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Abstract. In 1934, H. Whitney asked how one can determine whether a real-valued

function on a closed subset of Rn is the restriction of a Cm-function on Rn. A complete

answer to this question was found much later by C. Fefferman in the early 2000s. Here, we
work in an o-minimal expansion of a real closed field and solve the C1-case of Whitney’s

Extension Problem in this context. Our main tool is a definable version of Michael’s

Selection Theorem, and we include other another applications of this theorem, to solving
linear equations in the ring of definable continuous functions.

Introduction

The long history of Whitney’s Extension Problem began in 1934, when H. Whitney presented
a series of papers [46, 47, 48]. In the first paper, Whitney’s Extension Theorem, which can
be regarded as a partial converse of Taylor’s Theorem, was proved (see Section 1 below);
it later became an important tool in differential topology (see [31]). In the the latter two
papers, Whitney answered special cases of the following question:

Question (Whitney’s Extension Problem; WEPn,m). Let f : X → R be a continuous func-
tion, where X is a closed subset of Rn. How can we determine whether f is the restriction
of a Cm-function on Rn?

An answer to this question in the case n = 1 was given in [47], and, judging from the title,
Whitney planned to solve the general case also; however, the continuation of this paper never
appeared. In 1958 G. Glaeser [20] introduced the notion of an “iterated paratangent bundle”
and used it to give an answer to the above question when n is arbitrary and m = 1. The
concept of paratangent bundles had significant influence on later work in this area. After
gradual progress on Whitney’s original question by Fefferman, Brudnyi, Shvartsman, Zobin,
and others (see, e.g., [8, 9, 10, 40, 41, 42, 51, 52]), in 2004 C. Fefferman [18] gave a complete
answer to Whitney’s Extension Problem, i.e., provided a necessary and sufficient condition
for the existence of a Cm-extension of functions defined on closed subsets of Rn.

In 1997, K. Kurdyka and W. Paw lucki [28] showed a subanalytic version of Whitney’s
Extension Theorem. Later Paw lucki together with E. Bierstone and P. Milman [4] introduced
an analogue of iterated paratangent bundles (which became an inspiration for Fefferman’s
proof of WEPn,m; see [17]) and showed that if f : X → R is a subanalytic function on a
compact subanalytic subset X of Rn which is the restriction to X of a Cm-function Rn → R,
then there is a constant r = r(X,m, n) ∈ {0, . . . ,m} (depending only on X, m, and n) and
a subanalytic Cm−r-extension Rn → R of f . Therefore, this raises the interesting question
whether we can find an extension which preserves both subanalyticity and the order of
differentiability.
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The category of subanalytic sets possesses many good topological and geometric proper-
ties, most of which are shared by the category of semialgebraic sets. (See [5, 6].) In model
theory, a source of these good properties has been isolated, and is known as o-minimality:
an o-minimal expansion R of the ordered field of real numbers is defined to be a class of
subsets of Rn (for varying n) which

(1) is closed under (finite) intersections and unions, complements, finite cartesian prod-
ucts, and linear projections;

(2) contains all algebraic subsets of Rn; and
(3) contains only those subsets of R which have finitely many connected components

(the o-minimality axiom).

The archetypical example of such an o-minimal expansion of the ordered field of real num-
bers is the class of semialgebraic sets (i.e., sets defined by finite boolean combinations of
polynomial inequalities); another example is the class of finitely subanalytic sets, i.e., the
subsets of Rn which are subanalytic when viewed as subsets of real projective n-space [15].
In recent years, many new examples of o-minimal structures have been constructed, often
by sophisticated uses of elimination theory and desingularization (see, e.g., [25, 38, 43, 49]).

Let R be an o-minimal expansion of the ordered field of real numbers. Following the usual
terminology of logicians, a set S ⊆ Rn which belongs to R is said to be definable (in R). A
map f : S → Rn, where S ⊆ Rm, is said to be definable (in R) if its graph Γ(f) ⊆ Rm+n

is. It is often routine to verify that topological and geometric constructions of a “finitary”
nature preserve definability; for example, if X ⊆ Rm is definable, then so are the closure and
the interior of X. This leads to the development of a “tame topology” [14] as envisaged by
Grothendieck’s esquisse d’un programme [21]. This is witnessed by the remarkable fact that
although the o-minimality axiom only refers to subsets of the line, the classical finiteness
theorems for semialgebraic and subanalytic sets and maps (cell decompositions, Whitney
stratifications, triangulation, trivialization, etc.) continue to hold for definable objects in R
living in higher-dimensional euclidean spaces; see, e.g., [16].

In o-minimal expansions of the ordered field R, definable versions of Whitney’s Extension
Theorem and WEPn,m can be considered. In Section 2 below we do show that WEP1,m has
a simple solution in the case of functions definable in R. In [45], the second-named author
proved a definable version of Whitney’s Extension Theorem in R; see Section 1 below. (An
alternative proof was given by Kurdyka and Paw lucki [29].) In the present paper we use
this result to treat the C1-case WEPn,1 of the Whitney Extension Problem for definable
functions; our main result is the following theorem. Given A ⊆ RN , a family (fa)a∈A of
functions fa : Xa → R (Xa ⊆ Rn) is said to be definable if the map (a, x) 7→ fa(x) : X → R
is definable, where X =

{
(a, x) ∈ RN × Rn : x ∈ Xa

}
.

Theorem. Let R be an o-minimal expansion of the ordered field of real numbers, and
let (fa)a∈RN be a definable family of functions fa : Xa → R, where Xa ⊆ Rn is closed. Then
the set A consisting of all a ∈ RN such that fa has an extension to a C1-function Rn → R
is definable. Moreover, if a ∈ A, then fa extends to a C1-function Rn → R which is defin-

able in R; in fact, there exists a definable family (f̃a)a∈A of C1-functions on Rn such that

f̃a �Xa = fa for each a ∈ A.

Thus, for example, if f : X → R is semialgebraic, where X ⊆ Rn is closed, and f extends
to a C1-function F on Rn, then F can be taken to be semialgebraic. This can be seen as
providing an answer to the C1-case of a question posed by Bierstone and Milman (see [50]).
Our proof follows the argument for WEPn,1 given by Klartag and Zobin [26], which in turn
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rests on a use of Michael’s Selection Theorem from general topology. Therefore, a study
of properties of definable set-valued maps and a definable version of this selection theorem
occupy most of this paper. (Sections 3 and 4.) In a companion paper [2] we investigate the
Michael Selection Theorem for the class of semilinear sets and maps.

It may be worthwhile to explain why we couldn’t simply mimic Glaeser’s original argu-
ment for the C1-case of Whitney’s Extension Problem in order to prove the theorem above.
First, Glaeser [20, Proposition IV of Section 5, p. 43] defines his “linearized paratangent
space ptgl1 of order 1” in a completely abstract way, simply taking the intersection of all set-
valued mappings satisfying certain properties. But there is no way to guarantee that ptgl1,
so introduced, is definable (since only intersections of definable families of sets result in de-
finable objects, and not an abstract set-theoretic intersection of this kind). Now, using ptgl1,
Glaeser then goes on to give a criterion for the existence of a C1-extension [20, p. 44]. This
criterion and the proof that it works are indeed constructive (modulo an argument in the
proof of the “Lemme” on p. 44 employing sequences, which can probably be replaced by
appeals to the Curve Selection Lemma of o-minimality [14, Chapter 6, §1]). In the following
Section 6, he then shows how to obtain ptgl1 in a constructive manner. However, justify-
ing this construction involves, among other things, a theorem of Baire on semicontinuous
functions on Baire spaces, for which Glaeser refers to Bourbaki’s book on General Topol-
ogy (p. 47). He then goes on, in the proof, to make other non-constructive twists (extracting
a subsequence from a certain convergent sequence), and another application of Baire Cate-
gory appears on p. 49. We could not see how to make Glaesers arguments constructive in
the way necessary for a truly “o-minimal proof” leading to our main result.

