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Abstract. We show how to fill “countable” gaps in Hardy fields. We use this

to prove that any two maximal Hardy fields are back-and-forth equivalent.
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Introduction

By a “Hardy field” we mean in this paper a Hardy field at +∞: a subfield H of
the ring of germs at +∞ of real valued differentiable functions on intervals (a,+∞)
(a ∈ R) such that H is closed under differentiation. For basics on Hardy fields,
see [28]. Each Hardy field is an ordered differential field, the (total) ordering given
by f ⩽ g iff f(t) ⩽ g(t) eventually (that is, for all sufficiently large t). Among
functions whose germs at +∞ live in Hardy fields are all one-variable rational
functions with real coefficients, the real exponential and logarithm functions (more
generally, Hardy’s logarithmico-exponential functions [20]), Euler’s Γ-function and
Riemann’s ζ-function [29], and many other “regularly growing” functions arising
in mathematical practice. As a case in point, by [17] every o-minimal expansion of
the ordered field of real numbers gives rise to a Hardy field (of germs of definable
functions). Our main result is as follows:

Theorem A. Let H be a Hardy field, and let A, B be countable subsets of H such
that A < B. Then A < f < B for some f in a Hardy field extension of H.

Some of the gaps A < B in this theorem correspond to pseudo-cauchy sequences
(pc-sequences in our abbreviated terminology). The relevant pc-sequences have
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length ω, and we can handle them using results from our book [ADH] and from [9]
in an essential way, and various glueing techniques. This is done in Sections 3 and 4.
This dependence on [ADH] and [9] makes this the deepest part of the present paper,
but most of our work here deals with other gaps.

Sjödin [30] deals with the case B = ∅ for C∞-Hardy fields (whose elements
are germs of C∞-functions). This provides an important clue for other kinds of
gaps: Sjödin’s construction of a suitable f can be varied in several ways, and that
gives us a handle on the relevant remaining cases. In Section 5 we treat B = ∅,
basically as in [30], and organized so that it helps in Section 6 where we deal with
“wide” gaps. For the remaining gaps we use results about asymptotic couples
from [6] and an elaboration of the “reverse engineering” in [30]; see Sections 8
and 9. (Sections 1 and 2 contain mainly analytic preliminaries, and Section 7
applies material in Sections 5 and 6 to show that there are 2c many maximal Hardy
fields where c = 2ℵ0 is the cardinality of the continuum. Here and below, “maximal”
means “maximal under inclusion”.)

Most of [9] concerns differentially algebraic extensions of Hardy fields. The
present paper complements this with a “good enough” overview of differentially
transcendental Hardy field extensions H⟨y⟩ of a Liouville closed Hardy field H ⊇ R.

An equivalent formulation of Theorem A is that every maximal Hardy field is η1.
The property η1 (Hausdorff [22]) is defined at the end of the introduction. The main
result of [9] is that all maximal Hardy fields, as ordered differential fields, are ω-free
newtonian Liouville closed H-fields, and thus by [ADH, 15.0.2, 16.6.3] elementarily
equivalent to T, the ordered differential field of transseries. (On T, see [ADH,
Appendix A] or [4].) Combining this fact with Theorem A and a result from [5] we
shall derive in Section 10:

Corollary B. Assuming CH (the Continuum Hypothesis), every maximal Hardy
field is isomorphic as an ordered differential field to the ordered field No(ω1) of
surreal numbers of countable length equipped with the derivation ∂BM of [11].

Thus with CH, all maximal Hardy fields are isomorphic as ordered differential
fields. Without CH, the proof yields a nonempty back-and-forth system between
any maximal Hardy field and the ordered differential field No(ω1). (See [ADH, B.5]
for “back-and-forth system”.) Then by Karp [23], cf. [10, Theorem 3], any maximal
Hardy field and the ordered differential field No(ω1) are ∞ω-equivalent. This is a
strengthening of [9, Corollary 1].

Key ingredients for proving Theorem A include Lemma 3.4, the construction of
a partition of unity in Section 4, the reduction to Case (b) stated in Lemma 8.11,
and the elaborated reverse engineering in Section 9 that culminates in a diagonal
argument. (The idea behind the original reverse engineering from [30] is sketched
in the remarks that follow the statement of Theorem 5.12.)

Theorem A answers a question of Ehrlich [18] and establishes Conjecture B
from [4]. (For Conjecture A, see [9, Theorem A].)

In this paper our Hardy fields are not assumed to be C∞-Hardy fields, and we do
not know if maximal C∞-Hardy fields are necessarily maximal Hardy fields (even
under CH). So the question arises if our main results go through for maximal C∞-
Hardy fields. This is indeed the case, and it is not hard to refine some of our proofs
to that effect. The same question arises for the still more special Cω-Hardy fields
(analytic Hardy fields). Our main results also go through in that setting, but this
is more delicate. We shall treat these refinements in a follow-up paper.
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Notations and conventions. We let i, j, k, l, m, n range over N = {0, 1, 2, . . . }.
As in [ADH] the convention is that the ordering of an ordered set, ordered abelian
group, or ordered field is a total ordering. Let S be an ordered set. For any
element b in an ordered set extending S we set

S<b := {s ∈ S : s < b}, S>b := {s ∈ S : s > b}.

We have the usual notion of a set P ⊆ S being cofinal in S (respectively, coinitial
in S). In addition, sets P,Q ⊆ S are said to be cofinal if for every p ∈ P there
exists q ∈ Q with p ⩽ q and for every q ∈ Q there exists p ∈ P with q ⩽ p;
replacing here ⩽ by ⩾, we obtain the notion of P and Q being coinitial. Thus P
and P ↓ = {s ∈ S : s ⩽ p for some p ∈ P} are cofinal, hence P , Q are cofinal
iff P ↓ = Q↓. Likewise, P and P ↑ = {s ∈ S : s ⩾ p for some p ∈ P} are coinitial,
and P , Q are coinitial iff P ↑ = Q↑. We let cf(S) and ci(S) denote the cofinality and
coinitiality of S; see [ADH, 2.1]. We say that S is η1 if for all countable P,Q ⊆ S
with P < Q there exists an s ∈ S with P < s < Q; in particular, such S is
uncountable (cf. Lemma 7.2 below), has no least element, no largest element, and
is dense in the sense that for all p, q ∈ S with p < q there exists s ∈ S with p < s < q.
We say that an ordered abelian group (ordered field) is η1 if its underlying ordered
set is η1. For basic facts about various η1-structures, see [27, Kapitel IV].

Let (aρ) be a well-indexed sequence. Its length is the (infinite limit) ordinal that
is the order type of its well-ordered set of indices ρ (cf. [ADH, p. 73]). Note that
if (aρ) has countable length, then its length has cofinality ω, and thus (aρ) has a
cofinal subsequence (aρn) of length ω.

Let (Γ, ψ) be an asymptotic couple. As in [ADH, 6.5] we set Γ∞ := Γ∪{∞}, and
adopt the convention that ψ(0) = ψ(∞) = ∞ > Γ. For α ∈ Γ∞ we use α† as an
alternative notation for ψ(α) and define α⟨n⟩ ∈ Γ∞ by recursion on n by α⟨0⟩ := α
and α⟨n+1⟩ := (α⟨n⟩)†. We simplify terminology by calling an H-field closed (“H-
closed” in [4, 9]) if it is ω-free, newtonian, and Liouville closed.

As in [8, 9], C is the ring of germs at +∞ of continuous functions [a,+∞) → R,
a ∈ R, and C× := {f ∈ C : fg = 1 for some g ∈ C}, its multiplicative group of
units. We often use the same notation for a real-valued function on a subset of R
containing a halfline [a,+∞), a ∈ R, as for its germ (at +∞) if the resulting
ambiguity is harmless. With this convention, given a property P of real numbers
and g ∈ C we say that P

(
g(t)

)
holds eventually if P

(
g(t)

)
holds for all sufficiently

large real t. We equip C with the partial ordering given by f ⩽ g :⇔ f(t) ⩽ g(t),
eventually. We define the asymptotic relations ≼, ≺, ∼ on C as follows: for f, g ∈ C,

f ≼ g :⇐⇒ there exists c ∈ R> such that |f | ⩽ c|g|,
f ≺ g :⇐⇒ g ∈ C× and lim

t→∞
f(t)/g(t) = 0

⇐⇒ g ∈ C× and |f | ⩽ c|g| for all c ∈ R>,

f ∼ g :⇐⇒ g ∈ C× and lim
t→∞

f(t)/g(t) = 1

⇐⇒ f − g ≺ g.

For r ∈ N ∪ {∞} we let Cr be the subring of C consisting of the germs of r times
continuously differentiable functions [a,+∞) → R, a ∈ R. Thus C<∞ :=

⋂
n Cn is

a differential ring with the obvious derivation, and has C∞ as a differential subring.
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1. Preliminaries on Hausdorff Fields

This section contains basic facts about Hausdorff fields. After a subsection on
pc-sequences of length ω in an ordered field we construct pseudolimits of such pc-
sequences in the setting of Hausdorff fields, and show how to extend the value group
of a Hausdorff field.

Ordered fields. Let K be an ordered field. We view Q as a subfield of K in the
natural way, and consider K also as a valued field with respect to the standard
valuation given by the valuation ring

O =
{
a ∈ K : |a| ⩽ n for some n

}
,

the smallest convex subring of K; see [ADH, p. 175].

Lemma 1.1 (Alling [1, 2]). The following two conditions on K are equivalent:

(i) K is η1;
(ii) the residue field of K is isomorphic to R, every pc-sequence of length ω

in K has a pseudolimit in K, and the value group of K is η1.

This is well-known, see [26, 1.4] or [27, p. 160]. For a maximal Hardy field H we
have R ⊆ H, and so the residue field of H is indeed isomorphic to R. Thus in order
to show that H is η1 it remains to show that all pc-sequences in H of length ω have
a pseudolimit in H and that the value group of H is η1. The former will be taken
care of in Sections 3, 4, and the latter will be handled in Sections 5–9.

We continue with generalities on pc-sequences of length ω in our ordered field K.
Let (an) be a pc-sequence in K of length ω. When does (an) have a pseu-

dolimit in K? We indicate below a reduction of this question to something that
turns out to be more manageable. First, (an) and any infinite subsequence have
the same pseudolimits in K, and so by passing to such a subsequence we can ar-
range that (an) is either strictly increasing or strictly decreasing. Replacing (an)
by (−an), the strictly decreasing case reduces to the strictly increasing case. Re-
placing (an) by (a + an) for a suitable a ∈ K, the strictly increasing case reduces
to the strictly increasing case where in addition all terms are positive. Next, as-
sume (an) is strictly increasing and all terms are positive. Dropping some initial
terms, if necessary, we arrange in addition that an−an−1 ≻ an+1−an for all n ⩾ 1.
Then we define bn by b0 := a0 and bn := an − an−1 for n ⩾ 1, so that bn > 0,
bn ≻ bn+1, and an = b0 + · · ·+ bn, for all n.

Reversing this last step, starting with a sequence (bn) in K such that bn > 0
and bn ≻ bn+1 for all n, we obtain a strictly increasing pc-sequence (an) of positive
terms an by an = b0 + · · ·+ bn. This leads to:

Lemma 1.2. The following are equivalent for K:

(i) all pc-sequences in K of length ω have a pseudolimit in K;
(ii) for every sequence (bn) in K with bn > 0 and bn ≻ bn+1 for all n, the

pc-sequence (an) with an = b0 + · · ·+ bn for all n has a pseudolimit in K.

Hausdorff fields. As in [8] we define a Hausdorff field to be a subfield of C, that
is, a subring of C that happens to be a field. Let H be a Hausdorff field. Then{

f ∈ H : f(t) > 0, eventually
}
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is the strictly positive cone for a (total) ordering on K that makes H an ordered
field, and below we consider H as an ordered field in this way. This yields the
convex subring

O :=
{
f ∈ H : |f | ⩽ n for some n

}
,

which is a valuation ring of H, and we consider H accordingly as a valued field
as well. Restricting the relations ≼, ≺, ∼ on C to H gives exactly the asymptotic
relations ≼, ≺, ∼ on H that it comes equipped with as a valued field.

Extending Hausdorff fields with pseudolimits. Let H be a Hausdorff field,
and let a sequence

f0 ≻ f1 ≻ f2 ≻ · · ·
in H> be given. Then (f0 + · · ·+ fn) is a pc-sequence in H. We shall construct a
pseudolimit of this pc-sequence in some Hausdorff field extension of H (possibly H
itself). To conform with some later parts we let t range over real numbers ⩾ 1 in
this subsection. We take for each n a continuous function R⩾1 → R that represents
the germ fn, to be denoted also by fn, such that fn(t) ⩾ 0 and fn+1(t) ⩽ fn(t)/2
for all t. Now the sequence (f0 + · · · + fn) of partial sums converges pointwise to
a function f =

∑∞
n=0 fn : R⩾1 → R, with the convergence being uniform on each

compact subset of R⩾1, so f is continuous. We claim that for all n,

f − (f0 + · · ·+ fn) ≺ fn in C.

Let ε > 0, and take tn ∈ R⩾1 with fn+1(t) ⩽ εfn(t) for all t ⩾ tn. Then for such t,

f(t)−
(
f0(t) + · · ·+ fn(t)

)
= fn+1(t) + fn+2(t) + fn+3(t) + · · ·
⩽ fn+1(t) + fn+1(t)/2 + fn+1(t)/4 + · · ·
= 2fn+1(t) ⩽ 2εfn(t),

which proves the claim. As usual we denote the germ of f at +∞ also by f , so
that f ∈ C. Let g, h ∈ C. Then (as defined earlier) g ⩽ h means g(t) ⩽ h(t),
eventually, and by g < h we mean g ⩽ h and g ̸= h. Also

g <e h :⇐⇒ g(t) < h(t), eventually,

so g <e h⇒ g < h, and if g, h ∈ H, then g <e h⇔ g < h.

Lemma 1.3. Suppose (f0 + · · ·+ fn) has no pseudolimit in H. Let g ∈ H be such
that g > f0 + · · ·+ fn in C, for all n. Then for all n we have

f0 + · · ·+ fn <e f <e g in C.

Proof. As g is not a pseudolimit of (f0+ · · ·+ fn), we have v
(
g− (f0+ · · ·+ fn)

)
<

v(fn+1) for some n. For such n we have, eventually, g(t)−
(
f0(t) + · · ·+ fn(t)

)
>

2fn+1(t), and thus, eventually, g(t) > f0(t) + · · ·+ fn(t) + 2fn+1(t) ⩾ f(t). □

In view of [8, Lemma 2.11] this yields:

Corollary 1.4. If H is real closed and (f0 + · · · + fn) has no pseudolimit in H,
then f generates over H an immediate Hausdorff field extension H(f) of H such
that f0 + · · ·+ fn ⇝ f .

Even if H is not real closed, (f0+ · · ·+fn) pseudoconverges in some Hausdorff field
extension of H, since we can pass to the real closure of H by [8, Proposition 2.4].
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Extending the value group of a Hausdorff field. This is closely connected to
filling additive gaps in Hausdorff fields: see Remark 1.7 and Lemma 1.11 below.
For now, H is just an ordered field and v : H× → Γ is its standard valuation.

Lemma 1.5. Let A ⊆ H. Then A + A, 2A are cofinal. Also, A, 2A are cofinal
iff A, 1

2A are cofinal. Likewise with “coinitial” in place of “cofinal”.

Proof. From 2A ⊆ A+A and a+ b ⩽ 2max(a, b) for a, b ∈ A it follows that A+A
and 2A are cofinal. The rest is clear. □

Corollary 1.6. Let A,B ⊆ H> be such that A < B and there is no h ∈ H
with A < h < B. Then the following are equivalent:

(i) A, A+A are cofinal;
(ii) A, 2A are cofinal;
(iii) B, B +B are coinitial;
(iv) B, 1

2B are coinitial.

Proof. The equivalence of (i) and (ii) follows from Lemma 1.5; likewise with (iii)
and (iv), The equivalence of (ii) and (iv) is a consequence of B↑ = H> \A↓. □

An additive gap in H is a pair A, B of subsets of H> with A < B such that
there is no h ∈ H with A < h < B, and one of the equivalent conditions (i)–(iv) in
Corollary 1.6 holds.

Remark 1.7. As in [ADH], a cut in an ordered set S is a downward closed subset
of S. Call a cut A in the ordered set H> additive if A, B := H> \A is an additive
gap in H. Then A 7→ A ∪ (−A) ∪ {0} defines an inclusion-preserving bijection{

additive cuts in H>
}
→ {convex subgroups of H},

with inverse D 7→ D>. (In some places additive cuts in H> are therefore called
“group cuts” in H; cf. [25].) Note: D 7→ v(D>) is an inclusion-preserving bijection

{convex subgroups of H} → {upward closed subsets of Γ},

with inverse P 7→ v−1(P ) ∪ {0}.

In 1.8–1.10 below we assume that H is real closed. We have multiplicative versions
of Lemma 1.5 and Corollary 1.6, obtained in the same way:

Lemma 1.8. Let A ⊆ H>. Then A · A and sq(A) := {a2 : a ∈ A} are cofinal.

Moreover, A and sq(A) are cofinal iff A and
√
A := {b ∈ H> : b2 ∈ A} are cofinal.

Likewise with “coinitial” in place of “cofinal”.

Corollary 1.9. Let A,B ⊆ H> be such that A < B and there is no h ∈ H
with A < h < B. Then the following are equivalent:

(i) A, A ·A are cofinal;
(ii) A, sq(A) are cofinal;
(iii) B, B ·B are coinitial;

(iv) B,
√
B are coinitial.

Lemma 1.10. Let A ⊆ H>Q. If A, sq(A) are cofinal, then so are A, 2A, and

if A,
√
A are coinitial, then so are A, 1

2A.

Proof. Let a ∈ A. For the first part, use 2a < a2; for the second, use
√
a < a

2 . □



FILLING GAPS IN HARDY FIELDS 7

Now suppose H is a Hausdorff field, turned into an ordered field as described earlier
in this section. The following is [8, Lemma 2.12]:

Lemma 1.11. Suppose Γ = v(H×) is divisible. Let P be a nonempty upward
closed subset of Γ, and let f ∈ C be such that a < f for all a ∈ H> with va ∈ P ,
and f < b for all b ∈ H> with vb < P . Then f generates a Hausdorff field H(f)
with P > vf > Γ \ P .

A Hardy field is a differential subfield of the differential ring C<∞. Given a Hardy
field F ⊇ R we let Li(F ) be the Hardy-Liouville closure of F , that is, the smallest
real closed Hardy field extension of F that contains with any f also exp(f), and
contains any g ∈ C1 whenever it contains g′; see [9, Section 2].

We now specializeH even further: in the rest of this subsection we assume that H
is a Liouville closed Hardy field and H ⊇ R.

Lemma 1.12. Let A ⊆ H>R. Then:

(i) if A and exp(A) are cofinal, then so are A and sq(A);

Next, assume also that ex ∈ A, and that A and sq(A) are cofinal. Then:

(ii) A and A′ := {a′ : a ∈ A} are cofinal;
(iii) A and

∫
A := {b ∈ H : b′ ∈ A} are cofinal, and

∫
A ⊆ H>R.

Proof. Item (i) follows from a2 ⩽ exp a for a ∈ A.
Next, assume ex ∈ A, and A, sq(A) are cofinal. Then enx ∈ A↓ if n ⩾ 1. Now

for (ii), let a ∈ A. Then 1/a ≺ 1, so −a′/a2 = (1/a)′ ≺ 1, and thus 0 < a′ < a2.
This yields (A′)↓ ⊆ sq(A)↓ = A↓. Suppose in addition a ⩾ ex, so a† ≽ 1. If a† ≻ 1,
then a < a′, and if a† ≍ 1, then [ADH, 9.1.11] yields n ⩾ 1 with a ⩽ enx, and
taking b ∈ A with b ⩾ e(n+1)x ≻ enx we get b′ > (enx)′ ⩾ enx ⩾ a. Thus A↓ ⊆ (A′)↓.

As to (iii), let a ∈ A, b ∈ H, and b′ = a. Then b > R, even b ≻ x. Moreover,

0 < b′ = a < b2, so
√
a < b. Thus A↓ = (

√
A)↓ ⊆ (

∫
A)↓. Next, assume also a =

b′ ≻ ex. Then b ≻ ex, since H is asymptotic, so a/b = b† ≽ 1, hence b ≼ a ≺ a2

and thus b < a2. This yields (
∫
A)↓ ⊆ sq(A)↓ = A↓. □

Lemma 1.13. Let B ⊆ H, B > ex, and assume B,
√
B are coinitial. Then:

(i) B and B′ := {b′ : b ∈ B} are coinitial;
(ii) B and

∫
B := {a ∈ H : a′ ∈ B} are coinitial;

(iii) B−1 and −
∫
B−1 :=

{
−g : g ∈ H≺1, g′ ∈ B−1

}
are cofinal.

Proof. Since B,
√
B are coinitial, so are B, 1

2B, by Lemma 1.10. Thus B, R>B are

coinitial. Let b ∈ B. Then b ≻
√
b > ex, so β := vb < 0 gives β† ⩽ 0, hence β′ ⩽ β,

and thus b′ ⩾ b. Also β† = o(β) by [ADH, 9.2.10], so β < 1
2β + β† = ( 12β)

′ and

thus b ≻ (
√
b)′ ≽ d′ for some d ∈ B. This proves (i).

For (ii), let a ∈ H and a′ = b ∈ B. Then a > R, and also a ≻ ex, since a ≼ ex

gives b = a′ ≼ ex, a contradiction. Hence α† ⩽ 0 for α := va, so α ⩾ α′ = β := vb,
which gives a ≼ b, and thus a ⩽ b2. Since b ∈ B was arbitrary and B and sq(B) are
coinitial by Lemma 1.8, this shows that every element of B is ⩾ a for some a ∈

∫
B.

With a and b as above we also have α < β/2, so a >
√
b. This proves (ii).

As to (iii), let b ∈ B, β := vb, and g ∈ H≺1 with g′ = b−1, so g < 0, and

for γ := vg we have −β = γ+γ†. We have
√
b > ex, so b−1 < e−2x. Claim: γ† ⩽ 0.

If this claim does not hold, then 0 < γ† < v(x−2), so g ≻ e−x, and g† ≻ x−2 ≻ e−x,
and thus b−1 = g′ ≻ e−2x, a contradiction. Now γ† ⩽ 0 gives −β ⩽ γ, hence b−1 =
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|b−1| ≽ |g| = −g, and thus −g ⩽ d for some d ∈ B−1. From γ† = (−γ)† ⩽ 0 we
get γ† = o(γ) by [ADH, 9.2.10], hence −2β > γ, and thus b−2 < −g. It remains to
use that B−1, sq(B−1) are cofinal. □

2. Analytic Preliminaries

In this section a, b, c, s, t range over R.

Constructing smooth functions. We prove here some facts about smooth func-
tions needed later. Let ρ : R → R be the C∞-function of [16, (8.12), Exercise 2(a)].
It is defined by

ρ(t) := exp

(
− 1

(1 + t)2
− 1

(1− t)2

)
if −1 < t < 1, ρ(t) := 0 if t ⩽ −1 or t ⩾ 1.

Thus ρ(t) > 0 for −1 < t < 1, ρ is even, and ρ(0) = e−2. (See Figure 1.)

−1 1

ρ t

Figure 1. Sketch of ρ

For any subset I of R and r ∈ N∪{∞, ω} we define Cr(I) to be the set of f : I → R
for which f = g|I for some Cr-function g : U → R with U an open neighborhood
of I in R; instead of “f ∈ Cr(I)” we also write “f : I → R is a Cr-function” or
“f : I → R is of class Cr”. We use this mainly for sets I = [a, b] with a < b and
sets I = [a,∞). As in [8, 9] we denote Cr[a,+∞) by Cr

a, and Ca := C0
a.

Lemma 2.1. There is a C∞-function α : R → R such that α = 0 on (−∞, 0], α is
strictly increasing on [0, 1], and α = 1 on [1,+∞).

