o(y)

k
= o(flz = y[")
= o([|(2,0) = (5, 0)[""™) a5 () 3 2,y = xo.
Since « is arbitrary, *F is a C™-Whitney field on cl(E). O

From now on, if all conditions in Corollary 4.3 hold, we denote p*F' just by ¢*F
for notational simplicity.

The sets A.(E). For € > 0 and definable E, E' C R" with E’ C cl(E), we let
Ad(E,E'):={z € R":d(z,E) < ed(z,E")},

and we set A (E) := A (F,0F). See Figure 3 for an example. The following propo-
sitions and lemma will be devoted to useful properties of the sets A (F).

Ad((=1.1) x {0)

FIGURE 3. A.((—1,1) x {0}) in R2.

Proposition 4.4. Let Q be an open cell in RY. Then, for each € > 0 and each ,

A x {0} = {(:v,y) cQxR |y < \/;jd(x,am} .
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We leave the proof of this proposition to the reader. For the next proposition,
recall that a subset of R™ is locally closed iff its frontier is closed.

Proposition 4.5. Let E be a definable subset of R™ which is definably path connected
and locally closed. Let 0 < € < 1. Then A (FE) is also definably path connected.

Proof. Tt is enough to show that for any € A (E) we can find a definable path in
A¢(FE) connecting x and a point in E. If z is already in FE, it is trivial. So, assume
x € A(E) \ cl(E). Take y € cl(F) with d(z,y) = d(x, E); since x € A(FE), we have

d(z,y) =d(z,F) < ed(x,0F) < d(z,0F),

which implies that y ¢ OE. Let I = [0,d(x, F)| and define v: I — R" by ~(t) =
T+ t|(|3:§|)|' Next, we will show that v(t) € A(F) for every ¢t € I (i.e., d(y(t),E) <

ed(y(t),0F).)

Claim. d(y(t), E) = d(v(t),y) for all t € I.

Proof of the claim. Pick z € E'\ OF such that d(v(t),z) = d(y(t), E). If d(v(t),z) =
d(y(t), E) < d(y(1),y), then

d(x, z) < d(y(t), 2) + d(x,¥(t)) < d(y(t),y) + d(2,~(t)) = d(z,y),

which contradicts the minimality of y. O

Suppose for a contradiction that v(t) ¢ A(E). Pick ¢ € OF such that d(vy(t),c) =
d(y(t),0F). Then

hence d(z,7(t)) < 0, a contradiction. Therefore,  is a definable path in A.(E) which
connects z and E. O

Proposition 4.6. Let E = I'(¢) where ¢: Q — R is definable and Lipschitz and
is an open cell in R®. Then there is eg > 0 with A(E) C Q x R for all 0 < € < €.

@ be the Lipschitz extension of ¢ to cl(€2). By the above proposition, it is sufficient
to prove that A (E) N (0Q x RY) = 0. Let € 0Q and y € R'. Let a € cl(Q) satisfy

Proof. Let L be a Lipschitz constant of ¢ and set ¢y =
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d((z,y), E) = d((z,y), (a,9(a))). If (z,y) € Ac(E), then
d((z,y),0E) < d((x,y), (z,2(x)))
< d((z,9), (a,9(a))) +d((a,B(a)), (z,5(x)))
<d((z,y),E)+ 1+ L?*d(a,x)
< d((z,y), E) + V1+ L*d((a,P(a)), (z,7(x)))
= (1

V1+ L) d((z,y), E)
<(1+vV1+L?*ed(z,y),0F)
< d((z,y),0E),

which is impossible. Thus, (z,y) ¢ Ac(E). Since (z,y) is arbitrary in 9Q x R, we
obtain A (E) N (0Q x R') = (). O

N
Lemma 4.7. Let Q@ C R" be open and E = |J I'(p;) where each ¢;: Q — R is
i=1

definable and Lipschitz. Set

Cit(z,y) == (z,y + pi(z)) for (z,y) e Qx R andi=1,...,N.
Then

@it (A2 x {0}) C Ao (E) for all0 < e< % andi € {1,...,N}.
Proof. Let (z,y) € Ac(2 x {0}). Then |ly|| < —==d(x,09). Therefore,

1—€2
d(pir(z,y), E) < d((z,y + ¢i(2)), E;)
<d((z,y + @i(x)), (z,0i(x))) = [lyll
< ﬁd(m,ﬁﬁ)

< —d 7 ) 78E
SNy (it (2,y) )
< 26d(§01+(x>y)78E)7
i'e'v 902+($7y) € AQG(E) U

Next, we modify Proposition 6.2 in [9], which is a main step in Pawlucki’s version
of Whitney’s Extension Theorem.