Let us also briefly discuss why we believe that such a proof is desirable. One says that R
is polynomially bounded if for each definable function f : R → R there is an integer N ≥ 0
such that |f(x)| ≤ xN for all sufficiently large x. In some ways, functions definable in poly-
nomially bounded o-minimal expansions of the ordered field of reals resemble real analytic
functions [34]. This may suggest the potential adaptability of classical techniques for Whit-
ney Extension Problems to the o-minimal context. However, such tools are not available
in absence of polynomial boundedness, yet there are plenty of examples of o-minimal ex-
pansions of the real field which are not polynomially bounded: by Wilkie [49] there is an
o-minimal expansion of the ordered field of reals which contains the real exponential function
x 7→ ex : R → R, and indeed, every o-minimal expansion R of the ordered field of reals is
contained in one in which the exponential function is definable [43]. (As an aside, we note
here a remarkable dichotomy discovered by Miller [33]: if R is not polynomially bounded,
then this is so because the exponential function is definable in R.)

The virtue of the argument of Klartag and Zobin is that it neatly isolates the non-
constructive input in the form of the Michael Selection Theorem; hence proving a definable
version of this theorem, which we believe to be of independent interest, became the center-
piece of our paper. To illustrate the usefulness of this definable version of Michael Selection,
we include another application:

Corollary. With R as above, let f, g1, . . . , gm : Rn → R be definable functions. If there are
continuous functions y1, . . . , ym : Rn → R such that

(∗) f = g1y1 + · · ·+ gmym,

then there are also definable continuous functions y1, . . . , ym with this property.
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See Section 6 below for a more precise statement. For the case where f, g1, . . . , gm are
given by real polynomials and R is the ordered field of real numbers (hence “definable = semi-
algebraic”), this was shown by Fefferman and Kollár [19, Corollary 29, (1)] using algebraic-
geometric techniques specific to polynomials. (Kollár and Nowak [27] showed that in this
situation, in general one cannot choose y1, . . . , ym to be continuous rational functions.) Our
approach follows the method to construct continuous solutions yi to (∗) from [19, Section 1]
using affine bundles, Glaeser refinements, and Michael’s Theorem.

In the rest of this paper, we more generally work in an o-minimal expansion R of a real
closed ordered field R (not necessarily the reals). This allows for applications of model-
theoretic compactness; see, e.g., Section 6 below or [45, Section 6]. We assume that readers
have a working knowledge of o-minimality. (See [14] or [16] for the necessary background.)
“Definable” always means “definable in R, possibly with parameters.”

Acknowledgements. The first author acknowledges support by the National Science Foun-
dation under grant DMS-0969642. The second author was supported by a Queen Sirikit
Scholarship. We thank the anonymous referee for numerous suggestions which improved the
readability of the paper.

Conventions and notations. Throughout this paper, d, k, l, m, and n will range over the
set N = {0, 1, 2, 3, . . . } of natural numbers. For a set S ⊆ Rn we denote by clS = cl(S) the
closure, by ∂S = ∂(S) := cl(S) \ S the frontier, and by intS = int(S) the interior of S. We
denote the euclidean norm on Rn by ‖ · ‖ and the associated metric by (x, y) 7→ d(x, y) :=
‖x− y‖. For r ∈ R>0 and x ∈ Rn we let

Br(x) :=
{
y ∈ Rn : d(x, y) < r

}
be the open ball of radius r around x and

Br(x) :=
{
y ∈ Rn : d(x, y) ≤ r

}
be the closed ball of radius r around x. Given x ∈ Rn, for a non-empty definable set S ⊆ Rn
let d(x, S) := infy∈S d(x, y) ∈ R≥0 be the distance between x and S, and d(x, ∅) := +∞.
For E ⊆ Rn ×Rm and x ∈ Rn, let

Ex =
{
y ∈ Rm : (x, y) ∈ E

}
.

1. Definable Whitney Extension Theorem

In this section, a definable version of Whitney’s Extension Theorem and related terminology
needed will be introduced (see [45]). We let X be a definable subset of Rn, and fix some m.
We say that f : X → R is Cm if there exists a definable Cm-function F : U → R on an
open neighborhood U of X with F �X = f . We let α = (α1, . . . , αn) range over Nn, and let

Dα = ∂α1

∂x
α1
1

· · · ∂
αn

∂xαnn
and |α| := α1 + · · ·+ αn.

Definition 1.1. A jet of order m on X is a family F = (Fα)|α|≤m of definable continuous
functions Fα : X → R. If f : U → R is a definable Cm-function on an open neighborhood U
of X, then we obtain a jet JmX (f) :=

(
(Dαf) �X

)
|α|≤m of order m on X. If F is a jet of

order m on X and X ′ ⊆ X is definable, then F �X ′ := (Fα �X ′)|α|≤m is a jet of order m
on X ′. Let F be a jet of order m on X. For every a ∈ Rn, x ∈ X, we define

Tma F (x) =
∑
|α|≤m

Fα(a)
(x− a)α

α!
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and

Rma F (x) = F − JmX (Tma F (x)).

We say that F is a definable Cm-Whitney field (F ∈ Em(X)) if for all x0 ∈ X and
|α| ≤ m,

(1) (Rmx F )α(x′) = o(‖x− x′‖m−|α|) as X 3 x, x′ → x0,

equivalently, if

|Tmx F (z)− Tmx′ F (z)| = o(‖x− z‖m + ‖x′ − z‖m) for z ∈ Rn and X 3 x, x′ → x0.

(See [30, 35].) Note that if F ∈ Em(X) and X ′ ⊆ X is definable, then F �X ′ ∈ Em(X ′).
Given a jet F of order m on X, we say that a Cm-function f : Rn → R is an extension
of F if JmX (f) = F .

The following is shown in [45]. (See also [29].)

Theorem 1.2 (Definable Whitney Extension Theorem). Suppose X is closed, and let F ∈
Em(X) and q ∈ N. Then F has a definable Cm-extension which is Cq on Rn \X.

The classical Whitney Extension Theorem is the same statement in the case where R = R,
of course without the definability requirements in both the hypothesis and conclusion; here
the Cm-extension of F can even be chosen to be analytic on Rn \X, by [47].

2. The One-dimensional Case

In his paper [47], H. Whitney introduced the concept of difference quotients and used it to
answer WEP1,m. Even though this concept is very natural, it is quite complicated to verify
the resulting conditions in practice. In this section, we show that if we work in an o-minimal
context, the answer to the definable WEP1,m becomes a lot simpler. We first establish an
estimate related to Taylor’s formula. For x, y ∈ R we denote by

[x, y] :=
{
rx+ (1− r)y : r ∈ [0, 1]

}
the line segment between x and y.

Lemma 2.1. Let f : (a, b) → R be a definable Cm-function where a, b ∈ R, a < b. As-
sume, for l ≤ m, that the lth derivative f (l) of f has an extension to a continuous function
fl : [a, b]→ R, and consider the m-jet F = (fl)l≤m on [a, b]. Let x, y ∈ [a, b] and ε > 0, and
suppose |fm(s)− fm(t)| ≤ ε for all s, t ∈ [x, y]. Then∣∣∣(Rmx F )(l)(y)

∣∣∣ ≤ ε |x− y|m−l
(m− l)!

for all l ≤ m.

Proof. Let l ≤ m. Suppose x < y, and for 0 < ε0 < y−x let xε0 := x+ 1
2ε0 and yε0 := y− 1

2ε0.
By Taylor’s Theorem (see [14, Chapter 7, Exercise (2.12)]), there exists zε0 ∈ (xε0 , yε0) such
that

f (l)(yε0) = f (m)(zε0)
(yε0 − xε0)m−l

(m− l)!
+

∑
k≤m−l−1

f (l+k)(xε0)
(yε0 − xε0)k

k!
.

By definable Skolem functions, we may assume that ε0 7→ zε0 : (0, y−x)→ [x, y] is definable,
and so by the Monotonicity Theorem, z := lim

ε0→0+
zε0 ∈ [x, y] exists. By continuity

fl(y) = fm(z)
(y − x)m−l

(m− l)!
+

∑
k≤m−l−1

fl+k(x)
(y − x)k

k!
.
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Therefore ∣∣∣(Rmx F )(l)(y)
∣∣∣ =

∣∣∣∣∣∣fl(y)−
∑

k≤m−l

fl+k(x)
(y − x)k

k!

∣∣∣∣∣∣
=

∣∣∣∣(fm(z)− fm(x))
(y − x)m−l

(m− l)!

∣∣∣∣
≤ |fm(z)− fm(x)| · |x− y|

m−l

(m− l)!

