Differentially algebraic gaps

Matthias Aschenbrenner, Lou van den Dries and Joris van der Hoeven

Abstract. H-fields are ordered differential fields that capture some basic properties of Hardy fields and fields of transseries. Each H-field is equipped with a convex valuation, and solving first-order linear differential equations in H-field extensions is strongly affected by the presence of a "gap" in the value group. We construct a real closed H-field that solves every first-order linear differential equation, and that has a differentially algebraic H-field extension with a gap. This answers a question raised in [1]. The key is a combinatorial fact about the support of transseries obtained from iterated logarithms by algebraic operations, integration, and exponentiation.

Mathematics Subject Classification (2000). Primary 03C64, 16W60; Secondary 26A12.

Keywords. H-fields, fields of transseries.

Introduction

This paper is motivated by a basic problem about H-fields, the gap problem, as we explain later in this introduction. In this paper "differential field" means "ordinary differential field of characteristic 0"; H-fields are ordered differential fields whose ordering and derivation interact in a strong way. The category of H-fields was defined in [1] as a common algebraic framework for two points of view on the asymptotic behavior of one-variable real-valued functions at infinity: the theory of Hardy fields (see [15]), and the more recent theory of transseries fields, introduced by Dahn and Göring [3] as well as Écalle [7], and further developed in [5], [6], [9], [17]. We hope that the theory of H-fields will lead to a better (model-theoretic) understanding of Hardy fields, and of their relation to fields of transseries.

For this introduction, we assume that the reader has access to [1] and [2]; in particular, the notations and conventions in these papers remain in force. We recall here that any H-field K (with constant field C) comes equipped with a *dominance*

relation \preccurlyeq : for $f, g \in K$, we have

$$f \preccurlyeq g \Leftrightarrow |f| \leqslant c|g|$$
 for some $c \in C$,

and we write $f \prec g$ if $f \preccurlyeq g$ and $g \not\preccurlyeq f$; we also write $g \succcurlyeq f$ instead of $f \preccurlyeq g$, and $g \succ f$ instead of $f \prec g$. (If $K \supseteq \mathbb{R}$ is a Hardy field, then K is an H-field and, in Landau's O-notation, $f \preccurlyeq g \Leftrightarrow f = O(g)$ and $f \prec g \Leftrightarrow f = o(g)$.) For some basic properties of these asymptotic relations we refer to [10] in the case of transseries fields, and [2] for H-fields in general.

Let K be an H-field. The set $K^{\leq 1} = \{f \in K : f \leq 1\}$ of bounded elements of K is a convex subring of K; we shall always denote the associated valuation by $v: K \to \Gamma \cup \{\infty\}$, with $\Gamma = v(K^{\times}), K^{\times} := K \setminus \{0\}$. For $f, g \in K$ we write $f \simeq g$ if v(f) = v(g), that is, $f \leq g$ and $g \leq f$. An element f of K is said to be infinitesimal if f < 1, equivalently, |f| < c for all positive constants $c \in C$, and infinite if $f \succ 1$, equivalently, |f| > C.

An *H*-field *K* is *Liouville closed* if *K* is real closed, and any first-order linear differential equation y' + fy = g with $f, g \in K$ has a solution in *K*. A *Liouville closure* of an *H*-field *K* is a Liouville closed *H*-field *L* extending *K* which is minimal with this property. Every *H*-field *K* has at least one, and at most two, Liouville closures, up to isomorphism over *K*. Given a differential field *F*, an element $f \in F^{\times}$ and an element y in some differential field extension of *F* we let $f^{\dagger} := f'/f$ denote the logarithmic derivative of *f*, and let $F\langle y \rangle := F(y, y', y'', ...)$ be the differential field generated by y over *F*. A differential field *F* is said to be closed under integration if for each $g \in F$ there is $f \in F$ with f' = g.

Gaps in *H*-fields

In an *H*-field, asymptotic relations between elements of nonzero valuation may be differentiated: if $f, g \neq 1$, then $f \prec g \Leftrightarrow f' \prec g'$. In particular, if f is infinitesimal and g is infinite, then $f' \prec g'$. Also, if ε and δ are nonzero infinitesimals, then $\varepsilon' \prec \delta^{\dagger}$. A gap in an *H*-field K is an element $\gamma = v(g), g \in K^{\times}$, of its value group Γ such that $\varepsilon' \prec g \prec \delta^{\dagger}$ for all nonzero infinitesimals ε, δ . An *H*-field has at most one gap, and has no gap if it has a smallest comparability class or is Liouville closed. Further examples of *H*-fields without a gap can be obtained using the *H*-field of transseries of finite exponential and logarithmic depth with real coefficients, denoted by $\mathbb{R}((x^{-1}))^{\text{LE}}$ in [6], and by $\mathbb{R}[[[x]]]$ in [9]: each ordered differential subfield of $\mathbb{R}[[[x]]]$ that contains \mathbb{R} is an *H*-field without a gap.

If an *H*-field *K* has a gap v(g) as above, then *K* has exactly two Liouville closures, up to isomorphism over *K*: one in which $g = \varepsilon'$ with infinitesimal ε , and one where g = h' with infinite *h*. This "fork in the road" due to a gap causes much trouble. For a model-theoretic analysis of (existentially closed) *H*-fields, one needs to understand when a given *H*-field can have a differentially algebraic *H*field extension with a gap. (An extension L|K of differential fields is said to be *differentially algebraic* if every element of *L* is a zero of a nonconstant differential polynomial over *K*.)

The gap problem

The simplest type of differentially algebraic extensions are Liouville extensions. If K is a real closed H-field and L = K(y) is an H-field extension with $y' \in K$, then L has a gap if and only if K does, by [1], [2]. However, [2] also has an example of a real closed H-field K without a gap, but such that some H-field extension $L = K(y) \supseteq K$ with $y \neq 0, y^{\dagger} \in K$, has a gap. It may even happen that an H-field K has no gap, but its real closure does. These examples raise the question (called the "gap problem" in [1]) whether the creation of gaps in differentially algebraic H-field extensions can be confined to Liouville extensions. More precisely, we asked the following:

Suppose L is a differentially algebraic H-field extension of a Liouville closed H-field K. Can L have a gap? (A negative answer would have been welcome.)

Our main result is an example where the answer is positive. This example is about as simple as possible, and may well be *generic* in some sense.

Outline of the example

No differentially algebraic *H*-field extension of $\mathbb{R}[[[x]]]$ can have a gap, by [2, Corollary 12.2], and this statement remains true when $\mathbb{R}[[[x]]]$ is replaced by any Liouville closed *H*-subfield. Our example will indeed live in a *larger* field \mathbb{T} of transseries, as we shall indicate.

First, let \mathfrak{L} denote the multiplicative ordered subgroup of $\mathbb{R}[[[x]]]^{>0}$ generated by the real powers of the iterated logarithms

 $\ell_0 := x, \quad \ell_1 := \log x, \quad \ell_2 := \log \log x, \ \dots, \ \ell_n := \log_n x, \ \dots$

of x (the group of *logarithmic monomials*, see Section 2). This gives rise to

 $\mathbb{L} := \mathbb{R}[[\mathfrak{L}]] \quad (\text{the field of logarithmic transseries}).$

At the beginning of Section 3 we equip \mathbb{L} with a derivation making it an H-field with constant field \mathbb{R} . Let \mathbb{T} be the field of transseries of finite exponential depth and logarithmic depth at most ω , with real coefficients (denoted by $\mathbb{R}_{<\omega}^{\omega}[[[x]]]$ in [9]). At this stage we only mention that \mathbb{T} is obtained from \mathbb{L} by an inductive procedure of closure under exponentiation. (Details of this procedure are in [9, Chapter 2], and are recalled at the beginning of Section 4.) As a result of its construction \mathbb{T} comes equipped with a derivation that makes it a real closed H-field extension of \mathbb{L} (with same constant field \mathbb{R}), and with an isomorphism exp of the ordered additive group of \mathbb{T} onto its positive multiplicative group $\mathbb{T}^{>0}$, whose inverse is denoted by log, such that $\exp(f)' = f' \exp(f)$ for all $f \in \mathbb{T}$ and $\log \ell_n = \ell_{n+1}$ for all n.

Moreover, the sequence $\ell_0, \ell_1, \ell_2, \ldots$ is coinitial in the set of positive infinite elements of \mathbb{T} and hence $1/\ell_0, 1/\ell_1, 1/\ell_2, \ldots$ is cofinal in the set of positive infinitesimals of \mathbb{T} . Also, $\mathbb{R}[[[x]]] \subseteq \mathbb{T}$, as *H*-fields and as exponential fields. Here

is a diagram illustrating the various H-fields and their inclusions (indicated by arrows):

Whereas the *H*-field \mathbb{L} does not have a gap (see Section 3), the *H*-field \mathbb{T} does. In particular, \mathbb{T} is not Liouville closed. To see this, we set as in [7, Chapter 7]:

$$\Lambda := \ell_1 + \ell_2 + \ell_3 + \dots \in \mathbb{L}.$$

In \mathbb{T} we have $(\ell_n)^{\dagger} = (\ell_{n+1})' = \exp(-(\ell_1 + \ell_2 + \dots + \ell_{n+1}))$, and thus
 $(1/\ell_n)' \prec \exp(-\Lambda) \prec (1/\ell_n)^{\dagger}$ for all n .

(Intuitively, $\exp(-\Lambda)$ represents the infinitely long logarithmic monomial $1/(\ell_0\ell_1\ell_2\cdots)$.) Therefore $v(\exp(-\Lambda))$ is a gap in \mathbb{T} , and hence is a gap in each H-subfield of \mathbb{T} that contains $\exp(\Lambda)$. So any Liouville closed H-subfield K of \mathbb{T} with a differentially algebraic H-field extension $L \subseteq \mathbb{T}$ containing $\exp(\Lambda)$ is an example as claimed. Put

$$\lambda := \Lambda' = \frac{1}{\ell_0} + \frac{1}{\ell_0 \ell_1} + \frac{1}{\ell_0 \ell_1 \ell_2} + \dots + \frac{1}{\ell_0 \ell_1 \dots \ell_n} + \dots \in \mathbb{L}.$$

Let $\varrho := 2\lambda' + \lambda^2 \in \mathbb{L}$. A computation shows that

$$\varrho = -\left(\frac{1}{\ell_0^2} + \frac{1}{(\ell_0\ell_1)^2} + \frac{1}{(\ell_0\ell_1\ell_2)^2} + \dots + \frac{1}{(\ell_0\ell_1\dots\ell_n)^2} + \dots\right).$$

We shall prove (Corollary 5.13):

Theorem. There exists a Liouville closed H-subfield $K \supseteq \mathbb{R}(\mathfrak{L})$ of \mathbb{T} such that $\varrho \in K$.

Given K as in the Theorem, let $L := K(\exp(\Lambda), \lambda) \subseteq \mathbb{T}$. Since $\exp(\Lambda)^{\dagger} = \lambda$ and $\lambda' = \varrho - (1/2)\lambda^2$, L is an H-subfield of T and differentially algebraic over K; thus K and L are an example as claimed.

We shall construct a K as in the theorem by isolating a condition on transseries in \mathbb{T} , namely "to have decay > 1", a condition satisfied by ρ , but not by λ . The main effort then goes into showing that this condition defines a Liouville closed *H*-subfield of \mathbb{T} as in the Theorem.

Organization of the paper

After preliminaries in Section 1 on transseries, we introduce in Section 2 the property of subsets \mathfrak{S} of \mathfrak{L} to have decay > 1. In Section 3 we consider the subset \mathbb{L}_1 of \mathbb{L} consisting of those series whose support has decay > 1, and show that \mathbb{L}_1 is an *H*-subfield of \mathbb{L} closed under integration and taking logarithms of positive elements. (By construction, $\varrho \in \mathbb{L}_1$, but $\lambda \notin \mathbb{L}_1$.) Section 4 is the most technical; it focuses on subgroups \mathfrak{M} of the group \mathfrak{T} of monomials of \mathbb{T} and shows, under mild assumptions including $\exp(\Lambda) \notin \mathfrak{M}$, that then the transseries field $\mathbb{R}[[\mathfrak{M}]]$ is closed under a natural derivation on $\mathbb{R}[[\mathfrak{T}]]$ extending that of \mathbb{T} , and is also closed under integration. (Here we make essential use of the Implicit Function Theorem from [11].) In Section 5 we prove the main theorem by extending \mathbb{L}_1 to a Liouville closed *H*-subfield \mathbb{T}_1 of \mathbb{T} . We finish with comments on the transseries λ and ϱ .

1. Preliminaries

In our notations we mostly follow [11]. Throughout this paper we let m and n range over $\mathbb{N} := \{0, 1, 2, ...\}$.

Strong linear algebra

Let $(\mathfrak{M}, \preccurlyeq)$ be an ordered set. (We do not assume that \preccurlyeq is total, but we do follow the convention that ordered abelian groups and ordered fields are totally ordered.) A subset \mathfrak{S} of \mathfrak{M} is said to be *noetherian* if for every infinite sequence $\mathfrak{m}_1, \mathfrak{m}_2, \ldots$ in \mathfrak{S} there exist indices i < j such that $\mathfrak{m}_i \succeq \mathfrak{m}_j$. If the ordering \preccurlyeq is total, then $\mathfrak{S} \subseteq \mathfrak{M}$ is noetherian if and only if \mathfrak{S} is well-ordered for the reverse ordering \succeq , that is, there is no strictly increasing infinite sequence $\mathfrak{m}_0 \prec \mathfrak{m}_1 \prec \cdots$ in \mathfrak{S} . Let C be a field. Then

$$C[[\mathfrak{M}]] := \Big\{ f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}}\mathfrak{m} : \text{all } f_{\mathfrak{m}} \in C, \text{ supp } f \subseteq \mathfrak{M} \text{ is noetherian} \Big\},\$$

where $\operatorname{supp} f = \{\mathfrak{m} \in \mathfrak{M} : f_{\mathfrak{m}} \neq 0\}$ is the *support* of f, denotes the C-vector space of *transseries with coefficients in* C *and monomials from* \mathfrak{M} . We refer to [11] for terminology and basic results concerning "strong linear algebra" in $C[[\mathfrak{M}]]$. In particular, a family $(f_i)_{i \in I}$ in $C[[\mathfrak{M}]]$ is called *noetherian* if the set $\bigcup_{i \in I} \operatorname{supp} f_i \subseteq$ \mathfrak{M} is noetherian and for each $\mathfrak{m} \in \mathfrak{M}$ there exist only finitely many $i \in I$ such that $\mathfrak{m} \in \operatorname{supp} f_i$. In this case, we put

$$\sum_{i\in I} f_i := \sum_{\mathfrak{m}\in\mathfrak{M}} \Big(\sum_{i\in I} f_{i,\mathfrak{m}}\Big)\mathfrak{m},$$

an element of $C[[\mathfrak{M}]]$.

Let (\mathfrak{N}, \leq) be a second ordered set. A *C*-multilinear map $\Phi: C[[\mathfrak{M}]]^n \to C[[\mathfrak{N}]]$ is called *strongly multilinear* if for all noetherian families

$$(f_{1,i_1})_{i_1\in I_1},\ldots,(f_{n,i_n})_{i_n\in I_n}$$

in $C[[\mathfrak{M}]]$ the family

$$(\Phi(f_{1,i_1},\ldots,f_{n,i_n}))_{(i_1,\ldots,i_n)\in I_1\times\cdots\times I_n}$$

in $C[[\mathfrak{N}]]$ is notherian and

$$\Phi\Big(\sum_{i_1\in I_1} f_{1,i_1}, \dots, \sum_{i_n\in I_n} f_{n,i_n}\Big) = \sum_{(i_1,\dots,i_n)\in I_1\times\dots\times I_n} \Phi(f_{1,i_1},\dots,f_{n,i_n}).$$

In the case n = 1 we say that Φ is *strongly linear*. Clearly a strongly multilinear map $C[[\mathfrak{M}]]^n \to C[[\mathfrak{N}]]$ is strongly linear in each of its *n* variables.

A map $\varphi \colon \mathfrak{M} \to C[[\mathfrak{N}]]$ is said to be *noetherian* if for every noetherian subset $\mathfrak{S} \subseteq \mathfrak{M}$, the family $(\varphi(\mathfrak{m}))_{\mathfrak{m}\in\mathfrak{S}}$ in $C[[\mathfrak{N}]]$ is noetherian; equivalently, for every infinite sequence $\mathfrak{m}_1 \succ \mathfrak{m}_2 \succ \cdots$ of monomials in \mathfrak{M} and $\mathfrak{n}_i \in \operatorname{supp} \varphi(\mathfrak{m}_i)$ for $i \ge 1$, there exist i < j such that $\mathfrak{n}_i \succ \mathfrak{n}_j$. A noetherian map $\mathfrak{M} \to C[[\mathfrak{N}]]$ extends to a unique strongly linear map $C[[\mathfrak{M}]] \to C[[\mathfrak{N}]]$ (Proposition 3.5 in [11]), and every strongly linear map $C[[\mathfrak{M}]] \to C[[\mathfrak{N}]]$ restricts to a noetherian map $\mathfrak{M} \to C[[\mathfrak{N}]]$.

A map $\Phi: C[[\mathfrak{M}]] \to C[[\mathfrak{N}]]$ is called *noetherian* if there exists a family $(M_n)_{n \in \mathbb{N}}$ of strongly multilinear maps

$$M_n \colon C[[\mathfrak{M}]]^n \to C[[\mathfrak{N}]]$$

such that for every noetherian family $(f_k)_{k \in K}$ in $C[[\mathfrak{M}]]$ the family

$$(M_n(f_{k_1},\ldots,f_{k_n}))_{n\in\mathbb{N},\,k_1,\ldots,k_n\in K}$$

in $C[[\mathfrak{N}]]$ is notherian and

$$\Phi\left(\sum_{k\in K} f_k\right) = \sum_{\substack{n\in\mathbb{N}\\k_1,\dots,k_n\in K}} M_n(f_{k_1},\dots,f_{k_n}).$$

The family (M_n) is called a *multilinear decomposition* of Φ . If char C = 0, then the M_n may chosen to be symmetric, and in this case the sequence $(M_n)_{n \in \mathbb{N}}$ is uniquely determined by Φ ([11, Proposition 5.8]). Every strongly linear map $\Phi: C[[\mathfrak{M}]] \to C[[\mathfrak{N}]]$ is noetherian, with multilinear decomposition (M_n) given by $M_1 = \Phi$ and $M_n = 0$ for $n \neq 1$. Conversely, if C is infinite, then every linear noetherian map is strongly linear, as we show next.

Lemma 1.1. Suppose the field C is infinite and $(f_i)_{i \in \mathbb{N}}$ is a noetherian family in $C[[\mathfrak{M}]]$. Let $\phi: C \to C[[\mathfrak{M}]]$ be given by $\phi(\lambda) = \sum_i \lambda^i f_i$, and suppose ϕ is C-linear. Then $f_i = 0$ for all $i \neq 1$.

Proof. Suppose $\mathfrak{m} \in \bigcup_i \operatorname{supp} f_i$; let $i_1 < \cdots < i_n$ be the indices i such that $\mathfrak{m} \in \operatorname{supp} f_i$, and put $c_k := (f_{i_k})_{\mathfrak{m}} \in C$ for $k = 1, \ldots, n$. With $\lambda \in C$ we have $\phi(\lambda)_{\mathfrak{m}} = \lambda \phi(1)_{\mathfrak{m}}$, that is,

$$\lambda^{i_1}c_1 + \dots + \lambda^{i_n}c_n = \lambda(c_1 + \dots + c_n)$$

Since C is infinite, this yields n = 1 and $i_1 = 1$.

Corollary 1.2. Suppose the field C is infinite, and the map $\Phi: C[[\mathfrak{M}]] \to C[[\mathfrak{N}]]$ is noetherian and C-linear. Then Φ is strongly linear.

Proof. Let $(M_n)_{n \in \mathbb{N}}$ be a multilinear decomposition of Φ . Let $f \in C[[\mathfrak{M}]]$, and define $\phi: C \to C[[\mathfrak{N}]]$ by $\phi(\lambda) = \Phi(\lambda f)$. Then

$$\phi(\lambda) = \sum_{i} \lambda^{i} f_{i}$$
 with $f_{i} := M_{i}(f, \dots, f),$

and ϕ is C-linear. Hence $f_i = 0$ for all $i \neq 1$, by the previous lemma. It follows that $\Phi = M_1$.

