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ABSTRACT. We establish doubly-exponential degree bounds for Gröbner bases in certain
algebras of solvable type over a field (as introduced by Kandri-Rody and Weispfenning).
The class of algebras considered here includes commutative polynomial rings, Weyl alge-
bras, and universal enveloping algebras of finite-dimensional Lie algebras. For the com-
putation of these bounds, we adapt a method due to Dubé based on a generalization of
Stanley decompositions. Our bounds yield doubly-exponential degree bounds for ideal
membership and syzygies, generalizing the classical results of Hermann and Seidenberg
(in the commutative case) and Grigoriev (in the case of Weyl algebras).

INTRODUCTION

The algorithmic aspects of Weyl algebras were first explored by Galligo [11], Takayama
[37] and others in the mid-1980s. They laid out the theory of Gröbner bases in this slightly
non-commutative setting. Since then, Gröbner bases in Weyl algebras have been widely
used for practical computations in algorithmic D-module theory as promoted in [32]. In
the early 1990s, Kandri-Rody and Weispfenning [17], by isolating the features of Weyl
algebras which permit Gröbner basis theory to work, extended this theory to a larger class
of non-comutative algebras, which they termed algebras of solvable type over a given
coefficient field K. This class of algebras includes the universal enveloping algebras of
finite-dimensional Lie algebras over K, by a theorem attributed to Poincaré, Birkhoff and
Witt. (For this reason, algebras of solvable type are sometimes called PBW-algebras; see,
e.g., [5, 31]. Another designation in use is polynomial rings of solvable type.) Working
implementations of these algorithms exist and are in widespread use; see [12, Section 2.6]
and [21]. Similar extensions of Gröbner basis theory to non-commutative algebras were
studied by Apel [2] and Mora [28]. See Sections 2 and 3 below for a recapitulation of the
basic definitions, and [5] for a comprehensive introduction to this circle of ideas.

In this paper we are interested in degree bounds for left Gröbner bases in algebras of
solvable type. It follows trivially from the case of commutative polynomials (as treated in
[26]) and Section 5.2 below that the degrees of the elements of the reduced Gröbner basis
of a left ideal I in an algebra of solvable type may depend doubly-exponentially on the
maximum of the degrees of given generating elements of I . In view of the popularity of
this kind of non-commutative Gröbner basis theory, it is surprising that little seems to be
known about upper degree bounds for Gröbner bases (and, by extension, about the worst-
case complexity of Buchberger’s algorithm) in this setting. Perhaps it was believed that the
upper degree bound for one-sided Gröbner bases, at least in the context of Weyl algebras,
also follows from the commutative polynomial case by passing to the associated graded
algebra for a certain filtration (which turns out to be nothing but a commutative polynomial
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ring over the given coefficient field). If true, the problem would have boiled down to the
doubly-exponential degree bounds for Gröbner bases in commutative polynomial rings
over fields found in the 1980s (see, e.g., [27]). However, we would like to emphasize
that we could not find and we do not believe there exists a simple way to establish such
a degree bound by reducing the question to commutative algebra. (See Section 3.6 for
further discussion.)

A general uniform degree bound for left Gröbner bases in algebras of solvable type
was established by Kredel and Weispfenning [18] (using parametric Gröbner bases). They
showed that, given an admissible ordering 6 on NN , there exists a computable function
(d,m) 7→ B(d,m) with the following property: for every solvable algebra R over some
field, generated by N generators whose commutator relations have degree at most d, every
left ideal of R generated by m elements of R of degree at most d has a Gröbner basis (with
respect to 6) whose elements have degree at most B(d,m).

In contrast to this, here we are mainly interested in finding explicit, doubly-exponential
degree bounds. We follow a road to establish such bounds paved by Dubé [9], who gave
a self-contained and constructive combinatorial argument for the existence of a doubly-
exponential degree bound for Gröbner bases in commutative polynomial rings over a field
of arbitrary characteristic. Earlier proofs of results of this type (as in [27]) proceed by first
homogenizing and then placing the ideal under consideration into generic coordinates.
The drawback of this method is that it seems difficult to adapt it to situations as general
as the ones considered here; for example, it only works smoothly in characteristic zero.
(See also [13] for the delicacies involved in using automorphisms of the Weyl algebra.)
The main new technical tool in [9] are decompositions, called cone decompositions, of
commutative polynomial rings over a field K into a direct sum of finitely many K-linear
subspaces of a certain type. These decompositions generalize the Stanley decompositions
of a given finitely generated commutative graded K-algebra R studied in [36]. A Stanley
decomposition ofR encodes a lot of information aboutR; for example, the Hilbert function
ofR can be easily read off from it. It has been noted in several other places in the literature
that Stanley decompositions are ideally suited to avoid the assumption of general position,
and, for example, can also be used to circumvent the use of generic hyperplane sections in
the proof of Gotzmann’s Regularity Theorem [24].

The present paper grew out of an attempt by the authors to better understand Dubé’s
article [9]. We modified the notions of cone decompositions and the argument of [9] to
work for a subclass of the class of algebras of solvable type over an arbitrary coefficient
field K, namely the ones whose commutation relations are given by quadric polynomials.
(This restriction was necessary in order to be able to freely homogenize the algebras and
ideals under consideration.) We refer to Section 2 below for precise definitions, and only
note here that this class of algebras includes commutative polynomial rings, as well as Weyl
algebras and the universal enveloping algebra of a finite-dimensional Lie algebra. Many
more examples of quadric algebras of solvable type can be found in [22, Section I.5]. (E.g.,
Clifford algebras, in particular Grassmann algebras, as well as q-Heisenberg algebras and
the Manin algebra of 2× 2-quantum matrices.)

Let now K be a field, and let R = K〈x〉 be a quadric K-algebra of solvable type with
respect to x = (x1, . . . , xN ) and an admissible ordering 6 of NN . Our main theorem is:
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Theorem 0.1. Every left ideal of R generated by elements of degree at most d has a
Gröbner basis consisting of elements of degree at most

D(N, d) := 2
(
d2

2
+ d

)2N−1

.

Theorem 0.1 is deduced from the homogeneous case: we’ll first show that ifR is homo-
geneous and f1, . . . , fn are homogeneous, then the elements of a reduced Gröbner basis of
a left ideal ofR generated by elements of degree at most d have degree at mostD(N−1, d),
and the obtain the bound in Theorem 0.1 by dehomogenizing. Our theorem also yields
uniform bounds for reduced Gröbner bases in the inhomogeneous case. (See [19, 38] for
non-explicit uniform degree bounds for reduced Gröbner bases in commutative polyno-
mial rings over fields.) For example, if the admissible ordering 6 is degree-compatible,
then the reduced Gröbner basis of every left ideal of R generated by elements of degree at
most d consists of elements of degree at most D(N, d). (Corollary 5.9.) In the case where
the admissible ordering is not degree-compatible, the issues are somewhat more subtle.
Therefore, we restrict ourselves to admissible orderings which can be represented by ra-
tional weights; this encompasses most admissible orderings used in practice, such as the
lexicographic ordering. (See Section 1 for the definition.)

Corollary 0.2. Suppose that the admissible ordering 6 can be represented by rational
weights. Then there exists a constant C, which only depends on 6, with the following
property: the elements of the reduced Gröbner basis with respect to 6 of every left ideal
of R generated by elements of degree at most d have degree at most

(
C ·D(N, d)

)N+1
.

It is routine to deduce from Theorem 0.1:

Corollary 0.3. Suppose the admissible ordering6 is degree-compatible. Let f1, . . . , fn ∈
R be of degree at most d, and let f ∈ R. If there are y1, . . . , yn ∈ R such that

y1f1 + · · ·+ ynfn = f,

then there are such yi of degree at most deg(f) + D(N, d). Moreover, the left module of
solutions to the linear homogeneous equation

y1f1 + · · ·+ ynfn = 0

is generated by solutions all of whose components have degree at most 3D(N, d).

For R = K[x1, . . . , xN ], this corollary is essentially a classical result due to Hermann
[16] (corrected and extended by Seidenberg [33]). In the case where R is a Weyl algebra,
the first statement in this corollary also partly generalizes a result of Grigoriev [13] who
showed that if a system of linear equations

y1a1j + · · ·+ ynanj = bj (j = 1, . . . ,m) (∗)

with coefficients aij , bj ∈ R of degree at most d has a solution (y1, . . . , yn) in R, then this
system admits such a solution with deg(yi) 6 (md)2

O(N)
for i = 1, . . . , n. The methods

of [13] are quite different from ours, and follow the lead of Hermann and Seidenberg. By
arguments as in [3, Corollary 3.4 and Lemma 4.2] one may obtain uniform degree bounds
on solutions to systems of linear equations such as (∗) by reduction to Corollary 0.3 (the
case m = 1); however, this yields bounds of the form d2O(mN)

, worse than those obtained
by Grigoriev. (Similarly if one tries to use Nagata’s “idealization” technique as in [1].)
Probably, Corollary 0.3 could be extended from a single linear equation to systems of linear
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equations with our techniques, by considering Gröbner bases of submodules of finitely
generated free modules over R; we shall leave this to another occasion.

By virtue of an observation from [5], our main theorem and its Corollary 0.3, although
ostensibly only about one-sided ideals, also have consequences for their two-sided coun-
terparts:

Corollary 0.4. Let f1, . . . , fn ∈ R be of degree at most d, and let f ∈ R. The two-sided
ideal of R generated by f1, . . . , fn has a Gröbner basis whose elements have degree at
most D(2N, d). If 6 is degree-compatible, and the equation

f = y1f1z1 + · · ·+ ynfnzn

has a solution (y1, . . . , yn, z1, . . . , zn) ∈ R2n, then this equation also has such a solution
where

deg(yi),deg(y′i) 6 deg(f) +D(2N, d) for i = 1, . . . , n.

Weyl algebras are simple (i.e., their only two-sided ideals are the trivial ones). Hence in
this case, the previous corollary is vacuous; however, there do exist many non-commutative
non-simple algebras satisfying the hypotheses stated before Theorem 0.1, for example,
among the universal enveloping algebras of finite-dimensional Lie algebras.

As shown in [29], Gröbner basis theory also extends in a straightforward way to certain
K-algebras closely related to Weyl algebras, namely the ringsRn(K) of partial differential
operators with rational functions in K(x) = K(x1, . . . , xn) as coefficients. Here Rn(K)
is the K-algebra generated by K(x) and pairwise distinct symbols ∂1, . . . , ∂n subject to
the commutation relations

∂i∂j = ∂j∂i, ∂ic(x) = c(x)∂i +
∂c(x)
∂xi

(1 6 i 6 j 6 n, c(x) ∈ K(x)).

By [32, Proposition 1.4.13], our main theorem implies the existence of a doubly-expo-
nential degree bound for Gröbner bases for left ideals inRn(K): every left ideal ofRn(K)
generated by elements of degree at most d has a Gröbner basis with respect to a given
admissible ordering6 of Nn consisting of elements of degree at mostD(2n, d). As above,
this result can then be used to prove an analogue of Corollary 0.3 forRn(K) (also partially
generalizing [13]); we omit the details.

Assume now that K has characteristic zero, and let R = An(K) be the n-th Weyl al-
gebra. A proper left ideal I of R is called holonomic if the Gelfand-Kirillov dimension of
R/I equals n, exactly half of the dimension of R. The Bernstein inequality, versions of
which are also known as the Fundamental Theorems of Algebraic Analysis (see Theorems
1.4.5 and 1.4.6 of [32]), states that n 6 dimR/I < 2n. Therefore, holonomic ideals
are proper ideals of the minimal possible dimension, which brings up an analogy with
zero-dimensional ideals in the commutative polynomial setting. Now, there is a bound on
the degrees of the elements of a reduced Gröbner basis of a zero-dimensional ideal in a
commutative polynomial ring over a field generated in degree at most d that is (single) ex-
ponential. Namely, this is the Bézout bound: dn, where n is the number of indeterminates.
(See, e.g., [20].) Holonomic ideals of R are closely related to zero-dimensional left ideals
of the algebra Rn(K) = K(x)⊗K[x] R of differential operators with coefficients in ratio-
nal functions: if I is a holonomic ideal of R, then the left ideal of Rn(K) generated by
I is zero-dimensional, and if conversely J is a zero-dimensional left ideal of Rn(K) then
J ∩ R is a holonomic ideal of R; see [32, Corollary 1.4.14 and Theorem 1.4.15]. It turns
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out that only a weak Bézout bound can be drawn (cf. [14]) for zero-dimensional ideals of
Rn(K), which is doubly-exponential.

So far, to our knowledge, a (single) exponential bound for the degrees of elements in
Gröbner bases has been produced only for one very special class of holonomic ideals used
in a particular application. These are the GKZ-hypergeometric ideals, with a homogene-
ity assumption (cf. [32, Corollary 4.1.2]). It would be interesting to see if holonomicity
(zero-dimensionality) implies a general exponential bound in the algebrasAn(K) (Rn(K),
respectively), as well as whether there is a better bound for ideals of minimal possible di-
mension in solvable algebras in general.

Finally, we’d like to mention that although our study is limited to the most frequently
used type of bases, Gröbner bases, there are other kinds of “standard bases” for ideals that
may be introduced for algebras of solvable type. For example, [15] explores involutive
bases in the Weyl algebra; for one type of bases, Janet bases, there is a recent complexity
result established in [8].

0.1. Organization of the paper. Sections 1 and 2 mainly have preliminary character, and
deal with monomials and generalities on K-algebras, respectively. In Section 3 we review
the fundamentals of Gröbner basis theory for algebras of solvable type. In Section 4 we
adapt Dubé’s method to the non-commutative situation, and in Section 5 we prove the main
theorem and its corollaries.

1. MONOMIALS AND MONOMIAL IDEALS

In this section we collect a few notations and conventions concerning multi-indices,
monomials and monomial ideals.

1.1. Multi-indices. Throughout this note, we let d, m, N and n range over the set N =
{0, 1, 2, . . . } of natural numbers, and α, β, γ and λ range over NN . We let N0 = {0}
by convention, and identify NN with the subset NN × {0} of NN+1 in the natural way.
We think of the elements of NN as multi-indices. A semigroup ordering of NN is a total
ordering 6 of NN such that α 6 β ⇒ α + γ 6 β + γ for all α, β, γ. An admissible
ordering (of NN ) is a semigroup ordering of NN having (0, . . . , 0) as its smallest element.
It is well-known that any admissible ordering is a well-ordering. For α = (α1, . . . , αN )
we put |α| := α1 + · · · + αN . An ordering 6 of NN is said to be degree-compatible
if |α| < |β| ⇒ α 6 β for all α, β. Given total orderings 61 of NN1 and 62 of NN2

(where N1, N2 ∈ N), the lexicographic product of 61 and 62 is the total ordering 6 of
NN1+N2 = NN1 × NN2 defined by

(α1, β1) 6 (α2, β2) :⇐⇒ α1 < α2, or α1 = α2 and β1 6 β2,

for α1, α2 ∈ NN1 and β1, β2 ∈ NN2 . Note that the lexicographic product of 61 and 62

extends the ordering 61 of NN1 . It is easy to see that if 61, 62 are semigroup orderings,
then so is the lexicographic product of 61 and 62, and similarly with “admissible” in
place of “semigroup.” The N -fold lexicographic product of the usual ordering of N is an
admissible ordering of NN called the lexicographic ordering of NN , denoted by6lex. An
example of a degree-compatible admissible ordering of NN is the degree-lexicographic
ordering 6dlex, defined by

α 6dlex β :⇐⇒ |α| < |β|, or |α| = |β| and α 6lex β.