Proposition 4.8. Assume m < q. Let E; O E! (i = 1,...,s) be definable closed
subsets of R™ and C' > 0 be a constant such that for any i,j € {1,...,s}, i # j,

d(z, E;) + d(z, Ej) > Cd(x, E})  for all z € R".

Set E=EU---UEy, E' = E{U---UEY, and let F € &™(E,E') and € € (0,5).
Suppose FIE; has a definable C™-extension f; which is m-flat outside A¢(E;, E}) and

S
C? outside E;, for each i =1,...,s. Then f = > f; is a definable C™-extension of
=1
F which is C? outside E. l
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Proof. 1t suffices to prove that A.(E;, E!) N AG(E]-,E}) = (0 fori # j. Let z €
Ac(Ei, E}) N A(Ej, EY). Then d(z, E;) < ed(z, E}) and d(z, Ej) < ed(z, EY), so
2(d(z, E;) + d(z, Ej)) < 2¢(d(x, E}) + d(z, E}))
< C(d(x, E}) + d(z, E}))
< 2(d(x, E;) + d(z, Ej)),
a contradiction. (]

The functions associated to a standard open A™-regular cell. Let ) C R"
be a standard open A™-regular cell. Kurdyka and Pawlucki introduced functions
pj: cl(Q) = R (j =1,...2n) corresponding to such a cell, which we call the func-
tions associated with (), and used them in the proof of their main theorems
(see [6, 9]). These functions also become useful in our construction of definable
C™-extensions. We define the p; by induction on n:

(1) For n =1 and Q = (a,b),

() = r—a, ifa€eR, and po(z) = b—z, ifbeR,
Pl B 0, if a = —o0, P2 o, if b = 4o00.

(2) Suppose ' is a standard open A™-regular cell in R™ and f,g: ' — Ry are
definable A™-regular functions with
Q= {(xyanrl) eV xR: f(:C) < Tpy1 < g(x)}

Let 0;(j = 1,...,2n) be the functions associated with Q'. Let (x,zn41) €
cl(2). Set pj(x, xpq1) = oj(x) for j =1,...,2n and

Tpyp1 — f(x) if f() CR,

P2n+1(T, Tpy1) = {0 if f=—oo0,

and
) g9(@) —wpn i g() CR,
Pan+2(T, Tnt1) = {O, if g = 4o00.

The proofs of the following facts from [6] (Lemmas 3 and 4) go through in our setting:

Lemma 4.9. Let Q) be a standard open A™-regular cell in R™ and p1, ..., pan be the
functions associated with €.

(1) There is a constant C' > 0 such that
min p;(z) < d(z,0Q) < Cminpj(xz)  for every x € ).
J J

(2) The p; are A™-regular.

Pawtucki’s proof of Whitney’s Extension Theorem in [9] heavily relies on inte-
gration of definable functions with respect to parameters, which generally takes us
outside our given o-minimal structure R, so we cannot immediately follow his proof
in our context. In order to overcome this problem, we need to find other definable
tools which work in each o-minimal expansion of a real closed ordered field, and one
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of them is the A™-Stratification Theorem. However, this theorem is not sufficient to
capture all the necessary information to construct C"-extensions for C"-Whitney
fields. For this reason, the following lemmas are proved, which provide us with some
control over the partial derivatives of functions with respect to the boundaries of their
domains.

Lemma 4.10. Let Q be a definable open subset of RY and p: Q — R be a definable
A™-regular function which does not vanish on ). Then, for |a| < m,

D (1) (2) = O((min{p(a), d(x, 00)}) 7/ ™)  as d(z,09) 0 and z € O

Proof. Let A1,. .., \, range over N¢\ {0}. For a # 0,

|a

(= D)D) ]

k=1 \Ai++Ap=a
where ¢§ A, 1S an integer. Thus

|

D~ (%) = > 0(d(z,09) M) O (d(x, 09Q) AL | TR
k=1 \ i+t A=
= O(min{p(x), d(z,00)}~1*I=1)
as d(z,00) — 0 and z € Q. O
Corollary 4.11. Let Q C R? be an open A™-regular cell, and let A be an orthog-
onal isomorphism of R such that A(Q) is a standard open A™-regular cell. Let

P1s---sp2a: A(Q2) — R be the functions associated to A(Y). Then, for |a| < m and
j=1,...,2d,

D* (%) () = O(d(z,0A(Q))7=Y)  as d(x,0A(Q)) — 0 and x € A(Q).