We equip the disjoint union $\mathfrak{M} \amalg \mathfrak{N}$ with the least ordering extending those of \mathfrak{M} and \mathfrak{N} . The natural inclusions $i: \mathfrak{M} \to \mathfrak{M} \amalg \mathfrak{N}$ and $j: \mathfrak{N} \to \mathfrak{M} \amalg \mathfrak{N}$ extend uniquely to strongly linear maps $\hat{i}: C[[\mathfrak{M}]] \to C[[\mathfrak{M} \amalg \mathfrak{N}]]$ and $\hat{j}: C[[\mathfrak{N}]] \to C[[\mathfrak{M} \amalg \mathfrak{N}]]$. This yields a *C*-linear bijection

$$(f,g)\mapsto \widehat{i}(f)+\widehat{j}(g)\colon C[[\mathfrak{M}]]\times C[[\mathfrak{N}]]\to C[[\mathfrak{M}\amalg\mathfrak{N}]].$$

When convenient, we identify $C[[\mathfrak{M}]] \times C[[\mathfrak{N}]]$ with $C[[\mathfrak{M} \amalg \mathfrak{N}]]$ by means of this bijection. For example, we say that a map $\Phi \colon C[[\mathfrak{M}]] \times C[[\mathfrak{N}]] \to C[[\mathfrak{M}]]$ is strongly linear (respectively, noetherian) if Φ , considered as a map $C[[\mathfrak{M} \amalg \mathfrak{N}]] \to C[[\mathfrak{M}]]$, is strongly linear (respectively, noetherian). The following is the strongly linear case of Theorems 6.1 and 6.3 in [11] (van der Hoeven's implicit function theorem):

Theorem 1.3. Let the map $(f,g) \mapsto \Phi(f,g) \colon C[[\mathfrak{M}]] \times C[[\mathfrak{M}]] \to C[[\mathfrak{M}]]$ be strongly linear such that $\operatorname{supp} \Phi(\mathfrak{m}, 0) \prec \mathfrak{m}$ for all $\mathfrak{m} \in \mathfrak{M}$. Then for each $g \in C[[\mathfrak{M}]]$ there is a unique $f = \Psi(g) \in C[[\mathfrak{M}]]$ such that $\Phi(f,g) = f$. For each $g \in C[[\mathfrak{N}]]$ the family $(\Psi_{n+1}(g) - \Psi_n(g))_{n \in \mathbb{N}}$ in $C[[\mathfrak{M}]]$ with

$$\Psi_0(g) = \Phi(0,g), \quad \Psi_{n+1}(g) = \Phi(\Psi_n(g),g) \quad \text{for all } n$$

is noetherian with

$$\Psi(g) = \Psi_0(g) + \sum_{n \in \mathbb{N}} (\Psi_{n+1}(g) - \Psi_n(g)).$$

The map $g \mapsto \Psi(g) \colon C[[\mathfrak{M}]] \to C[[\mathfrak{M}]]$ is noetherian.

The following consequence for inverting strongly linear maps is important later:

Corollary 1.4. Suppose that C is infinite. Let $\Phi: C[[\mathfrak{M}]] \to C[[\mathfrak{M}]]$ be a strongly linear map such that $\operatorname{supp} \Phi(\mathfrak{m}) \prec \mathfrak{m}$ for all $\mathfrak{m} \in \mathfrak{M}$. Then the strongly linear operator $\operatorname{Id} + \Phi$ on $C[[\mathfrak{M}]]$ is bijective with strongly linear inverse given by

$$(\mathrm{Id} + \Phi)^{-1}(g) = \sum_{n=0}^{\infty} (-1)^n \Phi^n(g).$$
(1.1)

Proof. Let $\Phi_1: C[[\mathfrak{M}]] \times C[[\mathfrak{M}]] \to C[[\mathfrak{M}]]$ be given by $\Phi_1(f,g) = g - \Phi(f)$. Then Φ_1 is strongly linear and $\operatorname{supp} \Phi_1(\mathfrak{m}, 0) = \operatorname{supp} \Phi(\mathfrak{m}) \prec \mathfrak{m}$ for all $\mathfrak{m} \in \mathfrak{M}$. By the theorem above with Φ_1 in place of Φ we obtain a a noetherian $\Psi: C[[\mathfrak{M}]] \to C[[\mathfrak{M}]]$ such that $(\operatorname{Id} + \Phi) \circ \Psi = \operatorname{Id}$. By Corollary 1.2, Ψ is strongly linear.

The assumption on Φ implies that Id + Φ has trivial kernel, so Id + Φ is injective, and thus Ψ is even a two-sided inverse of Id + Φ . Moreover, in the notation of Theorem 1.3 we have

$$\Psi_0(g) = g, \quad \Psi_1(g) = g - \Phi(g), \quad \Psi_2(g) = g - \Phi(g) + \Phi^2(g), \dots$$

for every g, which yields (1.1).

7

Transseries fields

In the rest of this section, $(\mathfrak{M}, \preccurlyeq)$ is a multiplicative ordered abelian group. (In particular the ordering \preccurlyeq is total.) Then $C[[\mathfrak{M}]]$ is a field, called the *transseries* field with coefficients in C and monomials from \mathfrak{M} . If $\mathfrak{S}, \mathfrak{S}' \subseteq \mathfrak{M}$ are noetherian, so is $\mathfrak{S}\mathfrak{S}'$. For $\mathfrak{S} \subseteq \mathfrak{M}$, let \mathfrak{S}^* be the multiplicative submonoid of \mathfrak{M} generated by \mathfrak{S} ; if $\mathfrak{S} \subseteq \mathfrak{M}$ is noetherian and $\mathfrak{S} \preccurlyeq 1$, then \mathfrak{S}^* is noetherian.

For nonzero $f \in C[[\mathfrak{M}]]$ we put

$$\mathfrak{d}(f) := \max_{\preccurlyeq} \operatorname{supp} f \quad (\textit{dominant monomial of } f)$$

and we call $f_{\mathfrak{d}(f)}\mathfrak{d}(f) \in C^{\times} \cdot \mathfrak{M}$ the *dominant term* of f. We extend the ordering \preccurlyeq on \mathfrak{M} to a dominance relation on $C[[\mathfrak{M}]]$: for series f and g in $C[[\mathfrak{M}]]$, we put

$$\begin{split} f \preccurlyeq g \; :\Leftrightarrow \; (f \neq 0, g \neq 0, \mathfrak{d}(f) \preccurlyeq \mathfrak{d}(g)), \; \text{or} \; f = 0, \\ f \asymp g \; :\Leftrightarrow \; f \preccurlyeq g \land g \preccurlyeq f, \end{split}$$

so for nonzero f and g, $f \simeq g \Leftrightarrow \mathfrak{d}(f) = \mathfrak{d}(g)$. We have the *canonical decomposition* of $C[[\mathfrak{M}]]$ into C-linear subspaces:

$$C[[\mathfrak{M}]] = C[[\mathfrak{M}]]^{\uparrow} \oplus C \oplus C[[\mathfrak{M}]]^{\downarrow},$$

where

$$C[[\mathfrak{M}]]^{\uparrow} := \{ f \in C[[\mathfrak{M}]] : \operatorname{supp} f \succ 1 \} = C[[\mathfrak{M}^{\succ 1}]]$$

and

$$C[[\mathfrak{M}]]^{\downarrow} := \{ f \in C[[\mathfrak{M}]] : \operatorname{supp} f \prec 1 \} = C[[\mathfrak{M}]]^{\prec 1} = C[[\mathfrak{M}^{\prec 1}]],$$

the maximal ideal of the valuation ring $C[[\mathfrak{M}]]^{\leq 1} = C \oplus C[[\mathfrak{M}]]^{\downarrow}$ of $C[[\mathfrak{M}]]$. Every $f \in C[[\mathfrak{M}]]$ can be uniquely written as

$$f = f^{\uparrow} + f^{=} + f^{\downarrow},$$

where $f^{\uparrow} \in C[[\mathfrak{M}]]^{\uparrow}$, $f^{=} \in C$, and $f^{\downarrow} \in C[[\mathfrak{M}]]^{\downarrow}$. If C is an ordered field, then we turn $C[[\mathfrak{M}]]$ into an ordered field as follows:

$$f > 0 \Leftrightarrow f_{\mathfrak{d}(f)} > 0, \quad \text{for } f \in C[[\mathfrak{M}]], f \neq 0.$$
 (1.2)

In this case,

$$C[[\mathfrak{M}]]^{\uparrow} = \{ f \in C[[\mathfrak{M}]] : |f| > C \}$$

and

$$C[[\mathfrak{M}]]^{\downarrow} = \{ f \in C[[\mathfrak{M}]] : |f| < C^{>0} \},$$

and the valuation ring $C[[\mathfrak{M}]]^{\leq 1}$ of $C[[\mathfrak{M}]]$ is a convex subring of $C[[\mathfrak{M}]]$. Given an ordered field C we shall refer to $C[[\mathfrak{M}]]$ as an ordered transseries field over Cto indicate that $C[[\mathfrak{M}]]$ is equipped with the ordering defined by (1.2).

Example 1.5. Let $C = \mathbb{R}$ and $\mathfrak{M} = x^{\mathbb{R}}$, a multiplicative copy of the ordered additive group of real numbers, with isomorphism $r \mapsto x^r \colon \mathbb{R} \to x^{\mathbb{R}}$. Then we have

$$f^{\uparrow} = \sum_{r>0} a_r x^r, \quad f^{=} = a_0, \quad f^{\downarrow} = \sum_{r<0} a_r x^r$$

for $f = \sum_{r} a_r x^r \in \mathbb{R}[[x^{\mathbb{R}}]].$

Let $X = (X_1, \ldots, X_n)$ be a tuple of distinct indeterminates and

$$F(X) = \sum_{\nu} a_{\nu} X^{\nu} \in C[[X]]$$

a formal power series; here the sum ranges over all multiindices $\nu = (\nu_1, \ldots, \nu_n) \in \mathbb{N}^n$, and $a_{\nu} \in C$, $X^{\nu} = X_1^{\nu_1} \cdots X_n^{\nu_n}$. For any *n*-tuple $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$ of elements of $C[[\mathfrak{M}]]^{\downarrow}$, the family $(a_{\nu}\varepsilon^{\nu})_{\nu}$ is noetherian [14], where $\varepsilon^{\nu} = \varepsilon_1^{\nu_1} \cdots \varepsilon_n^{\nu_n}$. Put

$$F(\varepsilon) := \sum_{\nu} a_{\nu} \varepsilon^{\nu} \in C[[\mathfrak{M}]]^{\preccurlyeq 1}.$$

The proof of the following lemma is similar to that of [4, Lemma 2.5].

Lemma 1.6. Suppose that C is real closed and the group \mathfrak{M} is divisible. Then any subfield $K \supseteq C[\mathfrak{M}]$ of $C[[\mathfrak{M}]]$ with the property that $F(\varepsilon) \in K$ for all $F \in C[[X]]$ and $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$ with $\varepsilon_1, \ldots, \varepsilon_n \in K^{\prec 1}$ is real closed.

Differentiation

If $C[[\mathfrak{M}]]$ is an *H*-field with respect to a derivation $f \mapsto f'$ with constant field *C* and with respect to the ordering extending an ordering on *C* via (1.2), then the dominance relation \preccurlyeq that $C[[\mathfrak{M}]]$ carries as a transseries field over *C* coincides with the dominance relation that it has as an *H*-field, and

$$\mathfrak{m} \preccurlyeq \mathfrak{n} \Leftrightarrow \mathfrak{m}' \preccurlyeq \mathfrak{n}', \quad \text{for } \mathfrak{m}, \mathfrak{n} \in \mathfrak{M} \setminus \{1\}.$$
(1.3)

In the rest of this section we assume, more generally, that $C[[\mathfrak{M}]]$ is equipped with a derivation $f \mapsto f'$ with constant field C such that (1.3) holds.

Integration

A series $f \in C[[\mathfrak{M}]]$ is called the *distinguished integral* of $g \in C[[\mathfrak{M}]]$, written as $f = \int g$, if f' = g and $f^{=} = 0$.

For every $\mathfrak{m} \in \mathfrak{M}$ there is at most one $\mathfrak{n} \in \mathfrak{M}$ with $\mathfrak{n}' \simeq \mathfrak{m}$; we say that $C[[\mathfrak{M}]]$ is closed under asymptotic integration if for every $\mathfrak{m} \in \mathfrak{M}$ there exists such an \mathfrak{n} .

If the derivation on $C[[\mathfrak{M}]]$ is strongly linear and $C[[\mathfrak{M}]]$ is closed under integration, then it is closed under asymptotic integration: for $\mathfrak{m} \in \mathfrak{M}$ we have $\mathfrak{m} \simeq \mathfrak{n}'$ where $\mathfrak{n} := \mathfrak{d}(\int \mathfrak{m})$. The following converse is very useful:

Lemma 1.7. Suppose that C is infinite, the derivation on $C[[\mathfrak{M}]]$ is strongly linear, and $C[[\mathfrak{M}]]$ is closed under asymptotic integration. Then each $g \in C[[\mathfrak{M}]]$ has a distinguished integral in $C[[\mathfrak{M}]]$, and the operator $g \mapsto \int g$ on $C[[\mathfrak{M}]]$ is strongly linear.

Proof. Define I: $\mathfrak{M} \to C[[\mathfrak{M}]]$ by $I(\mathfrak{m}) = c\mathfrak{n}$ with $c \in C$, $\mathfrak{n} \in \mathfrak{M}$ such that $\mathfrak{n}' - \mathfrak{m} \prec \mathfrak{m}$. Then by (1.3) the map I is noetherian, hence extends to a strongly linear operator on $C[[\mathfrak{M}]]$, which we also denote by I. Let D be the derivation on $C[[\mathfrak{M}]]$. The strongly linear operator $\Phi = D \circ I - Id$ satisfies $\operatorname{supp} \Phi(\mathfrak{m}) \prec \mathfrak{m}$ for all $\mathfrak{m} \in \mathfrak{M}$. Hence by Corollary 1.4 the strongly linear operator $D \circ I = Id + \Phi$ has a strongly linear two-sided inverse Ψ given by

$$\Psi(g) = (D \circ I)^{-1}(g) = g - \Phi(g) + \Phi^2(g) - \Phi^3(g) + \cdots$$

Since $I(\mathfrak{m})^{=} = 0$ for all $\mathfrak{m} \in \mathfrak{M}$, the strongly linear operator $\int := I \circ \Psi$ assigns to each $g \in C[[\mathfrak{M}]]$ its distinguished integral.

Exponentials and logarithms

Suppose now that $C = \mathbb{R}$. For $f \in \mathbb{R}[[\mathfrak{M}]]^{\leq 1}$, write $f = c + \varepsilon$ with $c \in \mathbb{R}$ and $\varepsilon \in \mathbb{R}[[\mathfrak{M}]]^{\downarrow}$, and put

$$\exp(f) = \exp(c + \varepsilon) := e^c \sum_{i=0}^{\infty} \frac{\varepsilon^i}{i!},$$

where $t \mapsto e^t$ is the usual exponential function on \mathbb{R} . Then exp is an *exponential* on $\mathbb{R}[[\mathfrak{M}]]^{\leq 1}$: for $f, g \in \mathbb{R}[[\mathfrak{M}]]^{\leq 1}$

$$\exp(f) \geqslant 1 \ \Leftrightarrow \ f \geqslant 0, \quad \exp(f) \geqslant f+1, \quad \exp(f+g) = \exp(f) \exp(g).$$

Thus exp is injective with image

$$\{g \in \mathbb{R}[[\mathfrak{M}]] : g > 0, \, \mathfrak{d}(g) = 1\}$$

and inverse

$$\log: \{g \in \mathbb{R}[[\mathfrak{M}]] : g > 0, \, \mathfrak{d}(g) = 1\} \to \mathbb{R}[[\mathfrak{M}]]^{\preccurlyeq 1}$$

given by

$$\log g := \log a + \log(1 + \varepsilon)$$

for $g = a(1 + \varepsilon), a \in \mathbb{R}^{>0}, \varepsilon \prec 1$, where $\log a$ is the usual natural logarithm of the positive real number a and

$$\log(1+\varepsilon) := \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \varepsilon^n.$$

If $\mathbb{R}[[\mathfrak{M}]]$ is closed under integration, then the above logarithm extends to a function log: $\mathbb{R}[[\mathfrak{M}]]^{>0} \to \mathbb{R}[[\mathfrak{M}]]$ by

 $\log g := \log a + \log \mathfrak{m} + \log(1 + \varepsilon)$

for $g = a\mathfrak{m}(1 + \varepsilon)$ with $a \in \mathbb{R}^{>0}$, $\mathfrak{m} \in \mathfrak{M}$, and $\varepsilon \prec 1$, and $\log \mathfrak{m} := \int \mathfrak{m}^{\dagger}$. Note that $\log(fg) = \log f + \log g$ for $f, g \in \mathbb{R}[[\mathfrak{M}]]^{>0}$.

More notation

For nonzero $f, g \in C[[\mathfrak{M}]]$ we put

$$\begin{split} f &\preceq g \; :\Leftrightarrow \; f^{\dagger} \preccurlyeq g^{\dagger}, \\ f &\prec g \; :\Leftrightarrow \; f^{\dagger} \prec g^{\dagger}, \\ f &\preccurlyeq g \; :\Leftrightarrow \; f^{\dagger} \prec g^{\dagger}, \\ f &\preccurlyeq g \; :\Leftrightarrow \; f^{\dagger} \asymp g^{\dagger}. \end{split}$$

Suppose $\mathbb{R}[[\mathfrak{M}]]$, with its ordering as an ordered transseries field over $C = \mathbb{R}$, is an *H*-field. Then by [2, Proposition 7.3], we have for $f, g \in \mathbb{R}[[\mathfrak{M}]]^{\succ 1}$:

$$f \leq g \Leftrightarrow |f| \leq |g|^n \text{ for some } n > 0$$

$$f \leq g \Leftrightarrow |f|^n < |g| \text{ for all } n > 0.$$

2. Logarithmic monomials

Let \mathfrak{L} be the multiplicative subgroup of *logarithmic monomials* of $\mathbb{R}[[[x]]]^{>0}$ generated by the real powers of the iterated logarithms $\ell_0 := x$, $\ell_1 := \log x$, $\ell_2 := \log \log x, \ldots, \ell_n := \log_n x, \ldots$ of x; that is,

$$\mathfrak{L} = \{\ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \ell_n^{\alpha_n} : (\alpha_0, \dots, \alpha_n) \in \mathbb{R}^n, n = 0, 1, 2, \dots\}.$$

Thus \mathfrak{L} is a multiplicatively written ordered vector space over the ordered field \mathbb{R} , with basis $\ell_0, \ell_1, \ell_2, \ldots$ satisfying

 $\ell_0 \gg \ell_1 \gg \ell_2 \gg \cdots \gg \ell_n \gg \cdots$

We define the group of *continued logarithmic monomials* $\overline{\mathfrak{L}}$ by

$$\overline{\mathfrak{L}} := \{\ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \ell_n^{\alpha_n} \cdots : (\alpha_0, \alpha_1, \dots, \alpha_n, \dots) \in \mathbb{R}^{\mathbb{N}}\}\$$

and by requiring that $(\alpha_0, \alpha_1, \ldots) \mapsto \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots : \mathbb{R}^{\mathbb{N}} \to \overline{\mathfrak{L}}$ is an isomorphism of the additive group $\mathbb{R}^{\mathbb{N}}$ onto the multiplicative group $\overline{\mathfrak{L}}$. We order $\overline{\mathfrak{L}}$ lexicographically: given $\mathfrak{m} = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots$ and $\mathfrak{n} = \ell_0^{\beta_0} \ell_1^{\beta_1} \cdots$ with $(\alpha_0, \alpha_1, \ldots), (\beta_0, \beta_1, \ldots) \in \mathbb{R}^{\mathbb{N}}$, put

 $\mathfrak{m} \preccurlyeq \mathfrak{n} :\Leftrightarrow (\alpha_0, \alpha_1, \ldots) \leqslant (\beta_0, \beta_1, \ldots)$ lexicographically.

This ordering makes $\overline{\mathfrak{L}}$ into an ordered group, and extends the ordering \preccurlyeq on \mathfrak{L} . We also extend the relation \prec ("flatter than") from \mathfrak{L} to $\overline{\mathfrak{L}}$ in the natural way:

$$\mathfrak{m} \prec \mathfrak{n} :\Leftrightarrow l(\mathfrak{m}) > l(\mathfrak{n}),$$

where $l(\mathfrak{m}) := \min\{i : \alpha_i \neq 0\} \in \mathbb{N}$ if $\mathfrak{m} = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \neq 1$, and $l(1) := \infty > \mathbb{N}$.