In the rest of this subsection we fix an admissible ordering 6 of NN .
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Proposition 1.1. There exists a non-singular N ×N -matrix A with real entries such that
for all α, β:

α 6 β ⇐⇒ Aα 6lex Aβ. (1.1)

Here, on the right-hand side of the equivalence, we view the multi-indices α and β as
column vectors, and 6lex denotes the lexicographic ordering of RN .

For a proof see, e.g., [30]. We shall also need the following refinement. (A variant was
stated in [10], with an incorrect proof.)

Lemma 1.2. One can chooseA such that, in addition to the property stated in the previous
proposition, all entries of A are non-negative.

Proof. In this proof we let i, j, k, l range over {1, . . . , N}. Let A =

[
a1

...
aN

]
be as in the

proposition, where ai = (ai1, . . . , aiN ) ∈ RN for every i. We first note that if i, l are
such that ail 6= 0 and aij = 0 for every j with j < l, then ail > 0 (since our admissible
ordering of NN is a well-ordering). We now inductively define b1, . . . , bN ∈ RN such that

(1) all entries bij of bi are non-negative;
(2) if bkj > 0 for some k < i then bij > 0; and
(3) if bij = 0 then aij = 0.

Put b1 := a1; then clearly (1), (2) and (3) hold for i = 1. Suppose we have already defined
b1, . . . , bi−1 ∈ RN , for some i > 1, such that (1), (2) and (3) hold for 1, . . . , i− 1 in place
of i, and for every j. Then set

bi := ai +
(

1− min
bi−1,l>0

ail
bi−1,l

)
bi−1.

We check that (1), (2) and (3) continue to hold for the index i and every j. If bi−1,j > 0,
then

bij = aij +
(

1− min
bi−1,l>0

ail
bi−1,l

)
bi−1,j > aij − min

bi−1,l>0

ail
bi−1,l

bi−1,j > 0,

hence (1)–(3) clearly hold. Now suppose bi−1,j = 0. Then akj = 0 for every k < i, by (2)
and (3), hence bij = aij > 0, so (1) holds; (2) and (3) hold trivially.

Clearly (1.1) is satisfied with B =

[
b1
...
bN

]
in place of A, and B is non-singular with

non-negative entries. �

We say that an N ×N -matrix A with real entries represents 6 if (1.1) holds for all α,
β. We also say that 6 can be represented by rational weights if there is a non-singular
N × N -matrix A with rational entries representing 6. Note that if 6 can be represented
by rational weights, then there is anN ×N -matrix with non-negative integer entries repre-
senting 6 (by the proof of the lemma above, and after multiplying A by a suitable positive
integer). Many common admissible orderings (for example, the lexicographic and degree-
lexicographic ones) can be represented by rational weights. Although not every admissible
ordering is so representable, every admissible ordering can be “finitely approximated” by
one that is: given a finite set of multi-indices from NN , there exists an N × N -matrix A
with non-negative rational entries (but not necessarily non-singular) such that (1.1) holds
for all α, β ∈ S. (For logicians, this is immediate from the fact that the theory of divisible
ordered abelian groups is model-complete, see [25].)
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Let now A be a non-singular N × N -matrix with non-negative integer entries aij rep-
resenting6. For a multi-index α let wt1(α), . . . ,wtN (α) denote the entries of the column
vector Aα ∈ NN . Note that wti(α) 6 ||A|| |α| for i = 1, . . . , N , where ||A|| is the largest
among the entries of A. Given an integer D > 1 we define a weight function wt = wtD,A
(taking non-negative integer values) on the set NN by

wt(α) := wt1(α)DN−1 + wt2(α)DN−2 + · · ·+ wtN−1(α)D + wtN (α).

We have wt(α) = 0 if and only if α = 0. Moreover

|α| 6 wt(α) 6 ||A|| |α| D
N − 1
D − 1

. (1.2)

(For the inequality on the right use that
∑
i aij > 0 for every j, since A is non-singular

and aij > 0.) The weight function wt represents 6 for multi-indices with small degree:

α 6 β ⇐⇒ wt(α) 6 wt(β), if |α|, |β| < D

||A||
.

We also have
wt(α+ β) = wt(α) + wt(β) for all α, β.

1.2. Monomials and K-linear spaces. In the rest of this section we fix a positive N , we
let K denote a field, and we let R be a K-linear space. A monomial basis of R is family
{xα}α of elements of R, indexed by the multi-indices in NN , which forms a basis of R.
Of course, every K-linear space of countably infinite dimension has a monomial basis, for
every positive N , but in the applications in the next sections, a specific monomial basis
will always be given to us beforehand. Thus, in the following we assume that a monomial
basis {xα}α of R is fixed. We call a basis element xα of R a monomial (of R), and we
denote by x� the set of monomials of R. Every element f of R can be uniquely written in
the form

f =
∑
α

fαx
α where fα ∈ K, with fα = 0 for all but finitely many α,

and we define the support of such an f as

supp f := {xα : fα 6= 0}.
We have xα 6= xβ whenever α 6= β, so every ordering 6 of NN yields an ordering (also
denoted by 6) of x� in a natural way:

xα 6 xβ :⇐⇒ α 6 β for multi-indices α, β.

We make x� into a commutative monoid by defining

xα ∗ xβ := xα+β for multi-indices α, β.

Then the map
α 7→ xα : NN → x�

is an isomorphism of monoids. A tuple of generators of the monoid x� is given by x =
(x1, . . . , xN ) where xi = xεi , with εi = the i-th unit vector in NN .

There is a unique binary operation on R extending the operation ∗ on x� and making
the K-linear space R into a K-algebra. With this multiplication operation, of course, R
is nothing but the ring K[x] of polynomials in indeterminates x = (x1, . . . , xN ) with
coefficients from K: the unique K-linear bijection K[x] → R which for each multi-
index α sends the monomial xα1

1 · · ·x
αN
N of K[x] to the basis element xα of R, is an

isomorphism of K-algebras. However, in our applications below, the K-linear space R
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will already come equipped with a binary operation making it into a K-algebra, and this
operation will usually not agree with ∗ on x� (in fact, not even restrict to an operation
on x�). In order to clearly separate the combinatorial objects arising in the study of the
(generally, non-commutative) K-algebras later on, we chose to introduce the extra bit of
terminology concerning monomial bases.

A monomial xα divides a monomial xβ (or xβ is divisible by xα) if xβ = xα ∗ xγ
for some multi-index γ; in symbols: xα|xβ . If I is an ideal of x�, that is, if xα ∈ I ⇒
xα ∗ xβ ∈ I for all α, β, then there exist xα(1), . . . , xα(k) ∈ I such that each monomial in
I is divisible by some xα(i). (By Dickson’s Lemma, [17, Lemma 1.1].) Given monomials
xα and xβ , the least common multiple of xα and xβ is the monomial

lcm(xα, xβ) = xγ where γi = max{αi, βi} for i = 1, . . . , N .

Let now 6 be a total ordering of NN . Given a non-zero element f of R, there is a unique
λ such that

f = fλx
λ +

∑
α<λ

fαx
α, fλ 6= 0.

We call
lc(f) = fλ, lm(f) = xλ, lt(f) = fλx

λ

the leading coefficient, leading monomial, and leading term, respectively, of f with
respect to 6. It is convenient to define lm(0) := 0 and extend 6 to a total ordering on the
set x�∪{0} by declaring 0 < xα for all α. We also declare lc(0) := lt(0) := 0. We extend
the notation lm to subsets of R by a slight abuse: for S ⊆ R put

lm(S) :=
{

lm(f) : 0 6= f ∈ S
}
⊆ x�.

1.3. Monomial cones and monomial ideals. By abuse of notation, we write y ⊆ x to
indicate that y is a subset of {x1, . . . , xN}, and for y ⊆ x we let y� be the submonoid of
(x�, ∗) generated by y. (So ∅� = {1}.)

A monomial cone defined by a pair (w, y), where w ∈ x� and y ⊆ x, is the K-linear
subspace C(w, y) of R generated by w ∗ y�. Note that C(w,∅) = {0} for every w ∈ x�,
and C(1, x) = R. Also, if y ⊆ y′ ⊆ x then C(w, y) ⊆ C(w, y′). We refer to [9, Section 3]
for how to represent monomial cones graphically in the (slightly misleading) case N = 2.
If we identify R with the commutative polynomial ring R = K[x] as explained above,
then C(w, y) is nothing but the K-linear subspace wK[y] of K[x].

We say that aK-linear subspace I ofR is a monomial ideal if I is spanned by monomi-
als, and C(w, x) ⊆ I for all monomials w ∈ I . (Hence, ifR = K[x], then I is a monomial
ideal of K[x] in the usual sense of the word.) A set of generators for a monomial ideal
I of R is defined to be a set of monomials F such that I =

∑
w∈F C(w, x) (so the set

F ∗ x� generates I as a K-linear space). A K-linear subspace of R is a monomial ideal if
and only if the set of monomials in I is an ideal of (x�, ∗). Every monomial subspace of
R has a unique minimal set of generators, which is finite.

Given a monomial ideal I of R and a monomial w we put

(I : w) := the K-linear subspace of R generated by {v ∈ x� : w ∗ v ∈ I},
a monomial ideal of R containing I .

Let now M be a K-linear subspace of R generated by monomials, and let I be a mono-
mial ideal of R. Then the K-linear subspace M ∩ I of M has a natural complement: we
have

M = (M ∩ I)⊕ nfI(M),
where nfI(M) denotes the K-linear subspace of R generated by the monomials in M \ I .
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2. PRELIMINARIES ON ALGEBRAS OVER FIELDS

In this section we let K be a field (of arbitrary characteristic). All K-algebras will be
assumed to be associative with unit element 1. Given a subset G of a K-algebra R we
denote by (G) the left ideal of R generated by G. We also let 6 be an admissible ordering
of NN .

2.1. Multi-filtered K-algebras and modules. A multi-filtration on R (indexed by NN )
is a family

{
R(6α)

}
α

of K-linear subspaces of R such that:
(1) 1 ∈ R(60);
(2) α 6 β ⇒ R(6α) ⊆ R(6β);
(3) R(6α) ·R(6β) ⊆ R(6α+β);
(4)

⋃
αR(6α) = R.

A multi-filtered K-algebra is a K-algebra equipped with a multi-filtration. Suppose R is
a multi-filtered K-algebra. A multi-filtration on a left R-module M (indexed by NN ) is a
family

{
M(6α)

}
α

of K-linear subspaces of M such that:
(1) α 6 β ⇒M(6α) ⊆M(6β);
(2) R(6α) ·M(6β) ⊆M(6α+β);
(3)

⋃
αM(6α) = M .

A multi-filtered left R-module is a left R-module equipped with a multi-filtration. Sup-
pose now that in additionM is a multi-filtered leftR-module. For everyα the setM(<α) :=⋃
β<αM(6α) is a K-linear subspace of M . Here M(<0) := {0} by convention. For ev-

ery non-zero f ∈ M there exists a unique α with f ∈ M(6α) \ M(<α), and we call
α = deg(f) the degree of f . Given a left R-submodule M ′ of M , we always construe
M ′ as a multi-filtered left R-module by means of the multi-filtration {M ′(6α)}α given by
M ′(6α) := M ′ ∩M(6α) for every α, and we make the quotient M/M ′ into a multi-filtered
left R-module by the multi-filtration induced on M/M ′ from M by the natural surjection
M →M/M ′:

(M/M ′)(6α) := (M(6α) +M ′)/M ′ for every α.

For a two-sided ideal I of R, the induced filtration makes R/I a multi-filtered K-algebra.

2.2. Multi-graded K-algebras and modules. A multi-grading on R (indexed by NN )
is a family

{
R(α)

}
α

of K-linear subspaces of R such that
(1) R =

⊕
αR(α) (internal direct sum of K-linear subspaces of R);

(2) R(α) ·R(β) ⊆ R(α+β) for all multi-indices α, β.
AK-algebra equipped with a multi-grading is called a multi-gradedK-algebra. Suppose
R is multi-graded. A multi-grading on a left R-module M (indexed by NN ) is a family{
M(α)

}
α

of K-linear subspaces of M such that
(1) M =

⊕
αM(α);

(2) R(α) ·M(β) ⊆M(α+β) for all α, β.
A left R-module equipped with a multi-grading is called a multi-graded left R-module.
Let M be a multi-graded left R-module. We call the K-linear subspace M(α) of M the
homogeneous component of degree α of M . We always view R as a multi-filtered K-
algebra, and M as a multi-filtered left R-module by means of the natural multi-filtrations{
R(6α)

}
α

and
{
M(6α)

}
α

given by

R(6α) :=
⊕
β6α

R(β), M(6α) :=
⊕
β6α

M(β) for every α.
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Every f ∈M has a unique representation in the form f =
∑
α f(α) where f(α) ∈M(α) for

all α, and f(α) = 0 for all but finitely many α. We call f(α) the homogeneous component
of degree α of f . Similarly, given a K-linear subspace V of M which is homogeneous
(i.e., for f ∈ M we have f ∈ V if and only if f(α) ∈ V for each α), the homogeneous
component of degree α of V is denoted by V(α) := V ∩M(α), so

V =
⊕
α

V(α) (internal direct sum of K-linear subspaces of M ).

If M ′ is a homogeneous left R-submodule of M , then the M ′(α) furnish M ′ with a multi-
grading makingM ′ a multi-graded leftR-module, and we makeM/M ′ into a multi-graded
left R-module by the multi-grading induced from M :

(M/M ′)(α) := (M(α) +M ′)/M ′ for every α.

The multi-filtration of M/M ′ associated to this multi-grading agrees with the multi-filtra-
tion of M/M ′ induced from the multi-filtered left R-module M . If I is a two-sided ideal
of R, then R/I a multi-graded K-algebra by means of the induced multi-grading.

2.3. The associated multi-graded algebra. Suppose R is multi-filtered, and let M be a
multi-filtered left R-module M . Consider the left R-module

grM =
⊕
α

(grM)(α) with (grM)(α) = M(6α)/M(<α)

with
(f +R(<α)) · (g +M(<β)) = f · g +M(<α+β)

for all α, β, and f ∈ R(6α), g ∈ M(6β). For M = R we obtain a multi-graded K-
algebra grR, called the multi-graded K-algebra associated to R. In general, grM is a
multi-graded left grR-module, the multi-graded left grR-module associated to M . For
non-zero f ∈M of degree α we denote by

gr f := f +M(<α) ∈ (grM)(α)

the initial form (or symbol) of f , and we put gr 0 := 0 ∈ grM . Given a leftR-submodule
M ′ of M , the inclusion M ′ → M induces an embedding grM ′ → grM of multi-graded
left R-modules, and we identify grM ′ with its image under this embedding.

2.4. The Rees algebra. Suppose R is multi-filtered. The Rees algebra of R is the multi-
graded K-algebra

R∗ =
⊕
α

(R∗)(α) with (R∗)(α) = R(6α).