Proof. One can take α(t) := c−1
∫ t

−∞ ρ(2s− 1)ds where c :=
∫∞
−∞ ρ(2s− 1)ds. □

Lemma 2.2. Let θ : [a,∞) → R> be continuous. Then there exists a decreasing
C∞-function ζ : [a,∞) → R> such that θ(t) > ζ(t) and ζ ′(t) > −1 for all t ⩾ a.

Proof. Replacing θ by the function t 7→ mina⩽s⩽t min
(
θ(s), 1

)
: [a,∞) → R> we

arrange that θ is decreasing and 0 ⩽ θ ⩽ 1 on [a,∞). Next we follow Exercise 2
of [16, (8.12)], taking the convolution with ρ; in other words, we extend θ to all
of R by setting θ(t) = 0 for t < a, and then define f : R → R by

f(t) :=

∫ ∞

−∞
θ(s)ρ(t− s) ds =

∫ ∞

−∞
θ(t− s)ρ(s) ds.

Instead of −∞, ∞ we can take in the left integral any real bounds c ⩽ t − 1,
d ⩾ t + 1, and in the right integral any real bounds c ⩽ −1, d ⩾ 1. As in that
exercise one shows that f is of class C∞ (in fact, f (p)(t) =

∫∞
−∞ θ(s)ρ(p)(t− s)ds for

all p ∈ N and all t) and decreasing on [a+ 1,∞). For t ⩾ a+ 1 we have

0 < f(t) =

∫ 1

−1

θ(t− s)ρ(s) ds ⩽ 2 e−2 θ(t− 1) < θ(t− 1).
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Using ρ′(s) ⩾ 0 for −1 ⩽ s ⩽ 0 and ρ′(s) ⩽ 0 for 0 ⩽ s ⩽ 1, we obtain for all t,

f ′(t) =

∫ 1

−1

θ(t−s)ρ′(s) ds ⩾
∫ 1

0

θ(t−s)ρ′(s) ds ⩾
∫ 1

0

ρ′(s) ds = − e−2 > −1.

Thus ζ : [a,∞) → R> defined by ζ(t) := f(t+ 1) has the desired property. □

Lemma 2.3. Let a < b and ϕ, ζ ∈ C∞[a, b] be such that ϕ(a) = ζ(a) and ϕ < ζ
on (a, b], and let real numbers cn be given with ϕ(b) < c0 < ζ(b). Then there exists
a function θ ∈ C∞[a, b] such that θ(n)(a) = ϕ(n)(a) for all n, ϕ < θ < ζ on (a, b],
and θ(n)(b) = cn for all n. (See Figure 2.)

a b

ϕ

ζ

θ

t

Figure 2. Sketch of ϕ, θ, ζ in Lemma 2.3

Proof. By subtracting ϕ throughout we arrange ϕ = 0. A result due to E. Borel [16,
Exercise 4(a), p. 192] yields a function β ∈ C∞[a, b] such that β(n)(b) = cn for all n.
Take δ ∈ (0, b− a) with δ < β < ζ − δ on [b− δ, b], and then α ∈ C∞[a, b] such that

• α = 0 on [a, b− δ],
• α is strictly increasing on [b− δ, b− 1

2δ], and

• α = 1 on [b− 1
2δ, b].

Take ε ∈ (0, 12 ) such that εζ < δ on [b− δ, b], and take γ ∈ C∞[a, b] such that

• γ(n)(a) = 0 for all n,
• 0 < γ < ε on (a, b− 1

2δ), and

• γ = 0 on [b− 1
2δ, b].

Then the function θ := αβ + γζ has the desired properties. □

Lemma 2.4. Let a < b, f, g ∈ C[a, b], and f < g on [a, b]. Then there are a0 <
a1 < · · · < an with a0 = a, an = b, and a function ϕ : [a, b] → R such that

(i) f < ϕ < g on [a, b],
(ii) ϕ(a) = 1

2

(
f(a) + g(a)

)
and ϕ(b) = 1

2

(
f(b) + g(b)

)
, and

(iii) for i = 0, . . . , n− 1, the restriction of ϕ to [ai, ai+1] is the restriction of an
affine function R → R.
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Proof. Let ε := 1
2 min

{
g(t) − f(t) : t ∈ [a, b]

}
, so ε > 0. Choose n ⩾ 1 such that

for all s, t ∈ [a, b] with |s − t| ⩽ δ := b−a
n we have |f(s) − f(t)|, |g(s) − g(t)| < ε.

For i = 0, . . . , n set ai := a + iδ, and for i = 0, . . . , n − 1 take affine ϕi : R → R
with ϕi(ai) =

1
2

(
f(ai) + g(ai)

)
and ϕi(ai+1) =

1
2

(
f(ai+1) + g(ai+1)

)
. It suffices to

show that f < ϕi < g on [ai, ai+1] for i = 0, . . . , n−1. For such i and s, t ∈ [ai, ai+1],

f(t) < ε+ f(s) ⩽ 1
2

(
f(s) + g(s)

)
⩽ −ε+ g(s) < g(t),

in particular, f(t) < ϕi(ai), ϕi(ai+1) < g(t). Since ϕi(ai) ⩽ ϕi(t) ⩽ ϕi(ai+1)
or ϕi(ai+1) ⩽ ϕi(t) ⩽ ϕi(ai), we are done. □

Lemma 2.5. Let f, g ∈ Ca be such that f < g on [a,+∞). Then there exists a
function y ∈ C∞

a such that f < y < g on [a,+∞).

Proof. Lemma 2.4 yields a piecewise affine intermediary ϕ, more precisely, a strictly
increasing sequence (an) in R with a0 = a and an → +∞ as n → ∞ and a ϕ ∈ Ca
such that for each n the restriction of ϕ to [an, an+1] is the restriction of an affine
function R → R, and such that f < ϕ < g on [a,+∞). This reduces the problem
of constructing y to proving the next lemma. □

Lemma 2.6. Let a < b < c and ϕ, θ ∈ C∞[a, c] be such that ϕ(b) = θ(b), and
let 0 < ε < b− a, c− b. Then there exists y ∈ C∞[a, c] such that

y(t) = ϕ(t) for a ⩽ t ⩽ b− ε, |y(t)− ϕ(t)| < ε for b− ε ⩽ t ⩽ b,

y(t) = θ(t) for b+ ε ⩽ t ⩽ c, |y(t)− θ(t)| < ε for b ⩽ t ⩽ b+ ε.

Proof. Take 0 < δ < ε such that |ϕ−θ| ⩽ ε/2 on [b−δ, b+δ]. Next, take β ∈ C∞[a, c]
such that

• β = 0 on [a, b− δ],
• 0 ⩽ β ⩽ 1 on [b− δ, b+ δ], and
• β = 1 on [b+ δ, c].

Then y := (1− β)ϕ+ βθ has the desired property. □

Lemma 2.7. For each n, let fn, gn ∈ C be such that fn ⩽ fn+1, gn+1 ⩽ gn,
and fn <e gn. Then there exists ϕ ∈ C∞ such that fn <e ϕ <e gn for each n.

Proof. Take for each n representatives of fn and gn in C0, denoted also by fn
and gn, such that fn < gn on [0,∞). Next, take a strictly increasing sequence (an)
of real numbers ⩾ 0 with an → ∞ as n → ∞, such that fn ⩽ fn+1 and gn ⩾ gn+1

on [an,∞), and take continuous functions αn, βn : [0,∞) → [0, 1] with αn(an) = 1,
αn(an+1) = 0 and αn + βn = 1 on [an, an+1]. Let f, g : [0,∞) → R be given by

f = f0 on [0, a0], f = αnfn + βnfn+1 on [an, an+1],

g = g0 on [0, a0], g = αngn + βngn+1 on [an, an+1],

so f , g are continuous, fn ⩽ f and g ⩽ gn on [an,∞), and f < g on [0,∞). (See
Figure 3.) Now Lemma 2.5 gives ϕ ∈ C∞

0 such that f < ϕ < g on [0,∞), and then
its germ at +∞, denoted also by ϕ, satisfies fn <e ϕ <e gn for all n. □

Corollary 2.8. Let H be a Hausdorff field and A, B nonempty countable subsets
of H with A < B. Then there exists ϕ ∈ C∞ such that A <e ϕ <e B.

Proof. Take an increasing and cofinal sequence (fn) in A and a decreasing coinitial
sequence (gn) in B, and apply the previous lemma. □
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an an+1

βnαn

t
an an+1

ϕ

gn+1

gn

fn+1

fn

t

Figure 3. Constructing ϕ in the proof of Lemma 2.7

We shall also use the following variant of Lemma 2.3:

Lemma 2.9. Let a < b, f, g ∈ C[a, b], and cn, dn ∈ R for n = 0, 1, 2, . . . be
such that f(a) < c0 < g(a), f < g on [a, b], and f(b) < d0 < g(b). Then there
exists y ∈ C∞[a, b] with f < y < g on [a, b] and y(n)(a) = cn, y

(n)(b) = dn for all n.

Proof. Take ε > 0 such that f(a) + ε < c0, f + ε < g on [a, b], and f(b) + ε < d0.
Lemma 2.5 gives ϕ ∈ C∞[a, b] with f < ϕ < f + ε on [a, b], and so replacing f by ϕ
and then subtracting ϕ throughout (replacing g by g−ϕ and cn, dn by cn−ϕ(n)(a),
dn − ϕ(n)(b), respectively) we arrange f = 0.

Borel’s result gives α, β ∈ C∞[a, b] with α(n)(a) = cn and β(n)(b) = dn for all n.
Take a real number M > 0 such that |α|, |β| ⩽ M on [a, b]. Take “small” real
numbers η1, η2 > 0 such that a + 2η1 < b − 2η1, 2Mη1 < η2, and 2Mη1 + η2 < g
on [a, b]. Take γ, δ ∈ C∞[a, b] such that

• γ = 1 on [a, a+ η1],
• γ is decreasing on [a+ η1, a+ 2η1],
• γ = η1 on [a+ 2η1, b− 2η1],
• γ is decreasing on [b− 2η1, b− η1], and
• γ = 0 on [b− η1, b],

and δ behaves similarly in the opposite direction:

• δ = 0 on [a, a+ η1],
• δ is increasing on [a+ η1, a+ 2η1],
• δ = η1 on [a+ 2η1, b− 2η1],
• δ is increasing on [b− 2η1, b− η1], and
• δ = 1 on [b− η1, b].

Finally, take θ ∈ C∞[a, b] such that

• θ = 0 on [a, a+ η1],
• θ is increasing on [a+ η1, a+ 2η1],
• θ = η2 on [a+ 2η1, b− 2η1],
• θ is decreasing on [b− 2η1, b− η1], and
• θ = 0 on [b− η1, b].

(See Figure 4.) Then y := γα + δβ + θ has the desired property, provided η1, η2
are sufficiently small. □
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a a+ η1 a+ 2η1 b− 2η1 b− η1 b

η1
η2
1

t

γ

δ

θ

Figure 4. The functions γ, δ, θ

Constructing infinite sums. The next lemma follows from [16, (8.6.4)]:

Lemma 2.10. Let (fn) be a sequence of functions in C1
a such that fn(a) → c

as n→ ∞, for some c ∈ R. Suppose also that (f ′n) converges to g ∈ Ca, uniformly
on [a, b] for every b > a. Then (fn) converges to a function f ∈ C1

a, uniformly
on [a, b] for every b > a, with f ′ = g.

We use this for infinite series where the fn are the partial sums, and with higher
derivatives where the assumptions allow us to apply the lemma inductively. We
shall also need a slight twist, where instead of the derivation ∂ : C1

a → Ca we
use δ : C1

a → Ca, with δ := ϕ−1
∂, ϕ ∈ (Ca)×:

Lemma 2.11. Let (fn) be a sequence of functions in C1
a such that fn(a) → c

as n→ ∞, for some c. Suppose also that (δfn) converges to g ∈ Ca, uniformly
on [a, b] for every b > a. Then (fn) converges to a function f ∈ C1

a, uniformly
on [a, b] for every b > a, with δf = g.

This follows from the previous lemma in view of ∂ = ϕδ. Induction on m yields:

Corollary 2.12. Let m ⩾ 1, ϕ ∈ (Cm−1
a )×, and δ := ϕ−1

∂ : C1
a → Ca. Then δ

maps Cj
a into Cj−1

a for j = 1, . . . ,m. Let (fn) be a sequence of functions in Cm
a such

that for k = 0, . . . ,m the series
∑∞

n=0 δ
kfn converges to gk ∈ Ca, uniformly on [a, b]

for every b > a. Then for k = 0, . . . ,m we have gk ∈ Cm−k
a and f := g0 ∈ Cm

a

satisfies δ
kf = gk.

This corollary and the following results on infinite sums will be used in the next two
sections. Let a ∈ R, and for i = 0, 1, 2, . . . , let a continuous function fi : [a,∞) → R
be given, and set Mn

i := max
a⩽t⩽a+n

|fi(t)|, so

0 ⩽ M0
i ⩽ M1

i ⩽ M2
i ⩽ · · · .

Suppose the real numbers εi > 0 are such that
∑

i εiM
n
i < ∞ for every n.

Then
∑

i εifi converges uniformly on each set [a, a + n], and so this sum defines
a continuous function on [a,∞). We can certainly take real numbers εi > 0 such
that

∑
i εiM

i
i < ∞, and then we do indeed have for every n that

∑
i εiM

n
i < ∞,

since ∑
i

εiM
n
i =

n∑
i=0

εiM
n
i +

∑
i>n

εiM
n
i ⩽

n∑
i=0

εiM
n
i +

∑
i>n

εiM
i
i .

Thus there exist εi as in the hypothesis of the next lemma. In the rest of this
subsection we assume that for every i we have fi ⩾ 0 on [a,∞) and fi ≺ fi+1 in C.
Lemma 2.13. Let the reals εi > 0 be such that

∑
i εifi converges to a func-

tion f : [a,∞) → R, uniformly on each compact subset of [a,∞). Then f ≻ fn
(in C) for all n. If all fi are increasing, then so is f =

∑
i εifi.
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Proof. Note that
∑

i εifi ⩾ εn+1fn+1 ≻ fn. □

Lemma 2.14. Let for each n a continuous function gn : [a,∞) → R> be given
such that fi ≺ gn, for all i and n. Then there exist reals εi > 0 for which

∑
i εifi

converges to a function f : [a,∞) → R, uniformly on each compact subset of [a,∞),
such that f ⩽ gn in C for all n.

Proof. For the moment we just consider one continuous function g : [a,∞) → R>

with fi ≺ g for all i. Then we pick the εi > 0 so small that
∑

i εiM
i
i < ∞

and εifi ⩽ g/2i+1. This results in f :=
∑

i εifi ⩽ g. Let a second continuous
function h : [a,∞) → R> be given with fi ≺ h for all i. Take b ⩾ a such that ε0f0 ⩽
h/2 on [b,∞), and next decrease, if necessary, the εi with i ⩾ 1 so that εifi ⩽ h/2i+1

on [b,∞) for the new values of εi. This results in f ⩽ h on [b,∞) for the new f ; note
that we did not change ε0. Starting with g = g0 we apply this procedure successively
to g1, g2, . . . in the role of h: we recursively pick b1, b2, . . . ⩾ a, decreasing only the εi
for i ⩾ n when dealing with gn, n ⩾ 1. Then at the end we have not only f ⩽ g0
on [a,∞), but also f ⩽ gn on [bn,∞), for all n ⩾ 1 simultaneously. □

Note that if in Lemma 2.14 we have g0 ≻ g1 ≻ g2 ≻ · · · , then f ≺ gn for all n.
Lemmas 2.13 and 2.14 are more precise versions of results of du Bois-Reymond [12]
and Hadamard [19, §19], respectively; cf. [21, Chapter II].

Assume next that the fi are of class C∞. Then we set

Mn
i := max

j⩽n, a⩽t⩽a+n

∣∣f (j)i (t)
∣∣.

Again, 0 ⩽ M0
i ⩽ M1

i ⩽ M2
i ⩽ · · · . Taking the εi > 0 such that

∑
i εiM

i
i < ∞,

we have
∑

i εiM
n
i <∞ for every n, as before. Hence

∑
i εifi converges, say to the

continuous function f : [a,∞) → R⩾, uniformly on each [a, a + n]. Also
∑

i εif
(j)
i

converges for every j to a continuous function f (j) : [a,∞) → R, uniformly on
each [a, a+ n]. An easy induction on j shows that f is in fact of class Cj with f (j)

as its jth derivative, as suggested by the notation. Thus f is of class C∞.

Useful inequalities in constructing Hardy fields. The lemmas in this subsec-
tion will be used in Sections 6 and 9.

Lemma 2.15. Let F,G ∈ C1
a satisfy F ′(t) ⩽ G′(t) for all t ⩾ a. Then there is a

real constant c such that F < G+ c on [a,∞).

Proof. The function F − G is continuous and decreasing, hence on [a,∞) we
have F −G ⩽ F (a)−G(a) < c := F (a)−G(a) + 1. □

Here is a useful multiplicative version:

Lemma 2.16. Let F,G : [a,+∞) → R> of class C1 be such that F † ⩽ G† on [a,∞).
Then there is c ∈ R> such that F < cG on [a,∞).

Proof. We have F † = (logF )′ and G† = (logG)′, so Lemma 2.15 yields d ∈ R
with logF < d+ logG on [a,∞), and thus F < cG on [a,∞) for c := ed ∈ R>. □

Lemma 2.17. Suppose f ∈ C lies in a Hardy field. Then the germ f(x+1) satisfies:

(i) f(x)− x >e R =⇒ f(x) + 1 <e f(x+ 1);
(ii) 0 < f(x) ≻ ex =⇒ f(x) <e f(x+ 1)/2;
(iii) 0 < f(x) ≺ e−x =⇒ f(x)− f(x+ 1) >e f(x)/2.
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Proof. For (i), assume f = x + g with g ∈ C and g > R. Then g lies in a Hardy
field, so g is eventually strictly increasing, hence g = g(x) <e g(x+ 1), and thus

f(x) + 1 = x+ 1 + g <e x+ 1 + g(x+ 1) = f(x+ 1).

Next, assume 0 < f ≻ ex. Then (log f)− x >e R, so
(
log f(x)

)
+ 1 <e log f(x+ 1)

by (i), and thus e f(x) <e f(x+ 1), hence f(x) <e f(x+ 1)/ e <e f(x+ 1)/2. As
to (iii), assume 0 < f(x) ≺ e−x. Applying (ii) to f−1 gives f(x) >e 2f(x + 1),
so 0 <e f(x+ 1) <e f(x)/2, and thus f(x)− f(x+ 1) >e f(x)/2. □

3. Pseudoconvergence in Hardy Fields

Let H be a Hardy field. Let a sequence

f0 ≻ f1 ≻ f2 ≻ . . .

in H> be given. Then we have the pc-sequence (Fi) in H, with Fi := f0 + · · ·+ fi.
Our aim in this section and the next is to show:

Theorem 3.1. (Fi) pseudoconverges in some Hardy field extension of H.

In view of Lemma 1.2 this has the following consequence:

Corollary 3.2. Every pc-sequence of countable length in a maximal Hardy field
has a pseudolimit in that Hardy field.

Towards the proof of Theorem 3.1 we first recall from [8, Sections 3, 4] the following.
Let ℓ ∈ C<∞ be such that ℓ > R and ℓ′ ∈ H. Then ℓ lies in a Hardy field extension
of H, ϕ := ℓ′ ∈ H> is active in H, and the compositional inverse ℓinv > R of ℓ
yields an isomorphism f 7→ f◦ := f ◦ ℓinv : (C<∞)ϕ → C<∞ of differential rings that
maps H onto the Hardy field H◦ := H ◦ ℓinv; moreover, f1 ≺ f2 ⇔ f1 ◦ ℓ ≺ f2 ◦ ℓ,
for all f1, f2 ∈ C<∞. Thus (F ◦

i ) is a pc-sequence in H◦, and we have:

Lemma 3.3. (Fi) pseudoconverges in some Hardy field extension of H if and only
if (F ◦

i ) pseudoconverges in some Hardy field extension of H◦.

We can also use [9, Theorem 11.19] to pass to an extension and arrange that H ⊇ R
and H is closed. Then the following lemma is relevant.

Lemma 3.4. Let H ⊇ R be closed. Suppose (Fi) has no pseudolimit in H, and let
any element F ∈ C<∞ be given. Then the following are equivalent:

(i) F generates a Hardy field H⟨F ⟩ over H with Fi ⇝ F ;
(ii) for all k, m with k < m and active ϕ ∈ H> we have

δ
k

(
F − Fm

fm

)
≼ 1 in C<∞

where δ := ϕ−1
∂ is construed as a derivation of C<∞.

Proof. Assume (i). Then for all k, m and active ϕ ∈ H> we have (F −Fm)/fm ≺ 1,
and thus δ

k
(
F−Fm

fm

)
≺ 1. This proves (i) ⇒ (ii). For (ii) ⇒ (i), assume (ii).

For k = 0 we get F − Fm ≼ fm for all m ⩾ 1. Let P ∈ H{Y }̸=. Now (Fm) is of
d-transcendental type over H by [ADH, 11.4, 14.0.2], so we have m0 ⩾ order(P )
in N⩾1 such that ndeg≼fm+1

P+Fm
= 0 for all m ⩾ m0, by [ADH, 11.4.11, 11.4.12].

Using P+Fm+1
= (P+Fm

)+fm+1
and [ADH, 11.2.7] we obtain ndeg≼fm+1

P+Fm+1
= 0

for all m ⩾ m0. Thus for m1 := m0 + 1 and Q := P+Fm1
,×fm1

we have an
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active ϕ0 ∈ H> with ddegQϕ = 0 for all active ϕ ≼ ϕ0 in H>. This gives h ∈ H×

such that, with j ranging over Nm0 and Qϕ0

j := (Qϕ0)j ,

Qϕ0(Y ) = h+
∑
|j|̸=0

Qϕ0

j Y j , Qϕ0

j ≺ h for |j| ≠ 0.

Thus with G := (F − Fm1)/fm1 we have G ≼ 1 and F = Fm1 + fm1G, so

P (F ) = Qϕ0(G) = h+
∑
|j|̸=0

Qϕ0

j Gj

where the factors Gj are evaluated in C<∞ using the derivation δ = ϕ−1
0 ∂, and

so Gj ≼ 1 for |j| ≠ 0, by (ii). Hence P (F ) ∼ h. This yields (i). □

Corollary 3.5. In Lemma 3.4 we can replace (ii) by any of the two variants below:

(ii)∗ for all m > k and active ϕ0 ∈ H there is an active ϕ ≼ ϕ0 in H> such that

δ
k

(
F − Fm

fm

)
≼ 1 in C<∞

where δ := ϕ−1
∂ is construed as a derivation of C<∞.

(ii)∗∗ for all m0 ⩾ 1 and active ϕ0 ∈ H there is an active ϕ ≼ ϕ0 in H> and
an m ⩾ m0 such that for k = 0, . . . ,m0,

δ
k

(
F − Fm

fm

)
≼ 1 in C<∞, with δ := ϕ−1

∂.

Proof. For (ii)∗∗ ⇒ (i), assume (ii)∗∗. As before we have F−Fm ≼ fm for allm ⩾ 1.
Take m0, Q, ϕ0 as in the proof of (ii) ⇒ (i), and set Qm := P+Fm+1,×fm+1 . For

any m ⩾ m0 and active ϕ ≼ ϕ0 in H> we have ddegQϕ = 0, so ddegQϕ
m = 0

by [ADH, 6.6.12]. Now (ii)∗∗ gives active ϕ ≼ ϕ0 in H> and m ⩾ m0 such that
for k = 0, . . . ,m0 we have δ

k
(
F−Fm

fm

)
≼ 1 in C<∞, with δ := ϕ−1

∂. In view

of ddegQϕ
m = 0, the last part of the proof of the lemma with ϕ0, Q replaced

by ϕ, Qm, and G replaced by Gm := (F−Fm+1)/fm+1, but j still ranging over Nm0 ,
goes through, and yields the desired conclusion. □

Rather than Lemma 3.4 we shall use in what follows the implications (ii)∗ ⇒ (i)
and (ii)∗∗ ⇒ (i) that are implicit in the proof of that lemma, as we saw.

