FILLING GAPS IN HARDY FIELDS

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

ABSTRACT. We show how to fill “countable” gaps in Hardy fields. We use this
to prove that any two maximal Hardy fields are back-and-forth equivalent.
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INTRODUCTION

By a “Hardy field” we mean in this paper a Hardy field at +oco: a subfield H of
the ring of germs at +oo of real valued differentiable functions on intervals (a, +00)
(a € R) such that H is closed under differentiation. For basics on Hardy fields,
see [28]. Each Hardy field is an ordered differential field, the (total) ordering given
by f < g iff f(t) < g(t) eventually (that is, for all sufficiently large t). Among
functions whose germs at +oo live in Hardy fields are all one-variable rational
functions with real coefficients, the real exponential and logarithm functions (more
generally, Hardy’s logarithmico-exponential functions [20]), Euler’s I'-function and
Riemann’s (-function [29], and many other “regularly growing” functions arising
in mathematical practice. As a case in point, by [17] every o-minimal expansion of
the ordered field of real numbers gives rise to a Hardy field (of germs of definable
functions). Our main result is as follows:

Theorem A. Let H be a Hardy field, and let A, B be countable subsets of H such
that A < B. Then A < f < B for some f in a Hardy field extension of H.

Some of the gaps A < B in this theorem correspond to pseudo-cauchy sequences
(pc-sequences in our abbreviated terminology). The relevant pc-sequences have
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length w, and we can handle them using results from our book [ADH] and from [9]
in an essential way, and various glueing techniques. This is done in Sections 3 and 4.
This dependence on [ADH] and [9] makes this the deepest part of the present paper,
but most of our work here deals with other gaps.

Sjodin [30] deals with the case B = @ for C*°-Hardy fields (whose elements
are germs of C*°-functions). This provides an important clue for other kinds of
gaps: Sjodin’s construction of a suitable f can be varied in several ways, and that
gives us a handle on the relevant remaining cases. In Section 5 we treat B = (),
basically as in [30], and organized so that it helps in Section 6 where we deal with
“wide” gaps. For the remaining gaps we use results about asymptotic couples
from [6] and an elaboration of the “reverse engineering” in [30]; see Sections 8
and 9. (Sections 1 and 2 contain mainly analytic preliminaries, and Section 7
applies material in Sections 5 and 6 to show that there are 2° many maximal Hardy
fields where ¢ = 2%0 is the cardinality of the continuum. Here and below, “maximal”
means “maximal under inclusion”.)

Most of [9] concerns differentially algebraic extensions of Hardy fields. The
present paper complements this with a “good enough” overview of differentially
transcendental Hardy field extensions H (y) of a Liouville closed Hardy field H O R.

An equivalent formulation of Theorem A is that every maximal Hardy field is 7;.
The property n; (Hausdorff [22]) is defined at the end of the introduction. The main
result of [9] is that all maximal Hardy fields, as ordered differential fields, are w-free
newtonian Liouville closed H-fields, and thus by [ADH, 15.0.2, 16.6.3] elementarily
equivalent to T, the ordered differential field of transseries. (On T, see [ADH,
Appendix A] or [4].) Combining this fact with Theorem A and a result from [5] we
shall derive in Section 10:

Corollary B. Assuming CH (the Continuum Hypothesis), every mazimal Hardy
field is isomorphic as an ordered differential field to the ordered field No(wy) of
surreal numbers of countable length equipped with the derivation 9y of [11].

Thus with CH, all maximal Hardy fields are isomorphic as ordered differential
fields. Without CH, the proof yields a nonempty back-and-forth system between
any maximal Hardy field and the ordered differential field No(w;). (See [ADH, B.5]
for “back-and-forth system”.) Then by Karp [23], cf. [10, Theorem 3], any maximal
Hardy field and the ordered differential field No(w;) are cow-equivalent. This is a
strengthening of [9, Corollary 1].

Key ingredients for proving Theorem A include Lemma 3.4, the construction of
a partition of unity in Section 4, the reduction to Case (b) stated in Lemma 8.11,
and the elaborated reverse engineering in Section 9 that culminates in a diagonal
argument. (The idea behind the original reverse engineering from [30] is sketched
in the remarks that follow the statement of Theorem 5.12.)

Theorem A answers a question of Ehrlich [18] and establishes Conjecture B
from [4]. (For Conjecture A, see [9, Theorem Al].)

In this paper our Hardy fields are not assumed to be C*°-Hardy fields, and we do
not know if maximal C*°-Hardy fields are necessarily maximal Hardy fields (even
under CH). So the question arises if our main results go through for maximal C*°-
Hardy fields. This is indeed the case, and it is not hard to refine some of our proofs
to that effect. The same question arises for the still more special C*-Hardy fields
(analytic Hardy fields). Our main results also go through in that setting, but this
is more delicate. We shall treat these refinements in a follow-up paper.
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Notations and conventions. We let i, j, k, I, m, n range over N = {0,1,2,... }.
As in [ADH] the convention is that the ordering of an ordered set, ordered abelian
group, or ordered field is a total ordering. Let S be an ordered set. For any
element b in an ordered set extending S we set

S<b .= {s€S:s<b} St = {se€S:s>b}

We have the usual notion of a set P C S being cofinal in S (respectively, coinitial
in S). In addition, sets P,Q C S are said to be cofinal if for every p € P there
exists ¢ € @ with p < ¢ and for every ¢ € @Q there exists p € P with ¢ < p;
replacing here < by >, we obtain the notion of P and @ being coinitial. Thus P
and Pt = {s € S : s < pfor some p € P} are cofinal, hence P, Q are cofinal
iff P+ = Q*. Likewise, P and PT = {s € S : s > p for some p € P} are coinitial,
and P, Q are coinitial iff PT = Q7. We let cf(S) and ci(S) denote the cofinality and
coinitiality of S; see [ADH, 2.1]. We say that S is 7 if for all countable P,Q C S
with P < @ there exists an s € § with P < s < @; in particular, such S is
uncountable (cf. Lemma 7.2 below), has no least element, no largest element, and
is dense in the sense that for all p, ¢ € S with p < g there exists s € S withp < s < q.
We say that an ordered abelian group (ordered field) is n; if its underlying ordered
set is 1. For basic facts about various 7;-structures, see [27, Kapitel IV].

Let (a,) be a well-indexed sequence. Its length is the (infinite limit) ordinal that
is the order type of its well-ordered set of indices p (cf. [ADH, p. 73]). Note that
if (a,) has countable length, then its length has cofinality w, and thus (a,) has a
cofinal subsequence (a,, ) of length w.

Let (T, %) be an asymptotic couple. As in [ADH, 6.5] we set I'o, := I'U{o0}, and
adopt the convention that 1(0) = 9(c0) = 0o > I'. For a € 'y, we use af as an
alternative notation for ¢(a) and define o™ € T'y, by recursion on n by (% :=
and o™tV = (o). We simplify terminology by calling an H-field closed (“H-
closed” in [4, 9]) if it is ®-free, newtonian, and Liouville closed.

Asin [8, 9], C is the ring of germs at +oo of continuous functions [a, +00) — R,
a€R, and C* := {f € C: fg=1for some g € C}, its multiplicative group of
units. We often use the same notation for a real-valued function on a subset of R
containing a halfline [a,+00), a € R, as for its germ (at 4o00) if the resulting
ambiguity is harmless. With this convention, given a property P of real numbers
and g € C we say that P(g(t)) holds eventually if P(g(t)) holds for all sufficiently
large real t. We equip C with the partial ordering given by f < g 1< f(¢) < g(¢),
eventually. We define the asymptotic relations <, <, ~ on C as follows: for f,g € C,

f<g = there exists c € R” such that |f| < c|g|,
f=g = geC and lim f(t)/g(t) =0

< geC* and |f| < c|g| for all c € R,
fr~g = geC*and lim f(t)/g(t) =1

= f-g=<yg

For r € NU {oc} we let C" be the subring of C consisting of the germs of r times
continuously differentiable functions [a,+00) — R, a € R. Thus C<* := ), C" is
a differential ring with the obvious derivation, and has C*° as a differential subring.
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1. PRELIMINARIES ON HAUSDORFF FIELDS

This section contains basic facts about Hausdorff fields. After a subsection on
pe-sequences of length w in an ordered field we construct pseudolimits of such pc-
sequences in the setting of Hausdorff fields, and show how to extend the value group
of a Hausdorff field.

Ordered fields. Let K be an ordered field. We view Q as a subfield of K in the
natural way, and consider K also as a valued field with respect to the standard
valuation given by the valuation ring

O = {a€K: |a] <n for somen},
the smallest convex subring of K; see [ADH, p. 175].

Lemma 1.1 (Alling [1, 2]). The following two conditions on K are equivalent:
(i) K ism;
(ii) the residue field of K is isomorphic to R, every pc-sequence of length w
in K has a pseudolimit in K, and the value group of K is n;.

This is well-known, see [26, 1.4] or [27, p. 160]. For a maximal Hardy field H we
have R C H, and so the residue field of H is indeed isomorphic to R. Thus in order
to show that H is 7 it remains to show that all pc-sequences in H of length w have
a pseudolimit in H and that the value group of H is 1;. The former will be taken
care of in Sections 3, 4, and the latter will be handled in Sections 5-9.

We continue with generalities on pc-sequences of length w in our ordered field K.

Let (ay,) be a pc-sequence in K of length w. When does (a,) have a pseu-
dolimit in K7 We indicate below a reduction of this question to something that
turns out to be more manageable. First, (a,) and any infinite subsequence have
the same pseudolimits in K, and so by passing to such a subsequence we can ar-
range that (a,) is either strictly increasing or strictly decreasing. Replacing (ay)
by (—ay), the strictly decreasing case reduces to the strictly increasing case. Re-
placing (a,) by (a + a,) for a suitable a € K, the strictly increasing case reduces
to the strictly increasing case where in addition all terms are positive. Next, as-
sume (a,) is strictly increasing and all terms are positive. Dropping some initial
terms, if necessary, we arrange in addition that a,, —a,—1 > an41—ay foralln > 1.
Then we define b, by by := ag and b, := a, — ap_1 for n > 1, so that b, > 0,
by, > bpt1, and a,, = by + - - - + by, for all n.

Reversing this last step, starting with a sequence (b,,) in K such that b, > 0
and b,, > by,41 for all n, we obtain a strictly increasing pc-sequence (a,,) of positive
terms a, by a, = by + - - - + b,. This leads to:

Lemma 1.2. The following are equivalent for K :

(i) all pc-sequences in K of length w have a pseudolimit in K ;
(ii) for every sequence (b,) in K with b, > 0 and b, > byy1 for all n, the
pe-sequence (ayn) with ap, = by + -+ - + by, for all n has a pseudolimit in K.

Hausdorff fields. As in [8] we define a Hausdorff field to be a subfield of C, that
is, a subring of C that happens to be a field. Let H be a Hausdorff field. Then

{feH: f(t) >0, eventually }
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is the strictly positive cone for a (total) ordering on K that makes H an ordered
field, and below we consider H as an ordered field in this way. This yields the
convex subring

O = {feH:|f| <n for some n},

which is a valuation ring of H, and we consider H accordingly as a valued field
as well. Restricting the relations <, <, ~ on C to H gives exactly the asymptotic
relations <, <, ~ on H that it comes equipped with as a valued field.

Extending Hausdorff fields with pseudolimits. Let H be a Hausdorff field,
and let a sequence
Jorfi=fam o

in H> be given. Then (fo + -+ + fn) is a pc-sequence in H. We shall construct a
pseudolimit of this pc-sequence in some Hausdorff field extension of H (possibly H
itself). To conform with some later parts we let ¢ range over real numbers > 1 in
this subsection. We take for each n a continuous function R*! — R that represents
the germ f,,, to be denoted also by f,, such that f,(¢) > 0 and f,+1(¢) < fn(t)/2
for all t. Now the sequence (fo + -+ + f,) of partial sums converges pointwise to
a function f = Y7 fu: RZ! — R, with the convergence being uniform on each
compact subset of RZ!, so f is continuous. We claim that for all n,

f=(fo+ -+ fun) < fn inC.
Let € > 0, and take t,, € RZ! with f,,1(t) < ef,n(t) for all t > t,,. Then for such ¢,

ft) = (folt) + -+ fult)) Trn1(t) + fra2(t) + fria(t) + -+

fop1 (@) + far1(0)/2+ fagr(O)/4+ -+
2fns1(t) < 2efult),

which proves the claim. As usual we denote the germ of f at +oco also by f, so

that f € C. Let g,h € C. Then (as defined earlier) g < h means g(t) < h(t),
eventually, and by g < h we mean g < h and g # h. Also

N

g<ech <= g(t) <h(t), eventually,
sog<ch=g<h,andif g,h € H, then g <, h < g < h.