For a non-zero element f of R of degree α we let f∗ := f ∈ (R∗)(α) be the homoge-
nization of f ; by convention 0∗ := 0. Let I be a two-sided ideal of R. We let I∗ be the
two-sided ideal of R∗ generated by all f∗ with f ∈ I; the ideal I∗ is homogeneous, and is
called the homogenization of I . The natural surjection R→ R/I is a morphism of multi-
filtered K-algebras which induces a surjective morphism R∗ → (R/I)∗ of multi-graded
K-algebras whose kernel is I∗; the induced homomorphism R∗/I∗ → (R/I)∗ is an iso-
morphism of multi-graded K-algebras. The natural inclusions (R∗)(α) = R(6α) ⊆ R
combine to a K-linear map h 7→ h∗ : R∗ → R which is a surjective homomorphism of
multi-graded K-algebras satisfying (f∗)∗ = f for all f ∈ R. For h ∈ R∗ the element
h∗ of R is called the dehomogenization of h. We extend this notation to subsets of R∗:
H∗ := {h∗ : h ∈ H} for H ⊆ R∗. If J is a left ideal of R∗, then J∗ is a left ideal of R.
Hence if H ⊆ R∗ then (H)∗ = (H∗).
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2.5. Filtered and graded algebras. By a filtered K-algebra we will mean an multi-
filtered algebra whose filtration is indexed by N, and similarly a multi-graded K-algebra
whose grading is indexed by N is just called a gradedK-algebra. Analogous terminology
will be used in the case of left R-modules. (Most of our multi-filtered or multi-graded
objects will actually be filtered, respectively graded; we introduced the more general con-
cepts in order to be able to speak about the associated multi-graded algebra of an algebra
of solvable type with respect to the “fine filtration”; see Corollary 2.5.)

Suppose R =
⋃
dR(6d) is a filtered K-algebra. We denote by t the canonical element

of R∗, that is, the unit 1 of R, considered as an element of (R∗)(1) = R(61). In this case
the graded K-algebra associated to R and the Rees algebra of R are related as follows: the
natural surjections

(R∗)(d) = R(6d) → R(6d)/R(<d) = (grR)(d)
combine to a surjective K-algebra morphism R∗ → grR which has kernel R∗t and hence
induces an isomorphism

R∗/R∗t
∼=−→ grR (2.1)

of graded K-algebras.

2.6. Homogenization of graded algebras. Suppose now that R =
⊕

dR(d) is a graded
K-algebra. We make the ring R[T ] of polynomials in one commuting indeterminate T
over R into a graded K-algebra using the grading

R[T ] =
⊕
d

R[T ]d with R[T ](d) :=
⊕
i+j=d

R(i)T
j .

The K-linear map R[T ] → R∗ with fT j 7→ ftj for all f ∈ R(i) and i, j ∈ N is an
isomorphism of graded K-algebras. In the following we always identify the Rees algebra
of a graded K-algebra R with the graded K-algebra R[T ]. Then the canonical element of
R∗ is T , and for non-zero f ∈ R of degree d we have

f∗ =
d∑
i=0

f(i)T
d−i ∈ (R∗)(d),

and for h =
∑n
i=0 hiT

i ∈ R∗ we get h∗ =
∑n
i=0 hi ∈ R.

2.7. The opposite algebra and the enveloping algebra. The opposite algebra of R is
the K-algebra Rop whose underlying K-linear space is the same as that of R and whose
multiplication operation ·op is given by a·op b = b·a for a, b ∈ R. The enveloping algebra
of R is the K-algebra Renv := R ⊗K Rop. There is a natural one-to-one correspondence
between R-bimodules and left Renv-modules: every R-bimodule M also has a left Renv-
module structure given by

(a⊗ b) · f = afb for a ∈ R, b ∈ Rop, and f ∈M ,

and conversely, every left Renv-module M ′ also carries an R-bimodule structure with

af ′b = (a⊗ b)f ′ for a ∈ R, b ∈ Rop, and f ′ ∈M ′.
There is a surjective morphism µ : Renv → R of left Renv-modules with

µ(a⊗ b) = ab for a ∈ R, b ∈ Rop.

For every n, acting component by component, µ induces a surjective morphism (Renv)n →
Rn of leftRenv-modules, which we also denote by µ. Thus for everyR-bisubmoduleM of
Rn we obtain a left Renv-submodule µ−1(M) of (Renv)n containing kerµ, and the image
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µ(M ′) of a left Renv-submodule M ′ of (Renv)n with kerµ ⊆M ′ is an R-bisubmodule of
Rn. The kernel of µ is generated by

(f1 ⊗ 1, . . . , fn ⊗ 1)− (1⊗ f1, . . . , 1⊗ fn) (f1, . . . , fn ∈ R).

2.8. Non-commutative polynomials. In the following we let X = (X1, . . . , XN ) be a
tuple of N distinct indeterminates over K and denote by X∗ the free monoid generated by
{X1, . . . , XN}. The free K-algebra K〈X〉 = K〈X1, . . . , XN 〉 generated by X (that is,
the monoid algebra of X∗ over K) has a natural grading

K〈X〉 =
⊕
d

K〈X〉(d)

defined by the length of words in X∗. Let I be a two-sided ideal of K〈X〉. The K-algebra
R = K〈X〉/I is generated by the cosetsXi+I (i = 1, . . . , N ). Let T be an indeterminate
over K distinct from X1, . . . , XN . We identify the Rees algebra K〈X〉∗ of K〈X〉 with
the graded K-algebra K〈X〉[T ] as explained in the previous subsections; similarly, the
Rees algebra R∗ of R will be identified with K〈X〉∗/I∗ = K〈X〉[T ]/I∗. For a non-zero
f ∈ K〈X〉 of degree d we define the homogeneous polynomial

fh :=
d∑
i=0

f(i)T
d−i ∈ K〈X,T 〉. (2.2)

The two-sided ideal Ih of K〈X,T 〉 generated by fh for non-zero f ∈ I and the poly-
nomials XiT − TXi (i = 1, . . . , N ) is homogeneous, and the natural K-linear map
K〈X,T 〉 → K〈X〉[T ] induces an isomorphism

K〈X,T 〉/Ih ∼=−→ R∗ = K〈X〉[T ]/I∗ (2.3)

of graded K-algebras.

2.9. Affine algebras. In the rest of this section, we letR be a finitely generatedK-algebra
and we fix a tuple x = (x1, . . . , xN ) of elements ofR. For a multi-index α = (α1, . . . , αN )
put xα := xα1

1 · · ·x
αN
N . We say that the K-algebra R is affine with respect to x if the

family {xα}α is a monomial basis of the K-linear space R. (Note that then x1, . . . , xN
generate R as a K-algebra.) Usually, we obtain affine K-algebras by specifying a com-
mutation system in K〈X〉, that is, a family R = (Rij)16i<j6N of

(
N
2

)
= N(N − 1)/2

polynomials

Rij = XjXi − cijXiXj − Pij

where 0 6= cij ∈ K and Pij ∈
⊕
α

KXα for 1 6 i < j 6 N . (2.4)

Let R = (Rij) be a commutation system and I = I(R) be the two-sided ideal of K〈X〉
generated by the polynomials Rij (1 6 i < j 6 N ), and suppose R = K〈X > I with
xi = Xi + I (i = 1, . . . , N ). We say that the finitely presented K-algebra R is defined
by R. We construe K〈X〉 as a filtered K-algebra via filtration by degree of polynomials
in K〈X〉, and we equip R with the filtration induced by the natural surjection K〈X〉 →
K〈X〉/I = R. We call the filtration of R arising in this way the standard filtration of R
(with respect to x1, . . . , xN ). If R turns out to be affine, then the generators x1, . . . , xN of
the K-algebra R have degree 1.

The proposition below contains a useful criterion, due to Bergman [4], for verifying that
K〈X〉/I is affine. Before we can state it, we need to introduce some further notation. For
a word w = Xi1 · · ·Xim ∈ X∗ with i1, . . . , im ∈ {1, . . . , N} we define the misordering
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index i(w) of w as the number of pairs (k, l) with 1 6 k < l 6 m and ik > il. We
define a (strict) ordering of X∗ by setting v ≺ w if v is of smaller length than w or if v is a
permutation of the symbols of w with i(v) < i(w). Note that ≺ is only a partial ordering
of X∗ if N > 0. Given elements a and b of a ring, we put [a, b] := ab− ba.

Proposition 2.1. Suppose R = (Rij) is a commutation system with Rij as in (2.4), such
that cij = 1 for 1 6 i < j 6 N . Then the K-algebra defined by R is affine if and only if
for 1 6 i < j < k 6 N , the polynomial

[Xi, Pjk] + [Xj , [Xk, Xi]] + [Xk, Pij ]

is a K-linear combination of polynomials of the form vQrsw where v, w ∈ X∗ and 1 6
r < s 6 N such that vXsXrw ≺ XkXjXi.

Affineness of K-algebras may also be shown with Mora’s theory [28] of Gröbner bases
for two-sided ideals in K〈X〉, which we won’t discuss here; cf. [17, Theorem 1.11].

Examples 2.2. We mention some prominent examples for K-algebras which can easily be
seen to be affine using Proposition 2.1:

(1) A K-algebra is called semi-commutative if for every pair f, g of its elements
there is a non-zero c ∈ K with fg = cgf . If Pij = 0 for 1 6 i < j 6 N
in (2.4), then the K-algebra defined by R is affine and semi-commutative. If in
addition cij = 1 for 1 6 i < j 6 N , then the K-algebra defined byR is naturally
isomorphic to theK-algebraK[x] = K[x1, . . . , xN ] of commutative polynomials
in the tuple of indeterminates x = (x1, . . . , xN ) with coefficients in K.

(2) The n-th Weyl algebra An(K) over K is the K-algebra generated by N = 2n
generators x1, . . . , xn, ∂1, . . . , ∂n subject to the relations

xjxi = xixj , ∂j∂i = ∂i∂j for 1 6 i < j 6 n,
∂jxi = xi∂j for 1 6 i, j 6 n, i 6= j,
∂ixi = xi∂i + 1 for 1 6 i 6 n.

Using Proposition 2.1 one sees easily that An(K) is affine with respect to the
generating tuple (x, ∂) := (x1, . . . , xn, ∂1, . . . , ∂n). The standard filtration of
An(K) is also known as the Bernstein filtration of An(K).

(3) Let g be a Lie algebra over K of dimension n, and let {x1, . . . , xN} be a basis of
g. The universal enveloping algebra of g is a K-algebra U(g) which contains g as
K-linear subspace and is generated by x1, . . . , xN subject to the relations

xjxi = xixj − [xj , xi]g for 1 6 i < j 6 N .

The fact that U(g) is affine with respect to the tuple (x1, . . . , xN ) is known as the
Poincaré-Birkhoff-Witt Theorem (cf. [4, Theorem 3.1]).

We say that a commutation systemR = (Rij) as above is quadric if every polynomial
Pij has degree 6 2, linear if every Pij has degree 6 1, and homogeneous if all Rij are
either zero or homogeneous (necessarily of degree 2). All examples of affine K-algebras
given above are defined by linear commutation systems (and the semi-commutative even
by homogeneous ones).

2.10. Algebras of solvable type. The definition below is due to Kandri-Rody and Weis-
pfenning [17]. Recall that 6 denotes an admissible ordering of NN .
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Definition 2.3. The K-algebra R is said to be of solvable type with respect to the fixed
admissible ordering 6 of NN and the tuple x = (x1, . . . , xN ) ∈ RN if R is affine with
respect to x, and for 1 6 i < j 6 N there are cij ∈ K, cij 6= 0, and pij ∈ R such that

xjxi = cijxixj + pij and lm(pij) < xixj .

(Note that the cij and pij are then uniquely determined.)

The following fact is proved in [17, Lemma 1.4]:

Lemma 2.4. Suppose R is of solvable type with respect to 6 and x. Then

lm(f · g) = lm(f) ∗ lm(g) for non-zero f, g ∈ R.

In particular, R is an integral domain.

If R is semi-commutative, then R is of solvable type with respect to x and every
admissible ordering of NN , and each homogeneous component R(α) of R has the form
R(α) = Kxα. By the preceding lemma we have:

Corollary 2.5. Suppose R is of solvable type with respect to 6 and x. Then the family{
R(6α)

}
α

with

R(6α) :=
⊕
β6α

Kxβ

is a multi-filtration of R, and its associated multi-graded K-algebra gr6R is semi-com-
mutative with respect to 6 and ξ = (ξ1, . . . , ξN ), where ξi := gr6 xi for i = 1, . . . , N . If
cij = 1 for 1 6 i < j 6 N , then gr6R = K[ξ] is commutative.

Here is a way of constructing K-algebras of solvable type [17, Theorem 1.7]:

Proposition 2.6. Let R = (Rij) be a commutation system with Rij as in (2.4), let I =
I(R), and suppose R = K〈X〉/I with xi = Xi + I for 1 6 i 6 N . Then R is of
solvable type with respect to the admissible ordering 6 and the tuple x = (x1, . . . , xN ) of
generators for R if and only if the following two conditions are satisfied:

(1) lm(Pij) < lm(XiXj) for 1 6 i < j 6 N , and
(2) I ∩

⊕
αKX

α = {0}.

Remark 2.7. Suppose that R is affine with respect to 6 and x, and let π : K〈X〉 → R be
the surjective K-algebra homomorphism with Xi 7→ xi for i = 1, . . . , N . Let R = (Rij)
be a commutation system as in (2.4) satisfying condition (1) in Proposition 2.6 and with
kerπ containing I = I(R). Then I = kerπ, so R is of solvable type with respect to 6
and x. (To see this note that kerπ ∩

⊕
αKX

α = {0} since R is affine; in particular,
I ∩

⊕
αKX

α = {0}, hence K〈X〉 = I ⊕
⊕

αKX
α by Proposition 2.6, and thus I =

kerπ.)

Every K-algebra of solvable type arises as described in Proposition 2.6: Suppose R =
K〈x〉 is of solvable type as in Definition 2.3; let π be as in Remark 2.7, for 1 6 i < j 6 N
let Pij be the unique polynomial in

⊕
αKX

α such that π(Pij) = pij , and define the
commutation system R = (Rij) as in (2.4). Then clearly kerπ contains I = I(R). So
kerπ = I by the preceding remark, and π induces an isomorphism K〈X〉/I → R. Hence
we may define properties of a K-algebra of solvable type in terms of the unique commu-
tation system that defines it. For example, we say that a K-algebra of solvable type is
quadric or homogeneous if its defining commutation system is quadric or homogeneous,
respectively.
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Condition (1) in the previous proposition automatically holds if Pij ∈ K for 1 6 i <
j 6 N , or if 6 is degree-compatible and degPij < 2 for 1 6 i < j 6 N . Hence the n-th
Weyl algebra An(K) over K is of solvable type with respect to the generating tuple (x, ∂)
and every admissible ordering of N2n. Similarly, the universal enveloping algebra of an
N -dimensional Lie algebra over K is of solvable type with respect to the generating tuple
x and every admissible ordering of NN . The only commutativeK-algebra of solvable type
with respect to x is the commutative polynomial ring K[x1, . . . , xN ], which is of solvable
type with respect to every admissible ordering of NN . All of those examples are quadric.

Lemma 2.8. Suppose that N > 0 and xN is in the center of R. Let S = R/RxN , and for
i = 1, . . . , N − 1 let yi be the image of xi under the natural surjection R→ S.

(1) If the K-algebra R is affine with respect to x, then S is affine with respect to
y = (y1, . . . , yN−1).

(2) If R is of solvable type with respect to6 and the tuple x, then S is of solvable type
with respect to the restriction of 6 to NN−1 and y, and if in addition R is quadric
(homogeneous), then S is quadric (homogeneous, respectively).

