
Sel. math., New ser. Online First
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Abstract. H-fields are ordered differential fields that capture some basic prop-
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a convex valuation, and solving first-order linear differential equations in H-
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Introduction

This paper is motivated by a basic problem about H-fields, the gap problem, as we
explain later in this introduction. In this paper “differential field” means “ordinary
differential field of characteristic 0”; H-fields are ordered differential fields whose
ordering and derivation interact in a strong way. The category of H-fields was
defined in [1] as a common algebraic framework for two points of view on the
asymptotic behavior of one-variable real-valued functions at infinity: the theory of
Hardy fields (see [15]), and the more recent theory of transseries fields, introduced

by Dahn and Göring [3] as well as Écalle [7], and further developed in [5], [6], [9],
[17]. We hope that the theory of H-fields will lead to a better (model-theoretic)
understanding of Hardy fields, and of their relation to fields of transseries.

For this introduction, we assume that the reader has access to [1] and [2]; in
particular, the notations and conventions in these papers remain in force. We recall
here that any H-field K (with constant field C) comes equipped with a dominance
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relation 4: for f, g ∈ K, we have

f 4 g ⇔ |f | 6 c|g| for some c ∈ C,

and we write f ≺ g if f 4 g and g 64 f ; we also write g < f instead of f 4 g, and
g ≻ f instead of f ≺ g. (If K ⊇ R is a Hardy field, then K is an H-field and, in
Landau’s O-notation, f 4 g ⇔ f = O(g) and f ≺ g ⇔ f = o(g).) For some basic
properties of these asymptotic relations we refer to [10] in the case of transseries
fields, and [2] for H-fields in general.

Let K be an H-field. The set K41 = {f ∈ K : f 4 1} of bounded elements
of K is a convex subring of K; we shall always denote the associated valuation
by v : K → Γ ∪ {∞}, with Γ = v(K×), K× := K\{0}. For f, g ∈ K we write
f ≍ g if v(f) = v(g), that is, f 4 g and g 4 f . An element f of K is said to be
infinitesimal if f ≺ 1, equivalently, |f | < c for all positive constants c ∈ C, and
infinite if f ≻ 1, equivalently, |f | > C.

An H-field K is Liouville closed if K is real closed, and any first-order linear
differential equation y′ + fy = g with f, g ∈ K has a solution in K. A Liouville

closure of an H-field K is a Liouville closed H-field L extending K which is
minimal with this property. Every H-field K has at least one, and at most two,
Liouville closures, up to isomorphism over K. Given a differential field F , an
element f ∈ F× and an element y in some differential field extension of F we let
f† := f ′/f denote the logarithmic derivative of f , and let F 〈y〉 := F (y, y′, y′′, . . . )
be the differential field generated by y over F . A differential field F is said to be
closed under integration if for each g ∈ F there is f ∈ F with f ′ = g.

Gaps in H-fields

In an H-field, asymptotic relations between elements of nonzero valuation may be
differentiated: if f, g 6≍ 1, then f ≺ g ⇔ f ′ ≺ g′. In particular, if f is infinitesimal
and g is infinite, then f ′ ≺ g′. Also, if ε and δ are nonzero infinitesimals, then
ε′ ≺ δ†. A gap in an H-field K is an element γ = v(g), g ∈ K×, of its value
group Γ such that ε′ ≺ g ≺ δ† for all nonzero infinitesimals ε, δ. An H-field
has at most one gap, and has no gap if it has a smallest comparability class or
is Liouville closed. Further examples of H-fields without a gap can be obtained
using the H-field of transseries of finite exponential and logarithmic depth with
real coefficients, denoted by R((x−1))LE in [6], and by R[[[x]]] in [9]: each ordered
differential subfield of R[[[x]]] that contains R is an H-field without a gap.

If an H-field K has a gap v(g) as above, then K has exactly two Liouville
closures, up to isomorphism over K: one in which g = ε′ with infinitesimal ε, and
one where g = h′ with infinite h. This “fork in the road” due to a gap causes
much trouble. For a model-theoretic analysis of (existentially closed) H-fields, one
needs to understand when a given H-field can have a differentially algebraic H-
field extension with a gap. (An extension L|K of differential fields is said to be
differentially algebraic if every element of L is a zero of a nonconstant differential
polynomial over K.)
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The gap problem

The simplest type of differentially algebraic extensions are Liouville extensions. If
K is a real closed H-field and L = K(y) is an H-field extension with y′ ∈ K, then
L has a gap if and only if K does, by [1], [2]. However, [2] also has an example
of a real closed H-field K without a gap, but such that some H-field extension
L = K(y) ⊇ K with y 6= 0, y† ∈ K, has a gap. It may even happen that an H-field
K has no gap, but its real closure does. These examples raise the question (called
the “gap problem” in [1]) whether the creation of gaps in differentially algebraic
H-field extensions can be confined to Liouville extensions. More precisely, we asked
the following:

Suppose L is a differentially algebraic H-field extension of a Liouville

closed H-field K. Can L have a gap? (A negative answer would have
been welcome.)

Our main result is an example where the answer is positive. This example is about
as simple as possible, and may well be generic in some sense.

Outline of the example

No differentially algebraic H-field extension of R[[[x]]] can have a gap, by [2, Corol-
lary 12.2], and this statement remains true when R[[[x]]] is replaced by any Liouville
closed H-subfield. Our example will indeed live in a larger field T of transseries,
as we shall indicate.

First, let L denote the multiplicative ordered subgroup of R[[[x]]]>0 generated
by the real powers of the iterated logarithms

ℓ0 := x, ℓ1 := log x, ℓ2 := log log x, . . . , ℓn := logn x, . . .

of x (the group of logarithmic monomials, see Section 2). This gives rise to

L := R[[L]] (the field of logarithmic transseries).

At the beginning of Section 3 we equip L with a derivation making it an H-
field with constant field R. Let T be the field of transseries of finite exponential

depth and logarithmic depth at most ω, with real coefficients (denoted by Rω<ω[[[x]]]
in [9]). At this stage we only mention that T is obtained from L by an inductive
procedure of closure under exponentiation. (Details of this procedure are in [9,
Chapter 2], and are recalled at the beginning of Section 4.) As a result of its
construction T comes equipped with a derivation that makes it a real closed H-
field extension of L (with same constant field R), and with an isomorphism exp
of the ordered additive group of T onto its positive multiplicative group T>0,
whose inverse is denoted by log, such that exp(f)′ = f ′ exp(f) for all f ∈ T and
log ℓn = ℓn+1 for all n.

Moreover, the sequence ℓ0, ℓ1, ℓ2, . . . is coinitial in the set of positive infinite
elements of T and hence 1/ℓ0, 1/ℓ1, 1/ℓ2, . . . is cofinal in the set of positive in-
finitesimals of T. Also, R[[[x]]] ⊆ T, as H-fields and as exponential fields. Here



4 M. Aschenbrenner et al. Sel. math., New ser.

is a diagram illustrating the various H-fields and their inclusions (indicated by
arrows):

L = R[[L]] - T

6 6

R(L) - R[[[x]]]

Whereas the H-field L does not have a gap (see Section 3), the H-field T does . In
particular, T is not Liouville closed. To see this, we set as in [7, Chapter 7]:

Λ := ℓ1 + ℓ2 + ℓ3 + · · · ∈ L.

In T we have (ℓn)
† = (ℓn+1)

′ = exp(−(ℓ1 + ℓ2 + · · · + ℓn+1)), and thus

(1/ℓn)
′ ≺ exp(−Λ) ≺ (1/ℓn)

† for all n.

(Intuitively, exp(−Λ) represents the infinitely long logarithmic monomial
1/(ℓ0ℓ1ℓ2 · · · ).) Therefore v(exp(−Λ)) is a gap in T, and hence is a gap in each
H-subfield of T that contains exp(Λ). So any Liouville closed H-subfield K of T

with a differentially algebraic H-field extension L ⊆ T containing exp(Λ) is an
example as claimed. Put

λ := Λ′ =
1

ℓ0
+

1

ℓ0ℓ1
+

1

ℓ0ℓ1ℓ2
+ · · · +

1

ℓ0ℓ1 · · · ℓn
+ · · · ∈ L.

Let ̺ := 2λ′ + λ2 ∈ L. A computation shows that

̺ = −

(
1

ℓ20
+

1

(ℓ0ℓ1)2
+

1

(ℓ0ℓ1ℓ2)2
+ · · · +

1

(ℓ0ℓ1 · · · ℓn)2
+ · · ·

)
.

We shall prove (Corollary 5.13):

Theorem. There exists a Liouville closed H-subfield K ⊇ R(L) of T such that

̺ ∈ K.

Given K as in the Theorem, let L := K(exp(Λ), λ) ⊆ T. Since exp(Λ)† = λ
and λ′ = ̺− (1/2)λ2, L is an H-subfield of T and differentially algebraic over K;
thus K and L are an example as claimed.

We shall construct a K as in the theorem by isolating a condition on trans-
series in T, namely “to have decay > 1”, a condition satisfied by ̺, but not by λ.
The main effort then goes into showing that this condition defines a Liouville
closed H-subfield of T as in the Theorem.

Organization of the paper

After preliminaries in Section 1 on transseries, we introduce in Section 2 the prop-
erty of subsets S of L to have decay > 1. In Section 3 we consider the subset L1

of L consisting of those series whose support has decay > 1, and show that L1

is an H-subfield of L closed under integration and taking logarithms of positive
elements. (By construction, ̺ ∈ L1, but λ /∈ L1.) Section 4 is the most technical;
it focuses on subgroups M of the group T of monomials of T and shows, under
mild assumptions including exp(Λ) /∈ M, that then the transseries field R[[M]] is
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closed under a natural derivation on R[[T]] extending that of T, and is also closed
under integration. (Here we make essential use of the Implicit Function Theorem
from [11].) In Section 5 we prove the main theorem by extending L1 to a Liouville
closed H-subfield T1 of T. We finish with comments on the transseries λ and ̺.

1. Preliminaries

In our notations we mostly follow [11]. Throughout this paper we let m and n
range over N := {0, 1, 2, . . . }.

Strong linear algebra

Let (M,4) be an ordered set. (We do not assume that 4 is total, but we do follow
the convention that ordered abelian groups and ordered fields are totally ordered.)
A subset S of M is said to be noetherian if for every infinite sequence m1,m2, . . .
in S there exist indices i < j such that mi < mj . If the ordering 4 is total, then
S ⊆ M is noetherian if and only if S is well-ordered for the reverse ordering <,
that is, there is no strictly increasing infinite sequence m0 ≺ m1 ≺ · · · in S. Let
C be a field. Then

C[[M]] :=
{
f =

∑

m∈M

fmm : all fm ∈ C, supp f ⊆ M is noetherian
}
,

where supp f = {m ∈ M : fm 6= 0} is the support of f , denotes the C-vector space
of transseries with coefficients in C and monomials from M. We refer to [11] for
terminology and basic results concerning “strong linear algebra” in C[[M]]. In
particular, a family (fi)i∈I in C[[M]] is called noetherian if the set

⋃
i∈I supp fi ⊆

M is noetherian and for each m ∈ M there exist only finitely many i ∈ I such that
m ∈ supp fi. In this case, we put

∑

i∈I

fi :=
∑

m∈M

( ∑

i∈I

fi,m

)
m,

an element of C[[M]].
Let (N,6) be a second ordered set. A C-multilinear map Φ: C[[M]]n →

C[[N]] is called strongly multilinear if for all noetherian families

(f1,i1)i1∈I1 , . . . , (fn,in)in∈In

in C[[M]] the family

(Φ(f1,i1 , . . . , fn,in))(i1,...,in)∈I1×···×In

in C[[N]] is noetherian and

Φ
( ∑

i1∈I1

f1,i1 , . . . ,
∑

in∈In

fn,in

)
=

∑

(i1,...,in)∈I1×···×In

Φ(f1,i1 , . . . , fn,in).