Expressing the powers δ
k in terms of ∂. To facilitate the use of Lemma 3.4

and its variants we shall express δ
k in terms of ∂. Let R be any differential ring

with derivation ∂. Then f ∈ R gives rise to a derivation δ := f∂ on the underlying
ring of R. For k ⩾ 1, 0 ⩽ j ⩽ k, we define Gk

j (Y ) ∈ Q{Y } ⊆ R{Y } by recursion:

• Gk
0 = 0,

• Gk
k = Y k,

• Gk+1
j = Y

(
∂(Gk

j ) +Gk
j−1

)
for 1 ⩽ j ⩽ k.

(See also [ADH, 5.7].) For the additive operators ∂ and δ on the underlying ring R
this recursion gives:

δ
k =

k∑
j=1

Gk
j (f)∂

j (k ⩾ 1).

For 1 ⩽ j ⩽ k the differential polynomial Gk
j (Y ) is homogeneous of degree k and

of order ⩽ k, so we have a differential polynomial Rk
j (Z) ∈ Q{Z} of order < k



16 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN

and depending only on j and k such that Gk
j (f) = fkRk

j (f
†) for all f ∈ R×; see

also [ADH, 5.8]. For g ∈ R, ϕ ∈ R×, δ = ϕ−1
∂, this gives

(3.1) δ
k(g) = ϕ−k

k∑
j=1

Rk
j (−ϕ†)g(j) with g(j) := ∂

j(g) (k ⩾ 1).

Given a ∈ R, the identity (3.1) also holds for g ∈ Ck
a and ϕ ∈ (Ck

a)
×, where δ

k and
the ∂

j for j ⩽ k are construed in the obvious way as maps Ck
a → Ca.

For use in the next section we add the following observation:

Lemma 3.6. Let g ∈ H be active and g ≼ h ∈ H, and suppose f ∈ C<∞ satis-
fies (g−1

∂)k(f) ≺ 1 for k = 0, . . . ,m. Then also (h−1
∂)k(f) ≺ 1 for k = 0, . . . ,m.

Proof. Set u := g/h ∈ H≼1, δg := g−1
∂ and δh := h−1

∂. Then δh = uδg, as
derivations on H and on C<∞. For k ⩾ 1 we have by an earlier identity

(3.2) δ
k
h(f) =

k∑
j=1

Gk
j (u)δ

j
g(f)

where each Gk
j (u) is evaluated according to the small derivation δg on the asymp-

totic field H, and thus Gk
j (u) ≼ 1. This gives the desired result. □

Remark 3.7. For later use we note that the identity (3.2) also holds for 1 ⩽ k ⩽ m,
f, g ∈ Cm

a , h ∈ (Cm
a )×, with a ∈ R and u := g/h (an element of Cm

a ), and where δg :=
g−1

∂, δh := h−1
∂ are taken as derivations Cj

a → Cj−1
a , for j = 1, . . . ,m, and each Gk

j

is evaluated according to δg.

Bump functions. In this subsection t ranges over R. From Lemma 2.1 we obtain
an increasing C∞-function α : R → R with α(t) = 0 for t ⩽ 0 and α(t) = 1 for t ⩾ 1,
and below we fix such an α. (See Figure 5.)

1

1

0

α

t

Figure 5. The bump function α

For each n we take a real constant Cn such that 1 ⩽ C0 ⩽ C1 ⩽ C2 ⩽ · · · and

(3.3) |α(n)(t)| ⩽ Cn for all n and t.

For reals a < b we define the increasing C∞-function αa,b : R → R by

(3.4) αa,b(t) := α

(
t− a

b− a

)
,

so αa,b(t) = 0 for t ⩽ a and αa,b(t) = 1 for t ⩾ b. Also,

(3.5)
∣∣α(m)

a,b (t)
∣∣ ⩽ Cm

(b− a)m
for all m and t.
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Constructing F ∗. We go back to our Hardy field H (not necessarily ω-free or
newtonian) and its elements fn and Fn := f0 + · · · + fn, and in the rest of this
section t ranges over R⩾1. First, we take for each n a continuous function R⩾1 → R
that represents the germ fn, to be denoted also by fn, such that fn(t) > 0
and fn+1(t) ⩽ fn(t)/2 for all t: first choose the function f0, then f1, next f2,
and so on.

For each n we fix an an ∈ R⩾1 such that f0, . . . , fn are of class Cn on [an,+∞).
Next, let c0 < c1 < c2 < · · · be real numbers ⩾ 1 with cn → ∞ as n → ∞. We
define αn : R⩾1 → R by αn(t) := αcn,cn+1(t), so αn is an increasing C∞-function
with αn(t) = 0 for t ⩽ cn and αn(t) = 1 for t ⩾ cn+1, and we set

f∗n := αnfn : R⩾1 → R⩾0,

so f∗n(t) = 0 for t ⩽ cn and f∗n(t) = fn(t) for t ⩾ cn+1. Thus fn and f∗n have the
same germ at +∞, and we still have f∗n+1(t) ⩽ f∗n(t)/2 for all n and t. As we saw
in the subsection on Hausdorff fields in Section 1, this yields a continuous function

F ∗ :=

∞∑
n=0

f∗n : R⩾1 → R

such that F ∗ − Fn ≺ fn (in C) for all n.

Lemma 3.8. Assume cn > a0, . . . , an for all n. Then for all n, f∗n is of class Cn,
and F ∗ is of class Cn on [cn,+∞). So the germ of F ∗ at +∞ belongs to C<∞.

Proof. We have f∗n = 0 on [1, cn], and fn is of class Cn on [an,+∞), so f∗n is of
class Cn. For t ⩽ cn+1 we have F ∗(t) = f∗0 (t) + · · · + f∗n(t), so F

∗ is of class Cn

on [an, cn+1]. Likewise, F
∗ is of class Cn+1 on [an+1, cn+2]. Continuing this way we

obtain that F ∗ is of class Cn on [cn,+∞). □

We consider the an as fixed, with the cn > a0, . . . , an to be chosen as needed
later. We set εm := fm+1/fm, so 0 < εm(t) ⩽ 1/2 for all t and εm ≺ 1 in H.
For any n > m we also set εn,m := fn/fm, so εn,m is of class Cn on [an,+∞)
and 0 < εn,m(t) ⩽ 2εm(t)/2n−m for all t. Then for n > m we have εn,m ≼ εm ≺ 1

in H, so ε
(k)
n,m ≺ x−1 for all k ⩾ 1: use [ADH, 9.1.9(iv), 9.1.10], first passing from H

to a Hardy field extension containing x if necessary.

Proof in the fluent case. This case of Theorem 3.1 is as follows:

Proposition 3.9. Suppose ε ∈ H≺1 is such that fi+1/fi ≺ ε for all i. Then (Fi)
pseudoconverges in some Hardy field extension of H.

Proof. By passing to a suitable extension we first arrange that H ⊇ R is closed.
Then ℓ := − log |ε| ∈ H>R, |ε| = e−ℓ, so |ε| ◦ ℓinv = e−x, and thus (fi+1/fi) ◦ ℓinv ≺
e−x for all i. Replacing H by H ◦ ℓinv and renaming we can arrange in view of
Lemma 3.3 that fi+1/fi ≺ e−x for all i, and this is what we assume below. Note
that then (fn/fm)(k) ≺ e−x for all n > m and all k. We also assume that (Fi) does
not pseudoconverge in H.

As in the subsection on constructing F ∗ we choose for each germ fn a continuous
representative R⩾1 → R, also to be denoted by fn, and real numbers a0, a1, a2, . . . ,
c0, c1, c2, . . . with the properties listed there, and with cn > a0, . . . , an for all n:
the an are fixed and the cn are adjustable. As in that subsection this yields an F ∗ =∑∞

n=0 f
∗
n ∈ C<∞ with f∗n = αnfn for all n, and we introduce the functions εm =
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fm+1/fm and εn,m = fn/fm for n > m. For each n we take bn ⩾ a0, . . . , an such
that for all k, m with 0 ⩽ k ⩽ m < n,

t ⩾ bn =⇒
∣∣ε(k)n,m(t)

∣∣ ⩽ e−t

2n−m
.

Next, with the Cn from (3.3), take cn > b0, . . . , bn such that cn+1 − cn ⩾ Cn

(so cn → ∞). For m ⩽ n we have |α(m)
n (t)| ⩽ 1 for all t: this is clear for m = 0,

and for m ⩾ 1 it follows from Cm ⩽ Cn and (3.5).
Let ϕ ∈ H> be active and ϕ ≺ 1, so ϕ ≻ x−2 and ϕ† ≼ x−1. This gives a

derivation δ := ϕ−1
∂ on C<∞. Now we use (ii)∗ ⇒ (i) from Corollary 3.5. It tells

us that for F ∗ to generate a Hardy field over H with Fi ⇝ F ∗, it is enough to
establish that the present assumptions on ϕ imply:

Claim: for all m > k we have δ
k
(
F∗−Fm

fm

)
≺ 1 in C<∞.

Let m ⩾ 1 be given and represent the germ ϕ by a Cm-function R⩾1 → R>, to
be denoted also by ϕ. For 1 ⩽ j < k, the coefficient of Y k in the homogeneous
differential polynomial Gk

j of degree k is 0, so Gk
j (1) = Rk

j (0) = 0. Also Rk
k = 1

for k ⩾ 1. Hence we can take a real number c∗m ⩾ cm such that for all t ⩾ c∗m,

ϕ(t) ⩾ t−2,
∣∣Rk

j (−ϕ†)(t)
∣∣ ⩽ 1 whenever 1 ⩽ j ⩽ k ⩽ m.

Then (3.1) yields∣∣∣∣δk( f∗n
fm

)
(t)

∣∣∣∣ ⩽ t2k
k∑

j=1

∣∣∣∣∣
(
f∗n
fm

)(j)

(t)

∣∣∣∣∣ (1 ⩽ k ⩽ m < n, t ⩾ c∗m).

Here it is relevant that the f∗n/fm are of class Cm on [cm,+∞) for the derivatives
to exist. Next, for 1 ⩽ j ⩽ m < n and t ⩾ c∗m,∣∣∣∣∣

(
f∗n
fm

)(j)

(t)

∣∣∣∣∣ ⩽
j∑

i=0

(
j

i

) ∣∣∣α(j−i)
n (t) · ε(i)n,m(t)

∣∣∣
⩽

j∑
i=0

(
j

i

)
e−t

2n−m
= 2j

e−t

2n−m
.

Combining this with the previous inequality we get∣∣∣∣δk( f∗n
fm

)
(t)

∣∣∣∣ ⩽ 2k+1t2k
e−t

2n−m
(1 ⩽ k ⩽ m < n, t ⩾ c∗m).

Now F ∗
m := f∗0 + · · ·+ f∗m is of class Cm on [c∗m,∞), so by Lemma 3.8 the function

F ∗ − F ∗
m

fm
=

∞∑
n=m+1

f∗n
fm

is of class Cm on [c∗m,∞). Using also Corollary 2.12 we have for t ⩾ c∗m,∣∣∣∣δk(F ∗ − F ∗
m

fm

)
(t)

∣∣∣∣ ⩽ 2k+1t2k e−t (1 ⩽ k ⩽ m).

Hence δ
k
(

F∗−F∗
m

fm

)
≺ 1 in C<∞ for 1 ⩽ k ⩽ m. As F ∗

m and Fm are equal as germs

in C<∞, this proves the claim when k ⩾ 1. For k = 0, use that F ∗ − Fn ≺ fn for
all n. □
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Corollary 3.10. If H>R has uncountable coinitiality, then (Fi) pseudoconverges
in some Hardy field extension of H.

Thus to prove Theorem 3.1 it would be enough to show that in every maximal Hardy
field its set of positive infinite elements has uncountable coinitiality. However, we
were not able to prove the latter directly, and so couldn’t exploit this remark.
Instead we refine in the next section the previous constructions in the remaining
case where H>R has countable coinitiality.

Remarks on H>R having countable coninitiality. We show that the property
of H>R having countable coinitiality is fairly robust; this is not used later but
has independent interest. More generally, in this subsection K is a pre-H-field
with Γ := v(K×) ̸= {0}. Note: K>O = K>C ifK is anH-field. IfK is ungrounded,
then ci(K>O) = cf(Γ<) ⩾ ω, and cf(Γ<) = ω iff K has a logarithmic sequence (as
defined in [ADH, 11.5]) of countable length. First we refine [7, Lemma 1.3.20]:

Lemma 3.11. Suppose K is not λ-free, and L is a Liouville closed d-algebraic
H-field extension of K. Then L is ω-free with a logarithmic sequence of length ω,
and Γ< is not cofinal in Γ<

L .

Proof. Suppose first thatK is grounded. LetKω be the ω-free pre-H-field extension
of K introduced before [ADH, 11.7.16] (with K in place of F there), identified with
a pre-H-subfield of L containing K as in the proof of [7, Lemma 1.3.18]. The
sequence (fn) constructed before [ADH, 11.7.16] is a logarithmic sequence in Kω

with Γ< < v(fn) < 0 for all n ⩾ 1. By [7, Theorem 1.3.1], L is ω-free and Γ<
Kω

is

cofinal in Γ<
L , so (fn) remains a logarithmic sequence in L, and Γ< is not cofinal

in Γ<
L . If K is not grounded we reduce to the grounded case by following the proofs

of [7, Lemmas 1.3.18–1.3.20]. □

Next, let K = (K, I,Λ,Ω) be a pre-ΛΩ-field with Newton-Liouville closure Knl =
(Knl, . . . ); see [ADH, 16.4]. Recall that Knl is differentially algebraic over K. The
following proposition is analogous to the characterizations of rational asymptotic
integration and of λ-freeness in [7, Propositions 1.3.8, 1.3.12]:

Proposition 3.12. The following are equivalent:

(i) K is ω-free;
(ii) Γ< is cofinal in Γ<

L for every d-algebraic H-field extension L of K;
(iii) Γ< is cofinal in Γ<

Knl .

Moreover, if K is not ω-free, then Knl has a logarithmic sequence of length ω.

Proof. The implication (i) ⇒ (ii) holds by [7, Theorem 1.3.1], and (ii) ⇒ (iii) is
clear. For the rest, note that if K is not λ-free, then Knl has a logarithmic sequence
of length ω and Γ< is not cofinal in Γ<

Knl , by Lemma 3.11. Suppose now that K

is λ-free but not ω-free. Then [ADH, 11.8.30] gives ω ∈ K with ω
(
Λ(K)

)
< ω <

σ
(
Γ(K)

)
. By the proof of [ADH, 16.4.6], either Ω = ω(K)↓ or Ω = K \ σ

(
Γ(K)

)↑.
If Ω = ω(K)↓, then the proof of [ADH, 16.4.6] yields a γ ∈ Knl such that γ > 0,
σ(γ) = ω, and the pre-H-subfield Kγ := K⟨γ⟩ of Knl has a gap. Replacing K

by the pre-ΛΩ-subfield (Kγ , . . . ) of Knl we reduce to the case that K is not λ-

free. If Ω = K \ σ
(
Γ(K)

)↑, then the proof of [ADH, 16.4.6] yields λ ∈ Knl such

that ω(λ) = ω and the pre-H-subfield Kλ := K⟨λ⟩ of Knl is not λ-free, so we can
argue as before, with Kλ in place of Kγ . □
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Now assume H ⊇ R. Let M be a maximal Hardy field extension of H and

Hda := {f ∈M : f is d-algebraic over H}

be the d-closure of H in M , and let H, Hda, M be the canonical ΛΩ-expansions
of H, Hda, M , respectively; see [9, Sections 12, 13]. Thus H ⊆ Hda ⊆ M . Note
that Hda is a Newton-Liouville closure of H: the closed ΛΩ-field M extends H
and thus contains a Newton-Liouville closure Hnl of H, and Hnl ⊆ Hda since Hnl

is d-algebraic over H, so Hnl = Hda by [ADH, 16.0.3]. If M∗ is also a maximal
Hardy field extending H, then there is an H-field embedding Hda → M∗ over H
whose image is the d-closure of H in M∗, by [ADH, 16.4.9]. By Proposition 3.12:

Corollary 3.13. If H is ω-free, then H>R is coinitial in (Hda)>R. If H is not
ω-free, then Hda has a logarithmic sequence of length ω. In particular, if H>R has
countable coinitiality, then so does (Hda)>R.

4. The Remaining Case

We keep the assumptions on H and (fi) from the beginning of Section 3, and let t
range over R⩾1. For use in the “remaining case” we first derive bounds like those
of clause (ii) in Lemma 3.4 for ϕ = 1.

Useful bounds. We adopt the conventions and notations in the subsection on
constructing F ∗ from the previous section; in particular, the an are fixed, and
the cn will be adjusted so as to get the desired bounds on certain derivatives of the
functions f∗n/fm with n > m. For each n we take bn ⩾ a0, . . . , an such that for
all k, m with 1 ⩽ k ⩽ m < n,

t ⩾ bn =⇒
∣∣∣ε(k)n,m(t)

∣∣∣ ⩽ t−1

2n−m
.

Next, with the Cn from (3.3), we take for each n a cn > b0, . . . , bn with cn+1− cn ⩾
Cn (so cn → ∞ as n → ∞). Then |α(m)

n (t)| ⩽ 1 for all t whenever m ⩽ n, using
that Cm ⩽ Cn for such m, n. Note also that for m ⩽ n the function f∗n/fm is of
class Cn on its entire domain [1,∞) in view of f∗n(t) = 0 for t ⩽ cn.

Lemma 4.1. For all k, m with k ⩽ m we have

∂
k

(
F ∗ − Fm

fm

)
≺ 1 in C<∞.

Proof. Let 1 ⩽ k ⩽ m < n. From f∗n/fm = αnεn,m we get for t ⩾ cn,∣∣∣∣∣
(
f∗n
fm

)(k)

(t)

∣∣∣∣∣ ⩽
k∑

j=0

(
k

j

) ∣∣∣α(k−j)
n (t) · ε(j)n,m(t)

∣∣∣
⩽ |α(k)

n (t)|2εm(t)

2n−m
+

k∑
j=1

(
k

j

)
t−1

2n−m
⩽

2εm(t)

2n−m
+

2kt−1

2n−m
.

This also holds for t < cn, since (f∗n/fm)(t) = 0 for such t. Now fix m ⩾ 1 and
set F ∗

m := f∗0 + · · ·+ f∗m. By Corollary 2.12 the function

F ∗ − F ∗
m

fm
=

∞∑
n=m+1

f∗n
fm
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is of class Cm+1 on its entire domain [1,∞), and for all t,∣∣∣∣∂k(F ∗ − F ∗
m

fm

)
(t)

∣∣∣∣ ⩽ 2εm(t) + 2kt−1 (k = 1, . . . ,m).

Hence ∂
k
(F∗−F∗

m

fm

)
≺ 1 in C<∞ for k = 1, . . . ,m. As F ∗

m and Fm are equal as germs

in C<∞, this gives the desired result when k ⩾ 1. For k = 0, use that F ∗−Fn ≺ fn
for all n. □

For later use we record the following consequence:

Corollary 4.2. Let ϕ ∈ H> be active, and δ := ϕ−1
∂, as a derivation on C<∞.

Then there exists Fϕ ∈ C<∞ such that for all k, m with k ⩽ m,

δ
k

(
Fϕ − Fm

fm

)
≺ 1 in C<∞.

Proof. Take an ℓ in a Hardy field extension of H with ℓ′ = ϕ; note that ℓ > R.
The lemma above applied to the sequence (fi ◦ ℓinv) in H ◦ ℓinv yields F ∗ ∈ C<∞

with ∂
k
(
F∗−Fm◦ℓinv

fm◦ℓinv
)
≺ 1 in C<∞ for all m ⩾ k. For Fϕ := F ∗ ◦ ℓ ∈ C<∞ this gives

the desired result. □

In view of Lemma 3.4, the problem is that Fϕ depends on ϕ. The idea, to be
carried out in the next subsections, is to show that for suitable ϕn and a kind of
partition of unity (βn) the infinite sum

∑
n βnFϕn

has the desired properties. In the
previous section we proved Theorem 3.1 in the so-called fluent case, which includes
the case that H>R has uncountable coinitiality. The remaining case where H>R has
countable coinitiality will lead to the suitable ϕn and the partition of unity (βn)
that we alluded to. The an and bn below are still real numbers but have little to
do with the earlier an and bn; reusing these symbols with another meaning simply
reflects the limitations of the alphabet.

Towards constructing a good partition of unity. Until further notice the
Hardy field H ⊇ R is Liouville closed and H>R has countable coinitiality. It follows
that there is a sequence (ϕn) of active elements in H> such that

(
v(ϕn)

)
is strictly

increasing and cofinal in ΨH . Below we fix such a sequence (ϕn), and set δn := ϕ−1
n ∂,

a derivation on C<∞. Then Corollary 4.2 provides for each n a Φn ∈ C<∞ such
that for all k, m with k ⩽ m,

δ
k
n

(
Φn − Fm

fm

)
≺ 1 in C<∞,

and thus by Lemma 3.6, for all k ⩽ m and all i ⩽ n,

δ
k
i

(
Φn − Fm

fm

)
≺ 1 in C<∞.

We represent the germs ϕn, fn, and Φn by Cn-functions R⩾1 → R>, denoted also
by ϕn, fn, and Φn. These functions ϕn, fn and Φn are fixed in the rest of this
section, and the notion of “admissible sequence” defined below is relative to these
given sequences (ϕn), (fn), (Φn). Suppose the real numbers an ⩾ 1 are such that:

(I) for each n, f0, . . . , fn and ϕ0, . . . , ϕn are of class Cn on [an,+∞);
(II) for all i, k, m, n with k ⩽ m ⩽ n, i ⩽ n, and all t ⩾ an we have∣∣∣∣δki(Φn − Fm

fm

)
(t)

∣∣∣∣ ⩽ 1.
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Note that (II) makes sense in view of (I), and that (I) and (II) remain valid upon
increasing all an. We have ϕn/ϕi ≺ 1 in H for i < n and ϕn/ϕi = 1 for i = n,
and thus δ

k
n(ϕn/ϕi) ≺ 1 in H for i ⩽ n and k ⩾ 1. Note also that δ

k
n(ϕn/ϕi)(t) is

defined for i, k ⩽ n and t ⩾ an, since ϕn/ϕi is of class Cn on [an,+∞) for i ⩽ n.
Thus by taking the an large enough we can arrange in addition to (I) and (II):

(III) for all n and i, k ⩽ n and all t ⩾ an we have

|δkn(ϕn/ϕi)(t)| ⩽ 1.

An admissible sequence is a sequence
(
(an, bn, βn)

)
n⩾0

of triples (an, bn, βn) such

that:

(i) (an) is a strictly increasing sequence of real numbers ⩾ 1 with an → ∞
as n→ ∞ for which (I), (II), (III) hold;

and such that for all n:

(ii) bn is a real number with an < bn < an+1;
(iii) βn is a function R⩾1 → R of class Cn;
(iv) βn(t) = 0 if t ⩽ an, βn is increasing on [an, bn], βn(t) = 1 if bn ⩽ t ⩽ an+1,

βn is decreasing on [an+1, bn+1], and βn(t) = 0 for t ⩾ bn+1;
(v) βn + βn+1 = 1 on [an+1, bn+1].

(See Figure 6.)

an bn an+1 bn+1 an+2 bn+2

t

βn

βn+1

Figure 6. The functions βn, βn+1

In the rest of this subsection
(
(an, bn, βn)

)
denotes an admissible sequence. Note

that suppβn ⊆ [an, bn+1] by (iv), and that (v) expresses the “partition of unity”
requirement. The series

∑
n βnΦn converges pointwise on R⩾1 to a continuous

function Φ such that on each segment [bn, an+2] we have

βn + βn+1 = 1 and Φ = βnΦn + βn+1Φn+1,

so Φ is of class Cn on [bn, an+2). Likewise, Φ is of class Cn+1 on the set (bn+1, an+3],
which overlaps the previous set. Continuing this way we see that Φ is of class Cn

on [bn,+∞), and thus the germ of Φ lies in C<∞.

Lemma 4.3. Suppose for all m and i, k ⩽ m there is a positive constant C =
C(i, k,m) such that for all n ⩾ m,∣∣∣∣δki(βnΦn + βn+1Φn+1 − Fm

fm

)∣∣∣∣ ⩽ C on [an+1, bn+1].
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Then for all m and i, k ⩽ m we have

δ
k
i

(
Φ− Fm

fm

)
≼ 1 in C<∞.

