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Abstract. In 1934, Whitney gave a necessary and sufficient condition on a jet of
order m on a closed subset E of Rn to be the jet of order m of a Cm-function;
jets satisfying this condition are known as Cm-Whitney fields. Later, Paw lucki
and Kurdyka proved that subanalytic Cm-Whitney fields are jets of order m of
sybanalytic Cm-functions. Here, we work in an o-minimal expansion of a real
closed field and prove a definable version of Whitney’s Extension Theorem: every
definable Cm-Whitney field is a jet of order m of a definable Cm-function.

Introduction

Whitney’s Extension Theorem, which can be considered as a partial converse of Tay-
lor’s Theorem, was proved by H. Whitney in 1934. (See [7, 10] for the proof, and
[11, 12] for related problems.) It roughly says that if f : E → R, where E is a closed
subset of Rn, can be approximated by Taylor polynomials of degree m in a certain
uniform way (as entailed by Taylor’s Formula), then f can be extended to a Cm-
function on Rn. A Cm-Whitney field on E encodes the data relevant for such an
approximation of f . The present paper is motivated by the work of K. Kurdyka
and W. Paw lucki [6], who proved a version of Whitney’s Extension Theorem in the
category of subanalytic functions.

Throughout this paper, let R be a real closed ordered field and R be an o-minimal
expansion of R in a language L . Moreover, “definable” always means “definable in R,
possibly with parameters.” As usual, a map is called definable if its graph is. In the
main bulk of the paper, we assume that the reader is familiar with the basic definitions
and facts concerning o-minimal structures; see, e.g., [1, 2]. For the purposes of this
introduction, the reader can think of the special case where R is the usual ordered
field of real numbers R, so the sets definable in R are precisely the semialgebraic
sets (i.e., defined by finite boolean combinations of polynomial inequalities). In this
paper, we prove Whitney’s Extension Theorem for definable Cm-Whitney fields.

Theorem (Whitney’s Extension Theorem). Let F be a definable Cm-Whitney field
on a closed subset E of Rn. Then for each q ≥ m, F has a definable Cm-extension
which is Cq on Rn \ E.

Let us make precise what we mean by a definable Cm-Whitney field and an ex-
tension of such a Whitney field. Let E ⊆ Rn be definable. A (definable) jet of
order m on E is a family F = (Fα)|α|≤m where each Fα : E → R is a definable
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continuous function. If F is a jet of order m on E and E′ ⊆ E is definable, then
F �E′ := (Fα�E′)|α|≤m is a jet of order m on E′. If E is open, then for each de-
finable Cm-function f : E → R, we obtain a jet Jm(f) = (Dαf)|α|≤m of order m

on E. Here, α = (α1, . . . , αn) ranges over Nn, and we let Dα = ∂α1

∂x
α1
1

· · · ∂αn
∂xαnn

and

|α| := α1 + · · ·+ αn. Now for every x ∈ Rn, a ∈ E, and F a jet of order m on E, set

Tma F (x) =
∑
|α|≤m

Fα(a)
(x− a)α

α!
,

Rma F (x) = F − Jm(Tma F (x)).

We say that a jet F of order m is a definable Cm-Whitney field on E (F ∈ Em(E))
if, for all x0 ∈ E and |α| ≤ m, we have

(Rmx F )α(y) = o(|x− y|m−|α|) as E 3 x, y → x0;

equivalently, if for all for x0 ∈ E and z ∈ Rn,∣∣Tmx F (z)− Tmy F (z)
∣∣ = o(|x− z|m + |y − z|m) as E 3 x, y → x0.

(See [7].) Note that if F ∈ Em(E) and E′ ⊆ E is definable, then F �E′ ∈ Em(E′).
Also, if E is open and f : E → R is a definable Cm-function, then Jm(f) is a Cm-
Whitney field, by Taylor’s Theorem. Given F ∈ Em(E), we say that a definable
Cm-function f : Rn → R is an extension of F if Jm(f)�E = F .

An immediate consequence of the theorem above is the following:

Corollary. Suppose that E is regular closed (i.e., E equals the closure of its interior).
Let f : E → R be a definable function such that for each x ∈ E there is an open
neighborhood U of x in Rn and an extension of f�(E ∩U) to a definable Cm-function
U → R. Then f extends to a definable Cm-function Rn → R.

Key ingredients in the construction of Kurdyka and Paw lucki are partitions of
unity and 1-regularity, which are not generally available in o-minimal expansions
of real closed fields. In the case where R = R is the usual ordered field of reals,
their method only applies in the situation where E is compact. In [9], Paw lucki
introduced a new algorithm to extend Cm-Whitney fields on E ⊆ Rn. However, this
new construction doesn’t preserve definability in a given o-minimal expansion of R,
due to its use of integration. (Paw lucki’s extension operator, on the other hand, has
the virtue of being linear.) In this paper we still follow Paw lucki’s five-step strategy
for extending Cm-Whitney fields from [9], while combining it with Fischer’s Λm-
regular Stratification Theorem from [3]. This theorem allows us to prove analogues
of Paw lucki’s main lemmas (such as his “Λm-regular Decomposition Theorem”) in
our given o-minimal structure R.

Organization of the paper. In the first section, we focus on geometry of definable
sets. First, we show some basic facts which will be repeatedly used throughout this
paper. Then important terminology, such as Λm-regularity and ε-flatness, will be
introduced. Once all necessary terminology is ready, we will state the main result
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of [3], which is an important tool in later proofs. Also, several modifications of lemmas
in [3] will be provided in this section.

In Sections 2 and 3, we study the separation property of a pair of subset of Rn

and prove the Λm-regular Separation Theorem, which is a purely o-minimal version
of the Λm-regular Decomposition Theorem from [8]. The proof of the Λm-regular
Decomposition Theorem in that paper involves concepts which are not valid in a
general o-minimal context, for example, the length of rectificable curves. In our
situation, these concepts will be replaced by control over differences between tangent
spaces (ε-flatness). In Section 3, the notion of Λm-pancake, which is central for
the statement of Λm-regular Separation Theorem, will be given, followed by the full
statement of this theorem and its proof.

In Section 4, we study properties of Cm-Whitney fields and related concepts. The
main results of this section are special cases of Whitney’s Extension Theorem. Let
Ω ⊆ Rd be open and definable. We work with a definable Cm-Whitney field F :=
(Fα)|α|≤m on Ω× {0}l, and we show that if each function Fα : Ω→ R is Λm-regular
as defined in Section 1, then F has a definable Cm-extension.

In the last two sections, we follow Paw lucki’s five-step strategy from [9]. How-
ever, as we mentioned earlier, Paw lucki’s construction doesn’t preserves definability.
Integration and 1-regularity are key in his construction and they are not generally
available in a fixed general o-minimal structure. These two concepts will be replaced
by Fischer’s Λm-regular Stratification Theorem, the special cases established in Sec-
tion 4, and pervasive use of ε-flatness.

Conventions and notations. Throughout this paper, d, k, m, n, and q will range
over the set N = {0, 1, 2, 3, . . . } of natural numbers. Given a map f : X → Y we write

Γ(f) =
{

(x, f(x)) : x ∈ X
}
⊆ X × Y

for the graph of f . Let

C(X) := {f : X → R : f is continuous and definable},
C∞(X) := C(X) ∪ {+∞,−∞},

where +∞ and −∞ are considered as constant functions on X. For f, g ∈ C∞(X)
we write f < g if f(x) < g(x) for all x ∈ X, and in this case we set

(f, g) :=
{

(x, r) ∈ X ×R : f(x) < r < g(x)
}
.

Similarly an interval in R is a set of the form

(a, b) := {r ∈ R : a < r < b} where a, b ∈ R±∞ = R ∪ {−∞,+∞} and a < b.

For a set S ⊆ Rn we denote by clS = cl(S) the closure, by ∂S = ∂(S) := cl(S) \ S
the frontier, and by intS = int(S) the interior of S. We denote the Euclidean norm
on Rn by ‖ · ‖ and the associated metric by (x, y) 7→ d(x, y) := ‖x−y‖. For X ⊆ Rn,
we say that f : X → Rm is Lipschitz if there is a rational L > 0 such that

‖f(x)− f(y)‖ ≤ L ‖x− y‖ for all x, y ∈ X.
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Given x ∈ Rn, for a non-empty definable set S ⊆ Rn let d(x, S) := infy∈S d(x, y) ∈
R≥0 be the distance between x and S, and d(x, ∅) := +∞. Given a collection C of
subsets of Rn, we let C o := {C ∈ C : C is open}.

Acknowledgements. The results in this paper are part of the author’s PhD thesis
at UCLA, written under the guidance of Matthias Aschenbrenner. We would like
to thank W. Paw lucki for an email exchange clarifying some arguments in [6]. The
author acknowledges support by a Queen Sirikit Scholarship.

1. Preliminaries

In this section we introduce notations, terminologies, and basic facts which will be
used repeatedly throughout this paper. Our notations mainly follow [3].

Definition 1.1. Let X ⊆ E be definable subsets of Rn.

(1) We say that X is a small subset of E if dim(X) < dim(E). We will often
just write “X is small” if the ambient set E is clear from the context.

(2) We say that X is a large subset of E (X b E) if E \X is small.

Note that if the definable set X is a large subset of the definable set E, and Y is
any definable set of dimension dim(Y ) = dim(E), then X ∩ Y is non-empty (and,
actually, a large subset of Y ).

Definition 1.2. Let E be a definable subset of Rn. For each x ∈ E, we say that E is
of local dimension d (dimx(E) = d) if there exists a definable open neighborhood
V of X in Rn such that dim(E ∩U) = d for every definable open neighborhood U of
x in V . Moreover, we say that E is of constant local dimension d if dimx(E) = d
for every x ∈ E, equivalently, for every x ∈ E and every definable open neighborhood
V of x in Rn, dim(E ∩ V ) = d. (Note that then dim(E) = d.) We also say that E is
of constant local dimension if E is of constant local dimension d for some d ∈ N.

The next proposition gives a condition ensuring that the closure of the graph of a
continuous definable map may be recovered from its restriction to a large set. This
fact will be useful in reducing later proofs to simpler cases.

Proposition 1.3. Let ϕ : Ω→ Rn be a continuous definable map, where Ω is a non-
empty definable subset of Rk of constant local dimension, and let U b Ω be definable.
Then cl Γ(ϕ) = cl Γ(ϕ�U).

Proof. Let E := cl Γ(ϕ). It is enough to show that E ⊆ cl Γ(ϕ�U). Let x ∈ E. Let
V be a definable open neighborhood of x. Then V ∩ Γ(ϕ) 6= ∅. Note that π(V ∩
Γ(ϕ)), where π : Rk+n → Rk is the natural projection onto the first k coordinates,
is of dimension d (since Ω is of constant local dimension). Since U b Ω, the set
U ∩ π(V ∩ Γ(ϕ)) is non-empty. In particular, V ∩ Γ(ϕ�U) 6= ∅. Since V is arbitrary,
x ∈ cl Γ(ϕ�U). �

Remark. Let E =
N⋃
i=1

cl Γ(ϕi) where each Ωi is an open definable subset of Rk and

ϕi : Ωi → Rn is continuous and definable. Then by Proposition 1.3, we can replace
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the ϕi by suitable restrictions to reduce to the case that for all i, j with Ωi ∩Ωj 6= ∅
we have Ωi = Ωj .

One of our main tools is Fischer’s theorem [3] on the existence of Λm-stratifications.
We now state this theorem, and also prove some modifications of a few lemmas
from [3]. For this, we need some definitions. In the following, we assume m ≥ 1.

Definition 1.4. Let f = (f1, . . . , fn) : Ω → Rn be a Cm-map, where Ω is a non-
empty open subset of Rd, with d ≥ 1. We say that f is Λm-regular if there is some
L ∈ R>0 such that

‖Dαf(x)‖ ≤ L

d(x, ∂Ω)|α|−1
for all x ∈ Ω and α ∈ Nd with 1 ≤ |α| ≤ m.

Here and in the rest of the paper, for α = (α1, . . . , αd) ∈ Nd we set

Dα =
∂α1

∂xα1
1

· · · ∂
αd

∂xαdd
, |α| := α1 + · · ·+ αd,

and we let Dαf := (Dαf1, . . . , D
αfn) if |α| ≤ m (so D0f = f).

We also define every map R0 → Rn to be Λm-regular.

Notation. Let Ω ⊆ Rd be definable and open. Set

Λm(Ω) := {f : Ω→ R : f is definable and Λm-regular},
Λm∞(Ω) := Λm(Ω) ∪ {−∞,+∞},

where +∞ and −∞ are considered as constant functions on Ω.

Definition 1.5. Standard open Λm-regular cells in Rn are defined inductively
on n as follows:

(1) n = 0: R0 is the standard open Λm-regular cell in R0;
(2) n ≥ 1: a set of the form (f, g) where f, g ∈ Λm∞(D) such that f < g, and D is

a standard open Λm-regular cell in Rn−1.

We say that a subset of Rn is a standard Λm-regular cell in Rn if it is either a
standard open Λm-regular cell in Rn or one of the following:

(1) a singleton; or
(2) the graph of a definable Λm-regular map D → Rn−d, where D is a standard

open Λm-regular cell in Rd, and 1 ≤ d < n.

A subset E ⊆ Rn is called a Λm-regular cell in Rn if there is a linear orthogonal
transformation φ : Rn → Rn such that φ(E) is a standard Λm-regular cell in Rn.

Even though in a general o-minimal expansion of a real closed field, we do not
have a notion of angle (between two vectors) available, a substitute is provided by
the terminology introduced in [3], which we recall next.

Definition 1.6. Let Rn×n be the space of all n × n matrices with entries from R,
where n ≥ 1, equipped with the operator norm ‖ · ‖. For each d ≤ n, let

Hn,d = {A ∈ Rn×n : At = A, A2 = A, tr(A) = d}
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be the subset of Rn×n consisting of the matrices (with respect to the standard basis
of Rn) of orthogonal projections of Rn onto a subspace of Rn, having trace d. Note

that Hn,d is an algebraic subset of Rn×n (where Rn×n is identified with Rn
2

as usual)
and hence definable. Consider

δ : Hn,d ×Hn,d → R, δ(A,B) =
∥∥∥B⊥A∥∥∥ where B⊥ = id−B,

In [3] it is shown that δ is a metric on Hn,d. For A ∈ Hn,d and ε > 0 let

Bε(A) =
{
B ∈ Hn,d : δ(B,A) < ε

}
be the open ball of radius ε centered at A in Hn,d, and let

Bε(A) =
{
B ∈ Hn,d : δ(B,A) ≤ ε

}
be the closed ball of radius ε centered at A in Hn,d. Fischer [3] also showed that for
any rational ε > 0, Hn,d can be covered by finitely many balls of radius ε.