Lemma 1.3. Suppose (fo+ -+ fn) has no pseudolimit in H. Let g € H be such
that g > fo+ -+ fn in C, for all n. Then for all n we have

f0+"'+fn<ef<eg in C.

Proof. As ¢ is not a pseudolimit of (fo+ -+ f,), we have v(g— (fo+--- +fn)) <
v(fp41) for some n. For such n we have, eventually, g(t) — (fo(t) +--- + fa(t)) >
21 (t), and thus, eventually, g(t) > fo(t) + -+ + fult) + 2nss(6) > [(5). O

In view of [8, Lemma 2.11] this yields:

Corollary 1.4. If H is real closed and (fo + -+ + fn) has no pseudolimit in H,
then f generates over H an immediate Hausdorff field extension H(f) of H such
that fo+ -+ fn ~ f.

Even if H is not real closed, (fo+---+ fn) pseudoconverges in some Hausdorff field
extension of H, since we can pass to the real closure of H by [8, Proposition 2.4].
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Extending the value group of a Hausdorff field. This is closely connected to
filling additive gaps in Hausdorff fields: see Remark 1.7 and Lemma 1.11 below.
For now, H is just an ordered field and v: H* — I is its standard valuation.

Lemma 1.5. Let A C H. Then A+ A, 2A are cofinal. Also, A, 2A are cofinal
iff A, %A are cofinal. Likewise with “coinitial” in place of “cofinal”.

Proof. From 2A C A+ A and a+ b < 2max(a,b) for a,b € A it follows that A+ A
and 2A are cofinal. The rest is clear. O

Corollary 1.6. Let A,B C H~” be such that A < B and there is no h € H
with A < h < B. Then the following are equivalent:

(i) A, A+ A are cofinal;

(il) A, 2A are cofinal;

(i) B, B+ B are coinitial;

(iv) B, 1B are coinitial.

Proof. The equivalence of (i) and (ii) follows from Lemma 1.5; likewise with (iii)
and (iv), The equivalence of (ii) and (iv) is a consequence of BT = H>\ A*. O

An additive gap in H is a pair A, B of subsets of H> with A < B such that
there is no h € H with A < h < B, and one of the equivalent conditions (i)—(iv) in
Corollary 1.6 holds.

Remark 1.7. As in [ADH], a cut in an ordered set S is a downward closed subset
of S. Call a cut A in the ordered set H~ additive if A, B:= H~ \ A is an additive
gap in H. Then A — AU (—A) U {0} defines an inclusion-preserving bijection

{additive cuts in H~} — {convex subgroups of H},
with inverse D — D~. (In some places additive cuts in H~ are therefore called
“group cuts” in H; cf. [25].) Note: D — v(D~) is an inclusion-preserving bijection
{convex subgroups of H} — {upward closed subsets of I'},
with inverse P +— v~1(P) U {0}.

In 1.8-1.10 below we assume that H is real closed. We have multiplicative versions
of Lemma 1.5 and Corollary 1.6, obtained in the same way:

Lemma 1.8. Let A C H>. Then A- A and sq(A) := {a® : a € A} are cofinal.
Moreover, A and sq(A) are cofinal iff A and VA :={be H> : b*> € A} are cofinal.

Likewise with “coinitial” in place of “cofinal”.
Corollary 1.9. Let A,B C H~” be such that A < B and there is no h € H
with A < h < B. Then the following are equivalent:

(i) A, A- A are cofinal;
(ii) A, sq(A) are cofinal;
(iii) B, B- B are coinitial;
(iv) B, VB are coinitial.

Lemma 1.10. Let A C H>Q. If A, sq(A) are cofinal, then so are A, 2A, and
if A, VA are coinitial, then so are A, %A.

Proof. Let a € A. For the first part, use 2a < a?; for the second, use /a < 5. O
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Now suppose H is a Hausdorff field, turned into an ordered field as described earlier
in this section. The following is [8, Lemma 2.12]:

Lemma 1.11. Suppose T' = v(H*) is divisible. Let P be a nonempty upward
closed subset of T, and let f € C be such that a < f for all a € H> with va € P,
and f < b for allb € H> with vb < P. Then f generates a Hausdorff field H(f)
with P> vf >T\ P.

A Hardy field is a differential subfield of the differential ring C<*°. Given a Hardy
field F O R we let Li(F') be the Hardy-Liouwville closure of F, that is, the smallest
real closed Hardy field extension of F' that contains with any f also exp(f), and
contains any g € C' whenever it contains ¢’; see [9, Section 2].

We now specialize H even further: in the rest of this subsection we assume that H
is a Liouville closed Hardy field and H O R.

Lemma 1.12. Let A C H>R. Then:
(i) if A and exp(A) are cofinal, then so are A and sq(A);
Neaxt, assume also that e® € A, and that A and sq(A) are cofinal. Then:
(ii) A and A" :={d’ : a € A} are cofinal;
(iii) A and [A:={b€ H : b € A} are cofinal, and [A C H>E.

Proof. Ttem (i) follows from a? < expa for a € A.

Next, assume e” € A, and A, sq(A) are cofinal. Then e € At if n > 1. Now
for (ii), let @ € A. Then 1/a < 1, so —a’/a® = (1/a)’ < 1, and thus 0 < @’ < a?.
This yields (A")* C sq(A)* = A+, Suppose in addition a > e, so a = 1. If af = 1,
then a < o, and if af < 1, then [ADH, 9.1.11] yields n > 1 with a < e"®, and
taking b € A with b > e(®tD% » "% we get ' > (™) > ™ > a. Thus A+ C (A')*.

As to (iii), let a € A, b € H, and b’ = a. Then b > R, even b > z. Moreover,
0<b =a<b? soa<b Thus A¥ = (VA C ([A)*. Next, assume also a =
V' = e®. Then b = e®, since H is asymptotic, so a/b = b = 1, hence b < a < a?
and thus b < a?. This yields ([A)* C sq(A)t = A'. O

Lemma 1.13. Let BC H, B > ¢*, and assume B, VB are coinitial. Then:
(i) B and B' :={b' : b € B} are coinitial;
(i) B and [ B:={a € H : ' € B} are coinitial;
(ii) B~! and — [B~':={-g: g€ H*, g € B!} are cofinal.

Proof. Since B, VB are coinitial, so are B, %B, by Lemma 1.10. Thus B, R~ B are
coinitial. Let b € B. Then b = Vb > e%, so 8 := vb < 0 gives BT < 0, hence 5’ < S,
and thus b > b. Also 87 = o(8) by [ADH, 9.2.10], so 8 < %ﬁ + BT = (%B)’ and
thus b = (v/b) 3= d’ for some d € B. This proves (i).

For (ii), let « € H and ¢’ = b € B. Then a > R, and also a = €%, since a < €*
gives b = a’ < e®, a contradiction. Hence af < 0 for a := va, so a > o' = 3 := vb,
which gives a < b, and thus a < b%. Since b € B was arbitrary and B and sq(B) are
coinitial by Lemma 1.8, this shows that every element of B is > a for some a € [ B.
With a and b as above we also have a < /2, so a > v/b. This proves (ii).

As to (iii), let b € B, B := vb, and g € H=! with ¢ = b7, so g < 0, and
for v := vg we have —f3 = v+~T. We have Vb > %, s0 b~! < e=2%. Claim: v < 0.
If this claim does not hold, then 0 < 4 < v(272),s0 g = ¢™%, and gt = 272 = 77,
and thus b~! = ¢’ > e~ 2%, a contradiction. Now 7' < 0 gives — < 7, hence b=! =
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|b=Y = |g| = —g, and thus —g < d for some d € B~!. From 7' = (=) < 0 we
get v = o(vy) by [ADH, 9.2.10], hence —23 > v, and thus b=2 < —g. It remains to
use that B~1, sq(B~!) are cofinal. O

2. ANALYTIC PRELIMINARIES

In this section a, b, ¢, s, t range over R.

Constructing smooth functions. We prove here some facts about smooth func-
tions needed later. Let p: R — R be the C*-function of [16, (8.12), Exercise 2(a)].
It is defined by

1 1
t) = - - if—1<t<1, p(t):=0ift<—lort>1.
p(t) exp( ETiE (1_t)2> if —1<t<l1, p(t) i or

Thus p(t) > 0 for —1 <t < 1, p is even, and p(0) = e~ 2. (See Figure 1.)

p /—\ | t

FIGURE 1. Sketch of p

For any subset I of R and r» € NU{oo,w} we define C"(I) to be the set of f: I — R
for which f = g¢|; for some C"-function g: U — R with U an open neighborhood
of I in R; instead of “f € C"(I)” we also write “f: I — R is a C"-function” or
“f: I — R is of class C"”. We use this mainly for sets I = [a,b] with a < b and
sets I = [a,00). As in [8, 9] we denote C"[a, +0o0) by C, and C, := C.

Lemma 2.1. There is a C®-function o: R — R such that « =0 on (—0,0], « is
strictly increasing on [0,1], and @ =1 on [1, +00).

Proof. One can take a(t) := ¢! fjoo p(2s — 1)ds where ¢ := [*_p(2s — 1)ds. O

Lemma 2.2. Let 6: [a,00) — R” be continuous. Then there exists a decreasing
C-function (: [a,00) — R> such that 6(t) > ((t) and ¢'(t) > —1 for allt > a.

Proof. Replacing 6 by the function ¢ — min,gs<s min(@(s),l): [a,00) — R~ we
arrange that 6 is decreasing and 0 < 6 < 1 on [a,00). Next we follow Exercise 2
of [16, (8.12)], taking the convolution with p; in other words, we extend 6 to all
of R by setting 6(t) = 0 for ¢ < a, and then define f: R — R by

f@t) = / 0(s)p(t — s)ds = / 0(t — s)p(s)ds.
Instead of —oco, co we can take in the left integral any real bounds ¢ < t — 1,
d > t+ 1, and in the right integral any real bounds ¢ < —1, d > 1. As in that
exercise one shows that f is of class C> (in fact, f)(t) = 1= 0(s)p®) (t — s)ds for

all p € N and all t) and decreasing on [a + 1,00). For t > a + 1 we have

0< f(t) = /119(t—s)p(s)ds < 2e720(t—1) < O(t—1).
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Using p/(s) 2 0 for —1 < s < 0 and p'(s) < 0 for 0 < s < 1, we obtain for all ¢,

/ O(t—s)p/(s) ds > /Olﬁ(t—s)p’(s)ds > /Olp’(s)ds S )

Thus ¢: [a,00) = R> defined by ((¢) := f(¢ + 1) has the desired property. a

Lemma 2.3. Let a < b and ¢,( € C*®[a,b] be such that ¢(a) = ((a) and ¢ <

n (a,b], and let real numbers c,, be given with ¢(b) < co < ¢(b). Then there exists
a function @ € C®[a,b] such that 0™ (a) = ¢ (a) for alln, ¢ < 8 < ¢ on (a,b],
and ) (b) = ¢, for all n. (See Figure 2.)

FIGURE 2. Sketch of ¢, 6, ¢ in Lemma 2.3

Proof. By subtracting ¢ throughout we arrange ¢ = 0. A result due to E. Borel [16,
Exercise 4(a), p. 192] yields a function 3 € C*°[a, b] such that 3™ (b) = ¢, for all n.
Take 6 € (0,b—a) with § < 8 < (—0 on [b—d,b], and then « € C*[a, b] such that
e a=0on [a,b— 4,
e « is strictly increasing on [b — 6,b — 34], and
e a=1onb— 340
Take € € (0, 1) such that e( < § on [b— 4,b], and take 7 € C*°[a, b] such that
e (™ (a) =0 for all n,
e 0 <y<ceon (ab— 36), and
e y=0on[b— 160
Then the function 6 := a8 + v( has the desired properties. O

Lemma 2.4. Leta < b, f,g € Cla,b], and f < g on [a,b]. Then there are ag <
a1 < -+ < ap, with ag = a, a, =b, and a function ¢: [a,b] — R such that
(i) f<o<gonlab]
(i) ¢(a) = 5(f(a )+g( )) and ¢(b) = 5 (f(b) +g(b)), and
(iii) fori=0,.. — 1, the restriction of ¢ t0 [al, ait+1] is the restriction of an
affine functzon R — R.
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Proof. Let € :== $min{g(t) — f(t) : t € [a,b]}, so € > 0. Choose n > 1 such that
for all s,t € [a,b] with |s — t| < § := =2 we have |f(s) — f(t)],]9(s) — g(t)] < e.
For i =0,...,n set a; := a+1d, and for i = 0,...,n — 1 take affine ¢;: R - R
with ¢;(a;) = 5 (f(a:) + g(a:)) and ¢i(ait1) = 5 (f(air1) + g(air1)). Tt suffices to
show that f < ¢; < gon [a;,a;41] fori =0,...,n—1. For such ¢ and s,t € [a;, a;11],
ft) <e+ f(s) < 3(f(s) +9(s) < —e+9(s) < g(t),
in particular, f(t) < ¢i(a:), pi(ait1) < g(t). Since ¢i(a;) < ¢i(t) < di(aitr)
or ¢i(ai+1) < ¢i(t) < ¢i(a;), we are done. 0

Lemma 2.5. Let f,g € C, be such that f < g on [a,+00). Then there exists a
function y € C° such that f <y < g on [a,+00).