In the case n = 1 we say that Φ is strongly linear. Clearly a strongly multilinear
map C[[M]]n → C[[N]] is strongly linear in each of its n variables.
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A map ϕ : M → C[[N]] is said to be noetherian if for every noetherian subset
S ⊆ M, the family (ϕ(m))m∈S in C[[N]] is noetherian; equivalently, for every
infinite sequence m1 ≻ m2 ≻ · · · of monomials in M and ni ∈ suppϕ(mi) for i > 1,
there exist i < j such that ni ≻ nj . A noetherian map M → C[[N]] extends to a
unique strongly linear map C[[M]] → C[[N]] (Proposition 3.5 in [11]), and every
strongly linear map C[[M]] → C[[N]] restricts to a noetherian map M → C[[N]].

A map Φ: C[[M]] → C[[N]] is called noetherian if there exists a family
(Mn)n∈N of strongly multilinear maps

Mn : C[[M]]n → C[[N]]

such that for every noetherian family (fk)k∈K in C[[M]] the family

(Mn(fk1
, . . . , fkn

))n∈N, k1,...,kn∈K

in C[[N]] is noetherian and

Φ
( ∑

k∈K

fk

)
=

∑

n∈N

k1,...,kn∈K

Mn(fk1
, . . . , fkn

).

The family (Mn) is called a multilinear decomposition of Φ. If charC = 0, then
the Mn may chosen to be symmetric, and in this case the sequence (Mn)n∈N

is uniquely determined by Φ ([11, Proposition 5.8]). Every strongly linear map
Φ: C[[M]] → C[[N]] is noetherian, with multilinear decomposition (Mn) given by
M1 = Φ and Mn = 0 for n 6= 1. Conversely, if C is infinite, then every linear
noetherian map is strongly linear, as we show next.

Lemma 1.1. Suppose the field C is infinite and (fi)i∈N is a noetherian family in

C[[M]]. Let φ : C → C[[M]] be given by φ(λ) =
∑
i λ

ifi, and suppose φ is C-linear.

Then fi = 0 for all i 6= 1.

Proof. Suppose m ∈
⋃
i supp fi; let i1 < · · · < in be the indices i such that

m ∈ supp fi, and put ck := (fik)m ∈ C for k = 1, . . . , n. With λ ∈ C we have
φ(λ)m = λφ(1)m, that is,

λi1c1 + · · · + λincn = λ(c1 + · · · + cn).

Since C is infinite, this yields n = 1 and i1 = 1. �

Corollary 1.2. Suppose the field C is infinite, and the map Φ: C[[M]] → C[[N]] is

noetherian and C-linear. Then Φ is strongly linear.

Proof. Let (Mn)n∈N be a multilinear decomposition of Φ. Let f ∈ C[[M]], and
define φ : C → C[[N]] by φ(λ) = Φ(λf). Then

φ(λ) =
∑

i

λifi with fi := Mi(f, . . . , f),

and φ is C-linear. Hence fi = 0 for all i 6= 1, by the previous lemma. It follows
that Φ = M1. �
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We equip the disjoint union M ∐ N with the least ordering extending those
of M and N. The natural inclusions i : M → M ∐ N and j : N → M ∐ N ex-
tend uniquely to strongly linear maps î : C[[M]] → C[[M ∐ N]] and ĵ : C[[N]] →
C[[M ∐ N]]. This yields a C-linear bijection

(f, g) 7→ î(f) + ĵ(g) : C[[M]] × C[[N]] → C[[M ∐ N]].

When convenient, we identify C[[M]] × C[[N]] with C[[M ∐ N]] by means of this
bijection. For example, we say that a map Φ: C[[M]]×C[[N]] → C[[M]] is strongly
linear (respectively, noetherian) if Φ, considered as a map C[[M∐N]] → C[[M]], is
strongly linear (respectively, noetherian). The following is the strongly linear case
of Theorems 6.1 and 6.3 in [11] (van der Hoeven’s implicit function theorem):

Theorem 1.3. Let the map (f, g) 7→ Φ(f, g) : C[[M]]×C[[N]] → C[[M]] be strongly

linear such that supp Φ(m, 0) ≺ m for all m ∈ M. Then for each g ∈ C[[N]] there

is a unique f = Ψ(g) ∈ C[[M]] such that Φ(f, g) = f . For each g ∈ C[[N]] the

family (Ψn+1(g) − Ψn(g))n∈N in C[[M]] with

Ψ0(g) = Φ(0, g), Ψn+1(g) = Φ(Ψn(g), g) for all n

is noetherian with

Ψ(g) = Ψ0(g) +
∑

n∈N

(Ψn+1(g) − Ψn(g)).

The map g 7→ Ψ(g) : C[[M]] → C[[M]] is noetherian.

The following consequence for inverting strongly linear maps is important
later:

Corollary 1.4. Suppose that C is infinite. Let Φ: C[[M]] → C[[M]] be a strongly

linear map such that supp Φ(m) ≺ m for all m ∈ M. Then the strongly linear

operator Id + Φ on C[[M]] is bijective with strongly linear inverse given by

(Id + Φ)−1(g) =

∞∑

n=0

(−1)nΦn(g). (1.1)

Proof. Let Φ1 : C[[M]] ×C[[M]] → C[[M]] be given by Φ1(f, g) = g − Φ(f). Then
Φ1 is strongly linear and supp Φ1(m, 0) = supp Φ(m) ≺ m for all m ∈ M. By the
theorem above with Φ1 in place of Φ we obtain a a noetherian Ψ: C[[M]] → C[[M]]
such that (Id + Φ) ◦ Ψ = Id. By Corollary 1.2, Ψ is strongly linear.

The assumption on Φ implies that Id + Φ has trivial kernel, so Id + Φ is
injective, and thus Ψ is even a two-sided inverse of Id + Φ. Moreover, in the
notation of Theorem 1.3 we have

Ψ0(g) = g, Ψ1(g) = g − Φ(g), Ψ2(g) = g − Φ(g) + Φ2(g), . . .

for every g, which yields (1.1). �
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Transseries fields

In the rest of this section, (M,4) is a multiplicative ordered abelian group. (In
particular the ordering 4 is total.) Then C[[M]] is a field, called the transseries

field with coefficients in C and monomials from M. If S,S′ ⊆ M are noetherian,
so is SS′. For S ⊆ M, let S∗ be the multiplicative submonoid of M generated
by S; if S ⊆ M is noetherian and S 4 1, then S∗ is noetherian.

For nonzero f ∈ C[[M]] we put

d(f) := max
4

supp f (dominant monomial of f)

and we call fd(f)d(f) ∈ C× · M the dominant term of f . We extend the ordering
4 on M to a dominance relation on C[[M]]: for series f and g in C[[M]], we put

f 4 g :⇔ (f 6= 0, g 6= 0, d(f) 4 d(g)), or f = 0,

f ≍ g :⇔ f 4 g ∧ g 4 f,

so for nonzero f and g, f ≍ g ⇔ d(f) = d(g). We have the canonical decomposition

of C[[M]] into C-linear subspaces:

C[[M]] = C[[M]]↑ ⊕ C ⊕ C[[M]]↓,

where
C[[M]]↑ := {f ∈ C[[M]] : supp f ≻ 1} = C[[M≻1]]

and
C[[M]]↓ := {f ∈ C[[M]] : supp f ≺ 1} = C[[M]]≺1 = C[[M≺1]],

the maximal ideal of the valuation ring C[[M]]41 = C ⊕C[[M]]↓ of C[[M]]. Every
f ∈ C[[M]] can be uniquely written as

f = f↑ + f= + f↓,

where f↑ ∈ C[[M]]↑, f= ∈ C, and f↓ ∈ C[[M]]↓. If C is an ordered field, then we
turn C[[M]] into an ordered field as follows:

f > 0 ⇔ fd(f) > 0, for f ∈ C[[M]], f 6= 0. (1.2)

In this case,

C[[M]]↑ = {f ∈ C[[M]] : |f | > C}

and
C[[M]]↓ = {f ∈ C[[M]] : |f | < C>0},

and the valuation ring C[[M]]41 of C[[M]] is a convex subring of C[[M]]. Given
an ordered field C we shall refer to C[[M]] as an ordered transseries field over C
to indicate that C[[M]] is equipped with the ordering defined by (1.2).

Example 1.5. Let C = R and M = xR, a multiplicative copy of the ordered additive
group of real numbers, with isomorphism r 7→ xr : R → xR. Then we have

f↑ =
∑

r>0

arx
r, f= = a0, f↓ =

∑

r<0

arx
r

for f =
∑

r arx
r ∈ R[[xR]].
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Let X = (X1, . . . , Xn) be a tuple of distinct indeterminates and

F (X) =
∑

ν

aνX
ν ∈ C[[X]]

a formal power series; here the sum ranges over all multiindices ν = (ν1, . . . , νn) ∈
Nn, and aν ∈ C, Xν = Xν1

1 · · ·Xνn
n . For any n-tuple ε = (ε1, . . . , εn) of elements

of C[[M]]↓, the family (aνε
ν)ν is noetherian [14], where εν = εν11 · · · ενn

n . Put

F (ε) :=
∑

ν

aνε
ν ∈ C[[M]]41.

The proof of the following lemma is similar to that of [4, Lemma 2.5].

Lemma 1.6. Suppose that C is real closed and the group M is divisible. Then any

subfield K ⊇ C[M] of C[[M]] with the property that F (ε) ∈ K for all F ∈ C[[X]]
and ε = (ε1, . . . , εn) with ε1, . . . , εn ∈ K≺1 is real closed.

Differentiation

If C[[M]] is an H-field with respect to a derivation f 7→ f ′ with constant field C
and with respect to the ordering extending an ordering on C via (1.2), then the
dominance relation 4 that C[[M]] carries as a transseries field over C coincides
with the dominance relation that it has as an H-field, and

m 4 n ⇔ m′ 4 n′, for m, n ∈ M \ {1}. (1.3)

In the rest of this section we assume, more generally, that C[[M]] is equipped with

a derivation f 7→ f ′ with constant field C such that (1.3) holds.

Integration

A series f ∈ C[[M]] is called the distinguished integral of g ∈ C[[M]], written as
f =

∫
g, if f ′ = g and f= = 0.

For every m ∈ M there is at most one n ∈ M with n′ ≍ m; we say that C[[M]]
is closed under asymptotic integration if for every m ∈ M there exists such an n.

If the derivation on C[[M]] is strongly linear and C[[M]] is closed under
integration, then it is closed under asymptotic integration: for m ∈ M we have
m ≍ n′ where n := d(

∫
m). The following converse is very useful:

Lemma 1.7. Suppose that C is infinite, the derivation on C[[M]] is strongly linear,

and C[[M]] is closed under asymptotic integration. Then each g ∈ C[[M]] has a

distinguished integral in C[[M]], and the operator g 7→
∫
g on C[[M]] is strongly

linear.