In the rest of this section, ε ranges over rational numbers.

Definition 1.7. Let M a definable d-dimensional (embedded) C1-submanifold of Rn.
We view the tangent bundle T (M) of M as a subbundle of T (Rn) ∼= Rn ×Rn in the
natural way. Define τM : M → Hn,d by letting τM (x) be the matrix (w.r.t. the
standard basis of Rn) of the orthogonal projection Rn → Tx(M). Let A ∈ Hn,d and
ε > 0. We say that M is ε-flat with respect to A if τM (M) ⊆ Bε(A).

A d-dimensional C1-graph is a subset M ⊆ Rn which, in a suitable coordinate
system, is the graph of a definable C1-map Ω → Rn−d, where Ω is a definable open
subset of Rd. Note that every d-dimensional C1-graph M is a definable d-dimensional
C1-submanifold of Rn, hence the previous definition applies to M . Given A ∈ Hn,d

and ε > 0, we also call a closed definable subset E of Rn ε-flat with respect to A
if E is the closure of a finite disjoint union of d-dimensional C1-graphs in Rn, each of
which is ε-flat with respect to A.

A standard Λm-regular cell of dimension d is called ε-flat if it is ε-flat with respect
to the projection of Rn onto the first d coordinates. In addition, we call a Λm-regular
cell ε-flat if there is a linear orthogonal transformation φ : Rn → Rn such that the
image of this set under φ is an ε-flat standard Λm-regular cell.

Remark. Every d-dimensional C1-cell in Rn is a d-dimensional C1-graph.

Proof. We will prove this remark by induction on n. For n = 0, this remark is trivial.
Suppose that, for every d ≤ n, every d-dimensional C1-cell in Rn is a d-dimensional
C1-graph, and let d ≤ n+1 and C be a d-dimensional C1-cell in Rn+1. If C is an open
cell, then C is the graph of the map C → R0; it is obviously an (n+ 1)-dimensional
C1-graph. Suppose that C is not an open cell, i.e., d ≤ n.

Suppose first that C = Γ(f) where D is a d-dimensional C1-cell in Rn and f : D →
R is a definable C1-function. By induction hypothesis, D is a d-dimensional C1-
graph. After suitably changing the first n coordinates, we may assume that there is
a definable C1-map ϕ : Ω→ Rn−d such that D = Γ(ϕ). Defining h : Ω→ Rn−d+1 by

h(x) =
(
ϕ(x), f(x, ϕ(x))

)
for every x ∈ Ω,
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we then have C = Γ(h).
Now suppose that C = (f, g) where where D is a (d−1)-dimensional C1-cell in Rn

and f, g : D → R are definable C1-functions with f < g. By the same argument as in
the above case, we may also assume that D = Γ(ϕ) where ϕ : Ω→ Rn−d is a definable
C1-map, Ω ⊆ Rd open. Let

E :=
{

(x, t) ∈ Ω×R : f(x, ϕ(x)) < t < g(x, ϕ(x))
}
,

a C1-cell in Rd+1, and define h : E → Rn−d by h(x, t) := ϕ(x) for every (x, t) ∈ E.
Define T : Rn+1 → Rn+1 by

T (x1, . . . , xn+1) := (x1, . . . , xd, xn+1, xd+1, . . . , xn).

Then T (C) = Γ(h). �

Let f = (f1, . . . , fn) : Ω → Rn be a C1-map, where Ω is an open subset of Rd,
and let e1, . . . , ed be the standard basis of Rd. For each v ∈ Rd, let Dvf denote the
directional derivative of f with respect to the vector v and, for i = 1, . . . , d,

∂f

∂xi
:= Deif =

(
∂f1

∂xi
, . . . ,

∂fn
∂xi

)
.

Remark. Let 0 < ε < 1√
2

and f : Ω → Rn be a definable C1-map, where Ω is an

open subset of Rd, such that cl(Γ(f)) is ε-flat. Then all partial derivatives of f are
bounded by ε√

1−ε2 .

Proof. Let a ∈ Ω and A : Rd+n → Rd+n be the orthogonal projection onto the tangent
space Ta(M) ⊆ Rd+n where M := cl(Γ(f)). Then, for each i and wi = ∂f

∂xi
(a) (so

(ei, wi) ∈ Ta(M)), we have∥∥∥ ∂f∂xi (a)
∥∥∥2

1 +
∥∥∥ ∂f∂xi (a)

∥∥∥2 =
‖(A− πA)(ei, wi)‖2

‖(ei, wi)‖2
≤ ε2.

Therefore,
∥∥∥ ∂f∂xi (a)

∥∥∥ ≤ ε√
1−ε2 . �

In the following we will identify each matrix A ∈ Rn×n (where n ≥ 1) with the
R-linear map Rn → Rn that is represented by A (with respect to the standard basis
of Rn).

Lemma 1.8. Let E be a closed definable subset of Rn of constant local dimension d
which is ε-flat w.r.t. A ∈ Hn,d. Suppose X is a closed definable subset of Rn such
that E \X 6= ∅. Then cl(E \X) is of constant local dimension d and ε-flat w.r.t. A.

Proof. We may assume that A = π is the natural projection of Rn onto its subspace
Rd × {0}n−d. Let x ∈ cl(E \X) and let U be an open definable neighborhood of x.
Then ∅ 6= U ∩(E \X) = (U \X)∩E. Pick y ∈ (U \X)∩E. Since U \X is open, there
is an open definable neighborhood V ⊆ U \X of y such that V ∩E is of dimension d.
Then (U \ X) ∩ E is also of dimension d. Therefore, cl(E \ X) is of constant local
dimension d.
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To show that cl(E \X) is ε-flat, write E =
⋃
i∈I cl(Γ(ϕi)) as the closure of a finite

disjoint union of d-dimensional C1-graphs Γ(ϕi) in Rn, each of which is ε-flat w.r.t. A,
where ϕi : Ωi → Rn−d is a definable C1-map on a non-empty open definable Ωi ⊆ Rd.
Obviously, cl(E \X) =

⋃
i∈I

cl(Γ(ϕi) \X). Consider

Ci = π(cl(Γ(ϕi) \X)) ⊆ Rd × {0}n−d.

We may assume that Ci 6= ∅. Then Ci is of constant local dimension d. By Proposi-
tion 1.3,

cl
(
Γ(ϕi�int(Ci))

)
= cl

(
Γ(ϕi�Ci)

)
= cl

(
Γ(ϕi) \X

)
.

This completes the proof. �

Definition 1.9. By a Λm-regular stratification of Rn we mean a finite partition
D of Rn into Λm-regular cells such that each ∂D (D ∈ D) is a union of sets from D .
Given ε > 0 and definable E1, . . . , EN ⊆ Rn, such a Λm-regular stratification D of
Rn is said to be ε-flat if each D ∈ D is an ε-flat Λm-regular cell, and compatible
with E1, . . . , EN if each Ei is a union of sets from D .

With these definitions ready, we can now state the main result of [3]:

Theorem 1.10 (Fischer, [3, Theorem 1.4]). Let E1, . . . , EN be definable subsets
of Rn. Then for each ε > 0 there exists an ε-flat Λm-regular stratification of Rn

which is compatible with E1, . . . , EN .

The following lemma essentially goes back to Gromov [4] (see [6, Section 2]). Recall
that a function taking values in R is said to be semidefinite if it is either non-negative
on its domain or non-positive on its domain.

Lemma 1.11. Let h : I → R be a definable C2-function on an interval I in R such
that h, h′′ are semidefinite. Let t ∈ I and r > 0 such that [t− r, t+ r] ⊆ I. Then∣∣h′(t)∣∣ ≤ 1

r
sup

{
|h(ξ)| : ξ ∈ [t− r, t+ r]

}
.

Proof. Without loss of generality, assume h′′ ≤ 0 on I. By the Mean Value Theorem,
since h′ is decreasing,

h(t)− h(t− r) ≥ r inf
{
h′(ξ) : ξ ∈ [t− r, t]

}
= rh′(t),

h(t+ r)− h(t) ≤ r sup
{
h′(ξ) : ξ ∈ [t, t+ r]

}
= rh′(t).

Since h is semidefinite,

|h(t)− h(t− r)| , |h(t+ r)− h(t)| ≤ sup
{
|h(ξ)| : ξ ∈ [t− r, t+ r]

}
,

which implies the claim. �

For the sake of completeness, we include a proof of the following application of
Lemma 1.11 from [3]. In the rest of this section, we fix a non-empty definable open
set Ω ⊆ Rd, and α ranges over Nd.
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Lemma 1.12. Let f : Ω → R be a definable Cm+1-function such that Dαf is semi-
definite for |α| ≤ m+ 1. Then there is an L ∈ Q>0 such that

|Dαf(u)| ≤ L

r
|α|
0

sup
{
|f(v)| : v ∈ Ω, ‖v − u‖ < r0

}
for |α| ≤ m, u ∈ Ω, and 0 < r0 ≤ d(u, ∂Ω).

Proof. We proceed by induction on |α|. This is trivial if |α| = 0, so assume we
have shown the claim for some α where |α| ≤ m − 1, and let j ∈ {1, . . . , d}. Let
u ∈ Ω, and fix 0 < r0 ≤ d(u, ∂Ω). For each r ∈ (0, r0), define hr : [− r

2 ,
r
2 ] → R

by hr(ξ) = Dαf(u + ξej) where ej ∈ Rd is the jth standard basis vector of Rd.

For w ∈ Rd with ‖w − u‖ < r
2 , we have w ∈ Ω and d(w, ∂Ω) > r0

2 . By induction
hypothesis,

|Dαf(w)| ≤ L

(r0/2)|α|
sup

{
|f(v)| : v ∈ Ω, ‖v − w‖ < r0

2

}
≤ L

(r0/2)|α|
sup

{
|f(v)| : v ∈ Ω, ‖v − w‖ < r0

}
.

By Lemma 1.11,∣∣Dα+ejf(u)
∣∣ =

∣∣h′r(0)
∣∣ ≤ 1

r/2
sup

{
|h(ξ)| : ξ ∈ [t− r

2 , t+ r
2 ]
}

≤ 2|α|+1L

r(r0)|α|
sup

{
|f(v)| : v ∈ Ω, ‖v − w‖ < r0

}
.

Taking r → r0 yields∣∣Dα+ejf(u)
∣∣ ≤ 2|α|+1L

(r0)|α|+1
sup

{
|f(v)| : v ∈ Ω, ‖v − w‖ < r0

}
.

This finishes the inductive step and this proof. �

In [3], Lemma 1.12 is used in the proof of the following proposition:

Proposition 1.13 (Fischer, [3, Proposition 2.1]). Let f : Ω→ R be a definable Cm-
function. There are a definable open large subset U of Ω and some L ∈ Q>0 with

|Dαf(u)| ≤ L

d(u, ∂U)|α|
sup

{
|f(v)| : v ∈ U, ‖u− v‖ < d(u, ∂U)

}
for |α| ≤ m and u ∈ U .

Here, we follow the same idea and use Lemma 1.12 to prove a modification of
Proposition 1.13.

Lemma 1.14. Let f1, . . . , fk : Ω → R be continuous definable functions. There is
a Λm-regular stratification D of Rd compatible with Ω and some L ∈ Q>0 with the
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following property: for each D ∈ Do which is contained in Ω, each fi�D is Cm and

|Dαfi(u)| ≤ L

d(u, ∂D)|α|
sup

{
|fi(v)| : v ∈ D, ‖u− v‖ < d(u, ∂D)

}
for |α| ≤ m and u ∈ D.

Proof. By the Cm+1-Cell Decomposition Theorem, take a cell decomposition C of Rd

compatible with Ω such that fi�C is Cm+1 for each C ∈ C o contained in Ω. For
C ∈ C o contained in Ω and |α| ≤ m+ 1, i ∈ {1, . . . , k}, set

Cαi =
{
x ∈ C : Dαfi(x) > 0

}
.

Next, apply Theorem 1.10 to obtain a Λm-regular stratification D of Rd compatible
with all Cαi ’s and all C ∈ C o. By Lemma 1.12, D has the required properties. �

Corollary 1.15. Let f1, . . . , fk : Ω→ R be Lipschitz definable functions. There is a
Λm-regular stratification D of Rd compatible with Ω such that, for each D ∈ Do with
D ⊆ Ω, each fi�D is Λm-regular.

Proof. First, by Smooth Cell Decomposition, we may assume that every fi is C1.
Since all fi are Lipschitz, the partial derivatives Djfi := ∂fi

∂xj
are bounded for i =

1, . . . , k and j = 1, . . . , d. Take L0 ≥ 1 with
∣∣Djfi(x)

∣∣ ≤ L0 for all x ∈ Ω. Then apply

Lemma 1.14 to these Djfi’s; therefore, we get a Λm-regular stratification D of Rd

compatible with Ω and L ≥ 1 with the following property: for each D ∈ Do which is
contained in Ω, each

(
Djfi

)
�D is Cm−1 and∣∣Dα

(
Djfi

)
(u)
∣∣ ≤ L

d(u, ∂D)|α|
sup

{ ∣∣(Djfi
)
(v)
∣∣ : v ∈ D, ‖u− v‖ < d(u, ∂D)

}
≤ L · L0

d(u, ∂D)|α|

for |α| ≤ m− 1 and u ∈ D. Since the above inequalities hold for all j = 1, . . . , d, for
each D ∈ Do which is contained in Ω, each fi�D is Cm and

|Dαfi(u)| ≤ L · L0

d(u, ∂D)|α|−1
for 1 ≤ |α| ≤ m and u ∈ D;

thus each fi�D is Λm-regular. �

The previous lemma and corollary immediately imply:

Corollary 1.16. Let f1, . . . , fk : Ω → Rn be continuous definable maps. There is a
Λm-regular stratification D of Rd compatible with Ω and some L ∈ Q>0 such that for
each D ⊆ Ω in Do, each restriction fi�D is Cm and

‖Dαfi(u)‖ ≤ L

d(u, ∂D)|α|
sup

{
‖fi(v)‖ : v ∈ D, ‖u− v‖ < d(u, ∂D)

}
for |α| ≤ m and u ∈ D.