Proof. Part (1) is clear. For (2), suppose R is of solvable type with respect to 6 and
x. Let R = (Rij)16i<j6N be the commutation system in K〈X〉 defining R. Let Y =
(Y1, . . . , YN−1) be a tuple of distinct indeterminates over K. The commutation system
S = (Sij)16i<j<N in K〈Y 〉 with Sij := Rij(Y, 0) for 1 6 i < j < N satisfies condition
(1) in Proposition 2.6, and I(S) is contained in the kernel of theK-algebra homomorphism
K〈Y 〉 → S with Yi 7→ yi for i = 1, . . . , N − 1. Hence by (1) and Remark 2.7, S
is of solvable type with respect to the restriction of 6 to NN−1 and y. If R is quadric
(homogeneous) then S clearly is quadric (homogeneous, respectively). �

In the rest of this section, π : K〈X〉 → R is the K-algebra homomorphism with
π(Xi) = xi for i = 1, . . . , N . We also let R = (Rij) be a commutation system defining
R = K〈x〉, with Rij as in (2.4), and we assume that R is of solvable type with respect to
6 and x = (x1, . . . , xN ). We put pij := π(Pij) for 1 6 i < j 6 N .

The opposite K-algebra Rop of R is again a K-algebra of solvable type in a natural
way. To see this define the “write oppositely automorphism” of the K-algebra K〈X〉 by

(Xi1 · · ·Xir )
op = Xir · · ·Xi1 for all i1, . . . , ir ∈ N.

Also set αop := (αN , . . . , α1) for every multi-index α = (α1, . . . , αN ) and define the
“opposite ordering” of NN by

α 6op β :⇐⇒ αop 6 βop for all multi-indices α, β.

Then Rop := (Rop
ij ) is a commutation system defining a K-algebra of solvable type with

respect to 6op and xop := (xN , . . . , x1), which can be naturally identified with Rop.

2.11. The enveloping algebra of an algebra of solvable type. The class of K-algebras
of solvable type is closed under tensor products. More precisely, let 6′ be an admissible
ordering of NN ′ (whereN ′ ∈ N), and letR′ = (R′ij) be a commutation system inK〈Y 〉 =
K〈Y1, . . . , YN ′〉, with

R′ij = YjYi − c′ijYiYj − P ′ij (1 6 i < j 6 N ′)

where 0 6= c′ij ∈ K and P ′ij ∈
⊕

α′ KY
α′ . (Here and below, α′ ranges over NN ′ .) Let

R′ = K〈Y 〉/I(R′), with natural surjection π′ : K〈Y 〉 → R′, and let yj := π′(Yj) for
j = 1, . . . , N ′ and p′ij := π′(P ′ij) for 1 6 i < j 6 N ′. Suppose that R′ is of solvable type
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with respect to 6′ and y = (y1, . . . , yN ′). The K-algebra S := R ⊗K R′ is generated by
the (N +N ′)-tuple

(x1 ⊗ 1, . . . , xN ⊗ 1, 1⊗ y1, . . . , 1⊗ yN ′). (2.5)

We have the following (see [31, Proposition 1]):

Proposition 2.9. The K-algebra S = R ⊗K R′ is of solvable type with respect to the
lexicographic product of the orderings 6 and 6′, and the (N + N ′)-tuple of generators
(2.5). The commutator relations of S are

(xj ⊗ 1)(xi ⊗ 1) = cij(xi ⊗ 1)(xj ⊗ 1) + pij ⊗ 1 (1 6 i < j 6 N)

(xi ⊗ 1)(1⊗ yj) = (1⊗ yj)(xi ⊗ 1) (1 6 i 6 N, 1 6 j 6 N ′)

(1⊗ yj)(1⊗ yi) = c′ij(1⊗ yi)(1⊗ yj) + 1⊗ p′ij (1 6 i < j 6 N ′).

Hence if R and R′ are quadric, then so is S.

By the above, Renv = R ⊗K Rop is an algebra of solvable type in a natural way,
with respect to the admissible ordering 6env on N2N = NN × NN obtained by taking
the lexicographic product of 6 with itself. For every given n, the kernel of the left Renv-
morphism µ : (Renv)n → Rn introduced in Section 2.7 is generated by the elements(

(xεi ⊗ 1)− (1⊗ xεi)
)
ej (1 6 i 6 N, 1 6 j 6 n) (2.6)

of (Renv)n. Here

ε1 = (1, 0, . . . , 0), ε2 = (0, 1, 0, . . . , 0), . . . , εN = (0, . . . , 0, 1) ∈ NN ,

and e1, . . . , en are the standard basis elements of the left Renv-module (Renv)n. Hence if
M is an R-bisubmodule of Rn generated by

fi = (fi1, . . . , fin) ∈ Rn (i = 1, . . . ,m),

then the corresponding left Renv-submodule µ−1(M) of (Renv)n is generated by the ele-
ments in (2.6) and

(f11 ⊗ 1, . . . , f1n ⊗ 1), . . . , (fm1 ⊗ 1, . . . , fmn ⊗ 1).

2.12. Quadric algebras of solvable type. In the rest of this section, R is assumed to be
quadric. We have lm(π(v)) = lm(π(w)) for all words v, w ∈ 〈X〉 which are rearrange-
ments of each other (by Lemma 2.4). This observation is crucial for the proof of the next
lemma, to be used in the following subsection:

Lemma 2.10. For every d we have

R(6d) =
⊕
|α|6d

Kxα.

Proof. We equip NN+1 = NN ×N with the lexicographic product of the given admissible
ordering 6 of NN and the usual ordering of N. It suffices to show, by induction on pairs
(α, i) ∈ NN × N: every word w ∈ 〈X〉 with lm(π(w)) = xα and i(w) = i belongs
to I(R) +

⊕
|β|6dKX

β where d = length of w. If i(w) = 0 then w ∈
⊕
|β|6dKX

β ,
and there is nothing to show; so suppose i(w) > 0 (in particular, d > 0). Then there are
i, j ∈ {1, . . . , N} and u, v ∈ 〈X〉 with i < j, w = uXjXiv and i(u) = 0. We have
uRijv ∈ I(R) and

w = cijuXiXjv + uPijv + uRijv.
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We also have lm(π(uXiXjv)) = lm(π(w)) and i(uXiXjv) = i(w) − 1, and moreover
lm(π(uPijv)) < lm(π(w)) and deg(uPijv) 6 d since R is quadric. Thus by inductive
hypothesis, uXiXjv and uPijv are elements of I(R)+

⊕
|β|6dKX

β ; hence so is w. �

2.13. Homogenization and homogeneous algebras of solvable type. Let T be an in-
determinate over K distinct from X1, . . . , XN . In the following we identify the Rees
algebra R∗ of R with the graded K-algebra K〈X,T 〉/I(R)h via the isomorphism (2.3).
Then the canonical element of R∗ is t = T + I(R)h, and the K-algebra R∗ is gener-
ated by x∗1, . . . , x

∗
N , t ∈ (R∗)(1), where x∗i = Xi + I(R)h is the homogenization of xi

(i = 1, . . . , N ). Let x∗ := (x∗1, . . . , x
∗
N ). By Lemma 2.10, for every d we have

(R∗)(d) =
⊕
|α|6d

K (x∗)αtd−|α|.

In particular, the K-algebra R∗ is affine with respect to (x∗, t). In fact:

Corollary 2.11. The Rees algebra R∗ of R is homogeneous of solvable type with respect
to the lexicographic product6∗ of the admissible ordering6 of NN and the usual ordering
of N, and the generating tuple (x∗, t).

Proof. We construct a homogeneous commutation system Rh in K〈X,T 〉 by enlarging
the family (Rh

ij)16i<j6N by the polynomials XiT − TXi (i = 1, . . . , N ). (See (2.2) for
the definition of Rh

ij .) One sees easily (by choice of 6∗) that Rh satisfies condition (1) in
Proposition 2.6. Clearly the surjective K-algebra homomorphism K〈X,T 〉 → R∗ with
Xi 7→ x∗i for i = 1, . . . , N and T 7→ t sends every polynomial in I(Rh) to zero, hence
induces an isomorphism K〈X,T 〉/I(Rh) → R∗ by Remark 2.7. Thus R∗ is of solvable
type as claimed. �

In the following, by abuse of notation, we denote the homogenization x∗i ∈ R∗ of
xi ∈ R also just by xi, for i = 1, . . . , N . So the homogenization of f ∈ R of degree d is

f∗ =
∑
α

fαx
αtd−|α| ∈ (R∗)(d),

and for every multi-index α and i ∈ N the dehomogenization of the monomial xαti is
given by (xαti)∗ = xα.

Examples 2.12.
(1) The Rees algebra of the commutative polynomial ring K[x1, . . . , xN ] is the com-

mutative polynomial ring K[x1, . . . , xN , t] equipped with its usual grading by
(total) degree.

(2) If R = An(K), then R∗ is the graded K-algebra generated by 2n+ 1 generators
x1, . . . , xn, ∂1, . . . , ∂n, t subject to the homogeneous relations

xjxi = xixj , ∂j∂i = ∂i∂j for 1 6 i < j 6 n,
∂jxi = xi∂j for 1 6 i, j 6 n, i 6= j,
∂ixi = xi∂i + t2 for 1 6 i 6 n,
xit = txi, ∂it = t∂i for 1 6 i 6 n.

The Rees algebra of An(K) is known as the homogenized Weyl algebra, cf. [32].
(3) Let g be a Lie algebra over K with basis {b1, . . . , bN}. The Rees algebra of

the universal enveloping algebra U(g) of g is the graded K-algebra generated by
x1, . . . , xN , t subject to the homogeneous relations

xjxi = xixj + [bj , bi]g · t2 for 1 6 i < j 6 N ,
xit = txi for 1 6 i 6 N .
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The Rees algebra of U(g) is also called the homogenized enveloping algebra of g
in [34].

The elements y1, . . . , yN , where yi = grxi ∈ (grR)(1) for i = 1, . . . , N , generate the
K-algebra grR. Moreover:

Corollary 2.13. The associated graded algebra grR ofR is homogeneous of solvable type
with respect to the given admissible ordering 6 of NN and the tuple y = (y1, . . . , yN ).
Moreover, if degPij < 2 for 1 6 i < j 6 N then grR is semi-commutative, and grR is
commutative if and only if degPij < 2 and cij = 1 for 1 6 i < j 6 N .

Proof. The first statement follows from Lemmas 2.8, (2) and 2.11, using the isomorphism
(2.1). Suppose degPij < 2 for 1 6 i < j 6 N . Then xjxi = cijxixj + pij where
pij ∈ R(<2), and hence yjyi = cijyiyj in grR, for 1 6 i < j 6 N . Therefore grR is
semi-commutative, and commutative if and only if cij = 1 for 1 6 i < j 6 N . �

In each of the examples in 2.12, the associated graded algebra is commutative. We have
only considered the homogenization of R with respect to the standard filtration of R; for
other types of homogenizations see [5, Section 4.7].

Now assume that R is homogeneous. Then R is a graded K-algebra, equipped with the
grading induced from K〈X〉 by π : K〈X〉 → R. By Lemma 2.10 we have

R(d) =
⊕
|α|=d

Kxα

for every d. Hence if N > 0 then

dimK R(d) =
(
N + d− 1

d

)
for every d. (2.7)

Given a homogeneous K-linear subspace V of R, the Hilbert function HV : N→ N of V
is defined by

HV (d) := dimK V(d) for each d.

Clearly if a homogeneous K-linear subspace V of R can be decomposed as a direct sum

V =
⊕
i∈I

Vi

of a family {Vi}i∈I of homogeneousK-linear subspaces ofRwith Vi ⊆ V for every i ∈ I ,
then for every d we have

HV (d) =
∑
i∈I

HVi(d),

where all but finitely many summands in the sum on the right hand side are zero. In many
important cases, the Hilbert functionHV (d) of V will agree with a polynomial function for
sufficiently large values of d. If there exists a (necessarily unique) polynomial P ∈ Q[T ]
such that HV (d) = P (d) for all sufficiently large d, then we will denote this polynomial
by PV , and call it the Hilbert polynomial of V . In this case, the smallest r ∈ N such that
HV (d) = PV (d) for all d > r is called the regularity of the Hilbert function HV , which
we denote here by σ(V ). For example, for V = R and N > 0 we have

PR =
1

(N − 1)!
(T +N − 1) · (T +N − 2) · · · (T + 1)
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by (2.7), with σ(R) = 0. In a similar vein, for a finitely generated graded left R-module
M , each of the homogeneous components M(d) has finite dimension as a K-linear space,
and the function HM : N→ N defined by

HM (d) := dimKM(d) for each d

is called the Hilbert function of M ; moreover, there exists a polynomial PM ∈ Q[T ]
of degree < N such that HM (d) = PM (d) for d sufficiently large, called the Hilbert
polynomial ofR. The degree of PM is one less than the Gelfand-Kirillov dimension of the
graded left R-module M . (See, e.g., [5, Chapter 7].) In particular, if I is a homogeneous
left ideal of R, then PI exists and has degree < N , and PR/I = PR − PI (if R/I is
considered as a left R-module). We define the regularity r(M) of HM similarly to the
regularity of HV above.

3. GRÖBNER BASES IN ALGEBRAS OF SOLVABLE TYPE

In this section we let R = K〈x〉 be a K-algebra of solvable type with respect to a fixed
admissible ordering 6 of NN and a tuple x = (x1, . . . , xN ) ∈ RN .

3.1. Left reduction. Given f, f ′, g ∈ R, g 6= 0, we write f −→
g

f ′ if there exist c ∈ K
and multi-indices α, β such that

lm(xβg) = xα ∈ supp f, lc(cxβg) = fα, f ′ = f − cxβg.
We say that an element f of R is reducible by a non-zero element g of R if lm(g) divides
some monomial in the support supp f of f , that is, if f −→

g
f ′ for some f ′ ∈ R. If R is

homogeneous, f, f ′, g ∈ R, g 6= 0, and f , g are homogeneous with f −→
g

f ′, then f ′ is

also homogeneous.
Let G be a subset of R. We say that an element f of R is reducible by G if f is

reducible by some non-zero g ∈ G; otherwise we call f irreducible by G. We write
f −→

G
f ′ if f −→

g
f ′ for some g ∈ G. The reflexive-transitive closure of the relation −→

G

is denoted by ∗−→
G

. We say that f0 ∈ R is a G-normal form of f ∈ R if f ∗−→
G

f0 and f0
is irreducible by G. One may show that there is no infinite sequence f0, f1, . . . in R with

f0 −→
G

f1 −→
G

f2 −→
G
· · · −→

G
fm −→

G
· · · ,

hence every element of R has a G-normal form [17, Lemma 3.2]. If R is homogeneous
and G consists entirely of homogeneous elements of R, then every homogeneous element
of R has a homogeneous G-normal form.

3.2. Gröbner bases of left ideals inR. LetG be a finite subset ofR. Note that if f ∗−→
G

f ′

(f, f ′ ∈ R), then there exist g1, . . . , gm ∈ G and p1, . . . , pm ∈ R such that

f = p1g1 + · · ·+ pmgm + f ′, lm(p1g1), . . . , lm(pmgm) 6 lm(f).

In particular, if f ∗−→
G

0 then f is an element of the left ideal (G) of R generated by

G. If f ∗−→
G

0 for every f ∈ (G), then G is called a Gröbner basis (with respect to

our admissible ordering 6). The following proposition (for a proof of which see [17,
Lemma 3.8]) gives equivalent conditions that help to identify Gröbner bases.