Proof. Lemma 2.4 yields a piecewise affine intermediary ¢, more precisely, a strictly
increasing sequence (a,) in R with ag = a and a,, = 400 as n — oo and a ¢ € C,
such that for each n the restriction of ¢ to [a,, an41] is the restriction of an affine
function R — R, and such that f < ¢ < g on [a,400). This reduces the problem
of constructing y to proving the next lemma. (I

Lemma 2.6. Let a < b < ¢ and ¢,0 € C®[a, ] be such that ¢(b) = 0(b), and
let 0 <e <b—a,c—b. Then there exists y € C*®[a,c| such that

yt) = o(t) fora<t<b—e¢, ly(t) — ()] < € forb—e <t
y(t) = 0(t) forb+e<t<e, ly(t) —0(t)] < & forb<t<b

Proof. Take 0 < ¢ < e such that |¢p—0| < £/2 on [b—4, b+4]. Next, take 8 € C*|a, (]
such that

<O,
+

E.

e S=0on [a,b— 4],
e 0<B<1lon[b—4,b+4], and
e S=1on[b+d,d.
Then y := (1 — 8)¢ + B0 has the desired property. [

Lemma 2.7. For each n, let f,,g, € C be such that f, < fot1, Gn+1 < Gn,
and fn <o gn. Then there exists ¢ € C*° such that f, <¢ ¢ <e gn for each n.

Proof. Take for each n representatives of f,, and g, in Cy, denoted also by f,
and gy, such that f,, < g, on [0,00). Next, take a strictly increasing sequence (a,,)
of real numbers > 0 with a,, = co as n — oo, such that f, < fr+1 and g, = gnt1
on [a,,c0), and take continuous functions «,, 8, : [0,00) — [0, 1] with ay,(ay,) =1,
an(apy1) =0 and ay, + B, =1 on [an, ant1]. Let f,g: [0,00) = R be given by

f = fO on [07(10]; f = anfn +ann+1 on [an7an+1];
g=goon [0,a0], g=ngn+ Bngnt+1 O [an,ant1),

so f, g are continuous, f, < f and g < g, on [a,,0), and f < g on [0,00). (See
Figure 3.) Now Lemma 2.5 gives ¢ € C§° such that f < ¢ < g on [0,00), and then
its germ at +o0o, denoted also by ¢, satisfies f,, <e ¢ < g, for all n. O

Corollary 2.8. Let H be a Hausdorff field and A, B nonempty countable subsets
of H with A < B. Then there exists ¢ € C*™ such that A <, ¢ <, B.

Proof. Take an increasing and cofinal sequence (f,,) in A and a decreasing coinitial
sequence (g,) in B, and apply the previous lemma. [
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FiGURE 3. Constructing ¢ in the proof of Lemma 2.7

We shall also use the following variant of Lemma 2.3:

Lemma 2.9. Let a < b, f,g € Cla,b], and ¢,,d, € R for n = 0,1,2,... be
such that f(a) < co < g(a), f < g on [a,b], and f(b) < dy < g(b). Then there
exists y € C®[a,b] with f <y < g on [a,b] and y™ (a) = c,, y"™ (b) = d, for all n.

Proof. Take € > 0 such that f(a) +¢ < co, f+€ < gon [a,b], and f(b) + & < dp.
Lemma 2.5 gives ¢ € C*®[a, b] with f < ¢ < f+¢ on [a,b], and so replacing f by ¢
and then subtracting ¢ throughout (replacing g by g — ¢ and ¢,,, d,, by ¢, — o™ (a),
d,, — ¢ (b), respectively) we arrange f = 0.

Borel’s result gives a, 3 € C®[a, b] with o™ (a) = ¢, and B (b) = d,, for all n.
Take a real number M > 0 such that |af,|8] < M on [a,b]. Take “small” real
numbers 71,72 > 0 such that a + 2191 < b — 291, 2Mn; < 12, and 2Mn; + 12 < g
on [a,b]. Take v, € C*[a, b] such that

o W:::lon[a7a4‘U1L
~ is decreasing on [a + 11, a + 2n],
v =m on [a+2n,b—2m],
7 is decreasing on [b — 211,b — n1], and
7::()0n[b“ﬁth

and ¢ behaves similarly in the opposite direction:
d=0on [a,a+mn1],
0 is increasing on [a + 11, a + 211],
§=mn on [a+2n,b— 2],
d is increasing on [b — 211, b — 1], and
d=1on [b—n,b.
Finally, take 8 € C*°[a, ] such that
e 0 =0on [a,a+ ],
e 0 is increasing on [a + 11, a + 2ny],
e =19 0n [a+2n,b—2m],
e 0 is decreasing on [b — 2n1,b — n1], and
e §=0on[b—n,b.
(See Figure 4.) Then y := ya + 68 + 6 has the desired property, provided 1y, 72
are sufficiently small. (I
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FIGURE 4. The functions v, d,

Constructing infinite sums. The next lemma follows from [16, (8.6.4)]:

Lemma 2.10. Let (f,) be a sequence of functions in C} such that f,(a) — ¢
as n — oo, for some ¢ € R. Suppose also that (f)) converges to g € C,, uniformly
on [a,b] for every b > a. Then (f,) converges to a function f € CL, uniformly
on [a,b] for every b > a, with f' =g.

We use this for infinite series where the f, are the partial sums, and with higher
derivatives where the assumptions allow us to apply the lemma inductively. We
shall also need a slight twist, where instead of the derivation d: C} — C, we
use 8: CL — C,, with § := ¢19, ¢ € (C,)*:

Lemma 2.11. Let (f,) be a sequence of functions in C} such that f,(a) — ¢
as n — 0o, for some c. Suppose also that (8f,) converges to g € C,, uniformly
on [a,b] for every b > a. Then (f,) converges to a function f € CL, uniformly
on [a,b] for every b > a, with 8f = g.

This follows from the previous lemma in view of @ = ¢8. Induction on m yields:
Corollary 2.12. Let m > 1, ¢ € (C™ " 1)*, and § := ¢~ '9: Cl — C,. Then §
maps CJ into CI=1 for j =1,...,m. Let (f,) be a sequence of functions in C™ such
that for k =0,...,m the series > oo, 8 f, converges to gy € Cq, uniformly on [a,b]
for every b > a. Then for k = 0,...,m we have gy € C™ % and f := gg € C™
satisfies 8 f = g.

This corollary and the following results on infinite sums will be used in the next two

sections. Let a € R, and for i = 0,1,2,..., let a continuous function f;: [a,00) = R
be given, and set M* := max |f;(t)], so
a<t<a+n

0 < M) < M} < M} <---.

Suppose the real numbers ¢; > 0 are such that >, ;M < oo for every n.
Then ), ; f; converges uniformly on each set [a,a + n|, and so this sum defines
a continuous function on [a,00). We can certainly take real numbers g; > 0 such
that >, ; M} < oo, and then we do indeed have for every n that >, e;M* < oo,

since " N
RETIID SPVES RTINS SRTES Rt
7 =0 >n =0 i>n
Thus there exist €; as in the hypothesis of the next lemma. In the rest of this
subsection we assume that for every i we have f; = 0 on [a,00) and f; < fiy1 inC.

Lemma 2.13. Let the reals ¢; > 0 be such that ), e;f; converges to a func-
tion f: [a,00) — R, uniformly on each compact subset of [a,00). Then f > f,
(in C) for all n. If all f; are increasing, then so is f =) . €;f;i.
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Proof. Note that Y. e;fi > ent1fog1 > fn- U

Lemma 2.14. Let for each n a continuous function gp: |a,00) — R be given
such that f; < gn, for all i and n. Then there exist reals €; > 0 for which ), €;f;
converges to a function f: [a,00) — R, uniformly on each compact subset of [a, 00),
such that f < gn in C for all n.

Proof. For the moment we just consider one continuous function g: [a,00) — R~
with f; < g for all . Then we pick the €; > 0 so small that ZZ EZ]W,Z < o
and ¢;f; < g/2"'. This results in f := >, &;f; < g. Let a second continuous
function h: [a,00) — R~ be given with f; < h for all i. Take b > a such that gofy <
h/2 on [b, o), and next decrease, if necessary, the e; with i > 1 so that ¢; f; < h/2+!
on [b, 00) for the new values of ;. This results in f < h on [b, 00) for the new f; note
that we did not change y. Starting with g = gg we apply this procedure successively
to g1, go, . . . in the role of h: we recursively pick by, bo, ... > a, decreasing only the ¢;
for ¢ > n when dealing with g,, n > 1. Then at the end we have not only f < go
on [a,00), but also f < g, on [b,,0), for all n > 1 simultaneously. O

Note that if in Lemma 2.14 we have go > g1 > g2 > -+, then f < g, for all n.
Lemmas 2.13 and 2.14 are more precise versions of results of du Bois-Reymond [12]
and Hadamard [19, §19], respectively; cf. [21, Chapter 1.

Assume next that the f; are of class C*°. Then we set

o= ()
My e A |£7()].
Again, 0 < MY < M} < M? < ---. Taking the ¢; > 0 such that 3, &M} < oo,

we have ). e;M* < oo for every n, as before. Hence ), €; f; converges, say to the
continuous function f: [a,00) — RZ, uniformly on each [a,a + n]. Also Y, &; fi(j )
converges for every j to a continuous function f(): [a,00) — R, uniformly on
each [a,a +n]. An easy induction on j shows that f is in fact of class C/ with ()
as its jth derivative, as suggested by the notation. Thus f is of class C*.

Useful inequalities in constructing Hardy fields. The lemmas in this subsec-
tion will be used in Sections 6 and 9.

Lemma 2.15. Let F,G € CL satisfy F'(t) < G'(t) for all t > a. Then there is a
real constant ¢ such that FF < G + ¢ on [a,o0).

Proof. The function F' — G is continuous and decreasing, hence on [a,00) we
have F'— G < F(a) — G(a) < ¢:= F(a) — G(a) + 1. O

Here is a useful multiplicative version:

Lemma 2.16. Let F,G': [a, +00) — R> of class C' be such that FT < G on [a, ).
Then there is ¢ € R” such that F < ¢G on [a, 00).

Proof. We have FT = (log F)’ and GT = (logG)’, so Lemma 2.15 yields d € R
with log F' < d +1og G on [a,0), and thus F < ¢G on [a,00) for c:=e? € R>. O

Lemma 2.17. Suppose f € C lies in a Hardy field. Then the germ f(x+1) satisfies:
(i) f(x) =z >R — f(z)+1 < flz+1);
(i) 0 < f(z) »e" = f(z) <c f(z+1)/2;
(i) 0 < f(z) < = f()— flo+1) > fx)/2.
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Proof. For (i), assume f = x + g with ¢ € C and g > R. Then g lies in a Hardy
field, so g is eventually strictly increasing, hence g = g(x) < g(z + 1), and thus

fle)+1 = 24149 <c v+14+g(x+1) = flz+1).

Next, assume 0 < f > e®. Then (log f) —z > R, so (log f(z)) + 1 <c log f(z + 1)
by (i), and thus e f(z) < f(z + 1), hence f(z) <. f(z+1)/e <c f(z+1)/2. As
to (iii), assume 0 < f(z) < e~ *. Applying (ii) to f~! gives f(z) > 2f(z + 1),
50 0 <¢ f(x+1) <¢ f(x)/2, and thus f(x) — f(z + 1) > f(x)/2. O

3. PSEUDOCONVERGENCE IN HARDY FIELDS
Let H be a Hardy field. Let a sequence

fo>—f1>—f2>—...

in H> be given. Then we have the pc-sequence (F}) in H, with F; := fo+ -+ f;.
QOur aim in this section and the next is to show:

Theorem 3.1. (F;) pseudoconverges in some Hardy field extension of H.
In view of Lemma 1.2 this has the following consequence:

Corollary 3.2. FEvery pc-sequence of countable length in a maximal Hardy field
has a pseudolimit in that Hardy field.

Towards the proof of Theorem 3.1 we first recall from [8, Sections 3, 4] the following.
Let £ € C<* be such that £ > R and ¢’ € H. Then / lies in a Hardy field extension
of H, ¢ := ' € H> is active in H, and the compositional inverse /™ > R of ¢
yields an isomorphism f + f° := fofinV: (C<>)? — C<* of differential rings that
maps H onto the Hardy field H® := H o /'™; moreover, f; < fo < fiol < fyol,
for all f1, fo € C<>°. Thus (F?) is a pc-sequence in H°, and we have:

Lemma 3.3. (F;) pseudoconverges in some Hardy field extension of H if and only
if (F?) pseudoconverges in some Hardy field extension of H°.