Moreover, if fi is Lipschitz, then fi�D is Λm-regular, for each D ∈ Do with D ⊆ Ω.

In [3], the following useful lemma was shown:
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Lemma 1.17 (Fischer, [3, Lemma 3.8]). Let 0 < ε < 1

32d
3
2

, and suppose Ω is an open

εd-flat standard Λ1-regular cell in Rd. Then, for each pair a, b ∈ Ω, there exists a

definable C1-path γ : [0, ‖b− a‖]→ Ω connecting a and b such that
∥∥∥γ′(t)− b−a

‖b−a‖

∥∥∥ < ε

for 0 < t < ‖b− a‖.
This lemma implies that for every ε small enough, every definable C1-map Ω→ Rn

with bounded derivatives, where Ω ⊆ Rd is an ε-flat open Λ1-regular cell, is Lipschitz;
more precisely:

Corollary 1.18. Let 0 < ε < 1

32d
3
2

and suppose Ω is an εd-flat standard Λ1-regular

cell in Rd. Let f : Ω → Rn be a definable C1-map. Suppose all derivatives of f are
bounded by L ∈ Q>0. Then f is Lipschitz.

Proof. Let a, b ∈ Ω. By Lemma 1.17, there is a definable C1-path γ : [0, ‖b− a‖]→ Ω

connecting a and b such that
∥∥∥γ′(t)− b−a

‖b−a‖

∥∥∥ < ε for 0 < t < ‖b− a‖. By the Mean

Value Theorem,

‖f(b)− f(a)‖ = ‖(f ◦ γ)(‖b− a‖)− (f ◦ γ)(0)‖

≤ (1 + ε)(
√
d+ l)L · ‖b− a‖ .

�

The next lemma implies that the graph of every definable C1-map whose derivatives
are bounded by a rational number is ε-flat w.r.t. a projection map, for some ε:

Lemma 1.19. Let M := Γ(f) where f : Ω→ Rn is a definable C1-map. Suppose that

there is L ∈ R>0 such that
∥∥∥ ∂f
∂xj

∥∥∥ ≤ L for every j = 1, . . . , d. Let r :=
√
nL√

1+nL2
. Then

τM (M) ⊆ Br(π), where π : Rd+n → Rd+n is the natural projection onto Rd×{0}n−d.

Proof. Let a ∈ M and let A : Rd+n → Rd+n be the orthogonal projection onto the
tangent space Ta(M) ⊆ Rd+n of M at a. If v ∈ Rd with ‖v‖ = 1, then ‖Dvf(a)‖ ≤√
nL. So for (v, w) ∈ Ta(M) ⊆ Rd ×Rn where ‖v‖ = 1,

‖(A− πA)(v, w)‖ = ‖(v, w)− (v, 0)‖ = ‖w‖ = ‖Dvf(a)‖ ≤
√
nL.

Consider (v, w) ∈ A(Rd+n) where ‖v‖ = 1. Since x 7→ x
1+x : R≥0 → R≥0 is increasing,

‖(A− πA)(v, w)‖2

‖(v, w)‖2
=

‖Dvf(a)‖2

1 + ‖Dvf(a)‖2
≤ nL2

1 + nL2
.

For any (v, w) ∈ Rd+n, set (v′, w′) = A(v, w), so ‖(v′, w′)‖ ≤ ‖(v, w)‖. Since A2 = A,

‖(A− πA)(v, w)‖
‖(v, w)‖

=
‖(A− πA)(v′, w′)‖

‖(v, w)‖
≤ ‖(A− πA)(v′, w′)‖

‖(v′, w′)‖
≤

√
nL√

1 + nL2
.

Hence δ(A, π) ≤
√
nL√

1+nL2
. �

We end this section by a technical lemma which will be used in Section 2.

Lemma 1.20. Let f1, . . . , fk : E → R be definable functions, where E ⊆ Rn, and let
K ∈ R>0. Then there are



12 ATHIPAT THAMRONGTHANYALAK

(1) a finite family (Eµ) of definable sets partitioning E and,

(2) a family (Mµ) (same index set) of elements of {K, 2K, . . . , 2kK},
such that, for each i = 1, . . . , k and µ, either |fi| ≤Mµ on Eµ or |fi| ≥ 2Mµ on Eµ.

Proof. Let ∆ be the power set of {1, . . . , k}, and for each δ ∈ ∆ and L ∈ R>0, set

Ω(δ, L) =
{

(y1, . . . , yk) ∈ Rk : |yi| ≤ L if i ∈ δ, |yi| ≥ 2L if i /∈ δ
}
.

By induction on k, it is easy to show that

Rk =
⋃{

Ω(δ, 2jK) : δ ∈ ∆, j = 0, . . . , k
}
.

Take f : E → Rk where f = (f1, . . . , fk) and set

Eδj = f−1
(
f(E) ∩ Ω(δ, 2jK)

)
, Mδj = 2jK for δ ∈ ∆ and j = 0, . . . , k.

One easily sees that the families (Eδj) and (Mδj) have the desired property. �

2. Separation

In this section, we still assume that ε ranges over rational numbers. The following
important definition goes back to Malgrange’s regularly situated condition (see [7]):

Definition 2.1. Let P,Q,Z ⊆ Rn be definable. We say that P and Q are Z-
separated if there exists some C ∈ R>0 such that

d(x,Q) ≥ Cd(x, Z) for every x ∈ P .

Equivalently, there is a C ′ > 0 such that

d(x, P ) + d(x,Q) ≥ C ′d(x, Z) for every x ∈ Rn.

x

y

P

Q
x

y

P ′

Q′

Figure 1. P and Q are {(0, 0)}-separated (left); P ′ and Q′ are not
{(0, 0)}-separated (right).

Our goal in this section is the following theorem, which will become a main tool
in the proof of the Λm-regular Separation Theorem in the next section:

Theorem 2.2. Let E be a closed definable subset of Rn of dimension d. Let 0 < ε <

1

32n
3
2

and A1, . . . , AN ∈ Hn,d such that
N⋃
i=1

Bε(Ai) = Hn,d. Fix ∆ ∈ Q with

0 < ∆ <

√
(n− d)2d(n−d)ε2

1 + (n− d)2d(n−d)ε2
.

Then there are definable closed subsets E1, . . . , EN and B of Rn such that
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(1) E = E1 ∪ · · · ∪ EN ∪B;
(2) each Ei is of dimension d and ∆-flat w.r.t. Ai, and B is small;
(3) for all i 6= j, the intersection Ei ∩ Ej is a small subset of E, and there is a

small definable set Zij ⊆ Ei ∪ Ej such that Ei, Ej are Zij-separated; and
(4) for every i there is a small definable set Zi ⊆ Ei ∪ B such that Ei, B are

Zi-separated.

We give the proof of this theorem at the end of the section, after some preparations.
The following proposition contains simple but important properties of Z-separation
which will be repeatedly used throughout this and the next sections. All sets in the
statement of the proposition are assumed to be definable.

Proposition 2.3 (Paw lucki, [8, Proposition 2]).

(1) If P , Q are Z-separated, P ′ ⊆ P , Q′ ⊆ Q and Z ⊆ Z ′, then P ′, Q′ are
Z ′-separated.

(2) If Pi, Qi are Zi-separated (i = 1, . . . , N), then
N⋃
i=1

Pi,
N⋃
i=1

Qi are
N⋃
i=1

Zi-

separated.
(3) If P , Q are S-separated and S, Q are T -separated, then P , Q are T -separated.

Even though we are working in a more general setting than in [8], the proofs of the
above proposition and the following lemma and corollaries also work in our context,
and for this reason, we omit them.

Lemma 2.4 (Paw lucki, [8, Lemma 6]). Let f : Ω→ Rn be a definable Lipschitz map
on an open set Ω ⊆ Rd. Then Γ(f) and (Rd \ Ω)×Rn are ∂Γ(f)-separated.

Corollary 2.5 (Paw lucki, [8, Corollary to Lemma 6]). Let f : Ω → Rn be as in the
above lemma. Then, for any definable subset S of (Rd \Ω)×Rn, the sets Γ(f) and S
are ∂Γ(f)-separated.

Corollary 2.6. Let C1 and C2 be disjoint open cells in Rd. Then C1 × {0}n and
C2 × {0}n are (∂C1 × {0}n)-separated.

Using the above, we now show that the separation property behaves nicely for
graphs of definable Lipschitz maps and open cells.

Definition 2.7. Let I = (a, b) where a, b ∈ R±∞, a < b, be an interval, I 6= R. Call
a definable C1-path λ = (λ1, . . . , λn) : I → Rn an admissible arc in Rn if for all i, j,

(1) λi and λ′i are of constant sign;
(2) either |λ′i| ≥ 1 on I or |λ′i| < 1 on I;
(3) either |λ′i| ≤ |λ′j | on I or |λ′i| ≥ |λ′j | on I.

For such an admissible arc λ, let

ν(λ) := min
{
i : |λ′i| ≥ |λ′j | on I, for all j

}
.

We say that an admissible arc λ is fast if |λ′ν(λ)| ≥ 1 on I, and slow otherwise.

In [8], it is proved that if R expands the ordered field of real numbers, then the
graph Γ of a fast admissible arc in Rn and the set R × {0}n are ∂Γ-separated. For-
tunately, the idea of the proof also works in our more general context. For the
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convenience of the reader, we include detailed proofs of this and other some facts
from [8] as warm-up exercises.

Lemma 2.8 (Paw lucki, [8, Lemma 4]). Let λ : I = (a, b) → Rn be a fast admissible

arc in Rn. Let λ̃(t) = (t, λ(t)) for t ∈ I, and T = R×{0}n ⊆ R1+n. Then, for t ∈ I,

d
(
λ̃(t), T

)
≥ 1√

n+ 1

∥∥∥λ̃(t)− λ̃(cλ)
∥∥∥

where

(1) if a, b ∈ R, then cλ =

{
a, if |λν(λ)| is increasing;

b; otherwise

(2) if a = −∞, then cλ = b; and
(3) if b = +∞, then cλ = a.

Proof. Set ν = ν(λ), and first assume −∞ < a < b < +∞. Replacing λ by −λ or
±λ(a + b − t) if necessary, we may assume that λν > 0 and λ′ν ≥ 1 on (a, b). Then
cλ = a and so |λν(t)− λν(s)| ≥ |t− s|. Note that λ(cλ) always exists. Hence

d
(
λ̃(t), T

)
= ‖λ(t)‖ ≥ λν(t) ≥ λν(t)− λν(a) ≥ 1√

n+ 1

∥∥∥λ̃(t)− λ̃(a)
∥∥∥ .

For the rest, we may assume b = +∞. (Replace by λ by t 7→ λ(b− t) otherwise.) We
see that either λν > 0, λ′ν ≥ 1 or λν < 0, λ′ν ≤ −1. The proofs in these two cases are
similar to the above case. �

Furthermore, given two definable C1-maps whose fiberwise differences yield a fast
admissible arc, one of the maps being Lipschitz entails that their graphs are separated
with respect to the frontier of the graph of the other map:

Lemma 2.9 (Paw lucki, [8, Lemma 5]). Let C = (α, β) be an open cell in Rd where
α, β : D → R±∞, and not both α ≡ −∞ and β ≡ +∞. Let f, g : C → Rn be C1-maps.
Assume f is Lipschitz, and for all u ∈ D, the map

λu :
(
α(u), β(u)

)
→ Rn, λu(y) = g(u, y)− f(u, y)

is a fast admissible arc in Rn. Then Γ(f), Γ(g) are ∂Γ(g)-separated.

Proof. Let x = (u, y) ∈ C. By the above lemma,

d
(
(y, λu(y)), (α(u), β(u))× {0}n

)
≥ 1√

n+ 1
‖(y, λu(y))− (cλu , λu(cλu))‖ .

Hence

d
(
(x, g(x)− f(x)), cl(C)× {0}n

)
= d((y, λu(y)), (α(u), β(u))× {0})

≥ 1√
n+ 1

‖(y, λu(y))− (cλu , λu(cλu))‖ ,

and thus, letting f be the continuous extension of f to cl(C),

d
(
(x, g(x)− f(x)), cl(C)× {0}n

)
≥

1√
n+ 1

∥∥(x, g(x)− f(x))− (u, cλu , g(u, cλu)− f(u, cλu))
∥∥ .



WHITNEY’S EXTENSION THEOREM IN O-MINIMAL STRUCTURES 15

For x ∈ cl(C), w ∈ Rn, set f+(x,w) =
(
x,w + f(x)

)
and f−(x,w) =

(
x,w − f(x)

)
.

Then f+ and f− are L-Lipschitz maps cl(C) × Rn → Rd+n, for some L ∈ R>0. Let
now x ∈ C, and take (x′, f(x′)) ∈ Γ(f) such that

d
(
(x, g(x)),Γ(f)

)
= d
(
(x, g(x)), (x′, f(x′))

)
.

Then

d
(
(x, g(x)),Γ(f)

)
= d
(
(x, g(x)), (x′, g(x′))

)
≥ 1

L
d
(
f−(x, g(x)), f−(x′, f(x′))

)
=

1

L
d
(
(x, g(x)− f(x)), (x′, 0)

)
≥ 1

L
d
(
(x, g(x)− f(x)), cl(C)× {0}n)

)
≥ 1

L
√
n+ 1

∥∥(x, g(x)− f(x))− (u, cλu , g(u, cλu)− f(u, cλu))
∥∥

≥ 1

L2
√
n+ 1

∥∥(x, g(x))− (u, cλu , f(u, cλu))
∥∥

≥ 1

L2
√
n+ 1

d
(
(x, g(x)), ∂Γ(g)

)
.