Definition 2.1. A sequence $(\mathfrak{m}_i)_{i\geq 1}$ in $\overline{\mathfrak{L}}$ is called a monomial Cauchy sequence if for each $k \in \mathbb{N}$ there is an index i_0 such that for all $i_2 > i_1 > i_0$ we have $\mathfrak{m}_{i_2}/\mathfrak{m}_{i_1} \prec \ell_k$. A continued logarithmic monomial $\mathfrak{l} \in \overline{\mathfrak{L}}$ is a monomial limit of $(\mathfrak{m}_i)_{i\geq 1}$ if for all $k \in \mathbb{N}$ there is an i_0 such that for all $i > i_0$ we have $\mathfrak{m}_i/\mathfrak{l} \prec \ell_k$.

Given a continued logarithmic monomial $\mathfrak{m} = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots$, let us write

$$e(\mathfrak{m}) := (\alpha_0, \alpha_1, \ldots) \in \mathbb{R}^{\mathbb{N}}$$

for its sequence of exponents. Then $e : \overline{\mathfrak{L}} \to \mathbb{R}^{\mathbb{N}}$ is an order-preserving isomorphism between the multiplicative ordered abelian group $\overline{\mathfrak{L}}$ and the additive group $\mathbb{R}^{\mathbb{N}}$, ordered lexicographically. With this notation, a sequence (\mathfrak{m}_i) in $\overline{\mathfrak{L}}$ is a monomial Cauchy sequence if and only if $(e(\mathfrak{m}_i))$ is a *Cauchy sequence* in $\mathbb{R}^{\mathbb{N}}$, that is, for every $\varepsilon > 0$ in $\mathbb{R}^{\mathbb{N}}$ there exists an index i_0 such that $|e(\mathfrak{m}_{i_2}) - e(\mathfrak{m}_{i_1})| < \varepsilon$ for all $i_2 > i_1 > i_0$. Similarly, an element $\mathfrak{l} \in \overline{\mathfrak{L}}$ is a monomial limit of (\mathfrak{m}_i) if and only if $e(\mathfrak{l})$ is a limit of the sequence $(e(\mathfrak{m}_i))$, in the usual sense: for every $\varepsilon > 0$ there exists i_0 such that $|e(\mathfrak{m}_i) - e(\mathfrak{l})| < \varepsilon$ for all $i > i_0$. If (\mathfrak{m}_i) has a monomial limit in $\overline{\mathfrak{L}}$, then (\mathfrak{m}_i) is a monomial Cauchy sequence. Conversely, every monomial Cauchy sequence (\mathfrak{m}_i) in $\overline{\mathfrak{L}}$ has a unique monomial limit \mathfrak{l} in $\overline{\mathfrak{L}}$, denoted by $\mathfrak{l} = \lim_{i\to\infty} \mathfrak{m}_i$. Moreover, every continued logarithmic monomial $\mathfrak{m} = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \ell_n^{\alpha_n} \cdots \in \overline{\mathfrak{L}}$ is the monomial limit of some monomial Cauchy sequence in \mathfrak{L} :

$$\mathfrak{m} = \lim_{i \to \infty} \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \ell_i^{\alpha_i}.$$

(Thus, viewing \mathfrak{L} and $\overline{\mathfrak{L}}$ as topological groups in their interval topology, $\overline{\mathfrak{L}}$ is the completion of its subgroup \mathfrak{L} .) Given a subset \mathfrak{S} of \mathfrak{L} , let $\overline{\mathfrak{S}}$ denote the set of all monomial limits of monomial Cauchy sequences in \mathfrak{S} (so $\overline{\mathfrak{S}}$ is the closure of \mathfrak{S} in $\overline{\mathfrak{L}}$), and $\widehat{\mathfrak{S}}$ the set of all monomial limits of *strictly decreasing* monomial Cauchy sequences $\mathfrak{m}_1 \succ \mathfrak{m}_2 \succ \cdots$ in \mathfrak{S} . Note that if $\mathfrak{S} \subseteq \mathfrak{L}$ is noetherian, then so is $\overline{\mathfrak{S}} \subseteq \overline{\mathfrak{L}}$, and $\overline{\mathfrak{S}} = \mathfrak{S} \cup \widehat{\mathfrak{S}}$.

Proposition 2.2. Let $\mathfrak{S}, \mathfrak{S}' \subseteq \mathfrak{L}$ be noetherian. Then

- (1) If $\mathfrak{S} \subseteq \mathfrak{S}'$, then $\widehat{\mathfrak{S}} \subseteq \widehat{\mathfrak{S}}'$ and $\overline{\mathfrak{S}} \subseteq \overline{\mathfrak{S}}'$.
- (2) $\widehat{\mathfrak{S} \cup \mathfrak{S}'} = \widehat{\mathfrak{S}} \cup \widehat{\mathfrak{S}'}$ and $\overline{\mathfrak{S} \cup \mathfrak{S}'} = \overline{\mathfrak{S}} \cup \overline{\mathfrak{S}'}$.
- (3) $\widehat{\mathfrak{S}\mathfrak{S}'} = \overline{\mathfrak{S}}\widehat{\mathfrak{S}'} \cup \widehat{\mathfrak{S}}\overline{\mathfrak{S}'} \text{ and } \overline{\mathfrak{S}\mathfrak{S}'} = \overline{\mathfrak{S}} \overline{\mathfrak{S}'}.$
- (4) If $\mathfrak{S} \prec 1$, then $\widehat{\mathfrak{S}^*} \subseteq \mathfrak{S}^*(\widehat{\mathfrak{S}})^*$ and $\overline{\mathfrak{S}^*} \subseteq \overline{\mathfrak{S}}^*$.

Proof. Parts (1) and (2) are trivial.

For (3) consider a monomial limit l of a sequence $\mathfrak{m}_1\mathfrak{n}_1 \succ \mathfrak{m}_2\mathfrak{n}_2 \succ \cdots$, where

 $(\mathfrak{m}_1,\mathfrak{n}_1),(\mathfrak{m}_2,\mathfrak{n}_2),\ldots$

is a sequence in $\mathfrak{S} \times \mathfrak{S}'$. Since \mathfrak{S} and \mathfrak{S}' are noetherian, we may assume, after choosing a subsequence of $(\mathfrak{m}_1, \mathfrak{n}_1), (\mathfrak{m}_2, \mathfrak{n}_2), \ldots$, that $\mathfrak{m}_1 \succeq \mathfrak{m}_2 \succeq \cdots$ and $\mathfrak{n}_1 \succeq \mathfrak{m}_2 \succeq \cdots$. Because $(\mathfrak{m}_i \mathfrak{n}_i)$ is a monomial Cauchy sequence, both sequences (\mathfrak{m}_i) and (\mathfrak{n}_i) are monomial Cauchy sequences as well. The sequences (\mathfrak{m}_i) and (\mathfrak{n}_i) cannot both be ultimately constant. If one of them is, say $\mathfrak{m}_i = \mathfrak{m}$ for all $i \ge i_0$, then

$$\mathfrak{l} = \lim_{i \to \infty} \mathfrak{m}_i \mathfrak{n}_i = \mathfrak{m} \lim_{i \to \infty} \mathfrak{n}_i \in \mathfrak{S}\widehat{\mathfrak{S}'}.$$

Otherwise, we have

$$\mathfrak{l} = \lim_{i o \infty} \mathfrak{m}_i \mathfrak{n}_i = \lim_{i o \infty} \mathfrak{m}_i \lim_{i o \infty} \mathfrak{n}_i \in \widehat{\mathfrak{S}}\widehat{\mathfrak{S}'}.$$

Hence $\widetilde{\mathfrak{S}}\widetilde{\mathfrak{S}'} \subseteq \overline{\mathfrak{S}}\widetilde{\mathfrak{S}'} \cup \widetilde{\mathfrak{S}}\overline{\mathfrak{S}'}$. The other inclusions of (3) now follow easily.

As to (4), assume that $\mathfrak{S} \prec 1$ and let \mathfrak{l} be a monomial limit of a sequence

$$\mathfrak{m}_1 = \mathfrak{m}_{1,1} \cdots \mathfrak{m}_{1,l_1} \succ \mathfrak{m}_2 = \mathfrak{m}_{2,1} \cdots \mathfrak{m}_{2,l_2} \succ \cdots,$$

where $(\mathfrak{m}_{1,1},\ldots,\mathfrak{m}_{1,l_1}), (\mathfrak{m}_{2,1},\ldots,\mathfrak{m}_{2,l_2}),\ldots$ is a sequence of tuples over \mathfrak{S} . Since the set of these tuples is noetherian for Higman's embeddability ordering [8], we may assume, after choosing a subsequence, that in this ordering

$$(\mathfrak{m}_{1,1},\ldots,\mathfrak{m}_{1,l_1}) \succcurlyeq (\mathfrak{m}_{2,1},\ldots,\mathfrak{m}_{2,l_2}) \succcurlyeq \cdots$$

In particular, we have $l_1 \leq l_2 \leq \cdots$. We claim that the sequence (l_i) is ultimately constant. Assume the contrary. Then, after choosing a second subsequence, we may assume that $l_1 < l_2 < \cdots$. Let $1 \leq k_{i+1} \leq l_{i+1}$ be such that

$$(\mathfrak{m}_{i,1},\ldots,\mathfrak{m}_{i,l_i}) \succcurlyeq (\mathfrak{m}_{i+1,1},\ldots,\mathfrak{m}_{i+1,k_{i+1}-1},\mathfrak{m}_{i+1,k_{i+1}+1},\ldots,\mathfrak{m}_{i+1,l_{i+1}})$$

for all *i*, hence $\mathfrak{m}_i \succeq \mathfrak{m}_{i+1}/\mathfrak{m}_{i+1,k_{i+1}}$ for all *i*. Since \mathfrak{S} is noetherian, the set $\{\mathfrak{m}_{2,k_2},\mathfrak{m}_{3,k_3},\ldots\}$ has a largest element $\mathfrak{v}\prec 1$. But then

$$\mathfrak{m}_{i+1}/\mathfrak{m}_i \preccurlyeq \mathfrak{m}_{i+1,k_{i+1}} \preccurlyeq \mathfrak{v}$$

for all i, which contradicts (\mathfrak{m}_i) being a monomial Cauchy sequence. This proves our claim that (l_i) is ultimately constant.

We now proceed as in (3) to finish the proof of (4).

Given $\mathfrak{S} \subseteq \mathfrak{L}$ we say that \mathfrak{S} has decay > 1 if for each $\mathfrak{m} = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \in \widehat{\mathfrak{S}}$ there exists $k_0 \in \mathbb{N}$ such that $\alpha_k < -1$ for all $k \ge k_0$. Each finite subset of \mathfrak{L} has decay > 1.

Example 2.3. Fix $n \ge 1$, and define a sequence $(\mathfrak{m}_i)_{i\ge 0}$ in \mathfrak{L} by

$$\mathfrak{m}_0 = \left(\frac{1}{\ell_0}\right)^n, \quad \mathfrak{m}_1 = \left(\frac{1}{\ell_0\ell_1}\right)^n, \quad \dots, \quad \mathfrak{m}_i := \left(\frac{1}{\ell_0\ell_1\cdots\ell_i}\right)^n \quad (i \ge 0)$$

Then the continued logarithmic monomial

$$\mathfrak{l} = \left(\frac{1}{\ell_0\ell_1\cdots\ell_i\cdots}\right)^n\in\overline{\mathfrak{L}}$$

is the monomial limit of the sequence $\mathfrak{m}_0 \succ \mathfrak{m}_1 \succ \cdots$ in \mathfrak{L} . Hence the subset $\{\mathfrak{m}_i : i = 0, 1, 2, \dots\}$ of \mathfrak{L} has decay > 1 if n > 1, but not if n = 1.

Corollary 2.4. If \mathfrak{S} and \mathfrak{S}' are noetherian subsets of \mathfrak{L} of decay > 1, then $\mathfrak{S} \cup \mathfrak{S}'$ and $\mathfrak{S}\mathfrak{S}'$ are noetherian of decay > 1; if in addition $\mathfrak{S} \prec 1$, then \mathfrak{S}^* is noetherian of decay > 1.

3. Logarithmic transseries of decay > 1

Consider the ordered field $\mathbb{L} := \mathbb{R}[[\mathfrak{L}]]$ of *logarithmic transseries*, and equip \mathbb{L} with the strongly linear derivation $f \mapsto f'$ such that for each $\alpha \in \mathbb{R}$,

$$(\ell_0^{\alpha})' = \alpha \ell_0^{\alpha - 1}, \ (\ell_k^{\alpha})' = \alpha \ell_k^{\alpha - 1} (\ell_0 \ell_1 \cdots \ell_{k-1})^{-1}$$
 for $k > 0.$

This makes \mathbb{L} a real closed *H*-field with constant field \mathbb{R} , and \mathbb{L} is closed under integration (see *example* at the end of Section 11 in [2]). Hence by Lemma 1.7 the distinguished integration operator \int on \mathbb{L} is strongly linear.

A logarithmic transferies $f \in \mathbb{L}$ is said to have decay > 1 if its support supp f has decay > 1. By Corollary 2.4 above,

$$\mathbb{L}_1 := \{ f \in \mathbb{L} : f \text{ has decay} > 1 \}$$

is a subfield of \mathbb{L} containing the subfield $\mathbb{R}(\mathfrak{L})$ of \mathbb{L} generated by \mathfrak{L} over \mathbb{R} . In addition $F(\varepsilon) \in \mathbb{L}_1$ for any formal power series $F(X) \in \mathbb{R}[[X]]$ and any *n*-tuple $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$ of infinitesimals in \mathbb{L}_1 , where $X = (X_1, \ldots, X_n)$, $n \ge 1$. Hence by Lemma 1.6 the field \mathbb{L}_1 is real closed. Defining the logarithmic function on $\mathbb{L}^{>0}$ as in the subsection "Exponentials and logarithms" of Section 2, we obtain

$$\log(\ell_0^{\alpha_0}\ell_1^{\alpha_1}\cdots\ell_k^{\alpha_k}) = \alpha_0\ell_1 + \cdots + \alpha_k\ell_{k+1} \in \mathbb{L}_1$$

for $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$. It follows that $\log f \in \mathbb{L}_1$ for every positive $f \in \mathbb{L}_1$.

Proposition 3.1. The field \mathbb{L}_1 is closed under differentiation. (Thus \mathbb{L}_1 is an *H*-subfield of \mathbb{L} .)

Proof. Let $l \in \overline{\mathfrak{L}}$ be a monomial limit of a strictly decreasing sequence in supp f', where $f \in \mathbb{L}_1$; hence l is the monomial limit of a sequence

$$\mathfrak{m}_1\mathfrak{n}_1\succ\mathfrak{m}_2\mathfrak{n}_2\succ\cdots$$

where $\mathfrak{m}_i \in \operatorname{supp} f$ and $\mathfrak{n}_i \in \operatorname{supp} \mathfrak{m}_i^{\dagger}$ for all *i*. Note that $\mathfrak{n}_i \in \mathfrak{D}$, where

$$\mathfrak{D} = \left\{ \frac{1}{\ell_0}, \frac{1}{\ell_0 \ell_1}, \frac{1}{\ell_0 \ell_1 \ell_2}, \dots \right\}.$$
(3.1)

Since supp f and \mathfrak{D} are notherian, we may assume that

$$\mathfrak{m}_1 \succcurlyeq \mathfrak{m}_2 \succcurlyeq \cdots$$
 and $\mathfrak{n}_1 \succcurlyeq \mathfrak{n}_2 \succcurlyeq \cdots$

after choosing a subsequence. Therefore (\mathfrak{m}_i) and (\mathfrak{n}_i) are monomial Cauchy sequences. We claim that (\mathfrak{m}_i) cannot be ultimately constant: if

$$\mathfrak{m}_i = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \ell_k^{\alpha_k}$$

for all $i \ge i_0$, then

$$\mathfrak{n}_i \in \operatorname{supp} \mathfrak{m}_i^{\dagger} \subseteq \left\{ \frac{1}{\ell_0}, \frac{1}{\ell_0 \ell_1}, \dots, \frac{1}{\ell_0 \ell_1 \cdots \ell_k} \right\}$$

for all $i \ge i_0$, so (\mathfrak{n}_i) and thus $(\mathfrak{m}_i \mathfrak{n}_i)$ would be ultimately constant. This contradiction proves our claim. If (\mathfrak{n}_i) is ultimately constant, say $\mathfrak{n}_i = \mathfrak{n}$ for all $i \ge i_0$, then

$$\mathfrak{l} = \lim_{i \to \infty} \mathfrak{m}_i \mathfrak{n}_i = (\lim_{i \to \infty} \mathfrak{m}_i) \mathfrak{n}.$$

Otherwise

$$\lim_{i\to\infty}\mathfrak{n}_i=\frac{1}{\ell_0\ell_1\ell_2\cdots}\in\overline{\mathfrak{L}},$$

hence

$$\mathfrak{l} = \lim_{i \to \infty} \mathfrak{m}_i \mathfrak{n}_i = (\lim_{i \to \infty} \mathfrak{m}_i) \frac{1}{\ell_0 \ell_1 \ell_2 \cdots},$$

which proves our proposition.

Example 3.2. We have $\mathbb{R}\langle \varrho \rangle = \mathbb{R}(\varrho, \varrho', \ldots) \subseteq \mathbb{L}_1$ as differential fields. Clearly $\lambda \in \mathbb{L}$, but \mathbb{L}_1 does not contain any element of the form $\lambda + \varepsilon$, where $\varepsilon \in \mathbb{L}$ satisfies $\varepsilon \prec 1/(\ell_0 \ell_1 \cdots \ell_n)$ for all *n*. (See Example 2.3.) Note also that $\Lambda \notin \mathbb{L}_1$.

Next we want to show that the differential field \mathbb{L}_1 is closed under integration. For this we need the following two lemmas:

Lemma 3.3. For any nonzero $\alpha \in \mathbb{R}$ and any $f \in \mathbb{L}$, the linear differential equation

$$y' + \alpha y = f \tag{3.2}$$

has a unique solution $y = g \in \mathbb{L}$, and if $f \in \mathbb{L}_1$, then $g \in \mathbb{L}_1$.

Proof. Note that for each *i*, supp $f^{(i)}$ is contained in the set $(\text{supp } f)\mathfrak{D}^i$, where \mathfrak{D} is as in (3.1). Since $\mathfrak{D}^* = \bigcup_i \mathfrak{D}^i$ is noetherian and each of its elements lies in \mathfrak{D}^i for only finitely many *i*, the family $(f^{(i)})$ is noetherian. Hence we have an explicit formula for a solution *g* to (3.2):

$$g := \sum_{i=0}^{\infty} (-1)^i \frac{f^{(i)}}{\alpha^{i+1}}.$$

The solution $g \in \mathbb{L}$ is unique, since the homogeneous equation $y' + \alpha y = 0$ only has the solution y = 0 in \mathbb{L} . Now suppose $f \in \mathbb{L}_1$, and let $\mathfrak{l} = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \in \overline{\mathfrak{L}}$ be a monomial limit of a sequence

$$\mathfrak{m}_1\mathfrak{n}_1\succ\mathfrak{m}_2\mathfrak{n}_2\succ\cdots$$

in supp(g) where $\mathfrak{m}_i \mathfrak{n}_i \in \operatorname{supp}(f^{k(i)})$, with $\mathfrak{m}_i \in \operatorname{supp}(f)$ and $\mathfrak{n}_i \in \mathfrak{D}^{k(i)}$. We can assume that $\mathfrak{m}_1 \succeq \mathfrak{m}_2 \succeq \cdots$ and $\mathfrak{n}_1 \succeq \mathfrak{n}_2 \succeq \cdots$. Hence (\mathfrak{m}_i) and (\mathfrak{n}_i) are monomial Cauchy sequences with limit $\mathfrak{m} \in \overline{\mathfrak{L}}$ and $\mathfrak{n} \in \overline{\mathfrak{L}}$, respectively, so that $\mathfrak{l} = \mathfrak{mn}$. The exponent of ℓ_0 in \mathfrak{n}_i is -k(i), and thus the sequence (k(i)) is bounded. Hence we can even assume that this sequence is constant. Then $\alpha_k < -1$ for all sufficiently large k, by Proposition 3.1. Hence $g \in \mathbb{L}_1$ as required. \Box

For $k \in \mathbb{N}$ we consider the embedding of ordered abelian groups

$$\mathfrak{m} = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \ell_n^{\alpha_n} \mapsto \mathfrak{m} \circ \ell_k := \ell_k^{\alpha_0} \ell_{k+1}^{\alpha_1} \cdots \ell_{k+n}^{\alpha_n} : \mathfrak{L} \to \mathfrak{L}$$

and denote its unique extension to a strongly linear \mathbb{R} -algebra endomorphism of \mathbb{L} by $f \mapsto f \circ \ell_k$. Note that $(f \circ \ell_k)' = (f' \circ \ell_k)\ell'_k$ for $f \in \mathbb{L}$, and if $f \in \mathbb{L}_1$, then $f \circ \ell_k \in \mathbb{L}_1$.