Proof. Define I : M → C[[M]] by I(m) = cn with c ∈ C, n ∈ M such that
n′ − m ≺ m. Then by (1.3) the map I is noetherian, hence extends to a strongly
linear operator on C[[M]], which we also denote by I. Let D be the derivation on
C[[M]]. The strongly linear operator Φ = D ◦ I − Id satisfies supp Φ(m) ≺ m for
all m ∈ M. Hence by Corollary 1.4 the strongly linear operator D ◦ I = Id + Φ has
a strongly linear two-sided inverse Ψ given by

Ψ(g) = (D ◦ I)−1(g) = g − Φ(g) + Φ2(g) − Φ3(g) + · · · .
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Since I(m)= = 0 for all m ∈ M, the strongly linear operator
∫

:= I ◦ Ψ assigns to
each g ∈ C[[M]] its distinguished integral. �

Exponentials and logarithms

Suppose now that C = R. For f ∈ R[[M]]41, write f = c + ε with c ∈ R and
ε ∈ R[[M]]↓, and put

exp(f) = exp(c+ ε) := ec
∞∑

i=0

εi

i!
,

where t 7→ et is the usual exponential function on R. Then exp is an exponential

on R[[M]]41: for f, g ∈ R[[M]]41

exp(f) > 1 ⇔ f > 0, exp(f) > f + 1, exp(f + g) = exp(f) exp(g).

Thus exp is injective with image

{g ∈ R[[M]] : g > 0, d(g) = 1}

and inverse

log : {g ∈ R[[M]] : g > 0, d(g) = 1} → R[[M]]41

given by

log g := log a+ log(1 + ε)

for g = a(1 + ε), a ∈ R>0, ε ≺ 1, where log a is the usual natural logarithm of the
positive real number a and

log(1 + ε) :=
∞∑

n=1

(−1)n+1

n
εn.

If R[[M]] is closed under integration, then the above logarithm extends to a func-
tion log : R[[M]]>0 → R[[M]] by

log g := log a+ log m + log(1 + ε)

for g = am(1 + ε) with a ∈ R>0, m ∈ M, and ε ≺ 1, and log m :=
∫

m†. Note that
log(fg) = log f + log g for f, g ∈ R[[M]]>0.

More notation

For nonzero f, g ∈ C[[M]] we put

f �� g :⇔ f† 4 g†,

f ≺≺ g :⇔ f† ≺ g†,

f −≍ g :⇔ f† ≍ g†.

Suppose R[[M]], with its ordering as an ordered transseries field over C = R, is an
H-field. Then by [2, Proposition 7.3], we have for f, g ∈ R[[M]]≻1:

f �� g ⇔ |f | 6 |g|n for some n > 0,

f ≺≺ g ⇔ |f |n < |g| for all n > 0.
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2. Logarithmic monomials

Let L be the multiplicative subgroup of logarithmic monomials of R[[[x]]]>0 gen-
erated by the real powers of the iterated logarithms ℓ0 := x, ℓ1 := log x, ℓ2 :=
log log x, . . . , ℓn := logn x, . . . of x; that is,

L = {ℓα0

0 ℓα1

1 · · · ℓαn
n : (α0, . . . , αn) ∈ R

n, n = 0, 1, 2, . . . }.

Thus L is a multiplicatively written ordered vector space over the ordered field R,
with basis ℓ0, ℓ1, ℓ2, . . . satisfying

ℓ0 ≻≻ ℓ1 ≻≻ ℓ2 ≻≻ · · · ≻≻ ℓn ≻≻ · · · .

We define the group of continued logarithmic monomials L by

L := {ℓα0

0 ℓα1

1 · · · ℓαn
n · · · : (α0, α1, . . . , αn, . . .) ∈ R

N}

and by requiring that (α0, α1, . . .) 7→ ℓα0

0 ℓα1

1 · · · : RN → L is an isomorphism of the

additive group RN onto the multiplicative group L. We order L lexicographically:

given m = ℓα0

0 ℓα1

1 · · · and n = ℓβ0

0 ℓβ1

1 · · · with (α0, α1, . . .), (β0, β1, . . .) ∈ RN, put

m 4 n :⇔ (α0, α1, . . .) 6 (β0, β1, . . .) lexicographically.

This ordering makes L into an ordered group, and extends the ordering 4 on L.
We also extend the relation ≺≺ (“flatter than”) from L to L in the natural way:

m ≺≺ n :⇔ l(m) > l(n),

where l(m) := min{i : αi 6= 0} ∈ N if m = ℓα0

0 ℓα1

1 · · · 6= 1, and l(1) := ∞ > N.

Definition 2.1. A sequence (mi)i>1 in L is called a monomial Cauchy sequence

if for each k ∈ N there is an index i0 such that for all i2 > i1 > i0 we have
mi2/mi1 ≺≺ ℓk. A continued logarithmic monomial l ∈ L is a monomial limit of
(mi)i>1 if for all k ∈ N there is an i0 such that for all i > i0 we have mi/l ≺≺ ℓk.

Given a continued logarithmic monomial m = ℓα0

0 ℓα1

1 · · · , let us write

e(m) := (α0, α1, . . .) ∈ R
N

for its sequence of exponents. Then e : L → RN is an order-preserving isomorphism
between the multiplicative ordered abelian group L and the additive group RN,
ordered lexicographically. With this notation, a sequence (mi) in L is a monomial
Cauchy sequence if and only if (e(mi)) is a Cauchy sequence in RN, that is, for
every ε > 0 in RN there exists an index i0 such that |e(mi2) − e(mi1)| < ε for all
i2 > i1 > i0. Similarly, an element l ∈ L is a monomial limit of (mi) if and only
if e(l) is a limit of the sequence (e(mi)), in the usual sense: for every ε > 0 there
exists i0 such that |e(mi)− e(l)| < ε for all i > i0. If (mi) has a monomial limit in
L, then (mi) is a monomial Cauchy sequence. Conversely, every monomial Cauchy
sequence (mi) in L has a unique monomial limit l in L, denoted by l = limi→∞ mi.
Moreover, every continued logarithmic monomial m = ℓα0

0 ℓα1

1 · · · ℓαn
n · · · ∈ L is the

monomial limit of some monomial Cauchy sequence in L:

m = lim
i→∞

ℓα0

0 ℓα1

1 · · · ℓαi

i .
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(Thus, viewing L and L as topological groups in their interval topology, L is the
completion of its subgroup L.) Given a subset S of L, let S denote the set of all
monomial limits of monomial Cauchy sequences in S (so S is the closure of S

in L), and Ŝ the set of all monomial limits of strictly decreasing monomial Cauchy
sequences m1 ≻ m2 ≻ · · · in S. Note that if S ⊆ L is noetherian, then so is S ⊆ L,

and S = S ∪ Ŝ.

Proposition 2.2. Let S,S′ ⊆ L be noetherian. Then

(1) If S ⊆ S′, then Ŝ ⊆ Ŝ′ and S ⊆ S′.

(2) Ŝ ∪ S′ = Ŝ ∪ Ŝ′ and S ∪ S′ = S ∪ S′.

(3) ŜS′ = SŜ′ ∪ ŜS′ and SS′ = S S′.

(4) If S ≺ 1, then Ŝ∗ ⊆ S∗(Ŝ)∗ and S∗ ⊆ S
∗
.

Proof. Parts (1) and (2) are trivial.
For (3) consider a monomial limit l of a sequence m1n1 ≻ m2n2 ≻ · · · , where

(m1, n1), (m2, n2), . . .

is a sequence in S × S′. Since S and S′ are noetherian, we may assume, after
choosing a subsequence of (m1, n1), (m2, n2), . . . , that m1 < m2 < · · · and n1 <

n2 < · · · . Because (mini) is a monomial Cauchy sequence, both sequences (mi) and
(ni) are monomial Cauchy sequences as well. The sequences (mi) and (ni) cannot
both be ultimately constant. If one of them is, say mi = m for all i > i0, then

l = lim
i→∞

mini = m lim
i→∞

ni ∈ SŜ′.

Otherwise, we have

l = lim
i→∞

mini = lim
i→∞

mi lim
i→∞

ni ∈ ŜŜ′.

Hence ŜS′ ⊆ SŜ′ ∪ ŜS′. The other inclusions of (3) now follow easily.
As to (4), assume that S ≺ 1 and let l be a monomial limit of a sequence

m1 = m1,1 · · ·m1,l1 ≻ m2 = m2,1 · · ·m2,l2 ≻ · · · ,

where (m1,1, . . . ,m1,l1), (m2,1, . . . ,m2,l2), . . . is a sequence of tuples over S. Since
the set of these tuples is noetherian for Higman’s embeddability ordering [8], we
may assume, after choosing a subsequence, that in this ordering

(m1,1, . . . ,m1,l1) < (m2,1, . . . ,m2,l2) < · · · .

In particular, we have l1 6 l2 6 · · · . We claim that the sequence (li) is ultimately
constant. Assume the contrary. Then, after choosing a second subsequence, we
may assume that l1 < l2 < · · · . Let 1 6 ki+1 6 li+1 be such that

(mi,1, . . . ,mi,li) < (mi+1,1, . . . ,mi+1,ki+1−1,mi+1,ki+1+1, . . . ,mi+1,li+1
)

for all i, hence mi < mi+1/mi+1,ki+1
for all i. Since S is noetherian, the set

{m2,k2
,m3,k3

, . . .} has a largest element v ≺ 1. But then

mi+1/mi 4 mi+1,ki+1
4 v
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for all i, which contradicts (mi) being a monomial Cauchy sequence. This proves
our claim that (li) is ultimately constant.

We now proceed as in (3) to finish the proof of (4). �

Given S ⊆ L we say that S has decay > 1 if for each m = ℓα0

0 ℓα1

1 · · · ∈ Ŝ

there exists k0 ∈ N such that αk < −1 for all k > k0. Each finite subset of L has
decay > 1.

Example 2.3. Fix n > 1, and define a sequence (mi)i>0 in L by

m0 =

(
1

ℓ0

)n
, m1 =

(
1

ℓ0ℓ1

)n
, . . . , mi :=

(
1

ℓ0ℓ1 · · · ℓi

)n
(i > 0).

Then the continued logarithmic monomial

l =

(
1

ℓ0ℓ1 · · · ℓi · · ·

)n
∈ L

is the monomial limit of the sequence m0 ≻ m1 ≻ · · · in L. Hence the subset
{mi : i = 0, 1, 2, . . . } of L has decay > 1 if n > 1, but not if n = 1.

Corollary 2.4. If S and S′ are noetherian subsets of L of decay > 1, then S ∪S′

and SS′ are noetherian of decay > 1; if in addition S ≺ 1, then S∗ is noetherian

of decay > 1. �

3. Logarithmic transseries of decay > 1

Consider the ordered field L := R[[L]] of logarithmic transseries, and equip L with
the strongly linear derivation f 7→ f ′ such that for each α ∈ R,

(ℓα0 )′ = αℓα−1
0 , (ℓαk )′ = αℓα−1

k (ℓ0ℓ1 · · · ℓk−1)
−1 for k > 0.

This makes L a real closed H-field with constant field R, and L is closed under
integration (see example at the end of Section 11 in [2]). Hence by Lemma 1.7 the
distinguished integration operator

∫
on L is strongly linear.