Hence Γ(f), Γ(g) are ∂Γ(g)-separated. �

The above lemma gives a condition on maps into Rn guaranteeing that their graphs
are separated. Now, it is quite naturally to ask for a similar condition on a finite
number of maps instead of a pair of maps. The following lemma contains such a
condition:

Lemma 2.10 (Paw lucki, [8, Lemma 7]). Let 0 < ε < 1

32d
3
2

and (Ωµ) be a finite

family of disjoint non-empty definable εd-flat open Λ1-regular cells in Rd. For every
µ, let fµν : Ωµ → Rn (ν = 1, . . . , nµ) be definable C1-maps whose graphs are pairwise
disjoint and Mµ ∈ Q≥1 such that, for every ν ∈ {1, . . . , nµ}, i ∈ {1, . . . , n}, and

j ∈ {1, . . . , d}, either
∣∣∣∂fµνi∂xj

∣∣∣ ≤Mµ on Ωµ or
∣∣∣∂fµνi∂xj

∣∣∣ ≥ 2Mµ on Ωµ. Set

Λ =

{
(µ, ν) :

∣∣∣∣∂fµνi∂xj

∣∣∣∣ ≤Mµ for all i, j

}
,

∆j =

{
(µ, ν) :

∣∣∣∣∂fµνi∂xj

∣∣∣∣ ≥ 2Mµ for some i

}
(j = 1, . . . , d),

and assume that Λ 6= ∅, and fµν is Lipschitz for each (µ, ν) ∈ Λ. Consider the
definable sets

A =
⋃{

Γ(fµν) : (µ, ν) ∈ Λ
}
,

Bj =
⋃{

Γ(fµν) : (µ, ν) ∈ ∆j

}
(j = 1, . . . , d),
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and let B =
d⋃
j=1

Bj. Then for every definable B′ ⊆ B and S ⊆ (Rd \
⋃
µ

Ωµ) × Rn,

there is a small definable Z ⊆ cl(A)∪ cl(B′) such that cl(A), B′ ∪ S are Z-separated.

Proof. By Corollary 1.18, fµν is Lipschitz for every (µ, ν) ∈ Λ. Let B′ ⊆ B be
definable. If, for all j, cl(A), (B′ ∩Bj) ∪ S are Zj-separated for some definable Zj ⊆
cl(A) ∪ cl(B′ ∩ Bj), then by Proposition 2.3, we’re done. Therefore, we may assume
that B′ ⊆ Bj and can also assume that j = d. Applying the C1-Cell Decomposition
Theorem, we may further assume that

B′ =
⋃{

Γ(hµ′ν′) :

∣∣∣∣∂hµ′ν′i∂xd

∣∣∣∣ ≥ 2M ′µ′ for some i

}
∪ T

where dim(T ) < d, (Ω′µ′) is a finite family of disjoint non-empty definable open subsets

of Rn, and hµ′ν′ : Ω′µ → Rn (ν ′ = 1, . . . , nµ′) are such that

(1) T ⊆ (Rd \
⋃
µ′

Ω′µ′)×Rn;

(2) Ω′µ′ ⊆ Ωµ for some µ;

(3) hµ′ν′ = fµν�Ω′µ for some ν ∈ {1, . . . , nµ};
(4) M ′µ′ = Mµ whenever Ω′µ′ ⊆ Ωµ.

So, it is enough to assume that B′ = Bd (and then Zj ∪ T works for cl(A) and
Bd ∪T ∪S). Next, by the Cell Decomposition Theorem and Proposition 1.3, we may
assume that Ωµ is a cell, and, setting

gµνν′u(x) = fµν′(u, x)− fµν(u, x) where (µ, ν) ∈ Λ, (µ, ν ′) ∈ ∆d,

we may assume further that each gµνν′u : (αµ(u), βµ(u)) → Rn is an admissible arc
in Rn. Note that gµνν′u is fast. By Corollary 2.5 and Lemma 2.9,

Z =
⋃

(µ,ν)∈∆d

∂Γ(fµν) ∪ ∂A ⊆ cl(A) ∪ cl(B)

has the required property. �

Even though the conditions in the previous lemma look very messy, this lemma
turns out to provide a simple and intuitive method for dividing sets into components
which are separable with respect to small sets. In order to gain a better understand-
ing, the reader is advised to draw some graphs of continuous function in R2 and try
to separate them. To avoid the lengthy conditions in the lemma above, we introduce
a more powerful proposition.

Proposition 2.11. Let E be a definable closed subset of Rn of dimension d and C
be a definable closed subset of E of constant local dimension d. Let A ∈ Hn,d and

0 < ε < 1

32n
3
2

, and suppose C is ε-flat w.r.t. A. Let ∆ be as in Theorem 2.2. Then

there exists a definable closed subset X of E of constant local dimension d such that
C ⊆ X, X is ∆-flat w.r.t. A, and for every definable Y ⊆ E \ X there is a small
definable set Z ⊆ X ∪ cl(Y ) such that X, cl(Y ) are Z-separated.
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Proof. Without loss of generality, assume A = π is the natural projection onto Rd ×
{0}n−d. Write C =

⋃
µ,ν

cl(Γ(fµν)) where fµν : Ωµ → Rn−d, each Ωµ is an εd-flat open

Λ1-regular cell in Rd, and each cl(Γ(fµν)) is ε-flat w.r.t. π. Then for any unit vector

v ∈ Rd we have
‖Dvfµν(a)‖2

1+‖Dvfµν(a)‖2 < ε and hence ‖Dvfµν(a)‖ < ε√
1−ε2 . Take a C1-cell

decomposition C of Rn compatible with the Γ(fµν)’s, C, and E. Then π(C ) is a cell

decomposition of Rd. (Here we identify Rd × {0}n−d with Rd in the natural way.)
Let

C ′ =
{
D′ ∈ π(C )o : D′ ⊆ Ωµ for some µ

}
.

Take

E1 :=
⋃

D′∈C ′

E ∩ π−1(D′), E2 := E \ E1,

and write E1 =
⋃

(µ′,ν′)

Γ(Fµ′ν′) where Fµ′ν′ : Ω′µ′ → Rn−d are C1.

Claim. C ⊆ cl(E1).

Proof of the claim. Let c ∈ C. Since C is of constant local dimension d, U ∩ C is of
dimension d for any neighborhood U of c small enough. Let U be such a neighborhood
of c. Then π(U ∩ C) is also of dimension d (because C is a finite union of graphs).
Therefore, there is D ∈ C ′ such that D ∩ π(U ∩ C) is of dimension d, which implies
that E1 ∩U is non-empty. Since this holds for all sufficiently small neighborhoods U
of c, we obtain c ∈ cl(E1). �

Let K = ε
1−ε2 and s = d(n − d). For each µ′, ν ′, applying Lemma 1.20 to

∂Fµ′ν′i
∂xj

(i ∈ {1, . . . , n − d}, j ∈ {1, . . . , d}), we can decompose Ω′µ′ =
⋃
λ

Bµ′λ such that for

each λ, there is K ≤Mµ′λ ≤ 2sK such that for each i, j, either∣∣∣∣∂Fµ′ν′i∂xj

∣∣∣∣ ≤Mµ′λ on Bµ′λ or

∣∣∣∣∂Fµ′ν′i∂xj

∣∣∣∣ ≥ 2Mµ′λ on Bµ′λ.

By the Λm-regular Stratification Theorem and Proposition 1.3, we may assume that
the Ω′µ′ ’s are ε-flat and, for each i, j, either∣∣∣∣∂Fµ′ν′i∂xj

∣∣∣∣ ≤Mµ′ on Ω′µ′ or

∣∣∣∣∂Fµ′ν′i∂xj

∣∣∣∣ ≥ 2Mµ′ on Ω′µ′ .

Since Ω′µ′ is ε-flat, by Lemma 1.17, Fµ′ν′ is Lipschitz for each ν ′ such that for all i

and j,
∣∣∣∂Fµ′ν′i∂xj

∣∣∣ ≤Mµ′ on Ω′µ′ . Let

Λ :=

{
(µ′, ν ′) :

∣∣∣∣∂Fµ′ν′i∂xj

∣∣∣∣ ≤Mµ′ for all i, j

}
,

∆j :=

{
(µ′, ν ′) :

∣∣∣∣∂Fµ′ν′i∂xj

∣∣∣∣ ≥ 2Mµ′ for some i

}
(j = 1, . . . , d),



18 ATHIPAT THAMRONGTHANYALAK

be similar to the Λ and ∆j in Lemma 2.10, and set

X :=
⋃{

cl Γ(Fµ′ν′) : (µ′, ν ′) ∈ Λ
}
,

Bj :=
⋃{

Γ(Fµ′ν′) : (µ′, ν ′) ∈ ∆j

}
(j = 1, . . . , d),

and B := B1 ∪ · · · ∪ Bd. Since C ⊆ cl(E1), Λ 6= ∅. Therefore, by Lemma 1.19, X
is ∆-flat w.r.t. π. Since ‖Dvfµν(a)‖ < ε√

1−ε2 for any v ∈ Rd and ε√
1−ε2 ≤

ε
1−ε2 , we

obtain C ⊆ X.
To prove the separation condition, let Y be a definable subset of E, disjoint from X.

Applying Lemma 2.10 to

B′ = Y ∩B, S = Y ∩

Rn \⋃
µ′

(Ω′µ′ ×Rn−d)

 ,

we obtain a small definable Z ⊆ X ∪ cl(B′) ⊆ X ∪ cl(Y ) such that X, Y are Z-
separated. �

Now, we have all ingredients for the proof of Theorem 2.2.

Proof of Theorem 2.2. By the C1-Cell Decomposition Theorem, let C be a C1-cell
decomposition of Rn compatible with E. Let Cd be the set of C ∈ C with dim(C) = d,
and set

E0 :=
⋃{

cl(C) : C ∈ Cd
}
, E∗ = E \ E0.

Obviously, dim(E∗) < d. Since each C ∈ Cd is a d-dimensional C1-graph, the map
τC : cl(C) → Hn,d is defined. Apply the C1-Cell Decomposition Theorem again, to
obtain a C1-cell decomposition D of Rn compatible with the C ∈ Cd of dimension d
and the sets τ−1

C (Bε(Ai)) where C ∈ Cd and i = 1, . . . , N . For i = 1, . . . , N , let

Ddi :=
{
D ∈ D : dim(D) = d, D ⊆ τ−1

C (Bε(Ai)) for some C ∈ Cd
}
,

E0
i :=

⋃{
cl(D) : D ∈ Ddi

}
.

Thus E0 =
N⋃
i=1

E0
i , and E0

i is ε-flat w.r.t. Ai and closed of constant local dimension d.

The separation conditions (3) and (4) in Theorem 2.2 in general do not hold for
the E0

i in place of Ei. In order to overcome this problem, we will inductively pick
definable closed sets Xi, Yi (i = 1, . . . , N), such that the following conditions hold:

(1) X1 ⊇ E0
1 and Xi ⊇ E0

i \(X1 ∪ · · · ∪Xi−1),
(2) either dim(Xi) = d and Xi is ∆-flat w.r.t. Ai or Xi = ∅,
(3) Y1 = E \X1 and Yi = cl(Yi−1) \Xi,
(4) Xi ⊆ cl(Yi),
(5) for every definable Y ′ ⊆ Yi, there is a small definable set Z ′ ⊆ Xi ∪ cl(Y ′)

such that Xi, cl(Y ′) are Z ′-separated.

If E0
1 = ∅, let X1 = ∅ and Y1 = E. If E0

1 6= ∅, by Proposition 2.11, let X1 be a
definable closed subset of E containing E0

1 , which is of constant local dimension d
and ∆-flat w.r.t. A1, and Y1 = E\X1 such that, for Y ′ ⊆ Y1, there is a small definable
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set Z ′ ⊆ X1 ∪ cl(Y ′) such that X1, cl(Y ′) are Z ′-separated. Note that if Y1 6= ∅, then
dim(Y1) = d.

Next, suppose X1, Y1, . . . , Xi, Yi have been constructed already, where i < N . If
E0
i+1\(X1∪· · ·∪Xi) = ∅, letXi+1 = ∅ and Yi+1 = Yi. Assume E0

i+1\(X1∪· · ·∪Xi) 6= ∅.
By Lemma 1.8, E0

i+1 \ (X1 ∪ · · · ∪ Xi) is of constant local dimension d and ε-flat
w.r.t. Ai+1. By Proposition 2.11, cl(Yi) = Xi+1∪Yi+1 where Yi+1 = cl(Yi)\Xi+1 and
Xi+1 is a definable closed subset of cl(Yi) of constant local dimension d which is ∆-flat
w.r.t. Ai+1 and contains E0

i+1\(X1∪· · ·∪Xi), and for every definable Y ′ ⊆ Yi+1, there
is a small definable set Z ′ ⊆ Xi+1 ∪ cl(Y ′) such that Xi+1, cl(Y ′) are Z ′-separated.

By repeating this procedure N − 1 times, we arrive at the decomposition E =
X1 ∪ · · · ∪ XN ∪ YN . Let i, j ∈ {1, . . . , N}, i < j; since Xj ⊆ cl(Yi), we can pick a
small definable Z ′ij ⊆ Xi ∪Xj such that Xi, Xj are Z ′ij-separated. Since YN ⊆ cl(Yi)

for all i, we can also find a small definable Z ′i ⊆ Xi ∪ YN such that Xi, YN are
Z ′i-separated.

Claim. YN is small.

Proof of the claim. Note E0
i ⊆ X1 ∪ · · · ∪ Xi and then E0 ⊆ X1 ∪ · · · ∪ XN . Since

YN ⊆ cl(Yi) for all i, we have

YN ∩Xi ⊆ cl(Yi) ∩Xi = cl(Yi) \ Yi = ∂(Yi),

hence YN ∩Xi is small. Therefore

dim(YN ) = dim
(
YN ∩ (X1 ∪ · · · ∪XN )

)
≤ max

(
dim(YN ∩X1), . . . ,dim(YN ∩XN )

)
< d.

�

Similarly, we also get that Xi ∩Xj is small.

To finish the proof, let Ei = Xi, B = YN ∪ E∗, Zij = Z ′ij and Zi = Z ′i ∪ E∗. �

3. The Λm-regular Separation Theorem

We begin with the definition of Λm-pancake (which should perhaps more precisely be
called “stack of pancakes”):

Definition 3.1. Let E be a definable subset of Rn of dimension d. We say that E is
a Λm-pancake if E is a finite disjoint union of graphs of Lipschitz, Λm-regular maps
Ω→ Rn−d on a common domain Ω, which is an open Λm-regular cell in Rd.