In the statement of the next lemma we use the multiindex notation $\ell^{\alpha} := \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots \ell_n^{\alpha_n}$, for an (n+1)-tuple $\alpha = (\alpha_0, \ldots, \alpha_n) \in \mathbb{R}^{n+1}$.

Lemma 3.4. Let $n \in \mathbb{N}$ and suppose $(g_{\alpha})_{\alpha \in \mathbb{R}^{n+1}}$ is a family in \mathbb{L}_1 such that the family $(\ell^{\alpha} \cdot (g_{\alpha} \circ \ell_{n+1}))_{\alpha}$ in \mathbb{L} is noetherian. Then

$$\sum_{\alpha} \ell^{\alpha} \cdot (g_{\alpha} \circ \ell_{n+1}) \in \mathbb{L}_1.$$

Proof. Let $\mathfrak{l} \in \overline{\mathfrak{L}}$ be a monomial limit of a sequence $\ell^{\alpha_1}\mathfrak{n}_1 \succ \ell^{\alpha_2}\mathfrak{n}_2 \succ \cdots$ where $\alpha_i \in \mathbb{R}^{n+1}$ and $\mathfrak{n}_i \in \operatorname{supp}(g_{\alpha_i} \circ \ell_{n+1})$ for all *i*. Then there exists an index i_0 such that $\alpha_{i_0} = \alpha_{i_0+1} = \cdots$, and hence $\mathfrak{n}_{i_0} \succ \mathfrak{n}_{i_0+1} \succ \cdots$ is a sequence in $\operatorname{supp}(g_{\alpha_{i_0}} \circ \ell_{n+1})$ with monomial limit $\mathfrak{l}/\ell^{\alpha_{i_0}}$. Since $g_{\alpha_{i_0}} \circ \ell_{n+1} \in \mathbb{L}_1$, the lemma follows.

Proposition 3.5. The *H*-field \mathbb{L}_1 is closed under integration.

Proof. Let $f \in \mathbb{L}_1$. Since $1/(\ell_0 \ell_1 \ell_2 \cdots)$ is not a monomial limit of a sequence in supp f, there exists $k \in \mathbb{N}$ such that

$$l(\mathfrak{m} \cdot \ell_0 \ell_1 \ell_2 \cdots) \leqslant k$$
 for all $\mathfrak{m} \in \operatorname{supp} f$.

Take k minimal with this property. We proceed by induction on k. Write

$$f = \sum_{\alpha \in \mathbb{R}} x^{\alpha - 1} (F_{\alpha} \circ \ell_1)$$

where $F_{\alpha} \in \mathbb{L}_1$ for each $\alpha \in \mathbb{R}$, and for $0 \neq \alpha \in \mathbb{R}$, let $g_{\alpha} \in \mathbb{L}_1$ be the unique solution to the linear differential equation $y' + \alpha y = F_{\alpha}$, by Lemma 3.3. Then

$$\int x^{\alpha-1}(F_{\alpha} \circ \ell_1) = x^{\alpha}(g_{\alpha} \circ \ell_1) \in \mathbb{L}_1$$

for $\alpha \neq 0$. Since distinguished integration on \mathbb{L} is strongly linear, we have

$$\int f = (g_0 \circ l_1) + \sum_{\alpha \neq 0} x^{\alpha} (g_{\alpha} \circ \ell_1) \in \mathbb{L},$$

where $g_0 := \int F_0$, and thus $\int f \in \mathbb{L}_1$ if $g_0 \in \mathbb{L}_1$ (by Lemma 3.4). If k = 0, then $F_0 = 0$, hence $g_0 = 0 \in \mathbb{L}_1$. If k > 0, then

$$l(\mathfrak{m} \cdot \ell_0 \ell_1 \ell_2 \cdots) \leq k-1 \quad \text{for all } \mathfrak{m} \in \operatorname{supp} F_0,$$

hence $g_0 \in \mathbb{L}_1$, by the induction hypothesis. We conclude that $\int f \in \mathbb{L}_1$.

4. Strong differentiation, strong integration, and flattening

For the convenience of the reader and to fix notations, we first state some facts about the field of transseries \mathbb{T} in addition to those mentioned in the introduction. For proofs, we refer to [9], where \mathbb{T} is defined as exponential *H*-field, and to [17] for more details; see [12] for an independent construction of \mathbb{T} as exponential field.

Facts about T

As an ordered field, \mathbb{T} is the union of an increasing sequence

$$\mathbb{L} = \mathbb{R}[[\mathfrak{T}_0]] \subseteq \mathbb{R}[[\mathfrak{T}_1]] \subseteq \cdots \subseteq \mathbb{R}[[\mathfrak{T}_n]] \subseteq \cdots$$

of ordered transseries subfields over \mathbb{R} , with $\mathfrak{T}_0 = \mathfrak{L}$, and where each inclusion $\mathbb{R}[[\mathfrak{T}_n]] \subseteq \mathbb{R}[[\mathfrak{T}_{n+1}]]$ comes from a corresponding inclusion $\mathfrak{T}_n \subseteq \mathfrak{T}_{n+1}$ of multiplicative ordered abelian groups. The exponential operation exp on \mathbb{T} maps the ordered additive group $\mathbb{R}[[\mathfrak{T}_n]]^{\uparrow}$ isomorphically onto the ordered group \mathfrak{T}_{n+1} . Hence $\log \mathfrak{m} \in \mathbb{R}[[\mathfrak{T}_n]]^{\uparrow}$ for $\mathfrak{m} \in \mathfrak{T}_{n+1}$, where $\log \colon \mathbb{T}^{>0} \to \mathbb{T}$ is the inverse of exp. Also

$$\log(1+\varepsilon) = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i} \varepsilon^i \mathbb{R}[[\mathfrak{T}_n]]$$
(4.1)

for $1 \succ \varepsilon \in \mathbb{R}[[\mathfrak{T}_n]]$. For $f \in \mathbb{T}^{>0}$ and $r \in \mathbb{R}$ we put $f^r := \exp(r \log f) \in \mathbb{T}$; one checks easily that $f^r \ge 1$ if $f \ge 1$ and $r \ge 0$, and that this operation of raising to real powers makes $\mathbb{T}^{>0}$ into a multiplicative vector space over \mathbb{R} containing each \mathfrak{T}_n as a multiplicative \mathbb{R} -subspace.

We put $\mathfrak{T} := \bigcup_n \mathfrak{T}_n$ (an ordered subgroup of $\mathbb{T}^{>0}$), so the ordered transseries field $\mathbb{R}[[\mathfrak{T}]]$ over \mathbb{R} contains \mathbb{T} as an ordered subfield. The ordered field $\mathbb{R}[[\mathfrak{T}]]$ comes equipped with two strongly linear automorphisms $f \mapsto f \uparrow$ (upward shift) and $f \mapsto f \downarrow$ (downward shift), which are mutually inverse and map \mathbb{T} to itself. The downward shift extends the map $f \mapsto f \circ \ell_1$ on \mathbb{L} used in the last section, and also the composition operation $f \mapsto f \circ \log x$ on $\mathbb{R}[[x]]]$. (See [9, Chapter 2].) We have $\exp(f)\uparrow = \exp(f\uparrow)$ for $f \in \mathbb{T}$, and hence $\log(f)\uparrow = \log(f\uparrow)$ and $(f^r)\uparrow = (f\uparrow)^r$ for $f \in \mathbb{T}^{>0}, r \in \mathbb{R}$. From these properties one finds by induction that $\mathfrak{T}_n\uparrow \subseteq \mathfrak{T}_{n+1}$ and $\mathfrak{T}_n\downarrow \subseteq \mathfrak{T}_n$. (Hence $\mathfrak{m} \mapsto \mathfrak{m}\uparrow$ is an automorphism of the ordered group \mathfrak{T} .) We denote the *n*-fold functional composition of $f \mapsto f\downarrow$ by $f \mapsto f\downarrow^n$, and similarly we write $f \mapsto f\uparrow^n$ for the *n*-fold composition of $f \mapsto f\uparrow$.

The derivation on \mathbb{T} restricts to a strongly linear derivation on each subfield $\mathbb{R}[[\mathfrak{T}_n]]$, and extends uniquely to a strongly linear derivation $D: f \mapsto f'$ on $\mathbb{R}[[\mathfrak{T}]]$. With this derivation, $\mathbb{R}[[\mathfrak{T}]]$ is a real closed *H*-field with constant field \mathbb{R} . We have

$$(f\uparrow)' = e^x \cdot (f')\uparrow, \quad (f\downarrow)' = \frac{1}{x} \cdot (f')\downarrow \quad (f \in \mathbb{R}[[\mathfrak{T}]]).$$

Note that $v(\exp(-\Lambda))$ remains a gap in $\mathbb{R}[[\mathfrak{T}]]$, so $\mathbb{R}[[\mathfrak{T}]]$ is not closed under asymptotic integration. There is also no natural extension of the exponential operation on \mathbb{T} to one on $\mathbb{R}[[\mathfrak{T}]]$. Nevertheless, using (4.1) one easily checks that the function log: $\mathbb{T}^{>0} \to \mathbb{T}$ extends to an embedding log of the ordered multiplicative group $\mathbb{R}[[\mathfrak{T}]]^{>0}$ into the ordered additive group $\mathbb{R}[[\mathfrak{T}]]^{>0}$, by setting

$$\log g := \log a\mathfrak{m} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \varepsilon^n$$

for $g = a\mathfrak{m}(1 + \varepsilon)$, $a \in \mathbb{R}^{>0}$, $\mathfrak{m} \in \mathfrak{T}$, and $1 \succ \varepsilon \in \mathbb{R}[[\mathfrak{T}]]$.

Monomial subgroups of ${\mathfrak T}$

In the next section we construct a Liouville closed *H*-subfield of \mathbb{T} containing \mathbb{L}_1 ; this will involve subgroups \mathfrak{M} of \mathfrak{T} such that the subfield $\mathbb{R}[[\mathfrak{M}]]$ of $\mathbb{R}[[\mathfrak{T}]]$ is closed under differentiation and integration. In the rest of this section, \mathfrak{M}_n denotes an ordered subgroup of \mathfrak{T}_n , for every *n*, with the following properties:

(M1) $\mathfrak{M}_0 = \mathfrak{L};$

(M2) $A_n := \log \mathfrak{M}_{n+1}$ is an \mathbb{R} -linear subspace of $\mathbb{R}[[\mathfrak{M}_n]]^{\uparrow}$ and is closed under truncation;

(M3) $\mathfrak{M}_n \subseteq \mathfrak{M}_{n+1}$.

Here a set $A \subseteq \mathbb{R}[[\mathfrak{T}]]$ is said to be *closed under truncation* if for each $f = \sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}}\mathfrak{m} \in A$ and each final segment \mathfrak{F} of \mathfrak{T} we have $f|_{\mathfrak{F}} := \sum_{\mathfrak{m} \in \mathfrak{F}} f_{\mathfrak{m}}\mathfrak{m} \in A$.

We put $\mathfrak{M} := \bigcup_n \mathfrak{M}_n$, a subgroup of \mathfrak{T} . When needed we shall also impose: (M4) $\mathfrak{M}^{\uparrow} \subseteq \mathfrak{M}$.

Example 4.1. Let $\mathfrak{M}_n := \mathfrak{T}_n$. Then the \mathfrak{M}_n satisfy (M1)–(M4), with $A_n = \mathbb{R}[[\mathfrak{T}_n]]^{\uparrow}$ and $\mathfrak{M} = \mathfrak{T}$.

By (M1), the set $\log \mathfrak{M}_0$ is also an \mathbb{R} -linear subspace of $\mathbb{R}[[\mathfrak{M}_0]]$ closed under truncation. By (M1) and (M2), each \mathfrak{M}_n is *closed under* \mathbb{R} -powers: if $\mathfrak{m} \in \mathfrak{M}_n$ and $r \in \mathbb{R}$, then $\mathfrak{m}^r \in \mathfrak{M}_n$. Also by (M1) and (M2), each subfield $\mathbb{R}[[\mathfrak{M}_n]]$ of \mathbb{T} is closed under taking logarithms of positive elements, and so is the subfield $\mathbb{R}[[\mathfrak{M}]]$ of $\mathbb{R}[[\mathfrak{T}]]$. Moreover, each subfield $\mathbb{R}[[\mathfrak{M}_n]]$ of \mathbb{T} is closed under differentiation, hence is an *H*-subfield of \mathbb{T} . (This follows by an easy induction on *n*: use (M1) for n = 0, and (M2) for the induction step.) It follows that the subfield $\mathbb{R}[[\mathfrak{M}]]$ of $\mathbb{R}[[\mathfrak{T}]]$ is closed under differentiation, hence is an *H*-subfield of $\mathbb{R}[[\mathfrak{M}]]$ of $\mathbb{R}[[\mathfrak{T}]]$.

Lemma 4.2. The *H*-field $\mathbb{R}[[\mathfrak{M}]]$ is closed under asymptotic integration if and only if $\exp(\Lambda) \notin \mathfrak{M}$. In this case, $\mathbb{R}[[\mathfrak{M}]]$ is closed under integration, and the map $f \mapsto \int f : \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{M}]]$ is strongly linear.

Proof. The *H*-field $\mathbb{R}[[\mathfrak{M}]]$ is closed under asymptotic integration if and only if it does not have a gap ([1, Section 2]). The valuation of $\mathbb{R}[[\mathfrak{T}]]$ maps \mathfrak{T} bijectively and order-reversingly onto the value group of $\mathbb{R}[[\mathfrak{T}]]$, and also \mathfrak{M} onto the value group of $\mathbb{R}[[\mathfrak{M}]]$. The element $\exp(-\Lambda)$ of \mathfrak{T} satisfies $(1/\ell_n)' \prec \exp(-\Lambda) \prec (1/\ell_n)^{\dagger}$ for all *n*. Because the sequence $1/\ell_0, 1/\ell_1, \ldots$ is coinitial in $\mathfrak{M}^{\prec 1}$, this yields the first part of the lemma. The rest now follows from Lemma 1.7.

Put $\mathfrak{M}'_n := \mathfrak{M}_n \cap \mathfrak{M}^{\uparrow}$ and $\mathfrak{M}' := \bigcup_n \mathfrak{M}'_n$. The next easy lemma is left as an exercise to the reader.

Lemma 4.3. The family (\mathfrak{M}'_n) satisfies the following analogues of (M1)-(M3): $\mathfrak{M}'_0 = \mathfrak{L}$; $\log \mathfrak{M}'_{n+1}$ is an \mathbb{R} -linear subspace of $\mathbb{R}[[\mathfrak{M}'_n]]^{\uparrow}$ closed under truncation; $\mathfrak{M}'_n \subseteq \mathfrak{M}'_{n+1}$. If (M4) holds, then $\mathfrak{M}' = \mathfrak{M}^{\uparrow}$ and $\mathfrak{M}'^{\uparrow} \subseteq \mathfrak{M}'$.

In the rest of this section \mathfrak{N} denotes a convex subgroup of \mathfrak{M} , equivalently, a subgroup such that for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$,

$$\mathfrak{m} \preceq \mathfrak{n} \in \mathfrak{N} \Rightarrow \mathfrak{m} \in \mathfrak{N}.$$

Note that then \mathfrak{N} is closed under \mathbb{R} -powers, and that $\mathfrak{N}\uparrow$ is a convex subgroup of $\mathfrak{M}\uparrow$. To \mathfrak{N} we associate the set

$$I := \{ \mathfrak{m} \in \mathfrak{M}^{\succ 1} : \exp \mathfrak{m} \preceq \mathfrak{n} \text{ for some } \mathfrak{n} \in \mathfrak{N} \} \subseteq \mathfrak{N}.$$

Then I is an initial segment of $\mathfrak{M}^{\succ 1}$ (with $I = \emptyset$ if $\mathfrak{N} = \{1\}$). Consequently, the complement $F = \mathfrak{M}^{\succ 1} \setminus I$ of I is a final segment of $\mathfrak{M}^{\succ 1}$, and

$$\mathfrak{R} := \{\mathfrak{r} \in \mathfrak{M} : \log \mathfrak{r} \in \mathbb{R}[[F]]\}$$

is also a subgroup of ${\mathfrak M}$ closed under ${\mathbb R}\text{-powers}.$

Lemma 4.4. For all $\mathfrak{m} \in \mathfrak{M}$ we have

$$\mathfrak{m} \in \mathfrak{N} \iff \log \mathfrak{m} \in \mathbb{R}[[I]].$$

Proof. The lemma holds trivially if $\mathfrak{N} = \{1\}$. Assume that $\mathfrak{N} \neq \{1\}$; hence $\ell_k \in \mathfrak{N}$ for some $k \in \mathbb{N}$. Let $\mathfrak{m} \in \mathfrak{M}_n$. We prove the desired equivalence by distinguishing the cases n = 0 and n > 0. If n = 0, then we take $k \in \mathbb{N}$ minimal such that $\ell_k \in \mathfrak{N}$, so

$$\mathfrak{N} \cap \mathfrak{L} = \{ \ell_0^{\beta_0} \ell_1^{\beta_1} \dots \in \mathfrak{L} : \beta_i = 0 \text{ for all } i < k \},\$$

which easily yields the desired equivalence.

Suppose that n > 0. Then $\log \mathfrak{m} \in A_{n-1}$. Since A_{n-1} is closed under truncation we have $\log \mathfrak{m} = \varphi + \psi$ with $\varphi \in A_{n-1} \cap \mathbb{R}[[I]]$ and $\psi \in A_{n-1} \cap \mathbb{R}[[F]]$. Hence $e^{\varphi}, e^{\psi} \in \mathfrak{M}$. In fact $e^{\varphi} \in \mathfrak{N}$, because if $\varphi \neq 0$, then $\mathfrak{d}(\varphi) \in I$, so $e^{\varphi} \cong e^{\mathfrak{d}(\varphi)} \preceq \mathfrak{n}$ for some $\mathfrak{n} \in \mathfrak{N}$. Similarly, if $\psi \neq 0$, then $e^{\psi} \notin \mathfrak{N}$. The desired equivalence now follows from $\mathfrak{m} = e^{\varphi} \cdot e^{\psi}$.

With $\mathfrak{N}_n := \mathfrak{N} \cap \mathfrak{M}_n$ and $\mathfrak{R}_n := \mathfrak{R} \cap \mathfrak{M}_n$ we have:

Corollary 4.5. $\mathfrak{N} \cap \mathfrak{R} = \{1\}$ and $\mathfrak{M}_n = \mathfrak{N}_n \cdot \mathfrak{R}_n$.

It follows that $\mathfrak{M} = \mathfrak{N} \cdot \mathfrak{R}$, and the products $\mathfrak{n}\mathfrak{r}$ with $\mathfrak{n} \in \mathfrak{N}$ and $\mathfrak{r} \in \mathfrak{R}$ are ordered antilexicographically: $\mathfrak{n}\mathfrak{r} \succ 1$ if and only if $\mathfrak{r} \succ 1$, or $\mathfrak{r} = 1$ and $\mathfrak{n} \succ 1$. We think of the monomials in the convex subgroup \mathfrak{N} as being *flat*. Accordingly we call \mathfrak{R} the *steep supplement* of \mathfrak{N} .