Thus if we let v; = pj o A, then
D (i> () = O(d($,3ﬂ)_|a|_1) as d(x,00) — 0 and x € Q.

vj

Proof. Since each p; is A™-regular and d(z,0Q) < Cp;(zx) for some C > 0, by the
above lemma, we’re done. [l

Lemma 4.12. Let Q be an open subset of R?, let f: Q@ x R* — R and p: Q@ = R
be definable C™ functions, and let t: Q — R>° be definable. Suppose there is C > 0
such that

t(z) <d(z,00) < C-p(x) for every xz € .
Let € > 0. Assume, for every xo € 0Q and o € N® with |a| < m,

D~ (%) = O(t(x)_“’d_l) as r — xo,
and for xo € O and rk € N || < m,
D f(x,y) = o(t(x)™ ") as A x {0}) 3 (z,y) — (x0,0).
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Fiz i€ {1,...,1}. For every definable C"-function £&: R — R, where n < m, set
ge(,y) = é(p%;)>f(:c,y) for (z,y) € 2 x R

Then for every such &, n, we have, for |k| < n, xo € 00

Dge(z,y) = o(t(x)" ") as AL(Q x {0}) 5 (z,y) = (20,0).
Proof. Put ho(x,y) = pyi and hg = £ o hg. By the Leibniz Formula,

(@)
DFge =Y <§> D he DR

It is enough to check that
D he(z,y) = O(t(x) ™M) as A x {0}) > (z,y) — (20,0).
We proceed by induction on |A|. Suppose |[A| = 0. For (z,y) € A(Q x {0}}),
[yl < d((@,), @ x {0}) < e-d(,09) < eC- p(a);

so |ho(z,y)| < eC. Thus &([—€C, €C]) contains he (A(Q x {0})). Since ¢ is continu-
ous, the former set is bounded, and hence so is the latter. Therefore h¢(x,y) = O(1)
as Ae(Q x {0}) 3 (z,9) — (20,0).

Assume the claim holds true for some value of |A| < n — 1, where n > 1. By
induction hypothesis,

DMhe(.y) = |D* (52) ] (2.9)

— <A> [DH(E 0 ho)] (2, ) [DA‘“ (2—’;3)} (z,y)
<A

i
> ) ] e [0+ (1))
p<A
— ZO \M )O(t(x )*I/\\Hul)
p<A
and so DM he(z,y) = O(t(x) M) as Ac(Q x {0}) 2 (2,9) — (20,0). O

In the rest of this section, we let 0 < € < % and m < ¢, and we let Q2 be a

standard open A%-regular cell in R%, with associated functions pi,. .., paq. We also
let F'e & (cl(Q) x {0}, 00 x {0}H).

Definition 4.13. Let £: R — R be a semialgebraic C""-function which is 1 in a
neighborhood of 0 and 0 outside (—1,1). Define 7.: R¥*! — R by

oo (og )

where Q). is a constant (depending on €, €, d, and [) large enough so that r. is m-flat
outside A(Q x {0}!).
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Lemma 4.14. Let h: Q x R' — R be definable and C?. Suppose, for k € N with
|k| < m and xo € 0,

D"h(x,0) = F*(z,0) for all z € )
and

D h(z,y) = o(d(x,02)™ ") as A x {0}) 3 (z,y) — (x0,0).
Define f.: R¥" — R by
re(z,y)h(x,y), ifx € Q;

0, otherwise.

Then f. is a definable C™-extension of F which is m-flat outside A (Q x {0}) and
C? outside cl(2) x {0}'.

Proof. Obviously, f.[(2 x R!) is m-flat outside A.(Q x {0}!) and f. is C9 outside
00 x {0}!. First, we will show that f. extends F. Let z € 2. Then

fe(z,0) = re(x,0)h(x,0) = FO(x,0).
By the Leibniz Formula,
D" fe(x,y) = D" (re(z, y)h(z,y))
— Z (Z) (D" re(z,y)) (D h(z,y)).

o<k
Since (D7) (z,0) = 0 if |y| > 0 and r¢(z,0) = 1, we obtain
D" fe(x,0) = D"h(x,0) = F"(z,0).