In this section we show the following:

Theorem 3.2 (Λm-regular Separation Theorem). Let E be a definable closed subset
of Rn of dimension d. There is a finite partition E = M1 ∪ · · · ∪Ms ∪A such that

(1) each Mi is a Λm-pancake of dimension d in a suitable coordinate system;
(2) A is a small, closed, definable subset of E;
(3) for all i 6= j, cl(Mi), cl(Mj) are ∂Mi-separated; and
(4) for each i, cl(Mi), A are ∂Mi-separated.
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x

y

Figure 2. An example of a Λm-pancake in R2.

We start by proving a special case of Theorem 3.2, and then the full theorem.

Lemma 3.3. Let d ≤ n, let S be a definable subset of Rn with dim(S) < d, and let
E be a finite union of closures of graphs of definable C1-maps Ω → Rn−d on open
subsets Ω of Rd, whose derivatives are bounded by a rational. Set E′ = E ∪ S, and
let Z be a small definable subset of E′ which contains S. Then there is a partition
E′ = N1 ∪ · · · ∪Nt ∪B where

(1) Ni ⊆ E is a Λm-pancake in a suitable coordinate system;
(2) B is a small closed definable subset of E′ containing Z;
(3) for all i 6= j, cl(Ni), cl(Nj) are ∂Ni-separated; and
(4) for each i, cl(Ni), B are ∂Ni-separated.

Proof. Write E =
s⋃
i=1

cl(Γ(ϕi)) where each ϕi : Ωi → Rn−d has bounded derivatives

and Ωi is an open subset of Rd. First first show that we can assume that each
ϕi is Lipschitz and that Ωi ∩ Ωj 6= ∅ ⇒ Ωi = Ωj , for i, j ∈ {1, . . . , s}. To see
this, let 0 < ε < 1

32d3/2
be a rational number, and by the Λm-regular Stratification

Theorem 1.10, take an εd-flat Λm-regular stratification D of Rd compatible with
each Ωi. Since ϕi has bounded derivatives, ϕi�D is Lipschitz, for each D ∈ Do, by
Corollary 1.18. Now use Proposition 1.3 and replace each ϕi by the ϕi�D where
D ∈ Do is a subset of Ωi.

Let Θ := π(Z), where π is the projection Rn → Rd onto the first d coordinates.
Then dim(Θ) < d. By Theorem 1.10 and Corollary 1.16, we can take a Λm-regular
stratification D of Rd compatible with cl(Ω), where Ω := Ω1 ∪ · · · ∪ Ωs, as well as
with the Ωi and Θ, so that ϕi�D is Λm-regular for each D ∈ Do with D ⊆ Ωi. For
each D ∈ Do, let

ED = E ∩ π−1(D), ID =
{
i ∈ {1, . . . , s} : D ⊆ Ωi

}
,

so ED =
⋃
i∈ID

Γ(ϕi�D). Note that, by Proposition 1.3,
⋃

D∈Do

cl(ED) = E. Let

N1, . . . , Nt be an enumeration of the sets ED with D ∈ Do, and

B := E′ \ (N1 ∪ · · · ∪Nt) = E′ \
⋃

D∈Do

ED = Z ∪
⋃

D∈Do

∂ED;

thus B is small and Z ⊆ B.
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It remains to show the separability conditions. Let D ∈ Do. For i ∈ ID, since ϕi�D
is Lipschitz, by Lemma 2.4, cl(Γ(ϕi�D)) and (Rd\D)×Rn−d are ∂Γ(ϕi�D)-separated.
By Proposition 2.3, this yields the claim. �

Proof of Theorem 3.2. Let ε be any rational number with 0 < ε < 1
32n3/2 and ∆ be as

in Theorem 2.2. According to the remark following Definition 1.6, take A1, . . . , AN ∈
Hn,d such that Hn,d = B∆(A1) ∪ · · · ∪ B∆(AN ). By Theorem 2.2, there are closed
definable subsets E1, . . . , EN , B of E such that

(1) E = E1 ∪ · · · ∪ EN ∪B;
(2) each Ei is ∆-flat w.r.t. Ai ∈ Hn,d, and B is small;
(3) for i 6= j, Ei ∩ Ej is small and there is a small definable Zij ⊆ Ei ∪ Ej such

that Ei, Ej are Zij-separated;
(4) for each i, there is a small definable Zi ⊆ Ei ∪ B such that Ei, B are Zi-

separated.

Let S = Z1 ∪ · · ·ZN ∪
⋃
i 6=j

Zij , and for i ∈ {1, . . . , N} let

Si = S ∪
⋃
j 6=i

Ei ∩ Ej , E′i = Ei ∪ S.

By Lemma 3.3, for each i ∈ {1, . . . , N}, there is a partition E′i = N i
1 ∪ · · · ∪N i

ti ∪B
i

such that, with α, β ranging over {1, . . . , ti}:
(1) N i

α ⊆ Ei is a Λm-pancake in a suitable coordinate system;
(2) Bi is a small, closed subset of E′i containing Si;
(3) for α 6= β, cl(N i

α), cl(N i
β) are ∂N i

α-separated; and,

(4) cl(N i
α), Bi are ∂N i

α-separated.

Set A = B1 ∪ · · · ∪BN ∪B. Then

E =
N⋃
i=1

ti⋃
α=1

(N i
α ∪Bi) ∪B =

(
N⋃
i=1

ti⋃
α=1

N i
α

)
∪A.

In the following, let i, j ∈ {1, . . . , N}, α ∈ {1, . . . , ti} and β ∈ {1, . . . , tj}.
Note that N i

α ∩ N
j
β = ∅ for i 6= j. We already know that N i

α, N i
β are ∂N i

α-

separated for α 6= β. Suppose i 6= j; we will show that N i
α, N j

β are ∂N i
α-separated.

Since N i
α ⊆ Ei and N j

β ⊆ Ej , N
i
α, N

j
β are Zij-separated. Since Zij ⊆ Bi, N i

α, Zij are

∂N i
α-separated. Thus by Proposition 2.3, N i

α, N j
β are ∂N i

α-separated.

Since N i
α ⊆ Ei and Zi ⊆ Bi, N i

α, B are Zi-separated and N i
α, Zi are ∂N i

α-separated;
and so N i

α, B are ∂N i
α-separated. Moreover, as a result of the previous lemma, N i

α, Bi

are ∂N i
α-separated. Since N i

α ⊆ Ei and Bj ⊆ Ej ∪ S, N i
α, Bj are S-separated. Since

S ⊆ Bi, N i
α, S are ∂N i

α-separated. Hence N i
α, Bj are ∂N i

α-separated. This implies
that N i

α, A are ∂N i
α-separated. �

4. Preliminaries on Whitney Fields

In this section, we show some basic facts about Whitney fields needed in the proof of
our Definable Whitney Extension Theorem in the final two sections of this paper.
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Hestenes’ Lemma. The classical incarnation of the first theorem in this section is
one of the keys to the study of Cm-Whitney fields. Here, we give a purely o-minimal
proof of this fact. (See [5, Lemma 1] for the classical result.) Recall that Em(E)
denotes the R-linear space of definable Cm-Whitney fields on a definable subset E of
Rn, as defined in the introduction.

Theorem 4.1 (Definable Hestenes’ Lemma). Let Ω be a definable open subset of Rn.
Let F = (Fα)|α|≤m be a jet of order m on Ω. Let E be a closed definable subset of

Ω such that F �E ∈ Em(E) and F �(Ω \ E) ∈ Em(Ω \ E). Then f := F 0 is Cm on Ω
and Dαf = Fα on Ω. In particular, F ∈ Em(Ω).

Proof. Let e1, . . . , en ∈ Nn be the standard basis of Rn. Note that if F β is C1 on

Ω and ∂Fβ

∂xi
= F β+ei for |β| < m and i ∈ {1, . . . , n}, then f is clearly Cm on Ω

and Dαf = Fα on Ω for every |α| ≤ m. Consider the jets Fβ := (Fα)α≥β of order

m− |β|, for |β| ≤ m. We have Fβ�E ∈ Em−|β|(E) and Fβ�(Ω \ E) ∈ Em−|β|(Ω \ E).
Hence, it is sufficient to show that f is of class C1 on Rn and, for every a ∈ Rn and
i ∈ {1, . . . , n}, ∂f

∂xi
(a) = F ei(a); i.e., for every ε > 0, there is δ > 0 such that

(1) |f(a+ t · ei)− (f(a) + F ei(a) · t)| ≤ ε · |t| for 0 < |t| < δ.

Let a ∈ Rn and i ∈ {1, . . . , n}. Since ∂f
∂xi

= F ei on Rn \ E (by the definition of

definable Cm-Whitney fields), we may assume that a ∈ E. Let ε > 0 be given. For
x, y ∈ Rn set

(x, y) :=
{
x+ t · (y − x) : t ∈ (0, 1)

}
.

By the Cell Decomposition Theorem, there is δ0 > 0 such that either (a, a+ δ0ei) is
contained in E, or in Ω\E. If (a, a+δ0ei) ⊆ E, then, since a ∈ E and F �E ∈ Em(E),
there is 0 < δ1 < δ0 such that

|f(a+ t · ei)− (f(a) + F ei(a) · t)| ≤ ε · t for 0 < t < δ1,

so (1) holds with δ = δ1. Now suppose (a, a + δ0ei) ⊆ Ω \ E. By continuity of F ei ,
we may assume that

|F ei(x)− F ei(a)| < ε for every x ∈ (a, a+ δ0ei).

Let t ∈ (0, δ0). Since f is C1 on Ω \ E with ∂f
∂xi

= F ei on Ω \ E, by the Mean Value
Theorem,∣∣f(a+ t · ei)−

(
f(a) + F ei(a) · t

)∣∣ ≤ ∣∣(F ei(ξ)− F ei(a)
)
· t
∣∣ some ξ ∈ (a, a+ t · ei)

< ε · t.

Therefore, there is δ1 > 0 such that

|f(a+ t · ei)− (f(a) + F ei(a) · t)| < ε · t for 0 < t < δ1.

By the same argument, we can also find δ2 > 0 such that

|f(a− t · ei)− (f(a) + F ei(a) · (−t))| < ε · t for 0 < t < δ2.

Then (1) holds with δ = min{δ1, δ2}. �
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Let E ⊆ Rn, E′ ⊆ Rn
′

be definable and ϕ = (ϕ1, . . . , ϕn) : U ′ → U be definable

and Cm, where U ⊆ Rn, U ′ ⊆ Rn′
are open definable neighborhoods of E, E′, respec-

tively, such that ϕ(E′) ⊆ E. Then ϕ induces an R-linear map F 7→ ϕ∗F : Em(E)→
Em(E′) as follows: suppose a′ ∈ E′, a = ϕ(a′) ∈ E, and view

Tma F =
∑
|α|≤m

Fα(a)
(x− a)α

α!

as an element of the polynomial ring R[x1 − a1, . . . , xn − an]. Then ϕ∗F is the jet
of order m on E′ such that for each a′ ∈ E′, the Taylor polynomial Tma′ ϕ

∗F can be
obtained by substituting Tma′ ϕi ∈ R[x′1 − a′1, . . . , xn′ − a′n′ ] for xi in the polynomial
Tma F and dropping the terms of degree > m in x′ − a′. It is easy to verify that ϕ∗F
is a (definable) Cm-Whitney field on E′ (the pullback of F under ϕ).

If f : U → R is a definable Cm-function, then ϕ∗(Jm(f)) = Jm(f ◦ ϕ). Moreover,
if E1 ⊆ E, E′1 ⊆ E′ are definable such that ϕ(E′1) ⊆ E1, then

(ϕ∗F )�E′1 = ϕ∗(F �E1) for all F ∈ Em(E).

If ϕ′ : U ′′ → U ′ is another definable Cm-map and E′′ ⊆ U ′′ definable with ϕ(E′′) ⊆ E′,
then (ϕ ◦ ϕ′)∗ = (ϕ′)∗ ◦ ϕ∗.

Given a pair E′ ⊆ E of definable subsets of Rn, we say that a jet F of order m
on E is flat on E′ if F �E′ = 0, and we let Em(E,E′) be the subspace of Em(E)
consisting of the definable Cm-Whitney fields on E which are flat on E′.

Proposition 4.2 (Kurdyka & Paw lucki, [6, Proposition 3]). Let U be a definable
open subset of Rn and E is a definable closed subset of U such that cl(E) and ∂U
are (cl(E) ∩ ∂U)-separated. Let ϕ : U → Rn be a definable Λm-regular map with
continuous extension ϕ : cl(U) → Rn to cl(U). Let E′ be a definable closed subset
of Rn containing ϕ(E) and F = (Fα)|α|≤m be a jet of order m on E′ such that, for
every x0

′ ∈ ϕ(∂E′) and |α| ≤ m,

Fα(x) = o(d(x, ∂E′)m−|α|) as E′ 3 x→ x0
′.

Then, for any x0 ∈ ∂E and |α| ≤ m,

(ϕ∗F )α(x) = o(d(x, ∂E)m−|α|) as E′ 3 x→ x0.

We use this proposition to show:

Corollary 4.3. Let Ω ⊆ Rd be definable and open and E := Ω×{0} ⊆ Rd+l. Suppose
that ϕ : Ω × Rl → Rd+l is a definable Λm-regular map and ϕ : cl(Ω) × Rl → Rd+l is
the continuous extension of ϕ. Assume further that ϕ(∂E) = ∂

(
ϕ(E)

)
. Let F ∈

Em
(

cl(ϕ(E)), ∂(ϕ(E))
)
. For each |α| ≤ m, define F

α
: cl(E)→ R by

F
α
(x) :=

{
(ϕ∗F )α(x), if x ∈ E;

0, otherwise.

Let ϕ∗F := (F
α
)|α|≤m. Then ϕ∗F ∈ Em

(
cl(E), ∂E).
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Proof. By Proposition 4.2, for every x0 ∈ ∂Ω and |α| ≤ m,

(ϕ∗F )α(x, 0) = o
(
d(x, ∂Ω)m−|α|

)
as Ω 3 x→ x0.