A logarithmic transseries f ∈ L is said to have decay > 1 if its support supp f
has decay > 1. By Corollary 2.4 above,

L1 := {f ∈ L : f has decay > 1}

is a subfield of L containing the subfield R(L) of L generated by L over R. In
addition F (ε) ∈ L1 for any formal power series F (X) ∈ R[[X]] and any n-tuple
ε = (ε1, . . . , εn) of infinitesimals in L1, where X = (X1, . . . , Xn), n > 1. Hence by
Lemma 1.6 the field L1 is real closed. Defining the logarithmic function on L>0 as
in the subsection “Exponentials and logarithms” of Section 2, we obtain

log(ℓα0

0 ℓα1

1 · · · ℓαk

k ) = α0ℓ1 + · · · + αkℓk+1 ∈ L1

for α0, . . . , αk ∈ R. It follows that log f ∈ L1 for every positive f ∈ L1.
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Proposition 3.1. The field L1 is closed under differentiation. (Thus L1 is an H-

subfield of L.)

Proof. Let l ∈ L be a monomial limit of a strictly decreasing sequence in supp f ′,
where f ∈ L1; hence l is the monomial limit of a sequence

m1n1 ≻ m2n2 ≻ · · ·

where mi ∈ supp f and ni ∈ supp m
†
i for all i. Note that ni ∈ D, where

D =

{
1

ℓ0
,

1

ℓ0ℓ1
,

1

ℓ0ℓ1ℓ2
, . . .

}
. (3.1)

Since supp f and D are noetherian, we may assume that

m1 < m2 < · · · and n1 < n2 < · · ·

after choosing a subsequence. Therefore (mi) and (ni) are monomial Cauchy se-
quences. We claim that (mi) cannot be ultimately constant: if

mi = ℓα0

0 ℓα1

1 · · · ℓαk

k

for all i > i0, then

ni ∈ supp m
†
i ⊆

{
1

ℓ0
,

1

ℓ0ℓ1
, . . . ,

1

ℓ0ℓ1 · · · ℓk

}

for all i > i0, so (ni) and thus (mini) would be ultimately constant. This contra-
diction proves our claim. If (ni) is ultimately constant, say ni = n for all i > i0,
then

l = lim
i→∞

mini = ( lim
i→∞

mi)n.

Otherwise

lim
i→∞

ni =
1

ℓ0ℓ1ℓ2 · · ·
∈ L,

hence

l = lim
i→∞

mini = ( lim
i→∞

mi)
1

ℓ0ℓ1ℓ2 · · ·
,

which proves our proposition. �

Example 3.2. We have R〈̺〉 = R(̺, ̺′, . . .) ⊆ L1 as differential fields. Clearly
λ ∈ L, but L1 does not contain any element of the form λ+ε, where ε ∈ L satisfies
ε ≺ 1/(ℓ0ℓ1 · · · ℓn) for all n. (See Example 2.3.) Note also that Λ /∈ L1.

Next we want to show that the differential field L1 is closed under integration.
For this we need the following two lemmas:

Lemma 3.3. For any nonzero α ∈ R and any f ∈ L, the linear differential equation

y′ + αy = f (3.2)

has a unique solution y = g ∈ L, and if f ∈ L1, then g ∈ L1.
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Proof. Note that for each i, supp f (i) is contained in the set (supp f)Di, where D

is as in (3.1). Since D∗ =
⋃
i D

i is noetherian and each of its elements lies in Di

for only finitely many i, the family (f (i)) is noetherian. Hence we have an explicit
formula for a solution g to (3.2):

g :=
∞∑

i=0

(−1)i
f (i)

αi+1
.

The solution g ∈ L is unique, since the homogeneous equation y′ + αy = 0 only
has the solution y = 0 in L. Now suppose f ∈ L1, and let l = ℓα0

0 ℓα1

1 · · · ∈ L be a
monomial limit of a sequence

m1n1 ≻ m2n2 ≻ · · ·

in supp(g) where mini ∈ supp(fk(i)), with mi ∈ supp(f) and ni ∈ Dk(i). We can
assume that m1 < m2 < · · · and n1 < n2 < · · · . Hence (mi) and (ni) are monomial
Cauchy sequences with limit m ∈ L and n ∈ L, respectively, so that l = mn. The
exponent of ℓ0 in ni is −k(i), and thus the sequence (k(i)) is bounded. Hence we
can even assume that this sequence is constant. Then αk < −1 for all sufficiently
large k, by Proposition 3.1. Hence g ∈ L1 as required. �

For k ∈ N we consider the embedding of ordered abelian groups

m = ℓα0

0 ℓα1

1 · · · ℓαn
n 7→ m ◦ ℓk := ℓα0

k ℓα1

k+1 · · · ℓ
αn

k+n : L → L

and denote its unique extension to a strongly linear R-algebra endomorphism of
L by f 7→ f ◦ ℓk. Note that (f ◦ ℓk)

′ = (f ′ ◦ ℓk)ℓ
′
k for f ∈ L, and if f ∈ L1, then

f ◦ ℓk ∈ L1.

In the statement of the next lemma we use the multiindex notation ℓα :=
ℓα0

0 ℓα1

1 · · · ℓαn
n , for an (n+ 1)-tuple α = (α0, . . . , αn) ∈ Rn+1.

Lemma 3.4. Let n ∈ N and suppose (gα)α∈Rn+1 is a family in L1 such that the

family (ℓα · (gα ◦ ℓn+1))α in L is noetherian. Then
∑

α

ℓα · (gα ◦ ℓn+1) ∈ L1.

Proof. Let l ∈ L be a monomial limit of a sequence ℓα1n1 ≻ ℓα2n2 ≻ · · · where
αi ∈ Rn+1 and ni ∈ supp(gαi

◦ℓn+1) for all i. Then there exists an index i0 such that
αi0 = αi0+1 = · · · , and hence ni0 ≻ ni0+1 ≻ · · · is a sequence in supp(gαi0

◦ ℓn+1)
with monomial limit l/ℓαi0 . Since gαi0

◦ ℓn+1 ∈ L1, the lemma follows. �

Proposition 3.5. The H-field L1 is closed under integration.

Proof. Let f ∈ L1. Since 1/(ℓ0ℓ1ℓ2 · · · ) is not a monomial limit of a sequence in
supp f , there exists k ∈ N such that

l(m · ℓ0ℓ1ℓ2 · · · ) 6 k for all m ∈ supp f .
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Take k minimal with this property. We proceed by induction on k. Write

f =
∑

α∈R

xα−1(Fα ◦ ℓ1)

where Fα ∈ L1 for each α ∈ R, and for 0 6= α ∈ R, let gα ∈ L1 be the unique
solution to the linear differential equation y′ + αy = Fα, by Lemma 3.3. Then∫

xα−1(Fα ◦ ℓ1) = xα(gα ◦ ℓ1) ∈ L1

for α 6= 0. Since distinguished integration on L is strongly linear, we have∫
f = (g0 ◦ l1) +

∑

α6=0

xα(gα ◦ ℓ1) ∈ L,

where g0 :=
∫
F0, and thus

∫
f ∈ L1 if g0 ∈ L1 (by Lemma 3.4). If k = 0, then

F0 = 0, hence g0 = 0 ∈ L1. If k > 0, then

l(m · ℓ0ℓ1ℓ2 · · · ) 6 k − 1 for all m ∈ suppF0,

hence g0 ∈ L1, by the induction hypothesis. We conclude that
∫
f ∈ L1. �

4. Strong differentiation, strong integration, and flattening

For the convenience of the reader and to fix notations, we first state some facts
about the field of transseries T in addition to those mentioned in the introduction.
For proofs, we refer to [9], where T is defined as exponential H-field, and to [17]
for more details; see [12] for an independent construction of T as exponential field.

Facts about T

As an ordered field, T is the union of an increasing sequence

L = R[[T0]] ⊆ R[[T1]] ⊆ · · · ⊆ R[[Tn]] ⊆ · · ·

of ordered transseries subfields over R, with T0 = L, and where each inclusion
R[[Tn]] ⊆ R[[Tn+1]] comes from a corresponding inclusion Tn ⊆ Tn+1 of multi-
plicative ordered abelian groups. The exponential operation exp on T maps the
ordered additive group R[[Tn]]

↑ isomorphically onto the ordered group Tn+1. Hence
log m ∈ R[[Tn]]

↑ for m ∈ Tn+1, where log : T>0 → T is the inverse of exp. Also

log(1 + ε) =

∞∑

i=1

(−1)i+1

i
εiR[[Tn]] (4.1)

for 1 ≻ ε ∈ R[[Tn]]. For f ∈ T>0 and r ∈ R we put fr := exp(r log f) ∈ T; one
checks easily that fr > 1 if f > 1 and r > 0, and that this operation of raising to
real powers makes T>0 into a multiplicative vector space over R containing each
Tn as a multiplicative R-subspace.

We put T :=
⋃
n Tn (an ordered subgroup of T>0), so the ordered transseries

field R[[T]] over R contains T as an ordered subfield. The ordered field R[[T]]
comes equipped with two strongly linear automorphisms f 7→ f↑ (upward shift)
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and f 7→ f↓ (downward shift), which are mutually inverse and map T to itself. The
downward shift extends the map f 7→ f ◦ ℓ1 on L used in the last section, and also
the composition operation f 7→ f ◦ log x on R[[[x]]]. (See [9, Chapter 2].) We have
exp(f)↑ = exp(f↑) for f ∈ T, and hence log(f)↑ = log(f↑) and (fr)↑ = (f↑)r for
f ∈ T>0, r ∈ R. From these properties one finds by induction that Tn↑ ⊆ Tn+1

and Tn↓ ⊆ Tn. (Hence m 7→ m↑ is an automorphism of the ordered group T.) We
denote the n-fold functional composition of f 7→ f↓ by f 7→ f↓n, and similarly we
write f 7→ f↑n for the n-fold composition of f 7→ f↑.

The derivation on T restricts to a strongly linear derivation on each subfield
R[[Tn]], and extends uniquely to a strongly linear derivation D : f 7→ f ′ on R[[T]].
With this derivation, R[[T]] is a real closed H-field with constant field R. We have

(f↑)′ = ex · (f ′)↑, (f↓)′ =
1

x
· (f ′)↓ (f ∈ R[[T]]).

Note that v(exp(−Λ)) remains a gap in R[[T]], so R[[T]] is not closed under asymp-
totic integration. There is also no natural extension of the exponential operation
on T to one on R[[T]]. Nevertheless, using (4.1) one easily checks that the function
log : T>0 → T extends to an embedding log of the ordered multiplicative group
R[[T]]>0 into the ordered additive group R[[T]]>0, by setting

log g := log am +

∞∑

n=1

(−1)n+1

n
εn

for g = am(1 + ε), a ∈ R>0, m ∈ T, and 1 ≻ ε ∈ R[[T]].

Monomial subgroups of T

In the next section we construct a Liouville closed H-subfield of T containing L1;
this will involve subgroups M of T such that the subfield R[[M]] of R[[T]] is closed
under differentiation and integration. In the rest of this section, Mn denotes an
ordered subgroup of Tn, for every n, with the following properties:

(M1) M0 = L;
(M2) An := log Mn+1 is an R-linear subspace of R[[Mn]]

↑ and is closed under
truncation;

(M3) Mn ⊆ Mn+1.

Here a set A ⊆ R[[T]] is said to be closed under truncation if for each f =∑
m∈T

fmm ∈ A and each final segment F of T we have f |F :=
∑

m∈F
fmm ∈ A.

We put M :=
⋃
n Mn, a subgroup of T. When needed we shall also impose:

(M4) M↑ ⊆ M.

Example 4.1. Let Mn := Tn. Then the Mn satisfy (M1)–(M4), with An = R[[Tn]]
↑

and M = T.