Proposition 3.1. The following are equivalent:
(1) G is a Gröbner basis.
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(2) Every non-zero element of (G) is reducible by G.
(3) Every element of R has a unique G-normal form.
(4) For every non-zero f ∈ (G) there is a non-zero g ∈ G with lm(g)| lm(f).

Given a left ideal I of R, we say that a subset G of I which is a Gröbner basis and
which generates I is a Gröbner basis of I (with respect to 6). Suppose now that G is
a Gröbner basis of I = (G). Given f ∈ R, we denote by nfG(f) the unique G-normal
form of f , so f − nfG(f) ∈ I . Moreover, if f, g ∈ R have distinct G-normal forms, then
h := nfG(f)− nfG(g) is a non-zero element of R which is irreducible by G, so h /∈ I by
the equivalence of (1) and (2) in Proposition 3.1 and thus f − g /∈ I . Hence two elements
f and g of R have the same G-normal form if and only if f − g ∈ I .

Corollary 3.2. Suppose G is a Gröbner basis of I . Then the map

f 7→ nfG(f) : R→ R

is K-linear, and its image nfG(R) satisfies

R = I ⊕ nfG(R) (internal direct sum of K-linear subspaces of R).

A basis of theK-linear space nfG(R) is given by the set of all monomials ofR not divisible
(in (x�, ∗)) by some lm(g) with g ∈ G, g 6= 0.

Proof. Let f, f ′, g ∈ R, g 6= 0, and c ∈ K, c 6= 0. If f −→
g

f ′ then cf −→
g

cf ′,

and if f ∈ R is G-irreducible, then so is cf . This yields nfG(cf) = cnfG(f). Also, h :=
nfG(f)+nfG(f ′) isG-irreducible and h−(f+f ′) ∈ I , hence h = nfG(h) = nfG(f+f ′)
by the remark preceding the corollary, and thus nfG(f + f ′) = nfG(f) + nfG(f ′). This
shows K-linearity of f 7→ nfG(f). The rest of the corollary is clear. �

By the previous corollary, nfG(R) does not depend on G. In fact, employing the no-
tation introduced in Section 1 we have nfG(R) = nfM (R) where M is the K-linear
subspace of R generated by

lm(I) =
{

lm(f) : 0 6= f ∈ I
}
.

The decomposition R = I ⊕ nfG(R) of R corresponds to the decomposition gr6R =
gr6 I ⊕ gr6M of the semi-commutative associated graded algebra gr6R = K〈ξ〉 of
R with respect to the fine multi-filtration. Here gr6 I = (gr6 lm(I)), so if gr6R is
commutative, then gr6 I a monomial ideal of gr6R in the usual sense of the word. The
K-linear subspace gr6 nfG(R) of gr6R is generated by the symbols gr6 x

α = ξα with
xα ∈ nfG(R).

Every left ideal I of R has a Gröbner basis. (Since being a Gröbner basis includes be-
ing finite, this means in particular that the ring R is left Noetherian.) To see this, note that
lm(I) is an ideal of the commutative monoid of monomials of R (with multiplication ∗).
Hence there is a finite set G of non-zero elements of I such that for every non-zero f ∈ I
we have lm(g)| lm(f) for some g ∈ G; then G is a Gröbner basis of I . This argument
is non-constructive; however, as observed in [17], by an adaptation of Buchberger’s al-
gorithm one can construct a Gröbner basis of I from a given finite set of generators of I
in an effective way (up to computations in the field K and comparisons of multi-indices
in NN by the chosen admissible ordering 6). The main ingredient of this algorithm is the
following notion:

Definition 3.3. The S-polynomial of elements f and g of R is defined by

S(f, g) := d lc(g) · xαf − c lc(f) · xβg,
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where α and β are the unique multi-indices such that

xα ∗ lm(f) = xβ ∗ lm(g) = lcm
(
lm(f), lm(g)

)
,

and c = lc(xαf), d = lc(xβg).

Now we can add the following equivalent condition to Proposition 3.1 (cf. [17, Theo-
rem 3.11]):

Proposition 3.4.

G is a Gröbner basis ⇐⇒ S(f, g) ∗−→
G

0 for all f, g ∈ G.

Starting with a finite subset G0 of R, Buchberger’s algorithm successively constructs
finite subsets

G0 ⊆ G1 ⊆ · · · ⊆ Gk ⊆ · · ·
of elements of the left ideal I = (G0) as follows: Suppose that Gk has been constructed
already. For every pair (f, g) of elements of Gk find a Gk-normal form r(f, g) of S(f, g).
If all of these normal forms are zero, thenG := Gk is a Gröbner basis of I , by the previous
proposition, and the algorithm terminates. Otherwise, we put

Gk+1 := Gk ∪
{
r(f, g) : f, g ∈ Gk

}
and iterate the procedure. Dickson’s Lemma guarantees that this construction eventually
stops. (See [17] for details.)

Definition 3.5. One says that G is a reduced Gröbner basis of the left ideal I of R if
(1) G is a Gröbner basis of I;
(2) lc(g) = 1 for every g ∈ G; and
(3) g ∈ nfG\{g}(R) for every g ∈ G.

Every left ideal I of R has a unique reduced Gröbner basis (see [17, Section 4]); hence
we can speak of the reduced Gröbner basis of I . From a given Gröbner basis G, the
reduced Gröbner basis of I = (G) can be computed as follows: First, after shrinking G
if necessary, we may assume that 0 /∈ G and that lm(G) is a minimal set of generators of
the monomial ideal generated by lm(I). Multiplying each element g of G by lc(g)−1 we
may then further achieve that lc(g) = 1 for every g ∈ G. Suppose G = {g1, . . . , gm} with
pairwise distinct g1, . . . , gm. Let hi := gi − lm(gi) and put g′i := lm(gi) + nfG(hi), for
i = 1, . . . ,m. Then G′ := {g′1, . . . , g′m} is the reduced Gröbner basis of I .

In summary, Gröbner bases of left ideals in R share properties similar to Gröbner bases
of ideals in the commutative polynomial rings over K, with slight differences; most no-
tably, a collection of monomials in R is not automatically a Gröbner basis for the left ideal
it generates [17, p. 17].

3.3. Gröbner bases of two-sided ideals in R. It is possible to also define a notion of
Gröbner basis for two-sided ideals of R:

Proposition 3.6. Let G be a finite subset of R. The following statements are equivalent:
(1) G is a Gröbner basis, and the two-sided ideal of R generated by G agrees with

the left ideal (G) of R generated by G.
(2) G is a Gröbner basis, and gxi ∈ (G) for every g ∈ G and i = 1, . . . , N .
(3) For every non-zero element f of the two-sided ideal of R generated by G there

exists a non-zero g ∈ G with lm(g)| lm(f).
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If a finite subset G of R satisfies one of the equivalent conditions in this proposition
(proved in [17, Theorem 5.4]), then G is called a two-sided Gröbner basis (with respect
to 6). If I is a two-sided ideal of R, then a subset G of I is called a Gröbner basis
of I (with respect to 6) if G is a two-sided Gröbner basis which also generates the two-
sided ideal I . The following observation (from [31]) allows one to reduce the computation
of two-sided Gröbner bases in R to the computation of one-sided Gröbner bases in the
enveloping algebra of R:

Proposition 3.7. Let I be a two-sided ideal of R, and let G be a Gröbner basis of the left
ideal µ−1(I) of Renv. Then µ(G) is a Gröbner basis of I .

3.4. Gröbner bases in homogeneous algebras of solvable type. In this subsection R
is assumed to be homogeneous. From Buchberger’s algorithm and earlier remarks we
immediately obtain:

Corollary 3.8. The reduced Gröbner basis of each homogeneous left ideal of R consists
of homogeneous elements of R.

The following lemma is essentially due to Macaulay. Here and below, the cardinality of
a finite set S is denoted by #S.

Lemma 3.9. Suppose V is a homogeneous K-linear subspace of R. Then

HV (d) = # lm(V(d)) for every d.

Proof. Put W := V(d), and for each w ∈ lm(W ) choose fw ∈ W with lm(fw) = w. We
claim that the fw form a basis of the K-linear space W . Clearly, the fw are K-linearly
independent. Let W ′ be the K-linear subspace of W generated by the fw, and suppose
for a contradiction that W ′ 6= W . Take f ∈ W \W ′ such that w := lm(f) is minimal,
with respect to our admissible ordering 6, and put g := f −

(
lc(f)
lc(fw)

)
fw ∈ W ′. Then

lm(g) < w, thus g ∈W ′ and hence f ∈W ′, a contradiction. �

Let now I be a homogeneous left ideal of R with Gröbner basis G. The K-linear
subspace M := nfG(R) of R is generated by monomials of R, hence is homogeneous,
with R = I ⊕M . Therefore, the Hilbert function of R/I can be expressed as:

HR/I(d) = HR(d)−HI(d) = HM (d) = # lm(M(d)) for every d.

3.5. Gröbner bases and dehomogenization. In this subsection we assume that R is
quadric (so R∗ is of solvable type as explained in Section 2.13). We collect a few facts
concerning leading terms, reductions, and S-polynomials with respect to dehomogeniza-
tion:

Lemma 3.10. Let f, f ′, g ∈ R∗ be homogeneous, g 6= 0. Then

(1) lm(f∗) = (lm f)∗, lc(f∗) = lc(f);
(2) if f −→

g
f ′, then f∗ −→

g∗
f ′∗;

(3)
(
S(f, f ′)

)
∗ = S(f∗, f ′∗).

Proof. For (1), let α and β be multi-indices and i, j ∈ N. Then (xαti)∗ = xα and
(xβtj)∗ = xβ , so if deg(xαti) = deg(xβtj), then (xαti)∗ = (xβtj)∗ implies i = j,
hence

xαti 6∗ xβtj ⇐⇒ (xαti)∗ 6 (xβtj)∗.
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This observation immediately yields (1). For (2), suppose f −→
g

f ′, and let α, β be

multi-indices, i, j ∈ N, and c ∈ K such that

lm(xβtjg) = xαti ∈ supp f, lc(cxβtjg) = f(α,i), f ′ = f − cxβtjg.

Then (f ′)∗ = f∗ − cxβg∗, and lm(xβg∗) = xα by (1). Since f is homogeneous, we have
(f∗)α = f(α,i), so xα ∈ supp f∗ and lc(cxβg∗) = (f∗)α. Thus f∗ −→

g∗
f ′∗. For (3), let α,

β be multi-indices and i, j ∈ N such that

xαti ∗ lm(f) = xβtj ∗ lm(f ′) = lcm
(
lm(f), lm(f ′)

)
,

and c = lc(xαtif), d = lc(xβtjf ′). Then

S(f, f ′) = d lc(f ′) · xαtif − c lc(f) · xβtjf ′,
hence (

S(f, f ′)
)
∗ = d lc(f ′) · xαf∗ − c lc(f) · xβf ′∗.

By (1) we also have

xα ∗ lm(f∗) = xβ ∗ lm(f ′∗) = lcm
(
lm(f∗), lm(f ′∗)

)
and c = lc(xαf∗), d = lc(xβf ′∗). This yields (3). �

The following corollary often allows us to reduce questions about arbitrary Gröbner
bases to a homogeneous situation:

Corollary 3.11. Let I be a left ideal of R, and let G be a generating set for I . Let J be the
left ideal of R∗ generated by all g∗ with g ∈ G, and let H be a Gröbner basis of J with
respect to 6∗ consisting of homogeneous elements of R∗. Then H∗ = {h∗ : h ∈ H} is a
Gröbner basis of I with respect to 6.

Proof. We have I = J∗ = (H)∗ = (H∗), and by parts (2) and (3) of the previous lemma
S(f, g) ∗−→

H∗
0 for all f, g ∈ H∗. Hence H∗ is a Gröbner basis of I . �

Remark 3.12. In the situation of the previous corollary, if H is reduced, then H∗ is not
necessarily reduced. For example, suppose R = K[x], the commutative polynomial ring
in a single indeterminate x over K, and G = {x2, x+ x2}. Then R∗ = K[x, t] where t is
an indeterminate distinct from x, and J = (x2, xt + x2) = (xt, x2). So H = {xt, x2} is
the reduced Gröbner basis of J ; but H∗ = {x, x2} is not reduced.

3.6. Gröbner bases and the associated graded algebra. Our algebra R of solvable type
comes equipped with two multi-filtrations: the standard filtration on the one hand, and
the “fine multi-filtration” defined in Corollary 2.5 on the other. In both cases, under mild
assumptions on R, the associated graded algebra of R is an ordinary commutative poly-
nomial ring over K. (Corollaries 2.5 and 2.13.) Thus it might be tempting to try and
deduce Theorem 0.1 from the main result of [9] using “filtered-graded transfer”. Indeed,
the following is proved in [23]:

Proposition 3.13. Suppose 6 is degree-compatible. Let I be a left ideal of R. If G is a
Gröbner basis of I , then

grG := {gr g : 0 6= g ∈ G}
is a Gröbner basis of the left ideal gr I of grR consisting of homogeneous elements. Con-
versely, if H is a Gröbner basis of gr I consisting of homogeneous elements and G is a
finite subset of I with grG = H , then G is a Gröbner basis of I .
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Proposition 3.13 breaks down if 6 is not degree-compatible:

Example 3.14. Suppose R = K[x, y] is the commutative polynomial ring in two indeter-
minates x and y over K, and consider the ideal I = (f1, f2, f3) of R, where

f1 = xy, f2 = x− y2, f3 = x2.

Then G = {f1, f2, f3} is not a Gröbner basis of I with respect to the lexicographic order-
ing of N2 (so yn < x for every n), since

S(f1, f2) = xy − y(x− y2) = y3

is irreducible by G. However, grG is a Gröbner basis of gr I with respect to the degree-
lexicographic ordering of N2. (To see this use Proposition 3.13 and verify that G is a
Gröbner basis with respect to this ordering.)

Nevertheless, this proposition does seem to offer an easy way towards Theorem 0.1 in
the special case where 6 is degree-compatible and grR is commutative. In this case we
have grR = K[y1, . . . , yN ] where yi = grxi for i = 1, . . . , N . Unfortunately, however,
if the non-zero elements f1, . . . , fn of R generate a left ideal I of R, then gr f1, . . . , gr fn
in general do not generate gr I , as the following example from [23] shows:

Example 3.15. Suppose R = A2(K) is the second Weyl algebra, and let I = (f1, f2)
where

f1 = x1∂1, f2 = x2(∂1)2 − ∂1.

Then gr f1 = grx1∂1, gr f2 = grx2 gr(∂1)2 do not generate gr I . In fact, {∂1} is a
Gröbner basis for I with respect to the degree-lexicographic ordering of N4.

It seems even less likely to be able to reduce the proof of Theorem 0.1 to the associated
graded algebra gr6R of R equipped with the fine multi-filtration, since for every subset G
of R, the set gr6G = {gr6 g : 0 6= g ∈ G} simply consists of monomials.

3.7. Decomposition of left ideals. In this subsection we let I be a left ideal of R. For
f ∈ R we put

(I : f) :=
{
g ∈ R : gf ∈ I

}
,

a left ideal of R. If R, f and the left ideal I are homogeneous, then so is the left ideal
(I : f) of R. For f1, f2 ∈ R we also write (f1 : f2) := ((f1) : f2).

Lemma 3.16. Let f ∈ R, and let G be a Gröbner basis of (I : f). Then

I + (f) = I ⊕ nfG(R)f.