Therefore, ϕ∗F is a jet of order m on cl(E). Thus, it is sufficient to show that ϕ∗F
has the Cm-Whitney field property.

Let x0 ∈ cl(Ω) and α ∈ Nd+l with |α| ≤ m and k := m − |α|. For each γ =
(γ1, . . . , γd) ∈ Nd with |γ| ≤ k, define Gγα : Rd → R by

Gγα(x) :=

{
(ϕ∗F )α+γ(x, 0), if x ∈ Ω;

0, otherwise

where γ = (γ1, . . . , γd, 0, . . . , 0) ∈ Nd+l. Let Gα := (Gγα)|γ|≤k. Clearly, Gα�Ω ∈ E k(Ω)

and Gα�(Rd \ Ω) ∈ E k(Rd \ Ω). By Hestenes’ Lemma, G0
α is Cm and so Gα ∈

E k(Rd, Rd \ Ω). Therefore,(
Rm(x,0)(ϕ

∗F )
)α

(y, 0) = (Rmx Gα)0(y)

= o(‖x− y‖k)

= o(‖(x, 0)− (y, 0)‖m−|α|) as cl(Ω) 3 x, y → x0.

Since α is arbitrary, ϕ∗F is a Cm-Whitney field on cl(E). �

From now on, if all conditions in Corollary 4.3 hold, we denote ϕ∗F just by ϕ∗F
for notational simplicity.

The sets ∆ε(E). For ε > 0 and definable E,E′ ⊆ Rn with E′ ⊆ cl(E), we let

∆ε(E,E
′) :=

{
x ∈ Rn : d(x,E) < εd(x,E′)

}
,

and we set ∆ε(E) := ∆ε(E, ∂E). See Figure 3 for an example. The following propo-
sitions and lemma will be devoted to useful properties of the sets ∆ε(E).

∆ε((−1, 1)× {0})

(−1, 1)× {0}

Figure 3. ∆ε((−1, 1)× {0}) in R2.

Proposition 4.4. Let Ω be an open cell in Rd. Then, for each ε > 0 and each l,

∆ε(Ω× {0}l) =
{

(x, y) ∈ Ω×Rl : |y| ≤ ε√
1−ε2 d(x, ∂Ω)

}
.
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We leave the proof of this proposition to the reader. For the next proposition,
recall that a subset of Rn is locally closed iff its frontier is closed.

Proposition 4.5. Let E be a definable subset of Rn which is definably path connected
and locally closed. Let 0 < ε < 1. Then ∆ε(E) is also definably path connected.

Proof. It is enough to show that for any x ∈ ∆ε(E) we can find a definable path in
∆ε(E) connecting x and a point in E. If x is already in E, it is trivial. So, assume
x ∈ ∆ε(E) \ cl(E). Take y ∈ cl(E) with d(x, y) = d(x,E); since x ∈ ∆ε(E), we have

d(x, y) = d(x,E) < εd(x, ∂E) ≤ d(x, ∂E),

which implies that y /∈ ∂E. Let I = [0, d(x,E)] and define γ : I → Rn by γ(t) =

x + t (y−x)
‖y−x‖ . Next, we will show that γ(t) ∈ ∆ε(E) for every t ∈ I (i.e., d(γ(t), E) <

ε d(γ(t), ∂E).)

Claim. d(γ(t), E) = d(γ(t), y) for all t ∈ I.

Proof of the claim. Pick z ∈ E \ ∂E such that d(γ(t), z) = d(γ(t), E). If d(γ(t), z) =
d(γ(t), E) < d(γ(t), y), then

d(x, z) ≤ d(γ(t), z) + d(x, γ(t)) < d(γ(t), y) + d(x, γ(t)) = d(x, y),

which contradicts the minimality of y. �

Suppose for a contradiction that γ(t) /∈ ∆ε(E). Pick c ∈ ∂E such that d(γ(t), c) =
d(γ(t), ∂E). Then

ε d(x, c) ≥ ε d(x, ∂E) > d(x,E)

= d(x, γ(t)) + d(γ(t), E)

≥ d(x, γ(t)) + ε d(γ(t), ∂E)

= (1− ε)d(x, γ(t)) + ε
[
d(x, γ(t)) + d(γ(t), c)

]
≥ (1− ε)d(x, γ(t)) + ε d(x, c),

hence d(x, γ(t)) < 0, a contradiction. Therefore, γ is a definable path in ∆ε(E) which
connects x and E. �

Proposition 4.6. Let E = Γ(ϕ) where ϕ : Ω→ Rl is definable and Lipschitz and Ω
is an open cell in Rd. Then there is ε0 > 0 with ∆ε(E) ⊆ Ω×Rl for all 0 < ε < ε0.

Proof. Let L be a Lipschitz constant of ϕ and set ε0 = 1
1+
√

1+L2
. Fix 0 < ε < ε0. Let

ϕ be the Lipschitz extension of ϕ to cl(Ω). By the above proposition, it is sufficient
to prove that ∆ε(E) ∩ (∂Ω× Rl) = ∅. Let x ∈ ∂Ω and y ∈ Rl. Let a ∈ cl(Ω) satisfy
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d((x, y), E) = d((x, y), (a, ϕ(a))). If (x, y) ∈ ∆ε(E), then

d
(
(x, y), ∂E

)
≤ d
(
(x, y), (x, ϕ(x))

)
≤ d
(
(x, y), (a, ϕ(a))

)
+ d
(
(a, ϕ(a)), (x, ϕ(x))

)
≤ d((x, y), E) +

√
1 + L2 d(a, x)

≤ d((x, y), E) +
√

1 + L2 d
(
(a, ϕ(a)), (x, ϕ(x))

)
= (1 +

√
1 + L2) d((x, y), E)

< (1 +
√

1 + L2) ε d((x, y), ∂E)

≤ d
(
(x, y), ∂E

)
,

which is impossible. Thus, (x, y) /∈ ∆ε(E). Since (x, y) is arbitrary in ∂Ω × Rl, we
obtain ∆ε(E) ∩ (∂Ω×Rl) = ∅. �

Lemma 4.7. Let Ω ⊆ Rn be open and E =
N⋃
i=1

Γ(ϕi) where each ϕi : Ω → Rl is

definable and Lipschitz. Set

ϕi+(x, y) :=
(
x, y + ϕi(x)

)
for (x, y) ∈ Ω×Rl and i = 1, . . . , N .

Then

ϕi+
(
∆ε(Ω× {0}l)

)
⊆ ∆2ε(E) for all 0 < ε < 1√

2
and i ∈ {1, . . . , N}.

Proof. Let (x, y) ∈ ∆ε(Ω× {0}). Then ‖y‖ < ε
1−ε2d(x, ∂Ω). Therefore,

d(ϕi+(x, y), E) ≤ d
(
(x, y + ϕi(x)), Ei

)
≤ d
(
(x, y + ϕi(x)), (x, ϕi(x))

)
= ‖y‖

<
ε√

1− ε2
d(x, ∂Ω)

≤ ε√
1− ε2

d
(
ϕi+(x, y), ∂E

)
≤ 2ε · d

(
ϕi+(x, y), ∂E

)
,

i.e., ϕi+(x, y) ∈ ∆2ε(E). �

Next, we modify Proposition 6.2 in [9], which is a main step in Paw lucki’s version
of Whitney’s Extension Theorem.

Proposition 4.8. Assume m ≤ q. Let Ei ⊇ E′i (i = 1, . . . , s) be definable closed
subsets of Rn and C > 0 be a constant such that for any i, j ∈ {1, . . . , s}, i 6= j,

d(x,Ei) + d(x,Ej) ≥ Cd(x,E′i) for all x ∈ Rn.

Set E = E1 ∪ · · · ∪ EN , E′ = E′1 ∪ · · · ∪ E′N , and let F ∈ Em(E,E′) and ε ∈ (0, C2 ).
Suppose F �Ei has a definable Cm-extension fi which is m-flat outside ∆ε(Ei, E

′
i) and

Cq outside Ei, for each i = 1, . . . , s. Then f =
s∑
i=1

fi is a definable Cm-extension of

F which is Cq outside E.
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Proof. It suffices to prove that ∆ε(Ei, E
′
i) ∩ ∆ε(Ej , E

′
j) = ∅ for i 6= j. Let x ∈

∆ε(Ei, E
′
i) ∩∆ε(Ej , E

′
j). Then d(x,Ei) < εd(x,E′i) and d(x,Ej) < εd(x,E′j), so

2(d(x,Ei) + d(x,Ej)) < 2ε
(
d(x,E′i) + d(x,E′j)

)
≤ C

(
d(x,E′i) + d(x,E′j)

)
≤ 2
(
d(x,Ei) + d(x,Ej)

)
,

a contradiction. �

The functions associated to a standard open Λm-regular cell. Let Ω ⊆ Rn

be a standard open Λm-regular cell. Kurdyka and Paw lucki introduced functions
ρj : cl(Ω) → R (j = 1, . . . 2n) corresponding to such a cell, which we call the func-
tions associated with Ω, and used them in the proof of their main theorems
(see [6, 9]). These functions also become useful in our construction of definable
Cm-extensions. We define the ρj by induction on n:

(1) For n = 1 and Ω = (a, b),

ρ1(x) =

{
x− a, if a ∈ R,
0, if a = −∞,

and ρ2(x) =

{
b− x, if b ∈ R,
0, if b = +∞.

(2) Suppose Ω′ is a standard open Λm-regular cell in Rn and f, g : Ω′ → R±∞ are
definable Λm-regular functions with

Ω =
{

(x, xn+1) ∈ Ω′ ×R : f(x) < xn+1 < g(x)
}
.

Let σj (j = 1, . . . , 2n) be the functions associated with Ω′. Let (x, xn+1) ∈
cl(Ω). Set ρj(x, xn+1) = σj(x) for j = 1, . . . , 2n and

ρ2n+1(x, xn+1) =

{
xn+1 − f(x) if f(Ω′) ⊆ R,

0 if f ≡ −∞,

and

ρ2n+2(x, xn+1) =

{
g(x)− xn+1 if g(Ω′) ⊆ R,

0, if g ≡ +∞.

The proofs of the following facts from [6] (Lemmas 3 and 4) go through in our setting:

Lemma 4.9. Let Ω be a standard open Λm-regular cell in Rn and ρ1, . . . , ρ2n be the
functions associated with Ω.

(1) There is a constant C > 0 such that

min
j
ρj(x) ≤ d(x, ∂Ω) ≤ C min

j
ρj(x) for every x ∈ Ω.

(2) The ρj are Λm-regular.

Paw lucki’s proof of Whitney’s Extension Theorem in [9] heavily relies on inte-
gration of definable functions with respect to parameters, which generally takes us
outside our given o-minimal structure R, so we cannot immediately follow his proof
in our context. In order to overcome this problem, we need to find other definable
tools which work in each o-minimal expansion of a real closed ordered field, and one
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of them is the Λm-Stratification Theorem. However, this theorem is not sufficient to
capture all the necessary information to construct Cm-extensions for Cm-Whitney
fields. For this reason, the following lemmas are proved, which provide us with some
control over the partial derivatives of functions with respect to the boundaries of their
domains.

Lemma 4.10. Let Ω be a definable open subset of Rd and ρ : Ω → R be a definable
Λm-regular function which does not vanish on Ω. Then, for |α| ≤ m,

Dα
(

1
ρ

)
(x) = O

(
(min{ρ(x), d(x, ∂Ω)})−|α|−1

)
as d(x, ∂Ω)→ 0 and x ∈ Ω.

Proof. Let λ1, . . . , λk range over Nd \ {0}. For α 6= 0,

Dα
(

1
ρ

)
=

|α|∑
k=1

 ∑
λ1+···+λk=α

cαλ1...λk(Dλ1ρ) . . . (Dλkρ)

 ρ−1−k

where cαλ1...λk is an integer. Thus

Dα
(

1
ρ

)
=

|α|∑
k=1

 ∑
λ1+···+λk=α

O
(
d(x, ∂Ω)−|λ1|+1

)
· · ·O

(
d(x, ∂Ω)−|λk|+1

 ρ−1−k

= O
(

min{ρ(x), d(x, ∂Ω)}−|α|−1
)

as d(x, ∂Ω)→ 0 and x ∈ Ω. �

Corollary 4.11. Let Ω ⊆ Rd be an open Λm-regular cell, and let A be an orthog-
onal isomorphism of Rd such that A(Ω) is a standard open Λm-regular cell. Let
ρ1, . . . , ρ2d : A(Ω) → R be the functions associated to A(Ω). Then, for |α| ≤ m and
j = 1, . . . , 2d,

Dα
(

1
ρj

)
(x) = O

(
d(x, ∂A(Ω))−|α|−1

)
as d(x, ∂A(Ω))→ 0 and x ∈ A(Ω).

Thus if we let νj = ρj ◦A, then

Dα
(

1
νj

)
(x) = O

(
d(x, ∂Ω)−|α|−1

)
as d(x, ∂Ω)→ 0 and x ∈ Ω.

Proof. Since each ρj is Λm-regular and d(x, ∂Ω) ≤ Cρj(x) for some C > 0, by the
above lemma, we’re done. �

Lemma 4.12. Let Ω be an open subset of Rd, let f : Ω × Rl → R and ρ : Ω → R
be definable Cm functions, and let t : Ω → R>0 be definable. Suppose there is C > 0
such that

t(x) ≤ d(x, ∂Ω) ≤ C · ρ(x) for every x ∈ Ω.

Let ε > 0. Assume, for every x0 ∈ ∂Ω and α ∈ Nd with |α| ≤ m,

Dα
(

1
ρ

)
= O

(
t(x)−|α|−1

)
as x→ x0,

and for x0 ∈ ∂Ω and κ ∈ Nd+l, |κ| ≤ m,

Dκf(x, y) = o
(
t(x)m−|κ|

)
as ∆ε(Ω× {0}l) 3 (x, y)→ (x0, 0).
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Fix i ∈ {1, . . . , l}. For every definable Cn-function ξ : R→ R, where n ≤ m, set

gξ(x, y) := ξ
(

yi
ρ(x)

)
f(x, y) for (x, y) ∈ Ω×Rl.