By (M1), the set log M0 is also an R-linear subspace of R[[M0]] closed under
truncation. By (M1) and (M2), each Mn is closed under R-powers: if m ∈ Mn

and r ∈ R, then mr ∈ Mn. Also by (M1) and (M2), each subfield R[[Mn]] of T is
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closed under taking logarithms of positive elements, and so is the subfield R[[M]] of
R[[T]]. Moreover, each subfield R[[Mn]] of T is closed under differentiation, hence
is an H-subfield of T. (This follows by an easy induction on n: use (M1) for n = 0,
and (M2) for the induction step.) It follows that the subfield R[[M]] of R[[T]] is
closed under differentiation, hence is an H-subfield of R[[T]].

Lemma 4.2. The H-field R[[M]] is closed under asymptotic integration if and only

if exp(Λ) /∈ M. In this case, R[[M]] is closed under integration, and the map

f 7→
∫
f : R[[M]] → R[[M]] is strongly linear.

Proof. The H-field R[[M]] is closed under asymptotic integration if and only if it
does not have a gap ([1, Section 2]). The valuation of R[[T]] maps T bijectively
and order-reversingly onto the value group of R[[T]], and also M onto the value
group of R[[M]]. The element exp(−Λ) of T satisfies (1/ℓn)

′ ≺ exp(−Λ) ≺ (1/ℓn)
†

for all n. Because the sequence 1/ℓ0, 1/ℓ1, . . . is coinitial in M≺1, this yields the
first part of the lemma. The rest now follows from Lemma 1.7. �

Put M′
n := Mn ∩ M↑ and M′ :=

⋃
n M′

n. The next easy lemma is left as an
exercise to the reader.

Lemma 4.3. The family (M′
n) satisfies the following analogues of (M1)–(M3):

M′
0 = L; log M′

n+1 is an R-linear subspace of R[[M′
n]]

↑ closed under truncation;

M′
n ⊆ M′

n+1. If (M4) holds, then M′ = M↑ and M′↑ ⊆ M′.

In the rest of this section N denotes a convex subgroup of M, equivalently, a
subgroup such that for all m, n ∈ M,

m �� n ∈ N ⇒ m ∈ N.

Note that then N is closed under R-powers, and that N↑ is a convex subgroup of
M↑. To N we associate the set

I := {m ∈ M≻1 : exp m �� n for some n ∈ N} ⊆ N.

Then I is an initial segment of M≻1 (with I = ∅ if N = {1}). Consequently, the
complement F = M≻1 \ I of I is a final segment of M≻1, and

R := {r ∈ M : log r ∈ R[[F ]]}

is also a subgroup of M closed under R-powers.

Lemma 4.4. For all m ∈ M we have

m ∈ N ⇔ log m ∈ R[[I]].

Proof. The lemma holds trivially if N = {1}. Assume that N 6= {1}; hence ℓk ∈ N

for some k ∈ N. Let m ∈ Mn. We prove the desired equivalence by distinguishing
the cases n = 0 and n > 0. If n = 0, then we take k ∈ N minimal such that ℓk ∈ N,
so

N ∩ L = {ℓβ0

0 ℓβ1

1 · · · ∈ L : βi = 0 for all i < k},

which easily yields the desired equivalence.
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Suppose that n > 0. Then log m ∈ An−1. Since An−1 is closed under trunca-
tion we have log m = ϕ+ ψ with ϕ ∈ An−1 ∩ R[[I]] and ψ ∈ An−1 ∩ R[[F ]]. Hence
eϕ, eψ ∈ M. In fact eϕ ∈ N, because if ϕ 6= 0, then d(ϕ) ∈ I, so eϕ −≍ ed(ϕ) �� n

for some n ∈ N. Similarly, if ψ 6= 0, then eψ /∈ N. The desired equivalence now
follows from m = eϕ · eψ. �

With Nn := N ∩ Mn and Rn := R ∩ Mn we have:

Corollary 4.5. N ∩ R = {1} and Mn = Nn · Rn.

It follows that M = N · R, and the products nr with n ∈ N and r ∈ R are
ordered antilexicographically: nr ≻ 1 if and only if r ≻ 1, or r = 1 and n ≻ 1. We
think of the monomials in the convex subgroup N as being flat. Accordingly we
call R the steep supplement of N.

Proof of Corollary 4.5. It is clear from the previous lemma that N∩R = {1}. We
now show Mn = Nn ·Rn. Let m ∈ Mn. Then log m ∈ R[[M]]↑, so log m = ϕ+ψ with
ϕ ∈ R[[I]], ψ ∈ R[[F ]]. Since log Mn is truncation closed, we have ϕ, ψ ∈ log Mn,
so m = nr with n := eϕ ∈ Mn ∩ N = Nn and r := eψ ∈ Mn ∩ R = Rn, using the
previous lemma. �

Corollary 4.6. Suppose that x ∈ N. Then the following analogues of (M1)–(M3)
hold:

(N1) N0 = L;

(N2) log Nn+1 is an R-linear subspace of R[[Nn]]
↑ and is closed under truncation;

(N3) Nn ⊆ Nn+1.

In particular, the subfield R[[N]] of R[[M]] is closed under differentiation, and if

eΛ /∈ N, then R[[N]] is also closed under integration.

Remark 4.7. If we drop the assumption x ∈ N, then R[[N]] may fail to be closed
under differentiation. To see this, take N = {m ∈ M : m ≺≺ x} and m = log x ∈ N;
then m′ = 1/x −≍ x, so m′ /∈ N.

Property (N2) of Corollary 4.6 follows easily from Lemma 4.4 and its proof
(without assuming x ∈ N). The rest of the corollary is then obvious.

Lemma 4.8. Suppose that x ∈ N, and that m ≺≺ r, where m, r ∈ M, r /∈ N. Then

supp m′ ≺≺ r.

Proof. By induction on n such that m ∈ Mn. The claim is trivial for n = 0
since M0 = N0 = L and m′ ∈ R[[L]]. Suppose n > 0 and write m = eϕ with
ϕ ∈ An−1. Since suppϕ ≺≺ m we obtain suppϕ′ ≺≺ r, by inductive hypothesis.
Any u ∈ supp m′ is of the form u = v · m with v ∈ suppϕ′, hence u ≺≺ r as
required. �
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Flattening

We “flatten” the dominance relations ≺ and 4 on R[[M]] by the convex subgroup
N of M as follows:

f ≺N g :⇔ (∀ϕ ∈ N : ϕf ≺ g),

f 4N g :⇔ (∃ϕ ∈ N : f 4 ϕg),

for f, g ∈ R[[M]]. We also define, for f, g ∈ R[[M]]:

f ≍N g :⇔ f 4N g ∧ g 4N f,

hence N = {m ∈ M : m ≍N 1}. Flattening corresponds to coarsening the valuation:
The value group v(M) of the natural valuation v on R[[M]] has convex subgroup
v(N), so gives rise to the coarsened valuation vN on R[[M]] with (ordered) value
group v(M)/v(N) given by vN(f) := v(f) + v(N) for f ∈ R[[M]]×. Then we have
the equivalences

f ≺N g ⇔ vN(f) > vN(g),

f 4N g ⇔ vN(f) > vN(g),

for f, g ∈ R[[M]]. (See also Section 14 of [2].) The restriction of 4N to M is a
quasi-ordering, i.e., reflexive and transitive; it is antisymmetric (i.e., an ordering)
if and only if N = {1}. The restriction of 4N to R is the already given ordering
on R. The following rules are valid for f, g ∈ R[[M]]:

the equivalence f ≺N g ⇔ f ′ ≺N g′ holds, provided f, g 6≍N 1;

1 ≺N f 4N g ⇒ f† 4N g†;

f 4 g ⇒ f 4N g, and hence f ≺N g ⇒ f ≺ g.

In our proofs below, we often reduce to the case that x ∈ N by upward shift. Here
are a few remarks about this case. If x ∈ N, then L ⊆ N, and for all f ∈ R[[M]]:

the equivalence f ≍N 1 ⇔ f ′ ≍N 1 holds, provided f 6≍ 1;

f ≻N 1 ⇔ f ′ ≻N 1. (4.2)

(See [2, Lemma 13.4].) Moreover:

Lemma 4.9. Suppose that x ∈ N. Then the following conditions on m ∈ M are

equivalent:

(1) log m 4N 1,
(2) log m ∈ R[[N]],
(3) m† ∈ R[[N]],
(4) m† 4N 1.

Proof. From supp(log m) ⊆ M≻1 we obtain (1)⇒(2). The implication (2)⇒(3)
follows from Corollary 4.6, (3)⇒(4) is trivial, and (4)⇒(1) follows from (4.2). �
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Flattened canonical decomposition

We have an isomorphism
R[[M]] → R[[N]][[R]]

of R[[N]]-algebras given by

f =
∑

m∈M

fmm 7→
∑

r∈R

( ∑

n∈N

fnrn

)
r.

In R[[M]] we have in fact

f =
∑

r∈R

( ∑

n∈n

fnrn

)
r,

where the sums are interpreted as in Section 1. We shall identify the (real closed,
ordered) field R[[M]] with the (real closed, ordered) field R[[N]][[R]] by means of
this isomorphism. For f ∈ R[[M]] we put

fN,r :=
∑

n∈N

fnrn ∈ R[[N]] (r ∈ R), suppN f := {r ∈ R : fN,r 6= 0}.

We have the flattened canonical decomposition of the R-vector space R[[M]] (rel-
ative to N)

R[[M]] = R[[M]]⇑ ⊕ R[[M]]≡ ⊕ R[[M]]⇓,

where

R[[M]]⇑ = R[[N]][[R≻1]], R[[M]]≡ = R[[N]], R[[M]]⇓ = R[[N]][[R≺1]].

Accordingly, given a transseries f ∈ R[[M]], we write

f = f⇑ + f≡ + f⇓

where

f⇑ =
∑

1≺m∈M\N

fmm ∈ R[[M]]⇑,

f≡ =
∑

m∈N

fmm ∈ R[[M]]≡,

f⇓ =
∑

1≻m∈M\N

fmm ∈ R[[M]]⇓.

Example 4.10. Let w ∈ M, w 6≍ 1, and consider the convex subgroup

N := {n ∈ M : n ≺≺ w}

of M. Suppose that exp(M≻1) ⊆ M. Then

I = {m ∈ M≻1 : expm ≺≺ w}

and thus

R = {r ∈ M : supp log r < d(log w)}.

In this case we write suppw f instead of suppN f , 4w instead of 4N, and likewise
for the other asymptotic relations. In the next section we take w = ex.
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Flatly noetherian families

Let (fi)i∈I ∈ R[[M]]I . The family (fi) is said to be flatly noetherian (with respect
to N) if (fi) is noetherian as a family of elements in C[[R]], where C = R[[N]]. If
(fi) is flatly noetherian, then (fi) is noetherian as a family of elements of R[[M]],
and its sum

∑
i∈I fi ∈ C[[R]] as a flatly noetherian family equals its sum

∑
i∈I fi ∈

R[[M]] as a noetherian family of elements of R[[M]]. For any monomial m ∈ M,
(fi) is flatly noetherian if and only if (mfi) is flatly noetherian.

Note that if n1 ≻ n2 ≻ · · · is an infinite sequence of monomials in N, then
(ni)i>1 is a noetherian family which is not flatly noetherian.

A map Φ: R[[M]] → R[[M]] is called flatly strongly linear (with respect to
N) if Φ considered as a map C[[R]] → C[[R]] is strongly linear, where C = R[[N]].