Proof. Let i, k ⩽ m, and take a C ⩾ 1 as in the hypothesis. Then for all n ⩾ m we
have |δki

(
Φ−Fm

fm

)
| ⩽ C on [an+1, bn+1], and also by (II) above,∣∣∣∣δki(Φ− Fm

fm

)∣∣∣∣ ⩽ 1 on [bn, an+1],

∣∣∣∣δki(Φ− Fm

fm

)∣∣∣∣ ⩽ 1 on [bn+1, an+2],

and thus |δki
(
Φ−Fm

fm

)
| ⩽ C on [bn, an+2]. Taking the union over all n ⩾ m we obtain∣∣∣∣δki(Φ− Fm

fm

)∣∣∣∣ ⩽ C on [bm,+∞),

which gives the desired result. □

We didn’t use (III) yet, but we need it for a further reduction:

Lemma 4.4. Suppose for all m and k ⩽ m there is a positive constant C(k,m)
such that for all n ⩾ m,∣∣∣∣δkn (βnΦn + βn+1Φn+1 − Fm

fm

)∣∣∣∣ ⩽ C(k,m) on [an+1, bn+1].

Then for all m and i, k ⩽ m we have

δ
k
i

(
Φ− Fm

fm

)
≼ 1 in C<∞.

Proof. Let C(m) := maxk⩽m C(k,m) where the C(k,m) are as in the hypothesis.

Let i, k ⩽ m ⩽ n, and let F, g, h be the restrictions of βnΦn+βn+1Φn+1−Fm

fm
, ϕn, ϕi

to [an+1,+∞), respectively; these functions are of class Cn. For j = 1, . . . ,m we
denote the derivations

f 7→ g−1f ′ : Cj
an+1

→ Cj−1
an+1

, f 7→ h−1f ′ : Cj
an+1

→ Cj−1
an+1

by δg and δh, suppressing for convenience the dependence on j. Let u := g/h ∈
Cm
an+1

. Then Remark 3.7 gives for f ∈ Cm
an+1

:

δ
k
h(f) =

k∑
j=0

Gk
j (u)δ

j
g(f) (with G0

0 := 1 to handle the case k = 0),

where Gk
j is evaluated according to the derivation δg. By our hypothesis,

|δjg(F )| ⩽ C(m) on [an+1, bn+1], j = 0, . . . , k.

Now (III) provides a positive constant B(m) depending on m but not on n, such
that |Gk

j (u)| ⩽ B(m) on [an+1, bn+1] for j = 0, . . . , k. Hence

|δkh(F )| ⩽ (k + 1)B(m)C(m) on [an+1, bn+1],

and so the hypothesis of the previous lemma is satisfied. □

Corollary 4.5. If H is closed, (Fi) has no pseudolimit in H, and the hypothesis
of Lemma 4.4 is satisfied, then Φ generates a Hardy field over H and Fi ⇝ Φ.

Proof. Use the conclusion of Lemma 4.4, and the implication (ii)∗∗ ⇒ (i) (with Φ
in the role of F ) from Corollary 3.5. □
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In order to make a further reduction, note that on [an+1, bn+1] we have βn =
1− βn+1, and so, on [an+1, bn+1],

βnΦn + βn+1Φn+1 − Fm

fm
= βn+1 ·

(
Φn+1 − Φn

fm

)
+

Φn − Fm

fm
(∗)

= βn+1 ·
(
Φn+1 − Fm

fm
− Φn − Fm

fm

)
+

Φn − Fm

fm
.

This leads to a further simplification:

Lemma 4.6. If for all k there is a constant B(k) > 0 such that for all n ⩾ k,
|δkn(βn+1)| ⩽ B(k) on [an+1, bn+1], then the hypothesis of Lemma 4.4 is satisfied.

Proof. To simplify notation, set Gn,m := Φn−Fm

fm
, and let k ⩽ m ⩽ n. Then by (∗),

δ
k
n

(
βnΦn + βn+1Φn+1 − Fm

fm

)
=

k∑
j=0

(
k

j

)
δ
j
n(βn+1)δ

k−j
n (Gn+1,m −Gn,m)

+ δ
k
n(Gn,m)

on [an+1, bn+1]. Suppose B ∈ R> and |δjn(βn+1)| ⩽ B on [an+1, bn+1] for j =
0, . . . , k. Then the above identity and (II) gives that on [an+1, bn+1],∣∣∣∣δkn (βnΦn + βn+1Φn+1 − Fm

fm

)∣∣∣∣ ⩽
 k∑
j=0

(
k

j

)
·B · 2

+ 1 = 2k+1B + 1,

which gives the desired result. □

Using composition. In this subsection we explore how we might arrange that our
admissible sequence

(
(an, bn, βn)

)
satisfies the hypothesis of Lemma 4.6, and thus

of Lemma 4.4. In the next subsection we then construct such a sequence.
By (iv) there is no problem for k = 0, since 0 ⩽ βn+1 ⩽ 1. Assume 1 ⩽ k ⩽ n

and set ϕ := ϕn, so δ := ϕ−1
∂ = δn, and set a := an+1, b := bn+1, β := βn+1.

We wish to bound |δk(β)| on [a, b] by a positive constant that may depend on k
but not on n ⩾ k. To achieve this goal we introduce the strictly increasing bi-
jection g : R⩾1 → R⩾0 given by g(r) =

∫ r

1
ϕ(t) dt, so g ∈ Cn+1

1 , g′ = ϕ, and g

has as compositional inverse the strictly increasing bijection ginv : R⩾0 → R⩾1 of
class Cn+1. Induction on j ⩽ n+ 1 gives δ

jβ = (β ◦ ginv)(j) ◦ g on R⩾1. For j = k
this identity gives for any B ∈ R> the equivalence

(4.1) |δk(β)| ⩽ B on [a, b] ⇐⇒ |(β ◦ ginv)(k)| ⩽ B on
[
g(a), g(b)

]
.

We shall arrange below that b is given in terms of a by g(b) = g(a) + 1 and that
on

[
g(a), g(b)

]
the function β ◦ ginv equals αg(a),g(b) with α the bump function from

Section 3. In the next subsection we show that then for sufficiently fast growing (an)
all our constraints are satisfied.

The construction. In view of the dependence of the function g on n in the story
above we restore here indices, defining the strictly increasing bijection

gn : R⩾1 → R⩾0, gn(r) :=

∫ r

1

ϕn(t) dt,

so gn ∈ Cn+1
1 , g′n = ϕn, and gn has as compositional inverse the strictly increasing

bijection ginvn : R⩾0 → R⩾1 of class Cn+1.
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Next we take a strictly increasing sequence (an) of real numbers ⩾ 1 such
that an → ∞ and (I), (II), (III) hold, and such that for every n we have bn+1 < an+2

where the real number bn+1 is defined by gn(bn+1) = gn(an+1)+1. (It will be clear
that there are such sequences.) With b0 any real number satisfying a0 < b0 < a1,
we now have an < bn < an+1 for all n. We define for each n the C∞-function

αn := αgn(an+1),gn(bn+1) : R → R.

The bump function α came with constants Ck > 0 such that |α(k)| ⩽ Ck on R,
thus |α(k)

n | ⩽ Ck on R for all k, n in view of gn(bn+1) − gn(an+1) = 1 and (3.5).
Since αn

(
gn(bn+1)

)
= 1 = 1− αn+1

(
gn+1(bn+1)

)
we can define βn+1 : R⩾1 → R by

βn+1(t) =

{
αn

(
gn(t)

)
for t ⩽ bn+1,

1− αn+1

(
gn+1(t)

)
for t ⩾ bn+1.

Then βn+1 is continuous. We also take a continuous function β0 : R⩾1 → R such
that (iii), (iv), (v) hold for n = 0. We now have constructed a sequence

(
(an, bn, βn)

)
that satisfies conditions (i), (ii), (iv), and (v) (and (iii) for n = 0). In fact, it fulfills
all our wishes:

Proposition 4.7. The sequence
(
(an, bn, βn)

)
is admissible, and for all k and n ⩾ k

we have |δkn(βn+1)| ⩽ Ck on [an+1, bn+1].

Proof. Clearly βn+1 is of class Cn+1 on R⩾1\{bn+1}. Now αn◦gn = 1 on [bn+1,∞),
so (αn ◦ gn)(j)(bn+1) = 0 for j = 1, . . . , n + 1. Moreover, αn+1 ◦ gn+1 = 0
on [1, an+2], so βn+1 is Cn+1 on all of R⩾1. Therefore condition (iii) is satisfied, and
so

(
(an, bn, βn)

)
is admissible. The bound |δkn(βn+1)| ⩽ Ck on [an+1, bn+1] for n ⩾ k

is clear from βn+1◦ginvn = αn on
[
gn(an+1), gn(bn+1)

]
and the equivalence (4.1). □

Finishing the proof of Theorem 3.1. As already mentioned we can use [9,
Theorem 11.19] to pass to an extension and arrange that H ⊇ R is closed. If H>R

has uncountable coinitiality, we are done by Corollary 3.10. Suppose H>R has
countable coinitiality. Then we have an admissible sequence as in Proposition 4.7,
and so by Lemma 4.6 and Corollary 4.5, if (Fi) has no pseudolimit in H, then Φ is
a pseudolimit of (Fi) in a Hardy field extension of H. This concludes the proof.

Corollary 4.8. Suppose H is a maximal Hardy field. Then ci(H>R) > ω.

Proof. If ci(H>R) = ω, then H being λ-free yields a divergent pc-sequence (λρ)
in H whose well-ordered index set has cofinality ω, contradicting Corollary 3.2. □

5. Constructing Overhardian Germs

Our goal in this section is the following:

Theorem 5.1. If H ⊇ R is a Liouville closed Hardy field and ϕ ∈ C, ϕ >e H, then
some y ∈ C∞ with y >e ϕ generates a Hardy field H⟨y⟩ over H.

This is Sjödin’s main result in [30], except that he considers only C∞-Hardy fields.
Our construction of y follows that of Sjödin, with the material organized so that
much of it will also be useful in the next section where we fill more general gaps.

Boshernitzan [14, Theorems 1.1, 1.2] (see also [8, proof of Corollary 5.23]) showed
that y in Theorem 5.1 can be taken in Cω, using a result of Kneser [24] on solu-
tions E ∈ Cω to the functional equation exp◦E = E ◦(x+1). (Our follow-up paper
will have a different argument that yields a y ∈ Cω in Theorem 5.1.)
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We state here an easy consequence of Theorem 5.1:

Corollary 5.2. If H is a maximal Hardy field, then cf(H) > ω, and thus

ci(H) = cf(H<a) = ci(H>a) > ω for all a ∈ H.

Proof. If H is a maximal Hardy field with a strictly increasing cofinal sequence (hn)
in H, then Lemma 2.13 yields a ϕ ∈ C such that hn <e ϕ for all n, contradicting
Theorem 5.1. For any Hausdorff field F and a ∈ F we have cf(F ) = ci(F ) =
cf(F<a) = ci(F>a) (use fractional linear transformations). □

This corollary yields Theorem A in the case where A or B is finite.

Lemmas on logarithmic derivatives. Let f ∈ C1
a. Note that if f(t) > 0

and f ′(t) > 0 for all t ⩾ a, then f is strictly increasing, and thus f(t) ⩾ f(a) > 0
for all t ⩾ a. It is convenient to replace here f ′ by f†, noting that if f(t) > 0 for
all t ⩾ a, then f†(t) is defined for all t ⩾ a. Thus if f(t) > 0 and f†(t) > 0 for
all t ⩾ a, then f is strictly increasing, and thus f(t) ⩾ f(a) > 0 for all t ⩾ a.

Lemma 5.3. Let f ∈ C2
a. Assume that f(t), f†(t), f††(t) > 0 for all t ⩾ a.

Then f(t) → +∞ as t→ +∞.

Proof. Applying the remark preceding the lemma to f† in the role of f gives f†(t) ⩾
f†(a) for t ⩾ a, so f ′(t) = f(t)f†(t) ⩾ f(a)f†(a) for t ⩾ a, where we apply that
same remark also to f . Hence for t ⩾ a,

f(t) = f(a) +

∫ t

a

f ′(s) ds ⩾ f(a) + (t− a)f(a)f†(a),

which gives the desired conclusion. □

Lemma 5.4. Let f ∈ C3
a, and suppose that for all t ⩾ a,

f(t) > 0, f†(t) > 0, f††(t) > 0, and f†(t) > f††(t) > f†††(t).

Then f(t)/f†(t) → +∞ as t→ +∞.

Proof. We have (f/f†)† = f† − f††, so (f/f†)†(t) > 0 for t ⩾ a. Also

(f/f†)†
′
= (f† − f††)′ = f†

′ − f††
′

= f††f† − f†††f†† = f††(f† − f†††)

and thus (f/f†)††(t) > 0 for all t ⩾ a. Applying Lemma 5.3 to f/f† in the role
of f now gives the desired result. □

Lemma 5.5. Let f ∈ C4
a, and suppose that for all t ⩾ a,

f(t) > 0, f†(t) > 0, f††(t) > 0, f†††(t) > 0, and

f†(t) > f††(t) > f†††(t) > f††††(t).

Then f†(t) → +∞ as t→ +∞, and for every n, f(t) > f†(t)n, eventually.

Proof. Applying Lemma 5.3 to f† in the role of f gives f†(t) → +∞ as t → +∞.
Applying Lemma 5.4 to f† in the role of f gives f†(t)/f††(t) → +∞ as t→ +∞.
Let n ⩾ 1 and take an ⩾ a such that f†(t)/n > f††(t) for all t ⩾ an. So
the assumptions of Lemma 5.4 are satisfied for an and the restriction of f1/n

to [an,+∞) in the role of a and f , hence f(t)1/n/
(
f†(t)/n

)
→ +∞ as t → +∞,

and thus f(t)/f†(t)n → +∞ as t→ +∞. □



FILLING GAPS IN HARDY FIELDS 27

Hardian and overhardian germs. Let y ∈ C<∞. Following the terminology
of [30] we say that y is hardian if y generates a Hardy field Q⟨y⟩.

Lemma 5.6. If y is hardian and y >e 0, y
† >e 0, then y >e (y

†)n for all n.

Proof. Suppose y is hardian and y >e 0, y† >e 0. The case y ≺ 1 is impossible,
since it would give y† <e 0. If y ≍ 1, then y† ≺ 1, and we are done. If y ≻ 1
and y† ≺ 1, we are done. If y ≻ 1 and y† ≽ 1, then v(y†) = o(vy) by [ADH, 9.2.10],
which gives the desired conclusion. □

We set y⟨0⟩ := y, and inductively, if y⟨i⟩ ∈ C<∞ is defined and y⟨i⟩ ∈ (C<∞)× (so
either y⟨i⟩ <e 0 or y⟨i⟩ >e 0), then y⟨i+1⟩ := (y⟨i⟩)†, and otherwise y⟨i+1⟩ is not
defined. As in [30] we call y overhardian if for all i,

y⟨i⟩ is defined, y⟨i⟩ >e 0, and y
⟨i⟩ >e y

⟨i+1⟩.

If y is overhardian, then so is y†. By Lemma 5.5:

Corollary 5.7. If y is overhardian, then for all i, n we have

y⟨i⟩ >e R, y⟨i⟩ >e (y
⟨i+1⟩)n.

Next we recall from [ADH, 4.3] that a differential polynomial P (Y ) ∈ K{Y } over
a differential field K has a unique logarithmic decomposition

P (Y ) =
∑
i

P⟨i⟩Y
⟨i⟩ (P⟨i⟩ ∈ K).

If K is a Hardy field and y⟨i⟩ is defined for all i, then we can substitute y for the
indeterminate Y to get P (y) =

∑
i P⟨i⟩y

⟨i⟩ in C<∞, where of course

y⟨i⟩ := (y⟨0⟩)i0 · · · (y⟨r⟩)ir for i = (i0, . . . , ir) ∈ N1+r.

Such a substitution is in particular possible if y is overhardian. Thus for over-
hardian y and P ∈ R{Y } ̸= we obtain P (y) ∈ (C<∞)× from Corollary 5.7. Therefore:

Corollary 5.8. If y is overhardian, then y is hardian.

Lemma 5.9. If y is overhardian, then log y ≺ y†.

Proof. More generally, let y be hardian, y >e R, y† >e R, and y†† >e R; we claim
that then log y ≺ y†. To prove this, take a Liouville closed Hardy field H ⊇ R
with y ∈ H. Applying [ADH, 9.2.18] to α = vy in the asymptotic couple (Γ, ψ)
of H gives log y ≍ y†/y†† ≺ y†. □

Given a Hardy field H, we say that a germ y ∈ C is H-hardian if y is contained in
a Hardy field extension of H; see also [8, Section 4].

Corollary 5.10. Suppose H ⊇ R is a Liouville closed Hardy field and y >e H.
Then the following are equivalent:

(i) y is overhardian;
(ii) y is H-hardian;
(iii) y is hardian.

Proof. From exp(H) ⊆ H and y >e H we obtain log y >e H. If y is over-
hardian, this gives by induction on n and Lemma 5.9 that y⟨n⟩ >e H for all n,
and so P (y) <e H or P (y) >e H for all P (Y ) ∈ H{Y } \H, hence y is H-hardian.
This proves (i) ⇒ (ii), and (ii) ⇒ (iii) is trivial. To show (iii) ⇒ (i), assume (iii).
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From log y >e H and exp(x2) ∈ H we obtain log y ≻ exp(x2). Working in a Hardy
field containing y, log y, x, and exp(x2), we have (log y)′ ≻ exp(x2)′, so

v(y†) < v
(
x exp(x2)

)
< v

(
exp(x2)

)
< 0,

hence v(y††) ⩽ v
(
exp(x2)†

)
= v(x) < 0, and thus y†† >e R. Hence y† >e log y >e H

by the proof of Lemma 5.9. Since y† is hardian, we can iterate this argument, which
by induction shows that all y⟨n⟩ are defined and >e H. This yields (i) in view of
Lemma 5.6. □

Corollary 5.10 combines [30, Theorems 3 and 4]; the implication (iii) ⇒ (ii) also
follows from [13, Theorem 12.23].

Corollary 5.11. If y is overhardian, then so is log y. Moreover,

y is overhardian ⇐⇒ y is hardian and y >e expn(x) for all n.

Proof. Suppose y is overhardian. Then y is hardian and hence so is log y. Moreover,
log y >e R, and log y ≍ y†/y†† by the proof of Lemma 5.9. Hence

(log y)† ∼
(
y†/y††

)†
= y†† − y††† ∼ y†† = y⟨2⟩.

Now an easy induction shows that all (log y)⟨n⟩ are defined, and that for n ⩾ 1 we
have (log y)⟨n⟩ ∼ y⟨n+1⟩. This proves the first claim of the corollary. Also x ≺ y,
since 1 ≺ y ≼ x would give y† ≼ x† = 1/x, contradicting y† >e R. Applying
this to logn y (which we now know to be overhardian), gives logn y >e x, and
thus y >e expn(x), proving the direction ⇒ of the equivalence.

For the converse, assume y is hardian and y >e expn(x) for all n. Then H :=
Li
(
R(x)

)
, the Liouville closure of R(x) as a Hardy field, embeds as an H-field

over R(x) into the Liouville closed H-field extension T of R(x). Since the se-
quence

(
expn(x)

)
is cofinal in T, this is also the case in H, so y >e H, and hence y

is overhardian by Corollary 5.10. □

Constructing overhardian germs. Our goal is the following:

Theorem 5.12. For any ϕ ∈ C there is an overhardian y ∈ C∞ such that y⟨m⟩ >e ϕ
for all m.

Note that Theorem 5.1 follows from Corollary 5.10 and Theorem 5.12. To get
an idea of how to construct a y as in Theorem 5.12, consider an overhardian y
represented by a function in C∞

a , to be denoted also by y. Then we have a strictly
increasing sequence (am) of real numbers ⩾ a tending to +∞ such that y⟨m⟩(t) is
defined for t ⩾ am, for every m, and thus

y⟨m−1⟩(t) = y⟨m−1⟩(am) · exp
∫ t

am

y⟨m⟩(s) ds for m ⩾ 1, t ⩾ am.

It follows that y is determined as a function on [a0,+∞) by the family of restric-
tions

(
y⟨m⟩|[am,am+1]

)
: y on [a0, a1] and y⟨1⟩ on [a1, a2] determine y on [a0, a2];

likewise, y⟨1⟩ on [a1, a2] and y
⟨2⟩ on [a2, a3] determine y⟨1⟩ on [a1, a3], and thus y

on [a0, a3], and so on. We use this as a clue to reverse engineer overhardian elements.
We start with a ∈ R and a strictly increasing sequence (am) in R⩾a tend-

ing to +∞ and for each m ⩾ 1 a continuous function ym−1,m : [am−1, am] → R.
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Let m ⩾ 1. We define the continuous function yk,m : [ak, am] → R for 0 ⩽ k < m
by downward recursion on k: ym−1,m is already given to us, and for 1 ⩽ k < m,

yk−1,m(t) :=


yk−1,k(t) for ak−1 ⩽ t ⩽ ak,

yk−1,k(ak) · exp
∫ t

ak

yk,m(s) ds for ak ⩽ t ⩽ am.

(See Figure 7.)

ak−1 ak am

yk−1,m

yk,m

t

Figure 7. Passing from yk,m to yk−1,m

Downward induction on k gives yk,m = yk,m+1 on [ak, am] for k < m. This fact
gives for each k a continuous function yk : [ak,+∞) → R such that yk = yk,m
on [ak, am], for all m > k. Thus for k ⩾ 1 we have

yk−1(t) = yk−1(ak) · exp
∫ t

ak

yk(s) ds for t ⩾ ak.

In the next lemma we use the notation E(t)
(r)
t=a where the expression E(t) defines

a function t 7→ E(t) in Cr(I), where I = [b, c] (b < c in R) and a ∈ I. With f this

function, E(t)
(r)
t=a := f (r)(a). In connection with (ii) in that lemma we note that

for r ∈ N⩾1 and g ∈ Cr−1[b, c] (b < c in R) and setting G(t) :=
∫ t

b
g(s) ds for t ∈ [b, c]

we have (expG)(r) = Ar

(
g, . . . , g(r−1)

)
·(expG) with Ar ∈ Z[X0, . . . , Xr−1] depend-

ing only on r, and thus
(
expG(t)

)(r)
t=b

= Ar

(
g(b), . . . , g(r−1)(b)

)
.

Lemma 5.13. Assume the following holds for all k ⩾ 1:

(i) yk−1,k ∈ C∞[ak−1, ak] and yk−1,k(t) > 0 for ak−1 ⩽ t ⩽ ak;

(ii) y
(r)
k−1,k(ak) = yk−1,k(ak) ·

(
exp

∫ t

ak
yk,k+1(s) ds

)(r)
t=ak

for all r ∈ N⩾1.

Then for all k we have yk ∈ C∞
ak
, yk(t) > 0 for t ⩾ ak, and y

†
k = yk+1 on [ak+1,+∞).

Thus y0 is overhardian if yk >e yk+1 for all k.

Proof. Downward induction on k shows that yk,m for k < m has the corresponding

properties. Note: y
⟨m⟩
k is defined in C<∞ and equals yk+m in C<∞ for all k, m. □

Towards proving Theorem 5.12 we may assume ϕ ∈ C to be represented by a
continuous function ϕ : [a,+∞) → R>, so ϕ denotes the function and its germ.

Lemma 5.14. There exists an increasing C∞-function f : [a,+∞) → R such
that ϕ(t) < f(t) and f(t) > f†(t) for all t ⩾ a.
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Proof. Lemma 2.2 yields a decreasing C∞-function ζ : [a,+∞) → R> with 1/ϕ(t) >
ζ(t) and ζ ′(t) > −1 for all t ⩾ a. Then f := 1/ζ works. □

Replacing ϕ by f and renaming, we arrange that ϕ : [a,+∞) → R> is increasing of
class C∞ and ϕ(t) > ϕ†(t) for all t ⩾ a. With these assumptions:

Lemma 5.15. Suppose for all k ⩾ 1 we have yk−1,k(t) > ϕ(t) for ak−1 < t ⩽ ak.
Then for all k we have yk(t) > ϕ(t) for t > ak.