We can also use [9, Theorem 11.19] to pass to an extension and arrange that H O R
and H is closed. Then the following lemma is relevant.

Lemma 3.4. Let H D R be closed. Suppose (F;) has no pseudolimit in H, and let
any element F € C<* be given. Then the following are equivalent:

(i) F generates a Hardy field H(F) over H with F; ~ F;

(ii) for all k, m with k < m and active ¢ € H> we have

F-F
5" (f’”) <1 inC<®

where & := ¢~19 is construed as a derivation of C<>.

Proof. Assume (i). Then for all k, m and active ¢ € H> we have (F—F,,)/fm < 1,
and thus Bk(%) =< 1. This proves (i) = (ii). For (ii) = (i), assume (ii).
For k = 0 we get F — F,,, < fo, for all m > 1. Let P € H{Y}”. Now (F,,) is of
d-transcendental type over H by [ADH, 11.4, 14.0.2], so we have mg > order(P)
in N1 such that ndeg_; . Py, =0 for all m > mo, by [ADH, 11.4.11, 11.4.12].
Using Py r,, ., = (P+F,)+fmy, and [ADH, 11.2.7] we obtain ndegg; . Py, ,, =0
for all m > mg. Thus for my = mo + 1 and Q := Pip, xy,, Wwe have an
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active ¢pg € H> with ddeg Q® = 0 for all active ¢ < ¢ in H>. This gives h € H*
such that, with j ranging over N™° and Q;’O = (Q%);,

QYY) = h+ Y QY QY <hfor[j| #0.
l71#0
Thus with G := (F — Fp, )/ fm, we have G < 1 and F = F,,,, + fmm, G, so
P(F) = Q*(G) = h+ Y QG
31740

where the factors G7 are evaluated in C<* using the derivation § = ®o 13, and
so GI < 1 for |j| # 0, by (ii). Hence P(F) ~ h. This yields (i). O
Corollary 3.5. In Lemma 3.4 we can replace (ii) by any of the two variants below:

(ii)* for allm > k and active ¢ € H there is an active ¢ < ¢o in H> such that

F —F,
& <m> <1linC=>
fm
where 8 := ¢ 19 is construed as a derivation of C<°.
(ii)** for all mg = 1 and active ¢g € H there is an active ¢ < ¢o in H> and

an m = mg such that for k=0,...,mg,
F—F,, . . _
8k (f) <1 in C<*°, with & := ¢~ 'a.

Proof. For (ii)** = (i), assume (ii)**. As before we have F—F},, < fp, forallm > 1.
Take mg, @, ¢o as in the proof of (ii) = (i), and set Qp, := PyF,, ,\ xfry,- For
any m > mp and active ¢ < ¢ in H> we have ddegQ® = 0, so ddegQ?, = 0
by [ADH, 6.6.12]. Now (ii)** gives active ¢ < ¢g in H” and m > mo such that
for k = 0,...,mg we have 8’“(%) < 1 in C<™, with § := ¢~'9. In view
of ddegQ?, = 0, the last part of the proof of the lemma with ¢q, @ replaced
by ¢, Qm, and G replaced by G, := (F'—Fy,41)/ fm+1, but 7 still ranging over N0,
goes through, and yields the desired conclusion. (I

Rather than Lemma 3.4 we shall use in what follows the implications (ii)* = (i)
and (ii)** = (i) that are implicit in the proof of that lemma, as we saw.

Expressing the powers & in terms of d. To facilitate the use of Lemma 3.4
and its variants we shall express 8* in terms of 9. Let R be any differential ring
with derivation 9. Then f € R gives rise to a derivation 8 := fd on the underlying
ring of R. For k > 1, 0 < j < k, we define G?(Y) € Q{Y'} C R{Y} by recursion:

e Gk =0,

° Gk — Yk7

o GNTI =Y (A(GE)+ GEy) for 1< j < k.
(See also [ADH, 5.7].) For the additive operators o and & on the underlying ring R
this recursion gives:

k
= > GHHY  (k=1).
j=1

For 1 < j < k the differential polynomial Gf(Y) is homogeneous of degree k and
of order < k, so we have a differential polynomial R?(Z) € Q{Z} of order < k
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and depending only on j and k such that G¥(f) = f*RE(fT) for all f € R*; see
also [ADH, 5.8]. For g € R, ¢ € R*, § = ¢~ 19, this gives

k
(3.1) ¥(g) = ¢ RE(—¢")g? with g :=d7(g)  (k>1).
j=1

Given a € R, the identity (3.1) also holds for g € CF and ¢ € (C¥)*, where 8* and
the ¢ for j < k are construed in the obvious way as maps Cf — Cq.

For use in the next section we add the following observation:

Lemma 3.6. Let g € H be active and g < h € H, and suppose f € C<>° satis-
fies (g71)*(f) < 1 for k=0,...,m. Then also (h"1)*(f) <1 for k=0,...,m.
Proof. Set u := g/h € HS' §, := ¢g7'9 and §, := h™'9. Then &, = ud,, as
derivations on H and on C<°°. For k > 1 we have by an earlier identity

k
(32) () = D GHwa()

where each G;‘-' (u) is evaluated according to the small derivation 8, on the asymp-
totic field H, and thus G? (u) < 1. This gives the desired result. O

Remark 3.7. For later use we note that the identity (3.2) also holds for 1 < k£ < m,
f,9€Cl',he(Cl')*, witha € Rand v := g/h (an element of C*), and where §, :=
9710, 8, := h™'9 are taken as derivations C] — CJ~', for j = 1,...,m, and each G¥
is evaluated according to 3.

Bump functions. In this subsection ¢ ranges over R. From Lemma 2.1 we obtain
an increasing C*°-function a: R — R with a(¢) = 0 for t < 0 and a(t) = 1 for ¢t > 1,
and below we fix such an «. (See Figure 5.)

FIGURE 5. The bump function «

For each n we take a real constant C,, such that 1 < Cy < C7 < Cy < --- and
(3.3) la™(t)] < C, forall n and t.

For reals a < b we define the increasing C*°-function ay5: R — R by

(3.4) ap(t) = O‘(Z_Z) 7

50 g p(t) =0 for t < a and g p(t) =1 for t > b. Also,

m Cm
(3.5) |ag’b) )] < ———— for all m and t.

(b—a)
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Constructing F*. We go back to our Hardy field H (not necessarily w-free or
newtonian) and its elements f, and F,, := fo + --- + fn, and in the rest of this
section t ranges over R?!. First, we take for each n a continuous function RZ! — R
that represents the germ f,, to be denoted also by f,, such that f,(t) > 0
and fr41(t) < fu(t)/2 for all ¢: first choose the function fy, then f1, next fs,
and so on.

For each n we fix an a,, € R®! such that f, ..., f, are of class C" on [a,, +00).
Next, let ¢g < ¢1 < ¢cg < --- be real numbers > 1 with ¢, — oo as n — co. We
define a,: R®! = R by a,(t) := ac, ¢, (t), S0 oy, is an increasing C>-function
with a,(t) =0 for ¢ < ¢, and a,(¢) = 1 for ¢ > ¢p41, and we set

fF o= anfn : RP! 5 RO,

n

so fr(t) =0 for t < ¢, and f(t) = fu(t) for t > cpy1. Thus f, and f have the
same germ at +oo, and we still have f¥ ,(t) < fx(t)/2 for all n and t. As we saw
in the subsection on Hausdorff fields in Section 1, this yields a continuous function

F* o= if; : R >R
n=0

such that F* — F,, < f, (in C) for all n.

Lemma 3.8. Assume ¢, > ag,...,a, for alln. Then for all n, f} is of class C",
and F* is of class C"™ on [cp, +00). So the germ of F* at +oo belongs to C<>°.

Proof. We have f* = 0 on [1,¢,], and f, is of class C" on [a,,+00), so f} is of
class C". For t < cpq1 we have F*(t) = f5(t) +--- + fi(t), so F* is of class C"
on [an, cny1]. Likewise, F* is of class C"1 on [a,41,crio). Continuing this way we
obtain that F* is of class C" on [c,, +00). O

We consider the a,, as fixed, with the ¢, > ag,...,a, to be chosen as needed
later. We set e, := fimt1/fm, 80 0 < ,(t) < 1/2 for all t and ¢, < 1 in H.
For any n > m we also set €,.m = fn/fm, SO €nm is of class C" on [ay,, +o0)
and 0 < ey, (t) < 2e,,(¢)/2"~™ for all t. Then for n > m we have &, < €, < 1
in H, so E%kzn < a1 forall k > 1: use [ADH, 9.1.9(iv), 9.1.10], first passing from H
to a Hardy field extension containing x if necessary.

Proof in the fluent case. This case of Theorem 3.1 is as follows:

Proposition 3.9. Suppose ¢ € H=! is such that fiy1/f; < € for all i. Then (F;)
pseudoconverges in some Hardy field extension of H.

Proof. By passing to a suitable extension we first arrange that H 2 R is closed.
Then £ := —logle| € H>E, |e| = e, s0 |e| 0 £ = e~ and thus (fi11/f;) o 6™ <
e~” for all i. Replacing H by H o /¥ and renaming we can arrange in view of
Lemma 3.3 that f;11/f; < e™® for all 4, and this is what we assume below. Note
that then (f./fm)® < e~ for all n > m and all k. We also assume that (F;) does
not pseudoconverge in H.

As in the subsection on constructing F* we choose for each germ f,, a continuous
representative RZ! — R, also to be denoted by f,,, and real numbers ag, a1, as, . . .,
cp,C1,Ca,... with the properties listed there, and with ¢, > ao,...,a, for all n:
the a,, are fixed and the ¢,, are adjustable. As in that subsection this yields an F* =
Yool o [ € €< with f} = ay f, for all n, and we introduce the functions e,, =
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fm+1/fm and €y = fun/fm for n > m. For each n we take b, > ao,...,a, such
that for all k, m with 0 < k < m <n,
eft
t>b, = [ef) (t)] < T

Next, with the C,, from (3.3), take ¢, > bg,...,b, such that ¢ 41 — ¢, = C,

(so ¢, = o). For m < n we have |a£Lm) (t)] < 1 for all ¢: this is clear for m = 0,
and for m > 1 it follows from C,, < C,, and (3.5).

Let ¢ € H> be active and ¢ < 1, so ¢ = 272 and ¢ < z~!. This gives a
derivation & := ¢~19 on C<*°. Now we use (ii)* = (i) from Corollary 3.5. It tells
us that for F* to generate a Hardy field over H with F; ~» F*, it is enough to
establish that the present assumptions on ¢ imply:

Claim: for all m > k we have 8’“(%) <1 in C<%,

Let m > 1 be given and represent the germ ¢ by a C™-function R*! — R>, to
be denoted also by ¢. For 1 < j < k, the coefficient of Y* in the homogeneous
differential polynomial G¥ of degree k is 0, so G%(1) = R¥(0) = 0. Also R} =
for k > 1. Hence we can take a real number ¢, > ¢, such that for all ¢ > ¢},

o(t) = 7%, |RF(—¢")(t)| <1 whenever 1 < j <k < m.

Then (3.1) yields
(ﬁn)4)“)

fm
Here it is relevant that the fn/ fm are of class C™ on [¢;,, +00) for the derivatives
to exist. Next, for 1< j<m<nandt>c},

()" go
¢

. - —t
Vi
2/'1 m 2n—m
0

Combining this with the previous inequality we get

(I<k<m<n, t=c,).

m

o) = (t) - el (1)

1=

5F ({i) (t)' < 2’““1&2’“% (I<k<m<n, t=c).
Now F := fi+---+ f7 is of class C™ on [c},,0), so by Lemma 3.8 the function
FoFy S g
o 2w

*
m>

F* — Fr
R (fm) (t)‘ < ket (1< k< m).

is of class C™ on [c},,00). Using also Corollary 2.12 we have for ¢ > ¢,

Hence &F (%) <1inC<® for 1< m. As F}, and F,, are equal as germs
k

k<
in C<°, this proves the claim when k > 1. For k = 0, use that F* — F,, < f,, for
all n. (]
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Corollary 3.10. If H>® has uncountable coinitiality, then (F;) pseudoconverges
in some Hardy field extension of H.

Thus to prove Theorem 3.1 it would be enough to show that in every maximal Hardy
field its set of positive infinite elements has uncountable coinitiality. However, we
were not able to prove the latter directly, and so couldn’t exploit this remark.
Instead we refine in the next section the previous constructions in the remaining
case where H>F has countable coinitiality.