It remains to show that f. is actually C™ on R, Let y # 0 € R'. It is enough to
find § > 0 such that (z,y) ¢ A (2 x {0}) for all x € Q with d(z,0Q) < §. Since

(z,9) ¢ A(@x {0}) = |yl > Hmd(z,00),

Vi-e2
it suffices to pick § = % Therefore, f. is C™ on R¥\ (99 x {0}!). By Corollary 4.11
and Lemma 4.12, f. is C™ on R, O

Corollary 4.15. For 8 € N! with |3| < m, suppose
hP:Q x R' — R, Wi (z,y) = FOP) (z,0)y°
is C1 and, for k € N with |k| < m and xo € 09,
DB (a,y) = o(d(z,d0)™ ) as A(Q x {0}) 3 (z,y) — (20,0).
Define f.: R¥*" — R by

Ts(xvy) Z hﬁ(ﬁw!,y), Zf.T S Q;
fe(xvy) =

|Bl<m
0, otherwise.

Then f. is a definable C™-extension of F' which is m-flat outside A (2 x {0}!) and
CY outside cl(2) x {0}
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Proof. Clearly, D" < > Iﬁ(;,o)) = F"(z,0). By Lemma 4.14, we're done. O
|Bl<m

The next lemma is a very special case of the main theorem from the introduction.
Even though this lemma will not be used later in this paper, it is worth stating here
(since this provides an idea of the construction in Section 5).

Lemma 4.16. For |a| < m assume that
9“: Q — R, g%(z) = F%(,0)
is C9 and that for each v € N% with 1 < |y| < g, there is some L > 0 with

[D7g%(@)] < - sup { |9*(W)| : v € Q, ||z — y|| < d(z,09)} for z € Q.

L
(x, QQ)M

Then F has a definable C™-extension which is m-flat outside A (Q x {0}) and C?
outside cl(R2) x {0},

Proof. For 3 € N! with |8 < m, define h? as in Corollary 4.15; by this corollary, it is
sufficient to prove the following claim:

Claim. For k = (0,7) € N? x N with || < m and zg € 09,
2)  D*RP(z,y) = o(d(z,dQ)™ ") as A(Q x {0}) 3 (z,y) — (20,0).

To prove the claim, we may assume 7 < [, since otherwise we simply have
D*hP(z,y) = 0. Suppose first that |o| < m — |3|. Then, by Hestenes’ Lemma,

B!
(B—=7)!
for every (x,7) € Q x R'. By the definition of C™-Whitney fields,

FB)(2,0) = o(d(x,ﬁﬁ)m_‘o‘_w') as T — xo.

We have |y| < ﬁd(w,@ﬂ) since (x,7) € A (2 x {0}!), and so (2) follows.

Now suppose |o| > m — |B|. Then o = n + v where |n| = m — |3|. Hence,

D”hﬁ(x,y) = F(U”B)(:x,O)yﬁ*T

K B! -7
D1 (z,y) = _T),D'Yg(”’ﬁ)(m)yﬂ

(s
= o(d(x,09Q) ") - O (d(z, 00) A=
= O(d(% aQ)IBI—IT\—Ivl).

Now (2) follows since |B| — |7| — |v| = |B| — || — |o| + |n| = m — |k|. This proves the
claim. 0

Corollary 4.17. Assume Q' C R? is an open A-regular cell and F' € &™(cl(Y) x
{0}, 09 x {0}!). For |a| < m define

g“: Q' = R, 9%(z) = F*(x,0).
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Assume g is C7 and, for each v € N® with 1 < |y| < q, there is some L > 0 with

L
DY (@) € ——

Then F has a definable C™-extension which is m-flat outside A(Q' x {0}') and C1
outside cl(€') x {0}

sup{ [¢°(W)| :y € Y, ||z —y| < d(x,09)} forz e

Proof. Let A be an orthogonal isomorphism of R? such that Q := A(Q') is a standard
open AY-regular cell. Now apply the previous lemma to (A~1)*F € &™(cl(Q) x
{0}, 0(2) x {0}}) in place of F. O

5. THE FIRST FOUR STEPS

In this section, we assume m < q. Pawlucki’s construction of an extension operator
for C™-Whitney fields from [9] can be divided into five steps, depending on the nature
of the Whitney field F' and its domain F:
Step 1: E = R? x {0}
Step 2: E = cl(Q) x {0} where Q is an open A9-regular cell and F is flat on
o0 x {0}
Step 3: E = cl(Ep) where Ej is the graph of Lipschitz A%-regular map on an
open AY-regular cell and F is flat on JFy;
Step 4: E = cl(Ey) where Ej is a A%-regular pancake and F' is flat on 0Fj;
Step 5: E is any closed definable set.