Proof of Corollary 4.5. It is clear from the previous lemma that $\mathfrak{N} \cap \mathfrak{R} = \{1\}$. We now show $\mathfrak{M}_n = \mathfrak{N}_n \cdot \mathfrak{R}_n$. Let $\mathfrak{m} \in \mathfrak{M}_n$. Then $\log \mathfrak{m} \in \mathbb{R}[[\mathfrak{M}]]^{\uparrow}$, so $\log \mathfrak{m} = \varphi + \psi$ with $\varphi \in \mathbb{R}[[I]], \ \psi \in \mathbb{R}[[F]]$. Since $\log \mathfrak{M}_n$ is truncation closed, we have $\varphi, \psi \in \log \mathfrak{M}_n$, so $\mathfrak{m} = \mathfrak{n}\mathfrak{r}$ with $\mathfrak{n} := e^{\varphi} \in \mathfrak{M}_n \cap \mathfrak{N} = \mathfrak{N}_n$ and $\mathfrak{r} := e^{\psi} \in \mathfrak{M}_n \cap \mathfrak{R} = \mathfrak{R}_n$, using the previous lemma. \Box

Corollary 4.6. Suppose that $x \in \mathfrak{N}$. Then the following analogues of (M1)–(M3) hold:

(N1) $\mathfrak{N}_0 = \mathfrak{L};$ (N2) $\log \mathfrak{N}_{n+1}$ is an \mathbb{R} -linear subspace of $\mathbb{R}[[\mathfrak{N}_n]]^{\uparrow}$ and is closed under truncation; (N3) $\mathfrak{N}_n \subseteq \mathfrak{N}_{n+1}.$

In particular, the subfield $\mathbb{R}[[\mathfrak{N}]]$ of $\mathbb{R}[[\mathfrak{M}]]$ is closed under differentiation, and if $e^{\Lambda} \notin \mathfrak{N}$, then $\mathbb{R}[[\mathfrak{N}]]$ is also closed under integration.

Remark 4.7. If we drop the assumption $x \in \mathfrak{N}$, then $\mathbb{R}[[\mathfrak{N}]]$ may fail to be closed under differentiation. To see this, take $\mathfrak{N} = {\mathfrak{m} \in \mathfrak{M} : \mathfrak{m} \prec x}$ and $\mathfrak{m} = \log x \in \mathfrak{N}$; then $\mathfrak{m}' = 1/x \approx x$, so $\mathfrak{m}' \notin \mathfrak{N}$.

Property (N2) of Corollary 4.6 follows easily from Lemma 4.4 and its proof (without assuming $x \in \mathfrak{N}$). The rest of the corollary is then obvious.

Lemma 4.8. Suppose that $x \in \mathfrak{N}$, and that $\mathfrak{m} \prec \mathfrak{r}$, where $\mathfrak{m}, \mathfrak{r} \in \mathfrak{M}$, $\mathfrak{r} \notin \mathfrak{N}$. Then $\operatorname{supp} \mathfrak{m}' \prec \mathfrak{r}$.

Proof. By induction on n such that $\mathfrak{m} \in \mathfrak{M}_n$. The claim is trivial for n = 0since $\mathfrak{M}_0 = \mathfrak{N}_0 = \mathfrak{L}$ and $\mathfrak{m}' \in \mathbb{R}[[\mathfrak{L}]]$. Suppose n > 0 and write $\mathfrak{m} = e^{\varphi}$ with $\varphi \in A_{n-1}$. Since $\operatorname{supp} \varphi \prec \mathfrak{m}$ we obtain $\operatorname{supp} \varphi' \prec \mathfrak{r}$, by inductive hypothesis. Any $\mathfrak{u} \in \operatorname{supp} \mathfrak{m}'$ is of the form $\mathfrak{u} = \mathfrak{v} \cdot \mathfrak{m}$ with $\mathfrak{v} \in \operatorname{supp} \varphi'$, hence $\mathfrak{u} \prec \mathfrak{r}$ as required.

Flattening

We "flatten" the dominance relations \prec and \preccurlyeq on $\mathbb{R}[[\mathfrak{M}]]$ by the convex subgroup \mathfrak{N} of \mathfrak{M} as follows:

$$\begin{aligned} f \prec_{\mathfrak{N}} g &:\Leftrightarrow & (\forall \varphi \in \mathfrak{N} : \varphi f \prec g), \\ f \preccurlyeq_{\mathfrak{N}} g &:\Leftrightarrow & (\exists \varphi \in \mathfrak{N} : f \preccurlyeq \varphi g), \end{aligned}$$

for $f, g \in \mathbb{R}[[\mathfrak{M}]]$. We also define, for $f, g \in \mathbb{R}[[\mathfrak{M}]]$:

$$f \asymp_{\mathfrak{N}} g \iff f \preccurlyeq_{\mathfrak{N}} g \land g \preccurlyeq_{\mathfrak{N}} f,$$

hence $\mathfrak{N} = {\mathfrak{m} \in \mathfrak{M} : \mathfrak{m} \asymp_{\mathfrak{N}} 1}$. Flattening corresponds to coarsening the valuation: The value group $v(\mathfrak{M})$ of the natural valuation v on $\mathbb{R}[[\mathfrak{M}]]$ has convex subgroup $v(\mathfrak{N})$, so gives rise to the coarsened valuation $v_{\mathfrak{N}}$ on $\mathbb{R}[[\mathfrak{M}]]$ with (ordered) value group $v(\mathfrak{M})/v(\mathfrak{N})$ given by $v_{\mathfrak{N}}(f) := v(f) + v(\mathfrak{N})$ for $f \in \mathbb{R}[[\mathfrak{M}]]^{\times}$. Then we have the equivalences

$$\begin{aligned} f \prec_{\mathfrak{N}} g &\Leftrightarrow v_{\mathfrak{N}}(f) > v_{\mathfrak{N}}(g), \\ f \preccurlyeq_{\mathfrak{N}} g &\Leftrightarrow v_{\mathfrak{N}}(f) \geqslant v_{\mathfrak{N}}(g), \end{aligned}$$

for $f, g \in \mathbb{R}[[\mathfrak{M}]]$. (See also Section 14 of [2].) The restriction of $\preccurlyeq_{\mathfrak{N}}$ to \mathfrak{M} is a quasi-ordering, i.e., reflexive and transitive; it is antisymmetric (i.e., an ordering) if and only if $\mathfrak{N} = \{1\}$. The restriction of $\preccurlyeq_{\mathfrak{N}}$ to \mathfrak{R} is the already given ordering on \mathfrak{R} . The following rules are valid for $f, g \in \mathbb{R}[[\mathfrak{M}]]$:

the equivalence
$$f \prec_{\mathfrak{N}} g \Leftrightarrow f' \prec_{\mathfrak{N}} g'$$
 holds, provided $f, g \not\prec_{\mathfrak{N}} 1$;
 $1 \prec_{\mathfrak{N}} f \preccurlyeq_{\mathfrak{N}} g \Rightarrow f^{\dagger} \preccurlyeq_{\mathfrak{N}} g^{\dagger};$
 $f \preccurlyeq g \Rightarrow f \preccurlyeq_{\mathfrak{N}} g,$ and hence $f \prec_{\mathfrak{N}} g \Rightarrow f \prec g.$

In our proofs below, we often reduce to the case that $x \in \mathfrak{N}$ by upward shift. Here are a few remarks about this case. If $x \in \mathfrak{N}$, then $\mathfrak{L} \subseteq \mathfrak{N}$, and for all $f \in \mathbb{R}[[\mathfrak{M}]]$:

the equivalence
$$f \asymp_{\mathfrak{N}} 1 \Leftrightarrow f' \asymp_{\mathfrak{N}} 1$$
 holds, provided $f \not\asymp 1$;
 $f \succ_{\mathfrak{N}} 1 \Leftrightarrow f' \succ_{\mathfrak{N}} 1.$ (4.2)

(See [2, Lemma 13.4].) Moreover:

Lemma 4.9. Suppose that $x \in \mathfrak{N}$. Then the following conditions on $\mathfrak{m} \in \mathfrak{M}$ are equivalent:

 $\begin{array}{ll} (1) \ \log \mathfrak{m} \preccurlyeq_{\mathfrak{N}} 1, \\ (2) \ \log \mathfrak{m} \in \mathbb{R}[[\mathfrak{N}]], \\ (3) \ \mathfrak{m}^{\dagger} \in \mathbb{R}[[\mathfrak{N}]], \\ (4) \ \mathfrak{m}^{\dagger} \preccurlyeq_{\mathfrak{N}} 1. \end{array}$

Proof. From supp $(\log \mathfrak{m}) \subseteq \mathfrak{M}^{\succ 1}$ we obtain $(1) \Rightarrow (2)$. The implication $(2) \Rightarrow (3)$ follows from Corollary 4.6, $(3) \Rightarrow (4)$ is trivial, and $(4) \Rightarrow (1)$ follows from (4.2). \Box

Flattened canonical decomposition

We have an isomorphism

$$\mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]][[\mathfrak{R}]]$$

of $\mathbb{R}[[\mathfrak{N}]]$ -algebras given by

$$f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m} \mapsto \sum_{\mathfrak{r} \in \mathfrak{N}} \Big(\sum_{\mathfrak{n} \in \mathfrak{N}} f_{\mathfrak{n}\mathfrak{r}} \mathfrak{n} \Big) \mathfrak{r}.$$

In $\mathbb{R}[[\mathfrak{M}]]$ we have in fact

$$f = \sum_{\mathfrak{r} \in \mathfrak{R}} \Big(\sum_{\mathfrak{n} \in \mathfrak{n}} f_{\mathfrak{n}\mathfrak{r}} \mathfrak{n} \Big) \mathfrak{r},$$

where the sums are interpreted as in Section 1. We shall identify the (real closed, ordered) field $\mathbb{R}[[\mathfrak{M}]]$ with the (real closed, ordered) field $\mathbb{R}[[\mathfrak{M}]][[\mathfrak{R}]]$ by means of this isomorphism. For $f \in \mathbb{R}[[\mathfrak{M}]]$ we put

$$f_{\mathfrak{N},\mathfrak{r}} := \sum_{\mathfrak{n}\in\mathfrak{N}} f_{\mathfrak{n}\mathfrak{r}}\mathfrak{n} \in \mathbb{R}[[\mathfrak{N}]] \quad (\mathfrak{r}\in\mathfrak{R}), \quad \operatorname{supp}_{\mathfrak{N}} f := \{\mathfrak{r}\in\mathfrak{R}: f_{\mathfrak{N},\mathfrak{r}}\neq 0\}.$$

We have the *flattened canonical decomposition* of the \mathbb{R} -vector space $\mathbb{R}[[\mathfrak{M}]]$ (relative to \mathfrak{N})

$$\mathbb{R}[[\mathfrak{M}]] = \mathbb{R}[[\mathfrak{M}]]^{\uparrow} \oplus \mathbb{R}[[\mathfrak{M}]]^{\equiv} \oplus \mathbb{R}[[\mathfrak{M}]]^{\downarrow},$$

where

$$\mathbb{R}[[\mathfrak{M}]]^{\uparrow} = \mathbb{R}[[\mathfrak{N}]][[\mathfrak{R}^{\succ 1}]], \quad \mathbb{R}[[\mathfrak{M}]]^{\equiv} = \mathbb{R}[[\mathfrak{N}]], \quad \mathbb{R}[[\mathfrak{M}]]^{\Downarrow} = \mathbb{R}[[\mathfrak{N}]][[\mathfrak{R}^{\prec 1}]].$$

Accordingly, given a transseries $f \in \mathbb{R}[[\mathfrak{M}]]$, we write

$$f = f^{\uparrow\uparrow} + f^{\equiv} + f^{\Downarrow}$$

where

$$\begin{split} f^{\uparrow} &= \sum_{1 \prec \mathfrak{m} \in \mathfrak{M} \setminus \mathfrak{N}} f_{\mathfrak{m}} \mathfrak{m} \in \mathbb{R}[[\mathfrak{M}]]^{\uparrow}, \\ f^{\equiv} &= \sum_{\mathfrak{m} \in \mathfrak{N}} f_{\mathfrak{m}} \mathfrak{m} \in \mathbb{R}[[\mathfrak{M}]]^{\equiv}, \\ f^{\Downarrow} &= \sum_{1 \succ \mathfrak{m} \in \mathfrak{M} \setminus \mathfrak{N}} f_{\mathfrak{m}} \mathfrak{m} \in \mathbb{R}[[\mathfrak{M}]]^{\Downarrow}. \end{split}$$

Example 4.10. Let $\mathfrak{w} \in \mathfrak{M}$, $\mathfrak{w} \neq 1$, and consider the convex subgroup

$$\mathfrak{N} := \{\mathfrak{n} \in \mathfrak{M} : \mathfrak{n} \prec \mathfrak{w}\}$$

of \mathfrak{M} . Suppose that $\exp(\mathfrak{M}^{\succ 1}) \subseteq \mathfrak{M}$. Then

$$I = \{ \mathfrak{m} \in \mathfrak{M}^{\succ 1} : \exp \mathfrak{m} \prec \mathfrak{w} \}$$

and thus

$$\mathfrak{R} = \{\mathfrak{r} \in \mathfrak{M} : \operatorname{supp} \log \mathfrak{r} \succcurlyeq \mathfrak{d}(\log \mathfrak{w})\}$$

In this case we write $\operatorname{supp}_{\mathfrak{w}} f$ instead of $\operatorname{supp}_{\mathfrak{N}} f$, $\preccurlyeq_{\mathfrak{w}}$ instead of $\preccurlyeq_{\mathfrak{N}}$, and likewise for the other asymptotic relations. In the next section we take $\mathfrak{w} = e^x$.

Flatly noetherian families

Let $(f_i)_{i \in I} \in \mathbb{R}[[\mathfrak{M}]]^I$. The family (f_i) is said to be *flatly noetherian* (with respect to \mathfrak{N}) if (f_i) is noetherian as a family of elements in $C[[\mathfrak{R}]]$, where $C = \mathbb{R}[[\mathfrak{N}]]$. If (f_i) is flatly noetherian, then (f_i) is noetherian as a family of elements of $\mathbb{R}[[\mathfrak{M}]]$, and its sum $\sum_{i \in I} f_i \in C[[\mathfrak{R}]]$ as a flatly noetherian family equals its sum $\sum_{i \in I} f_i \in R[[\mathfrak{M}]]$ as a noetherian family of elements of $\mathbb{R}[[\mathfrak{M}]]$. For any monomial $\mathfrak{m} \in \mathfrak{M}$, (f_i) is flatly noetherian if and only if $(\mathfrak{m}f_i)$ is flatly noetherian.

Note that if $\mathfrak{n}_1 \succ \mathfrak{n}_2 \succ \cdots$ is an infinite sequence of monomials in \mathfrak{N} , then $(\mathfrak{n}_i)_{i \ge 1}$ is a noetherian family which is not flatly noetherian.

A map $\Phi \colon \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{M}]]$ is called *flatly strongly linear* (with respect to \mathfrak{N}) if Φ considered as a map $C[[\mathfrak{R}]] \to C[[\mathfrak{R}]]$ is strongly linear, where $C = \mathbb{R}[[\mathfrak{N}]]$.

Lemma 4.11. Suppose that $x \in \mathfrak{N}$. The map $\mathfrak{R} \to C[[\mathfrak{R}]]$: $\mathfrak{r} \mapsto \mathfrak{r}'$ is noetherian, where $C = \mathbb{R}[[\mathfrak{N}]]$, and thus extends uniquely to a flatly strongly linear map

$$\varphi \colon \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{M}]].$$

Proof. Let $\mathfrak{r}_1 \succ_{\mathfrak{N}} \mathfrak{r}_2 \succ_{\mathfrak{N}} \cdots$ be elements of \mathfrak{R} and $\mathfrak{u}_i \in \operatorname{supp} \mathfrak{r}'_i$ for each *i*. It suffices to show that then there exist indices i < j such that $\mathfrak{u}_i \succ_{\mathfrak{N}} \mathfrak{u}_j$. Since differentiation on $\mathbb{R}[[\mathfrak{M}]]$ is strongly linear, we may assume, after passing to a subsequence, that $\mathfrak{u}_i \succ \mathfrak{u}_j$ for all i < j. If there exist i < j such that $\mathfrak{u}_i \succeq_{\mathfrak{N}} \mathfrak{r}_i$ and $\mathfrak{u}_j \succeq_{\mathfrak{N}} \mathfrak{r}_j$, we are already done. So we may assume that $\mathfrak{u}_i \not\succeq_{\mathfrak{N}} \mathfrak{r}_i$ for all i, and also that $\mathfrak{r}_i \not\prec_{\mathfrak{N}} \mathfrak{u}_1$ for all i. Write each \mathfrak{u}_i as $\mathfrak{u}_i = \mathfrak{r}_i \mathfrak{m}_i$, with $\mathfrak{m}_i \in \operatorname{supp} \mathfrak{r}_i^{\dagger}$, $\mathfrak{m}_i \notin \mathfrak{N}$. We distinguish two cases:

- (1) For all i > 1 there exists a $\mathfrak{v}_i \in \operatorname{supp} \log \mathfrak{u}_1$ such that $\mathfrak{m}_i \in \operatorname{supp} \mathfrak{v}'_i$. Since supp $\log \mathfrak{u}_1$ is noetherian we may assume, after passing to a subsequence, that $\mathfrak{v}_i \succeq \mathfrak{v}_j$ for 1 < i < j. Since differentiation on $\mathbb{R}[[\mathfrak{M}]]$ is strongly linear, we then find i < j with $\mathfrak{m}_i \succeq \mathfrak{m}_j$. Hence $\mathfrak{m}_i \succeq \mathfrak{m}_j$, so $\mathfrak{u}_i \succ \mathfrak{m}_j$.
- (2) There exists an i > 1 such that for all $\mathfrak{v} \in \operatorname{supp} \log \mathfrak{u}_1$ we have $\mathfrak{m}_i \notin \operatorname{supp} \mathfrak{v}'$. Take such an i and choose $\mathfrak{v} \in \operatorname{supp} \log \mathfrak{r}_i$ such that $\mathfrak{m}_i \in \operatorname{supp} \mathfrak{v}'$. Then

 $\mathfrak{v} \in (\operatorname{supp} \log \mathfrak{r}_i) \setminus (\operatorname{supp} \log \mathfrak{u}_1) \subseteq \operatorname{supp} \log(\mathfrak{r}_i/\mathfrak{u}_1) \subseteq \mathfrak{M}^{\succ 1}$

and hence $\mathfrak{v} \preceq \log(\mathfrak{u}_1/\mathfrak{r}_i)$. Since $\log \mathfrak{m} \prec \mathfrak{m}$ for $\mathfrak{m} \in \mathfrak{M} \setminus \{1\}$, this yields $\mathfrak{v} \prec \mathfrak{u}_1/\mathfrak{r}_i$. By Lemma 4.8 we get $\mathfrak{m}_i \prec \mathfrak{u}_1/\mathfrak{r}_i$. Hence if $\mathfrak{n} := \mathfrak{u}_1/\mathfrak{u}_i \in \mathfrak{N}$, then $\mathfrak{m}_i \prec \mathfrak{u}_1/\mathfrak{r}_i = \mathfrak{m}_i\mathfrak{n}$, contradicting $\mathfrak{m}_i \notin \mathfrak{N}$. Therefore $\mathfrak{u}_1 \succ_{\mathfrak{N}} \mathfrak{u}_i$.

In the rest of this section we assume (M4).

In particular, our previous results apply to $\mathfrak{M}\uparrow^k$ instead of \mathfrak{M} for $k = 1, 2, \ldots$, by Lemma 4.3. In this connection, the following fact will be useful.

Remark 4.12. A family $(f_i)_{i \in I} \in \mathbb{R}[[\mathfrak{M}]]^I$ is flatly noetherian with respect to \mathfrak{N} if and only if the family $(f_i^{\dagger})_{i \in I} \in \mathbb{R}[[\mathfrak{M}^{\dagger}]]^I$ is flatly noetherian with respect to \mathfrak{N}^{\dagger} .

We now arrive at the main results of this section:

Theorem 4.13. If $(f_i)_{i \in I}$ is a flatly noetherian family in $\mathbb{R}[[\mathfrak{M}]]$, then so is $(f'_i)_{i \in I}$.