Proof. Let 1 ⩽ k < m, and assume as an inductive assumption that yk,m(t) > ϕ(t)
for ak < t ⩽ am. Our job is to show that then yk−1,m(t) > ϕ(t) for ak−1 < t ⩽ am,
and this amounts to showing for ak ⩽ t ⩽ am that

yk−1,k(ak) · exp
∫ t

ak

yk,m(s) ds > ϕ(t).

This holds for t = ak, and for ak < t ⩽ am we have

yk−1,k(ak) · exp
∫ t

ak

yk,m(s) ds > ϕ(ak) · exp
∫ t

ak

ϕ(s) ds

> ϕ(ak) · exp
∫ t

ak

ϕ†(s) ds

= ϕ(ak) · exp
(
log ϕ(t)− log ϕ(ak)

)
= ϕ(t),

which gives the desired result. □

For b ⩾ a we define the C∞-function ϕb : [a,+∞) → R> by

(5.1) ϕb(t) = ϕ(b) · exp
∫ t

b

ϕ(s) ds,

so ϕ(t) < ϕb(t) for t > b, using again that ϕ(s) > ϕ†(s) for s > b.

Lemma 5.16. Suppose that for all k ⩾ 1 we have ϕ < yk−1,k ⩽ ϕak−1
on (ak−1, ak].

Then for k + 1 < m we have yk,m > yk+1,m on [ak+1, am].

Proof. For m = k + 2 and ak+1 ⩽ t ⩽ am we have

yk,m(t) = yk,k+1(ak+1) · exp
∫ t

ak+1

yk+1,m(s) ds

> ϕ(ak+1) exp

∫ t

ak+1

ϕ(s) ds = ϕak+1
(t) ⩾ yk+1,m(t).

Let 1 ⩽ k < k + 1 < m and assume inductively that yk,m(t) > yk+1,m(t) when-
ever ak+1 ⩽ t ⩽ am. Then for ak ⩽ t ⩽ ak+1 the special case above yields

yk−1,m(t) = yk−1,k+1(t) > yk,k+1(t) = yk,m(t),



FILLING GAPS IN HARDY FIELDS 31

and for ak+1 ⩽ t ⩽ am the inductive assumption gives

yk−1,m(t) = yk−1,k(ak) · exp
∫ t

ak

yk,m(s) ds

= yk−1,k(ak) · exp
∫ ak+1

ak

yk,m(s) ds · exp
∫ t

ak+1

yk,m(s) ds

= yk−1,m(ak+1) · exp
∫ t

ak+1

yk,m(s) ds

> yk,m(ak+1) exp

∫ t

ak+1

yk+1,m(s) ds = yk,m(t),

which concludes the induction. □

Corollary 5.17. Suppose that for all k ⩾ 1 we have

(i) yk−1,k ∈ C∞[ak−1, ak];
(ii) ϕ < yk−1,k ⩽ ϕak−1

on (ak−1, ak];

(iii) y
(r)
k−1,k(ak−1) = ϕ(r)(ak−1) for all r ∈ N;

(iv) y
(r)
k−1,k(ak) = yk−1,k(ak) ·

(
exp

∫ t

ak
ϕ(s) ds

)(r)
t=ak

for all r ∈ N⩾1.

Then y := y0 ∈ C∞
a0
, y is overhardian, and y⟨k⟩ >e ϕ for all k.

Proof. By (i), (iii), (iv), and the remark preceding Lemma 5.13:

y
(r)
k−1,k(ak) = yk−1,k(ak) ·

(
exp

∫ t

ak
yk,k+1(s) ds

)(r)
t=ak

(k ⩾ 1, r ∈ N⩾1).

Then Lemma 5.13 yields yk ∈ C∞
ak
, and yk > 0, y†k = yk+1 on [ak+1,+∞).

Also yk > ϕ on (ak,+∞) by Lemma 5.15, and yk > yk+1 on [ak+1,+∞) by (ii)
and Lemma 5.16. It remains to appeal to the last sentence of Lemma 5.13. □

The phrase “y is overhardian” in the corollary above is short for “the germ of y
at +∞ is overhardian”. Given the strictly increasing sequence (ak) of real num-
bers ⩾ a tending to +∞ and the increasing C∞-function ϕ : [a,+∞) → R> such
that ϕ(t) > ϕ†(t) for all t ⩾ a, it follows from Lemma 2.3 that there exist func-
tions yk−1,k for k ⩾ 1 satisfying conditions (i)–(iv) of Corollary 5.17, where each
value yk−1,k(ak) can be chosen arbitrarily in the interval

(
ϕ(ak), ϕak−1

(ak)
)
. Now

the conclusion of that corollary yields Theorem 5.12, and thus Theorem 5.1.

6. Filling Wide Gaps

We now adapt the material from the previous section to filling a wide gap. To
describe this situation, let H ⊇ R be a Liouville closed Hardy field. By a wide
gap in H we mean a pair A, B of nonempty subsets of H>R such that A < B,
there is no h ∈ H with A < h < B, and A and expA are cofinal; note that then A
and logA are cofinal, that B, expB, logB are coinitial, and that for any ϕ ∈ C
with A <e ϕ <e B we have A <e log ϕ, expϕ <e B. Moreover, if A,B is a wide gap
in H, then it is an additive gap in H, and A, sq(A) are cofinal, and B, 2B,

√
B are

coinitial, by Corollary 1.9 and Lemmas 1.5, 1.10, and 1.12(i). Let us also record
the following, although we shall not explicitly use it:

Lemma 6.1. Let H ⊇ R be a Liouville closed Hardy field and A, B nonempty
subsets of H>R such that A < B and there is no h ∈ H with A < h < B. Suppose
there exists ϕ ∈ C such that A <e ϕ and eϕ <e B. Then A, B is a wide gap in H.
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Proof. For ϕ as above and h ∈ A we have h <e ϕ, so e
h <e e

ϕ <e B, and thus eh ⩽ f
for some f ∈ A. □

Here is the main result of this section:

Theorem 6.2. If H ⊇ R is a Liouville closed Hardy field and A, B is a wide gap
in H with cf(A) = ci(B) = ω, then some y ∈ C<∞ with A <e y <e B is H-hardian.

Wide gaps as in Theorem 6.2 do actually occur, as we show in the next subsection.
Towards proving Theorem 6.2 and some variants we begin with a result that is
mainly an exercise in valuation theory:

Lemma 6.3. Let H ⊇ R be a Liouville closed Hardy field, let A, B be a wide gap
in H, and let y ∈ C<∞ be overhardian with A <e y <e B. Then y is H-hardian
and d-transcendental over H.

Proof. It will be convenient to work with the y⟨n⟩. Note that Lemma 5.9 and
the cofinality of A and exp(A) give A <e log y <e y† <e y <e B. Using this
inductively we obtain A <e y

⟨i⟩ <e B for all i. We prove by induction on n the claim
that y, y′, . . . , y(n) generate a Hausdorff field extension Hn := H(y, y′, . . . , y(n))
of H. For n = 0 this claim follows by applying Lemma 1.11 to

P :=
{
vh : h ∈ H>, h ≼ g for some g ∈ A

}
.

Assume the claim holds for a certain n. It is easy to check that then y⟨0⟩, . . . , y⟨n⟩

lie in Hn, that Hn = H
(
y⟨0⟩, . . . , y⟨n⟩

)
, and that Hn has value group

v(H×
n ) = v(H×)⊕ Zvy⟨0⟩ ⊕ · · · ⊕ Zvy⟨n⟩

with vB < vy⟨i⟩ < vA for all i ⩽ n and vy⟨i+1⟩ = o(vy⟨i⟩) for all i < n. Note
that vA < 0. Let ∆ be the smallest convex subgroup of v(H×) that includes vA.
Then vA is coinitial in ∆, and ∆ + Zvy⟨0⟩ + · · · + Zvy⟨n⟩ is a convex subgroup
of v(H×

n ) with vB < ∆+ Zvy⟨0⟩ + · · ·+ Zvy⟨n⟩. Hence the real closure Hrc
n of Hn,

taken as a Hausdorff field extension of Hn, has value group

v
(
Hrc,×

n

)
= v(H×)⊕Qvy⟨0⟩ ⊕ · · · ⊕Qvy⟨n⟩,

and ∆ as well as ∆ + Qvy⟨0⟩ + · · · + Qvy⟨n⟩ are convex subgroups of v(Hrc,×
n )

with vB < ∆+Qvy⟨0⟩+ · · ·+Qvy⟨n⟩. (See Figure 8.) In view of A <e (y
⟨n+1⟩)i <e

y⟨n⟩ for all i ⩾ 1 it now follows from Lemma 1.11 (with Hrc
n in the role of H)

that y(n+1) generates a Hausdorff field over Hrc
n .

The structure of the value group of Hn yields that y is d-transcendental over H
by the Zariski-Abhyankar Inequality [ADH, 3.1.11]. □

v(H×
n )

0y⟨2⟩y⟨1⟩y⟨0⟩ · · ·

vB ∆<

(∆ + Zvy⟨0⟩ + Zvy⟨1⟩ + · · ·+ Zvy⟨n⟩)<

Figure 8. Value group of Hn



FILLING GAPS IN HARDY FIELDS 33

Let us now consider the slightly different situation where H ⊇ R is a Liouville
closed Hardy field and y ∈ C<∞ is overhardian with y >e H. Then the proof of
the lemma above goes through for A := H>R and B = ∅, although this pair A, B
is not a wide gap. The proof not only shows in this situation that y generates
a Hardy field H⟨y⟩, but also that v(H×) is a convex subgroup of v

(
H⟨y⟩×

)
, and

that v
(
H⟨y⟩×

)
= v(H×) ⊕

⊕
i Zvy⟨i⟩, and so y is d-transcendental over H. (See

also [ADH, 16.6.10].)

Constructing “countable” wide gaps. The Liouville closed Hardy field Li(R) =
Li
(
R(x)

)
is d-algebraic over R. Hence by [3, Theorem 3.4] the sequence

(
expn(x)

)
is cofinal in Li(R), so cf

(
Li(R)

)
= ω. More generally, let H ⊇ R be any Liouville

closed Hardy field with cf(H) = ω. Then [8, remarks after Lemma 5.17] yields
a ϕ ∈ C with ϕ >e H and so Theorem 5.1 gives an H-hardian y ∈ C<∞ such
that y >e H. We now consider the Hardy-Liouville closure Li

(
H⟨y⟩

)
of H⟨y⟩. We

have a wide gap A, B in Li
(
H⟨y⟩

)
given by

A :=
{
f ∈ Li

(
H⟨y⟩

)
: R < f < h for some h ∈ H

}
,

B :=
{
g ∈ Li

(
H⟨y⟩

)
: g > H

}
.

Note that cf(H) = ω gives cf(A) = ω. Moreover:

Lemma 6.4. B =
{
g ∈ Li

(
H⟨y⟩

)
: g > logn y for some n

}
.

Proof. By the remarks preceding this subsection y is d-transcendental over H
and {yn : n = 0, 1, 2, . . . } is cofinal inH⟨y⟩. Now Li

(
H⟨y⟩

)
is d-algebraic overH⟨y⟩,

so
{
expn(y) : n = 0, 1, 2, . . .

}
is cofinal in Li

(
H⟨y⟩

)
by [3, Theorem 3.4] applied

to K = H⟨y⟩. In particular, Li
(
H⟨y⟩

)
has d-transcendence degree 1 over H. To-

wards a contradiction, suppose g ∈ B and g < logn y for all n. With g instead of y
we conclude that

{
expn(g) : n = 0, 1, 2, . . .

}
is cofinal in Li

(
H⟨g⟩

)
and Li

(
H⟨g⟩

)
has d-transcendence degree 1 overH. Hence y > Li

(
H⟨g⟩

)
, and so with Li

(
H⟨g⟩

)
in

the role of H we conclude that Li
(
H⟨y⟩

)
= Li

(
Li
(
H⟨g⟩

)
⟨y⟩

)
has d-transcendence

degree 1 over Li
(
H⟨g⟩

)
and thus d-transcendence degree 2 over H, a contradic-

tion. □

Thus A, B is a wide gap in Li
(
H⟨y⟩

)
with cf(A) = ci(B) = ω. See also Figure 9.

ylog ylog2 ylog3 y· · ·R

A B

Figure 9. The countable wide gap A, B

Upper bounds. Assume that a ⩾ 1, ϕ : [a,+∞) → R> is C∞ and increasing,
and ϕ > ϕ† on [a,+∞). Let (am) be a strictly increasing sequence of real num-
bers ⩾ a tending to +∞, and let for each m ⩾ 1 a continuous function

ym−1,m : [am−1, am] → R

be given. As in the previous section this gives rise to functions yk,m for k < m
and functions ym and y := y0. Finally, assume that yk−1,k ⩽ ϕak−1

on (ak−1, ak],
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for all k ⩾ 1. (See (5.1) for the definition of ϕb for b ⩾ a.) Our goal is to find an
upper bound for y on [a0, an] for n ⩾ 1 that depends only on ϕ and n, not on the
sequence (am) or the functions ym−1,m.

For n ⩾ 1 and an−1 ⩽ t ⩽ an, we have

yn−1,n(t) ⩽ ϕan−1
(t) = ϕ(an−1) exp

∫ t

an−1

ϕ(s) ds

⩽ ϕ(an−1) exp
(
(t− an−1)ϕ(t)

)
=

ϕ(an−1)

exp
(
an−1ϕ(t)

) exp(tϕ(t))
⩽ exp

(
tϕ(t)

)
.

Let 1 ⩽ k < n. Then yk−1,n(t) ⩽ exp
(
tϕ(t))

)
for ak−1 ⩽ t ⩽ ak. We assume

inductively that for ak ⩽ t ⩽ an we have yk,n(t) ⩽ expn−k

(
tϕ(t) + (n− k)t

)
. Then

for ak ⩽ t ⩽ an,

yk−1,n(t) = yk−1,k(ak) exp

∫ t

ak

yk,n(s) ds

⩽ yk−1,k(ak) exp
[
(t− ak) expn−k

(
tϕ(t) + (n− k)t

)]
⩽

yk−1,k(ak)

exp
[
ak expn−k

(
tϕ(t) + (n− k)t

)] exp[t expn−k

(
tϕ(t) + (n− k)t

)]
⩽ expn−(k−1)

(
tϕ(t) + (n− k + 1)t

)
,

where we use that for t ⩾ ak we have the inequalities

yk−1,k(ak) ⩽ exp
(
akϕ(ak)

)
⩽ exp

[
ak expn−k

(
tϕ(t) + (n− k)t

)]
,

t expn−k

(
tϕ(t) + (n− k)t

)
⩽ expn−k

(
tϕ(t) + (n− k + 1)t

)
,

the latter being a special case of the easily verified fact that

t expn
(
tϕ(t) + nt

)
⩽ expn

(
tϕ(t) + (n+ 1)t

)
(n ⩾ 1, t ⩾ 1).

We have now proved by downward induction on k that for all k < n,

yk,n(t) ⩽ expn−k

(
tϕ(t) + (n− k)t

)
for ak ⩽ t ⩽ an.

For y := y0 this yields

y(t) ⩽ expn
(
tϕ(t) + nt

)
for n ⩾ 1 and a0 ⩽ t ⩽ an.

To simplify notation, let ϕn : [a,+∞) → R be the function given by

ϕn(t) := expn
(
tϕ(t) + nt

)
,

so that that ϕ < ϕ1 < ϕ2 < ϕ3 < · · · on [a,+∞), and the bound above takes the
form that for all n ⩾ 1 we have y ⩽ ϕn on [a0, an].

Back to wide gaps. In the rest of this section H is a Liouville closed Hardy field
with R ⊆ H, and A, B is a wide gap in H. We say that ϕ ∈ C lies between A
and B if A <e ϕ <e B. By an intermediary for A, B we mean a ϕ ∈ C∞ lying
between A and B such that 0 <e ϕ

† <e ϕ; note that the condition 0 <e ϕ
† implies

that ϕ is eventually strictly increasing.

Proposition 6.5. Suppose x ∈ A, ci(B) = ω, and ϕ is an intermediary for A, B.
Then there exists an overhardian y ∈ C∞ such that ϕ <e y

⟨n⟩ <e B for all n, in
particular A <e y <e B, and so y is H-hardian, by Lemma 6.3.
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Proof. Take a strictly increasing C∞-function ϕ : [a,+∞) → R> representing the
germ ϕ such that a ⩾ 1 and 0 < ϕ† < ϕ on [a,+∞). For n ⩾ 1, let ϕn : [a,+∞) → R
be the function from the previous subsection given by

ϕn(t) = expn
(
tϕ(t) + nt

)
.

From x ∈ A and B and logB being cofinal we obtain ϕn <e ϕn+1 <e B.
Take a strictly decreasing sequence g1 > g2 > g3 > · · · inB, coinitial inB. Let gn

also denote a continuous function [a,+∞) → R representing the germ gn. Choose
a strictly increasing sequence b1 < b2 < b3 < · · · of real numbers ⩾ a tending
to +∞ such that ϕn < gn and gn+1 < gn, on [bn,+∞). Next, set an := bn+1, and
choose functions yk−1,k ∈ C∞[ak−1, ak] for k ⩾ 1 such that conditions (i)–(iv) of
Corollary 5.17 are satisfied. (The discussion following that corollary indicates how
to construct such functions, using Lemma 2.3.) This yields an overhardian y :=
y0 ∈ C∞

a0
as in that corollary, with y⟨k⟩ >e ϕ for all k.

Let n ⩾ 1. The upper bound from the previous subsection gives y ⩽ ϕn
on [a0, an], so y < gn on [bn, bn+1]. With n + 1 instead of n this gives y < gn+1

on [bn+1, bn+2], and as gn+1 < gn on [bn,+∞), we get y < gn on [bn, bn+2]. Contin-
uing this way we get y < gn on [bn, bn+3], and so on, and thus y < gn on [bn,+∞).
Since this holds for all n ⩾ 1, this yields y <e B. □

Lemma 6.6. Suppose x ∈ A, and some element of C lies between A and B. Then
there exists an intermediary for A, B.

Proof. Let f : [a,+∞) → R> be a continuous function whose germ at +∞ lies
between A and B. Lemma 2.5 gives a C∞-function f∗ : [a,+∞) → R> such that f <
f∗ < f + 1 on [a,+∞). Then f∗ <e B, and so replacing f by f∗ we have arranged

that f ∈ C∞
a . Defining F (t) := 1+

∫ t

a
f(s) ds we obtain a strictly increasing F ∈ C∞

a

with F ′ = f . By Lemma 2.15 we have
∫
A <e F <e

∫
B, and so A <e F <e B

by Lemma 1.12(iii) and Lemma 1.13(ii). Thus we can replace f by F and arrange
in this way that f is also strictly increasing and f ⩾ 1. Next, consider the strictly
decreasing C∞-function θ : [a,+∞) → (0, 1] given by

θ(t) :=

∫ t+1

t

f(s)−1 ds =

∫ 1

0

f−1(s+ t) ds, f−1(s) := f(s)−1 for s ⩾ a.

Claim: θ′ > −1 on [a,+∞), and B−1 <e θ <e A
−1.

That θ′ > −1 on [a,+∞) is clear from

θ′(t) =

∫ 1

0

(f−1)′(s+ t) ds = f(t+ 1)−1 − f(t)−1.

Also θ(t) < f(t)−1 for t ⩾ a, so θ <e f
−1 <e A

−1.
To establish the claim it remains to show that B−1 <e θ, and this is where

we shall need Lemma 1.13(iii). Let g ∈
∫
B−1, so g ∈ H≺1 and g′ = h−1

with h ∈ B. We have h ≻ ex, so after increasing a if necessary we can assume that
the germ h is represented by a continuous function h : [a,+∞) → R with h(t) > et

and thus 0 < h(t)−1 < e−t, for all t ⩾ a. This yields a C1-function

t 7→
∫ t

+∞
h(s)−1 ds := −

∫ +∞

t

h(s)−1 ds : [a,+∞) → R
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with derivative h−1 and tending to 0 as t → +∞, so this function represents the
germ g, and will be denoted below by g. Thus for t ⩾ a,

g(t+ 1)− g(t) =

∫ t+1

t

h(s)−1 ds.

Moreover, h(s)−1 < f(s)−1 for all sufficiently large s ⩾ a, and thus

(6.1) g(t+ 1)− g(t) < θ(t) for all sufficiently large t ⩾ a.

From h−1 ≺ e−x we get 0 < −g ≺ e−x, and so Lemma 2.17(iii) applied to −g and
combined with (6.1) gives −g(t)/2 < θ(t) for all sufficiently large t ⩾ a. In view of
Lemma 1.13(iii) and coinitiality of B, 2B this yields B−1 <e θ, as claimed.

From the claim it follows that the germ of ϕ := θ−1 : [a,+∞) → R is an inter-
mediary for A, B. □

Corollary 6.7. Suppose x ∈ A and cf(A) = ci(B) = ω. Then there exists an
overhardian y ∈ C∞ with A <e y <e B, thus generating a Hardy field over H.

Proof. Using cf(A) = ci(B) = ω, Lemmas 2.13 and 2.14 give an element of C that
lies between A and B. Then Lemma 6.6 provides an intermediary for A, B, which
in view of Proposition 6.5 gives the desired result. □

Proof of Theorem 6.2. We assume cf(A) = ci(B) = ω. Our job is to obtain
a y ∈ C<∞ such that A <e y <e B and y generates a Hardy field over H. Take
any g ∈ A. Then g > R, so g′ is active in H, and we pass to the compositional
conjugate H ◦ ginv, which is again a Liouville closed Hardy field containing R as a
subfield, and having A◦ginv, B ◦ginv as a wide gap with x = g◦ginv ∈ A◦ginv. Now
Corollary 6.7 yields a y ∈ C∞ such that A ◦ ginv <e y <e B ◦ ginv and y generates
a Hardy field over H ◦ ginv. It follows that y ◦ g ∈ C<∞, A <e y ◦ g <e B, and y ◦ g
generates a Hardy field over H. This concludes the proof. □

If A in Theorem 6.2 contains an element of C∞, then we can take y in the conclusion
of that theorem to be in C∞ as well: in the proof, take g ∈ C∞.

7. The Number of Maximal Hardy Fields

Since C has cardinality c = 2ℵ0 , the number of Hardy fields (and thus of maximal
Hardy fields) is at most 2c. By Proposition 3.7 in [15] there are ⩾ c many maximal
Hardy fields. In this short section we show:

Theorem 7.1. The number of maximal Hardy fields is equal to 2c.

This is mainly an application of the previous two sections. Let S be an ordered
set. Define a countable gap in S to be a pair P , Q of countable subsets of S
such that P < Q and there is no s ∈ S with P < s < Q; for example, if P is a
countable cofinal subset of S, then P , ∅ is a countable gap in S. Also, S is η1 iff
it has no countable gap. We thank Ilijas Farah for pointing out that the following
well-known lemma might be useful in proving statements like Theorem 7.1 via a
suitable binary tree construction:

Lemma 7.2. If S has cardinality < c, then S has a countable gap.

Proof. Suppose S has no countable gap. Then S is in particular dense: for any p < q
in S there is an s ∈ S with p < s < q. Thus we can embed the ordered set (Q;<)
of rational numbers into S. Identifying Q with its image under such an embedding,
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there is for every r ∈ R \ Q an s ∈ S such that for all t ∈ Q: s > t in S iff r > t
in R. Thus the cardinality of S is at least that of R, which is c. □

Below H ⊇ R is a Hardy field. We set

Hte := {f ∈ H : f is overhardian},
the transexponential (or overhardian) part of H. By Corollary 5.11 we have

Hte =
{
f ∈ H : f > expn(x) for all n

}
,

so Hte is closed upward in H>R. On Hte we define the equivalence relation ∼exp

of exponential equivalence by

f ∼exp g :⇐⇒ f ⩽ expn(g) and g ⩽ expn(f) for some n

⇐⇒ f ⩽ expm(g) and g ⩽ expn(f) for some m, n.