In this section, we work on the first four steps under the following assumption:

(%) For every closed definable set E C R™ with dim(E) < d, every F €
E™(E) has a definable C™-extension which is C1 on R"\ E.

Thus, in the rest of this section we assume that condition (x) holds.
5.1. Step 1.

Lemma 5.1. Let F' € &™(R? x {0}). Then F has a definable C™-extension which
is C9 outside R? x {0}'.

Proof. For 8 € N!, define Fjg := (ﬁ(”’5))|(075)|§m where

F06) . {F(”’5)7 if 8 =4;

0, otherwise.
Claim. Fg € &™(R% x {0}!) for every |B] < m.
Proof of the claim. For x,y € R and |(c,0)| < m, we have
(B 0)F5(y,0)) "

(0+€,8)
F@9)(y,0) — F‘—(””"O)
= gl<m—al—lo]  §!(B =
0, otherwise,

(y—2)5(0)° 70, if 6 < ;
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with the convention that 0° = 1. For § # 3, we have (Rg O)Fﬁ(y, 0))(@%) = 0. Assume
B =46. By C™-Whitney field property of F,

- F&n)
0= (R P0) ) = Fed oy - 3 ey
[(€m)|<m—|(c,8)| o
F+68) (2.0
= FeAG0 ~ Y oy - af
|§l<m—|B]—|o] '
= (RY o) F(y,0) .
O
Obviously, F' = ) Fpg. Hence, we may assume that F' = F3. By Smooth Cell

1Bl<m
Decomposition, there is a cell decomposition € of R? such that, for each C' € € and
|(a, B)| < m, the function F(®8) [(C x {0}}) is C?. By (x), we may assume the F is
flaton |J C x {0}.
cet\¢o
Let C € ¥°. By Proposition 4.8, it is sufficient to find a definable C"™-extension
fo of FI(cl(C) x {0}') which is m-flat outside A(C' x {0}'), for some € > 0 small
enough, and C? outside cl(C) x {0}}. Therefore, we may assume that F is flat
on (R4\ C) x {0} and F(®) is €9 for every |(a, 8)] < m. By Lemma 1.14, we
may write cl(C') = Dy U---U Dg U B where the D;’s are open A%-regular cells and
B =0D; U---U0dDs, such that, defining, for |a| < m,

9°: R 5 R, 9%(z) = F*(x,0),
there is L > 0 so that for x € N¢ with |x| < ¢ and u € D;, each g*[D; is C? and

) 1D ) € oo { 1o v € De Ju—v] < d(u.9D)
for u € D;.

By (%), let fo: R® — R be a definable C™-extension of F[(B x {0}!) which is C¢
outside B x {0}, and set
F:=F — J™(fo) (R x {0}) € &™(R? x {0}).
Clearly,
Fy = F(cl(D;) x {0}') € £™(cl(Ds) x {0}, 0D; x {0}"),
By Propostion 4.8, it is sufficient to find a deﬁnable C™-extension f; for each Fj

which is m-flat outside A.(D; X {0}1), for some € > 0 small enough, and C? outside
cl(D;) x {0}. Fix some i € {1,...,s}, and let

hi(z,y) = ;!F(O’ﬂ)(ﬂﬁ,o)yﬁ — fo(z,y).

Obviously, D*h;(x,0) = F*(z,0) for all z € D; and |x| < m. By Lemma 4.14, it is
enough to show the following claim:
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Claim. For k = (0,7) € N? x N with |x| < m, and 29 € 9D;,
D hi(w,y) = o(d(x,dD;)™ ") as Ad(D; x {0}) 3 (x,y) = (x0,0).