≤ ε |x− y|
m−l

(m− l)!
as claimed. Similarly one deals with the case y < x. �

Theorem 2.2. Let f : X → R be definable and continuous where X ⊆ R is closed. Suppose
f � intX is Cm and f (l) �

(
[−r, r]∩intX

)
is uniformly continuous for all l ≤ m and r ∈ R>0.

Then f is the restriction of a definable Cm-function R→ R.

Proof. If dimX = 0, then this is obvious (since then X is finite). Suppose dimX = 1. By the
Definable Whitney’s Extension Theorem (Theorem 1.2), it is enough to find a Cm-Whitney
field F = (fl)l≤m with f0 = f on X. It is enough to construct F on each definably connected
component of X, and hence we may assume that X is definably connected. (For isolated
points x ∈ X, we can simply let fl(x) = 0 for all l = 1, . . . ,m.) We also assume X = [a, b]
where a, b ∈ R, a < b. (The case where X is unbounded is similar.) Let fl : [a, b]→ R be the
continuous extension of the lth derivative f (l) of f � (a, b). Define F := (fl)l≤m. To prove
that F ∈ Em([a, b]), by Taylor’s Theorem, it is enough to only check (1) in Definition 1.1 for
x0 ∈ {a, b}. Let ε > 0 be given. Since fm is continuous on [a, b], there exists δ ∈ (0, b − a)
such that |fm(s)− fm(t)| ≤ ε for all s, t ∈ [a, a+ δ]. By Lemma 2.1, for x, y ∈ [a, a+ δ] and
l ≤ m, we have ∣∣(Rmx F )(l)(y)

∣∣
|x− y|m−l

≤ ε

(m− l)!
.

Hence (1) holds for x0 = a; similarly, (1) also holds for x0 = b. So F ∈ Em([a, b]). �

3. Continuity of Definable Set-valued Maps

The discussion of more advanced topics about WEPn,m requires an investigation of set-valued
maps; therefore, we devote this section to topological properties of definable set-valued maps.
(See [3, 24] for classical studies.)

Notation. Let X, Y be sets. We use the notation T : X ⇒ Y to denote a map T : X → 2Y ,
and call such T a set-valued map. Let T : X ⇒ Y be a set-valued map. The domain of T
is the set of x ∈ X with T (x) 6= ∅. The graph of T is the subset

Γ(T ) :=
{

(x, y) ∈ X × Y : y ∈ T (x)
}

of X × Y . Note that every map f : X → Y gives rise to a set-valued map X ⇒ Y , whose
graph is the graph of the map f .

Let T = (Tx)x∈X be a family of subsets of Rm, where X ⊆ Rn. As usual we say that T
is definable if the set

⋃
x∈X
{x} × Tx is definable. Then T gives rise to a set-valued map

T : X ⇒ Rm given by T (x) := Tx for x ∈ X. A set-valued map X ⇒ Rm (X ⊆ Rn) which
arises in this way from a definable family of subsets of Rm is said to be definable.
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In the rest of this section, we fix a definable set-valued map T : X ⇒ Rm (X ⊆ Rn).

Definition 3.1. We say that

(1) T is lower semicontinuous (l.s.c.) if, for every x ∈ X, y ∈ T (x), and neigh-
borhood V of y, there is a neighborhood U of x such that T (x′) ∩ V 6= ∅ for all
x′ ∈ U ∩X;

(2) T is upper semicontinuous (u.s.c.) or closed if Γ(T ) is closed in X ×Rm, that
is: for every x ∈ X, y ∈ Rm \ T (x), there are neighborhoods U of x and V of y such
that T (x′) ∩ V = ∅ for all x′ ∈ U ∩X;

(3) T is continuous if T is both l.s.c. and u.s.c.

What we call lower semicontinuous (upper semicontinuous) is sometimes called “inner
semicontinuous” (respectively “outer semicontinuous”), for example in [13, 37]. In [3], “upper
semicontinuous” is reserved for a slightly more restrictive concept (which can be shown to
agree with ours if

⋃
x∈X T (x) is bounded; cf. [3, Proposition 1.4.8]); we prefer the terminology

“closed.”

Remarks.

(1) A definable map X → Rm is continuous in the usual sense iff it is continuous in the
sense of the previous definition, when viewed as a set-valued map X ⇒ Rm.

(2) If T is closed, then T (x) is closed for every x ∈ X (but of course, the converse of
this implication fails).

(3) If f : X ′ → X is a definable continuous map, where X ′ ⊆ Rn′ , and T is l.s.c. (closed),
then T ◦ f is l.s.c. (closed, respectively). In particular, if X ′ is a definable subset
of X, and T is l.s.c. (closed), then T �X ′ is l.s.c. (closed, respectively).

(4) Suppose X = X1 ∪X2 where X1, X2 are definable subsets of X with cl(X1)∩X2 =
X1 ∩ cl(X2) = ∅. If T �X1 and T �X2 are l.s.c. (u.s.c., respectively), then so is T .

Figure 1. A lower semicontinuous set-valued map (left); a closed set-valued
map (right).

One powerful consequence of the o-minimality axiom is the Cell Decomposition Theorem,
which implies that every definable continuous map is piecewise continuous. The main goal
in this section is to show an analogue for set-valued maps. We let π : X × Rn → X denote
the natural projection onto X. First, we show that T is piecewise l.s.c.:

Lemma 3.2. There is a finite partition C of X into definable sets such that T �C is l.s.c.,
for every C ∈ C .

Proof. We prove this lemma by induction on d = dimX. If d = 0, then X is a finite set; so
this case is trivial. Assume the lemma holds for all definable set-valued maps whose domain
has dimension < d. By the Cell Decomposition Theorem, take a cell decomposition D of
Rn compatible with X. The induction hypothesis applies to T �D for each D ∈ D with
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dimD < d; hence we may assume that X is a cell. Moreover, we may also assume that X
is an open cell in Rd, since every cell of dimension d is definably homeomorphic to an open
cell in Rd. Let

K =

{
(x, y) ∈ X ×Rn : y ∈ T (x) and

(∃ε > 0) (∀δ > 0) (∃x′ ∈ Bδ(x) ∩X) (∀y′ ∈ T (x′)) ‖y − y′‖ > ε

}
be the set of witnesses of lower semi-discontinuity of T . Obviously, T �

(
X \ π(K)

)
is l.s.c.

Thus it remains to show the following claim:

Claim. dim(π(K)) < d.

Suppose not. Then π(K) has non-empty interior. By definable Skolem functions and
the Cell Decomposition Theorem, we may assume that there is a definable continuous map
f : U → Rm, where U ⊆ Rd is open, such that Γ(f) ⊆ K. Let

(
x, f(x)

)
∈ K. Then there

exists ε > 0 such that, for every δ > 0, there is x′ ∈ Bδ(x)∩U with ‖f(x)− f(x′)‖ > ε. This
contradicts the continuity of f at x. �

Next we show that if T has closed values, then T is also piecewise closed:

Lemma 3.3. Suppose that T (x) is closed, for every x ∈ X. There is a finite partition C
of X into definable sets such that T �C is closed, for every C ∈ C .

Proof. Similarly to the proof of Lemma 3.2, we show this by induction on d = dimX. The
case d = 0 is obvious. Suppose the statement holds true for definable set-valued maps with
closed values whose domain has dimension < d. The induction hypothesis, the Cell Decom-
position Theorem, and a similar argument as in the beginning of the proof of Lemma 3.2,
allow us to reduce to the case that X is an open cell. Let S := Γ(T ) and K := π(∂S). It
is sufficient to show that dimK < d. Assume dimK = d. By definable Skolem functions
and the Cell Decomposition Theorem, there exist a non-empty definable bounded open set
V ⊆ clV ⊆ K and a definable continuous function f : clV → Rm such that Γ(f) ⊆ ∂S. For
each x ∈ clV we have d

(
f(x), T (x)

)
> 0, because T (x) is closed. After shrinking V suitably,

we may assume that the function x 7→ d
(
f(x), T (x)

)
: clV → R>0 is continuous. Since clV

is closed and bounded, there is ∆ > 0 such that

d
(
f(x), T (x)

)
> ∆ for all x ∈ clV .

Pick x0 ∈ V and δ0 > 0 such that Bδ0(x0) ⊆ V . By continuity of f , take 0 < δ < δ0 such
that

‖f(x0)− f(x)‖ < ∆

3
for every x ∈ Bδ0(x0).