Remarks on H>® having countable coninitiality. We show that the property
of H>® having countable coinitiality is fairly robust; this is not used later but
has independent interest. More generally, in this subsection K is a pre-H-field
with I' := v(K*) # {0}. Note: K>© = K>C if K is an H-field. If K is ungrounded,
then ci(K>?) = cf (<) > w, and cf(I') = w iff K has a logarithmic sequence (as
defined in [ADH, 11.5]) of countable length. First we refine [7, Lemma 1.3.20]:

Lemma 3.11. Suppose K is not A-free, and L is a Liouville closed d-algebraic
H-field extension of K. Then L is ®-free with a logarithmic sequence of length w,
and T'< is not cofinal in T's .

Proof. Suppose first that K is grounded. Let K be the o-free pre- H-field extension
of K introduced before [ADH, 11.7.16] (with K in place of F' there), identified with
a pre-H-subfield of L containing K as in the proof of [7, Lemma 1.3.18]. The
sequence (fy,) constructed before [ADH, 11.7.16] is a logarithmic sequence in K,
with TS < v(f,) < 0 for all n > 1. By [7, Theorem 1.3.1], L is o-free and I'g, is
cofinal in I's, so (f,,) remains a logarithmic sequence in L, and I'< is not cofinal
in I's. If K is not grounded we reduce to the grounded case by following the proofs
of [7, Lemmas 1.3.18-1.3.20]. O

Next, let K = (K,I,A,Q) be a pre-AQ-field with Newton-Liouville closure K™ =
(K™ ...); see [ADH, 16.4]. Recall that K™ is differentially algebraic over K. The
following proposition is analogous to the characterizations of rational asymptotic
integration and of A-freeness in [7, Propositions 1.3.8, 1.3.12]:

Proposition 3.12. The following are equivalent:
(i) K is o-free;
(ii) T'< is cofinal in s for every d-algebraic H-field extension L of K
(iii) 'S is cofinal in T},
Moreover, if K is not o-free, then K™ has a logarithmic sequence of length w.

Proof. The implication (i) = (ii) holds by [7, Theorem 1.3.1], and (ii) = (iii) is
clear. For the rest, note that if K is not A-free, then K™ has a logarithmic sequence
of length w and I'< is not cofinal in Ff@l, by Lemma 3.11. Suppose now that K
is A-free but not ®-free. Then [ADH, 11.8.30] gives ® € K with w(A(K)) < ® <
o([(K)). By the proof of [ADH, 16.4.6], either Q = w(K)* or @ = K \ o(I'(K))".
If Q = w(K)*, then the proof of [ADH, 16.4.6] yields a y € K™ such that y > 0,
o(y) = o, and the pre-H-subfield Ky := K(y) of K" has a gap. Replacing K
by the pre-AQ-subfield (Ky,...) of K™ we reduce to the case that K is not A-
free. If @ = K \ o(I(K))T, then the proof of [ADH, 16.4.6] yields A € K™ such
that w(A) = ® and the pre-H-subfield K; := K(A) of K" is not A-free, so we can
argue as before, with Kj in place of Kj. [
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Now assume H O R. Let M be a maximal Hardy field extension of H and
HY .= {f € M : f is d-algebraic over H}

be the d-closure of H in M, and let H, H% M be the canonical AQ-expansions
of H, H%, M, respectively; see [9, Sections 12, 13]. Thus H C H C M. Note
that H9 is a Newton-Liouville closure of H: the closed AQ-field M extends H
and thus contains a Newton-Liouville closure H™ of H ,and H nl ¢ frda gince HM!
is d-algebraic over H, so H" = H9 by [ADH, 16.0.3]. If M* is also a maximal
Hardy field extending H, then there is an H-field embedding H9* — M* over H
whose image is the d-closure of H in M*, by [ADH, 16.4.9]. By Proposition 3.12:

Corollary 3.13. If H is 0-free, then H>® is coinitial in (H)>®. If H is not
®-free, then HY* has a logarithmic sequence of length w. In particular, if H>® has
countable coinitiality, then so does (HI)>R,

4. THE REMAINING CASE

We keep the assumptions on H and (f;) from the beginning of Section 3, and let ¢
range over RZ!. For use in the “remaining case” we first derive bounds like those
of clause (ii) in Lemma 3.4 for ¢ = 1.

Useful bounds. We adopt the conventions and notations in the subsection on
constructing F* from the previous section; in particular, the a, are fixed, and
the ¢, will be adjusted so as to get the desired bounds on certain derivatives of the
functions f/fm, with n > m. For each n we take b, > ag,...,a, such that for
all k, m with 1 <k<m<n,

t_l
t>b, =— ggfzn(t)\ < G
Next, with the C,, from (3.3), we take for each n a ¢,, > bg, ..., b, with ¢, 41 —c¢, >

Cy (so ¢, = o0 as n — 00). Then |a%m) (t)] < 1 for all ¢ whenever m < n, using
that C,, < C,, for such m, n. Note also that for m < n the function f/f,, is of
class C™ on its entire domain [1,00) in view of f(t) = 0 for ¢t < ¢,

Lemma 4.1. For all k, m with k < m we have

ak<Ff_Fm> <1 inC<>~,

Proof. Let 1 <k <m <n. From f/fm = anenm we get for t > ¢,

(5)" 0] < 5 () o0

i=o N
k
2., (t) kE\ ¢! 2e,(t) 2FtT
k m E m
< |a51)(t)| on—m + 4 <J) 2n—m < 2n—m + 2n—m'

i
This also holds for ¢t < ¢, since (f/fm)(t) = 0 for such t. Now fix m > 1 and
set Fyy = fi + -+ fr. By Corollary 2.12 the function

F P NS I
PR Vi

n=m-+1
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is of class C™*! on its entire domain [1,00), and for all ¢,

ak<w) (t

< 2en(t)+2570 (B=1,...,m).

fm
Hence ak(F*f‘iF*) <linC<*®fork=1,...,m. As F} and F,, are equal as germs
in C<°°, this gives the desired result when k > 1. For k = 0, use that F* — F,, < f,
for all n. 0

For later use we record the following consequence:

Corollary 4.2. Let ¢ € H> be active, and & := ¢~'9, as a derivation on C<>.
Then there exists Fy, € C<*° such that for all k, m with k < m,

Fy— Fp, ,

R <¢) <1 inC<>™.
fm

Proof. Take an ¢ in a Hardy field extension of H with ¢ = ¢; note that £ > R.

The lemma above applied to the sequence (f; o £™V) in H o 'V yields F* € C<*®

with Bk(%ﬁfm) < 1in C<* for all m > k. For F, := F* o{ € C< this gives

the desired result. O

In view of Lemma 3.4, the problem is that Iy depends on ¢. The idea, to be
carried out in the next subsections, is to show that for suitable ¢, and a kind of
partition of unity (/3,) the infinite sum ) 3, F,, has the desired properties. In the
previous section we proved Theorem 3.1 in the so-called fluent case, which includes
the case that H>® has uncountable coinitiality. The remaining case where H>¥ has
countable coinitiality will lead to the suitable ¢,, and the partition of unity (8,)
that we alluded to. The a,, and b,, below are still real numbers but have little to
do with the earlier a,, and b,; reusing these symbols with another meaning simply
reflects the limitations of the alphabet.

Towards constructing a good partition of unity. Until further notice the
Hardy field H D R is Liouville closed and H>® has countable coinitiality. It follows
that there is a sequence (¢,,) of active elements in H> such that (v(¢y)) is strictly
increasing and cofinal in ¥ . Below we fix such a sequence (¢, ), and set §,, := ¢ 19,
a derivation on C<*°. Then Corollary 4.2 provides for each n a ®, € C<* such
that for all &, m with k < m,

(I)n - Fm .
5t () S 1 e,

fm
and thus by Lemma 3.6, for all £k < m and all i < n,

o, — F, .
5§(> <1 mes

fm
We represent the germs ¢,,, f,,, and ®, by C"-functions R*! — R>, denoted also
by ¢n, fn, and ®,. These functions ¢,, f, and ®,, are fixed in the rest of this
section, and the notion of “admissible sequence” defined below is relative to these
given sequences (¢ ), (fn), (®n). Suppose the real numbers a, > 1 are such that:

(I) for each n, fo,..., fn and ¢y, ..., ¢, are of class C" on [a,,, +0);
(I1) for all 4, k, m, n with k < m < n, ¢ < n, and all t > a,, we have

st () o

N E— < L
fm
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Note that (IT) makes sense in view of (I), and that (I) and (II) remain valid upon
increasing all a,,. We have ¢,,/¢; < 1 in H for i < n and ¢,/¢; = 1 for i = n,
and thus & (¢, /¢:) < 1in H for i < n and k > 1. Note also that 8¢ (¢,,/¢:)(t) is
defined for i,k < n and t > a,, since ¢, /¢; is of class C" on [a,, +00) for i < n.
Thus by taking the a,, large enough we can arrange in addition to (I) and (II):

(I1T) for all n and 4,k < n and all ¢ > a,, we have

18 (9n/0i) (1) < 1.

An admissible sequence is a sequence ((an, by, Bn))n>0 of triples (ay,, bn, Br) such
that:

(i) (an) is a strictly increasing sequence of real numbers > 1 with a, — oo

as n — oo for which (I), (II), (III) hold;

and such that for all n:

(ii) by, is a real number with a,, < b, < apn41;

(iii) B, is a function RZ! — R of class C";

(iv) Bn(t) =0if t < ap, By is increasing on [ay, by], Bn(t) = 1if by <t < ap1,

=0 for

ﬂn is decreaSing on [anJrla anrl]a and ﬁn(ﬂ 0 t = bn+1§
(V) /Bn + ﬁn+1 =1on [an-‘rla bn-‘rl}-
(See Figure 6.)
— Bn
..... Brn+1
s t
anp bn Qn41 bn+1 An42 bn+2

F1GURE 6. The functions S, 8,41

In the rest of this subsection ((an,bn,ﬁn)) denotes an admissible sequence. Note
that supp 5, C [an, bnt1] by (iv), and that (v) expresses the “partition of unity”
requirement. The series ) (,®, converges pointwise on R>! to a continuous
function ® such that on each segment [b,,, a, 2] we have

Bn+5n+1 =1 and ¢ = Bn@n+ﬁn+1@n+1a

so @ is of class C™ on [b,, an12). Likewise, ® is of class C" ! on the set (by41, ant3l,
which overlaps the previous set. Continuing this way we see that ® is of class C"
on [b,,+00), and thus the germ of ® lies in C<*°.

Lemma 4.3. Suppose for all m and i,k < m there is a positive constant C =

C(i, k,m) such that for all n = m,

<Bnq)n + 5n+1q)n+1 - Fm
fm

Sk

7

)‘ < C on [ant1,bnt1].
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Then for all m and i,k < m we have
d—F,
R <> <1 nC=™.
fm
Proof. Let i,k < m, and take a C' > 1 as in the hypothesis. Then for all n > m we
have |6f(q’}7j) < C on [ap41,bnt1], and also by (II) above,

(I)—Fm (I)_Fm
8?( f )’ <1lon [bn;an+1]7 85( f )’ <1lon [bn+laan+2]a

and thus |8¥ (%)\ < C on [by, ant2]. Taking the union over all n > m we obtain

8?<(I)me)‘ < C on [by, +00),

which gives the desired result. (Il
We didn’t use (III) yet, but we need it for a further reduction:

Lemma 4.4. Suppose for all m and k < m there is a positive constant C(k,m)
such that for alln = m,

Sk (ﬂnq)n + Bn—&—lq)n—o—l - Fm
" fm
Then for all m and i,k < m we have
R (M”> <1 inC<™.
fm
Proof. Let C(m) := maxy<m C(k,m) where the C'(k, m) are as in the hypothesis.
Let i,k < m < n, and let F, g, h be the restrictions of B"¢"+B"+1¢"+17Fm, Ons O

fm

)‘ < C(k,;m) on [ant1,bpgal.

to [an41,+00), respectively; these functions are of class C™. For j = 1,...,m we

denote the derivations
feg o c) = Ctl fehTlf i cl =

by 8, and 8, suppressing for convenience the dependence on j. Let u := g/h €
C™ . Then Remark 3.7 gives for f € C™*

Ap41 An41°

k
&) = Z Gf(u)Sg](f) (with G := 1 to handle the case k = 0),
j=0

where G;? is evaluated according to the derivation §,. By our hypothesis,
‘SiI(F)‘ <C(m) on [any1,bp41], 5=0,...,k.

Now (IIT) provides a positive constant B(m) depending on m but not on n, such
that \Gf(u)| < B(m) on [ant1,bpg1] for 7 =0,..., k. Hence

185 (F)| < (k+1)B(m)C(m) on [ay+1,bp+1),
and so the hypothesis of the previous lemma is satisfied. (I

Corollary 4.5. If H is closed, (F;) has no pseudolimit in H, and the hypothesis
of Lemma 4.4 is satisfied, then ® generates a Hardy field over H and F; ~» ®.