If xg € C, by Taylor’s Formula, we’re done. Assume zy € 0C. We will proceed to
show the claim by induction on m — |k|. First assume |x| = m. Clearly,

[D*hi(.y)| < | D (FFCD) (@, 07 )| + D" fola.y)]
Since fy is m-flat at (zo,0), we have D”* fo(z,y) — 0 as (x,y) — (z0,0). Suppose
7 < [ (otherwise, D"‘(é éo’ﬂ) (z,0)y®) = 0). Then
D (%15 (@,0097) = D7 (£ (@, 0097 7)
where 0 = a+ v and || + || = m. We have
18] = Il = vl = 18] = [T = lo| + |a] = m — |7| = o = m — |x] = 0.
Since F(@#)(z4,0) =0,
s(z) == Sup{]F(a’ﬁ)(x,O)] cx €Dy, |xv— 2] <d(2,0D;)} =0 as D; 3z — .
By (3),

D (54w 00| < 5

< |B]—I|7]
(z,0D;)b] 5(z) (\/@d(x, 8Di)>

18I
“1(g=) e
— 0 as Ad(D; x {0}) 3 (z,9) = (x0,0).

Next, assume that || < m and for every |A| > |k],
D*hyi(w,y) = o(d(z,0D;)"™ M) as Ad(D; x {0}) 3 (2,y) = (x0,0).

Let (z,y) € Ad(D; x {0}). Let z € 9D; such that |z —z| = d(z,0D;) and S
be the line segment connecting (z,y) and (z,0). By Proposition 4.4, we see that
S C A(D; x {0}}). Applying the Mean Value Theorem on S, we obtain

|D"h(x,y)| < Vd+1-sup {|D"Phi(u,w)] [N = 1, (u,w) € L} - \/|o = 2> + [y

< (Vd+1) - tz,y) - (1+ 4 ) - d(z,0D))
where

t(z,y) == sup {|D" A hi(u, w)| A = 1, (u,w) € Ac(D; x {0}),

d(u, 0D;) < 2d(z,0D;)}.
Using the induction hypothesis, we get
D*hi(x,y) = o(d(x,dD;)™ =1 . d(z, dD;)
= o(d(x,0D))™ ") as Ad(D; x {0}) 3 (z,y) = (x0,0).
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5.2. Step 2.

Lemma 5.2. Let Q be an open A?-regular cell in R%, and F € &™(cl(Q) x {0}, 09 x
{0Y). Then, for every e >0, F has a definable C™-extension which is m-flat outside
A (2 x {0} and C9 outside cl(Q2) x {0}.

Proof. First, we extend F to F' € &™(R% x {0}) as follows:

~ Fe if Q;
FQ(M):{ (2,0), ifze:

0, otherwise.

By the above lemma, we can find a definable C™-extension f of F. However, f is
possibly not m-flat outside A.(Q x {0}!). In order to guarantee this, we have to

slightly modify f. Define
re(z,y) f(a,y), ifxe;

0, otherwise.

Here, 7. is as introduced in Definition 4.13. Clearly, f. is m-flat outside A.(Q2 x {0}}).
Moreover, since f is C? outside R? x {0} and r. is C% on Q x R!, f. is O outside
cl(Q)x {0}!. Since fis C™ on R4, by Corollaries 4.11 and 4.12, f. is C™ on R, O

5.3. Step 3. Let ¢: Q — R! be a definable Lipschitz A%-regular map and € be an
open Ad-regular cell in R%. Let @: cl(2) — R! be the continuous extension of ¢, and

P+ CI(Q) X Rl _>Rd+l? QDJr(w?y) = (may+¢($))a
po: c(Q) x B — R o (2,y) == (v,y — P(x)).
To apply Step 2 to E = cl(I'(p)), we first show that for each C"™-Whitney field on F,
there is a corresponding C™-Whitney field on cl(£2) x {0}'.
Let Ey :=T(p), E :=cl(Ey) =TI(9), and F € &™(E,JEy). Obviously,
P4 (cl(Q2) x {0}) = E,  ¢4.(092 x {0}) = OE).
By Corollary 4.3,
PL F e &M (cl(R2) x {0}, 00 x {0}).
Now we show:
Lemma 5.3. Let Ey :=T'(p), E :=cl(Ey) =I'(p), and F € &™(E,JEy). Then, for

every € > 0, F has a definable C™-extension which is m-flat outside o (A (Q2x {0})))
and CY outside E.