Lemma 4.11. Suppose that x ∈ N. The map R → C[[R]] : r 7→ r′ is noetherian,

where C = R[[N]], and thus extends uniquely to a flatly strongly linear map

ϕ : R[[M]] → R[[M]].

Proof. Let r1 ≻N r2 ≻N · · · be elements of R and ui ∈ supp r′i for each i. It suffices
to show that then there exist indices i < j such that ui ≻N uj . Since differentiation
on R[[M]] is strongly linear, we may assume, after passing to a subsequence, that
ui ≻ uj for all i < j. If there exist i < j such that ui ≍N ri and uj ≍N rj , we are
already done. So we may assume that ui 6≍N ri for all i, and also that ri 6≍N u1 for

all i. Write each ui as ui = rimi, with mi ∈ supp r
†
i , mi /∈ N. We distinguish two

cases:

(1) For all i > 1 there exists a vi ∈ supp log u1 such that mi ∈ supp v′i. Since
supp log u1 is noetherian we may assume, after passing to a subsequence,
that vi < vj for 1 < i < j. Since differentiation on R[[M]] is strongly linear,
we then find i < j with mi < mj . Hence mi <N mj , so ui ≻N uj .

(2) There exists an i > 1 such that for all v ∈ supp log u1 we have mi 6∈ supp v′.
Take such an i and choose v ∈ supp log ri such that mi ∈ supp v′. Then

v ∈ (supp log ri)\(supp log u1) ⊆ supp log(ri/u1) ⊆ M≻1

and hence v �� log(u1/ri). Since log m ≺≺ m for m ∈ M \ {1}, this yields
v ≺≺ u1/ri. By Lemma 4.8 we get mi ≺≺ u1/ri. Hence if n := u1/ui ∈ N, then
mi ≺≺ u1/ri = min, contradicting mi /∈ N. Therefore u1 ≻N ui. �

In the rest of this section we assume (M4).
In particular, our previous results apply to M↑k instead of M for k = 1, 2, . . . ,

by Lemma 4.3. In this connection, the following fact will be useful.

Remark 4.12. A family (fi)i∈I ∈ R[[M]]I is flatly noetherian with respect to N if
and only if the family (fi↑)i∈I ∈ R[[M↑]]I is flatly noetherian with respect to N↑.

We now arrive at the main results of this section:

Theorem 4.13. If (fi)i∈I is a flatly noetherian family in R[[M]], then so is (f ′i)i∈I .



Differentially algebraic gaps 23

Proof. Since the case N = {1} is trivial, we may assume N 6= {1}. Then x ∈ N↑k

for sufficiently large k ∈ N. Since (f↑)′ = ex · (f ′)↑ for f ∈ R[[M]], Remark 4.12 al-
lows us to reduce to the case that x ∈ N. Then R[[N]] is closed under differentiation
by Corollary 4.6. Now consider a flatly noetherian family (fi)i∈I ∈ R[[M]]I . Then
(fi) is noetherian, hence (f ′i) is noetherian by strong linearity of differentiation.
By the lemma above, the family (gi) defined by

gi :=
∑

r∈R

fi,N,rr
′

is flatly noetherian. Put

hi := f ′i − gi =
∑

r∈R

(fi,N,r)
′r.

We have suppN hi ⊆ suppN fi for i ∈ I, since R[[N]] is closed under differentiation.
It follows that (hi) is flatly noetherian. Hence the family (f ′i) is flatly noetherian
since it is the componentwise sum of two flatly noetherian families. �

Theorem 4.14. Suppose that exp(Λ) 6∈ M. Then R[[M]] is closed under integra-

tion, and if (fi)i∈I is a flatly noetherian family in R[[M]], then (
∫
fi)i∈I is flatly

noetherian.

Before we begin the proof, we make some remarks about the summation of
flatly noetherian families in R[[M]]. Choose a basis B for the R-vector space R[[N]].
We define a (partial) ordering 4∗ on B × R as follows:

(b, r) 4∗ (c, s) ⇔ r ≺N s, or r = s and b = c, (4.3)

for all (b, r), (c, s) ∈ B×R. Consider the R-vector space R[[B×R]] of transsseries

f =
∑

(b,r)∈B×R

f(b,r)(b, r)

with real coefficients f(b,c), whose support supp f := {(b, r) : f(b,c) 6= 0} is noe-
therian for 4∗; see Section 1. We have:

Lemma 4.15. There exists a unique isomorphism ϕ : R[[B × R]] → R[[M]] of R-

vector spaces such that

(1) ϕ(b, r) = b · r for b ∈ B, r ∈ R,

(2) a family (fi)i∈I ∈ R[[B×R]]I is noetherian if and only if (ϕ(fi))i∈I is flatly

noetherian,

(3) if (fi)i∈I ∈ R[[B × R]]I is noetherian, then ϕ(
∑
i∈I fi) =

∑
i∈I ϕ(fi).

Proof. Of course, there is at most one such ϕ. For existence, first note that the
projection map π : B×R → R is strictly increasing, and that a set S ⊆ B×R is
noetherian if and only if π(S) ⊆ R is noetherian and each fiber π−1(r) (r ∈ R) is
finite. If we apply this remark to S :=

⋃
i∈I supp fi, where (fi)i∈I is a noetherian

family in R[[B × R]], it follows that the subset

π(S) =
⋃

i∈I,b∈B,r∈R

suppN(fi,(b,r)b · r)
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of R is noetherian, and that for each r ∈ R there are only finitely many (i, b) ∈
I × B with r ∈ suppN(fi,(b,r)b · r). Therefore the family (fi,(b,r)b · r)(i,b,r)∈I×B×R

of elements of R[[M]] is flatly noetherian. Thus, by setting

ϕ(f) :=
∑

r∈R

( ∑

b∈B

f(b,r)b
)
r for f ∈ R[[B × R]],

we obtain an R-linear bijection ϕ : R[[B × R]] → R[[M]] such that for every noe-
therian family (fi) ∈ R[[B × R]]I , the family (ϕ(fi)) is flatly noetherian and
ϕ(

∑
i fi) =

∑
i ϕ(fi). (See the proof of Proposition 3.5 in [11].) If (fi) ∈ R[[B×R]]I

and (ϕ(fi)) is flatly noetherian, then, with S :=
⋃
i supp fi,

π(S) =
⋃

i∈I

suppN ϕ(fi)

is noetherian and π|S has finite fibers, so (fi) is noetherian. �

We now begin the proof of Theorem 4.14. Using upward shifting and
∫

(f↑) =
(
∫
(f · x−1))↑ for f ∈ R[[M]], we first reduce to the case that ex ∈ N. In particular

x ∈ N, so R[[N]] is closed under differentiation and integration, by Corollary 4.6.
Partition M = V ∐ W (disjoint union), where

V = {m ∈ M : m† 4N 1} and W = {m ∈ M : m† ≻N 1}.

Then V is a convex subgroup of M containing N which is closed under R-powers,
and R[[M]] = R[[V]] ⊕ R[[W]] as R-vector spaces. Note that if n ∈ N, r ∈ R, then
n · r ∈ W if and only if r ∈ W. It follows that W = N ·S, where S := W∩R. Since
x ∈ V, the subfield R[[V]] of R[[M]] is closed under differentiation and integration,
by Corollary 4.6.

Lemma 4.16. The R-linear subspace R[[W]] of R[[M]] is closed under the operators

f 7→ f ′ and g 7→
∫
g on R[[M]].

Proof. If R[[W]] is closed under f 7→ f ′, then it is also closed under g 7→
∫
g,

because R[[V]] is closed under differentiation and R[[M]] is closed under integra-
tion. So let w ∈ W; it is enough to show that then supp w′ ⊆ W. Take n > 0
with w ∈ W ∩ Mn, and write w = eϕ with ϕ ∈ An−1. By Lemma 4.8 we have
suppϕ′ ≺≺ w. Hence m† ≍ w† ≻N 1 and thus m ∈ W, for every m ∈ supp w′. �

Lemma 4.17. For all h ∈ R[[V]], we have suppN

∫
h ⊆ suppN h.

Proof. It is enough to prove the lemma for h of the form h = fr, where f ∈ R[[N]],
f 6= 0, and r ∈ V ∩ R, so r = eϕ with ϕ′ = r† 4N 1. By Lemma 4.9, we have
ϕ′ ∈ R[[N]]. We may assume ϕ 6= 0. Then eϕ = r ≻≻ N, so ϕ′ = r† ≻ n† for all
n ∈ N. Thus the strongly linear map

Φ: R[[N]] → R[[N]], g 7→ g′/ϕ′,

satisfies Φ(n) ≺ n for all n ∈ N. Hence by Corollary 1.4 the strongly linear operator
Id+Φ on R[[N]] is bijective. We let g := (Id+Φ)−1(f/ϕ′) ∈ R[[N]]. Then g′ +ϕ′g
= f and thus

∫
fr = gr. �
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If (fi) is a flatly noetherian family of elements of R[[V]], then by the previ-
ous lemma (

∫
fi) is flatly noetherian. To complete the proof of Theorem 4.14 it

therefore remains to show:

Lemma 4.18. If (fi) is a flatly noetherian family of elements of R[[W]], then (
∫
fi)

is flatly noetherian.

Proof. Let C = R[[N]], let B be a basis for C as R-vector space, and let R[[B×R]]
and ϕ : R[[B × R]] → R[[M]] be as in Lemma 4.15. Put S := W ∩ R as before.
Then ϕ(B × S) = B · S ⊆ R[[W]], so ϕ restricts to an R-linear map

ϕ1 : R[[B × S]] → R[[W]].

Clearly ϕ1 is bijective, since W = N · S. Consider the strongly linear operators
D : R[[M]] → R[[M]] given by f 7→ f ′ and

∫
: R[[M]] → R[[M]] given by f 7→

∫
f .

We have D(f),
∫
f ∈ R[[W]] for f ∈ R[[W]], by Lemma 4.16. By Theorem 4.13

and Lemma 4.15, the operator D1 := ϕ−1
1 ◦ DW ◦ ϕ1 on R[[B × S]] is strongly

linear, where DW := D|R[[W]] : R[[W]] → R[[W]]. By Lemma 4.15 it suffices to

prove that the operator
∫
1

:= ϕ−1
1 ◦

∫
W

◦ϕ1 on R[[B×S]] is strongly linear, where∫
W

:=
∫
|R[[W]] : R[[W]] → R[[W]]. Since 1 /∈ W, the operators DW and

∫
W

on

R[[W]] are mutually inverse, and hence the operators D1 and
∫
1

on R[[B×S]] are
mutually inverse.

For t ∈ C× · S, let ∆t and It be the dominant terms of the series t′ and
∫
t

in C[[R]], respectively, so ∆t, It ∈ C× · S by Lemma 4.16. By the rules on ≻N

listed earlier, if t1, t2 ∈ C× · S satisfy t1 ≻N t2, then ∆t1 ≻N ∆t2 and It1 ≻N It2.
Moreover, the maps I : C× · S → C× · S and ∆: C× · S → C× · S are mutually
inverse, and ϕ1(B × S) ⊆ C× · S ⊆ R[[W]]. Now let

∆1 := ϕ−1
1 ◦ ∆ ◦ (ϕ1|B×S) : B × S → R[[B × S]],

I1 := ϕ−1
1 ◦ I ◦ (ϕ1|B×S) : B × S → R[[B × S]].