Proof. Since the case $\mathfrak{N} = \{1\}$ is trivial, we may assume $\mathfrak{N} \neq \{1\}$. Then $x \in \mathfrak{N}\uparrow^k$ for sufficiently large $k \in \mathbb{N}$. Since $(f\uparrow)' = e^x \cdot (f')\uparrow$ for $f \in \mathbb{R}[[\mathfrak{M}]]$, Remark 4.12 allows us to reduce to the case that $x \in \mathfrak{N}$. Then $\mathbb{R}[[\mathfrak{N}]]$ is closed under differentiation by Corollary 4.6. Now consider a flatly noetherian family $(f_i)_{i\in I} \in \mathbb{R}[[\mathfrak{M}]]^I$. Then (f_i) is noetherian, hence (f'_i) is noetherian by strong linearity of differentiation. By the lemma above, the family (g_i) defined by

$$g_i := \sum_{\mathfrak{r} \in \mathfrak{R}} f_{i,\mathfrak{N},\mathfrak{r}}\mathfrak{r}'$$

is flatly noetherian. Put

$$h_i := f'_i - g_i = \sum_{\mathfrak{r} \in \mathfrak{R}} (f_{i,\mathfrak{N},\mathfrak{r}})'\mathfrak{r}.$$

We have $\operatorname{supp}_{\mathfrak{N}} h_i \subseteq \operatorname{supp}_{\mathfrak{N}} f_i$ for $i \in I$, since $\mathbb{R}[[\mathfrak{N}]]$ is closed under differentiation. It follows that (h_i) is flatly noetherian. Hence the family (f'_i) is flatly noetherian since it is the componentwise sum of two flatly noetherian families. \Box

Theorem 4.14. Suppose that $\exp(\Lambda) \notin \mathfrak{M}$. Then $\mathbb{R}[[\mathfrak{M}]]$ is closed under integration, and if $(f_i)_{i \in I}$ is a flatly noetherian family in $\mathbb{R}[[\mathfrak{M}]]$, then $(\int f_i)_{i \in I}$ is flatly noetherian.

Before we begin the proof, we make some remarks about the summation of flatly noetherian families in $\mathbb{R}[[\mathfrak{M}]]$. Choose a basis \mathfrak{B} for the \mathbb{R} -vector space $\mathbb{R}[[\mathfrak{N}]]$. We define a (partial) ordering \preccurlyeq^* on $\mathfrak{B} \times \mathfrak{R}$ as follows:

$$(\mathfrak{b},\mathfrak{r}) \preccurlyeq^* (\mathfrak{c},\mathfrak{s}) \Leftrightarrow \mathfrak{r} \prec_{\mathfrak{N}} \mathfrak{s}, \text{ or } \mathfrak{r} = \mathfrak{s} \text{ and } \mathfrak{b} = \mathfrak{c},$$
 (4.3)

for all $(\mathfrak{b}, \mathfrak{r}), (\mathfrak{c}, \mathfrak{s}) \in \mathfrak{B} \times \mathfrak{R}$. Consider the \mathbb{R} -vector space $\mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]]$ of transseries

$$f = \sum_{(\mathfrak{b},\mathfrak{r})\in\mathfrak{B}\times\mathfrak{R}} f_{(\mathfrak{b},\mathfrak{r})}(\mathfrak{b},\mathfrak{r})$$

with real coefficients $f_{(\mathfrak{b},\mathfrak{c})}$, whose support supp $f := \{(\mathfrak{b},\mathfrak{r}) : f_{(\mathfrak{b},\mathfrak{c})} \neq 0\}$ is noe-therian for \preccurlyeq^* ; see Section 1. We have:

Lemma 4.15. There exists a unique isomorphism $\varphi \colon \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]] \to \mathbb{R}[[\mathfrak{M}]]$ of \mathbb{R} -vector spaces such that

- (1) $\varphi(\mathfrak{b},\mathfrak{r}) = \mathfrak{b} \cdot \mathfrak{r} \text{ for } \mathfrak{b} \in \mathfrak{B}, \ \mathfrak{r} \in \mathfrak{R},$
- (2) a family $(f_i)_{i \in I} \in \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]]^I$ is noetherian if and only if $(\varphi(f_i))_{i \in I}$ is flatly noetherian,
- (3) if $(f_i)_{i \in I} \in \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]]^I$ is noetherian, then $\varphi(\sum_{i \in I} f_i) = \sum_{i \in I} \varphi(f_i)$.

Proof. Of course, there is at most one such φ . For existence, first note that the projection map $\pi: \mathfrak{B} \times \mathfrak{R} \to \mathfrak{R}$ is strictly increasing, and that a set $\mathfrak{S} \subseteq \mathfrak{B} \times \mathfrak{R}$ is noetherian if and only if $\pi(\mathfrak{S}) \subseteq \mathfrak{R}$ is noetherian and each fiber $\pi^{-1}(\mathfrak{r})$ ($\mathfrak{r} \in \mathfrak{R}$) is finite. If we apply this remark to $\mathfrak{S} := \bigcup_{i \in I} \operatorname{supp} f_i$, where $(f_i)_{i \in I}$ is a noetherian family in $\mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]]$, it follows that the subset

$$\pi(\mathfrak{S}) = \bigcup_{i \in I, \mathfrak{b} \in \mathfrak{B}, \mathfrak{r} \in \mathfrak{R}} \operatorname{supp}_{\mathfrak{N}}(f_{i,(\mathfrak{b},\mathfrak{r})}\mathfrak{b} \cdot \mathfrak{r})$$

of \mathfrak{R} is noetherian, and that for each $\mathfrak{r} \in \mathfrak{R}$ there are only finitely many $(i, \mathfrak{b}) \in I \times \mathfrak{B}$ with $\mathfrak{r} \in \operatorname{supp}_{\mathfrak{N}}(f_{i,(\mathfrak{b},\mathfrak{r})}\mathfrak{b}\cdot\mathfrak{r})$. Therefore the family $(f_{i,(\mathfrak{b},\mathfrak{r})}\mathfrak{b}\cdot\mathfrak{r})_{(i,\mathfrak{b},\mathfrak{r})\in I\times\mathfrak{B}\times\mathfrak{R}}$ of elements of $\mathbb{R}[[\mathfrak{M}]]$ is flatly noetherian. Thus, by setting

$$\varphi(f) := \sum_{\mathfrak{r} \in \mathfrak{R}} \Big(\sum_{\mathfrak{b} \in \mathfrak{B}} f_{(\mathfrak{b},\mathfrak{r})} \mathfrak{b} \Big) \mathfrak{r} \quad \text{ for } f \in \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]],$$

we obtain an \mathbb{R} -linear bijection $\varphi : \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]] \to \mathbb{R}[[\mathfrak{M}]]$ such that for every noetherian family $(f_i) \in \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]]^I$, the family $(\varphi(f_i))$ is flatly noetherian and $\varphi(\sum_i f_i) = \sum_i \varphi(f_i)$. (See the proof of Proposition 3.5 in [11].) If $(f_i) \in \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]]^I$ and $(\varphi(f_i))$ is flatly noetherian, then, with $\mathfrak{S} := \bigcup_i \operatorname{supp} f_i$,

$$\pi(\mathfrak{S}) = \bigcup_{i \in I} \operatorname{supp}_{\mathfrak{N}} \varphi(f_i)$$

is noetherian and $\pi|\mathfrak{S}$ has finite fibers, so (f_i) is noetherian.

We now begin the proof of Theorem 4.14. Using upward shifting and $\int (f\uparrow) = (\int (f \cdot x^{-1}))\uparrow$ for $f \in \mathbb{R}[[\mathfrak{M}]]$, we first reduce to the case that $e^x \in \mathfrak{N}$. In particular $x \in \mathfrak{N}$, so $\mathbb{R}[[\mathfrak{N}]]$ is closed under differentiation and integration, by Corollary 4.6. Partition $\mathfrak{M} = \mathfrak{V} \amalg \mathfrak{M}$ (disjoint union), where

 $\mathfrak{V} = \{\mathfrak{m} \in \mathfrak{M} : \mathfrak{m}^{\dagger} \preccurlyeq_{\mathfrak{N}} 1\} \quad \text{and} \quad \mathfrak{W} = \{\mathfrak{m} \in \mathfrak{M} : \mathfrak{m}^{\dagger} \succ_{\mathfrak{N}} 1\}.$

Then \mathfrak{V} is a convex subgroup of \mathfrak{M} containing \mathfrak{N} which is closed under \mathbb{R} -powers, and $\mathbb{R}[[\mathfrak{M}]] = \mathbb{R}[[\mathfrak{V}]] \oplus \mathbb{R}[[\mathfrak{M}]]$ as \mathbb{R} -vector spaces. Note that if $\mathfrak{n} \in \mathfrak{N}$, $\mathfrak{r} \in \mathfrak{R}$, then $\mathfrak{n} \cdot \mathfrak{r} \in \mathfrak{M}$ if and only if $\mathfrak{r} \in \mathfrak{M}$. It follows that $\mathfrak{M} = \mathfrak{N} \cdot \mathfrak{S}$, where $\mathfrak{S} := \mathfrak{M} \cap \mathfrak{R}$. Since $x \in \mathfrak{V}$, the subfield $\mathbb{R}[[\mathfrak{V}]]$ of $\mathbb{R}[[\mathfrak{M}]]$ is closed under differentiation and integration, by Corollary 4.6.

Lemma 4.16. The \mathbb{R} -linear subspace $\mathbb{R}[[\mathfrak{M}]]$ of $\mathbb{R}[[\mathfrak{M}]]$ is closed under the operators $f \mapsto f'$ and $g \mapsto \int g$ on $\mathbb{R}[[\mathfrak{M}]]$.

Proof. If $\mathbb{R}[[\mathfrak{W}]]$ is closed under $f \mapsto f'$, then it is also closed under $g \mapsto \int g$, because $\mathbb{R}[[\mathfrak{W}]]$ is closed under differentiation and $\mathbb{R}[[\mathfrak{M}]]$ is closed under integration. So let $\mathfrak{w} \in \mathfrak{W}$; it is enough to show that then $\operatorname{supp} \mathfrak{w}' \subseteq \mathfrak{W}$. Take n > 0with $\mathfrak{w} \in \mathfrak{W} \cap \mathfrak{M}_n$, and write $\mathfrak{w} = e^{\varphi}$ with $\varphi \in A_{n-1}$. By Lemma 4.8 we have $\operatorname{supp} \varphi' \prec \mathfrak{w}$. Hence $\mathfrak{m}^{\dagger} \asymp \mathfrak{w}^{\dagger} \succ_{\mathfrak{N}} 1$ and thus $\mathfrak{m} \in \mathfrak{W}$, for every $\mathfrak{m} \in \operatorname{supp} \mathfrak{w}'$. \Box

Lemma 4.17. For all $h \in \mathbb{R}[[\mathfrak{V}]]$, we have $\operatorname{supp}_{\mathfrak{N}} \int h \subseteq \operatorname{supp}_{\mathfrak{N}} h$.

Proof. It is enough to prove the lemma for h of the form $h = f\mathfrak{r}$, where $f \in \mathbb{R}[[\mathfrak{N}]]$, $f \neq 0$, and $\mathfrak{r} \in \mathfrak{V} \cap \mathfrak{R}$, so $\mathfrak{r} = e^{\varphi}$ with $\varphi' = \mathfrak{r}^{\dagger} \preccurlyeq_{\mathfrak{N}} 1$. By Lemma 4.9, we have $\varphi' \in \mathbb{R}[[\mathfrak{N}]]$. We may assume $\varphi \neq 0$. Then $e^{\varphi} = \mathfrak{r} \succ \mathfrak{N}$, so $\varphi' = \mathfrak{r}^{\dagger} \succ \mathfrak{n}^{\dagger}$ for all $\mathfrak{n} \in \mathfrak{N}$. Thus the strongly linear map

$$\Phi \colon \mathbb{R}[[\mathfrak{N}]] \to \mathbb{R}[[\mathfrak{N}]], \quad g \mapsto g'/\varphi',$$

satisfies $\Phi(\mathfrak{n}) \prec \mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{N}$. Hence by Corollary 1.4 the strongly linear operator $\mathrm{Id} + \Phi$ on $\mathbb{R}[[\mathfrak{N}]]$ is bijective. We let $g := (\mathrm{Id} + \Phi)^{-1}(f/\varphi') \in \mathbb{R}[[\mathfrak{N}]]$. Then $g' + \varphi' g = f$ and thus $\int f\mathfrak{r} = g\mathfrak{r}$.

If (f_i) is a flatly noetherian family of elements of $\mathbb{R}[[\mathfrak{V}]]$, then by the previous lemma $(\int f_i)$ is flatly noetherian. To complete the proof of Theorem 4.14 it therefore remains to show:

Lemma 4.18. If (f_i) is a flatly noetherian family of elements of $\mathbb{R}[[\mathfrak{W}]]$, then $(\int f_i)$ is flatly noetherian.

Proof. Let $C = \mathbb{R}[[\mathfrak{N}]]$, let \mathfrak{B} be a basis for C as \mathbb{R} -vector space, and let $\mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]]$ and $\varphi \colon \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]] \to \mathbb{R}[[\mathfrak{M}]]$ be as in Lemma 4.15. Put $\mathfrak{S} := \mathfrak{M} \cap \mathfrak{R}$ as before. Then $\varphi(\mathfrak{B} \times \mathfrak{S}) = \mathfrak{B} \cdot \mathfrak{S} \subseteq \mathbb{R}[[\mathfrak{M}]]$, so φ restricts to an \mathbb{R} -linear map

$$\varphi_1 \colon \mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]] \to \mathbb{R}[[\mathfrak{W}]].$$

Clearly φ_1 is bijective, since $\mathfrak{W} = \mathfrak{N} \cdot \mathfrak{S}$. Consider the strongly linear operators $D: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{M}]]$ given by $f \mapsto f'$ and $\int :\mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{M}]]$ given by $f \mapsto \int f$. We have $D(f), \int f \in \mathbb{R}[[\mathfrak{W}]]$ for $f \in \mathbb{R}[[\mathfrak{W}]]$, by Lemma 4.16. By Theorem 4.13 and Lemma 4.15, the operator $D_1 := \varphi_1^{-1} \circ D_{\mathfrak{W}} \circ \varphi_1$ on $\mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]]$ is strongly linear, where $D_{\mathfrak{W}} := D|_{\mathbb{R}[[\mathfrak{W}]]}: \mathbb{R}[[\mathfrak{W}]] \to \mathbb{R}[[\mathfrak{W}]]$. By Lemma 4.15 it suffices to prove that the operator $\int_1 := \varphi_1^{-1} \circ \int_{\mathfrak{W}} \circ \varphi_1$ on $\mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]]$ is strongly linear, where $\int_{\mathfrak{M}} := \int |_{\mathbb{R}[[\mathfrak{W}]]} \to \mathbb{R}[[\mathfrak{M}]]$. Since $1 \notin \mathfrak{M}$, the operators $D_{\mathfrak{M}}$ and $\int_{\mathfrak{M}}$ on $\mathbb{R}[[\mathfrak{M}]]$ are mutually inverse, and hence the operators D_1 and \int_1 on $\mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]]$ are mutually inverse.

For $t \in C^{\times} \cdot \mathfrak{S}$, let Δt and It be the dominant terms of the series t' and $\int t$ in $C[[\mathfrak{R}]]$, respectively, so $\Delta t, It \in C^{\times} \cdot \mathfrak{S}$ by Lemma 4.16. By the rules on $\succ_{\mathfrak{N}}$ listed earlier, if $t_1, t_2 \in C^{\times} \cdot \mathfrak{S}$ satisfy $t_1 \succ_{\mathfrak{N}} t_2$, then $\Delta t_1 \succ_{\mathfrak{N}} \Delta t_2$ and $It_1 \succ_{\mathfrak{N}} It_2$. Moreover, the maps I: $C^{\times} \cdot \mathfrak{S} \to C^{\times} \cdot \mathfrak{S}$ and $\Delta : C^{\times} \cdot \mathfrak{S} \to C^{\times} \cdot \mathfrak{S}$ are mutually inverse, and $\varphi_1(\mathfrak{B} \times \mathfrak{S}) \subseteq C^{\times} \cdot \mathfrak{S} \subseteq \mathbb{R}[[\mathfrak{M}]]$. Now let

$$\begin{split} &\Delta_1 := \varphi_1^{-1} \circ \Delta \circ (\varphi_1|_{\mathfrak{B} \times \mathfrak{S}}) \colon \mathfrak{B} \times \mathfrak{S} \to \mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]], \\ &I_1 := \varphi_1^{-1} \circ I \circ (\varphi_1|_{\mathfrak{B} \times \mathfrak{S}}) \colon \mathfrak{B} \times \mathfrak{S} \to \mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]]. \end{split}$$

Then for $\mathfrak{v}_1, \mathfrak{v}_2 \in \mathfrak{B} \times \mathfrak{S}$ we have

$$\mathfrak{v}_1 \succ^* \mathfrak{v}_2 \Rightarrow \operatorname{supp} \Delta_1 \mathfrak{v}_1 \succ^* \operatorname{supp} \Delta_1 \mathfrak{v}_2, \operatorname{supp} I_1 \mathfrak{v}_1 \succ^* \operatorname{supp} I_1 \mathfrak{v}_2.$$

Hence the maps Δ_1 , I_1 are noetherian, so they extend uniquely to strongly linear operators on $\mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]]$. These extensions, again denoted by Δ_1 and I_1 , respectively, are mutually inverse by [11, Proposition 3.10], because Δ and I are.

Now consider the strongly linear operator

$$\Phi := (D_1 - \Delta_1) \circ \mathbf{I}_1 = D_1 \mathbf{I}_1 - \mathrm{Id}$$

on $\mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]]$. Using

$$D_1 \mathbf{I}_1|_{\mathfrak{B}\times\mathfrak{S}} = \varphi_1^{-1} \circ (D_{\mathfrak{W}} \circ \mathbf{I}) \circ (\varphi_1|_{\mathfrak{B}\times\mathfrak{S}})$$

we obtain supp $\Phi(\mathfrak{v}) \prec^* \mathfrak{v}$ for $\mathfrak{v} \in \mathfrak{B} \times \mathfrak{S}$. Hence by Corollary 1.4, the operator $\mathrm{Id} + \Phi = D_1 \mathrm{I}_1$ on $\mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]]$ is bijective with strongly linear inverse. Thus the

operator $I_1 \circ (Id + \Phi)^{-1}$ on $\mathbb{R}[[\mathfrak{B} \times \mathfrak{S}]]$ is strongly linear. Finally, note that $D_1 \circ I_1 \circ (Id + \Phi)^{-1} = D_1 \circ I_1 \circ (D_1 I_1)^{-1} = Id$, so $\int_1 = D_1^{-1} = I_1 \circ (Id + \Phi)^{-1}$, and thus \int_1 is strongly linear.

5. Transseries of decay > 1

In this section we extend \mathbb{L}_1 to a Liouville closed *H*-subfield \mathbb{T}_1 of $\mathbb{R}[[\mathfrak{T}]]$ by first extending \mathbb{L}_1 to a real closed *H*-subfield \mathbb{S} of $\mathbb{R}[[\mathfrak{T}]]$ that is closed under taking logarithms of positive elements, and then closing off \mathbb{S} under downward shifts. The *H*-field \mathbb{T}_1 will satisfy the requirements on *K* in the Theorem stated in the introduction.