Proof. By Proposition 4.6, there is ¢ > 0 such that As(E) C QxR forall 0 < § < ¢.
Let € > 0 be given. We may assume that ¢ < ¢3. By Lemma 5.2, take a definable
C™-extension f_, of ¢} F which is m-flat outside A¢ (€2 x {0}"=%) and C? outside
cl(2) x {0}"~9. Define f: R® — R by

f-olo—(z,y)), ifzel
0, otherwise.
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Since J™(f)IE = ¢* (1 F) = (¢4 0p-)"F and ¢4 0 p_ =idyq)xp, J"(f)IE =F.
Therefore, f is a C™-extension of F' which is m-flat outside ¢(A< (2 x {0}7=%)) and

C7 outside E. O
5.4. Step 4.

Lemma 5.4. Let Ey be a A9-pancake of dimension d with common domain Q C R,
let E = cl(Ep), and F € &™(E,0Ey). Then, for every e > 0, F' has a definable
C™-extension which is m-flat outside A¢(Ep) and C? outside E.

Proof. Suppose E = cl(Ey U --- U Ey) where E; = T'(p;) with ¢;: @ — R % a
definable A%regular Lipschitz map. For each i € {1,...,s}, let @;: cl(Q) — R! be
the continuous extension of ¢, and

i+ cl() x Rl — R, Vit (z,y) == (:U,y —i—@(x)),
@i cl(Q) x Rt — R o (x,9) := (z,y — @i(x)).
By Lemma 4.7, it is enough to prove that, for 0 < e < %, there exists a definable

C™-extension of F which is m-flat outside |J @iy (Ac(Q x {0}"7%)) and CY outside
i=1

1=
S

J cl(E;). We show this by induction on s. If s = 1, by Lemma 4.7, this is just

i=1

Lemma 5.3. Suppose s > 1, and the statement is true for s — 1 in place of s.
s—1

Let 0 < € < % Then we can find a definable C™-extension f. of F| U cl(E))
i=1
s—1 s—1
which is m-flat outside |J @it (Ac(Q x {0}"9)) and CY outside |J cl(E;). Note
i=1 i=1

s—1
that |J @it (Ac(© x {0}"79)) and 9Q x R"~¢ are disjoint. After replacing F by
i=1

F — J™(f)|E, we may assume that

s s—1
Fes&m (U cl(E;), | cl(Ei) U 8ES> :
i=1 i=1

Next, consider ¢}, (F'[cl(E,)) € &™(cl(2) x {0},0Q x {0}) (by Corollary 4.3.) By
Lemma 5.2, let f be a C™-extension of ¢}, (F'[cl(Es)) which is m-flat outside A(£2 x
{0}"=%) and C7 outside cl(Q2) x {0}" % Fori = 1,...,5s — 1 and = € Q, we define
ri(z) == |pi(x) — ps(z)|. Each function 7;: @ — R>% is A™-regular. Let {: R — R
be any semialgebraic C9-function which is 1 in a neighborhood of 0 and 0 outside
(=1,1). Then, define

s—1 1

i _ |
g(a:,y): EJgé(ﬂrz(x))f(x?y)a lflUGQ,
0, otherwise.

Since f is C™, by Lemmas 4.10 and 4.12, g is a C™-extension of ¢}, (F'[cl(E,)) which
is m-flat outside A.(Q x {0}"~%). Moreover, by the choice of r; and &, we also get
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that g is m-flat on ¢, (F;) for alli =1,...,s — 1. Define f.: R — R by

fe(ﬁ,y) = {g(@s(x))7 if x € Q;

0, otherwise.

Obviously, cl(E;) = @sy (ps—(cl(E;))) for all i € {1,...,s}. Thus, f is a C™-
extension of F|cl(Es) which is m-flat on cl(E;) and outside ¢y (A(Q x {0}"79)).

Therefore, f. is a C™-extension of F' which is m-flat outside |J pit (Ac(Q2x {0}"9)).