Proof. Let h ∈ I + (f). Then we can write h = a + bf with a ∈ I and b ∈ R. Let
c := nfG(b); then b− c ∈ (I : f) and

h =
(
a+ (b− c)f

)
+ cf,

where the first summand is in I and the second in nfG(R)f . This shows I + (f) =
I + nfG(R)f ; moreover, clearly I ∩ nfG(R)f = {0} by construction. �

The previous lemma leads to a decomposition of I into K-linear subspaces of the form
S = nfG(R)f for certain f ∈ R and Gröbner bases G as follows: Take f1, . . . , fn ∈ R,
n > 0, such that I = (f1, . . . , fn), and for i = 2, . . . , n let Gi be a Gröbner basis of(
(f1, . . . , fi−1) : fi

)
; then

I = (f1)⊕ nfG2(R)f2 ⊕ · · · ⊕ nfGn(R)fn.
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Example 3.17. Suppose R = A1(K) is the first Weyl algebra, so R = K〈x, ∂〉 with the
relation ∂x− x∂ = 1, and let I = (f1, f2) where f1 = ∂ and f2 = x. Then in fact I = R,
and the above decomposition procedure yields

R = (f1)⊕ nfG2(R)f2 = (∂)⊕K∂ · x⊕K[x] · x.
Indeed, it is not hard to check that G2 = {∂2, x∂ − 1} is the reduced Gröbner basis of the
left ideal (f1 : f2) of R, with nfG2(R) = K∂ ⊕K[x]. In particular ∂ /∈ (f1 : f2); this is
slightly counterintuitive, since it is always true that (I : f) ⊇ I in the commutative world.

4. CONES AND CONE DECOMPOSITIONS

In the first subsection we summarize (and, hopefully, somewhat clarify) the algorithmic
core of Dubé’s approach dealing with cone decompositions of monomial ideals. After-
wards, we show how to define and construct cone decompositions of homogeneous left
ideals. Here, we have to adapt Dubé’s ideas to deal with non-commutativity. We only give
proofs selectively, and refer to [9] for complete details.

4.1. Monomial cone decompositions. In this subsection we let R be a K-linear space
and {xα}α be a monomial basis of R. Let M be a K-linear subspace of R spanned by
monomials, and let D be a finite set of pairs (w, y) where w is a monomial in x� and y is
a subset of x. We define the degree of D as

degD := max
{

degw : (w, y) ∈ D
}
∈ N ∪ {∞},

where max ∅ =∞ by convention. We also set

D+ :=
{
(w, y) ∈ D : y 6= ∅

}
.

We say that D is a cone decomposition of M if C(w, y) ⊆M for every (w, y) ∈ D and

M =
⊕

(w,y)∈D

C(w, y),

and D is a monomial cone decomposition if D is a cone decomposition of some K-linear
subspace of R. In the literature, “monomial cone decompositions” of finitely generated
commutative graded K-algebras are also known as “Stanley decompositions” (since they
were first introduced in an article [35] by Stanley). In this paper we stay with the perhaps
more descriptive terminology introduced by Dubé in [9].

Lemma 4.1. Suppose D is a monomial cone decomposition of a monomial ideal I of R.
Let F be the minimal set of generators of I . Then for each w ∈ F there is some y ⊆ x
with (w, y) ∈ D.

Proof. Let w ∈ F . Since D is a monomial cone decomposition of I , there is some
(w′, y) ∈ D with w ∈ C(w′, y), so w = w′ ∗ a for some a ∈ y�. Since w′ ∈ I , we
can also write w′ = w′′ ∗ b for some w′′ ∈ F and b ∈ x�. So w = w′ ∗ a = w′′ ∗ b ∗ a,
hence b ∗ a = 1 due to minimality of F , and w = w′ = w′′. �

In [36, 24], algorithms are given which, upon input of a finite list of generators of a
monomial ideal I of R, produce a monomial cone decomposition for the natural comple-
ment nfI(R) of I in R. In fact, Dubé specified an algorithm which does much more, as we
describe next. As before, M is a K-linear subspace of R generated by monomials, and I
is a monomial ideal of R.

Definition 4.2. We say that a pair of monomial cone decompositions (P,Q) splits M
relative to I if
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(1) P ∪Q is a cone decomposition of M ,
(2) C(w, y) ⊆ I for all (w, y) ∈ P ,
(3) C(w, y) ∩ I = {0} for all (w, y) ∈ Q.

It is easy to see that if (P,Q) is a pair of monomial cone decompositions which splits
M relative to I , then P is a monomial cone decomposition of M ∩ I andQ is a monomial
cone decomposition of nfI(M).

Algorithm 1 accomplishes a basic task: it gives a procedure for splitting a monomial
cone relative to I . The computation of a generating set F1 for the monomial ideal (I :
w ∗ xi) = ((I : w) : xi) in this algorithm is carried out by Algorithm 2: if the monomial
ideal I is generated by v1, . . . , vn ∈ x�, then (I : xi) is generated by w1, . . . , wn where

wj =

{
vj if xi does not divide vj ,
wj = vj/xi otherwise,

where vj/xi denotes the monomial in x� satisfying vj = (vj/xi) ∗ xi.

Input: w ∈ x�, y ⊆ x, and a finite set F of generators for (I : w);
Output: SPLIT(w, y, F ) = (P,Q), where (P,Q) splits the monomial cone C(w, y)

relative to the monomial ideal I of R;

if 1 ∈ F then return
(
{(w, y)},∅

)
;

if F ∩ y� = ∅ then return
(
∅, {(w, y)}

)
;

else
choose z ⊆ y maximal such that F ∩ z� = ∅;
choose i ∈ {1, . . . , N} such that xi ∈ y \ z;

(P0,Q0) := SPLIT(w, y \ {xi}, F ); (*)

F1 := QUOTIENT(F, xi);
(P1,Q1) := SPLIT(w ∗ xi, y, F1); (**)

return (P0 ∪ P1,Q0 ∪Q1);
end

Algorithm 1: Splitting a monomial cone relative to I .

Input: a finite set F of generators for a monomial ideal I of R, and i ∈ {1, . . . , N};
Output: QUOTIENT(F, xi) = F ′, where F ′ is a finite set of generators of the

monomial ideal (I : xi) of R;

F ′ := ∅;
while F 6= ∅ do

choose v ∈ F ;
if xi|v then F ′ := F ′ ∪ {v/xi};
else

F ′ := F ′ ∪ {v};
end
F := F \ {v};

end
Algorithm 2: Computing a a set of generators for (I : xi).

Let w ∈ x�, y ⊆ x, and F be a set of generators for (I : w). One checks:
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Lemma 4.3.
(1) C(w, y) ⊆ I ⇐⇒ 1 ∈ F ;
(2) C(w, y) ∩ I = {0} ⇐⇒ F ∩ y� = ∅.

Algorithm 1 proceeds by recursively decomposing the cone C(w, y) as

C(w, y) = C(w, y \ {xi})⊕ C(w ∗ xi, y) (xi ∈ y).

The lemma above shows that the base case is handled correctly. We refer to [9, Lemmas 4.3
and 4.4] for a detailed proof of the termination and correctness of Algorithm 1. The output
of Algorithm 1 has a convenient property:

Definition 4.4. We say that a monomial cone decomposition D is d-standard if
(1) deg(w) > d for all (w, y) ∈ D+;
(2) for every (w, y) ∈ D+ and d′ with d 6 d′ 6 deg(w) there is some (w′, y′) ∈ D+

with deg(w′) = d′ and #y′ > #y.

Proposition 4.5. Let (P,Q) = SPLIT(w, y, F ). Then Q is deg(w)-standard.

In the proof of this proposition we use the following lemma:

Lemma 4.6. Let (P,Q) = SPLIT(w, y, F ).
(1) For every (v′, y′) ∈ Q we have F ∩ (y′)� = ∅ and y′ ⊆ y.
(2) For every y′ ⊆ y with F ∩ (y′)� = ∅ there exists y′′ ⊆ y with (w, y′′) ∈ Q and

#y′′ > #y′.

Proof. We prove part (1) by induction on the number of recursive calls in Algorithm 1
needed to compute (P,Q). The base case (no recursive calls) is obvious. If (v′, y′) ∈ Q0,
then F ∩ (y′)� = ∅ and y′ ⊆ y \ {xi} ⊆ y follows by inductive hypothesis. Suppose
(v′, y′) ∈ Q1; then by inductive hypothesis we obtain F1 ∩ (y′)� = ∅ and y′ ⊆ y. By the
way that F1 is computed from F in Algorithm 2, every element of F is divisible by some
element of F1; hence F ∩ (y′)� = ∅.

We show part (2) by induction on #y−#y′. If y′ = y, then the algorithm returnsQ =
{(w, y)}, satisfying the condition in (2). Otherwise, we have #z > #y′ by maximality
of z. Hence by inductive hypothesis applied to (P0,Q0) = SPLIT(w, y \ {xi}, F ), there
exists y′′ ⊆ y \ {xi} such that (w, y′) ∈ Q0 and #y′′ > #z. �

We now show Proposition 4.5 by the number of recursions in Algorithm 1 needed to
compute (P,Q). IfQ is empty or a singleton, then the conclusion of the proposition holds
trivially. Inductively, assume thatQ0 is deg(w)-standard andQ1 is (deg(w)+1)-standard.
Let (v′, y′) ∈ Q+ and d with deg(w) 6 d 6 deg(v′) be given; we need to show that there
exists a pair (v′′, y′′) ∈ Q with deg(v′′) = d and #y′′ > #y′. This is clear by inductive
hypothesis if (v′, y′) ∈ Q0 or if d > deg(w) + 1. By Lemma 4.6 there exists y′′ ⊆ y with
(w, y′′) ∈ Q and #y′′ > #y′, covering the case that d = deg(w). �

Applied to w = 1, y = x, and F = a set of generators for I , Algorithm 1 produces
a pair (P,Q) consisting of a monomial cone decomposition P of I and a monomial cone
decomposition Q of nfI(R). We now analyze this situation in more detail. In the next
lemma and its corollary, we suppose I 6= R, we let F be a set of generators of I , and let
(P,Q) = SPLIT(1, x, F ).

Lemma 4.7. Let Fmin ⊆ F be the minimal set of generators for I . Then for every v ∈
Fmin, the set Q contains a pair (v′, y′) with deg(v′) = deg(v)− 1.
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Proof. Let v ∈ Fmin. By Lemma 4.1 we have (v, y) ∈ P for some y ⊆ x. Since 1 /∈ F , the
pair (v, y) arrived in P during the computation of SPLIT(1, x, F ) by means of a recursive
call of the form SPLIT(v, y, F ′) where F ′ is a set of generators for (I : v). We have v ∈ I ,
and thus 1 ∈ F ′. This shows that the recursive call must have been made in (**), because
the parameter F is passed on unchanged by the recursive call in (*). The call (**) occurred
during the computation of some SPLIT(v′, y, F ′′) where v′ satisfies v = v′ ∗ xi for some
i, and F ′′ is a finite set of generators for (I : v′). Part (2) of Lemma 4.6 now yields the
existence of y′ ⊆ y such that (v′, y′) ∈ Q. �

The preceding lemma immediately implies:

Corollary 4.8. The set of all w ∈ F with deg(w) 6 1 + deg(Q) generates I .

Remark 4.9. In [24] we find an algorithm which, given a finite list F of generators for a
monomial ideal I of R, computes a Stanley filtration, that is, a list of pairs(

(w(1), y(1)), . . . , (w(m), y(m))
)
,

each consisting of a monomial w(j) and a subset y(j) of x, such that for, j = 1, . . . ,m,
the set {

(w(1), y(1)), . . . , (w(j), y(j))
}

is a cone decomposition of nfI(j)(R) where

I(j) := I + C
(
w(j + 1), x

)
+ · · ·+ C

(
w(m), x

)
.

It is easy to see (since Algorithm 1 and Algorithm 3.4 in [24] pursue similar “divide and
conquer” strategies) that, for (P,Q) = SPLIT(1, x, F ), the pairs in Q can be ordered to
form a Stanley decomposition.

4.2. Cone decompositions of homogeneous ideals. In the rest of this section, we let R
be a K-algebra of solvable type with respect to x = (x1, . . . , xN ) ∈ RN and a fixed
admissible ordering6 of NN . Note that in general (unless R is commutative), a monomial
ideal ofR is not a left ideal of the algebraR. However, let I be a proper left ideal ofR; then
the K-linear subspace M of R generated by lm(I) is a monomial ideal of R. Moreover,
let G be a Gröbner basis of I; then lm(I) is generated by lm(G), and nfM (R) = nfG(R).
The central outcome of the discussion in the previous subsection is:

Theorem 4.10. The homogeneous K-linear subspace nfG(R) of R has a standard mono-
mial cone decomposition. More precisely, let (P,Q) = SPLIT(1, x, F ) where F =
lm(G). Then Q is a standard monomial cone decomposition of nfG(R). Moreover, the
set of all g ∈ G with deg(g) 6 1 + degQ is still a Gröbner basis of I = (G).

In this subsection we establish an analogous decomposition result (Corollary 4.18 be-
low) for I in place of nfG(R), provided R and I are homogeneous; thus: until the end of
this section we assume that R is homogeneous. We first need to define the type of cones
used in our decompositions: A cone of R is defined by a triple (w, y, h), where w ∈ x�,
y ⊆ x, and h ∈ R is homogeneous:

C(w, y, h) := C(w, y)h =
{
gh : g ∈ C(w, y)} ⊆ R.

Both monomial and general cones are homogeneous K-linear subspaces of R, and a
monomial cone is a special case of a cone: C(w, y) = C(w, y, 1). Note, however, that
C(1, y, w) 6= C(w, y) in general. We introduced this definition of cone in order to be
able to speak about cone decompositions of (not necessarily monomial) ideals in the non-
commutative setting.
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A first important observation (immediate from Lemma 3.9) is that the Hilbert function
of C(w, y, h) depends only on the degrees of h and w and the cardinality of y:

Lemma 4.11. Let h ∈ R be non-zero and homogeneous, and w ∈ x�. Then

HC(w,∅,h)(d) =

{
0 if d 6= deg(w) + deg(h),
1 if d = deg(w) + deg(h),

and for non-empty y ⊆ x:

HC(w,y,h)(d) =

{
0 if d < deg(w) + deg(h),(
d−deg(w)−deg(h)+#y−1

#y−1

)
if d > deg(w) + deg(h).

Let M be a homogeneous K-linear subspace of R, and let D be a finite set of triples
(w, y, h) where w a monomial in x�, y is a subset of x, and h is a non-zero homogeneous
element of R. We define the degree of D as

degD := max
{

deg(w) + deg(h) : (w, y, h) ∈ D
}
∈ N ∪ {∞},

where max ∅ =∞ by convention. We also set

D+ :=
{
(w, y, h) ∈ D : y 6= ∅

}
.

We say that D is a cone decomposition of M if C(w, y, h) ⊆ M for every (w, y, h) ∈ D
and

M =
⊕

(w,y,h)∈D

C(w, y, h).

andD is simply a cone decomposition ifD is a cone decomposition of some homogeneous
K-linear subspace of R. By abuse of language we will also say that a cone decomposition
D is monomial if h = 1 for all (w, y, h) ∈ D. Suppose now thatD is a cone decomposition
of M . Then for every d we have

HM (d) =
∑

(w,y,h)∈D

HC(w,y,h)(d).