Let ∗f be the exponential equivalence class of f ∈ Hte, a convex subset of Hte. We
linearly order the set ∗Hte of exponential equivalence classes by:

∗f < ∗g :⇐⇒ expn(f) < g for all n (f, g ∈ Hte).

For a Hardy field extension H1 of H we have Hte
1 ∩H = Hte, and we identify ∗Hte

with a subset of ∗Hte
1 via the order-preserving embedding

∗f (in ∗Hte) 7→ ∗f (in ∗Hte
1 ) for f ∈ Hte.

Note that R(x)te = ∅. If H is Liouville closed, then exp(∗f) = log(∗f) = ∗f
for f ∈ Hte. We record a few other properties of ∼exp used later:

Lemma 7.3. Let f ∈ Hte. Then

(i) (∗f) · (∗f) = ∗f ;
(ii) if g ∈ H>R and [vf ] = [vg], then g ∈ Hte and ∗f = ∗g;
(iii) (∗f)† = ∗f and ∂(∗f) = ∗f .

Proof. Parts (i) and (ii) follow easily from the definitions. For (iii), note first that f†

is overhardian by a remark before Corollary 5.7 and log f < f† by Lemma 5.9,
so f < exp(f†), and f† < f < exp(f), and thus f† ∼exp f . This yields (∗f)† = ∗f ,
hence ∂(∗f) = ∗f by (i). □

Using results of the previous section we shall prove:

Proposition 7.4. Suppose P , Q is a countable gap in ∗Hte. Then H has Hardy
field extensions H0 = H⟨f0⟩, H1 = H⟨f1⟩ with f0 ∈ Hte

0 , f1 ∈ Hte
1 , such that

P < ∗f0 < Q, P < ∗f1 < Q,

H0 and H1 have no common Hardy field extension, and

∗Hte
0 = ∗Hte ∪ {∗f0}, ∗Hte

1 = ∗Hte ∪ {∗f1}.

We accept this for the moment, and indicate how it enables a binary tree construc-
tion leading to Theorem 7.1. Let |X| denote the cardinality of the set X, and iden-
tify as usual a cardinal with the least ordinal of that cardinality, where an ordinal λ
is considered as the set of ordinals < λ. Let H be the set of all Hardy fields H ⊇ R
such that |∗Hte| < c. We build by transfinite recursion a binary tree in H by
assigning to each ordinal λ < c and function s : λ → {0, 1} a Hardy field Hs ∈ H
with |∗Hte

s | ⩽ |λ|. For λ = 0 the function s has empty domain and we take Hs = R.
Suppose s : λ → {0, 1} as above and Hs ∈ H are given with |∗Hte

s | ⩽ |λ|. Then
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Lemma 7.2 provides a countable gap P , Q in ∗Hte
s . Let s0, s1: λ + 1 → {0, 1} be

the obvious extensions of s, and let Hs0, Hs1 ∈ H be obtained from Hs as H0, H1

are obtained from H in Proposition 7.4. Let λ < c be an infinite limit ordi-
nal and s : λ → {0, 1}; assume that for every α < λ there is given Hs|α ∈ H
with Hs|α ⊆ Hs|β whenever α ⩽ β < λ. Then we set Hs :=

⋃
α<λHs|α. Assuming

also inductively that |∗Hte
s|α| ⩽ |α| for all α < λ, we obtain |∗Hte

s | ⩽ |λ| · |λ| = |λ|,
as desired. This finishes the construction of our tree. It yields for any func-
tion s : c → {0, 1} a Hardy field Hs :=

⋃
λ<cHs|λ, and the way we constructed

the tree guarantees that if s, s′ : c → {0, 1} are different, then Hs and Hs′ have no
common Hardy field extension. Thus there are 2c many maximal Hardy fields.

It remains to prove Proposition 7.4. This goes via some lemmas.

Lemma 7.5. Let K be an asymptotic field with value group Γ and Ψ := ψ(Γ̸=) its
Ψ-set. Let L be an asymptotic field extension of K of finite transcendence degree
over K. Then ΨL \Ψ is finite, where ΨL is the Ψ-set of L.

Proof. By [ADH, 3.1.11] (Zariski-Abhyankar), ΓL/Γ has finite rational rank. Now

use that if γ1, . . . , γn ∈ Γ ̸=
L and γ†1, . . . , γ

†
n are pairwise distinct and not in Ψ,

then γ1, . . . , γn are Z-linearly independent modulo Γ. □

Lemma 7.6. Let L ⊇ H ⊇ R be Hardy fields where L is d-algebraic over H.
Then ∗Hte = ∗Lte. (In particular, ∗Hte = ∗Li(H)te.)

Proof. Let y ∈ Lte; we claim that y ∼exp h for some h ∈ Hte. To prove this,
set γ := vy. Then γ < ψ(γ) < · · · < ψn(γ) < ψn+1(γ) < · · · < 0, so Lemma 7.5
gives n ⩾ 1 with ψn(γ) ∈ Γ := v(H×), say ψn(γ) = vh with h ∈ H>. Then h is
overhardian and y ∼exp h by Lemma 7.3. □

Lemma 7.7. Let H ⊇ R be a Hardy field and let P , Q be a countable gap
in ∗Hte. Then H has a Hardy field extension H⟨y⟩ with overhardian y ∈ C<∞

such that P < ∗y < Q. For any such y we have ∗H⟨y⟩te = ∗Hte ∪ {∗y}.

Proof. Using Lemma 7.6 we arrange that H is Liouville closed, in particular,
expn(x) ∈ H for all n. Assume for now that Q ̸= ∅. Then P , Q gives rise to
a wide gap A, B in H by

A :=
{
expn(x) : n = 0, 1, 2, . . .

}
∪
{
expn(a) : n = 0, 1, 2, . . . , a ∈ Hte, ∗a ∈ P

}
,

B :=
{
logn(b) : n = 0, 1, 2, . . . , b ∈ Hte, ∗b ∈ Q

}
,

with cf(A) = ω and ci(B) = ω. Then Corollary 6.7 yields an overhardian y ∈ C<∞

with A <e y <e B. Given any such y it generates a Hardy field H⟨y⟩ over H by
Lemma 6.3, with P < ∗y < Q. Moreover, by the proof of that lemma,

v
(
H⟨y⟩×

)
= v(H×)⊕

⊕
n

Zv
(
y⟨n⟩

)
,

with convex subgroups ∆ of v(H×) (as defined in that proof) and ∆+D of v
(
H⟨y⟩×

)
with D :=

⊕
n Zv

(
y⟨n⟩

)
. Let f ∈ H⟨y⟩te. There are three possibilities:

(1) vf ∈ ∆. Then ∗f ∈ ∗Hte.
(2) vf ∈ ∆ + D, vf < ∆. Then vf = mvy⟨i⟩ + o(vy⟨i⟩) for some i and

some m ⩾ 1, hence ∗f = ∗y by Lemma 7.3.
(3) vf < ∆+D. Then an easy argument gives b > A in H with vf = vb+o(vb),

hence ∗f = ∗b ∈ ∗Hte by Lemma 7.3.
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If Q = ∅, then we set A := H>R, B := ∅, and proceed as before, using results from
Section 5 instead of Corollary 6.7 to obtain the existence of an overhardian y ∈ C<∞

with A <e y, and using instead of Lemma 6.3 the remark following the proof of
that lemma. □

The following consequence of Lemmas 7.7 and 7.2 is worth recording. (It also uses
the fact that any Hardy field, as a subset of C, has cardinality ⩽ c.)

Corollary 7.8. If H is a maximal Hardy field, then the ordered set ∗Hte is η1,
and |∗Hte| = c.

As to the H-field T of transseries that was studied extensively in [ADH], we usually
think of T as rather large, but Hte = ∅ for any Hardy field H ⊇ R which embeds
into T (as H-fields); those H are dwarfed by any maximal Hardy field.

Next, given ϕ ∈ C<∞, call ϕ hardy-small if ϕ(n) ≺ 1 for all n, and hardy-
bounded if ϕ(n) ≼ 1 for all n. For example, sinx is hardy-bounded. Here are
some simple observations about these notions: If ϕ, θ ∈ C<∞ are hardy-small, then
so is ϕ + θ. If ϕ ∈ C<∞ is hardian and ϕ ≺ 1, then ϕ is hardy-small. If ϕ ∈ C<∞

is hardian and ϕ ≼ 1, then ϕ is hardy-bounded. If ϕ ∈ C<∞ is hardy-bounded
and θ ∈ C<∞ is hardy-small, then ϕθ is hardy-small. If ϕ, θ ∈ C<∞ are hardy-
bounded, then so are ϕ+ θ and ϕθ. A routine computation gives:

Lemma 7.9. If ϕ ∈ C<∞ is hardy-small, then (1 + ϕ)−1 = 1 + θ for some hardy-
small θ ∈ C<∞, and so (1 + ϕ)−1 is hardy-bounded.

For the proof of Proposition 7.4 we shall use (see also [8, Corollary 5.14]):

Lemma 7.10 (Boshernitzan [13, Theorem 13.6]). Suppose ϕ ∈ C<∞ is overhardian
and θ ∈ C<∞ is hardy-bounded. Then ϕ+ θ is overhardian.

Proof. Note that ϕ+ θ ∈ (C<∞)× by Corollary 5.7. Moreover,

(ϕ+ θ)† =

[
ϕ ·

(
1 +

θ

ϕ

)]†
= ϕ† +

(
1 +

θ

ϕ

)†

= ϕ† +
(θ/ϕ)′

1 + (θ/ϕ)
.

Now ϕ−1 is hardy-small, so θ/ϕ and (θ/ϕ)′ are hardy-small. Hence by Lemma 7.9,(
1 + (θ/ϕ

)−1
is hardy-bounded, and so (θ/ϕ)′

1+(θ/ϕ) is hardy-small. Therefore, as ϕ† is

still overhardian, we can iterate the above to obtain

(ϕ+ θ)⟨n⟩ = ϕ⟨n⟩ + θn, with hardy-small θn for n ⩾ 1.

Thus ϕ+ θ is overhardian in view of Corollary 5.7. □

In particular, if ϕ ∈ C<∞ is overhardian, then so is ϕ+ sinx. Thus for H, P , Q as
in the hypothesis of Proposition 7.4 and taking y as in Lemma 7.7, the conclusion
of that proposition holds for f0 := y and f1 := y+sinx by the proof of Lemma 7.7.

8. The H-couple of a Maximal Hardy Field

Taking into account Lemma 1.1, proving Theorem A has now been reduced to
showing that the value group of every maximal Hardy field is η1. Let H be a
maximal Hardy field. Then H is an asymptotic field in the sense of [ADH, 9.1], so
it has an H-asymptotic couple (Γ, ψ) where Γ is the value group of H.

Let us consider more generally any asymptotic field K with its asymptotic cou-
ple (Γ, ψ). Recall that ψ : Γ ̸= → Γ is given by ψ(γ) = v(g†), with g ∈ K×
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such that v(g) = γ, and that ψ(γ) is also written as γ†. Recall also that ψ
is a valuation on Γ. Let (γρ) be a pc-sequence in Γ with respect to the valua-
tion ψ on Γ. Take gρ ∈ K× with v(gρ) = γρ. Then (g†ρ) is a pc-sequence in K,

since v(g†σ − g†ρ) = (γσ − γρ)
† for σ > ρ, provided ρ is sufficiently large. Sup-

pose g†ρ ⇝ g† with nonzero g in some asymptotic field extension L of K (possi-
bly L = K). We claim that then for γ = vg we have γρ ⇝ γ. This is because
eventually (γ − γρ)

† = v(g† − g†ρ), and the latter is eventually strictly increasing,

using also that eventually γρ ̸= γ. In particular, if K = K† and every pc-sequence
in K of length ω has a pseudolimit in K, then every pc-sequence in Γ of length ω
has a pseudolimit in Γ. Thus by Corollaries 3.2, 4.8, and 5.2:

Corollary 8.1. If H is a maximal Hardy field with asymptotic couple (Γ, ψ), then
every pc-sequence in (Γ, ψ) of length ω has a pseudolimit in (Γ, ψ), and

cf(Γ<) = ci(Γ>) > ω, ci(Γ) = cf(Γ) > ω.

Corollary 8.1 includes [8, Proposition 8.1]: every maximal Hardy field contains
a germ ℓ which is translogarithmic, that is, R < ℓ ⩽ ℓn for all n, where ℓn is
inductively defined by ℓ0 := x and ℓn+1 := log ℓn.

Ordered vector spaces and H-couples over an ordered field. In the rest of
this section we fix an ordered field k (only the case k = R is really needed) and
use notation, terminology, and results from [6]. Let Γ be an ordered vector space
over k (as defined there). For α ∈ Γ we defined its k-archimedean class

[α]k :=
{
γ ∈ Γ : |γ| ⩽ c|α| and |α| ⩽ c|γ| for some c ∈ k>

}
,

and we linearly ordered the set [Γ]k of k-archimedean classes. We defined Γ to
be a Hahn space if for all α, γ ∈ Γ ̸= with [α]k = [γ]k there is a scalar c ∈ k×

such that [α − cγ]k < [α]k. (If k = R, then the k-archimedean class [α]k of an
element α in an ordered vector space over k equals its archimedean class [α], and
every ordered vector space over k is a Hahn space.) For an ordered vector space ∆
over k extending Γ we identify [Γ]k with a subset of [∆]k via the order-preserving
embedding [γ]k 7→ [γ]k : [Γ]k → [∆]k.

Let now (Γ, ψ) be an H-couple over k, as defined in [6], so for all α, β ∈ Γ̸=,

[α]k ⩽ [β]k =⇒ ψ(α) ⩾ ψ(β).

We defined (Γ, ψ) to be of Hahn type if for all α, β ∈ Γ ̸= with ψ(α) = ψ(β) there
exists a scalar c ∈ k× such that ψ(α− cβ) > ψ(α); a consequence of “Hahn type”
is that for all α, β ∈ Γ̸=,

[α]k ⩽ [β]k ⇐⇒ ψ(α) ⩾ ψ(β),

and so the underlying ordered vector space Γ over k is a Hahn space. We de-
fined (Γ, ψ) to be closed if Ψ := ψ(Γ̸=) is downward closed in the ordered set Γ,
and (Γ, ψ) has asymptotic integration.

Let now K be a Liouville closed H-field. Recall from [6] that its value group Γ
is then an ordered vector space over its (ordered) constant field C, with scalar
multiplication given by c vf = vg whenever f, g ∈ K× and cf† = g†. Its asymptotic
couple (Γ, ψ) with this scalar multiplication is a closed H-couple over C of Hahn
type. For a Liouville closed Hardy field H ⊇ R its constant field is R, and we
construe its asymptotic couple as an H-couple over R as indicated.
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Elements of countable type. Let Γ be an ordered vector space over k. Let β
be an element in an ordered vector space over k that extends Γ. Then we say
that β has countable type over Γ if β /∈ Γ and cf(Γ<β), ci(Γ>β) ⩽ ω; in that
case every element in (Γ + kβ) \ Γ has countable type over Γ. See [ADH, 2.2] for
immediate extensions of valued abelian groups and [ADH, 2.4] for the k-valuation
of an ordered vector space over k.

Lemma 8.2. Suppose β has countable type over Γ and the ordered vector space
Γ + kβ over k is an immediate extension of Γ with respect to the k-valuation.
Then β is a pseudolimit of a divergent pc-sequence in Γ of length ω.

Proof. The assumptions yield a countable (necessarily infinite) set A ⊆ Γ such that
for every γ ∈ Γ there exists an α ∈ A with [α− β]k < [γ − β]k. This easily yields a
divergent pc-sequence (αn) in Γ with all αn ∈ A such that αn ⇝ β. □

Lemma 8.3. Suppose cf(Γ), cf(Γ<) > ω, and β has countable type over Γ. Then

cf(Γ<β) = ci(Γ>β) = ω.

Proof. If β < Γ, then ci(Γ>β) = ci(Γ) = cf(Γ) > ω, contradicting ci(Γ>β) ⩽ ω.
Thus Γ<β ̸= ∅. If cf(Γ<β) ̸= ω, then Γ<β has a largest element γ, so Γ>β = Γ>γ ,
contradicting ci(Γ>γ) = cf(Γ<) > ω. Thus cf(Γ<β) = ω; likewise, ci(Γ>β) = ω. □

For us the relevant fact relating “countable type” to the η1-property is as follows:
given an H-couple (Γ, ψ) over k,

Γ is η1 ⇐⇒
{

there is no H-couple over k extending (Γ, ψ)
with an element of countable type over Γ.

(For “⇐” use model-theoretic compactness.)

Lemma 8.4. Let (Γ, ψ) be a closed H-couple over k, and suppose β in an H-
couple over k extending (Γ, ψ) has countable type over Γ and β† /∈ Γ. Then β† has
countable type over Γ.

Proof. Without loss of generality we assume β > 0. Consider first the case where
we have a strictly increasing sequence (αm) in Γ> and a strictly decreasing se-
quence (γn) in Γ>, such that αm < β < γn for all m, n, and (αm) is cofinal
in Γ<β , and (γn) is coinitial in Γ>β . Then (α†

m) is decreasing, (γ†n) is increasing,
α†
m > β† > γ†n for all m, n. Using that the H-couple (Γ, ψ) is closed we also ob-

tain that (α†
m) is coinitial in Γ>β†

and that (γ†n) is cofinal in Γ<β†
. Thus β† has

countable type over Γ. Next consider the case β > Γ. Then the cofinality of Γ is ω,
β† < Γ, and so β† has countable type over Γ, since the coinitiality of Γ is also ω.

The case that there are α, γ ∈ Γ> with α < β < γ and there is a largest α ∈ Γ>

with α < β or a least γ ∈ Γ> with β < γ cannot occur, since for such a largest α
we would have α < β < 2α, so α† = β†, contradicting β† /∈ Γ (and a least such γ
yields the same contradiction).

It remains to consider the case 0 < β < Γ>. Then β being of countable type
over Γ yields a strictly decreasing sequence (γn) in Γ> that is coinitial in Γ>.
Then (γ†m) is increasing, (γ′n) is decreasing, γ

†
m < β† < γ′n for all m, n, and (γ†m) is

cofinal in Γ<β†
and (γ′n) is coinitial in Γ>β†

. So here β† is also of countable type
over Γ. □
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Good approximations. Let Γ be an ordered vector space over k, and let α, γ
range over Γ. An extension of Γ is an ordered vector space over k extending Γ.

Lemma 8.5. Let β /∈ Γ be an element in an extension of Γ. Then for any α,

[β − α]k /∈ [Γ]k =⇒ [β − α]k = min
γ

[β − γ]k.

If Γ + kβ is a Hahn space, then this implication turns into an equivalence.

Proof. If [β − γ]k < [β − α]k, then (β − α) − (β − γ) = γ − α yields [β − α]k =
[γ − α]k ∈ [Γ]k; this gives (the contrapositive of) “⇒”. Suppose Γ + kβ is a Hahn
space. If [β − α] ∈ [Γ]k, say [β − α]k = [γ]k, then

[
β − (α + cγ)

]
k
< [β − α]k for

some c ∈ k×; this proves (the contrapositive of) “⇐”. □

Suppose β /∈ Γ lies in an extension of Γ. Then a good approximation of β in Γ
is by definition an α such that [β − α]k /∈ [Γ]k. Note that a good approximation
of β in Γ exists iff [Γ + kβ]k ̸= [Γ]k. Together with Lemma 8.2 this yields:

Corollary 8.6. Suppose β lies in an extension Γ∗ of Γ and Γ∗ is a Hahn space.
Assume also that there is no divergent pc-sequence of length ω in Γ and that β has
countable type over Γ. Then β has a good approximation in Γ.

Lemma 8.7. Suppose β /∈ Γ in an extension of Γ has a good approximation α in Γ.
Then the following holds:

(i) if [β]k ∈ [Γ]k, then α ̸= 0, [β − α]k < [β]k = [α]k; and
(ii) for all γ, if sign(β − γ) ̸= sign(β −α), then [α− γ]k = [β − γ]k > [β −α]k.

Proof. Part (i) is clear. For (ii), assume α < β < γ; the case γ < β < α reduces
to this case by taking negatives. Then γ − α > β − α > 0, so [γ − α]k > [β − α]k,
since [β − α]k /∈ [Γ]k. Thus [β − γ]k =

[
(β − α) + (α− γ)

]
k
= [α− γ]k. □

In the rest of this section (Γ, ψ) is an H-couple over k, and α, γ range over Γ.
By an extension of (Γ, ψ) we mean an H-couple over k that extends (Γ, ψ). We
consider (Γ, ψ) as a valued ordered vector space over k with the valuation on Γ
given by ψ, so α ∼ γ means (α− γ)† > α†. For α ̸= 0 we set α∼ := {γ : α ∼ γ}.

Lemma 8.8. Suppose (Γ, ψ) is closed and α ̸= 0. Then

cf(α∼) = ci(α∼) = cf(Γ<) = ci(Γ>).

Proof. We have α∼ =
{
α+ γ : γ† > α†}. The map α+ γ 7→ α− γ is a decreasing

permutation of α∼, so cf(α∼) = ci(α∼). We also have the decreasing map

α+ γ 7→ γ† : α∼ ∩ Γ>α → Γ>α†

whose image is coinitial in Γ>α†
, since (Γ, ψ) is closed. Hence cf(α∼) = ci(Γ>α†

) =
ci(Γ>) by [ADH, 2.1.4]. □

Lemma 8.9. Suppose (Γ, ψ) is of Hahn type, closed, and cf(Γ), cf(Γ<) > ω. Let β
in an extension of (Γ, ψ) have countable type over Γ with [β]k /∈ [Γ]k. Then β† /∈ Γ,
and so β† has countable type over Γ by Lemma 8.4.

Proof. We may replace β by −β, and so we arrange β > 0. For 0 < α < β < γ
we have [α]k < [β]k < [γ]k, and so α† ⩾ β† ⩾ γ†, but α† > γ† by the Hahn type
assumption. Suppose towards a contradiction that β† ∈ Γ. We distinguish two
cases. First case: α† = β† for some α with 0 < α < β. Then β† > γ† for all γ > β,
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but then ci(Γ>β) = ω (by Lemma 8.3) and (Γ, ψ) being closed gives for such α

that cf(Γ<α†
) = cf(Γ<β†

) ⩽ ω, contradicting cf(Γ<α†
) > ω. Second case: β† = γ†

for some γ > β. This leads to a contradiction in a similar way. □

We say that (Γ, ψ) is countably spherically complete if every pc-sequence in
it of length ω pseudoconverges in it. In particular, if (Γ, ψ) is the H-couple of a
maximal Hardy field (with k = R), then (Γ, ψ) is of Hahn type, closed, countably
spherically complete, and cf(Γ), cf(Γ<) > ω. (See Corollary 8.1.)

If (Γ, ψ) is of Hahn type, then the valuation ψ on Γ is equivalent to the k-
valuation of Γ [ADH, p. 82]. If in addition (Γ, ψ) is countably spherically complete,
then by Corollary 8.6, any β in an extension of (Γ, ψ) and of countable type over Γ
and such that Γ + kβ is a Hahn space has a good approximation in Γ.

In the next lemma only part (i) of the conclusion is needed later. The other
parts are included for their independent interest.

Lemma 8.10. Suppose (Γ, ψ) is of Hahn type, closed, and cf(Γ), cf(Γ<) > ω. Let β
in an extension of (Γ, ψ) have countable type over Γ, with [β]k ∈ [Γ]k, and let α0

be a good approximation of β in Γ. Then

(i) β∗ := (β − α0)
† /∈ Γ, and β∗ has countable type over Γ;

(ii) if α0 < β, then there is a sequence (γn) in Γ>β such that

[β − α0]k < [γn − β]k < [β]k, for all n,

and
(
[γn − β]k

)
is strictly decreasing and coinitial in [Γ]

>[β−α0]k
k ;

(iii) if β < α0, then there is a sequence (γn) in Γ<β such that

[β − α0]k < [β − γn]k < [β]k, for all n,

and
(
[β − γn]k

)
is strictly decreasing and coinitial in [Γ]

>[β−α0]k
k ; and

(iv) α0 ∼ β, that is, β∗ > α†
0 = β†.