=1
s

In addition, f. is C? outside |J cl(E;). O
i=1

6. PROOF OF THE DEFINABLE WHITNEY EXTENSION THEOREM

Suppose m < q. We will prove by induction on d that every F € &™(FE), where
E is a definable closed subset of R™ of dimension d, has a definable C™-extension
which is C? on R™\ E. When d = 0, F is just a finite subset of R"; and this case
is easy. Suppose d > 0, and the statement is true for all smaller values of d; that
is, condition (*) from the previous section holds. Let E be a definable closed subset
of R" of dimension d and F € &™(F). By the A™-regular Separation Theorem,
decompose £ = M7 U ---U Mz U A where

(1) each M; is a A%-pancake of dimension d in a suitable coordinate system;
(2) A is a small, closed, definable subset of E;
(3) for all i # j, cl(M;), cl(M;) are OM;-separated; and
(4) for each i, cl(M;), A are OM;-separated.
By (%), take a definable C"™-extension f4 of F[A. By replacing F' by F'— J™(fa)[F,

we may assume that F is flat on |J 0M;. Now, by separability, Proposition 4.8, and
i=1
Lemma 5.4, we obtain a C'"™-extension of F' which is C'? outside F. O

As usual in the o-minimal context, there is a certain uniformity inherent in the
above constructions; this can be exhibited by redoing these construction “uniformly
in parameters,” or perhaps more elegantly, by using the Compactness Theorem of
first-order logic:

Theorem 6.1. Let (F,)qca, where A C RN, be a definable family of definable C™-
Whitney fields F, on a closed definable set E, C R™. Then there is a definable family
(fa)aca of definable C™-functions fqo: R™ — R such that f, is an extension of Fy,
for each a € A.

Proof. Let £ be the language of R, assumed to include a name for each element of R,
so that every definable set in R is definable by an .Z-formula. For each oo € N with
la| < m, let ¢*(x,y, z) be a formula in £ where the length of z, y, and z are n, 1,
and k, respectively, such that for each a € A, ¢*(x,y,a) defines the graph of (F,)®.
For each formula ¢(z,y,z2), let xy(z) be a formula such that, for each a € RY,
Xy (a) holds in R precisely when 9(x,y,a) defines the graph of a C"-extension of
F,. Next, add N fresh constants c1,...,cy to £ and call the resulting language .#’.
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For notational convenience, we write ¢ = (c1,...,cy). By our main theorem, the
Z'-theory

Th(R) U {—xy(c) : ¥ = ¢(x,y,2) is an ZL-formula}
is inconsistent. Therefore, by the Compactness Theorem, there are formulas

wl(xayaz)a cee 7¢M(x7y7 Z)

such that, for each a € A, one of ¥;(x,y, a) defines the graph of a C™-extension of Fy,
in R. We can now easily construct a single formula ¢ (z,y, z) which works for every
a € A, ie., for each a € A, ¢(x,y,a) defines the graph of a C™-extension of F,. [

In [9], Pawlucki also shows that his C™-extension operator is linear. Unfortunately,
in the proof of Lemma 5.1 above, the decomposition depends on each specific C"-
Whitney field, which results in the loss of linearity. Therefore, we finish this paper
with the following open question:

Question. Let E be a definable closed subset of R™. Is there an R-linear map which
assigns to each F' € £™(FE) a definable C™-extension of F'?

REFERENCES

[1] L. van den Dries, Tame Topology and o-minimal Structures, London Mathematical Society
Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998.

[2] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84
(1996), no. 2, 497-540.

[3] A. Fischer, O-minimal A™-regular stratification, Ann. Pure Appl. Logic 147 (2007), no. 1-2,
101-112.

[4] M. Gromov, Entropy, homology and semialgebraic geometry, in: Séminaire Bourbaki, Vol.
1985/86, Astérisque 145-146 (1987), no. 5, 225-240.

[5] M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8, (1941),
183-192.

[6] K. Kurdyka, W. Pawtucki, Subanalytic version of Whitney’s extension theorem, Studia Math.
124 (1997), no. 3, 269—-280.

[7] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, 1966.

[8] W. Pawlucki, A decomposition of a set definable in an o-minimal structure into perfectly situated
sets, Ann. Polon. Math. 79 (2002), no. 2, 171-184.

, A linear extension operator for Whitney fields on closed o-minimal sets, Ann. Inst.

Fourier (Grenoble) 58 (2008), no. 2, 383-404.
[10] H. Whitney, Analytic extension of differentiable functions defined in closed sets, Trans. Amer.
Math. Soc. 36 (1934), 63-89.

, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934),

369-389.

, Functions differentiable on the boundaries of regions, Annals of Math. 35 (1934), 482—

(11]

(12]

485.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LLOS ANGELES, LOS ANGELES,
CA 90095-1555, U.S.A.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHULALONGKORN UNIVERSITY, BANG-
KOK 10330, THAILAND
FE-mail address: t.athipat@gmail.com