So, ‖f(x)− f(x′)‖ < 2∆
3 for all x, x′ ∈ Bδ(x0). Hence,

d
(
(x, f(x)), {x′} × T (x′)

)
≥ d
(
f(x), T (x′)

)
≥ d
(
f(x′), T (x′)

)
−
∥∥(f(x), f(x′)

)∥∥
> ∆− 2∆

3
=

∆

3

for x, x′ ∈ Bδ(x0). Thus,

d
(
Γ(f �Bδ(x0)),Γ(T �Bδ(x0))

)
>

∆

3
,
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and so,
(x0, f(x0)) ∈ (Bδ(x0)×Rm) ∩B∆

3
(x0, f(x0)) ⊆ (X ×Rm) \ S,

which contradicts (x0, f(x0)) ∈ ∂S. �

Lemmas 3.2 and 3.3 in combination with the Cell Decomposition Theorem immediately
yield the following theorem:

Theorem 3.4. Suppose T (x) is closed, for every x ∈ X. Then there is a cell decomposi-
tion C of Rn compatible with X such that T �C is continuous, for every C ∈ C .

Remark. A version of Theorem 3.4 in the case where R is the ordered field of real numbers was
shown in [13], with a longer proof. (See the “main result,” Theorem 32, and its Corollary 33,
in [13].)

4. Definable Michael’s Selection Theorem

In this section we treat a definable version of the well-known Michael Selection Theorem [32]
for set-valued maps. The classical version of this theorem plays a crucial role in the approach
to solving WEPn,1 by Klartag and Zobin [26]. Classically, this theorem is shown by a
non-constructive iterative procedure; see [3, Section 9.1] or [23, 24] for expositions. By
definable Skolem functions, every definable set-valued map T : X ⇒ Rm with domain X has
a definable selection, i.e., a definable map f : X → Rm such that Γ(f) ⊆ Γ(T ); here, we
prove a strengthening of this fact under suitable additional hypotheses on T :

Theorem 4.1 (Definable Michael’s Selection Theorem). Let X be a closed subset of Rn and
T : X ⇒ Rm be a definable l.s.c. set-valued map such that T (x) is non-empty, closed, and
convex for every x ∈ X. Then T has a continuous definable selection.

In the proof, we use:

Lemma 4.2. Let T : R⇒ Rm be a definable set-valued map with domain (0, 1). Let (0, y) ∈
cl
(
Γ(T )

)
. Then there is a definable continuous f : (0, ε) → Rm, for some ε > 0, such that

f(t) ∈ T (t) for all t ∈ (0, ε) and lim
t→0+

f(t) = y.

Proof. By Definable Curve Selection [14, Chapter 6, §1], there is a definable continuous
injective path γ : (0, ε0) → Γ(T ), where ε0 ∈ R>0, such that lim

s→0+
γ(s) = (0, y). We may

assume that γ−1 is also continuous. Let P = γ
(
(0, ε0)

)
⊆ R × Rm; clearly, dimP = 1. Let

π : R×Rm → R be the projection onto the first coordinate; then there are only finitely many
t ∈ π(P ) with dim(Pt) = 1. After making ε0 smaller, we may assume that dim(Pt) = 0 for
every t ∈ π(P ). It is sufficient to show that there is an ε > 0 such that if 0 < t < ε, then
|Pt| = 1. Suppose not. By definable Skolem functions, there exist ε1 > 0 and definable
continuous maps g1, g2 : (0, ε1] → Rm such that Γ(gi) ⊆ P for i = 1, 2 and g1(t) 6= g2(t)
for every t ∈ (0, ε1]. Since lim

s→0+
γ(s) = (0, y), the functions g1, g2 are bounded; and thus

lim
t→0+

gi(t) exist for i = 1, 2. Since γ−1 is a continuous injective definable map and Γ(g1),

Γ(g2) are definably connected, I1 := γ−1
(
Γ(g1)

)
and I2 := γ−1

(
Γ(g2)

)
are disjoint definably

connected subsets of (0, ε0). Pick an i ∈ {1, 2} such that 0 /∈ cl(Ii). Then Ii = [a, ε0) where
0 < a < ε0 or Ii = (a, b] where 0 < a < b < ε0. By continuity of γ−1, in the first case

we have γ(a) =

(
0, lim
t→0+

gi(t)

)
, and in the second case γ(b) =

(
0, lim
t→0+

gi(t)

)
. Obviously,(

0, lim
t→0+

gi(t)

)
/∈ Γ(T ) (since the domain of T is (0, 1)), but both γ(a) and γ(b) are in Γ(T ),

a contradiction. �
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Proof of Theorem 4.1. We proceed by induction on d = dimX. If d = 0, then X is
a finite set and the statement is obvious. Suppose the theorem holds for all set-valued
maps satisfying the hypotheses, on a domain of dimension < d. Let X ′ := cl{x ∈ X :
T is not continuous at x}. By Theorem 3.4, X ′ is a definable closed subset of X, dimX ′ <
dimX and T � (X \X ′) is continuous. Therefore, by induction hypothesis, we can take a de-
finable continuous selection f : X ′ → Rm of T �X ′. Since X ′ is closed, by the definable Tietze
Extension Theorem (see, e.g., [1, Section 6.2]), we can further take a definable continuous
map g : Rn → Rm such that g �X ′ = f . Since T (x) is closed and convex, for each y′ ∈ Rn
there is a unique y ∈ T (x) with d(y′, y) = d

(
y′, T (x)

)
. (See, e.g., [1, Lemma 2.12].) De-

fine F : X → Rm by

F (x) = the unique y ∈ T (x) such that d
(
g(x), y

)
= d
(
g(x), T (x)

)
.

To finish the proof, it remains to show that F is continuous. Let x0 ∈ X and γ : (0, 1)→ X
such that lim

t→0+
γ(t) = x0; we need to show that lim

t→0+
F
(
γ(t)

)
= F (x0).

Claim. Let ε > 0. Then

‖g(x0)− F (γ(t))‖ ≤ ‖g(x0)− F (x0)‖+ ε as t→ 0+.

Proof of claim. Since T is l.s.c., by Lemma 4.2, after replacing γ by a suitable repara-
metrization of γ � (0, ε0), for some ε0 ∈ (0, 1), we obtain a definable continuous function
h : γ

(
(0, 1)

)
→ Rm such that h

(
γ(t)

)
∈ T

(
γ(t)

)
for t ∈ (0, 1) and lim

t→0+
h
(
γ(t)

)
= F (x0). By

continuity of g at x0, take δ > 0 such that for all x1 ∈ Rn with ‖x1 − x0‖ < δ, we have
‖g(x1)−g(x0)‖ < 1

3ε. Let then t0 ∈ (0, 1) be such that for 0 < t ≤ t0 we have ‖γ(t)−x0‖ < δ

and
∥∥h(γ(t)

)
− F (x0)

∥∥ < 1
3ε. By the definition of F ,∥∥F (γ(t)

)
− g
(
γ(t)

)∥∥ ≤ ∥∥h(γ(t)
)
− g
(
γ(t)

)∥∥ for all t ∈ (0, 1).

Moreover, for 0 < t ≤ t0 we have∥∥h(γ(t)
)
− g
(
γ(t)

)∥∥ ≤ ∥∥h(γ(t)
)
− F (x0)

∥∥+ ‖F (x0)− g(x0)‖+
∥∥g(x0)− g

(
γ(t)

)∥∥
≤ 1

3ε+ ‖F (x0)− g(x0)‖+ 1
3ε

= ‖g(x0)− F (x0)‖+ 2
3ε

and hence ∥∥g(x0)− F
(
γ(t)

)∥∥ ≤ ∥∥g(x0)− g
(
γ(t)

)∥∥+
∥∥g(γ(t)

)
− F

(
γ(t)

)∥∥
≤ 1

3ε+
∥∥h(γ(t)

)
− g
(
γ(t)

)∥∥
≤ 1

3ε+ ‖g(x0)− F (x0)‖+ 2
3ε

= ‖g(x0)− F (x0)‖+ ε

as required. �

Hence y0 = lim
t→0+

F
(
γ(t)

)
exists in Rm, and ‖g(x0)− y0‖ ≤ ‖g(x0)− F (x0)‖ + ε for

every ε > 0; that is, ‖g(x0)− y0‖ ≤ ‖g(x0)− F (x0)‖. Thus if x0 ∈ X ′, then F (x0) = g(x0)
and hence y0 = g(x0) = F (x0). Now suppose x0 ∈ X\X ′. Then by closedness of T � (X\X ′),
we have y0 ∈ T (x0), so by definition of F we obtain y0 = F (x0). Therefore F is continuous
at x0. �

We do not know whether Theorem 4.1 continues to hold if R is merely assumed to be
definably complete (i.e., every non-empty bounded definable subset of R has a supremum
in R).
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Corollary 4.3. Let T be as in the previous theorem, and let X0 ⊆ X be definable and
closed. Then every continuous definable selection of T �X0 extends to a continuous definable
selection of T . In particular, given distinct x1, . . . , xN ∈ X and yi ∈ T (xi) for i = 1, . . . , N ,
there exists a continuous definable selection f of T with f(xi) = yi for i = 1, . . . , N .