Proof. Applying Lemma 8.9 to β−α0 in the role of β gives (i). As to (ii), let α0 < β
and suppose [α]k > [β − α0]k; then [α]k = [γ − β]k for some γ > β: taking α > 0,
this holds with γ := α0 + α. Hence{

[γ − β]k : γ > β
}

= [Γ]
>[β−α0]k
k

by Lemma 8.7(ii). Using also (i) we have a decreasing bijection

[γ − β]k 7→ (γ − β)† : [Γ]
>[β−α0]k
k → Γ<β∗ (γ > β).

Thus ci
(
[Γ]

>[β−α0]k
k

)
= cf(Γ<β∗) = ω by (i) and Lemma 8.3 applied to β∗ in the role

of β, and [β]k > [β − α0]k by Lemma 8.7(i). This proves (ii), and taking negatives
we obtain (iii). For (iv) first note that cf(α∼

0 ) = cf(Γ<) > ω by Lemma 8.8.
If α0 < γ < β, then α0 ∼ γ: otherwise α0 < γ < β and [γ−α0]k ⩾ [α0]k > [β−α0]k,
which is impossible. The set α∼

0 must contain elements > β, since otherwise α∼
0

would be a cofinal subset of Γ<β , contradicting cf(Γ<β) = ω. Thus α0 ∼ β. □

Case (b) extensions. In this subsection (Γ, ψ) is an H-couple over k with asymp-
totic integration, and β /∈ Γ is in an H-couple (Γ∗, ψ∗) over k that extends (Γ, ψ).
Let (Γ⟨β⟩, ψβ) be the H-couple over k generated by β over (Γ, ψ) in (Γ∗, ψ∗). The
structure of the extension

(
Γ⟨β⟩, ψβ

)
of (Γ, ψ) is described in detail in [6, Section 4]:

the possibilities are listed in [6, Proposition 4.1] as (a), (b), (c)n, and (d)n. Case (b)
is as follows:
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(b) We have a sequence (αi) in Γ and a sequence (βi) in Γ∗ that is k-linearly

independent over Γ, such that β0 = β − α0 and βi+1 = β†
i − αi+1 for all i,

and such that Γ⟨β⟩ = Γ⊕
⊕∞

i=0 kβi.

Lemma 8.11. Suppose (Γ, ψ) is of Hahn type, closed, countably spherically com-
plete, and cf(Γ), cf(Γ<) > ω. Assume also that Γ∗ is a Hahn space, and β has
countable type over Γ. Then β falls under Case (b).

Proof. Suppose β falls under Case (a). This means (Γ + kβ)† = Γ†. In particular,
β† ∈ Γ, hence [β]k ∈ [Γ]k by Lemma 8.9, so (β − α)† /∈ Γ for some α, by Lem-
ma 8.10(i) and the remark preceding that lemma, contradicting (Γ + kβ)† = Γ†.

Next, assume β falls under Case (c)n. Then we have α0, . . . , αn ∈ Γ, and non-

zero β0, . . . , βn ∈ Γ∗ such that β0 = β − α0, βi+1 = β†
i − αi+1 for 0 ⩽ i < n, the

vectors β0, . . . , βn, β
†
n are k-linearly independent over Γ, and (Γ+kβ†

n)
† = Γ†. As β

has countable type over Γ, an induction using Lemma 8.4 gives that β0, . . . , βn, β
†
n

have countable type over Γ. But then Case (a) would apply to β†
n in the role of β,

and we already excluded that possibility.
The cases (d)n are excluded because (Γ, ψ) is closed, as noted after the proof of

Proposition 4.1 in [6]. □

Here is more information about Case (b):

Lemma 8.12. Let (αi) and (βi) be as in (b). Then:

(i) β†
i /∈ Γ for all i, and thus [βi]k /∈ [Γ]k for all i;

(ii) α0 is a good approximation of β in Γ;

(iii) αi+1 is a good approximation of β†
i in Γ, for all i;

(iv) β††
i ⩽ β

†
i+1 for all i;

(v) (β†
i ) is strictly increasing, and thus

(
[βi]k

)
is strictly decreasing;

(vi)
[
Γ⟨β⟩

]
k
= [Γ]k ∪

{
[βi]k : i ∈ N

}
, and thus Ψβ = Ψ ∪

{
β†
i : i ∈ N

}
;

(vii) there is no δ ∈ Γ⟨β⟩ with Ψ < δ < (Γ>)′;
(viii) Γ< is cofinal in Γ⟨β⟩<.

If (Γ, ψ) is closed and η in an extension of (Γ, ψ) realizes the same cut in Γ as β,
then there is an isomorphism

(
Γ⟨β⟩, ψβ

)
→

(
Γ⟨η⟩, ψη

)
of H-couples over k that is

the identity on Γ and sends β to η. If (Γ, ψ) is of Hahn type, then so is (Γ⟨β⟩, ψβ).

Proof. Except for (ii), (iii), (iv), and the isomorphism claim this is in [6, Lemma 4.2].

Now (ii) holds by [β−α0]k = [β0]k /∈ [Γ]k, and (iii) by [β†
i −αi+1]k = [βi+1]k /∈ [Γ]k.

As to (iv), this is because [β†
i ]k ⩾ [β†

i − αi+1]k = [βi+1]k by (iii) and Lemma 8.5.
Now assume (Γ, ψ) is closed and η in an extension (Γ1, ψ1) of (Γ, ψ) realizes

the same cut in Γ as β, in particular, η /∈ Γ. The case (Γ1, ψ1) = (Γ∗, ψ∗) is
actually part of [6, Lemma 4.2], and one can reduce to that case: the theory of
closed H-couples over k has QE in the language specified in [6, Section 3], and so
there is an H-couple (Γ∗

1, ψ
∗
1) extending (Γ, ψ) with embeddings (Γ∗, ψ∗) → (Γ∗

1, ψ
∗
1)

and (Γ1, ψ1) → (Γ∗
1, ψ

∗
1) over Γ. □

We add the following observations:

Corollary 8.13. Suppose (αi) = (α0, α1, α2, . . . ) and (βi) = (β0, β1, β2, . . . ) are as
in (b). Then −β falls under Case (b) with associated sequences (−α0, α1, α2, . . . )

and (−β0, β1, β2, . . . ). Also, for any i, β†
i falls under Case (b) with associated

sequences (αi+1, αi+2, αi+3, . . . ) and (βi+1, βi+2, βi+3, . . . ).
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Corollary 8.14. Suppose (Γ, ψ) is closed, β has countable type over Γ, α < β < γ
for some α, γ, and (αi), (βi) are as in (b). Then cf(Γ<βi) = ci(Γ>βi) = ω for all i.

Proof. Induction using Lemma 8.4 shows that every βi has countable type over Γ
and for every i there are α, γ with α < βi < γ. It follows from Lemma 8.12(viii)
that for any η ∈ Γ⟨β⟩\Γ the ordered set Γ<η has no largest element and the ordered
set Γ>η has no least element. Applying this to the βi gives the desired result. □

In the next corollary we let k0 be an ordered subfield of k. Then (Γ, ψ), (Γ∗, ψ∗)
are also H-couples over k0.

Corollary 8.15. Let (αi) be a sequence in Γ and (βi) be a sequence in Γ∗. Then β
falls under Case (b) with respect to (αi), (βi) iff β falls under Case (b) with respect
to (αi), (βi) when (Γ, ψ) and (Γ∗, ψ∗) are viewed as H-couples over k0.

Proof. Use Lemma 8.12(i),(v) and β†
i = βi+1 + αi+1. □

Although the element β of (Γ∗, ψ∗) does not determine uniquely the sequence (βi)
in Case (b), it follows from Lemma 8.12(i),(v),(vi) that β does determine uniquely

the sequences (β†
i ) and

(
[βi]k

)
. Without changing β we still have considerable

flexibility in choosing the αi and βi:

Lemma 8.16. Let (αi), (βi) be as in (b). Let α∗
0 be a good approximation of β

in Γ, and α∗
i+1 a good approximation of β†

i in Γ, for all i. Set β∗
0 := β − α∗

0

and β∗
i+1 := β†

i − α∗
i+1. Then (α∗

i ) and (β∗
i ) are also as in (b), with [β∗

i ]k = [βi]k
and β∗

i − βi ∈ Γ for all i.

Proof. We have β∗
i −βi = αi−α∗

i ∈ Γ for each i and so Γ⟨β⟩ = Γ⊕
⊕∞

i=0 kβ
∗
i . From

Lemma 8.5 and Lemma 8.12(ii),(iii) we get [β∗
i ]k = [βi]k for all i, and so β∗

i+1 =

β†
i − α∗

i+1 = (β∗
i )

† − α∗
i+1 as required. □

Next we consider a shift (Γ, ψ − γ) of (Γ, ψ) and replace β by β − γ, viewed as an
element of the extension (Γ∗, ψ∗ − γ) of (Γ, ψ − γ):

Lemma 8.17. Let (αi), (βi) be as in (b). Then β − γ falls under (b) with respect
to the indicated shifts, as witnessed by the sequences (αi − γ), (βi).

At the end of the introduction we defined α⟨n⟩. This comes into play now.

Lemma 8.18. Let (αi) and (βi) be as in (b), and suppose that β†
i < 0 for all i.

Then β
⟨n+1⟩
i ⩽ β†

i+n < 0 for all i and all n.

Proof. This is trivial for n = 0. Suppose β
⟨n+1⟩
i ⩽ β†

i+n. Then by Lemma 8.12(iv),

β
⟨n+2⟩
i ⩽ β††

i+n ⩽ β†
i+n+1. □

We next discuss a situation where we can arrange that β†
i < 0 for all i.

Remark 8.19. Suppose cf(Γ<) > ω and (αi), (βi) are as in (b). Then cf(Ψ) =

cf(Γ<) > ω, so we have γ ∈ Ψ with β†
i < γ for all i, hence β†

i − γ < 0 for all i.
Thus β−γ falls under Case (b) with respect to the shifts (Γ, ψ−γ) and (Γ∗, ψ∗−γ)
and for the associated sequences (αi − γ), (βi) we have (ψ∗ − γ)(βi) < 0 for all i,
so that the hypothesis of Lemma 8.18 is satisfied for this shifted situation.
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Constructing a case (b)-extension. Let K be a Liouville closed H-field; below
we view its asymptotic couple (Γ, ψ) as an H-couple over k := Q. Assume β /∈ Γ
in an extension (Γ∗, ψ∗) of (Γ, ψ) falls under Case (b). We show:

Proposition 8.20. There exists an H-field extension K⟨y⟩ of K such that:

(i) y > 0 and vy /∈ Γ realizes the same cut in Γ as β;
(ii) for any H-field extension M of K and any z ∈M> such that vz /∈ Γ and vz

realizes the same cut in Γ as β, there is an H-field embedding K⟨y⟩ → M
over K sending y to z.

Proof. Model-theoretic compactness gives a Liouville closed H-field extension L
of K with y ∈ L> such that vy /∈ Γ realizes the same cut in Γ as β. Lemma 8.12
then yields an isomorphism

(
Γ⟨β⟩, ψβ

)
→

(
Γ⟨vy⟩, ψy

)
of H-couples over Q that is

the identity on Γ and sends β to vy. (Here
(
Γ⟨vy⟩, ψy

)
is the H-couple over Q

generated by Γ ∪ {vy} in the H-couple of L over Q.) It follows that Γ⟨vy⟩/Γ has
infinite dimension as a vector space over Q, so y is differentially transcendental
over K in view of Γ⟨vy⟩ ⊆ v(K×

y ) where Ky is the real closure of K⟨y⟩ in L. We
claim that K⟨y⟩ has the properties stated in the proposition; in particular, we show
that K⟨y⟩ is an H-subfield of L, not just an asymptotic (ordered) subfield of L.

Let (αi) and (βi) be as in (b); for each i, take fi ∈ K> such that vfi = αi.

We define yi ∈ K⟨y⟩ by recursion: y0 := y/f0, and yi+1 = y†i /fi+1; to make this
recursion possible we simultaneously show by induction on i that yi ̸= 0 and vyi /∈ Γ

realizes the same cut in Γ as βi, and v(y†i ) /∈ Γ realizes the same cut in Γ as β†
i .

This is all straightforward using the above isomorphism

(8.1)
(
Γ⟨β⟩, ψβ

)
→

(
Γ⟨vy⟩, ψy

)
,

which sends βi to vyi for all i. Likewise we obtain that for all n,

Kn := K
(
y, y′, . . . , y(n)

)
= K(y0, . . . , yn) = K

(
y, . . . , y⟨n⟩

)
, and

v(K×
n ) = Γ⊕ Zvy0 ⊕ · · · ⊕ Zvyn ⊆ Γ⟨vy⟩,

with the above isomorphism (8.1) restricting to an isomorphism

Γ⊕ Zβ0 ⊕ · · · ⊕ Zβn → Γ⊕ Zvy0 ⊕ · · · ⊕ Zvyn, βi 7→ vyi (i = 0, . . . , n)

of ordered abelian groups. Hence the residue field res(Kn) of the valued sub-
field Kn of L is algebraic over res(K) by [ADH, 3.1.11] (Zariski-Abhyankar), and
so res(K) being real closed gives res(Kn) = res(K). Then from K⟨y⟩ =

⋃
nKn we

obtain res
(
K⟨y⟩

)
= res(K), so K⟨y⟩ is an H-subfield of L with the same constant

field as K, by [ADH, 9.1.2]. So far we only used y ̸= 0 rather than y > 0.
Next, letM be any H-field extension of K and z ∈M× such that vz /∈ Γ realizes

the same cut as β in Γ. By increasing M we can assume M is Liouville closed, and
then all the above goes through with z instead of y. In particular, setting z0 :=

z/f0 and zi+1 := z†i /fi+1, we obtain for each n an isomorphism of the valued
subfield Kn of L onto the valued subfield K(z0, . . . , zn) of M over K, sending yi
to zi for i = 0, . . . , n. These have a common extension to a valued differential
field isomorphism K⟨y⟩ → K⟨z⟩ over K sending y to z. For this isomorphism to
preserve the ordering, we now assume besides y > 0 that also z > 0. Induction on i
then shows that yi and zi are both positive, or both negative, for each i: use that
all fi > 0 and that for any g in any H-field we have:

g ≻ 1 ⇒ g† > 0, g ≺ 1 ⇒ g† < 0.
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The valuation determines for every polynomial P (Y0, . . . , Yn) ∈ K[Y0, . . . , Yn ]̸
= the

unique dominant term in P (y0, . . . , yn) and in P (z0, . . . , zn) in the same way, so
this isomorphism K⟨y⟩ → K⟨z⟩ is also order-preserving. □

Remark 8.21. Let K⟨y⟩ be an H-field extension of K with y > 0 such that vy
realizes the same cut in Γ as β, with real closure F := K⟨y⟩rc. By the proof
above F has the same constant field asK, and theH-couple of F over Q is generated
over (Γ, ψ) by vy, as witnessed by an isomorphism

(
Γ⟨β⟩, ψβ) → (ΓF , ψF ) over Γ

sending β to vy.

With fi, yi as in the proof above (so y†i = fi+1yi+1 for all i), we think informally
of the element y in Proposition 8.20 as given in terms of the fi by

y = f0y0 = f0 e

∫
f1y1

= f0 e

∫
f1 e

∫
f2y2

= · · · = f0 e

∫
f1 e

∫
f2 e

∫ . . .

In the next section we show how to construct such a y analytically when K is a
Liouville closed Hardy field containing R, under additional hypotheses on β.

9. Filling Gaps of Type (b)

In Section 8—see in particular the remark at the beginning of that section and the
remark preceding Lemma 8.4—we showed that Theorem A reduces to:

Lemma 9.1. Let H be a maximal Hardy field with H-couple (Γ, ψ) over R. Then
no element in any extension of (Γ, ψ) has countable type over Γ.

Proof. Suppose towards a contradiction that β in some extension of (Γ, ψ) has
countable type over Γ. Then β falls under Case (b) by the remarks that precede

Lemma 8.10 and by Lemma 8.11. Let (αi), (βi) be as in (b). Then (β†
i ) is strictly

increasing by Lemma 8.12(v). Since cf(Γ<) = cf(Ψ) > ω, we can take γ ∈ Ψ such

that β†
i < γ for all i. Take g ∈ H> with vg = γ, and ℓ ∈ H with ℓ′ = g, so ℓ > R.

Composing with ℓinv yields a maximal Hardy field H ◦ ℓinv whose H-couple over R
we identify with the shift (Γ, ψ − γ) of (Γ, ψ). As indicated in Remark 8.19 this
allows us to replace H by H ◦ ℓinv and β by β − γ. By renaming we thus arrange

that β†
i < 0 for all i. This situation is impossible by Theorem 9.2 below. □

Theorem 9.2 is of interest independent of Theorem A and Lemma 9.1, since it
involves a new way of constructing certain Hardy field extensions.

Theorem 9.2. Let H ⊇ R be a Liouville closed Hardy field with H-couple (Γ, ψ)
over R. Suppose β in an extension of (Γ, ψ) and of countable type over Γ falls

under Case (b), and β†
i < 0 for all i, where (αi), (βi) are as in (b). Then there

exists y ̸= 0 in a Hardy field extension of H such that vy realizes the same cut in Γ
as β.

The special cases β < Γ and β > Γ of Theorem 9.2 are taken care of by Section 5:
say β < Γ; then ci(Γ) = cf(H) = ω, and so there are overhardian y >e H, and any
such y has the desired property by Corollary 5.10.

The rest of this section proves Theorem 9.2 in the case where α < β < γ for
some α, γ ∈ Γ. As we saw, this is also the final step in proving Theorem A.
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Some useful inclusions. Let H ⊇ R be a Liouville closed Hardy field with H-
couple (Γ, ψ) over R, and let α, γ range over Γ. Let β in an extension of (Γ, ψ) of
Hahn type be such that α < β < γ for some α, γ, [β] /∈ [Γ] (so β† /∈ Γ), and β⟨n⟩ < 0
for all n ⩾ 1. (We do allow β > 0, but use −|β| below to arrange a value < 0,
with (−|β|)⟨n⟩ = β⟨n⟩ for n ⩾ 1.) Set

A :=
{
h ∈ H>R : −|β| < vh

}
, B :=

{
h ∈ H>R : vh < −|β|

}
.

Then A ∪B = H>R, A < B, and so there is no h ∈ H with A < h < B. Also

vA ∪ vB = Γ<, vB < −|β| < vA < 0,

and so there is no α with vB < α < vA.

Lemma 9.3. The sets A and B have the following properties:

(i) en := expn(x) ∈ A for all n, and B ̸= ∅;
(ii) A = sq(A) and B =

√
B.

Proof. As to (i), an easy induction shows that e†n = e1 · · · en−1 for n ⩾ 1 and e
⟨m⟩
n ∼

e†n−m+1 for n ⩾ m ⩾ 1. In particular, e
⟨n⟩
n ∼ 1 for n ⩾ 1. Since β⟨n⟩ < 0 for

all n ⩾ 1, this gives v(en) > β for all n. Item (ii) follows from [β] /∈ [Γ]. □

We now set

A† :=
{
a† : a ∈ A, a† ≻ 1

}
, B† :=

{
b† : b ∈ B

}
, so in view of β† /∈ Γ:

A† =
{
h ∈ H>R : β† < vh

}
, B† =

{
h ∈ H>R : vh < β†}.

Thus A† ∪B† = H>R, A† < B†, and there is no h ∈ H with A† < h < B†. Also

v(A†) ∪ v(B†) = Γ<, v(B†) < β† < v(A†) < 0,

and there is no α with v(B†) < α < v(A†). Note also that e†n ∈ A† for all n ⩾ 2.

Corollary 9.4. logA ⊆ A† ⊆ A and logB ⊇ B† ⊇ B.

Proof. If h ∈ H, h ⩾ e2, then log h ≼ (log h)′ = h†. Then by Lemma 9.3(i) we
have logA ⊆ A†. Now use logA < logB and logA ∪ logB = A† ∪ B† = H>R. As
to A† ⊆ A: if h ∈ H>R and h† ≻ 1, then vh† = o(vh) by [ADH, 9.2.10(iv)]. □

To indicate the dependence of A, B, A†, B† on β we may denote these sets by

A(β), B(β), A†(β), B†(β).

In fact, these four sets depend only on [β] rather than β, in view of [β] /∈ [Γ].
Recall that β† /∈ Γ and β† < 0, so if β† has a good approximation in Γ, it has a

good approximation ⩽ 0 in Γ. Note: if [β†] /∈ [Γ], then 0 is a good approximation
of β in Γ and any good approximation α ⩽ 0 to β† in Γ satisfies β† < α.

Suppose now that α ⩽ 0 is a good approximation of β† in Γ, so [β† − α] /∈ [Γ].

Set βnext := β† − α, and assume also that β
⟨n⟩
next < 0 for all n ⩾ 1. This means that

the conditions we imposed earlier on β are now also satisfied by βnext. Since [βnext]
does not depend on the particular good approximation α ⩽ 0 of β† in Γ,

A(βnext) =
{
h ∈ H>R : vh > −|βnext|

}
doesn’t either, and the assumption that β

⟨n⟩
next < 0 for all n ⩾ 1 will still be satisfied

for any such α.

Lemma 9.5. A(βnext) ⊆ logA(β).
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Proof. Let h ∈ A(βnext); it suffices to show that then eh ∈ A(β). Suppose towards a
contradiction that eh ∈ B. Then v eh < −|β|, so v(eh)† = vh′ < β† < 0. If [β†] ∈ Γ,
then [β†] > [βnext], so h

′ ∈ B(βnext), and thus h ∈ B(βnext) by Lemma 1.13(ii)
applied to B(βnext) in the role of B. If [β†] /∈ Γ, then [β†] = [βnext], and again h′ ∈
B(βnext), so h ∈ B(βnext). In both cases we contradict h ∈ A(βnext). □

The diagram in Figure 10 depicts the gaps

(A,B) =
(
A(β), B(β)

)
, (A†, B†), (logA, logB),

(
A(βnext), B(βnext)

)
in H and hypothetical H-hardian germs y, ynext with A < y < B and A(βnext) <
ynext < B(βnext), as well as y

† and log y.

A By

A† B†y†

logA logBlog y

A(βnext) B(βnext)

R

ynext

Figure 10. Various gaps in H associated to (A,B)

Lemma 9.6. We have [β] > [βnext]. If there is no γ such that [β] > [γ] > [βnext],
then A(β) = A(βnext), B(β) = B(βnext), and A, B is a wide gap.

Proof. From [ADH, 9.2.10(iv)] and β† < 0 we get β† = o(β), so [β] > [β†] ⩾ [βnext].
Suppose there is no γ with [β] > [γ] > [βnext]. Then clearly A(β) = A(βnext)
and B(β) = B(βnext), so A ⊆ logA by Lemma 9.5. Thus A, B is a wide gap. □

By Lemma 9.3 we have en ∈ A(βnext) for all n. In combination with the next result
this gives further information about the behavior of A and B and of the gap between
them. For p, ϕ ∈ C with ϕ >e 0 we have the germ ϕp ∈ C. Let p ∈ H; then h ∈ H>

gives hp = exp(p log h) ∈ H>, and for S ⊆ H> we set Sp := {hp : h ∈ S} ⊆ H>.

Proposition 9.7. The sets A, A†, A(βnext), B have the following properties:

(i) A(βnext) ·A† ⊆ A†;
(ii) if p ∈ A(βnext), then A

p ⊆ A and B1/p ⊆ B;
(iii) if p ∈ A(βnext), ϕ ∈ C, and A <e ϕ <e B, then A <e ϕ

1/p <e ϕ <e ϕ
p <e B.

Proof. For (i) we distinguish two cases. Suppose first that β† < α. Let p ∈ A(βnext),
h ∈ A†; we need to show ph ∈ A†, that is, v(ph) > β†, equivalently, vp > β† − vh.
Since vp > βnext = β†−α, we do have vp > β†−vh if vh ⩾ α. If vh < α, then β† <
vh < α, so vh is also a good approximation of β† in Γ, and then replacing α by vh
yields vp > β† − vh in view of remarks made earlier about A(βnext).