Proof. Use the conclusion of Lemma 4.4, and the implication (ii)** = (i) (with ®
in the role of F') from Corollary 3.5.
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In order to make a further reduction, note that on [a,11,b,+1] We have 5, =
1 — Bny1, and s0, on [anq1, byl

() Dot Bnifon B (P20

Im Im Im
‘I)7+1_Fm (I)n_Fm (I)n_Fm
= Bns1- < : - ) + .
" fm fm fm

This leads to a further simplification:

Lemma 4.6. If for all k there is a constant B(k) > 0 such that for all m > k,
185 (Brs1)| < B(k) on [any1,bnr1], then the hypothesis of Lemma 4.4 is satisfied.

Proof. To simplify notation, set G, := En - Pu—Fin and let k < m < n. Then by (x),
k
2P + Bnr1Pn —F,, k ) B
5k (5 Bre1®nt1 ) -y ( _)5;(3“1)55 G — o)
Fm 2\
+ 83, (Gm)

on [an+1,bnt1]. Suppose B € R> and |8 (B,41)] < B on [any1,bny1] for j =
0,...,k. Then the above identity and (II) gives that on [an11,bpt1],

k
gt ((On®nt Bu1®nin = Fun ) | > MY.Boo| 41 = 24,
" fm =\

which gives the desired result. O

Using composition. In this subsection we explore how we might arrange that our
admissible sequence ((an, bn, Bn)) satisfies the hypothesis of Lemma 4.6, and thus
of Lemma 4.4. In the next subsection we then construct such a sequence.
By (iv) there is no problem for k = 0, since 0 < B,41 < 1. Assume 1 < k <

and set ¢ := ¢, 50 8 := ¢"19 = §,, and set a := an41, b := byy1, B = 6n+1
We wish to bound [5*(3)| on [a,b] by a positive constant that may depend on k
but not on n > k. To achieve this goal we introduce the strictly increasing bi-
jection g: R®! — R0 given by g(r fl t)dt, so g € C"H, g = ¢, and g
has as compositional inverse the strictly 1ncreasmg bijection g"v: RZ0 — R>! of
class C**1. Induction on j < n + 1 gives 88 = (B0 ¢™)¥) o g on R>'. For j =k
this identity gives for any B € R> the equivalence

(4.1) 3°(B) < Bonla,b] <= |(Bog™)™| < Bon [g(a),g(b)].

We shall arrange below that b is given in terms of a by g(b) = g(a) + 1 and that
on [g(a), g(b)i the function 8o ¢™" equals Qg(a),q(b) With a the bump function from
Section 3. In the next subsection we show that then for sufficiently fast growing (a,,)
all our constraints are satisfied.

The construction. In view of the dependence of the function g on n in the story
above we restore here indices, defining the strictly increasing bijection

gn  RZP SR g (r) = / on(t) dt,
1

SO g € C"H, gl = ¢n, and g, has as compositional inverse the strictly increasing
bijection ¢gi*V: RZ0 — R>! of class C"*1.
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Next we take a strictly increasing sequence (a,) of real numbers > 1 such
that a,, — oo and (I), (II), (III) hold, and such that for every n we have b, 11 < an42
where the real number b,,41 is defined by g, (bn+1) = gn(an+1)+1. (It will be clear
that there are such sequences.) With by any real number satisfying ag < by < ay,
we now have a,, < b, < an41 for all n. We define for each n the C*°-function

Qp = Qg (ani1),9n (bni1) - R — R.

The bump function o came with constants Cy > 0 such that [a*)| < Cy on R,
thus |ag€)| < Cf on R for all k, n in view of ¢, (bnt1) — gn(ant1) = 1 and (3.5).

Since ap (gn(bnt1)) =1 =1 = ant1(gn+1(bn+1)) we can define B,41: R! — R by

o, (gn(t)) for t < bpiq,
1-— Ozn+1(gn+1(t)) for ¢ 2 bn+1.

ﬁn+1 (t) = {

Then f3,11 is continuous. We also take a continuous function By: R*! — R such
that (iii), (iv), (v) hold for n = 0. We now have constructed a sequence ((an, by, 5))
that satisfies conditions (i), (ii), (iv), and (v) (and (iii) for n = 0). In fact, it fulfills
all our wishes:

Proposition 4.7. The sequence ((an, bn, ﬂn)) is admissible, and for allk andn > k
we have |85 (Bu11)| < Ck on [ani1,bni1).

Proof. Clearly 3,41 is of class C"*1 on R\ {b,,11}. Now a,, 09, = 1 on [b,41,00),
SO (anogn)(j)(bn+1) =0 for j = 1,...,n 4+ 1. Moreover, a,+1 0 gpy1 = 0
on [1,ap 2], 50 Bni1 is C*1 on all of RZ!. Therefore condition (iii) is satisfied, and
$0 ((an, by, Bn)) is admissible. The bound |8 (Bn41)] < Ck on [ant1,byg1] forn > k
Y = o, on [gn(an+1); gn(bns1)] and the equivalence (4.1). O

is clear from S, 4109,

Finishing the proof of Theorem 3.1. As already mentioned we can use [9,
Theorem 11.19] to pass to an extension and arrange that H O R is closed. If H>%
has uncountable coinitiality, we are done by Corollary 3.10. Suppose H>® has
countable coinitiality. Then we have an admissible sequence as in Proposition 4.7,
and so by Lemma 4.6 and Corollary 4.5, if (F;) has no pseudolimit in H, then ® is
a pseudolimit of (F;) in a Hardy field extension of H. This concludes the proof.

Corollary 4.8. Suppose H is a mazimal Hardy field. Then ci(H>®) > w.

Proof. If ci(H>®) = w, then H being A-free yields a divergent pc-sequence (A,)
in H whose well-ordered index set has cofinality w, contradicting Corollary 3.2. [

5. CONSTRUCTING OVERHARDIAN GERMS

Our goal in this section is the following:

Theorem 5.1. If H O R is a Liowville closed Hardy field and ¢ € C, ¢ >, H, then
some y € C*® with y >, ¢ generates a Hardy field H(y) over H.

This is Sjodin’s main result in [30], except that he considers only C*°-Hardy fields.
Our construction of y follows that of Sjodin, with the material organized so that
much of it will also be useful in the next section where we fill more general gaps.

Boshernitzan [14, Theorems 1.1, 1.2] (see also [8, proof of Corollary 5.23]) showed
that y in Theorem 5.1 can be taken in C¥, using a result of Kneser [24] on solu-
tions F € C¥ to the functional equation expo E = Fo(xz+1). (Our follow-up paper
will have a different argument that yields a y € C* in Theorem 5.1.)
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We state here an easy consequence of Theorem 5.1:
Corollary 5.2. If H is a mazimal Hardy field, then cf(H) > w, and thus
ci(H) = cf(H<") = ci(H”*) > w foralla€ H.
Proof. If H is a maximal Hardy field with a strictly increasing cofinal sequence (h,,)
in H, then Lemma 2.13 yields a ¢ € C such that h,, <. ¢ for all n, contradicting

Theorem 5.1. For any Hausdorff field F' and a € F we have cf(F) = ci(F) =
cf(F<%) = ci(F~?) (use fractional linear transformations). O

This corollary yields Theorem A in the case where A or B is finite.

Lemmas on logarithmic derivatives. Let f € Cl. Note that if f(t) >
and f'(t) > 0 for all t > a, then f is strictly increasing, and thus f(t) > f(a) >
for all ¢ > a. It is convenient to replace here f’ by fT, noting that if f(¢) > 0 for

all t > a, then ff(t) is defined for all t > a. Thus if f(t) > 0 and ff(¢) > 0 for
all t > a, then f is strictly increasing, and thus f(t) > f(a) > 0 for all t > a.

Lemma 5.3. Let f € C2. Assume that f(t), fT(t), f1T(t) > 0 for all t > a.
Then f(t) — +o00 as t — +oo.

Proof. Applying the remark preceding the lemma to T in the role of f gives f(t) >
ff(a) for t > a, so f'(t) = f(t)f1(t) = f(a)ff(a) for t > a, where we apply that
same remark also to f. Hence for t > a,

ft) = fla)+ /t fl(s)ds > f(a)+ (t—a)f(a) [ (a),
which gives the desired conclu;on. O
Lemma 5.4. Let f € C2, and suppose that for allt > a

&) >0, fi&)>0. f(t)>0, and f1(t) > f1(t) > fM).
Then f(t)/fT(t) — 400 as t — +oc.
Proof. We have (f/f1) = ft — T so (f/f1)(t) > 0 for t > a. Also
/T = (T =gy = =t
— fTTfT _ fTTTfTT — fTT(fT _ f’rTT)

and thus (f/f1)(t) > 0 for all t > a. Applying Lemma 5.3 to f/fT in the role
of f now gives the desired result. [

Lemma 5.5. Let f € C2, and suppose that for allt > a

f@) >0, fity>0, f@)y>o0, fM(t)>0, and

1@ > 1) > @) > ).
Then fT(t) — 400 as t — +o0, and for every n, f(t) > fH(t)", eventually.
Proof. Applying Lemma 5.3 to f1 in the role of f gives ff(t) — 400 as t — +oo.
Applying Lemma 5.4 to f! in the role of f gives fT(t)/fT(t) = +oo as t — +o0.
Let n > 1 and take a, > a such that ff(¢t)/n > fi(¢) for all t > a,. So
the assumptions of Lemma 5.4 are satisfied for a, and the restriction of f/7

to [an,+00) in the role of a and f, hence f(t)Y/"/(f7(t)/n) — +oo0 as t — +oo,
and thus f(¢)/f(t)" — +oo as t — +o0. O
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Hardian and overhardian germs. Let y € C<*°. Following the terminology
of [30] we say that y is hardian if y generates a Hardy field Q(y).

Lemma 5.6. If y is hardian and y > 0, y! > 0, then y >, (y")™ for all n.

Proof. Suppose y is hardian and y >, 0, 47 >, 0. The case y < 1 is impossible,
since it would give y' <. 0. If y =< 1, then y' < 1, and we are done. If y > 1
and y' < 1, we are done. If y = 1 and y' = 1, then v(y") = o(vy) by [ADH, 9.2.10],
which gives the desired conclusion. (|

We set 3?0 := y, and inductively, if ¥ € C<* is defined and y{" € (C<>®)* (so
either ¢ <, 0 or ¢ >, 0), then y¢*+1 := (y()t and otherwise ¢+ is not
defined. As in [30] we call y overhardian if for all i,

y' is defined, 3 >0, and y¢? >, O,
If y is overhardian, then so is y. By Lemma 5.5:

Corollary 5.7. If y is overhardian, then for all i, n we have
v >R,y >e (ytt)m
Next we recall from [ADH, 4.3] that a differential polynomial P(Y) € K{Y} over

a differential field K has a unique logarithmic decomposition

PY) = Y PyY®  (Py €K).
i

If K is a Hardy field and 3 is defined for all i, then we can substitute y for the
indeterminate Y to get P(y) =), P<i>y<’> in C<*°, where of course

Yl = (y Oy (y Y for 4 = (ig,. .., i) € NIFT,

Such a substitution is in particular possible if y is overhardian. Thus for over-
hardian y and P € R{Y'}7 we obtain P(y) € (C<>)* from Corollary 5.7. Therefore:

Corollary 5.8. Ify is overhardian, then y is hardian.
Lemma 5.9. Ify is overhardian, then logy < y'.

Proof. More generally, let y be hardian, y >. R, y' >, R, and y'T >, R; we claim
that then logy < y'. To prove this, take a Liouville closed Hardy field H D R
with y € H. Applying [ADH, 9.2.18] to a = vy in the asymptotic couple (T, )
of H gives logy =< y'/yft < yf. O

Given a Hardy field H, we say that a germ y € C is H-hardian if y is contained in
a Hardy field extension of H; see also [8, Section 4].

Corollary 5.10. Suppose H O R is a Liouville closed Hardy field and y >. H.
Then the following are equivalent:

(i) y is overhardian;

(ii) y is H-hardian;

(iil) y 4s hardian.
Proof. From exp(H) C H and y >, H we obtain logy >, H. If y is over-
hardian, this gives by induction on n and Lemma 5.9 that ™ >, H for all n,
and so P(y) <. H or P(y) >, H for all P(Y) € H{Y } \ H, hence y is H-hardian.
This proves (i) = (ii), and (ii) = (iii) is trivial. To show (iii) = (i), assume (iii).
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From logy >, H and exp(z?) € H we obtain logy = exp(z?). Working in a Hardy
field containing y, logy, x, and exp(z?), we have (logy)’ = exp(x?)’, so

v(y") < v(zexp(z?)) < v(exp(z?)) < 0,

hence v(y') < v(exp(z?)t) = v(z) < 0, and thus y'" >, R. Hence y' >, logy >. H
by the proof of Lemma 5.9. Since y! is hardian, we can iterate this argument, which
by induction shows that all (™ are defined and >, H. This yields (i) in view of
Lemma 5.6. O

Corollary 5.10 combines [30, Theorems 3 and 4]; the implication (iii) = (ii) also
follows from [13, Theorem 12.23].