By Lemma 4.11, the Hilbert polynomial of M exists, and is determined by the cones in
D+: for d > deg(D) we have

HM (d) =
∑

(w,y,h)∈D+

HC(w,y,h)(d)

=
∑

(w,y,h)∈D+

(
d− deg(w)− deg(h) + #y − 1

#y − 1

)
= PM (d) (4.1)

and hence for every d > deg(D+):

HM (d) = PM (d) + #
{
(w, y, h) ∈ D \ D+ : deg(w) + deg(h) = d

}
.

By the above, we have σ(M) 6 deg(D)+ 1 for every cone decomposition D of M . (Here
σ(M) denotes the regularity of the Hilbert function of M as defined in Section 2.13.)

The following is an adaptation of Definition 4.4:

Definition 4.12. We say that a cone decomposition D is d-standard if
(1) deg(w) + deg(h) > d for all (w, y, h) ∈ D+;
(2) for every (w, y, h) ∈ D+ and d′ with d 6 d′ 6 deg(w) + deg(h) there is some

(w′, y′, h′) ∈ D+ with deg(w′) + deg(h′) = d′ and #y′ > #y.
We also say that D is standard if D is 0-standard.
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If D+ = ∅ then D is d-standard for every d, whereas if D+ 6= ∅ and D is d-standard,
then necessarily

d = min
{

deg(w) + deg(h) : (w, y, h) ∈ D+ for some y ⊆ x
}
.

IfD is d-standard for some d, then we let dD denote the smallest d such thatD is d-standard
(so dD = 0 if D+ = ∅).

Examples 4.13. The empty set is a standard cone decomposition of the trivial K-linear
subspace {0} of R. If h ∈ R is non-zero and homogeneous, and y ⊆ x, then {(1, y, h)} is
a deg(h)-standard cone decomposition ofC(1, y, h). In particular, {(1, x, 1)} is a standard
cone decomposition of R = C(1, x).

The following properties are straightforward:

Lemma 4.14.
(1) SupposeM1 andM2 are homogeneousK-linear subspaces ofM withM = M1⊕

M2, and let E1, E2 be cone decompositions of M1 and M2, respectively. Then
E = E1 ∪ E2 is a cone decomposition of M . If E1 and E2 are d-standard, then so
is E .

(2) Suppose D is a d-standard cone decomposition of M , and let f ∈ R be non-zero
homogeneous. Then Df :=

{
(w, y, hf) : (w, y, h) ∈ D

}
is a (d + deg f)-

standard cone decomposition of Mf .

The lemma below shows how the degrees of cone decompositions ofK-linear subspaces
decomposing the K-linear space R are linked:

Lemma 4.15. Let M1, M2 be K-linear subspaces of R with R = M1⊕M2. For i = 1, 2,
let Di be a cone decomposition of Mi, which is di-standard for some di. Then

max{degD1,degD2} = max{degD+
1 ,degD+

2 }.

Proof. We have

HM1(d) +HM2(d) = HR(d) =
(
d+N − 1
N − 1

)
for every d (4.2)

and thus

PM1 + PM2 =
(
T +N − 1
N − 1

)
. (4.3)

For d > max{degD+
1 ,degD+

2 } and i = 1, 2, we have

HMi(d) = PMi(d) + #
{
(w, y, h) ∈ Di \ D+

i : deg(w) + deg(h) = d
}
.

Hence, by (4.2) and (4.3), neither D1 nor D2 contains a triple (w, y, h) with y = ∅ and
deg(w) + deg(h) > max

{
deg(D+

1 ),deg(D+
2 )
}

. It follows that for i = 1, 2 we have

deg(Di) 6 max
{

deg(Di \ D+
i ),deg(D+

i )
}
6 max

{
deg(D+

1 ),deg(D+
2 )
}

as required. �

Given w ∈ x� as well as y ⊆ x and a non-zero homogeneous h ∈ R, define

C(w, y, h) :=
{
(w,∅, h)

}
∪
{(
w ∗ xi, y ∩ {xj : j > i}, h

)
: xi ∈ y

}
.

It is easy to check that C(w, y, h) is a (1+deg h)-standard cone decomposition of the cone
C(w, y, h).

Lemma 4.16. If M has a d-standard cone decomposition, then M has a d′-standard cone
decomposition for every d′ > d.
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Proof. IfD is a d-standard cone decomposition of M withD+ = ∅, thenD is d′-standard
for all d′. Therefore, suppose D is a d-standard cone decomposition of M with D+ 6= ∅;
it is enough to show that then M has a (d+ 1)-standard cone decomposition. Put

E :=
{
(w, y, h) ∈ D : deg(w) + deg(h) = d

}
.

Then trivially E is d-standard and, since D is d-standard, D \ E is (d + 1)-standard. Now
put

E ′ :=
⋃

(w,y,h)∈E

C(w, y, h).

Then E ′ is a (d+ 1)-standard cone decomposition of the homogeneous K-linear subspace⊕
(w,y,h)∈E C(w, y, h) ⊆ M of R. Hence, E ′ ∪ (D \ E) is a (d + 1)-standard cone

decomposition of M . �

Corollary 4.17. Let M1, . . . ,Mr ⊆ M be homogeneous K-linear subspaces of R with
M = M1 ⊕ · · · ⊕Mr. If each Mi has a di-standard cone decomposition, then M has a
d-standard cone decomposition where d = max{d1, . . . , dr}.

Combining Theorem 4.10 with Corollary 4.17 we obtain:

Corollary 4.18. Let I = (f1, . . . , fn) be a left ideal of R where f1, . . . , fn ∈ R are
non-zero and homogeneous, and suppose n > 0. Let di = deg(fi) for i = 1, . . . , n, and
d = max{d1, . . . , dn}. Then there is a K-linear subspace M of I with I = (f1) ⊕M ,
which admits a d-standard cone decompositionD. (Hence {(1, x, f1)}∪D is a d-standard
cone decomposition of I .)

Proof. For i = 2, . . . , n let Gi be a Gröbner basis of ((f1, . . . , fi−1) : fi). Then

I = (f1)⊕M for M := nfG2(R)f2 ⊕ · · · ⊕ nfGn(R)fn,

as in the remark after Lemma 3.16. The principal left ideal (f1) has a d1-standard cone
decomposition {(1, x, f1)} (Example 4.13). For each i = 2, . . . , n let Di be a standard
monomial cone decomposition of nfGi(R) guaranteed by Theorem 4.10; then

Difi =
{
(w, y, fi) : (w, y) ∈ Di

}
is a di-standard cone decomposition of nfGi(R)fi by Lemma 4.14, (2). The claim now
follows from Corollary 4.17. �

4.3. Macaulay constants and exact cone decompositions. What is stated in this subsec-
tion generalizes the corresponding concepts in Section 6 of [9].

Let D be a cone decomposition which is d-standard for some d. For every i we define
the cone decomposition

Di :=
{
(w, y, h) ∈ D : #y > i

}
.

Then we have
D = D0 ⊇ D+ = D1 ⊇ · · · ⊇ DN ⊇ DN+1 = ∅.

We define the Macaulay constants b0, . . . , bN+1 of D as follows:

bi := min
{
dD, 1 + degDi

}
=

{
dD if Di = ∅
1 + degDi otherwise.

From the definition it follows that b0 > . . . > bN+1 = dD. The integer b0 is an upper
bound for the regularity σ(M) of HM . The name of the constants is due to the fact that
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Macaulay proved that ifR is commutative and I a homogeneous ideal ofR, then for d > b0
we have

HR/I(d) =
(
d− bN+1 +N

N

)
− 1−

N∑
i=1

(
d− bi + i− 1

i

)
for certain integers b0 > · · · > bN+1 > 0, which turn out to be the Macaulay constants of
a special type of monomial cone decomposition of nfG(R) (for an arbitrary Gröbner basis
G of I), which we now define in general:

Definition 4.19. A cone decompositionD is called exact ifD is d-standard for some d and
for every degree d′, D+ contains at most one triple (w, y, h) with deg(w) + deg(h) = d′.

Exact cone compositions have a strong rigidity property:

Lemma 4.20. Let D be an exact cone decomposition with Macaulay constants bi. Then
for each i = 1, . . . , N and each d with bi+1 6 d < bi there is exactly one (w, y, h) ∈ D+

such that deg(w) + deg(h) = d, and for this triple we have #y = i.

Proof. Suppose i ∈ {1, . . . , N} and d satisfy bi+1 6 d < bi. Let (w′, y′, h′) ∈ D be
such that #y′ > i and deg(w′) + deg(h′) = bi − 1. Then, since D is dD-standard, there
exists (w, y, h) ∈ D with deg(w) + deg(h) = d and #y > #y′ > i. We have #y = i,
since otherwise (w, y, h) ∈ Di+1 with deg(w) + deg(h) = d > bi+1 > degDi+1,
contradicting the definition of bi+1. By exactness of D, (w, y, h) is the only triple in D+

with deg(w) + deg(h) = d. �

The next lemma allows one to split triples in cone decompositions in order to achieve
exactness:

Lemma 4.21. Let D be a d-standard cone decomposition of the K-linear subspace M of
R, and let (w, y, h), (v, z, g) ∈ D such that

deg(w) + deg(h) = deg(v) + deg(g), #z > #y > 0.

Let xi ∈ y be arbitrary. Then

D′ :=
(
D \

{
(w, y, h)

})
∪
{
(w, y \ {xi}, h), (w ∗ xi, y, h)

}
is also a d-standard cone decomposition of M .

Proof. We have

C(w, y, h) = C(w, y \ {xi}, h)⊕ C(w ∗ xi, y, h).
Therefore D′ remains a cone decomposition of M , and it is easy to check that D′ is d-
standard. �

By a straightforward adaptation of Algorithms SHIFT and EXACT in [9], and using
Lemma 4.21 above in place of Lemma 6.2 of [9] in the verification of their correctness,
one obtains:

Theorem 4.22. There exists an algorithm that, given a d-standard cone decomposition D
of a K-linear subspace M of R, produces an exact d-standard decomposition D′ of M ,
whose Macaulay constant b0 satisfies b0 > 1 + deg(D).

Let now D be an exact cone decomposition of a K-linear subspace M of R. Then by
(4.1) and Lemma 4.20 we have

PM (T ) =
N∑
i=1

bi−1∑
j=bi+1

(
T − j + i− 1

i− 1

)
.



DEGREE BOUNDS FOR GRÖBNER BASES IN ALGEBRAS OF SOLVABLE TYPE 33

One may show that this sum can be converted to

PM (T ) =
(
T − bN+1 +N

N

)
− 1−

N∑
i=1

(
T − bi + i− 1

i

)
,

and once bN+1 has been fixed, the coefficients b1, . . . , bN uniquely determine the polyno-
mial PM ; see [9, p. 768–769]; also, b0 is the smallest r > b1 such that HM (d) = PM (d)
for all d > r. In particular, the Macaulay constants b0 > b1 > · · · > bN+1 = 0 of an exact
standard cone decomposition D of M do not depend on our choice of D, and the Hilbert
function of M is uniquely determined by b0, . . . , bN . Since every K-linear subspace M
which admits a standard cone decomposition also has an exact standard cone decomposi-
tion (by the previous theorem), we may, in this case, simply talk of the Macaulay con-
stants b0, . . . , bN of M . All this applies to M = nfG(R) where G is a Gröbner basis of a
left ideal of R; hence, by Theorems 4.10 and 4.22 we obtain:

Corollary 4.23. LetG be the reduced Gröbner basis of a left ideal ofR, and let b0, . . . , bN
be the Macaulay constants of nfG(R). Then deg(g) 6 b0 for every g ∈ G.

5. PROOF OF THEOREM 0.1 AND ITS COROLLARIES

Let R be a K-algebra of solvable type with respect to x = (x1, . . . , xN ) and an admis-
sible ordering 6 of NN .

5.1. Degree bounds for Gröbner bases. Let I be a left ideal of R generated by non-
zero elements f1, . . . , fn ∈ R, where n > 0, and let d be the maximum of the degree of
f1, . . . , fn. The central result of this section is:

Proposition 5.1. Suppose the algebra R and the generators f1, . . . , fn of I are homoge-
neous. Then the elements of the reduced Gröbner basis of I have degree at most

D(N − 1, d) = 2
(
d2

2
+ d

)2N−2

.

Proof. We let t range over N. Let D be a standard exact cone decomposition of nfG(R)
with Macaulay constants b0 > · · · > bN+1 = 0, where G is the reduced Gröbner basis
of I . After reordering the f1, . . . , fn we may assume that f1 has degree d. Let E be a d-
standard exact cone decomposition of aK-linear subspaceM of I such that I = (f1)⊕M
(by Corollary 4.18 and Theorem 4.22), with Macaulay coefficients a0 > · · · > aN+1 = d.
The computations in [9, Section 8] show that

aj + bj 6 D(N − j, d) for j = 1, . . . , N − 2.

In particular a1 + b1 6 D := D(N − 1, d). The d-standard cone decomposition E ∪
{(1, x, f1)} of I has the same Macaulay constants ai as E . Hence by Lemma 4.15 (applied
to M1 = nfG(R), M2 = I) we have

max{a0, b0} = max{a1, b1} 6 D.

Corollary 4.23 now yields the proposition. �

Remark 5.2. Suppose the hypothesis of the previous proposition holds. Implicit in the
proof above, there is a uniform bound for the regularity of the Hilbert function of the left
R-module R/I:

σ(R/I) 6 D(N − 1, d).
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A similar doubly-exponential bound for σ(R/I) was obtained in [8]. In the case where R
is a commutative polynomial ring, the regularity of the Hilbert function σ(M) of a finitely
generated R-module M is closely related to the Castelnuovo-Mumford regularity reg(M)
of M . For example (see [7, 2.1]), in this case we have

σ(R/I) 6 reg(R/I) = reg(I)− 1.

There does exist a doubly-exponential bound on reg(I) in terms of N and d, valid inde-
pendently of the characteristic of K (see [6]):

reg(I) 6 (2d)2
N−2

.

It would be interesting to see whether this bound can also be deduced using the methods
of the present paper.

We next address the inhomogeneous case:

Corollary 5.3. Suppose R is quadric. Then there exists a Gröbner basis G of I with the
following property: for every g ∈ G we can write

g = yg,1f1 + · · ·+ yg,nfn

where yg,i ∈ R with

deg(yg,ifi) 6 D(N, d) = 2
(
d2

2
+ d

)2N−1

for i = 1, . . . , n.

Proof. By the proposition above, the reduced Gröbner basis H with respect to 6∗ of the
left ideal of R∗ generated by f∗1 , . . . , f

∗
n consists of homogeneous elements of degree at

most D(N, d). Moreover, for every h ∈ H there are homogeneous zh,1, . . . , zh,n ∈ R
such that

h = zh,1f
∗
1 + · · ·+ zh,nf

∗
n

and
deg(zh,if∗i ) 6 deg(h) 6 D(N, d) for i = 1, . . . , n.

Corollary 3.11 shows thatG := H∗ is a Gröbner basis of I with respect to6, and for every
h ∈ H we have

h∗ = yh∗,1f1 + · · ·+ yh∗,nfn

with yh∗,i := (zh,i)∗ and

deg(yh∗,ifi) 6 deg(zh,if∗i ) 6 D(n, d) for i = 1, . . . , n,

as required. �

The previous corollary yields Theorem 0.1. Next we show the first part of Corollary 0.4:

Corollary 5.4. Suppose R is quadric. Every two-sided ideal of R generated by elements
of degree at most d has a two-sided Gröbner basis consisting of elements of degree at most
D(2N, d).