Construction of \mathbb{S}

The convex subgroup

$$\mathfrak{T}^{\flat} = \{\mathfrak{n} \in \mathfrak{T} : \mathfrak{n} \prec\!\!\!\prec e^x\}$$

of the ordered group \mathfrak{T} is closed under \mathbb{R} -powers. Note that $\mathfrak{L} \subseteq \mathfrak{T}^{\flat}$. We call \mathfrak{T}^{\flat} the *flat part of* \mathfrak{T} . Its steep supplement (as defined in the previous section) is the subgroup

$$\mathfrak{T}^{\sharp} = \{g \in \mathfrak{T} : \operatorname{supp} \log g \succcurlyeq x\}$$

of \mathfrak{T} , called the *steep part of* \mathfrak{T} . (See Examples 4.1 and 4.10.) We apply here Section 4 to $\mathfrak{M} = \mathfrak{T}$, and accordingly identify $\mathbb{R}[[\mathfrak{T}]]$ and $\mathbb{R}[[\mathfrak{T}^{\flat}]][[\mathfrak{T}^{\sharp}]]$. Every

$$f = \sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m} \in \mathbb{R}[[\mathfrak{T}]]$$

can be written as

$$f = \sum_{\mathfrak{r} \in \mathfrak{T}^\sharp} f_\mathfrak{r}^\flat \mathfrak{r}$$

where the coefficients

$$f_{\mathfrak{r}}^{\flat} := \sum_{\mathfrak{n} \in \mathfrak{T}, \, \mathfrak{n} \prec\!\!\!\! \prec e^x} f_{\mathfrak{n}\mathfrak{r}}\mathfrak{n}$$

are series in $\mathbb{R}[[\mathfrak{T}^{\flat}]]$. (In the notation of Section 4, we have $f_{\mathfrak{r}}^{\flat} = f_{\mathfrak{T}^{\flat},\mathfrak{r}}$.) We may also decompose f as

$$f = f^{\uparrow} + f^{\equiv} + f^{\downarrow}, \tag{5.1}$$

where, with \mathfrak{m} ranging over \mathfrak{T} ,

$$f^{\uparrow} := \sum_{\mathfrak{m} \succ 1, \, \mathfrak{m} \succeq e^x} f_{\mathfrak{m}} \mathfrak{m}, \quad f^{\equiv} := \sum_{\mathfrak{m} \prec e^x} f_{\mathfrak{m}} \mathfrak{m}, \quad f^{\downarrow} := \sum_{\mathfrak{m} \prec 1, \, \mathfrak{m} \succeq e^x} f_{\mathfrak{m}} \mathfrak{m}$$

Put $\mathbb{S}_0 := \mathbb{L}_1$, the latter as defined in Section 3. So $\mathbb{S}_0 \subseteq \mathbb{R}[[\mathfrak{T}_0]] \subseteq \mathbb{R}[[\mathfrak{T}^b]]$. Inductively, given the subfield \mathbb{S}_n of $\mathbb{R}[[\mathfrak{T}_n]]$, we let \mathbb{S}_{n+1} be the subfield of $\mathbb{R}[[\mathfrak{T}_{n+1}]]$ consisting of those $f \in \mathbb{R}[[\mathfrak{T}]]$ such that $f_{\mathfrak{r}}^{\flat} \in \mathbb{L}_1$ and $\log \mathfrak{r} \in \mathbb{S}_n^{\uparrow}$ for all $\mathfrak{r} \in \operatorname{supp}_{e^x} f$, that is, with $C := \mathbb{R}[[\mathfrak{T}^b]]$:

$$\mathbb{S}_{n+1} = \mathbb{L}_1[[\mathfrak{U}_{n+1}]] \subseteq C[[\mathfrak{T}^\sharp]]$$

where

$$\mathfrak{U}_{n+1} := \mathfrak{T}^{\sharp} \cap \exp(\mathbb{S}_n^{\uparrow}) = \exp(\mathbb{S}_n \cap \mathbb{R}[[\mathfrak{T}_n^{\succeq x}]])$$

a subgroup of $\mathfrak{T}^{\sharp} \cap \mathfrak{T}_{n+1}$ closed under \mathbb{R} -powers. It follows that $\mathbb{S}_{n+1} \subseteq \mathbb{R}[[\mathfrak{T}_{n+1}]]$. It is convenient to define $\mathfrak{R}_0 := \{1\} \subseteq \mathfrak{T}_0$.

Example 5.1. We have $\mathfrak{U}_1 = \exp(\mathbb{L}_1 \cap \mathbb{R}[[\mathfrak{L}^{\succeq x}]])$. Therefore $e^{x^2} \in \mathbb{S}_1$, but $e^{x^2} \downarrow = e^{(\log x)^2} \notin \mathbb{S}_1$.

Lemma 5.2. Each \mathbb{S}_n is a real closed subfield of \mathbb{T} , and $\mathfrak{U}_n \subseteq \mathfrak{U}_{n+1}$ for all n. (Hence $\mathbb{S}_n \subseteq \mathbb{S}_{n+1}$ for all n.)

Proof. The first statement follows from the remarks at the beginning of Section 3 and Lemma 1.6. We show the other statement by induction on n. The case n = 0 being clear, suppose that $\mathfrak{U}_n \subseteq \mathfrak{U}_{n+1}$. Then

$$\mathbb{S}_n = \mathbb{L}_1[[\mathfrak{U}_n]] \subseteq \mathbb{L}_1[[\mathfrak{U}_{n+1}]] = \mathbb{S}_{n+1}$$

and thus

$$\mathfrak{U}_{n+1} = \mathfrak{T}^{\sharp} \cap \exp(\mathbb{S}_{n}^{\uparrow}) \subseteq \mathfrak{T}^{\sharp} \cap \exp(\mathbb{S}_{n+1}^{\uparrow}) = \mathfrak{U}_{n+2}$$

as required.

We let S be the union of the increasing sequence $S_0 \subseteq S_1 \subseteq \cdots$ of real closed subfields of T. Then S is a real closed subfield of T. Moreover:

Lemma 5.3. $\log(\mathbb{S}_n^{>0}) \subseteq \mathbb{S}_n$ for every n. (Hence $\log(\mathbb{S}^{>0}) \subseteq \mathbb{S}$.)

Proof. The case n = 0 is discussed at the beginning of Section 3. Suppose n > 0. Every positive $f \in S_n$ may be written in the form

$$f = g \cdot \mathfrak{u} \cdot (1 + \varepsilon)$$

where $0 < g \in \mathbb{L}_1$, $\mathfrak{u} \in \mathfrak{U}_n \subseteq \exp(\mathbb{S}_{n-1}^{\uparrow})$, and $\varepsilon \prec_{e^x} 1$. We get

$$\log f = \log g + \log \mathfrak{u} + \log(1 + \varepsilon)$$

We have $\log g \in \mathbb{L}_1$ and (since $\varepsilon \prec 1$)

$$\log(1+\varepsilon) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \varepsilon^k \in \mathbb{S}_n.$$

Moreover $\log \mathfrak{u} \in \mathbb{S}_{n-1}$, thus $\log \mathfrak{u} \in \mathbb{S}_n$ by Lemma 5.2. Hence $\log f \in \mathbb{S}_n$.

We now put $A_n := \mathbb{S}_n^{\uparrow}, \mathfrak{M}_{n+1} := \exp(A_n)$ for every n, and $\mathfrak{M}_0 := \mathfrak{L}$. Each A_n is an \mathbb{R} -linear subspace of $\mathbb{R}[[\mathfrak{T}_n]]$, and \mathfrak{M}_n is a subgroup of \mathfrak{T}_n closed under \mathbb{R} -powers. Here are some more properties of \mathbb{S}_n , A_n and \mathfrak{M}_n . A subset A of $\mathbb{R}[[\mathfrak{T}]]$ is said to be *closed under subseries* if for every $f = \sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}}\mathfrak{m} \in A$ the subseries $f|_{\mathfrak{S}} := \sum_{\mathfrak{m} \in \mathfrak{S}} f_{\mathfrak{m}}\mathfrak{m}$ is in A, for any subset \mathfrak{S} of \mathfrak{T} .

Lemma 5.4. For every n we have:

- (1) $\mathbb{S}_n \subseteq \mathbb{R}[[\mathfrak{M}_n]].$ (Hence $A_n \subseteq \mathbb{R}[[\mathfrak{M}_n]]^{\uparrow}.$)
- (2) \mathbb{S}_n is closed under subseries. (Hence A_n is closed under subseries.)
- (3) $\log \mathfrak{M}_n \subseteq A_n$. (Hence $\mathfrak{M}_n \subseteq \mathfrak{M}_{n+1}$.)
- (4) $\mathbb{S}_n \uparrow \subseteq \mathbb{S}_{n+1}$. (Hence $\mathfrak{M}_n \uparrow \subseteq \mathfrak{M}_{n+1}$.)

27

Proof. Parts (1)–(3) are obvious for n = 0. For the case n = 0 of (4) note first that $\mathfrak{L}\uparrow \subseteq \mathfrak{L} \cdot (\exp x)^{\mathbb{R}}$ with $\mathfrak{L} \cap (\exp x)^{\mathbb{R}} = \{1\}$. Moreover, if a subset \mathfrak{S} of \mathfrak{L} has decay > 1 and $\mathfrak{S}\uparrow \subseteq \mathfrak{L} \cdot (\exp x)^{\beta}$ with $\beta \in \mathbb{R}$, then $\pi(\mathfrak{S}\uparrow)$ has decay > 1, where $\pi \colon \mathfrak{L} \cdot (\exp x)^{\mathbb{R}} \to \mathfrak{L}$ is given by $\mathfrak{l} \cdot (\exp x)^{\alpha} \mapsto \mathfrak{l}$ for $\mathfrak{l} \in \mathfrak{L}$, $\alpha \in \mathbb{R}$. Hence $\mathbb{L}_1\uparrow \subseteq \mathbb{L}_1[[(\exp x)^{\mathbb{R}}]] \subseteq \mathbb{S}_1$ as required.

Let now n > 0. For (1) note that

$$\mathfrak{L} = \exp\log\mathfrak{L} \subseteq \exp(\mathbb{L}_1^{\uparrow}) \subseteq \exp(\mathbb{S}_{n-1}^{\uparrow}), \quad \mathfrak{U}_n \subseteq \exp(\mathbb{S}_{n-1}^{\uparrow}),$$

hence

$$\mathbb{S}_n = \mathbb{L}_1[[\mathfrak{U}_n]] \subseteq \mathbb{R}[[\mathfrak{L} \cdot \mathfrak{U}_n]] \subseteq \mathbb{R}[[\exp(\mathbb{S}_{n-1}^{\uparrow})]] = \mathbb{R}[[\mathfrak{M}_n]].$$

For (2) let $f = \sum_{\mathfrak{u} \in \mathfrak{U}_n} f_{\mathfrak{u}}^{\flat} \mathfrak{u} \in \mathbb{S}_n$, so $f_{\mathfrak{u}}^{\flat} \in \mathbb{L}_1$ for all \mathfrak{u} . Then for any subset \mathfrak{S} of \mathfrak{T} we have

$$f|_{\mathfrak{S}} = \sum_{\mathfrak{u} \in \mathfrak{U}_n} (f^{\flat}_{\mathfrak{u}})|_{\mathfrak{S}_{\mathfrak{u}}} \mathfrak{u} \in \mathbb{S}_n$$

where $\mathfrak{S}_{\mathfrak{u}} := {\mathfrak{n} \in \mathfrak{T}^{\flat} : \mathfrak{n}\mathfrak{u} \in \mathfrak{S}}$ for $\mathfrak{u} \in \mathfrak{U}_n$. For part (3) we have, by Lemma 5.2,

$$\log \mathfrak{M}_n = A_{n-1} = \mathbb{S}_{n-1}^{\uparrow} \subseteq \mathbb{S}_n^{\uparrow} = A_n$$

as required. For (4), we may assume inductively that $\mathbb{S}_{n-1}\uparrow\subseteq\mathbb{S}_n$. Since $\mathfrak{T}_{n-1}\uparrow\subseteq$ \mathfrak{T}_n we get

$$\mathfrak{U}_n\uparrow = \exp(\mathbb{S}_{n-1} \cap \mathbb{R}[[\mathfrak{T}_{n-1}^{\succeq x}]])\uparrow \subseteq \exp(\mathbb{S}_n \cap \mathbb{R}[[\mathfrak{T}_n^{\succeq \exp x}]]) \subseteq \mathfrak{U}_{n+1}.$$

Together with $\mathbb{L}_1 \uparrow \subseteq \mathbb{L}_1[[(\exp x)^{\mathbb{R}}]]$ this yields $\mathbb{S}_n \uparrow = (\mathbb{L}_1 \uparrow)[[\mathfrak{U}_n \uparrow]] \subseteq \mathbb{S}_{n+1}$. \Box

We let \mathfrak{M} be the union of the increasing sequence $\mathfrak{M}_0 \subseteq \mathfrak{M}_1 \subseteq \cdots$ of ordered subgroups of \mathfrak{T} . Then \mathfrak{M} is an ordered subgroup of \mathfrak{T} , and \mathbb{S} is an ordered subfield of $\mathbb{R}[[\mathfrak{M}]]$. Note that the \mathfrak{M}_n satisfy conditions (M1)–(M4) of the previous section. We have $\mathbb{S} \cap \mathbb{L} = \mathbb{L}_1$, hence $\exp(\Lambda) \notin \mathfrak{M}$, by part (3) of Lemma 5.4 and Example 3.2.

Proposition 5.5. For every n, the field \mathbb{S}_n is closed under differentiation.

Proof. We proceed by induction on *n*. We have already dealt with the case n = 0 in Proposition 3.1. Let $f = \sum_{\mathfrak{u} \in \mathfrak{U}_{n+1}} f_{\mathfrak{u}}^{\flat}\mathfrak{u} \in \mathbb{S}_{n+1}$. By Theorem 4.13, the family $((f_{\mathfrak{u}}^{\flat}\mathfrak{u})')_{\mathfrak{u} \in \mathfrak{U}_{n+1}}$ in $\mathbb{R}[[\mathfrak{T}_{n+1}]]$ is flatly noetherian. Hence for any $\mathfrak{s} \in \mathfrak{T}_{n+1}^{\sharp}$ the sum

$$\sum_{\mathfrak{u}\in\mathfrak{U}_{n+1}}[((f_\mathfrak{u}^\flat)'+f_\mathfrak{u}^\flat\mathfrak{u}^\dagger)\mathfrak{u}]_\mathfrak{s}^\flat$$

has only finitely many nonzero terms and equals $(f')_{\mathfrak{s}}^{\flat}$. Let $\mathfrak{u} \in \mathfrak{U}_{n+1}$ and $\mathfrak{s} \in \mathfrak{T}_{n+1}^{\sharp}$. By the induction hypothesis we have $\mathfrak{u}^{\dagger} \in \mathbb{S}_n$, hence $(\mathfrak{u}^{\dagger})_{\mathfrak{s}/\mathfrak{u}}^{\flat} \in \mathbb{L}_1$. By Proposition 3.1 we get $(f_{\mathfrak{u}}^{\flat})' \in \mathbb{L}_1$. Therefore $(f')_{\mathfrak{s}}^{\flat} \in \mathbb{L}_1$. It follows that $f \in \mathbb{S}_{n+1}$ as required.

Construction of \mathbb{T}_1

We have $\mathbb{S}_{\downarrow}^{k} = (\mathbb{S}_{\uparrow})_{\downarrow}^{k+1} \subseteq \mathbb{S}_{\downarrow}^{k+1}$ for every $k \in \mathbb{N}$, by Lemma 5.4(4). We let \mathbb{T}_{1} be the union of the increasing sequence

$$\mathbb{S} \subseteq \mathbb{S} {\downarrow} \subseteq \mathbb{S} {\downarrow}^2 \subseteq \cdots \subseteq \mathbb{S} {\downarrow}^k \subseteq \cdots$$

of real closed subfields of \mathbb{T} . The elements of the real closed subfield \mathbb{T}_1 of \mathbb{T} are called *transseries of decay* > 1. The field \mathbb{T}_1 is closed under upward and downward shift: if $f \in \mathbb{T}_1$, then $f \uparrow, f \downarrow \in \mathbb{T}_1$. We have $\mathbb{L}_1 \subseteq \mathbb{T}_1$; in fact:

Lemma 5.6. $\mathbb{L}_1 = \mathbb{T}_1 \cap \mathbb{L}$.

Proof. Suppose $f \in \mathbb{T}_1 \cap \mathbb{L}$; so $f \uparrow^k \in \mathbb{S}_n$ where $k, n \in \mathbb{N}$; we claim that $f \in \mathbb{L}_1$. The case k = 0 being trivial, we may assume k > 0. Then

$$f\uparrow^k \in \mathbb{L}[[(\exp x)^{\mathbb{R}}\cdots(\exp_k x)^{\mathbb{R}}]] \cap \mathbb{S}_n \subseteq \mathbb{L}_1[[(\exp x)^{\mathbb{R}}\cdots(\exp_k x)^{\mathbb{R}}]],$$

where $\exp_m x = x \uparrow^m$ for all *m*. Hence *f* can be written in the form

$$f = \sum_{\alpha \in \mathbb{R}^k} \ell^{\alpha} \cdot (g_{\alpha} \circ \ell_k),$$

where $g_{\alpha} \in \mathbb{L}_1$ and $\ell^{\alpha} = \ell_0^{\alpha_0} \cdots \ell_{k-1}^{\alpha_{k-1}}$ for $\alpha = (\alpha_0, \ldots, \alpha_{k-1}) \in \mathbb{R}^k$. By Lemma 3.4, we get $f \in \mathbb{L}_1$ as desired.

If A is a subset of $\mathbb{R}[[\mathfrak{T}]]$ which is closed under subseries, then so is $A \downarrow$, since $(f \downarrow)|_{\mathfrak{S}} = (f|_{\mathfrak{S}\uparrow}) \downarrow$ for any $f \in A$ and $\mathfrak{S} \subseteq \mathfrak{T}$. By induction on k it follows that each subfield $\mathbb{S}\downarrow^k$ of $\mathbb{R}[[\mathfrak{T}]]$ is closed under subseries. Hence \mathbb{T}_1 is closed under subseries.

Proof of the main theorem

In the remainder of this section, we show that $K = \mathbb{T}_1$ has the properties of the main theorem in the introduction.

Proposition 5.7. The subfield \mathbb{T}_1 of \mathbb{T} is closed under exponentiation and taking logarithms of positive elements.

Proof. Since

$$\log(f\downarrow^m) = (\log f)\downarrow^m$$
 for all m and all $f \in \mathbb{S}^{>0}$.

Lemma 5.3 shows that \mathbb{T}_1 is closed under taking logarithms. Similarly,

 $\exp(f\downarrow^m) = (\exp f)\downarrow^m \quad \text{for all } m \text{ and all } f \in \mathbb{S}.$

Hence as to exponentiation, it suffices to prove that $\exp f \in \mathbb{T}_1$ for all $f \in \mathbb{S}$. Let $f \in \mathbb{S}_n$, and decompose f as in (5.1): $f = f^{\uparrow\uparrow} + f^{\equiv} + f^{\downarrow\downarrow}$, so

$$\exp f = (\exp f^{\uparrow}) \cdot (\exp f^{\equiv}) \cdot (\exp f^{\Downarrow}).$$

Since $f^{\Downarrow} \in \mathbb{T}^{\prec 1}$ we get

$$\exp f^{\Downarrow} = \sum_{n=0}^{\infty} \frac{(f^{\Downarrow})^n}{n!} \in \mathbb{S}_n.$$

We have

$$f^{\uparrow} = \sum_{\mathfrak{m} \succ 1, \, \mathfrak{m} \succeq e^x} f_{\mathfrak{m}} \mathfrak{m} \in \mathbb{S}_n \cap \mathbb{R}[[\mathfrak{T}_n^{\succcurlyeq x}]],$$

hence $\exp f^{\uparrow} \in \mathfrak{U}_{n+1} \subseteq \mathbb{S}_{n+1}$. It remains to prove that $\exp f \in \mathbb{T}_1$ for all $f \in \mathbb{L}_1$. So let $f \in \mathbb{L}_1$. From $1 \notin \overline{\operatorname{supp} f} \subseteq \mathfrak{L}$ we obtain $k \in \mathbb{N}$ such that $\ell_k \preceq \mathfrak{m}$ for all $\mathfrak{m} \in \operatorname{supp} f \setminus \{1\}$. Then $g^{\equiv} \in \mathbb{R}$ for $g = f \uparrow^{k+1}$, hence $\exp g \in \mathbb{S}$ by what we have shown above. We conclude that $\exp f = (\exp g) \downarrow^{k+1} \in \mathbb{T}_1$. \Box

Since $(f\downarrow)' = (f'\downarrow) \cdot x^{-1}$ for all $f \in \mathbb{T}$, Proposition 5.5 yields:

Corollary 5.8. The subfield \mathbb{T}_1 of \mathbb{T} is closed under differentiation. (Hence \mathbb{T}_1 is an *H*-subfield of \mathbb{T} .)

To prove that \mathbb{T}_1 is closed under integration, we first establish some auxiliary facts. Recall that $\mathbb{R}[[\mathfrak{M}]]$ is closed under differentiation and that $\exp(\Lambda) \notin \mathfrak{M}$. Hence $\mathbb{R}[[\mathfrak{M}]]$ is closed under integration.

In the next lemma we fix n > 0. We have the following inclusions:

$$\mathfrak{L} \cdot \mathfrak{U}_n \subseteq \mathfrak{M}_n \subseteq \mathbb{S}_n \subseteq \mathbb{L}[[\mathfrak{U}_n]] = \mathbb{R}[[\mathfrak{L} \cdot \mathfrak{U}_n]] \subseteq \mathbb{R}[[\mathfrak{M}_n]]$$

The subfield $\mathbb{L}[[\mathfrak{U}_n]]$ of $\mathbb{R}[[\mathfrak{M}]]$ is closed under differentiation by Proposition 5.5, and closed under integration by the argument used to prove Lemma 4.2. Note that $\log \mathfrak{s} \in \mathbb{S}_{n-1} \subseteq \mathbb{L}[[\mathfrak{U}_n]]$ for all $\mathfrak{s} \in \mathfrak{U}_n$. In the next lemma we also fix a monomial $\mathfrak{u} \in \mathfrak{U}_n \setminus \{1\}$ and put

$$\mathfrak{S} := \{ \mathfrak{s} \in \mathfrak{U}_n : \mathfrak{s}^\dagger \prec_{e^x} \mathfrak{u}^\dagger \}, \tag{5.2}$$

a convex subgroup of \mathfrak{U}_n closed under \mathbb{R} -powers.