Corollary 5.11. Ify is overhardian, then so is logy. Moreover,
y is overhardian <= y is hardian and y > exp,,(x) for all n.

Proof. Suppose y is overhardian. Then y is hardian and hence so is logy. Moreover,
logy >. R, and logy =< y' /4T by the proof of Lemma 5.9. Hence

t
(logy)T ~ (yT/yTT) — yTT_yTTT ~ yTT — y(2)_

Now an easy induction shows that all (log y)<"> are defined, and that for n > 1 we
have (logy){™ ~ y{"+1). This proves the first claim of the corollary. Also z < v,
since 1 < y < = would give y' < 2 = 1/, contradicting y* >, R. Applying
this to log, y (which we now know to be overhardian), gives log, v >. x, and
thus y >, exp,,(z), proving the direction = of the equivalence.

For the converse, assume y is hardian and y >, exp,(z) for all n. Then H :=
Li(R(m)), the Liouville closure of R(x) as a Hardy field, embeds as an H-field
over R(z) into the Liouville closed H-field extension T of R(z). Since the se-
quence (expn(x)) is cofinal in T, this is also the case in H, so y >, H, and hence y
is overhardian by Corollary 5.10. (]

Constructing overhardian germs. Our goal is the following:

Theorem 5.12. For any ¢ € C there is an overhardian y € C*° such that y{™ >, ¢
for all m.

Note that Theorem 5.1 follows from Corollary 5.10 and Theorem 5.12. To get
an idea of how to construct a y as in Theorem 5.12, consider an overhardian y
represented by a function in C2°, to be denoted also by y. Then we have a strictly
increasing sequence (a,,) of real numbers > a tending to +oo such that y(™ (t) is
defined for ¢t > a,,, for every m, and thus

t
y @) = g™ U(a,,) - exp/ Y™ (s)ds form =1,t> ap,.
am
It follows that y is determined as a function on [ag, +00) by the family of restric-
tions (4™ (.. .am.a)): Y 0N [ag,a1] and y™) on [a1,as] determine y on [ag, as);
likewise, ¥ on [a1,as] and y¢? on [ag,a3] determine y¢* on [ay,as3], and thus y
on [ag, as], and so on. We use this as a clue to reverse engineer overhardian elements.
We start with @ € R and a strictly increasing sequence (a,,) in R*? tend-
ing to +o0o and for each m > 1 a continuous function ymm—1.m: [@m-1,am] — R.
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Let m > 1. We define the continuous function yx m: [ak, am] = R for 0 < k <m
by downward recursion on k: ym,—1,m is already given to us, and for 1 < k < m,

Yr—1,k(1) for ap_1 <t < a,

t
Yr—1,k(ax) ~eXp/ Ym(s)ds for ap <t < am.

ag

ykrfl,m(t) =

(See Figure 7.)

......

k-1 ak am
FIGURE 7. Passing from yx m t0 Yr—1,m

Downward induction on k gives yim = Ykm+1 On [ag, @] for k < m. This fact
gives for each k a continuous function yi: [ag, +00) — R such that yr = yrm
on [ag, am), for all m > k. Thus for k > 1 we have

t
Ye—1(t) = yr—1(ak) - cxp/ yr(s)ds for t > ay.

(2

In the next lemma we use the notation E (t)gi)a where the expression E(t) defines

a function t — E(t) in C"(I), where I = [b,c] (b < cin R) and a € I. With f this
function, E(t),gga := f"(a). In connection with (ii) in that lemma we note that
forr € N*Land g € C"1[b, ] (b < cin R) and setting G(t) := fbtg(s) ds fort € [b, ]
we have (exp G)(") = A, (g, e ,g(r’l))~(exp G) with A, € Z[ X, ..., X,—_1] depend-
ing only on 7, and thus (exp G(t))(;)b = A, (g9(b),...,9"1(b)).

t
Lemma 5.13. Assume the following holds for all k > 1:

(1) yr—1,6 € C®[ak—1,ax] and yp—1,(t) >0 for arp_1 <t < ag;

(ii) y,@l)k(ak) = yp—1,6(ar) - (exp f; Yk kt+1(5) ds)i;)ak for all r € NZ1.
Then for all k we have y, € C3°, yx(t) > 0 fort > ax, and y}; = Yk+1 ON [afy1, +00).
Thus yo is overhardian if yi >e¢ Yr4+1 for all k.

Proof. Downward induction on & shows that y, », for & < m has the corresponding

properties. Note: y,im> is defined in C<*° and equals yg1pm in C<* for all k, m. O

Towards proving Theorem 5.12 we may assume ¢ € C to be represented by a
continuous function ¢: [a,+00) — R~ so ¢ denotes the function and its germ.

Lemma 5.14. There exists an increasing C™-function f: [a,+00) — R such
that ¢(t) < f(t) and f(t) > f1(t) for all t > a.
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Proof. Lemma 2.2 yields a decreasing C*°-function ¢: [a, +00) — R> with 1/¢(t) >
¢(t) and ¢’'(t) > —1 for all t > a. Then f := 1/ works. O

Replacing ¢ by f and renaming, we arrange that ¢: [a, +00) — R~ is increasing of
class C* and ¢(t) > ¢'(t) for all t > a. With these assumptions:

Lemma 5.15. Suppose for all k > 1 we have yi_1 1(t) > ¢(t) for ap—1 <t < ag.
Then for all k we have yi(t) > ¢(t) fort > ay.

Proof. Let 1 < k < m, and assume as an inductive assumption that yx ., (t) > ¢(t)

for ay <t < ap,. Our job is to show that then yg_1 ., (t) > ¢(t) for ar_1 <t < ap,
and this amounts to showing for a; <t < a,, that

yk_l,k(ak)'exp/ Yem(8)ds > ¢(t).

(23

This holds for t = ag, and for ar < t < a,, we have

t t
Vo1 p(ar) - exp / e (s)ds > d(an)-exp | o(s)ds

> olar) exp [ 0/(5)ds
= ¢(ar) - exp(log p(t) —log p(ar)) = ¢(t),

which gives the desired result. ([

For b > a we define the C*°-function ¢y : [a, +00) — R~ by

(5.1) (1) = B(b) - exp /b 6(s) ds,

0 ¢(t) < ¢y(t) for t > b, using again that ¢(s) > ¢f(s) for s > b.

Lemma 5.16. Suppose that for allk > 1 we have ¢ < yr—1,% < Pq),_, on (ag—1, )
Then for k+1 < m we have Yg m > Yk+1,m ON [Qkt1,Am].

Proof. For m =k + 2 and ag41 <t < a,, we have

t
Ykm(t) = yk,k+1(ak+1)'exp/ Yk+1,m(s) ds
Ak+1
t

> ¢(ak+1)exp ¢(s) ds = ¢ak+1(t) > yk+1,m(t)'

Ak+1

Let 1 < k < k+ 1 < m and assume inductively that yg m(t) > yk+1,m () when-
ever ax4+1 < t < any. Then for ap <t < agy1 the special case above yields

Y—1,m () = Yr—16+1() > Yert1(t) = yrm(t),
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and for ax4+1 <t < ay, the inductive assumption gives

t
Yk—1,m(t) = ykq,k(ak)'eXp/ Yre,m(s) ds

af
t

Apk+1
= yp—1.k(ak) - eXp/ Yi,m () ds - exp/ Yi,m (8) ds

ag Qf+1
t

Y G g / Yo (s) ds

k41

t
> Yom(ars) exp / Yesrm(s)ds = ypm(D),

Ap+1

which concludes the induction. O

Corollary 5.17. Suppose that for all k > 1 we have
(1) Yr—1k € C¥[ag—1,ax];
(i) ¢ <yr-1 < Pa,_, on (ar—1,ax];
(iii) yg'_)l,k(ak_l) = ¢(T)(ak_1) for allr € N;
(iv) 97, plar) = yorilan) - (exp [ @(s)ds)\”  for all r € N>,
Then y = yo € C°, y is overhardian, and y* >, ¢ for all k.

ap’

Proof. By (i), (iii), (iv), and the remark preceding Lemma 5.13:

y,(f_)lvk(ak) = yp—1(ar) - (exp f;k Yk k+1(8) ds)ir)ak (k> 1,7 € N21),

Then Lemma 5.13 yields y; € ng, and yr > 0, y;i = Yg41 ON [agy1,+00).

Also yr > ¢ on (ag,+00) by Lemma 5.15, and yx > yr41 on [ag41,+00) by (i)
and Lemma 5.16. It remains to appeal to the last sentence of Lemma 5.13. ([l

The phrase “y is overhardian” in the corollary above is short for “the germ of y
at +oo is overhardian”. Given the strictly increasing sequence (ay) of real num-
bers > a tending to +o0o and the increasing C*°-function ¢: [a,+00) — R> such
that ¢(t) > ¢f(t) for all t > a, it follows from Lemma 2.3 that there exist func-
tions yx_1, for k > 1 satisfying conditions (i)—(iv) of Corollary 5.17, where each
value yi_1 x(ar) can be chosen arbitrarily in the interval (¢(ak), ¢ak_1(ak)). Now
the conclusion of that corollary yields Theorem 5.12, and thus Theorem 5.1.

6. FILLING WIDE GAPS

We now adapt the material from the previous section to filling a wide gap. To
describe this situation, let H O R be a Liouville closed Hardy field. By a wide
gap in H we mean a pair A, B of nonempty subsets of H>® such that A < B,
there is no h € H with A < h < B, and A and exp A are cofinal; note that then A
and log A are cofinal, that B, exp B, log B are coinitial, and that for any ¢ € C
with A <, ¢ <, B we have A <, log ¢, exp ¢ <, B. Moreover, if A, B is a wide gap
in H, then it is an additive gap in H, and A, sq(A) are cofinal, and B, 2B, v/B are
coinitial, by Corollary 1.9 and Lemmas 1.5, 1.10, and 1.12(i). Let us also record
the following, although we shall not explicitly use it:

Lemma 6.1. Let H O R be a Liouville closed Hardy field and A, B nonempty
subsets of H>® such that A < B and there is no h € H with A < h < B. Suppose
there exists ¢ € C such that A <, ¢ and e® <, B. Then A, B is a wide gap in H.
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Proof. For ¢ as above and h € A we have h <. ¢, so e <, e? <, B, and thus e" < f
for some f € A. O

Here is the main result of this section:

Theorem 6.2. If H O R is a Liouville closed Hardy field and A, B is a wide gap
in H with c¢f(A) = ci(B) = w, then some y € C<*° with A <, y <. B is H-hardian.

Wide gaps as in Theorem 6.2 do actually occur, as we show in the next subsection.
Towards proving Theorem 6.2 and some variants we begin with a result that is
mainly an exercise in valuation theory:

Lemma 6.3. Let H O R be a Liouville closed Hardy field, let A, B be a wide gap
in H, and let y € C<*° be overhardian with A <. y <e B. Then y is H-hardian
and d-transcendental over H.

Proof. Tt will be convenient to work with the y{™. Note that Lemma 5.9 and
the cofinality of A and exp(A) give A <. logy <. y' <. y <. B. Using this
inductively we obtain A <. y'? <. B for all i. We prove by induction on n the claim
that y,v, ...,y generate a Hausdorff field extension H, := H(y,y/,...,y™)
of H. For n = 0 this claim follows by applying Lemma 1.11 to

P := {vh: he H”, h < g for some g € A}.

Assume the claim holds for a certain n. It is easy to check that then y(®, ... y{™
lie in H,, that H,, = H(y@7 e ,y<">), and that H, has value group
v(Hy) = v(H*)® Zvy<0> OB Zvy<">

n

with vB < vy < vA for all i < n and vy¢t1 = o(vy®) for all i < n. Note
that vA < 0. Let A be the smallest convex subgroup of v(H*) that includes v A.
Then vA is coinitial in A, and A + Zoy(? + ... 4+ Zoy™ is a convex subgroup
of v(H)) with vB < A+ Zvy'® + - + Zvy™. Hence the real closure H® of H,,
taken as a Hausdorff field extension of H,,, has value group

v(Hff’X) = v(H*) @va@) @...@vaw’

and A as well as A + Quy{? + --- + Quy‘™ are convex subgroups of v(H*)
with vB < A+Quy'? +-- -+ Quy™. (See Figure 8.) In view of A <, (y" 1)) <,
y‘™ for all i > 1 it now follows from Lemma 1.11 (with H® in the role of H)
that 3("*1) generates a Hausdorff field over HX°.