Proof. Let f0 : X0 → Rm be a continuous definable selection of T �X0. Let T0 : X ⇒ Rm be
a set-valued map given by

T0(x) =

{
T (x) if x ∈ X \X0,{
f0(x)

}
if x ∈ X0.

It is easy to verify that T0 is l.s.c. Now apply Theorem 4.1 to T0. �

Remark. The closedness of X0 in the above corollary is necessary. Consider X0 = (0,+∞)
and T : R ⇒ R where T (x) = R for every x ∈ R. Then x 7→ 1

x : (0,+∞)→ R is a continuous
selection of T �X0 without continuous extension.

Let Hm denote the set of closed bounded non-empty convex definable subsets of Rm.
Equip Hm with the Hausdorff metric dH : for A,B ∈ Hm set

dH(A,B) := sup
({
d(y,A) : y ∈ B

}
∪
{
d(y,B) : y ∈ A

})
.

Every map X → Hm is a set-valued map X ⇒ Rm, and so it makes sense to talk about
definable maps X → Hm. From Theorem 4.1 we immediately obtain:

Corollary 4.4. Every continuous definable map X → Hm, where X ⊆ Rn is closed, has a
continuous definable selection.

It is well-known that for R = R, every Lipschitz map X → Hm, where X ⊆ Rn, has
a Lipschitz selection. See, e.g., [3, Theorem 9.4]; the construction given there uses Steiner
points (and hence integration). We do not know whether a definable Lipschitz map X → Hm

always has a definable Lipschitz selection.

We finish this section with another standard application of Michael’s Selection Theorem,
about approximating possibly discontinuous maps by continuous ones (cf. [12, Section 7.2]).
For a definable map f : X → Rm, where X ⊆ Rn, we set

||f || := sup
{
||f(x)|| : x ∈ X

}
∈ R≥0 ∪ {+∞}.

Corollary 4.5. Let f, g : X → Rm be definable, where X ⊆ Rn is closed, and suppose f is
continuous and g is bounded. Then for each ε > 0 there exists a continuous definable and
bounded g : X → Rm with ||f − g|| ≤ ||f − g||+ ε.

Proof. Note that if ||f −g|| =∞, then we can take g = 0. Therefore from now on we assume
that ||f − g|| < ∞ (so f is also bounded). Take r > 0 such that g(X) ⊆ Br(0), and let
λ := ||f − g||+ ε. For x ∈ X define

T (x) :=
{
y ∈ Br(0) : ||f(x)− y|| ≤ λ

}
.

Then T (x) 6= ∅ since g(x) ∈ T (x), and T (x) is closed and convex. By Theorem 4.1, it remains
to show that T is l.s.c. Let x ∈ X, y ∈ T (x), and V ⊆ Rm be an open neighborhood of y.
Thus ||f(x)− y|| ≤ λ. Since ||f(x)− g(x)|| < λ, by considering the line segment between y
and g(x), we see that we may take some y′ ∈ V with ||f(x)− y′|| < λ. Since f is continuous
at x, we now let U be an open neighborhood of x such that ||f(x′)−f(x)|| < λ−||f(x)−y′||
for all x′ ∈ U ∩ X. Thus ||f(x′) − y′|| < λ for all x′ ∈ U ∩ X, i.e., y′ ∈ T (x′) ∩ V for all
x′ ∈ U ∩X. �
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In addition, by [44, Corollary 1.2], one can achieve differentiability of the approximation
up to some fixed finite order.

Corollary 4.6. Let f, g : X → Rm be definable, where X ⊆ Rn is closed, and suppose f is
continuous and g is bounded. Then for each m > 0 and ε > 0 there exists a Cm, definable
and bounded g : X → Rm with ||f − g|| ≤ ||f − g||+ ε.

5. Affine Bundles

In this section, following [18], we introduce affine bundles and Glaeser refinements and es-
tablish basic facts about them used later. The proofs are routine adaptations of those given
in [26] and are only included for the convenience of the reader. Throughout this section
we let X denote a subset of Rn. For notational simplicity, from now on we often denote a
set-valued map and its graph by the same letter. A set-valued map H : X ⇒ Rm such that
for each x ∈ X, H(x) is empty or an affine subspace of Rm, is called an affine bundle
on X. In the rest of this section, we let H : X ⇒ Rm be an affine bundle on X. Define the
Glaeser refinement H ′ of H by

H ′(x0) :=
{
y0 ∈ H(x0) : d

(
y0, H(x)

)
→ 0 as x→ x0 in X

}
for x0 ∈ X.

That is, (x0, y0) ∈ H is in H ′ iff for every ε > 0 there is some δ > 0 such that for every
x ∈ X ∩Bδ(x0), there is y ∈ H(x) such that ||y0 − y|| < ε. Clearly if H is definable, then so
is H ′. Since H ′ ⊆ H, every selection (continuous or not) of H ′ is a selection of H; conversely,
each continuous selection of H is also a selection of H ′. Moreover:

Proposition 5.1. The Glaeser refinement H ′ of H is an affine bundle on X.

Proof. Let p0 ∈ H ′(x0). To prove that H ′(x0) is an affine subspace of Rm, let q0, r0 ∈ H ′(x0),
a, b ∈ R. It suffices to show that y0 := a(q0 − p0) + b(r0 − p0) + p0 ∈ H ′(x0). Let ε > 0, and
take δ > 0 such that for all x1 ∈ X ∩Bδ(x0), there exist p1, q1, r1 ∈ H(x1) such that

||p0 − p1||, ||q0 − q1||, ||r0 − r1|| <
ε

3(|a|+ |b|+ 1)
.

For such x1 ∈ X ∩Bδ(x0) and p1, q1, r1, we have y1 := a(q1 − p1) + b(r1 − p1) + p1 ∈ H(x1)
and ||y0 − y1|| < ε. Thus y0 ∈ H ′(x0). �

We say that H is stable under Glaeser refinement if H ′ = H. Clearly if H is stable
under Glaeser refinement, then H is l.s.c.

Lemma 5.2. Let x0 ∈ X. Then

dimH ′(x0) ≤ lim inf
X3x→x0

dimH(x).

Proof. We may assume H ′(x0) 6= ∅. Let d = dimH ′(x0) and p0, . . . , pd ∈ H ′(x0) be such
that p1 − p0, . . . , pd − p0 are R-linearly independent. Let ε > 0. By definition of H ′, there
exists some δ > 0 such that for all x ∈ Bδ(x0) we obtain q0, . . . , qd ∈ H(x) with ‖pi−qi‖ < ε;
for sufficiently small ε, q1 − q0, . . . , qd − q0 are R-linearly independent, so dimH(x) ≥ d. �

Starting with an affine bundle H0 = H : X ⇒ Rm on X, we inductively define a se-
quence (H(l))l∈N of affine bundles on X by setting H(l+1) := (H(l))′ for each l ∈ N. The
previous lemma has a remarkable consequence:

Lemma 5.3. Let x0 ∈ X be such that H(x0) 6= ∅. Then

dimH(2k+1)(x0) ≥ m− k =⇒ H(l)(x0) = H(2k+1)(x0) for all l ≥ 2k + 1.
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Proof. We proceed by induction on k. If k = 0, then the implication asserts that if H ′(x0) =
H(x0), then H(l)(x0) = H ′(x0) for all l ≥ 1. Now if H ′(x0) = H(x0), then H(x) = H(x0) for
all x ∈ X in a neighborhood of x0, by the previous lemma, and hence H(l)(x) = H(x0) for all
x ∈ X in a neighborhood of x0 and all l ≥ 1. For the induction step, assume the implication
holds for a certain value of k. Suppose dimH(2k+3)(x0) ≥ m− k − 1. If dimH(2k+1)(x0) ≥
m − k, then by inductive hypothesis we obtain H(l)(x0) = H(2k+1)(x0) = H(2k+3)(x0) for
every l ≥ 2k + 1. Assume dimH(2k+1)(x0) ≤ m− k − 1. Then

dimH(2k+1)(x0) ≤ m− k − 1 ≤ dimH(2k+3)(x0) ≤ dimH(2k+1)(x0)

and so

dimH(2k+1)(x0) = dimH(2k+2)(x0) = dimH(2k+3)(x0) = m− k − 1.