Then for v1, v2 ∈ B × S we have

v1 ≻∗ v2 ⇒ supp ∆1v1 ≻∗ supp ∆1v2, supp I1v1 ≻∗ supp I1v2.

Hence the maps ∆1, I1 are noetherian, so they extend uniquely to strongly linear
operators on R[[B × S]]. These extensions, again denoted by ∆1 and I1, respec-
tively, are mutually inverse by [11, Proposition 3.10], because ∆ and I are.

Now consider the strongly linear operator

Φ := (D1 − ∆1) ◦ I1 = D1I1 − Id

on R[[B × S]]. Using

D1I1|B×S = ϕ−1
1 ◦ (DW ◦ I) ◦ (ϕ1|B×S)

we obtain supp Φ(v) ≺∗ v for v ∈ B × S. Hence by Corollary 1.4, the operator
Id + Φ = D1I1 on R[[B × S]] is bijective with strongly linear inverse. Thus the
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operator I1 ◦ (Id + Φ)−1 on R[[B × S]] is strongly linear. Finally, note that

D1 ◦ I1 ◦ (Id + Φ)−1 = D1 ◦ I1 ◦ (D1I1)
−1 = Id,

so
∫
1

= D−1
1 = I1 ◦ (Id + Φ)−1, and thus

∫
1

is strongly linear. �

5. Transseries of decay > 1

In this section we extend L1 to a Liouville closed H-subfield T1 of R[[T]] by first
extending L1 to a real closed H-subfield S of R[[T]] that is closed under taking
logarithms of positive elements, and then closing off S under downward shifts.
The H-field T1 will satisfy the requirements on K in the Theorem stated in the
introduction.

Construction of S

The convex subgroup

T♭ = {n ∈ T : n ≺≺ ex}

of the ordered group T is closed under R-powers. Note that L ⊆ T♭. We call T♭

the flat part of T. Its steep supplement (as defined in the previous section) is the
subgroup

T♯ = {g ∈ T : supp log g < x}

of T, called the steep part of T. (See Examples 4.1 and 4.10.) We apply here
Section 4 to M = T, and accordingly identify R[[T]] and R[[T♭]][[T♯]]. Every

f =
∑

m∈T

fmm ∈ R[[T]]

can be written as
f =

∑

r∈T♯

f ♭r r,

where the coefficients
f ♭r :=

∑

n∈T, n≺≺ex

fnrn

are series in R[[T♭]]. (In the notation of Section 4, we have f ♭r = fT♭,r.) We may
also decompose f as

f = f⇑ + f≡ + f⇓, (5.1)

where, with m ranging over T,

f⇑ :=
∑

m≻1,m��ex

fmm, f≡ :=
∑

m≺≺ex

fmm, f⇓ :=
∑

m≺1,m��ex

fmm.

Put S0 := L1, the latter as defined in Section 3. So S0 ⊆ R[[T0]] ⊆ R[[T♭]].
Inductively, given the subfield Sn of R[[Tn]], we let Sn+1 be the subfield of R[[Tn+1]]
consisting of those f ∈ R[[T]] such that f ♭r ∈ L1 and log r ∈ S↑

n for all r ∈ suppex f ,
that is, with C := R[[T♭]]:

Sn+1 = L1[[Un+1]] ⊆ C[[T♯]]
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where
Un+1 := T♯ ∩ exp(S↑

n) = exp(Sn ∩ R[[T<x
n ]]),

a subgroup of T♯ ∩Tn+1 closed under R-powers. It follows that Sn+1 ⊆ R[[Tn+1]].
It is convenient to define R0 := {1} ⊆ T0.

Example 5.1. We have U1 = exp(L1 ∩ R[[L<x]]). Therefore ex
2

∈ S1, but ex
2

↓ =

e(log x)
2

6∈ S1.

Lemma 5.2. Each Sn is a real closed subfield of T, and Un ⊆ Un+1 for all n.
(Hence Sn ⊆ Sn+1 for all n.)

Proof. The first statement follows from the remarks at the beginning of Section 3
and Lemma 1.6. We show the other statement by induction on n. The case n = 0
being clear, suppose that Un ⊆ Un+1. Then

Sn = L1[[Un]] ⊆ L1[[Un+1]] = Sn+1

and thus
Un+1 = T♯ ∩ exp(S↑

n) ⊆ T♯ ∩ exp(S↑
n+1) = Un+2

as required. �

We let S be the union of the increasing sequence S0 ⊆ S1 ⊆ · · · of real closed
subfields of T. Then S is a real closed subfield of T. Moreover:

Lemma 5.3. log(S>0
n ) ⊆ Sn for every n. (Hence log(S>0) ⊆ S.)

Proof. The case n = 0 is discussed at the beginning of Section 3. Suppose n > 0.
Every positive f ∈ Sn may be written in the form

f = g · u · (1 + ε)

where 0 < g ∈ L1, u ∈ Un ⊆ exp(S↑
n−1), and ε ≺ex 1. We get

log f = log g + log u + log(1 + ε).

We have log g ∈ L1 and (since ε ≺ 1)

log(1 + ε) =

∞∑

k=1

(−1)k+1

k
εk ∈ Sn.

Moreover log u ∈ Sn−1, thus log u ∈ Sn by Lemma 5.2. Hence log f ∈ Sn. �

We now put An := S↑
n, Mn+1 := exp(An) for every n, and M0 := L. Each

An is an R-linear subspace of R[[Tn]], and Mn is a subgroup of Tn closed under
R-powers. Here are some more properties of Sn, An and Mn. A subset A of R[[T]]
is said to be closed under subseries if for every f =

∑
m∈T fmm ∈ A the subseries

f |S :=
∑

m∈S
fmm is in A, for any subset S of T.

Lemma 5.4. For every n we have:

(1) Sn ⊆ R[[Mn]]. (Hence An ⊆ R[[Mn]]
↑.)

(2) Sn is closed under subseries. (Hence An is closed under subseries.)
(3) log Mn ⊆ An. (Hence Mn ⊆ Mn+1.)
(4) Sn↑ ⊆ Sn+1. (Hence Mn↑ ⊆ Mn+1.)
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Proof. Parts (1)–(3) are obvious for n = 0. For the case n = 0 of (4) note first
that L↑ ⊆ L · (expx)R with L ∩ (expx)R = {1}. Moreover, if a subset S of L

has decay > 1 and S↑ ⊆ L · (expx)β with β ∈ R, then π(S↑) has decay > 1,
where π : L · (expx)R → L is given by l · (expx)α 7→ l for l ∈ L, α ∈ R. Hence
L1↑ ⊆ L1[[(expx)R]] ⊆ S1 as required.

Let now n > 0. For (1) note that

L = exp log L ⊆ exp(L↑
1) ⊆ exp(S↑

n−1), Un ⊆ exp(S↑
n−1),

hence

Sn = L1[[Un]] ⊆ R[[L · Un]] ⊆ R[[exp(S↑
n−1)]] = R[[Mn]].

For (2) let f =
∑

u∈Un
f ♭uu ∈ Sn, so f ♭u ∈ L1 for all u. Then for any subset S of T

we have

f |S =
∑

u∈Un

(f ♭u)|Su
u ∈ Sn,

where Su := {n ∈ T♭ : nu ∈ S} for u ∈ Un. For part (3) we have, by Lemma 5.2,

log Mn = An−1 = S
↑
n−1 ⊆ S

↑
n = An

as required. For (4), we may assume inductively that Sn−1↑ ⊆ Sn. Since Tn−1↑ ⊆
Tn we get

Un↑ = exp(Sn−1 ∩ R[[T<x
n−1]])↑ ⊆ exp(Sn ∩ R[[T<expx

n ]]) ⊆ Un+1.

Together with L1↑ ⊆ L1[[(expx)R]] this yields Sn↑ = (L1↑)[[Un↑]] ⊆ Sn+1. �

We let M be the union of the increasing sequence M0 ⊆ M1 ⊆ · · · of ordered
subgroups of T. Then M is an ordered subgroup of T, and S is an ordered subfield
of R[[M]]. Note that the Mn satisfy conditions (M1)–(M4) of the previous section.
We have S∩L = L1, hence exp(Λ) /∈ M, by part (3) of Lemma 5.4 and Example 3.2.

Proposition 5.5. For every n, the field Sn is closed under differentiation.

Proof. We proceed by induction on n. We have already dealt with the case n = 0
in Proposition 3.1. Let f =

∑
u∈Un+1

f ♭uu ∈ Sn+1. By Theorem 4.13, the family

((f ♭uu)′)u∈Un+1
in R[[Tn+1]] is flatly noetherian. Hence for any s ∈ T

♯
n+1 the sum

∑

u∈Un+1

[((f ♭u)′ + f ♭uu†)u]♭s

has only finitely many nonzero terms and equals (f ′)♭s. Let u ∈ Un+1 and s ∈

T
♯
n+1. By the induction hypothesis we have u† ∈ Sn, hence (u†)♭

s/u ∈ L1. By

Proposition 3.1 we get (f ♭u)′ ∈ L1. Therefore (f ′)♭s ∈ L1. It follows that f ∈ Sn+1

as required. �
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Construction of T1

We have S↓k = (S↑)↓k+1 ⊆ S↓k+1 for every k ∈ N, by Lemma 5.4(4). We let T1

be the union of the increasing sequence

S ⊆ S↓ ⊆ S↓2 ⊆ · · · ⊆ S↓k ⊆ · · ·

of real closed subfields of T. The elements of the real closed subfield T1 of T are
called transseries of decay > 1. The field T1 is closed under upward and downward
shift: if f ∈ T1, then f↑, f↓ ∈ T1. We have L1 ⊆ T1; in fact:

Lemma 5.6. L1 = T1 ∩ L.

Proof. Suppose f ∈ T1 ∩ L; so f↑k ∈ Sn where k, n ∈ N; we claim that f ∈ L1.
The case k = 0 being trivial, we may assume k > 0. Then

f↑k ∈ L[[(expx)R · · · (expk x)
R]] ∩ Sn ⊆ L1[[(expx)R · · · (expk x)

R]],

where expm x = x↑m for all m. Hence f can be written in the form

f =
∑

α∈Rk

ℓα · (gα ◦ ℓk),

where gα ∈ L1 and ℓα = ℓα0

0 · · · ℓ
αk−1

k−1 for α = (α0, . . . , αk−1) ∈ Rk. By Lemma 3.4,
we get f ∈ L1 as desired. �

If A is a subset of R[[T]] which is closed under subseries, then so is A↓, since
(f↓)|S = (f |S↑)↓ for any f ∈ A and S ⊆ T. By induction on k it follows that each

subfield S↓k of R[[T]] is closed under subseries. Hence T1 is closed under subseries.

Proof of the main theorem

In the remainder of this section, we show that K = T1 has the properties of the
main theorem in the introduction.

Proposition 5.7. The subfield T1 of T is closed under exponentiation and taking

logarithms of positive elements.

Proof. Since

log(f↓m) = (log f)↓m for all m and all f ∈ S
>0,

Lemma 5.3 shows that T1 is closed under taking logarithms. Similarly,

exp(f↓m) = (exp f)↓m for all m and all f ∈ S.

Hence as to exponentiation, it suffices to prove that exp f ∈ T1 for all f ∈ S. Let
f ∈ Sn, and decompose f as in (5.1): f = f⇑ + f≡ + f⇓, so

exp f = (exp f⇑) · (exp f≡) · (exp f⇓).