Then for every such ξ, n, we have, for |κ| ≤ n, x0 ∈ ∂Ω:

Dκgξ(x, y) = o(t(x)n−|κ|) as ∆ε(Ω× {0}l) 3 (x, y)→ (x0, 0).

Proof. Put h0(x, y) = yi
ρ(x) and hξ = ξ ◦ h0. By the Leibniz Formula,

Dκgξ =
∑
λ≤κ

(
κ

λ

)
DλhξD

κ−λf.

It is enough to check that

Dλhξ(x, y) = O
(
t(x)−|λ|

)
as ∆ε(Ω× {0}l) 3 (x, y)→ (x0, 0).

We proceed by induction on |λ|. Suppose |λ| = 0. For (x, y) ∈ ∆ε(Ω× {0}l),

|yi| ≤ d
(
(x, y),Ω× {0}l

)
< ε · d

(
x, ∂Ω

)
≤ εC · ρ(x);

so |h0(x, y)| ≤ εC. Thus ξ
(
[−εC, εC]

)
contains hξ

(
∆ε(Ω× {0}l)

)
. Since ξ is continu-

ous, the former set is bounded, and hence so is the latter. Therefore hξ(x, y) = O(1)

as ∆ε(Ω× {0}l) 3 (x, y)→ (x0, 0).
Assume the claim holds true for some value of |λ| ≤ n − 1, where n ≥ 1. By

induction hypothesis,

Dλ+ejhξ(x, y) =
[
Dλ
(
∂hξ
∂xj

)]
(x, y)

=
∑
µ≤λ

(
λ

µ

)[
Dµ(ξ′ ◦ h0)

]
(x, y)

[
Dλ−µ

(
∂h0
∂xj

)]
(x, y)

=
∑
µ≤λ

(
λ

µ

)[
Dµhξ′

]
(x, y)

[
Dλ−µ

(
∂h0
∂xj

)]
(x, y)

=
∑
µ≤λ

O
(
t(x)−|µ|

)
O
(
t(x)−|λ|+|µ|

)
and so Dλ+ejhξ(x, y) = O

(
t(x)−|λ|

)
as ∆ε(Ω× {0}l) 3 (x, y)→ (x0, 0). �

In the rest of this section, we let 0 < ε < 1√
2

and m ≤ q, and we let Ω be a

standard open Λq-regular cell in Rd, with associated functions ρ1, . . . , ρ2d. We also
let F ∈ Em(cl(Ω)× {0}l, ∂Ω× {0}l).

Definition 4.13. Let ξ : R → R be a semialgebraic Cm-function which is 1 in a
neighborhood of 0 and 0 outside (−1, 1). Define rε : R

d+l → R by

rε(x, y) =

l∏
i=1

2d∏
j=1

ξ

(
Qε

yi
ρj(x)

)
where Qε is a constant (depending on Ω, ε, d, and l) large enough so that rε is m-flat
outside ∆ε(Ω× {0}l).
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Lemma 4.14. Let h : Ω× Rl → R be definable and Cq. Suppose, for κ ∈ Nd+l with
|κ| ≤ m and x0 ∈ ∂Ω,

Dκh(x, 0) = F κ(x, 0) for all x ∈ Ω

and
Dκh(x, y) = o

(
d(x, ∂Ω)m−|κ|

)
as ∆ε(Ω× {0}l) 3 (x, y)→ (x0, 0).

Define fε : R
d+l → R by

fε(x, y) =

{
rε(x, y)h(x, y), if x ∈ Ω;

0, otherwise.

Then fε is a definable Cm-extension of F which is m-flat outside ∆ε(Ω × {0}l) and
Cq outside cl(Ω)× {0}l.

Proof. Obviously, fε�(Ω × Rl) is m-flat outside ∆ε(Ω × {0}l) and fε is Cq outside
∂Ω× {0}l. First, we will show that fε extends F . Let x ∈ Ω. Then

fε(x, 0) = rε(x, 0)h(x, 0) = F 0(x, 0).

By the Leibniz Formula,

Dκfε(x, y) = Dκ (rε(x, y)h(x, y))

=
∑
σ≤κ

(
κ

σ

)(
Dκ−σrε(x, y)

)
(Dσh(x, y)) .

Since (Dγrε) (x, 0) = 0 if |γ| > 0 and rε(x, 0) = 1, we obtain

Dκfε(x, 0) = Dκh(x, 0) = F κ(x, 0).

It remains to show that fε is actually Cm on Rd+l. Let y 6= 0 ∈ Rl. It is enough to
find δ > 0 such that (x, y) /∈ ∆ε(Ω× {0}l) for all x ∈ Ω with d(x, ∂Ω) < δ. Since

(x, y) /∈ ∆ε(Ω× {0}l) ⇐⇒ |y| ≥ ε√
1−ε2d(x, ∂Ω),

it suffices to pick δ = |y|
2 . Therefore, fε is Cm on Rd+l\(∂Ω×{0}l). By Corollary 4.11

and Lemma 4.12, fε is Cm on Rd+l. �

Corollary 4.15. For β ∈ Nl with |β| ≤ m, suppose

hβ : Ω×Rl → R, hβ(x, y) = F (0,β)(x, 0)yβ

is Cq and, for κ ∈ Nd+l with |κ| ≤ m and x0 ∈ ∂Ω,

Dκhβ(x, y) = o
(
d(x, ∂Ω)m−|κ|

)
as ∆ε(Ω× {0}l) 3 (x, y)→ (x0, 0).

Define fε : R
d+l → R by

fε(x, y) =

rε(x, y)
∑
|β|≤m

hβ(x,y)
β! , if x ∈ Ω;

0, otherwise.

Then fε is a definable Cm-extension of F which is m-flat outside ∆ε(Ω × {0}l) and
Cq outside cl(Ω)× {0}l.
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Proof. Clearly, Dκ

( ∑
|β|≤m

hβ(x,0)
β!

)
= F κ(x, 0). By Lemma 4.14, we’re done. �

The next lemma is a very special case of the main theorem from the introduction.
Even though this lemma will not be used later in this paper, it is worth stating here
(since this provides an idea of the construction in Section 5).

Lemma 4.16. For |α| ≤ m assume that

gα : Ω→ R, gα(x) = Fα(x, 0)

is Cq and that for each γ ∈ Nd with 1 ≤ |γ| ≤ q, there is some L > 0 with

|Dγgα(x)| ≤ L

d(x, ∂Ω)|γ|
sup

{
|gα(y)| : y ∈ Ω, ‖x− y‖ < d(x, ∂Ω)

}
for x ∈ Ω.

Then F has a definable Cm-extension which is m-flat outside ∆ε(Ω × {0}l) and Cq

outside cl(Ω)× {0}l.

Proof. For β ∈ Nl with |β| ≤ m, define hβ as in Corollary 4.15; by this corollary, it is
sufficient to prove the following claim:

Claim. For κ = (σ, τ) ∈ Nd × Nl with |κ| ≤ m and x0 ∈ ∂Ω,

(2) Dκhβ(x, y) = o
(
d(x, ∂Ω)m−|κ|

)
as ∆ε(Ω× {0}l) 3 (x, y)→ (x0, 0).

To prove the claim, we may assume τ ≤ β, since otherwise we simply have
Dκhβ(x, y) = 0. Suppose first that |σ| ≤ m− |β|. Then, by Hestenes’ Lemma,

Dκhβ(x, y) =
β!

(β − τ)!
F (σ,β)(x, 0)yβ−τ

for every (x, y) ∈ Ω×Rl. By the definition of Cm-Whitney fields,

F (σ,β)(x, 0) = o
(
d(x, ∂Ω)m−|σ|−|β|

)
as x→ x0.

We have |y| < ε√
1−ε2d(x, ∂Ω) since (x, y) ∈ ∆ε(Ω× {0}l), and so (2) follows.

Now suppose |σ| > m− |β|. Then σ = η + γ where |η| = m− |β|. Hence,

Dκhβ(x, y) =
β!

(β − τ)!
Dγg(η,β)(x)yβ−τ

= o
(
d(x, ∂Ω)−|γ|

)
·O
(
d(x, ∂Ω)|β|−|τ |

)
= o
(
d(x, ∂Ω)|β|−|τ |−|γ|

)
.

Now (2) follows since |β| − |τ | − |γ| = |β| − |τ | − |σ|+ |η| = m− |κ|. This proves the
claim. �

Corollary 4.17. Assume Ω′ ⊆ Rd is an open Λq-regular cell and F ′ ∈ Em(cl(Ω′) ×
{0}l, ∂Ω′ × {0}l). For |α| ≤ m define

gα : Ω′ → R, gα(x) = Fα(x, 0).
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Assume gα is Cq and, for each γ ∈ Nd with 1 ≤ |γ| ≤ q, there is some L > 0 with

|Dγgα(x)| ≤ L

d(x, ∂Ω′)|γ|
sup

{
|gα(y)| : y ∈ Ω′, ‖x− y‖ < d(x, ∂Ω′)

}
for x ∈ Ω′.

Then F has a definable Cm-extension which is m-flat outside ∆ε(Ω
′ × {0}l) and Cq

outside cl(Ω′)× {0}l.

Proof. Let A be an orthogonal isomorphism of Rd such that Ω := A(Ω′) is a standard
open Λq-regular cell. Now apply the previous lemma to (A−1)∗F ∈ Em(cl(Ω) ×
{0}l, ∂(Ω)× {0}l) in place of F . �

5. The First Four Steps

In this section, we assume m ≤ q. Paw lucki’s construction of an extension operator
for Cm-Whitney fields from [9] can be divided into five steps, depending on the nature
of the Whitney field F and its domain E:

Step 1: E = Rd × {0}l;
Step 2: E = cl(Ω) × {0}l where Ω is an open Λq-regular cell and F is flat on
∂Ω× {0}l;

Step 3: E = cl(E0) where E0 is the graph of Lipschitz Λq-regular map on an
open Λq-regular cell and F is flat on ∂E0;

Step 4: E = cl(E0) where E0 is a Λq-regular pancake and F is flat on ∂E0;
Step 5: E is any closed definable set.

In this section, we work on the first four steps under the following assumption:

(∗)
{

For every closed definable set E ⊆ Rn with dim(E) < d, every F ∈
Em(E) has a definable Cm-extension which is Cq on Rn \ E.

Thus, in the rest of this section we assume that condition (∗) holds.

5.1. Step 1.

Lemma 5.1. Let F ∈ Em(Rd × {0}l). Then F has a definable Cm-extension which
is Cq outside Rd × {0}l.

Proof. For β ∈ Nl, define Fβ := (F̃ (σ,δ))|(σ,δ)|≤m where

F̃ (σ,δ) :=

{
F (σ,β), if β = δ;

0, otherwise.

Claim. Fβ ∈ Em(Rd × {0}l) for every |β| ≤ m.

Proof of the claim. For x, y ∈ Rd and |(σ, δ)| ≤ m, we have(
Rm(x,0)Fβ(y, 0)

)(σ,δ)
=

F
(σ,δ)(y, 0)−

∑
|ξ|≤m−|β|−|σ|

F (σ+ξ,β)(x, 0)

ξ!(β − γ)!
(y − x)ξ(0)β−δ, if δ ≤ β;

0, otherwise,
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with the convention that 00 = 1. For δ 6= β, we have (Rm(x,0)Fβ(y, 0))(σ,δ) = 0. Assume

β = δ. By Cm-Whitney field property of F ,

0 =
(
Rm(x,0)F (y, 0)

)(σ,β)
= F (σ,β)(y, 0)−

∑
|(ξ,η)|≤m−|(σ,β)|

F (ξ,η)(x, 0)

ξ!η!
(y − x)ξ(0)η

= F (σ,β)(y, 0)−
∑

|ξ|≤m−|β|−|σ|

F (σ+ξ,β)(x, 0)

ξ!
(y − x)ξ

=
(
Rm(x,0)Fβ(y, 0)

)(σ,β)
.

�

Obviously, F =
∑
|β|≤m

Fβ. Hence, we may assume that F = Fβ. By Smooth Cell

Decomposition, there is a cell decomposition C of Rd such that, for each C ∈ C and
|(α, β)| ≤ m, the function F (α,β)�(C × {0}l) is Cq. By (∗), we may assume the F is
flat on

⋃
C∈C \C o

C × {0}l.

Let C ∈ C o. By Proposition 4.8, it is sufficient to find a definable Cm-extension
fC of F �

(
cl(C) × {0}l

)
which is m-flat outside ∆ε(C × {0}l), for some ε > 0 small

enough, and Cq outside cl(C) × {0}l. Therefore, we may assume that F is flat

on (Rd \ C) × {0}l and F (α,β) is Cq for every |(α, β)| ≤ m. By Lemma 1.14, we
may write cl(C) = D1 ∪ · · · ∪ Ds ∪ B where the Di’s are open Λq-regular cells and
B = ∂D1 ∪ · · · ∪ ∂Ds, such that, defining, for |α| ≤ m,

gα : Rd → R, gα(x) = Fα(x, 0),

there is L > 0 so that for κ ∈ Nd with |κ| ≤ q and u ∈ Di, each gα�Di is Cq and

(3) |Dκgα(u)| ≤ L

d(u, ∂Di)|κ|
sup

{
|gα(v)| : v ∈ Di, ‖u− v‖ < d(u, ∂Di)

}
for u ∈ Di.

By (∗), let f0 : Rn → R be a definable Cm-extension of F �(B × {0}l) which is Cq

outside B × {0}l, and set

F̃ := F − Jm(f0)�(Rd × {0}l) ∈ Em(Rd × {0}l).
Clearly,

Fi := F̃ �(cl(Di)× {0}l) ∈ Em(cl(Di)× {0}l, ∂Di × {0}l).
By Propostion 4.8, it is sufficient to find a definable Cm-extension fi for each Fi
which is m-flat outside ∆ε(Di × {0}l), for some ε > 0 small enough, and Cq outside
cl(Di)× {0}l. Fix some i ∈ {1, . . . , s}, and let

hi(x, y) :=
1

β!
F (0,β)(x, 0)yβ − f0(x, y).