Next, suppose α < β†, so [β†] ∈ [Γ] by an earlier remark. Let p ∈ A(βnext),
h ∈ A†; as before we need to show vp > β†−vh. Now α < β† < vh gives [α−β†] <
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[β† − vh] by Lemma 8.7(ii). Since α − β† and β† − vh are both negative, this
yields α− β† > β† − vh, which together with vp > α− β† gives vp > β† − vh.

As to (ii), let p ∈ A(βnext) and h ∈ A. We have hp > R and

(hp)† = (p log h)′ = p′ log h+ ph†,

and ph† ≼ 1 or ph† ∈ A† by (i). Also p′ ∈ A(βnext) or 0 < p′ ≼ 1, by Lemma 1.12,
and log h ∈ A† by Corollary 9.4, so p′ log h ≼ 1 or p′ log h ∈ A† by (i). Hence (hp)† ∈
A†, and thus hp ∈ A. Next, let p ∈ A(βnext) and h ∈ B. Then h1/p /∈ B would
mean h1/p ∈ A or 0 < h1/p ≼ 1, and in either case h = (h1/p)p would give h ∈ A
or h ≼ 1, contradicting h ∈ B. This concludes the proof of (ii).

Property (iii) is a routine consequence of (ii). □

Part (iii) of Proposition 9.7 is only relevant if there is any ϕ ∈ C with A <e ϕ <e B.
There are indeed such ϕ if cf(A) = ci(B) = ω, by Corollary 2.8.

To describe A(βnext) directly in terms of A†, take f ∈ H> with vf = α. Then:

Lemma 9.8. If β† < α, then f ∈ A† or f ≍ 1, and

A(βnext) = H>R ∩ f−1A†, B(βnext) = f−1B†.

If α < β†, then f ∈ B†, [β† − α] < [β†] = [α] ∈ [Γ], and

A(βnext) = H>R ∩ f(B†)−1, f(A†)−1 is a coinitial subset of B(βnext).

Proof. If β† < α, then the inclusion A(βnext) ⊇ H>R ∩ f−1A† and the equal-
ity B(βnext) = f−1B† are almost obvious, and one can use α ⩽ 0 to prove the
inclusion A(βnext) ⊆ H>R ∩ f−1A†.

Next, suppose α < β†. Then for the inclusion A(βnext) ⊇ H>R ∩ f(B†)−1,
use β† < α− β†, and for the statement about B(βnext), note that

B(βnext) =
{
h ∈ H>R : vh < α− β†}, and

f(A†)−1 =
{
h ∈ H>R : α < vh < α− β†}. □

Using the first part of Lemma 9.8 we obtain:

Corollary 9.9. Suppose βnext < 0 and z0, z1 ∈ C<∞ are such that

z0 >e 0, z†0 = fz1, A(βnext) <e z1 <e B(βnext).

Then A <e z0 <e B.

Proof. Let h ∈ A. Then f−1h† ∈ A(βnext) or f
−1h† ≼ 1, so f−1h† <e z1 = f−1z†0,

and thus h† <e z
†
0. Then Lemma 2.16 gives c ∈ R> with ch <e z0. Applying this

argument to h2 instead of h gives d ∈ R> with dh2 <e z0, which in view of h <e dh
2

gives h <e z0. In the same way one shows that if h ∈ B, then z0 <e h. □

Likewise, using the second part of Lemma 9.8:

Corollary 9.10. If βnext > 0 and z0, z1 ∈ C<∞ are such that

z0, z1 >e 0, z†0 = f/z1, A(βnext) <e z1 <e B(βnext),

then A <e z0 <e B.
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What remains to be done. Let H ⊇ R be a Liouville closed Hardy field with
H-couple (Γ, ψ) over R, and let α, γ range over Γ. Suppose β in an extension
of (Γ, ψ) is of countable type over Γ and falls under Case (b), with (αi), (βi) as

in (b), and β†
i < 0, αi+1 ⩽ 0 for all i. Assume also that α < β < γ for some α, γ.

Then
(
Γ⟨β⟩, ψβ

)
is of Hahn type, by the last claim in Lemma 8.12, and so all βi

lie in this extension of (Γ, ψ) of Hahn type; this is significant because of the initial
assumption on β in the previous subsection. Note also that for all i there are α, γ

with α < βi < γ, and that by Lemma 8.18 we have β
⟨n⟩
i < 0 for all i and all n ⩾ 1.

Thus we can apply the previous subsection to each βi in the role of β there. Set

Ai :=
{
h ∈ H>R : vh > −|βi|

}
, Bi :=

{
h ∈ H : vh < −|βi|

}
,

so Ai = A(βi), Bi = B(βi), and βi+1 = (βi)next in the notation of the previous
subsection. Thus by lemmas in that subsection:

(i) en ∈ Ai for all i, n;
(ii) Ai and sq(Ai) are cofinal, and Bi and

√
Bi are coinitial;

(iii) h ∈ Ai ⇒ hen ∈ Ai, and h ∈ Bi ⇒ h1/en ∈ Bi;

By Corollary 8.14 we have cf(Γ<βi) = ci(Γ>βi) = ω for all i. Hence cf(Ai) =
ci(Bi) = ω for all i. What remains to be done is to show the existence of a y > 0
in a Hardy field extension of H such that vy realizes the same cut in Γ as β.

For each i, take fi ∈ H> with vfi = αi, and fi ⩾ 1 for i ⩾ 1. To get the right
idea for our reverse engineering, suppose y > 0 is H-hardian and vy realizes the
same cut in Γ as β. As in the proof of Proposition 8.20, let yi ∈ H⟨y⟩ be given

by y0 := y/f0, and yi+1 = y†i /fi+1. Then vyi realizes the same cut in Γ as βi,
so yi ≻ 1 if βi < 0 and yi ≺ 1 if βi > 0. To have only positive infinite germs, set

zi := |yi| if βi < 0, zi := |yi|−1 if βi > 0.

One verifies easily that then Ai <e zi <e Bi, and

βi+1 < 0 =⇒ z†i = fi+1zi+1, βi+1 > 0 =⇒ z†i = fi+1/zi+1.

We first deal with a “wide gap” case:

Lemma 9.11. Suppose for some n there is no γ with [βn] > [γ] > [βn+1]. Then
there exists H-hardian y > 0 such that vy realizes the same cut in Γ as β.

Proof. Let n be as in the hypothesis. Then An, Bn is a wide gap by Lemma 9.6,
hence Section 6 gives an H-hardian zn such that An <e zn <e Bn. Let L :=
Li
(
H⟨zn⟩

)
. Then we have zn−1, . . . , z0 ∈ L> such that for all i < n:

βi+1 < 0 =⇒ z†i = fi+1zi+1, βi+1 > 0 =⇒ z†i = fi+1/zi+1.

Downward induction on i using Corollaries 9.9 and 9.10 then gives Ai <e zi <e Bi

for all i ⩽ n. Thus if β0 < 0, then v(z0) realizes the same gap in Γ as β0, and
so y := f0z0 has the desired property. If β0 > 0, then v(z0) realizes the same gap
in Γ as −β0, and so y := f0/z0 has the desired property. □

It remains to consider the case that for all i there exists γ with [βi] > [γ] > [βi+1].
We assume this for the rest of this section. The goal of our reverse engineering will
be to construct germs zi as in the next lemma:
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Lemma 9.12. Let the germs zi ∈ C<∞ be such that for all i, Ai <e zi <e Bi and

βi+1 < 0 =⇒ z†i = fi+1zi+1, βi+1 > 0 =⇒ z†i = fi+1/zi+1.

Then there exists H-hardian y > 0 such that vy realizes the same cut in Γ as β.

Proof. Note that for each n we have the ordered subgroup Γ ⊕ Zβ0 ⊕ · · · ⊕ Zβn
of Γ⟨β⟩, and likewise withQ instead of Z. We prove by induction on n that z0, . . . , zn
generate a Hausdorff field Hn := H(z0, . . . , zn) over H, with

v(H×
n ) = Γ⊕ Zvz0 ⊕ · · · ⊕ Zvzn,

and with an ordered abelian group isomorphism that is the identity on Γ:

Γ⊕ Zβ0 ⊕ · · · ⊕ Zβn → Γ⊕ Zvz0 ⊕ · · · ⊕ Zvzn, −|βi| 7→ vzi (i = 0, . . . , n).

For n = 0 this follows from Lemma 1.11. Assume that the above holds for a
certain n. Then for the real closure Hrc

n of Hn as a Hausdorff field extension of Hn,

v
(
Hrc,×

n

)
= Γ⊕Qvz0 ⊕ · · · ⊕Qvzn,

with an ordered abelian group isomorphism that is the identity on Γ:

Γ⊕Qβ0 ⊕ · · · ⊕Qβn → Γ⊕Qvz0 ⊕ · · · ⊕Qvzn, −|βi| 7→ vzi (i = 0, . . . , n).

Thus
[
v
(
Hrc,×

n

)]
= [Γ] ∪

{
[vz0], . . . , [vzn]

}
by Lemma 8.12.

Claim : For each f ∈ Hrc,>
n , either f ≼ h for some h ∈ An+1, or f ≽ h for

some h ∈ Bn+1.

Otherwise we have f ∈ Hrc
n with An+1 < f < Bn+1, so [vf ] /∈ [Γ] and vf re-

alizes the same cut in Γ as −|βn+1|. Taking γ with [βn] > [γ] > [βn+1] we ob-
tain [vz0] > · · · > [vzn] > [γ] > [vf ], contradicting vf ∈ v

(
Hrc,×

n

)
.

The claim and Lemma 1.11 give a Hausdorff field extension Hrc
n (zn+1) of H

rc
n , and

the resulting Hausdorff field extension Hn+1 = Hn(zn+1) of H has the properties
that the inductive step requires. This concludes the proof by induction.

An easy induction on n now shows that for z := z0 the elements z, z′, . . . , z(n)

of C<∞ generate the Hausdorff field H(z, z′, . . . , z(n)) = Hn over H, and so we have
a Hardy field H⟨z⟩ over H. If β0 < 0, then y := f0z0 has the desired property, and
if β0 > 0, then y := f0/z0 has the desired property. □

First step in reverse engineering. To construct germs zi as in Lemma 9.12
we first take for each i a continuous function [0,+∞) → R> that represents the
germ fi ∈ H and to be denoted also by fi, and with fi ⩾ 1 on [0,+∞) for i ⩾ 1.
Next, let (ai) be a strictly increasing sequence of real numbers ⩾ 0 tending to +∞
such that f0, . . . , fm are of class Cm on [am,+∞). Let there also be given for
each m ⩾ 1 a continuous function zm−1,m : [am−1, am] → R>. Then we define the
continuous function zk,m : [ak, am] → R> for 0 ⩽ k < m by downward recursion:
zm−1,m for m ⩾ 1 is already given to us, and for 1 ⩽ k < m,

zk−1,m(t) :=



zk−1,k(t) for ak−1 ⩽ t ⩽ ak,

zk−1,k(ak) · exp
∫ t

ak

fk(s)zk,m(s) ds for ak ⩽ t ⩽ am, if βk < 0,

zk−1,k(ak) · exp
∫ t

ak

fk(s)

zk,m(s)
ds for ak ⩽ t ⩽ am, if βk > 0.
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Downward induction on k gives zk,m = zk,m+1 on [ak, am] for k < m. This fact
gives for each k ∈ N a continuous function zk : [ak,+∞) → R> such that zk = zk,m
on [ak, am], for all m > k. Thus for k ⩾ 1 and t ⩾ ak we have

βk < 0 =⇒ zk−1(t) = zk−1(ak) · exp
∫ t

ak

fk(s)zk(s) ds,

βk > 0 =⇒ zk−1(t) = zk−1(ak) · exp
∫ t

ak

fk(s)

zk(s)
ds,

so zk−1 is of class C1 on [ak,+∞), and:

βk < 0 =⇒ z†k−1 = fk zk on [ak,+∞),

βk > 0 =⇒ z†k−1 = fk/zk on [ak,+∞).

Hence induction on m gives that zk is of class Cm on [ak+m,+∞) (for all k, m),
and thus (the germ of) each zk lies in C<∞.

The above is a general construction of functions whose germs satisfy the equalities
in Lemma 9.12. More work is needed to satisfy also the inequalities Ai <e zi <e Bi

in that lemma. We now turn to this task.

Second step in reverse engineering. Assume in this subsection that zk−1,k ⩾ 1
on [ak−1, ak], for all k ⩾ 1. Then zk ⩾ 1 on [ak,+∞) for all k. For k ⩾ 1 we

have zk−1(t), z
†
k−1(t) > 0 for all t ⩾ ak, so zk−1 is strictly increasing on [ak,+∞).

For each k, let pk, qk : [ak,+∞) → R> be continuous functions such that

pm−1 ⩽ zm−1,m ⩽ qm−1 on [am−1, am], for all m ⩾ 1.

We try to find conditions on the families (pk) and (qk) so that these inequalities
extend to pk ⩽ zk,m ⩽ qk on [ak, am] for all k, m with k < m (and thus pk ⩽ zk ⩽ qk
on [ak,+∞) for all k). Let 1 ⩽ k < m and assume inductively that pk ⩽ zk,m ⩽ qk
on [ak, am]. On [ak−1, ak] we have pk−1 ⩽ zk−1,k ⩽ qk−1, so pk−1 ⩽ zk−1,m ⩽ qk−1,
as desired.

First suppose βk < 0. Then for ak ⩽ t ⩽ am we have

zk−1,m(t) = zk−1,k(ak) exp

∫ t

ak

fk(s)zk,m(s)ds,

hence

pk−1(ak) exp

∫ t

ak

fk(s)pk(s)ds ⩽ zk−1,m(t) ⩽ qk−1(ak) exp

∫ t

ak

fk(s)qk(s)ds,

and so the desired pk−1 ⩽ zk−1,m ⩽ qk−1 on [ak−1, am] would follow if

pk−1(t) ⩽ pk−1(ak) exp

∫ t

ak

fk(s)pk(s) ds for all t ⩾ ak,(Ik)

qk−1(t) ⩾ qk−1(ak) exp

∫ t

ak

fk(s)qk(s) ds for all t ⩾ ak.(IIk)

Now assume βk > 0. Then for ak ⩽ t ⩽ am we have

zk−1,m(t) = zk−1,k(ak) exp

∫ t

ak

fk(s)

zk,m(s)
ds,
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and so

pk−1(ak) exp

∫ t

ak

fk(s)

qk(s)
ds ⩽ zk−1,m(t) ⩽ qk−1(ak) exp

∫ t

ak

fk(s)

pk(s)
ds,

and so the desired pk−1 ⩽ zk−1,m ⩽ qk−1 on [ak−1, am] would follow if

pk−1(t) ⩽ pk−1(ak) exp

∫ t

ak

fk(s)

qk(s)
ds for all t ⩾ ak,(IIIk)

qk−1(t) ⩾ qk−1(ak) exp

∫ t

ak

fk(s)

pk(s)
ds for all t ⩾ ak.(IVk)

The above leads to the following:

Lemma 9.13. Let pi ∈ Ai and qi ∈ Bi for i = 0, 1, 2, . . . be given such that

βi+1 < 0 =⇒ p†i ⩽ fi+1pi+1, q†i ⩾ fi+1qi+1 (in H),

βi+1 > 0 =⇒ p†i ⩽ fi+1/qi+1, q
†
i ⩾ fi+1/pi+1 (in H).

Then there are germs zi ∈ C<∞ (i = 0, 1, 2, . . . ) such that for all i,

pi ⩽ zi ⩽ qi in C, βi+1 < 0 =⇒ z†i = fi+1zi+1, βi+1 > 0 =⇒ z†i = fi+1/zi+1.

Proof. Take a strictly increasing sequence (ai) of real numbers ⩾ 0 tending to +∞
and represent pi, qi for each i by C1-functions [ai,+∞) → R>, also to be denoted
by pi, qi, such that for all m,

• f0, . . . , fm are of class Cm on [am,+∞);
• 1 ⩽ pm ⩽ qm on [am,+∞);
• βm+1 < 0 =⇒ p†m ⩽ fm+1pm+1, q†m ⩾ fm+1qm+1 on [am+1,+∞);
• βm+1 > 0 =⇒ p†m ⩽ fm+1/qm+1, q

†
m ⩾ fm+1/pm+1 on [am+1,+∞).

Upon replacing (ai) by a strictly increasing sequence (bi) of reals with ai ⩽ bi for
all i and the pi, qi by their restrictions to [bi,+∞), for each i, the conditions above
are obviously still satisfied. For t ⩾ am we have

pm(t) = pm(am+1) exp

∫ t

am+1

p†m(s) ds, qm(t) = qm(am+1) exp

∫ t

am+1

q†m(s) ds,

and so for all k ⩾ 1 conditions (Ik) and (IIk) are satisfied if βk < 0, and con-
ditions (IIIk) and (IVk) are satisfied if βk > 0. Thus by the above we can take
any continuous function zm−1,m : [am−1, am] → R with pm−1 ⩽ zm−1,m ⩽ qm−1

on [am−1, am] for m = 1, 2, . . . to give germs zi for i = 0, 1, . . . as required. □

Final step in reverse engineering. This step involves a diagonalization. We
take pi,n ∈ Ai and qi,n ∈ Bi (for i = 0, 1, 2, . . . , n = 0, 1, 2, . . . ) such that for
all i, n:

• pi,n ≺ pi,n+1, and {pi,0, pi,1, pi,2, . . . } is cofinal in Ai;
• qi,n ≻ qi,n+1, and {qi,0, qi,1, qi,2, . . . } is coinitial in Bi;

• if βi+1 < 0, then pi+1,n = p†i,N/fi+1 and qi+1,n = q†i,N/fi+1 for some N =

N(i, n) > n;

• if βi+1 > 0, then pi+1,n = fi+1/q
†
i,N and qi+1,n = fi+1/p

†
i,N for some N =

N(i, n) > n.

It follows from Lemma 9.8 that there is such a family
(
(pi,n, qi,n)

)
. Setting pi := pi,i

and qi := qi,i we note that the hypotheses of Lemma 9.13 are satisfied, and this
gives us germs zi ∈ C<∞ for i = 0, 1, 2, . . . such that for all i,
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(1) pi ⩽ zi ⩽ qi in C;
(2) βi+1 < 0 =⇒ z†i = fi+1zi+1, βi+1 > 0 =⇒ z†i = fi+1/zi+1.

We claim that then Ai <e zi <e Bi for all i. (Establishing this claim achieves our
goal by Lemma 9.12.) To prove this claim, suppose for a certain pair i, n with i < n
we have pi+1,n ⩽ zi+1 ⩽ qi+1,n. (See Figure 11.) As a subclaim we show that
then pi,n ⩽ zi ⩽ qi,n. Consider first the case βi+1 < 0. Then for N := N(i, n) > n,

f−1
i+1p

†
i,N ⩽ zi+1 = f−1

i+1z
†
i ⩽ f−1

i+1q
†
i,N , so p†i,N ⩽ z†i ⩽ q†i,N ,

which by Lemma 2.16 gives constants c1, c2 > 0 with c1pi,N ⩽ zi ⩽ c2qi,N , and
so pi,N−1 ⩽ zi ⩽ qi,N−1. NowN−1 ⩾ n, and thus pi,n ⩽ zi ⩽ qi,n as promised. The
case βi+1 > 0 is handled in the same way. Given i < n we have pn,n ⩽ zn ⩽ qn,n,
and so pi,n ⩽ zi ⩽ qi,n by iterated application of the subclaim. For any fixed i this
yields Ai <e zi <e Bi by the cofinality and coinitiality requirements we imposed on
the pi,n and qi,n. This proves the claim, and concludes the proof of Theorem 9.2,
and thus of Theorem A. □

p0,0 ≺ p0,1 ≺ · · · ≺ p0,n ≺ · · · z0 · · · ≺ q0,n ≺ · · · ≺ q0,1 ≺ q0,0

p1,0 ≺ p1,1 ≺ · · · ≺ p1,n ≺ · · · z1 · · · ≺ q1,n ≺ · · · ≺ q1,1 ≺ q1,0
...

...
. . .

...
...

... . .
. ...

...
...

...
. . .

...
...

... . .
. ...

...
pn,0 ≺ pn,1 ≺ · · · ≺ pn,n ≺ · · · zn · · · ≺ qn,n ≺ · · · ≺ qn,1 ≺ qn,0
...

...
...

. . .
... . .

. ...
...

...

Figure 11

10. Isomorphism of Maximal Hardy Fields

The cardinality of any Hardy field extending R is 2ℵ0 . By Theorem A, all maximal
Hardy fields are η1 and thus ℵ1-saturated as real closed ordered fields; in particular,
under CH they are all isomorphic as ordered fields. However, they are not ℵ1-
saturated as ordered differential fields, since their constant field R isn’t. Thus to
show they are isomorphic (under CH), we need to argue in a different way, and this
is what we do in this section.

Lemma 10.1. Let K be a countable closed H-field with archimedean constant
field C, let L be a closed H-field with constant field R, and assume L is η1. Let E
be an ω-free H-subfield of K, and let i : E → L be an H-field embedding. Then i
extends to an H-field embedding K → L.

L

K
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Proof. We identify C in the usual (and only possible) way with a subfield of R, and
note that then i is the identity on CE ⊆ R. Then [ADH, 10.5.15, 10.5.16] yield an
extension of i to an H-field embedding E(C) → L that is the identity on C ⊆ R.
The H-subfield E(C) of K is d-algebraic over E, so is ω-free. Replacing E by E(C)
we reduce to the case that CE = C. Recall that η1-ordered sets are ℵ1-saturated.
Hence [ADH, 16.2.3] applies and gives the desired conclusion. □

Lemma 10.2. Let L1, L2 be closed H-fields with small derivation and common
constant field R, and assume that L1 and L2 are η1. Then the collection of H-field
isomorphisms K1 → K2 between countable closed H-subfields K1 of L1 and K2 of L2

is nonempty and is a back-and-forth system between L1 and L2. In particular, L1

and L2 are back-and-forth equivalent.

Proof. The theory of closed H-fields with small derivation has a (countable) prime
model, by [ADH, p. 705], and so there is an H-field isomorphism between copies
of that prime model in L1 and in L2. Also, any countable subset of a closed H-
field L is contained in a countable closed H-subfield of L, by downward Löwenheim-
Skolem [ADH, B.5.10]. It remains to use Lemma 10.1. □

A standard argument (cf. proof of [ADH, B.5.3]) using Lemma 10.2 now yields:

Corollary 10.3. Let L1, L2 as in Lemma 10.2 have cardinality 2ℵ0 . Assume CH.
Then L1 and L2 are isomorphic as H-fields.

Next we recall that Berarducci and Mantova [11] defined a derivation ∂BM on the
real closed field No of surreal numbers and proved that No with ∂BM is a Liouville
closed H-field with R ⊆ No as its field of constants. Below we consider No as
an H-field in this way, and recall also that its derivation ∂BM is small. We proved
in [5, Theorems 1 and 2] that No is even a closed H-field, that its real closed
subfield No(ω1) is closed under ∂BM, and that No(ω1) as a differential subfield
of No is a closed H-field as well. Moreover, No(ω1) has cardinality 2ℵ0 , and is η1
as an ordered set. In combination with Theorem A and Corollary 10.3, with L1 any
maximal Hardy field and L2 = No(ω1), this yields Corollary B in the introduction;
more precisely, also using [10, Theorem 3], we have:

Corollary 10.4. Let M be a maximal Hardy field. Then the ordered differential
fields M and No(ω1) are back-and-forth equivalent. Hence M and No(ω1) are
∞ω-equivalent, and assuming CH, M and No(ω1) are isomorphic.

We finish with a lemma on ∞ω-elementary embeddings:

Lemma 10.5. Let L1 and L2 be as in Lemma 10.2, with L1 an H-subfield of L2.
Then L1 ≼∞ω L2.

Proof. Let Φ be the back-and-forth system from Lemma 10.2. By downward
Löwenheim-Skolem there is for all a1, . . . , an ∈ L1 a countable closed H-subfield K1

of L1 containing a1, . . . , an, and then the identity map K1 → K1 belongs to Φ. This
yields L1 ≼∞ω L2 by [10, Theorem 4]. □

This will be used in the follow-up paper on maximal analytic Hardy fields.
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