Since f⇓ ∈ T≺1 we get

exp f⇓ =

∞∑

n=0

(f⇓)n

n!
∈ Sn.
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We have

f⇑ =
∑

m≻1,m��ex

fmm ∈ Sn ∩ R[[T<x
n ]],

hence exp f⇑ ∈ Un+1 ⊆ Sn+1. It remains to prove that exp f ∈ T1 for all f ∈ L1.

So let f ∈ L1. From 1 6∈ ŝupp f ⊆ L we obtain k ∈ N such that ℓk �� m for all
m ∈ supp f\{1}. Then g≡ ∈ R for g = f↑k+1, hence exp g ∈ S by what we have

shown above. We conclude that exp f = (exp g)↓k+1 ∈ T1. �

Since (f↓)′ = (f ′↓) · x−1 for all f ∈ T, Proposition 5.5 yields:

Corollary 5.8. The subfield T1 of T is closed under differentiation. (Hence T1 is

an H-subfield of T.) �

To prove that T1 is closed under integration, we first establish some auxiliary
facts. Recall that R[[M]] is closed under differentiation and that exp(Λ) /∈ M.
Hence R[[M]] is closed under integration.

In the next lemma we fix n > 0. We have the following inclusions:

L · Un ⊆ Mn ⊆ Sn ⊆ L[[Un]] = R[[L · Un]] ⊆ R[[Mn]].

The subfield L[[Un]] of R[[M]] is closed under differentiation by Proposition 5.5,
and closed under integration by the argument used to prove Lemma 4.2. Note that
log s ∈ Sn−1 ⊆ L[[Un]] for all s ∈ Un. In the next lemma we also fix a monomial
u ∈ Un \ {1} and put

S := {s ∈ Un : s† ≺ex u†}, (5.2)

a convex subgroup of Un closed under R-powers.

Lemma 5.9. The subfield L[[S]] of L[[Un]] is closed under differentiation. Also, if

u† ≻ex 1, then u† ∈ L[[S]].

Proof. The first part will follow if s′ ∈ L[[S]] for all s ∈ S. So let s ∈ S; we
distinguish two cases:

(1) s† ≻ex 1. Then s /∈ T♭, hence s = eϕ with suppϕ′ ≺≺ s (by Lemma 4.8 applied
to m ∈ suppϕ). Using ϕ′ = s†, this yields m† ≍ s† for every m ∈ supp s′. Let
v ∈ (suppex s′) \ {1}, so v ≍ex m with m ∈ supp s′. Then v† ≍ex m† ≍ s† ≺ex

u†, hence v ∈ S, as desired.
(2) s† 4ex 1. Then log s ∈ L[[Un]] ∩ R[[T♭]] = L (by Lemma 4.9) and thus

s′ = (log s)′ · s ∈ L[[S]].

Suppose that u† ≻ex 1. Then log u ≻ex 1 by Lemma 4.9, hence

(log u)† =
u†

log u
≺ex u†.

Therefore, if v ∈ suppex log u, then v† 4ex (log u)† ≺ex u†, hence v ∈ S. Thus
log u ∈ L[[S]], and as L[[S]] is closed under differentiation, we get u† ∈ L[[S]]. �

Lemma 5.10. Let f ∈ S with u† ≻ex 1 for all u ∈ (suppex f)\{1}. Then
∫
f ∈ S.
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Proof. We already know that S0 = L1 is closed under distinguished integration,
by Proposition 3.5. So we may assume that 1 6∈ suppex f by passing from f to
f − f ♭1 . Take n > 0 such that f ∈ Sn. We shall prove that

∫
f ∈ Sn. We have

f =
∑

u∈Un

f ♭uu ∈ L1[[Un]] = Sn.

Put N := M ∩ T♭, a convex subgroup of M; note that L ⊆ R[[N]]. Let R be
the steep supplement of N in M. The definitions of T♯ and R easily imply that
M ∩ T♯ ⊆ R; hence Un ⊆ R. Therefore, the family (f ♭uu)u∈Un

in R[[M]] is flatly
noetherian with respect to N, with sum f . Thus by Theorem 4.14, the family
(
∫
f ♭uu)u∈Un

in R[[M]] is also flatly noetherian, with sum
∫
f . Fix any g ∈ L1 and

u ∈ Un with u† ≻ex 1; it suffices to show that then
∫
gu ∈ Sn = L1[[Un]]. Put

h := (1/u)
∫
gu ∈ L[[Un]]; it remains to show that h ∈ L1[[Un]]. Note that

h+ (h′/u†) = g/u†.

Let S be as in (5.2). Take a basis C for the R-vector space L; extend C to a basis
B for R[[N]], and let 4∗ be as in (4.3) and ϕ : R[[B × R]] → R[[M]] as defined in
Lemma 4.15. The map ϕ restricts to an R-linear bijection

ϕ1 : R[[C × S]] → R[[L · S]] = L[[S]].

By the previous lemma, the subfield L[[S]] of L[[Un]] is closed under differentiation
and contains u†. Hence the operator

Φ: L[[Un]] → L[[Un]], y 7→ y′/u†,

maps L[[S]] to itself, and (Id + Φ)(h) = g/u†. By Theorem 4.13 the operator
Φ1 := ϕ−1

1 ◦ Φ ◦ ϕ1 on R[[C × S]] is strongly linear, and supp Φ1(c, s) ≺
∗ (c, s) for

all (c, s) ∈ C × S. We now apply Corollary 1.4 with C × S in place of M, ordered
by the restriction of 4∗ to C×S, and Φ1 in place of Φ. It follows that the family

((−1)iΦi(g/u†))i∈N

in L[[S]] is flatly noetherian as a family in R[[M]], and that

h1 :=

∞∑

i=0

(−1)iΦi(g/u†) ∈ L[[S]]

satisfies

h1 + (h′1/u
†) = g/u† = h+ (h′/u†).

Hence h = h1 + cu−1 for some c ∈ R. From Φ(L1[[Un]]) ⊆ L1[[Un]] we deduce that
Φi(g/u†) ∈ L1[[Un]] for all i. Hence h1 ∈ L1[[Un]], and thus h ∈ L1[[Un]]. �

Next we show that for suitable f the hypothesis in the last lemma is satisfied
after a single upward shift:

Lemma 5.11. For every f ∈ S with f ♭1 = 0 and u ∈ suppex f↑ we have u† ≻ex 1.
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Proof. Suppose f ∈ Sn, f
♭
1 = 0, n > 0. Then

f↑ =
∑

16=s∈Un

(f ♭s)↑ · s↑

with suppex(f ♭s)↑ ⊆ (expx)R for 1 6= s ∈ Un. So it suffices to show for such s

that (s↑)† ≻ex 1. Write s = eϕ with 0 6= ϕ ∈ Sn−1 ∩ R[[T<x
n−1]]. Then d(ϕ) < x

and hence d(ϕ↑) = d(ϕ)↑ < ex. Therefore d(ϕ↑)′ < (ex)′ = ex ≻ex 1, so (s↑)† =
(ϕ↑)′ ≍ d(ϕ↑)′ ≻ex 1 as required. �

Proposition 5.12. The H-subfield T1 of T is closed under integration.

Proof. We claim that for each k ∈ N and g ∈ S↓k there is f ∈ S↓k+1 such that
f ′ = g. We proceed by induction on k. First, let g ∈ S. By Proposition 3.5 we
may assume that g♭1 = 0. Consider G = (g↑) · ex ∈ S. By the previous lemma, all
u ∈ (suppex G)\{1} satisfy u† ≻ex 1. By Lemma 5.10, we get

∫
G ∈ S and hence∫

g = (
∫
G)↓ ∈ S↓. This proves the case k = 0 of our claim.

For the induction step we consider an element of S↓k+1, and write it as g↓
with g ∈ S↓k. Then g · ex ∈ S↓k, so inductively we have an f ∈ S↓k+1 with
f ′ = g · ex. Then (f↓)′ = g↓, and f↓ ∈ S↓k+2. �

We now have the main theorem from the introduction, with K = T1:

Corollary 5.13. The H-subfield T1 of T is Liouville closed, and ̺ ∈ T1.

Proof. Propositions 5.7 and 5.12 show that T1 is Liouville closed; the second part
follows from ̺ ∈ L1 ⊆ T1. �

6. Final remarks

The differential polynomial 2Z ′ + Z2 (the “Schwarzian” in [7]) has a close con-
nection to the second-order linear differential equation Y ′′ = fY where f is an
element of some H-field: whenever y is a nonzero solution to Y ′′ = fY , then
z = 2y† satisfies 2z′ + z2 = f . The cut in R[[[x]]] = R((x−1))LE determined by
̺ := 2λ′ + λ2 ∈ L can be used to describe for which f ∈ R[[[x]]] the linear differ-
ential equation Y ′′ = fY has a nonzero solution in R[[[x]]]; see [6]. (Likewise for
the existence of solutions in finite-rank Hardy fields, [16].) See also [13] for some
observations about the role of gaps in Hardy fields, and of the transseries Λ, in
the theory of ordinary differential equations over o-minimal expansions of the real
exponential field.

The transseries ̺ makes another appearance in Écalle [7]: Lemme 7.4 says
that for any nonconstant differential polynomial P (Z,Z ′, . . . , Z(n)) ∈ R{Z}, the
series P (λ, λ′, . . . , λ(n)) ∈ L has infinite support, and the sum of its first ω terms,
after possibly discarding finitely many initial terms, has the form either

cℓ−e00 ℓ−e11 · · · ℓ
−ek−1

k−1 (λ↓k) with e0 > e1 > · · · > ek−1 > 1
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or

cℓ−e00 ℓ−e11 · · · ℓ
−ek−1

k−1 (̺↓k) with e0 > e1 > · · · > ek−1 > 2,

where c ∈ R×, k ∈ N, and the ei are integers.

Given a real number r > 0, we say that a subset S of L has decay > r if

for every m = ℓα0

0 ℓα1

1 · · · in Ŝ (with αk ∈ R for all k) there exists k0 such that
αk < −r for all k > k0. Let Lr be the set of all f ∈ L such that supp f has decay
> r. (So Lr ⊆ Ls for 0 6 s 6 r.) We have λ ∈ Lr \ L1 for all 0 6 r < 1 and
̺ ∈ Ls \ L2 for 0 6 s < 2. As with L1, one can show that Lr is a differential
subfield of L, which is closed under integration if and only if r > 1. (For 0 6 r < 1
we have λ ∈ Lr, but

∫
λ = Λ 6∈ Lr.) For r > 1, carrying out the construction of T1

with Lr in place of L1 yields a Liouville closed H-subfield Tr of T which does not
contain an element of the form λ+ ε, where ε ∈ R[[T]] satisfies ε ≺ 1/(ℓ0ℓ1 · · · ℓn)
for all n.

By the above result of Écalle, λ does not satisfy any differential equation of
the form P (λ, λ′, . . . , λ(n)) = f , where P (Z,Z ′, . . . , Z(n)) ∈ R{Z} is nonconstant
and f ∈ Tr with r > 1. (We suspect that λ is differentially transcendental over Lr,
and hence over Tr, for any r > 1.) In particular, our construction of a differentially
algebraic, non-Liouvillian gap could not have been carried out with T1 replaced by
Tr for any r > 1, even if we replace 2Z ′ + Z2 by another nonconstant differential
polynomial P (Z,Z ′, . . . , Z(n)) ∈ R{Z}.

Finally, let us mention that the Newton polygon method of [9] can be used
to obtain Hardy field examples of the various possibilities for the appearance of
gaps exhibited in this paper. We shall leave the details for another occasion.
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Département de Mathématiques
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