Lemma 5.9. The subfield $\mathbb{L}[[\mathfrak{S}]]$ of $\mathbb{L}[[\mathfrak{U}_n]]$ is closed under differentiation. Also, if $\mathfrak{u}^{\dagger} \succ_{e^x} 1$, then $\mathfrak{u}^{\dagger} \in \mathbb{L}[[\mathfrak{S}]]$.

Proof. The first part will follow if $\mathfrak{s}' \in \mathbb{L}[[\mathfrak{S}]]$ for all $\mathfrak{s} \in \mathfrak{S}$. So let $\mathfrak{s} \in \mathfrak{S}$; we distinguish two cases:

- (1) s[†] ≻_{e^x} 1. Then s ∉ ℑ^b, hence s = e^φ with supp φ' ≪ s (by Lemma 4.8 applied to m ∈ supp φ). Using φ' = s[†], this yields m[†] ≍ s[†] for every m ∈ supp s'. Let v ∈ (supp_{e^x} s') \ {1}, so v ≍_{e^x} m with m ∈ supp s'. Then v[†] ≍_{e^x} m[†] ≍ s[†] ≺_{e^x} u[†], hence v ∈ 𝔅, as desired.
- (2) $\mathfrak{s}^{\dagger} \preccurlyeq_{e^x} 1$. Then $\log \mathfrak{s} \in \mathbb{L}[[\mathfrak{U}_n]] \cap \mathbb{R}[[\mathfrak{T}^{\flat}]] = \mathbb{L}$ (by Lemma 4.9) and thus $\mathfrak{s}' = (\log \mathfrak{s})' \cdot \mathfrak{s} \in \mathbb{L}[[\mathfrak{S}]].$

Suppose that $\mathfrak{u}^{\dagger} \succ_{e^x} 1$. Then $\log \mathfrak{u} \succ_{e^x} 1$ by Lemma 4.9, hence

$$(\log \mathfrak{u})^{\dagger} = \frac{\mathfrak{u}^{\dagger}}{\log \mathfrak{u}} \prec_{e^x} \mathfrak{u}^{\dagger}.$$

Therefore, if $\mathfrak{v} \in \operatorname{supp}_{e^x} \log \mathfrak{u}$, then $\mathfrak{v}^{\dagger} \preccurlyeq_{e^x} (\log \mathfrak{u})^{\dagger} \prec_{e^x} \mathfrak{u}^{\dagger}$, hence $\mathfrak{v} \in \mathfrak{S}$. Thus $\log \mathfrak{u} \in \mathbb{L}[[\mathfrak{S}]]$, and as $\mathbb{L}[[\mathfrak{S}]]$ is closed under differentiation, we get $\mathfrak{u}^{\dagger} \in \mathbb{L}[[\mathfrak{S}]]$. \Box

Lemma 5.10. Let $f \in \mathbb{S}$ with $\mathfrak{u}^{\dagger} \succ_{e^x} 1$ for all $\mathfrak{u} \in (\operatorname{supp}_{e^x} f) \setminus \{1\}$. Then $\int f \in \mathbb{S}$.

Proof. We already know that $\mathbb{S}_0 = \mathbb{L}_1$ is closed under distinguished integration, by Proposition 3.5. So we may assume that $1 \notin \operatorname{supp}_{e^x} f$ by passing from f to $f - f_1^b$. Take n > 0 such that $f \in \mathbb{S}_n$. We shall prove that $\int f \in \mathbb{S}_n$. We have

$$f = \sum_{u \in \mathfrak{U}_n} f_{\mathfrak{u}}^{\flat} \mathfrak{u} \in \mathbb{L}_1[[\mathfrak{U}_n]] = \mathbb{S}_n.$$

Put $\mathfrak{N} := \mathfrak{M} \cap \mathfrak{T}^{\flat}$, a convex subgroup of \mathfrak{M} ; note that $\mathbb{L} \subseteq \mathbb{R}[[\mathfrak{N}]]$. Let \mathfrak{R} be the steep supplement of \mathfrak{N} in \mathfrak{M} . The definitions of \mathfrak{T}^{\sharp} and \mathfrak{R} easily imply that $\mathfrak{M} \cap \mathfrak{T}^{\sharp} \subseteq \mathfrak{R}$; hence $\mathfrak{U}_{n} \subseteq \mathfrak{R}$. Therefore, the family $(f_{\mathfrak{u}}^{\flat}\mathfrak{u})_{\mathfrak{u}\in\mathfrak{U}_{n}}$ in $\mathbb{R}[[\mathfrak{M}]]$ is flatly noetherian with respect to \mathfrak{N} , with sum f. Thus by Theorem 4.14, the family $(\int f_{\mathfrak{u}}^{\flat}\mathfrak{u})_{\mathfrak{u}\in\mathfrak{U}_{n}}$ in $\mathbb{R}[[\mathfrak{M}]]$ is also flatly noetherian, with sum $\int f$. Fix any $g \in \mathbb{L}_{1}$ and $\mathfrak{u} \in \mathfrak{U}_{n}$ with $\mathfrak{u}^{\dagger} \succ_{e^{x}} 1$; it suffices to show that then $\int g\mathfrak{u} \in \mathbb{S}_{n} = \mathbb{L}_{1}[[\mathfrak{U}_{n}]]$. Put $h := (1/\mathfrak{u}) \int g\mathfrak{u} \in \mathbb{L}[[\mathfrak{U}_{n}]]$; it remains to show that $h \in \mathbb{L}_{1}[[\mathfrak{U}_{n}]]$. Note that

$$h + (h'/\mathfrak{u}^{\dagger}) = g/\mathfrak{u}^{\dagger}$$

Let \mathfrak{S} be as in (5.2). Take a basis \mathfrak{C} for the \mathbb{R} -vector space \mathbb{L} ; extend \mathfrak{C} to a basis \mathfrak{B} for $\mathbb{R}[[\mathfrak{N}]]$, and let \preccurlyeq^* be as in (4.3) and $\varphi : \mathbb{R}[[\mathfrak{B} \times \mathfrak{R}]] \to \mathbb{R}[[\mathfrak{M}]]$ as defined in Lemma 4.15. The map φ restricts to an \mathbb{R} -linear bijection

$$\varphi_1 \colon \mathbb{R}[[\mathfrak{C} \times \mathfrak{S}]] \to \mathbb{R}[[\mathfrak{L} \cdot \mathfrak{S}]] = \mathbb{L}[[\mathfrak{S}]]$$

By the previous lemma, the subfield $\mathbb{L}[[\mathfrak{S}]]$ of $\mathbb{L}[[\mathfrak{U}_n]]$ is closed under differentiation and contains \mathfrak{u}^{\dagger} . Hence the operator

$$\Phi \colon \mathbb{L}[[\mathfrak{U}_n]] \to \mathbb{L}[[\mathfrak{U}_n]], \quad y \mapsto y' / \mathfrak{u}^{\dagger},$$

maps $\mathbb{L}[[\mathfrak{S}]]$ to itself, and $(\mathrm{Id} + \Phi)(h) = g/\mathfrak{u}^{\dagger}$. By Theorem 4.13 the operator $\Phi_1 := \varphi_1^{-1} \circ \Phi \circ \varphi_1$ on $\mathbb{R}[[\mathfrak{C} \times \mathfrak{S}]]$ is strongly linear, and $\mathrm{supp} \, \Phi_1(\mathfrak{c}, \mathfrak{s}) \prec^*(\mathfrak{c}, \mathfrak{s})$ for all $(\mathfrak{c}, \mathfrak{s}) \in \mathfrak{C} \times \mathfrak{S}$. We now apply Corollary 1.4 with $\mathfrak{C} \times \mathfrak{S}$ in place of \mathfrak{M} , ordered by the restriction of \preccurlyeq^* to $\mathfrak{C} \times \mathfrak{S}$, and Φ_1 in place of Φ . It follows that the family

$$((-1)^i \Phi^i(g/\mathfrak{u}^\dagger))_{i\in\mathbb{N}}$$

in $\mathbb{L}[[\mathfrak{S}]]$ is flatly noetherian as a family in $\mathbb{R}[[\mathfrak{M}]]$, and that

$$h_1 := \sum_{i=0}^{\infty} (-1)^i \Phi^i(g/\mathfrak{u}^{\dagger}) \in \mathbb{L}[[\mathfrak{S}]]$$

satisfies

$$h_1 + (h'_1/\mathfrak{u}^{\dagger}) = g/\mathfrak{u}^{\dagger} = h + (h'/\mathfrak{u}^{\dagger}).$$

Hence $h = h_1 + c\mathfrak{u}^{-1}$ for some $c \in \mathbb{R}$. From $\Phi(\mathbb{L}_1[[\mathfrak{U}_n]]) \subseteq \mathbb{L}_1[[\mathfrak{U}_n]]$ we deduce that $\Phi^i(g/\mathfrak{u}^{\dagger}) \in \mathbb{L}_1[[\mathfrak{U}_n]]$ for all *i*. Hence $h_1 \in \mathbb{L}_1[[\mathfrak{U}_n]]$, and thus $h \in \mathbb{L}_1[[\mathfrak{U}_n]]$.

Next we show that for suitable f the hypothesis in the last lemma is satisfied after a single upward shift:

Lemma 5.11. For every $f \in \mathbb{S}$ with $f_1^{\flat} = 0$ and $\mathfrak{u} \in \operatorname{supp}_{e^x} f \uparrow$ we have $\mathfrak{u}^{\dagger} \succ_{e^x} 1$.

Proof. Suppose $f \in S_n$, $f_1^{\flat} = 0$, n > 0. Then

$$f \! \uparrow = \sum_{1 \neq \mathfrak{s} \in \mathfrak{U}_n} (f^\flat_\mathfrak{s}) \! \uparrow \cdot \mathfrak{s} \! \uparrow$$

with $\operatorname{supp}_{e^x}(f_{\mathfrak{s}}^{\flat})^{\uparrow} \subseteq (\exp x)^{\mathbb{R}}$ for $1 \neq \mathfrak{s} \in \mathfrak{U}_n$. So it suffices to show for such \mathfrak{s} that $(\mathfrak{s}\uparrow)^{\dagger} \succ_{e^x} 1$. Write $\mathfrak{s} = e^{\varphi}$ with $0 \neq \varphi \in \mathbb{S}_{n-1} \cap \mathbb{R}[[\mathfrak{T}_{n-1}^{\succeq x}]]$. Then $\mathfrak{d}(\varphi) \succeq x$ and hence $\mathfrak{d}(\varphi\uparrow) = \mathfrak{d}(\varphi)\uparrow \succeq e^x$. Therefore $\mathfrak{d}(\varphi\uparrow)' \succeq (e^x)' = e^x \succ_{e^x} 1$, so $(\mathfrak{s}\uparrow)^{\dagger} = (\varphi\uparrow)' \simeq \mathfrak{d}(\varphi\uparrow)' \succ_{e^x} 1$ as required. \Box

Proposition 5.12. The *H*-subfield \mathbb{T}_1 of \mathbb{T} is closed under integration.

Proof. We claim that for each $k \in \mathbb{N}$ and $g \in \mathbb{S} \downarrow^k$ there is $f \in \mathbb{S} \downarrow^{k+1}$ such that f' = g. We proceed by induction on k. First, let $g \in \mathbb{S}$. By Proposition 3.5 we may assume that $g_1^{\flat} = 0$. Consider $G = (g\uparrow) \cdot e^x \in \mathbb{S}$. By the previous lemma, all $\mathfrak{u} \in (\operatorname{supp}_{e^x} G) \setminus \{1\}$ satisfy $\mathfrak{u}^{\dagger} \succ_{e^x} 1$. By Lemma 5.10, we get $\int G \in \mathbb{S}$ and hence $\int g = (\int G) \downarrow \in \mathbb{S} \downarrow$. This proves the case k = 0 of our claim.

For the induction step we consider an element of \mathbb{S}^{k+1} , and write it as $g \downarrow$ with $g \in \mathbb{S}^{k}$. Then $g \cdot e^x \in \mathbb{S}^{k}$, so inductively we have an $f \in \mathbb{S}^{k+1}$ with $f' = g \cdot e^x$. Then $(f \downarrow)' = g \downarrow$, and $f \downarrow \in \mathbb{S}^{k+2}$.

We now have the main theorem from the introduction, with $K = \mathbb{T}_1$:

Corollary 5.13. The *H*-subfield \mathbb{T}_1 of \mathbb{T} is Liouville closed, and $\varrho \in \mathbb{T}_1$.

Proof. Propositions 5.7 and 5.12 show that \mathbb{T}_1 is Liouville closed; the second part follows from $\rho \in \mathbb{L}_1 \subseteq \mathbb{T}_1$.

6. Final remarks

The differential polynomial $2Z' + Z^2$ (the "Schwarzian" in [7]) has a close connection to the second-order linear differential equation Y'' = fY where f is an element of some H-field: whenever y is a nonzero solution to Y'' = fY, then $z = 2y^{\dagger}$ satisfies $2z' + z^2 = f$. The cut in $\mathbb{R}[[[x]]] = \mathbb{R}((x^{-1}))^{\text{LE}}$ determined by $\varrho := 2\lambda' + \lambda^2 \in \mathbb{L}$ can be used to describe for which $f \in \mathbb{R}[[[x]]]$ the linear differential equation Y'' = fY has a nonzero solution in $\mathbb{R}[[[x]]]$; see [6]. (Likewise for the existence of solutions in finite-rank Hardy fields, [16].) See also [13] for some observations about the role of gaps in Hardy fields, and of the transseries Λ , in the theory of ordinary differential equations over o-minimal expansions of the real exponential field.

The transseries ρ makes another appearance in Écalle [7]: Lemme 7.4 says that for any nonconstant differential polynomial $P(Z, Z', \ldots, Z^{(n)}) \in \mathbb{R}\{Z\}$, the series $P(\lambda, \lambda', \ldots, \lambda^{(n)}) \in \mathbb{L}$ has infinite support, and the sum of its first ω terms, after possibly discarding finitely many initial terms, has the form either

$$c\ell_0^{-e_0}\ell_1^{-e_1}\cdots\ell_{k-1}^{-e_{k-1}}(\lambda\downarrow^k) \quad \text{with } e_0 \ge e_1 \ge \cdots \ge e_{k-1} > 1$$

or

$$e_0^{e_0} \ell_1^{-e_1} \cdots \ell_{k-1}^{-e_{k-1}} (\varrho \downarrow^k) \quad \text{with } e_0 \ge e_1 \ge \cdots \ge e_{k-1} > 2$$

where $c \in \mathbb{R}^{\times}$, $k \in \mathbb{N}$, and the e_i are integers.

Given a real number $r \ge 0$, we say that a subset \mathfrak{S} of \mathfrak{L} has decay > r if for every $\mathfrak{m} = \ell_0^{\alpha_0} \ell_1^{\alpha_1} \cdots$ in \mathfrak{S} (with $\alpha_k \in \mathbb{R}$ for all k) there exists k_0 such that $\alpha_k < -r$ for all $k \ge k_0$. Let \mathbb{L}_r be the set of all $f \in \mathbb{L}$ such that supp f has decay > r. (So $\mathbb{L}_r \subseteq \mathbb{L}_s$ for $0 \le s \le r$.) We have $\lambda \in \mathbb{L}_r \setminus \mathbb{L}_1$ for all $0 \le r < 1$ and $\varrho \in \mathbb{L}_s \setminus \mathbb{L}_2$ for $0 \le s < 2$. As with \mathbb{L}_1 , one can show that \mathbb{L}_r is a differential subfield of \mathbb{L} , which is closed under integration if and only if $r \ge 1$. (For $0 \le r < 1$ we have $\lambda \in \mathbb{L}_r$, but $\int \lambda = \Lambda \notin \mathbb{L}_r$.) For $r \ge 1$, carrying out the construction of \mathbb{T}_1 with \mathbb{L}_r in place of \mathbb{L}_1 yields a Liouville closed H-subfield \mathbb{T}_r of \mathbb{T} which does not contain an element of the form $\lambda + \varepsilon$, where $\varepsilon \in \mathbb{R}[[\mathfrak{T}]]$ satisfies $\varepsilon \prec 1/(\ell_0 \ell_1 \cdots \ell_n)$ for all n.

By the above result of Écalle, λ does not satisfy any differential equation of the form $P(\lambda, \lambda', \ldots, \lambda^{(n)}) = f$, where $P(Z, Z', \ldots, Z^{(n)}) \in \mathbb{R}\{Z\}$ is nonconstant and $f \in \mathbb{T}_r$ with r > 1. (We suspect that λ is differentially transcendental over \mathbb{L}_r , and hence over \mathbb{T}_r , for any r > 1.) In particular, our construction of a differentially algebraic, non-Liouvillian gap could not have been carried out with \mathbb{T}_1 replaced by \mathbb{T}_r for any r > 1, even if we replace $2Z' + Z^2$ by another nonconstant differential polynomial $P(Z, Z', \ldots, Z^{(n)}) \in \mathbb{R}\{Z\}$.

Finally, let us mention that the Newton polygon method of [9] can be used to obtain Hardy field examples of the various possibilities for the appearance of gaps exhibited in this paper. We shall leave the details for another occasion.

References

- M. Aschenbrenner and L. van den Dries. H-fields and their Liouville extensions. Math. Z. 242 (2002), 543–588.
- [2] M. Aschenbrenner and L. van den Dries. Liouville closed H-fields. J. Pure Appl. Algebra 197 (2005), 83–139.
- [3] B. Dahn and P. Göring. Notes on exponential-logarithmic terms. Fund. Math. 127 (1986), 45–50.
- [4] L. van den Dries, A. Macintyre, and D. Marker. The elementary theory of restricted analytic fields with exponentiation. Ann. of Math. (2) 140 (1994), 183–205.
- [5] L. van den Dries, A. Macintyre, and D. Marker. Logarithmic-exponential power series. J. London Math. Soc. (2) 56 (1997), 417–434.
- [6] L. van den Dries, A. Macintyre, and D. Marker. Logarithmic-exponential series. Ann. Pure Appl. Logic 111 (2001), 61–113.
- [7] J. Écalle. Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac. Hermann, Paris, 1992.
- [8] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2 (1952), 326–336.

- [9] J. van der Hoeven. Asymptotique Automatique. Ph.D. thesis, École polytechnique, Paris, 1997.
- [10] J. van der Hoeven. A differential intermediate value theorem. In: B. L. J. Braaksma et al. (eds.), *Differential Equations and the Stokes Phenomenon* (Groningen, 2001), World Sci., River Edge, NJ, 2002, 147–170.
- [11] J. van der Hoeven. Operators on generalized power series. *Illinois J. Math.* 45 (2001), 1161–1190.
- [12] S. Kuhlmann. Ordered Exponential Fields. Fields Inst. Monogr. 12, Amer. Math. Soc., Providence, RI, 2000.
- [13] C. Miller and P. Speissegger. Pfaffian differential equations over exponential ominimal structures. J. Symbolic Logic 67 (2002), 438–448.
- [14] B. H. Neumann. On ordered division rings. Trans. Amer. Math. Soc. 66 (1949), 202–252.
- [15] M. Rosenlicht. Hardy fields. J. Math. Anal. Appl. 93 (1983), 297-311.
- [16] M. Rosenlicht. Asymptotic solutions of Y'' = F(x)Y. J. Math. Anal. Appl. 189 (1995), 640–650.
- [17] M. Schmeling. Corps de transséries. Ph.D. thesis, Université Paris VII, 2001.

Matthias Aschenbrenner Department of Mathematics University of California at Berkeley Berkeley, CA 94720, U.S.A. Current address: Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago 851 S. Morgan St. (M/C 249) Chicago, IL 60607, U.S.A. e-mail: maschenb@math.berkeley.edu

Lou van den Dries Department of Mathematics University of Illinois at Urbana-Champaign Urbana, IL 61801, U.S.A. e-mail: vddries@math.uiuc.edu

Joris van der Hoeven Département de Mathématiques Bâtiment 425, Mathématique Université Paris-Sud 91405 Orsay Cedex, France e-mail: Joris.VanDerHoeven@math.u-psud.fr