Obviously, Dκhi(x, 0) = F̃ κ(x, 0) for all x ∈ Di and |κ| ≤ m. By Lemma 4.14, it is
enough to show the following claim:
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Claim. For κ = (σ, τ) ∈ Nd × Nl with |κ| ≤ m, and x0 ∈ ∂Di,

Dκhi(x, y) = o
(
d(x, ∂Di)

m−|κ|) as ∆ε(Di × {0}l) 3 (x, y)→ (x0, 0).

If x0 ∈ C, by Taylor’s Formula, we’re done. Assume x0 ∈ ∂C. We will proceed to
show the claim by induction on m− |κ|. First assume |κ| = m. Clearly,

|Dκhi(x, y)| ≤
∣∣∣Dκ

(
1
β!F

(0,β)(x, 0)yβ
)∣∣∣+ |Dκf0(x, y)| .

Since f0 is m-flat at (x0, 0), we have Dκf0(x, y) → 0 as (x, y) → (x0, 0). Suppose

τ ≤ β (otherwise, Dκ( 1
β!f

(0,β)
0 (x, 0)yβ) = 0). Then

Dκ
(

1
β!f

(0,β)
0 (x, 0)yβ

)
= 1

(β−τ)!D
γ
(
f

(α,β)
0 (x, 0)yβ−τ

)
where σ = α+ γ and |α|+ |β| = m. We have

|β| − |τ | − |γ| = |β| − |τ | − |σ|+ |α| = m− |τ | − |σ| = m− |κ| = 0.

Since F (α,β)(x0, 0) = 0,

s(z) := sup
{
|F (α,β)(x, 0)| : x ∈ Di, |x− z| < d(z, ∂Di)

}
→ 0 as Di 3 z → x0.

By (3), ∣∣∣Dκ
(

1
β!f

(0,β)
0 (x, 0)yβ

)∣∣∣ ≤ L

d(x, ∂Di)|γ|
s(z)

(
ε√

1−ε2d(x, ∂Di)
)|β|−|τ |

= L
(

ε√
1−ε2

)|β|−|τ |
s(z)

→ 0 as ∆ε(Di × {0}l) 3 (x, y)→ (x0, 0).

Next, assume that |κ| < m and for every |λ| > |κ|,

Dλhi(x, y) = o
(
d(x, ∂Di)

m−|λ|) as ∆ε(Di × {0}l) 3 (x, y)→ (x0, 0).

Let (x, y) ∈ ∆ε(Di × {0}l). Let z ∈ ∂Di such that |x− z| = d(x, ∂Di) and S
be the line segment connecting (x, y) and (z, 0). By Proposition 4.4, we see that
S ⊆ ∆ε(Di × {0}l). Applying the Mean Value Theorem on S, we obtain

|Dκh(x, y)| ≤
√
d+ l · sup

{
|Dκ+λhi(u,w)| : |λ| = 1, (u,w) ∈ L̃

}
·
√
|x− z|2 + |y|2

≤ (
√
d+ l) · t(x, y) ·

(
1 + ε√

1−ε2

)
· d(x, ∂Di)

where

t(x, y) := sup
{
|Dκ+λhi(u,w)| : |λ| = 1, (u,w) ∈ ∆ε(Di × {0}l),

d(u, ∂Di) < 2d(x, ∂Di)
}
.

Using the induction hypothesis, we get

Dκhi(x, y) = o(d(x, ∂Di)
m−|κ|−1) · d(x, ∂Di)

= o(d(x, ∂Di)
m−|κ|) as ∆ε(Di × {0}l) 3 (x, y)→ (x0, 0).

�
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5.2. Step 2.

Lemma 5.2. Let Ω be an open Λq-regular cell in Rd, and F ∈ Em(cl(Ω)×{0}l, ∂Ω×
{0}l). Then, for every ε > 0, F has a definable Cm-extension which is m-flat outside
∆ε(Ω× {0}l) and Cq outside cl(Ω)× {0}l.

Proof. First, we extend F to F̃ ∈ Em(Rd × {0}l) as follows:

F̃α(x, 0) =

{
Fα(x, 0), if x ∈ Ω;

0, otherwise.

By the above lemma, we can find a definable Cm-extension f̃ of F̃ . However, f̃ is
possibly not m-flat outside ∆ε(Ω × {0}l). In order to guarantee this, we have to

slightly modify f̃ . Define

fε(x, y) =

{
rε(x, y)f̃(x, y), if x ∈ Ω;

0, otherwise.

Here, rε is as introduced in Definition 4.13. Clearly, fε is m-flat outside ∆ε(Ω×{0}l).
Moreover, since f̃ is Cq outside Rd × {0}l and rε is Cq on Ω × Rl, fε is Cq outside

cl(Ω)×{0}l. Since f̃ is Cm on Rd+l, by Corollaries 4.11 and 4.12, fε is Cm on Rd+l. �

5.3. Step 3. Let ϕ : Ω → Rl be a definable Lipschitz Λq-regular map and Ω be an
open Λq-regular cell in Rd. Let ϕ : cl(Ω)→ Rl be the continuous extension of ϕ, and

ϕ+ : cl(Ω)×Rl → Rd+l, ϕ+(x, y) :=
(
x, y + ϕ(x)

)
,

ϕ− : cl(Ω)×Rl → Rd+l, ϕ−(x, y) :=
(
x, y − ϕ(x)

)
.

To apply Step 2 to E = cl(Γ(ϕ)), we first show that for each Cm-Whitney field on E,
there is a corresponding Cm-Whitney field on cl(Ω)× {0}l.

Let E0 := Γ(ϕ), E := cl(E0) = Γ(ϕ), and F ∈ Em(E, ∂E0). Obviously,

ϕ+(cl(Ω)× {0}) = E, ϕ+(∂Ω× {0}) = ∂E0.

By Corollary 4.3,

ϕ∗+F ∈ Em(cl(Ω)× {0}, ∂Ω× {0}).
Now we show:

Lemma 5.3. Let E0 := Γ(ϕ), E := cl(E0) = Γ(ϕ), and F ∈ Em(E, ∂E0). Then, for
every ε > 0, F has a definable Cm-extension which is m-flat outside ϕ+(∆ε(Ω×{0}l))
and Cq outside E.

Proof. By Proposition 4.6, there is ε0 > 0 such that ∆δ(E) ⊆ Ω×Rl for all 0 < δ < ε0.
Let ε > 0 be given. We may assume that ε < ε0. By Lemma 5.2, take a definable
Cm-extension f−ϕ of ϕ∗+F which is m-flat outside ∆ ε

2
(Ω × {0}n−d) and Cq outside

cl(Ω)× {0}n−d. Define f : Rn → R by

f(x, y) :=

{
f−ϕ(ϕ−(x, y)), if x ∈ Ω;

0, otherwise.
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Since Jm(f)�E = ϕ∗−(ϕ∗+F ) = (ϕ+ ◦ϕ−)∗F and ϕ+ ◦ϕ− = idcl(Ω)×Rl , J
m(f)�E = F .

Therefore, f is a Cm-extension of F which is m-flat outside ϕ̃(∆ ε
2
(Ω× {0}n−d)) and

Cq outside E. �

5.4. Step 4.

Lemma 5.4. Let E0 be a Λq-pancake of dimension d with common domain Ω ⊆ Rd,
let E = cl(E0), and F ∈ Em(E, ∂E0). Then, for every ε > 0, F has a definable
Cm-extension which is m-flat outside ∆ε(E0) and Cq outside E.

Proof. Suppose E = cl(E1 ∪ · · · ∪ Es) where Ei = Γ(ϕi) with ϕi : Ω → Rn−d a
definable Λq-regular Lipschitz map. For each i ∈ {1, . . . , s}, let ϕi : cl(Ω) → Rl be
the continuous extension of ϕ, and

ϕi+ : cl(Ω)×Rl → Rd+l, ϕi+(x, y) :=
(
x, y + ϕi(x)

)
,

ϕi− : cl(Ω)×Rl → Rd+l, ϕi−(x, y) :=
(
x, y − ϕi(x)

)
.

By Lemma 4.7, it is enough to prove that, for 0 < ε < 1√
2
, there exists a definable

Cm-extension of F which is m-flat outside
s⋃
i=1

ϕi+
(
∆ε(Ω× {0}n−d)

)
and Cq outside

s⋃
i=1

cl(Ei). We show this by induction on s. If s = 1, by Lemma 4.7, this is just

Lemma 5.3. Suppose s > 1, and the statement is true for s − 1 in place of s.

Let 0 < ε < 1√
2
. Then we can find a definable Cm-extension f̃ε of F �

s−1⋃
i=1

cl(Ei)

which is m-flat outside
s−1⋃
i=1

ϕi+
(
∆ε(Ω × {0}n−d)

)
and Cq outside

s−1⋃
i=1

cl(Ei). Note

that
s−1⋃
i=1

ϕi+
(
∆ε(Ω × {0}n−d)

)
and ∂Ω × Rn−d are disjoint. After replacing F by

F − Jm(f̃ε)�E, we may assume that

F ∈ Em

(
s⋃
i=1

cl(Ei),

s−1⋃
i=1

cl(Ei) ∪ ∂Es

)
.

Next, consider ϕ∗s+(F �cl(Es)) ∈ Em(cl(Ω) × {0}, ∂Ω × {0}) (by Corollary 4.3.) By
Lemma 5.2, let f be a Cm-extension of ϕ∗s+(F �cl(Es)) which is m-flat outside ∆ε(Ω×
{0}n−d) and Cq outside cl(Ω) × {0}n−d. For i = 1, . . . , s − 1 and x ∈ Ω, we define
ri(x) := |ϕi(x)− ϕs(x)|. Each function ri : Ω → R>0 is Λm-regular. Let ξ : R → R
be any semialgebraic Cq-function which is 1 in a neighborhood of 0 and 0 outside
(−1, 1). Then, define

g(x, y) =


s−1∏
i=1

l∏
j=1

ξ

(√
l
yj
ri(x)

)
f(x, y), if x ∈ Ω;

0, otherwise.

Since f is Cm, by Lemmas 4.10 and 4.12, g is a Cm-extension of ϕ∗s+(F �cl(Es)) which

is m-flat outside ∆ε(Ω × {0}n−d). Moreover, by the choice of ri and ξ, we also get
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that g is m-flat on ϕs−(Ei) for all i = 1, . . . , s− 1. Define fε : R
n → R by

fε(x, y) :=

{
g(ϕs−(x)), if x ∈ Ω;

0, otherwise.

Obviously, cl(Ei) = ϕs+
(
ϕs−(cl(Ei))

)
for all i ∈ {1, . . . , s}. Thus, fε is a Cm-

extension of F �cl(Es) which is m-flat on cl(Ei) and outside ϕs+
(
∆ε(Ω × {0}n−d)

)
.

Therefore, fε is a Cm-extension of F which is m-flat outside
s⋃
i=1

ϕi+
(
∆ε(Ω×{0}n−d)

)
.

In addition, fε is Cq outside
s⋃
i=1

cl(Ei). �

6. Proof of the Definable Whitney Extension Theorem

Suppose m ≤ q. We will prove by induction on d that every F ∈ Em(E), where
E is a definable closed subset of Rn of dimension d, has a definable Cm-extension
which is Cq on Rn \ E. When d = 0, E is just a finite subset of Rn; and this case
is easy. Suppose d > 0, and the statement is true for all smaller values of d; that
is, condition (∗) from the previous section holds. Let E be a definable closed subset
of Rn of dimension d and F ∈ Em(E). By the Λm-regular Separation Theorem,
decompose E = M1 ∪ · · · ∪Ms ∪A where

(1) each Mi is a Λq-pancake of dimension d in a suitable coordinate system;
(2) A is a small, closed, definable subset of E;
(3) for all i 6= j, cl(Mi), cl(Mj) are ∂Mi-separated; and
(4) for each i, cl(Mi), A are ∂Mi-separated.

By (∗), take a definable Cm-extension fA of F �A. By replacing F by F −Jm(fA)�E,

we may assume that F is flat on
s⋃
i=1

∂Mi. Now, by separability, Proposition 4.8, and

Lemma 5.4, we obtain a Cm-extension of F which is Cq outside E. �

As usual in the o-minimal context, there is a certain uniformity inherent in the
above constructions; this can be exhibited by redoing these construction “uniformly
in parameters,” or perhaps more elegantly, by using the Compactness Theorem of
first-order logic:

Theorem 6.1. Let (Fa)a∈A, where A ⊆ RN , be a definable family of definable Cm-
Whitney fields Fa on a closed definable set Ea ⊆ Rn. Then there is a definable family
(fa)a∈A of definable Cm-functions fa : Rn → R such that fa is an extension of Fa,
for each a ∈ A.

Proof. Let L be the language of R, assumed to include a name for each element of R,
so that every definable set in R is definable by an L -formula. For each α ∈ Nn with
|α| ≤ m, let φα(x, y, z) be a formula in L where the length of x, y, and z are n, 1,
and k, respectively, such that for each a ∈ A, φα(x, y, a) defines the graph of (Fa)

α.
For each formula ψ(x, y, z), let χψ(z) be a formula such that, for each a ∈ RN ,
χψ(a) holds in R precisely when ψ(x, y, a) defines the graph of a Cm-extension of
Fa. Next, add N fresh constants c1, . . . , cN to L and call the resulting language L ′.
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For notational convenience, we write c = (c1, . . . , cN ). By our main theorem, the
L ′-theory

Th(R) ∪ {¬χψ(c) : ψ = ψ(x, y, z) is an L -formula}
is inconsistent. Therefore, by the Compactness Theorem, there are formulas

ψ1(x, y, z), . . . , ψM (x, y, z)

such that, for each a ∈ A, one of ψi(x, y, a) defines the graph of a Cm-extension of Fa
in R. We can now easily construct a single formula ψ(x, y, z) which works for every
a ∈ A, i.e., for each a ∈ A, ψ(x, y, a) defines the graph of a Cm-extension of Fa. �

In [9], Paw lucki also shows that his Cm-extension operator is linear. Unfortunately,
in the proof of Lemma 5.1 above, the decomposition depends on each specific Cm-
Whitney field, which results in the loss of linearity. Therefore, we finish this paper
with the following open question:

Question. Let E be a definable closed subset of Rn. Is there an R-linear map which
assigns to each F ∈ Em(E) a definable Cm-extension of F?
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