By Lemma 5.2, dimH(2k+1)(x) ≥ m− k − 1 for all x ∈ X in a neighborhood of x0.

Claim. H(2k+1)(x) = H(2k+2)(x) for all x ∈ X in a neighborhood of x0.

Proof of claim. Suppose not. Then, for every δ > 0, there is x ∈ Bδ(x0) ∩X with

dimH(2k+1)(x) > dimH(2k+2)(x), i.e., dimH(2k+2)(x) ≤ m− k − 2.

By Lemma 5.2 again,

m− k − 1 = dimH(2k+3)(x0) ≤ lim inf
x→x0

dimH(2k+2)(x) ≤ m− k − 2,

a contradiction. �

By the above claim, for l ≥ 2k + 3, there exists δ > 0 (depending on l) such that
H(l)(x) = H(2k+3)(x) for all x ∈ Bδ(x0) ∩X. �

If H(x) 6= ∅ for some x ∈ X, we put l∗ := 2m + 1; otherwise put l∗ := 0. With these
notations, by the preceding lemma we have:

Corollary 5.4. H(l) = H(l∗) for l ≥ l∗.

Hence the sequence
(
H(l)

)
l∈N of affine bundles on X constructed from H(0) = H as above

by iterated Glaeser refinements eventually stabilizes: H(2m+1) = H(2m+2) = · · · . We let
H(∗) := H(2m+1) be the eventual value of this sequence. Thus H(∗) is an affine bundle on X
which is stable under Glaeser refinement, and hence l.s.c. The definable Michael Selection
Theorem (Theorem 4.1) now yields:

Corollary 5.5. Suppose H is definable. Then H has a continuous selection iff H(∗)(x) 6= ∅
for all x ∈ X, and in this case, H even has a definable continuous selection.

6. Linear Equations in Continuous Functions

In this section we give an application of Corollary 5.5; the material in this section is not
used later in the paper. Let f, g1, . . . , gm be definable maps X → Rk, where X ⊆ Rn. We
consider the linear equation

(∗) f = g1y1 + · · ·+ gmym

in unknown continuous functions y1, . . . , ym : X → R.

Theorem 6.1. If there are continuous functions y1, . . . , ym : X → R solving (∗), then there
are also definable continuous functions y1, . . . , ym with this property.
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This follows immediately from Corollary 5.5 above, applied to the definable affine bun-
dle H : X ⇒ Rm on X given by

H(x) :=
{

(y1, . . . , ym) ∈ Rm : f(x) = g1(x)y1 + · · ·+ gm(x)ym
}

for x ∈ X.

In fact we have a version of this theorem for definable families:

Corollary 6.2. Let (fa)a∈RN and (gi,a)a∈RN (i = 1, . . . ,m) be definable families of maps
fa, g1,a, . . . , gk,a : Xa → Rk (Xa ⊆ Rn). Then the set A ⊆ RN given by

a ∈ A ⇐⇒
{

there are continuous maps y1, . . . , ym : Xa → Rk

such that fa = g1,ay1 + · · ·+ gm,aym

is definable. Moreover, there are definable families (yi,a)a∈A of continuous maps

yi,a : Xa → Rk (i = 1, . . . ,m)

such that for all a ∈ A, we have fa = g1,ay1,a + · · ·+ gm,aym,a.

The definability of A follows by noting that H(∗) is defined uniformly in f, g1, . . . , gm. The
rest is a routine application of the Compactness Theorem of first-order logic (see, e.g., [45,
Section 6] for a similar argument). Indeed, let L be the language of R, assumed to include
a name for each element of R, so that every definable set in R is definable by an L-formula.
Let α(x) be an L-formula defining A in R. For each m-tuple ψ = (ψ1, . . . , ψm) of formulas
ψi(x, y, z), where the lengths of x, y, and z are n, k, and N , respectively, let χψ(z) be a
formula such that, for each a ∈ RN , χψ(a) holds in R precisely when ψi(x, y, a) defines the
graph of a continuous map yi : Xa → Rk (i = 1, . . . ,m) such that fa = g1,ay1 + · · ·+gm,aym.
Next, add N fresh constants c1, . . . , cN to L and call the resulting language L′. For notational
convenience, write c = (c1, . . . , cN ). By our main theorem, the L′-theory

Th(R) ∪
{
α(c)

}
∪
{
¬χψ(c) : ψ = (ψ1, . . . , ψm) is a tuple of L-formulas ψi = ψi(x, y, z)

}
is inconsistent. Therefore, by the Compactness Theorem, there are m-tuples

ψ1(x, y, z), . . . , ψM (x, y, z)

of formulas such that, for each a ∈ A, one of the tuples ψi(x, y, a) defines the graphs of
continuous maps y1, . . . , ym : Xa → Rk such that fa = g1,ay1 + · · · + gm,aym. We can
now easily construct a single m-tuple of formulas ψ(x, y, z) which works for every a ∈ A,
i.e., for each a ∈ A, the components of ψ(x, y, a) define the graphs of continuous maps
y1, . . . , ym : Xa → Rk with fa = g1,ay1 + · · ·+ gm,aym.

We finish this section with a special case of the corollary above.

Corollary 6.3. Let f(C,X), g1(C,X), . . . , gm(C,X) ∈ R[C,X] where C = (C1, . . . , CN ),
X = (X1, . . . , Xn) are disjoint tuples of distinct indeterminates. Then the set A consisting
of all c ∈ RN such that there are continuous functions y1, . . . , ym : Rn → R such that

f(c, x) = g1(c, x)y1(x) + · · ·+ gm(c, x)ym(x) for all x ∈ Rn

is semialgebraic. Moreover, there are semialgebraic functions y1, . . . , ym : RN×Rn → R such
that for all c ∈ A and i = 1, . . . ,m, the function yi(c,−) : Rn → R is continuous and

f(c, x) = g1(c, x)y1(c, x) + · · ·+ gm(c, x)ym(c, x) for all x ∈ Rn.

Theorem 6.1 remains true for finite systems of linear equations instead of a single equa-
tion (∗). It is natural to wonder whether Theorem 6.1 also has an analogue for homogeneous



WHITNEY’S EXTENSION PROBLEM IN O-MINIMAL STRUCTURES 15

equations. Let X ⊆ Rn be definable, let C(X) denote the R-algebra of continuous func-
tions X → R, and let C(X)def be its subalgebra consisting of the definable continuous
functions X → R. The m-tuples (y1, . . . , ym) ∈ C(X)m satisfying

g1y1 + · · ·+ gmym = 0

form a C(X)-submodule M of C(X)m. Is the C(X)-module M generated by M ∩C(X)mdef?
In algebraic terms, Theorem 6.1 says that C(X)def is pure in C(X) (viewed as a C(X)def -

module in the natural way). A positive answer to the question above would complement this
by saying that C(X) is a flat (and hence, by faithfully flat) C(X)def -module. However, this
question has a negative answer, as was pointed out to us by C. Fefferman: For this, let R
be the ordered field of real numbers (so “definable” = “semialgebraic”) and X = R2, and
consider the homogeneous equation

g1y1 + g2y2 = 0 where g1(x, y) = x2 + y2, g2(x, y) = xy for x, y ∈ R.

Then M is isomorphic to the maximal ideal

m :=
{
f ∈ C(R2) : f(0) = 0

}
of C(R2), the isomorphism being given by (y1, y2) 7→ y2. However, m is not generated by
mdef := m ∩C(R2)def , due to the asymptotics of semialgebraic functions. (For example, the
function h ∈ C(R2) given by h(x, y) = 1/ log x if x > 0 and h(x, y) = 0 if x ≤ 0 is easily seen
to not to belong to the ideal of C(R2) generated by mdef .)