Proof. We may assume that d > 0. Suppose J is the two-sided ideal of R generated by
f1, . . . , fn. Let µ : Renv → R be as in Section 2.7. By the discussion in Section 2.11, the
left ideal µ−1(J) of Renv is generated by the elements

f1 ⊗ 1, . . . , fn ⊗ 1, xε1 ⊗ 1− 1⊗ xε1 , . . . , xεN ⊗ 1− 1⊗ xεN ,
each of which has degree at most d. Hence by the previous corollary, µ−1(J) has a Gröbner
basis G (with respect to6env) consisting of elements of Renv of degree at most D(2N, d).
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By Proposition 3.7, µ(G) is a Gröbner basis of J whose elements obey the same degree
bound. �

Before we are able to compute a degree bound for reduced Gröbner bases which is
also valid in the inhomogeneous situation, we need to study the complexity of reduction
sequences.

5.2. Degree bounds for normal forms. Let A be a non-singular N × N -matrix with
non-negative integer entries, D > 1 an integer, and wt = wtD,A. For non-zero f ∈ R we
set

wt(f) := max
α∈supp(f)

wt(α),

and we let w(0) := 0. Then for all f, g ∈ R we have

deg(f) 6 wt(f) 6 ||A|| deg(f)
DN − 1
D − 1

(5.1)

by (1.2). Also

wt(f + g) 6 max
{

wt(f),wt(g)
}
, wt(cf) = wt(f) for non-zero c ∈ K.

Suppose now that A represents 6. Then

wt(f) = wt
(
lm(f)

)
if deg(f) <

D

||A||
. (5.2)

We will need a variant of Lemma 2.4 (with an analogous proof). In the lemma below,
we assume that the commutator relations between xi and xj in R are expressed as in
Definition 2.3.

Lemma 5.5. Suppose that wt(pij) < wt(xixj) for 1 6 i < j 6 N . Then for all α, β we
have

xα · xβ = cxα+β + r where c ∈ K, c 6= 0, and wt(r) < wt(xα+β),

in particular wt(xα · xβ) = wt(xα) + wt(xβ).

Proof. We proceed by induction on the non-negative integer ω = wt(xα+β). If ω = 0,
then α = β = 0, and there is nothing to show. So assume that ω > 0, and we have shown
the claim for all α, β with wt(xα+β) < ω. Note that this implies wt(fg) 6 wt(f)+wt(g)
for all f, g ∈ R with wt(f),wt(g) < ω. Suppose α, β satisfy wt(xα+β) = ω. Put

mα := min {n : xn|xα}, nα := max {n : xn|xα},
and similarly we define mβ and nβ . If nα 6 mβ , then clearly xαxβ = xα+β , and we are
done. Hence assume now that nα > mβ . We distinguish three cases:

Case 1: mα 6 mβ . Write xα = xmαx
α′ where wt(xα

′
) < wt(xα). Then xα+β =

xmαx
α′+β . By inductive hypothesis there is a non-zero c′ ∈ K such that xα

′
xβ =

c′xα
′+β + r′ with wt(r′) < wt(α′) + wt(β). Thus

xαxβ = xmα(c′xα
′+β + r′) = c′xmαx

α′+β + xmαr
′ = c′xα+β + xmαr

′

where wt(xmαr
′) < ω.

Case 2: nα 6 nβ . This is treated similarly to Case 1, writing xβ = xβ
′
xnβ .

Case 3: mα > mβ and nα > nβ . Put i := mβ , j := nα, and write xα = xα
′
xi and

xβ = xjx
β′ . Then we have

xαxβ = xα
′
xjxix

β′ = xα
′
(cijxixj + pij)xβ

′
= cijx

α′xixjx
β′ + xα

′
pijx

β′ .
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By assumption we have wt(pij) < wt(xi) + wt(xj), and so by inductive hypothesis
wt(xα

′
pijx

β′) < ω. Moreover, the inductive hypothesis also yields

xα
′
xi = c′xα

′
∗ xi + r′, xjx

β′ = c′′xj ∗ xβ
′
+ r′′

where wt(r′) < wt(α′) + wt(xi) and wt(r′′) < wt(xj) + wt(β′). By assumption in this
case, we have xα

′ ∗ xi = xix
α′ and xj ∗ xβ

′
= xβ

′
xj . Hence

xα
′
xixjx

β′ = (c′xixα
′
+ r′)(c′′xβ

′
xj + r′′)

= c′c′′(xixα
′
xβ
′
xj) + c′(xixα

′
)r′′ + c′′r′(xβ

′
xj) + r′r′′

where the last three summands have weight smaller than ω. By inductive hypothesis again,
we write

xα
′
xβ
′
= dxα

′+β′ + s

where d ∈ K is non-zero and wt(s) < wt(α′) + wt(β′). This yields

c′c′′(xixα
′
xβ
′
xj) = c′c′′d(xixα

′+β′xj) + xisxj = c′c′′d · xα+β + xisxj

where wt(xisxj) < ω by inductive hypothesis. �

We can now show:

Lemma 5.6. Under the same hypothesis as the previous lemma, let G be a subset of R
each of whose elements has degree less than D

||A|| , and let f, h ∈ R. If f ∗−→
G

h, then there

are g1, . . . , gm ∈ G and p1, . . . , pm ∈ R with

f − h = p1g1 + · · ·+ pmgm

and
wt(p1g1), . . . ,wt(pmgm) 6 wt(f).

Proof. We let g range over G. We proceed on Noetherian induction on the well-founded
relation −→

G
. Suppose f −→

g
f ′

∗−→
G

h. Then there exists c ∈ K and α, β such that

lm(xβg) = xα ∈ supp f, lc(cxβg) = fα, f ′ = f − cxβg.

Now by the previous lemma and (5.2) applied to g, we have

wt(cxβg) 6 wt(xβ) + wt(g) = wt(xβ) + wt
(
lm(g)

)
= wt(xα) 6 wt(f)

and thus wt(f ′) 6 wt(f). By inductive hypothesis, there are g′1, . . . , g
′
n ∈ G and

p′1, . . . , p
′
n ∈ R with

f ′ − h =
n∑
i=1

p′igi and wt(p′ig) 6 wt(f ′) for every i.

Hence

f − h = (f − f ′) + (f ′ − h) =
n+1∑
i=1

pigi

where pi := p′i, gi := g′i for i = 1, . . . , n and pn+1 := cxβ , gn+1 := g satisfy wt(pigi) 6
wt(f) for every i, as required. �
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Corollary 5.7. Suppose D > 2 ||A|| and D > deg(pij) for 1 6 i < j 6 N , and let G be
a subset of R each of whose elements has degree less than D

||A|| , and f, h ∈ R. If f ∗−→
G

h,

then there are g1, . . . , gm ∈ G and p1, . . . , pm ∈ R with

f − h = p1g1 + · · ·+ pmgm

and

deg(p1g1), . . . ,deg(pmgm),deg(h) 6 ||A|| deg(f)
DN − 1
D − 1

.

Proof. Since D > 2 ||A|| and D > deg(pij), we have wt(pij) < wt(xixj), for 1 6 i <
j 6 N , by (5.2). The claim now follows from the previous lemma and (5.1) �

If 6 is degree-compatible, then the estimate in the corollary above can be improved,
and the additional assumptions on R and G removed: Let G be a subset of R, f, h ∈ R; if
f
∗−→
G

h, then Noetherian induction as in the proof of Corollary 5.7 yields easily that there

are g1, . . . , gm ∈ G and p1, . . . , pm ∈ R such that

f − h = p1g1 + · · ·+ pmgm

and
lm(p1g1), . . . , lm(pmgm), lm(h) 6 lm(f).

Since our admissible ordering is degree-compatible, we have

deg(p1g1), . . . ,deg(pmgm),deg(h) 6 deg(f).

5.3. Degree bounds for reduced Gröbner bases. In the rest of this section we assume
that R is quadric. The auxiliary results from the previous subsection allow us to show
Corollary 0.2:

Corollary 5.8. Suppose that the admissible ordering 6 can be represented by rational
weights. Then there is a constantC, which only depends on6, with the following property:
the reduced Gröbner basis of every left ideal of R generated by elements of degree at most
d consists of elements of degree at most

(
C ·D(N, d)

)N+1
.

Proof. We may assume d > 0. Put D := 2 ||A|| dD(N, d)e. Let I be a left ideal of R
generated by elements of degree at most d. Choose a Gröbner basis G = {g1, . . . , gm} of
I with deg(gi) 6 D(N, d) for i = 1, . . . ,m. (Corollary 5.3.) After pruning G, we may
assume that lm(G) is a minimal set of generators for the monomial ideal of R generated
by lm(I), and after normalizing each gi, that lc(gi) = 1 for every i. Set hi := gi − lm(gi)
for every i. By Corollary 5.7 we have

deg nfG(hi) 6 ||A|| deg(gi)
DN − 1
D − 1

6 D
DN − 1
D − 1

6 DN+1

for every i. Then G′ := {g′1, . . . , g′m} where g′i := lm(gi) + nfG(hi) for every i is a
reduced Gröbner basis of I with deg g′i 6 D

N+1 for every i. �

For degree-compatible admissible orderings one obtains in a similar way:

Corollary 5.9. Suppose that the admissible ordering 6 is degree-compatible. Then the
reduced Gröbner basis of every left ideal of R generated by elements of degree at most d
consists of elements of degree at most D(N, d).
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5.4. Ideal membership. Now we turn to degree bounds for solutions to linear equations.
In particular, we’ll show Corollary 0.3.

Proposition 5.10. Suppose 6 can be represented by rational weights. Then there is a
constant C, only depending on 6 which satisfies the following: if f ∈ I = (f1, . . . , fn)
where f1, . . . , fn ∈ R are of degree at most d, then there there are y1, . . . , yn ∈ R of
degree at most deg(f) ·

(
C ·D(N, d)

)N
with

f = y1f1 + · · ·+ ynfn.

Proof. We may assume d > 0. Put D := 2 ||A|| dD(N, d)e. Let f1, . . . , fn ∈ R have
degree at most d, and choose a Gröbner basis G of I = (f1, . . . , fn) with the property
stated in Corollary 5.3. Let f ∈ I . Then by Corollary 5.7 there are g1, . . . , gm ∈ G and
p1, . . . , pm ∈ R such that

f = p1g1 + · · ·+ pmgm

and

deg(p1g1), . . . ,deg(pmgm) 6 ||A|| deg(f)
DN − 1
D − 1

.

Write each gi as
gi = yi,1f1 + · · ·+ yi,nfn

where yi,j ∈ R satisfies deg(yi,jfj) 6 D(N, d). Then

f = y1f1 + · · ·+ ynfn

where each yj :=
∑
i piyi,j has degree at most

deg(f) ·
(
||A|| D

N − 1
D − 1

+D

)
,

and this yields the claim. �

In a similar way we obtain:

Proposition 5.11. Suppose 6 is degree-compatible, let f1, . . . , fn ∈ R be of degree at
most d, and f ∈ R. If

f = y1f1 + · · ·+ ynfn

for some y1, . . . , yn ∈ R, there are such y1, . . . , yn ∈ R of degree at most deg(f) +
D(N, d).

In the rest of this section, we restrict ourselves to the case that the admissible ordering
6 is degree-compatible. The next corollary is the second part of Corollary 0.4:

Corollary 5.12. Let f1, . . . , fn ∈ R be of degree at most d, and let f ∈ R. If the equation

f = y1f1z
′
1 + · · ·+ ynfnz

′
n

has a solution (y1, . . . , yn, z1, . . . , zn) ∈ R2n, then this equation also has such a solution
where

deg(yi),deg(zi) 6 deg(f) +D(2N, d) for i = 1, . . . , n.

Proof. Apply the previous proposition to Renv and

f1 ⊗ 1, . . . , fn ⊗ 1, xε1 ⊗ 1− 1⊗ xε1 , . . . , xεN ⊗ 1− 1⊗ xεN

in place of R and f1, . . . , fn, respectively. (See Section 2.11.) �
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5.5. Generators for syzygy modules. Below, the leftR-module of left syzygies of a tuple
f = (f1, . . . , fn) ∈ Rn is denoted by Syz(f) (a submodule of the free left R-module Rn).

Suppose G = {g1, . . . , gm} is a Gröbner basis in R. For 1 6 i < j 6 m let αij and
βij be the unique multi-indices such that

xαij ∗ lm(gi) = xβij ∗ lm(gj) = lcm
(
lm(gi), lm(gj)

)
and

cij := lc(xαijgi), dij := lc(xβijgj).

By Proposition 3.4, each S-polynomial

S(gi, gj) = dij lc(gj)xαijgi − cij lc(gi)xβijgj

admits a representation of the form

S(gi, gj) =
m∑
k=1

pijkgk, lm(pijkgk) 6 lmS(gi, gj) (pijk ∈ R).

Now consider the vectors

sij := dij lc(gj)xαijei − cij lc(gi)xβijej −
∑
k

pijkek (1 6 i < j 6 m)

in Rm. Here e1, . . . , em denotes the standard basis of the free left R-module Rm. Each si
is a left syzygy of (g1, . . . , gm); in fact (see [17, Theorem 3.15]):

Theorem 5.13. The syzygies sij (where 1 6 i < j 6 m) generate the left R-module
Syz(g1, . . . , gm).

We denote the set of m × n-matrices with entries in R by Rm×n. The n × n-identity
matrix is denoted by In. The following transformation rule for left syzygies is easy to
verify:

Lemma 5.14. Let f = (f1, . . . , fn)tr ∈ Rn and g = (g1, . . . , gm)tr ∈ Rm, and suppose
A ∈ Rm×n, B ∈ Rn×m such that g = Af and f = Bg. Let M be a matrix whose rows
generate Syz(g). Then the rows of the matrix[

MA
In −BA

]
generate Syz(f).

We now use these facts in the proof of:

Proposition 5.15. Let f = (f1, . . . , fn)tr ∈ Rn be of degree at most d. Then Syz(f) can
be generated by elements of degree at most 3D(N, d).

Proof. Let g = (g1, . . . , gm)tr ∈ Rm be such thatG = {g1, . . . , gm} is a Gröbner basis of
the left ideal ofR generated by f1, . . . , fn as in Corollary 5.3. Then there areA ∈ Rm×n of
degree at mostD(N, d) andB ∈ Rn×m of degree at most d such that g = Af and f = Bg.
Now each S-polynomial S(gi, gj) has degree at most 2D(N, d); hence there exists a matrix
M of degree at most D(N, d) whose rows generate Syz(g). Since deg(MA) 6 3D(N, d)
and deg(AB) 6 D(N, d) + d 6 3D(N, d), the claim now follows from the previous
lemma. �
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gorithm, Technical Report 88, Courant Institute of Mathematical Sciences, Robotics Laboratory, New York
University, 1986.

11. Galligo, A., Some algorithmic questions on ideals of differential operators, in: Caviness, B. (ed.), EUROCAL
’85, vol. 2, Proceedings of the European Conference on Computer Algebra held in Linz, April 1–3, 1985,
413–421, Lecture Notes in Comput. Sci. 204, Springer-Verlag, Berlin, 1985.

12. Grabmeier, J. et al., Computer Algebra Handbook: Foundations, Applications, Systems, Springer-Verlag,
Berlin, 2003.

13. Grigoriev, D., Complexity of solving systems of linear equations over the rings of differential operators, in:
Mora, T. and Traverso, C., Effective Methods in Algebraic Geometry, Papers from the symposium (MEGA-
90) held in Castiglioncello, April 17–21, 1990, 195–202, Progress in Mathematics 94, Birkhäuser Boston,
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