Another attempt to generalize Theorem 6.1 involves the model theory of modules, and
for the rest of this section we assume that the reader is familiar with the basics of this
theory; see, for example, [22, Appendix A.1]. We view C(X) and C(X)def as structures in
the language of C(X)def -modules in the natural way.

Question. Are C(X) and C(X)def elementarily equivalent?

By [39] and Theorem 6.1, a positive answer to this question would imply that C(X)def is
an elementary substructure of C(X). Answering this question amounts to showing that all
Baur-Monk invariants Inv(φ, ψ,−) of C(X) and C(X)def agree. Since C(X)def contains an
infinite subfield, each of these invariants is either 1 or ∞. Moreover, Inv(φ, ψ,C(X)def) ≤
Inv(φ, ψ,C(X)) since C(X)def is pure in C(X). Hence the question above has a positive an-
swer if Inv(φ, ψ,C(X)) > 1⇒ Inv(φ, ψ,C(X)def) > 1, for all positive primitive formulas φ, ψ
in a single free variable y. Here is the simplest non-trivial instance of this question:

Question. Let a1, . . . , ak, b1, . . . , bl, f, g ∈ C(X)def . Suppose some y ∈ C(X) satisfies

fy = a1y1 + · · ·+ akyk for some y1, . . . , yk ∈ C(X), and

gy 6= b1z1 + · · ·+ blzl for all z1, . . . , zl ∈ C(X).

Is there some y ∈ C(X)def satisfying the same conditions?

We do not know the answer to this question. If l = 0 (so the second condition reads
“gy 6= 0”), then the answer is yes, since given a continuous solution y we can simply pick a
point x0 ∈ X where g(x0)y(x0) is nonzero, consider the affine bundle

H(x) =
{

(y0, . . . , yk) : f(x)y0 = a1(x)y1 + · · ·+ ak(x)yk, and if x = x0, then y0 = y(x0)
}

and proceed as in the proof of Theorem 6.1. See [36] for a description of the Baur-Monk
invariants Inv(φ, ψ,C(X)def) in the case when X has dimension 1.
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7. C1-Whitney’s Extension Problem

In this section, we follow the idea given in [26] to solve WEPn,1. Throughout this section,
we fix a definable closed subset X of Rn and a definable continuous function f : X → R.

Definition 7.1. We say that a definable affine bundle H : X ⇒ R×Rn on X is a holding
space for f if whenever F ∈ C1(Rn) is definable with F = f on X, then{(

x, F (x),
∂F

∂x1
(x), . . . ,

∂F

∂xn
(x)

)
: x ∈ X

}
⊆ H.

We can think of a holding space for f as a collection of potential Taylor polynomials of
extensions of f to a C1-function U → R on a neighborhood U of X: Let Pn be the R-vector
space of linear polynomials in n indeterminates with coefficients from R. For a fixed x0 ∈ X,
there is a one-to-one correspondence between R×Rn and Pn given by

(a, u)←→ p(a, u)(x) = a+ 〈u, x− x0〉.
Therefore, we may also think of H ⊆ X × (R×Rn) as a subset of X ×Pn.

Obviously,
H0 :=

{
(x, f(x), u) ∈ X ×R×Rn : x ∈ X, u ∈ Rn

}
is a holding space for f . We call H0 the trivial holding space for f . Clearly H0 contains
every holding space for f , and dimH0(x) = n for each x ∈ X.

Holding spaces usually contain too much information; for example, consider the trivial
holding space for f . In order to cut down on the insignificant information, C1-Glaeser
refinements are introduced:

Definition 7.2. Let H ⊆ X ×Pn. The C1-Glaeser refinement H̃ of H is defined as
follows: we let (x0, p0) ∈ H̃ if and only if (x0, p0) ∈ H, and for every ε > 0 there exists δ > 0
such that for all x1, x2 ∈ X ∩Bδ(x0), there exist p1 ∈ H(x1) and p2 ∈ H(x2) satisfying the
following inequalities (with the convention 00 = 0):

(2) |Dα(pi − pj)(xi)| ≤ ε ‖xi − xj‖1−|α| for i, j = 0, 1, 2 and α with |α| ≤ 1.

That is, (x0, p0) ∈ H with p0 = (a0, u0) is in H̃ if and only if for every ε > 0 there exists
δ > 0 such that for all x1, x2 ∈ X ∩ Bδ(x0), there are pi = (ai, ui) ∈ H(xi), i = 1, 2, such
that {

|ai + 〈ui, xj − xi〉 − aj | ≤ ε‖xi − xj‖,
||ui − uj || ≤ ε,

for i, j = 0, 1, 2.

Note that H̃ ⊆ H, and if H is definable, then so is H̃. Here is how H̃ relates to the notion
of Glaeser refinement H ′ of H introduced in the previous section:

Proposition 7.3. Suppose H ⊆ H0. Then H̃ ⊆ H ′.

Proof. Let
(
x0, f(x0), u0

)
∈ H̃ and ε > 0 be given. By continuity of f and the definition of H̃,

there is δ > 0 such that for every x1 ∈ Bδ(x0) ∩X there exists
(
f(x1), u1

)
∈ H(x1) where

|f(x1)− f(x0)| < ε/
√

2 and ‖u1 − u0‖ < ε/
√

2. Therefore,
∥∥(f(x1), u1

)
−
(
f(x0), u0

)∥∥ < ε.

Thus
(
x0, f(x0), u0

)
∈ H ′. �

We say that H ⊆ X ×Pn is stable under C1-Glaeser refinement if H̃ = H. By
Proposition 7.3, if H is a holding space for f which is stable under C1-Glaeser refinement,

then H = H ′ = H̃ is l.s.c.
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Proposition 7.4. Let H : X ⇒ Pn be an affine bundle on X. Then H̃ : X ⇒ Pn is an
affine bundle on X.

Proof. Let p0 ∈ H̃(x0). To prove that H̃(x0) is affine, let q0, r0 ∈ H̃(x0), a, b ∈ R. It is

enough to show that a(q0 − p0) + b(r0 − p0) ∈ H̃(x0) − p0. Let ε > 0, and take δ > 0 such
that for all x1, x2 ∈ X ∩Bδ(x0), there exist p1, q1, r1 ∈ H(x1) and p2, q2, r2 ∈ H(x2) with

|Dα(pi − pj)(xi)| ≤
ε

2(|a|+ |b|+ 1)
‖xi − xj‖1−|α| ,

|Dα(qi − qj)(xi)| ≤
ε

2(|a|+ |b|+ 1)
‖xi − xj‖1−|α| ,

|Dα(ri − rj)(xi)| ≤
ε

2(|a|+ |b|+ 1)
‖xi − xj‖1−|α|

for i, j = 0, 1, 2 and α with |α| ≤ 1. Let x1, x2 ∈ X ∩Bδ(x0), and fix such witnesses p1, q1, r1

and p2, q2, r2. Then a(qi − pi) + b(ri − pi) ∈ H(xi)− pi for i = 1, 2. Hence∣∣Dα
[
(a(qi − pi) + b(ri − pi) + pi)− (a(qj − pj) + b(rj − pj) + pj)

]
(xi)

∣∣
≤
∣∣Dα

[
(a+ b+ 1)(pi − pj)

]
(xi)

∣∣+ |Dα(a(qi − qj))(xi)|+ |Dα(b(ri − rj))(xi)|

≤ 2(|a|+ |b|+ 1)
ε

2(|a|+ |b|+ 1)
‖xi − xj‖1−|α|

= ε ‖xi − xj‖1−|α|

for i, j = 0, 1, 2 and α with |α| ≤ 1. Thus a(q0−p0) + b(r0−p0) +p0 ∈ H̃(x0) as desired. �

The above proposition and the definition of continuous differentiability imply that the
class of holding spaces for C1-functions is closed under C1-Glaeser refinement:

Corollary 7.5. Suppose f is C1. If H is a holding space for f , then so is H̃.

By iterating the process of taking C1-Glaeser refinements, we obtain a decreasing se-
quence (Hl)l∈N of subsets of X ×Pn as follows:

H0 := the trivial holding space for f ,

Hl+1 := H̃l.

We call (Hl)l∈N the sequence of holding spaces for f . By induction on l using Proposi-
tion 7.3 we obtain Hl ⊆ H(l).

By Proposition 7.4, if l ∈ N and x ∈ X such that Hl(x) 6= ∅, then Hl(x) is an affine
subspace of Pn. This together with the definition of C1-Glaeser refinement and Taylor’s
Theorem implies the following corollary:

Corollary 7.6. If Hl+1(x) is non-empty for every x ∈ X, and Hl is a holding space for f ,
then Hl+1 is a holding space for f . In particular, if Hl(x) is non-empty for every l ∈ N and
x ∈ X, then Hl is a holding space for f for all l ∈ N.

If there exists some l∗ ∈ N such that Hl∗ is stable under C1-Glaeser refinement, then
we call H∗ := Hl∗ the stable holding space for f . In [18], by an argument originating
in [20] and adapted in [4], it was shown in the classical real context that every continuous
function has a stable holding space. This remains true for definable continuous functions in
our setting:

Lemma 7.7. Let H be a holding space for f , and x0 ∈ X. Then

dim H̃(x0) ≤ lim inf
X3x→x0

dimH(x).
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This follows from Lemma 5.2 and Proposition 7.3. As in the proof of Lemma 5.3, the
previous lemma implies:

Lemma 7.8. Let x0 ∈ X be such that H(x0) 6= ∅, and set m := Pn. Then

dimH(2k+1)(x0) ≥ m− k =⇒ H(l)(x0) = H(2k+1)(x0) for all l ≥ 2k + 1.

Corollary 7.9. Let l∗ := 2 dim Pn + 1 = 2n+ 3. Then Hl = Hl∗ for l ≥ l∗, so f has stable
holding space H∗ = Hl∗ .

The following lemma exhibits a certain uniformity of the C1-Glaeser refinement:

Lemma 7.10. Let H be a holding space for f , and x0 ∈ X. If
(
f(x0), u0

)
∈ H̃(x0), then

for every ε > 0, there is δ > 0 such that

|f(x) + 〈u0, x
′ − x〉 − f(x′)| ≤ ε ‖x− x′‖ for all x, x′ ∈ X ∩Bδ(x0).

Proof. Suppose that there is ε > 0 such that for every δ > 0 there are x, x′ ∈ X ∩ Bδ(x0)
with

|f(x) + 〈u0, x
′ − x〉 − f(x′)| > ε ‖x− x′‖ .

Let δ > 0. Let x, x′ ∈ X ∩Bδ(x0) be witnesses of the above statement and
(
f(x), u

)
∈ H(x)

with ‖u− u0‖ ≤ ε
2 . Then

|f(x) + 〈u, x′ − x〉 − f(x′)| ≥ |f(x) + 〈u0, x
′ − x〉 − f(x′)| − |〈u− u0, x

′ − x〉|
≥ |f(x) + 〈u0, x

′ − x〉 − f(x′)| − ‖u− u0‖ · ‖x′ − x‖

> ε ‖x′ − x‖ − ε

2
‖x′ − x‖ =

ε

2
‖x′ − x‖ .

Thus,
(
f(x0), u0

)
/∈ H̃(x0). �

Lemma 7.11. Let H∗ be the stable holding space for f . Then f is the restriction of a
definable C1-function Rn → R iff H∗ admits a continuous definable selection.

Proof. The forward direction being trivial, we let g = (g1, . . . , gn) : X → Rn be a definable
continuous map such that Γ

(
(f, g)

)
⊆ H∗ where (f, g) is the map

x 7→
(
f(x), g(x)

)
: X → R×Rn.

Let F = (Fα)|α|≤1 where F0̄ := f and Fei := gi for i = 1, . . . , n. (Here, e1, . . . , en ∈ Nn
are the standard basis vectors of Rn.) By the Definable Whitney Extension Theorem, it is
sufficient to prove that F is a C1-Whitney field. Since g is continuous, it is enough to show
the following:

|f(x) + 〈g(x), x′ − x〉 − f(x′)| = o(‖x′ − x‖) for x, x′, x0 ∈ X with x, x′ → x0.

Let ε > 0 and x0 ∈ X be given. By continuity of g, we can take δ1 > 0 such that

‖g(x)− g(x0)‖ < ε

2
for all x ∈ Bδ1(x0) ∩X.

By Lemma 7.10 and since H∗ is stable under C1-Glaeser refinement, there is δ2 > 0 such
that, for all x, x′ ∈ Bδ2(x0) ∩X,

|f(x) + 〈g(x0), x′ − x〉 − f(x′)| < ε

2
‖x′ − x‖ .
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Set δ = min{δ1, δ2}. Thus,

|f(x) + 〈g(x), x′ − x〉 − f(x′)| ≤ |f(x) + 〈g(x0), x′ − x〉 − f(x′)|+
|〈g(x)− g(x0), x′ − x〉|

<
ε

2
‖x′ − x‖+ ‖g(x)− g(x0)‖ · ‖x′ − x‖

< ε ‖x′ − x‖

for any x, x′ ∈ Bδ(x0) ∩X. This yields the claim. �

Combining the Definable Michael Selection Theorem (Theorem 4.1) with Proposition 7.3
and the previous lemma, we obtain our main result:

Theorem 7.12. Let f : X → R be a definable continuous function where X ⊆ Rn is
closed, and let H∗ be its stable holding space. Then f is the restriction of a definable C1-
function Rn → R iff H∗(x) 6= ∅ for every x ∈ X.

From this theorem, the theorem stated in the introduction follows by an application of
the Compactness Theorem in a similar way as at the end of Section 5.

We finish with answering a special case of the following question of van den Dries, posed
in lectures at Urbana in 1997. Let f : X → R be a definable function where X ⊆ Rn is
closed. Recall that we say that f is Cm if it extends to a definable Cm-function on an open
neighborhood of X.

Question. Suppose that for each x ∈ X there is some δ > 0 such that f �Bδ(x) ∩X is Cm.
Is f then Cm?

The local nature of the C1-Glaeser refinement and Theorem 7.12 allows us to give a
positive answer in the casem = 1. GivenH ⊆ X×Pn and Y ⊆ X, letH �Y := H∩(Y×Pn).

Lemma 7.13. Let (Hl) be the sequence of holding spaces for f . Let x ∈ X and δ > 0, and
let (H ′l) be the sequence of holding spaces for f �Bδ(x) ∩X. Then for all l ∈ N:

(3) H ′l �Bδ/2l(x) ∩X ⊆ Hl �Bδ/2l(x) ∩X

Proof. Clearly H0 �Y is the trivial holding space of f �Y , for each definable closed Y ⊆ X.
Suppose we have already shown (3) for some value of l. Let (x0, p0) ∈

(
Bδ/2l+1(x)∩X

)
×Pn

be given. Then

(4) (x0, p0) ∈ H ′l+1 ⇐⇒


(x0, p0) ∈ H ′l , and for all ε > 0 there is some δ0 > 0

such that for all x1, x2 ∈ Bδ0(x0)∩Bδ(x)∩X there
are pi ∈ H ′l(xi) (i = 1, 2) such that the inequali-
ties (2) in Definition 7.2 hold.

On the other hand,

(x0, p0) ∈ Hl+1 �Bδ(x) ∩X ⇐⇒


(x0, p0) ∈ Hl, and for all ε > 0 there is
some δ0 > 0 such that for all x1, x2 ∈
Bδ0(x0) ∩ X there are pi ∈ Hl(xi) (i =
1, 2) such that (2) holds.

Suppose now that (x0, p0) ∈ H ′l+1. So (x0, p0) ∈ H ′l and x0 ∈ Bδ/2l+1(x)∩X ⊆ Bδ/2l(x)∩X,
hence (x0, p0) ∈ Hl by inductive hypothesis. Given ε > 0 we may choose δ0 > 0 as in (4) to
additionally satisfy δ0 ≤ δ/2l+1, and then Bδ0(x0) ⊆ Bδ/2l(x) ⊆ Bδ(x). Together with the
inductive hypothesis, this yields (x0, p0) ∈ Hl+1. �
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By the previous lemma and Theorem 7.12, we obtain:

Corollary 7.14. Let X ⊆ Rn be closed and f : X → R be definable, and suppose that for
each x ∈ X there is some δ > 0 such that f �Bδ(x) ∩X is C1. Then f is C1.
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