The structure of the value group of H,, yields that y is d-transcendental over H
by the Zariski-Abhyankar Inequality [ADH, 3.1.11]. O

(A+ Zvy(o) + Zvy<1> R Zvy<">)<

vB A<

F1GURE 8. Value group of H,
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Let us now consider the slightly different situation where H O R is a Liouville
closed Hardy field and y € C<* is overhardian with y >, H. Then the proof of
the lemma above goes through for A := H>R and B = (), although this pair A, B
is not a wide gap. The proof not only shows in this situation that y generates
a Hardy field H(y), but also that v(H*) is a convex subgroup of v(H(y)*), and
that v(H(y)*) = v(H*) & @, Zvy', and so y is d-transcendental over H. (See
also [ADH, 16.6.10].)

Constructing “countable” wide gaps. The Liouville closed Hardy field Li(R) =
Li(R(x)) is d-algebraic over R. Hence by [3, Theorem 3.4] the sequence (exp,,(z))
is cofinal in Li(R), so cf (Li(R)) = w. More generally, let H O R be any Liouville
closed Hardy field with cf(H) = w. Then [8, remarks after Lemma 5.17] yields
a ¢ € C with ¢ >, H and so Theorem 5.1 gives an H-hardian y € C<* such
that y >, H. We now consider the Hardy-Liouville closure Li(H (y)) of H(y). We

have a wide gap A, B in Li(H (y)) given by

A = {fGLi(H<y>) TR<f< hforsomehEH},

B = {g € Li(H(y)) tg > H}.
Note that cf(H) = w gives cf(A) = w. Moreover:
Lemma 6.4. B = {g € L1(H<y>) 2 g > log, y for some n}
Proof. By the remarks preceding this subsection y is d-transcendental over H
and {y" : n=0,1,2,...}is cofinal in H(y). Now Li(H (y)) is d-algebraic over H (y),
so {exp,(y) : n=0,1,2,...} is cofinal in Li(H(y)) by [3, Theorem 3.4] applied
to K = H(y). In particular, Li(H(y)) has d-transcendence degree 1 over H. To-
wards a contradiction, suppose g € B and g < log,, y for all n. With ¢ instead of y
we conclude that {exp,(¢g) : n =0,1,2,...} is cofinal in Li(H(g)) and Li(H (g))
has d-transcendence degree 1 over H. Hence y > Li(H(g)), and so with Li(H(g)) in
the role of H we conclude that Li(H(y)) = Li(Li(H(g))(y)) has d-transcendence

degree 1 over Li(H <g>) and thus d-transcendence degree 2 over H, a contradic-
tion. ([l

Thus A, B is a wide gap in Li(H (y)) with cf(A) = ci(B) = w. See also Figure 9.

A B

- _— e e - = ¥ ¥ ¥ ¥ -
T

R -+ loggy logay logy y

F1GURE 9. The countable wide gap A, B

Upper bounds. Assume that a > 1, ¢: [a,+00) — R~ is C* and increasing,
and ¢ > ¢! on [a,4+00). Let (a,,) be a strictly increasing sequence of real num-
bers > a tending to +o0o, and let for each m > 1 a continuous function

Ym—1,m* [amflv am] —-R

be given. As in the previous section this gives rise to functions yj ., for & < m
and functions y,, and y := yo. Finally, assume that yx_1 1 < @q,_, on (ar—1,ax,
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for all k > 1. (See (5.1) for the definition of ¢, for b > a.) Our goal is to find an
upper bound for y on [ag,a,] for n > 1 that depends only on ¢ and n, not on the
sequence (@, ) or the functions ym—_1 m-
Forn > 1 and a,_1 <t < a,, we have
t

Unrn(t) < Gan (1) = Blan-r)exp / o(s) ds

?an-1) j exp(to(t))

< ¢(an71)exp((t—anfl)¢(t)) = W

< exp(to(t)).

Let 1 < B < n. Then yr_1,(t) < exp(t¢(t))) for ap_1 < t < ap. We assume
inductively that for aj, <t < a, we have yj () < exp,,_y (t¢(t) + (n — k)t). Then
for ar <t < an,

t

Yetn(t) = yo_vp(an) exp / Yo (s) ds

(25

N

Yr—1k(aK) exp[(t — ag) eXp,_j (tqb(t) +(n—- k)t)]
ykfl,k(ak)
exp|ak exp,,_j (td(t) + (n — k)t
exp, k1) (to(t) + (n — k + 1)),
where we use that for ¢ > a; we have the inequalities
Yr—1k(ax) < exp(ang(ar)) < explagexp,_(to(t) + (n — k)t)],
texp,_,(to(t) + (n — k)t) < exp,_(td(t) + (n — k + 1)),
the latter being a special case of the easily verified fact that
texp, (to(t) + nt) < exp,(td(t)+ (n+1)t)  (n>1, t>1).
We have now proved by downward induction on k that for all £ < n,
Yk (t) < exp,_i (td(t) + (n — k)t) for ar <t < ay.
For y := yo this yields
y(t) < exp, (te(t) +nt) forn>1and ap <t < ay.

N

T exptexp, _ (té(t) + (n — k)t)]

N

To simplify notation, let ¢,,: [a,+00) — R be the function given by

On(t) := exp, (t(b(t) + nt),

so that that ¢ < @1 < ¢a < ¢3 < --- on [a,+00), and the bound above takes the
form that for all n > 1 we have y < ¢, on [ag, ay].

Back to wide gaps. In the rest of this section H is a Liouville closed Hardy field
with R C H, and A, B is a wide gap in H. We say that ¢ € C lies between A
and B if A <, ¢ <. B. By an intermediary for A, B we mean a ¢ € C* lying
between A and B such that 0 <. ¢ <. ¢; note that the condition 0 <. ¢! implies
that ¢ is eventually strictly increasing.

Proposition 6.5. Suppose x € A, ci(B) = w, and ¢ is an intermediary for A, B.
Then there exists an overhardian y € C® such that ¢ <. y"™ <. B for all n, in
particular A <.y <. B, and so y is H-hardian, by Lemma 6.3.
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Proof. Take a strictly increasing C*°-function ¢: [a, +00) — R~ representing the
germ ¢ such that @ > 1 and 0 < ¢! < ¢ on [a, +00). Forn > 1, let ¢y, : [a, +o0) — R
be the function from the previous subsection given by

on(t) = exp,(to(t) +nt).

From x € A and B and log B being cofinal we obtain ¢,, <¢ ¢nt1 <e B.

Take a strictly decreasing sequence g1 > g2 > g3 > - -+ in B, coinitial in B. Let g,
also denote a continuous function [a,4+00) — R representing the germ g,,. Choose
a strictly increasing sequence by < by < b3 < --- of real numbers > a tending
to +oo such that ¢, < g, and gn41 < gn, on [b,, +00). Next, set a,, := b,y1, and
choose functions yj_15 € C®[ak—1,ax] for k > 1 such that conditions (i)—(iv) of
Corollary 5.17 are satisfied. (The discussion following that corollary indicates how
to construct such functions, using Lemma 2.3.) This yields an overhardian y :=
yo € Cgo as in that corollary, with Yk > ¢ for all k.

Let n > 1. The upper bound from the previous subsection gives y < ¢y,
on [ag, an], 80 Yy < gn On [by, byy1]. With n + 1 instead of n this gives y < gn41
on [bnt1,bnyz], and as g1 < gn on [by, +00), we get y < g, on [by, by4o]. Contin-
uing this way we get y < g, on [b,, b,+3], and so on, and thus y < g, on [b,,+00).
Since this holds for all n > 1, this yields y < B. (]

Lemma 6.6. Suppose x € A, and some element of C lies between A and B. Then
there exists an intermediary for A, B.

Proof. Let f: [a,+00) — R” be a continuous function whose germ at +oo lies
between A and B. Lemma 2.5 gives a C*°-function f*: [a, +00) — R~ such that f <
f*< f+4+1on [a,+00). Then f* <, B, and so replacing f by f* we have arranged
that f € CS°. Defining F(t) := 1+fat f(s) ds we obtain a strictly increasing F' € C2°
with F' = f. By Lemma 2.15 we have [ A <. F <. [ B, and so A <. F <. B
by Lemma 1.12(iii) and Lemma 1.13(ii). Thus we can replace f by F' and arrange
in this way that f is also strictly increasing and f > 1. Next, consider the strictly
decreasing C*°-function 6: [a, +00) — (0, 1] given by

t+1 1
o(t) = f(s) tds = / f~H(s+t)ds, f7Hs) == f(s)7! for s > a.
0

t
Claim: ¢ > —1 on [a,+00), and B™! <. 0 <, A~%.

That ¢’ > —1 on [a,+00) is clear from

0'(t) = / P (s+)ds = fE+1)" — f(B) "

Also 0(t) < f(t) L fort > a,s00 <o f~1 <o A7L.

To establish the claim it remains to show that B~! <. 6, and this is where
we shall need Lemma 1.13(iii). Let ¢ € [B™', so g € H¥ and ¢ = h™!
with h € B. We have h > €*, so after increasing a if necessary we can assume that
the germ h is represented by a continuous function h: [a, +00) — R with h(t) > e
and thus 0 < h(t)~! < e~t, for all ¢t > a. This yields a C'-function

t +oo
t— h(s)"'ds = —/ h(s)~tds : [a,+o0) = R
—+o0 t
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with derivative h~! and tending to 0 as t — 400, so this function represents the
germ g, and will be denoted below by g. Thus for ¢t > a,

t+1
glt+1)—g(t) = /t h(s)~'ds.

Moreover, h(s)™ < f(s)~! for all sufficiently large s > a, and thus
(6.1) g(t+1)—g(t) < 6(t) for all sufficiently large ¢ > a.

From h™! < e™ we get 0 < —g < ™%, and so Lemma 2.17(iii) applied to —g and
combined with (6.1) gives —g(t)/2 < 6(¢) for all sufficiently large ¢ > a. In view of
Lemma 1.13(iii) and coinitiality of B, 2B this yields B~! <, 0, as claimed.

From the claim it follows that the germ of ¢ := 671: [a, +00) — R is an inter-
mediary for A, B. O

Corollary 6.7. Suppose x € A and cf(A) = ci(B) = w. Then there exists an
overhardian y € C* with A <.y <e B, thus generating a Hardy field over H.

Proof. Using cf(A) = ci(B) = w, Lemmas 2.13 and 2.14 give an element of C that
lies between A and B. Then Lemma 6.6 provides an intermediary for A, B, which
in view of Proposition 6.5 gives the desired result. O

Proof of Theorem 6.2. We assume cf(A4) = ci(B) = w. Our job is to obtain
ay € C<* such that A <. y <. B and y generates a Hardy field over H. Take
any g € A. Then g > R, so ¢’ is active in H, and we pass to the compositional
conjugate H o g™, which is again a Liouville closed Hardy field containing R as a
subfield, and having Ao g™, Bo g™ as a wide gap with z = gog™ € Aog™. Now
Corollary 6.7 yields a y € C* such that Ao g™ <.y <. Bo ¢ and y generates
a Hardy field over H o g™ . It follows that yog € C<*®°, A <, yog <. B,and yog
generates a Hardy field over H. This concludes the proof. O

If A in Theorem 6.2 contains an element of C*°, then we can take y in the conclusion
of that theorem to be in C*>° as well: in the proof, take g € C*°.

7. THE NUMBER OF MAXIMAL HARDY FIELDS

Since C has cardinality ¢ = 2%, the number of Hardy fields (and thus of maximal
Hardy fields) is at most 2¢. By Proposition 3.7 in [15] there are > ¢ many maximal
Hardy fields. In this short section we show:

Theorem 7.1. The number of mazximal Hardy fields is equal to 2°.

This is mainly an application of the previous two sections. Let S be an ordered
set. Define a countable gap in S to be a pair P, @) of countable subsets of S
such that P < @ and there is no s € S with P < s < @Q; for example, if P is a
countable cofinal subset of S, then P, () is a countable gap in S. Also, S is 7 iff
it has no countable gap. We thank Ilijas Farah for pointing out that the following
well-known lemma might be useful in proving statements like Theorem 7.1 via a
suitable binary tree construction:

Lemma 7.2. If S has cardinality < ¢, then S has a countable gap.

Proof. Suppose S has no countable gap. Then S is in particular dense: for any p < ¢
in S there is an s € S with p < s < ¢. Thus we can embed the ordered set (Q; <)
of rational numbers into S. Identifying Q with its image under such an embedding,
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there is for every r € R\ Q an s € S such that for all t € Q: s > ¢t in S iff r > ¢
in R. Thus the cardinality of S is at least that of R, which is ¢. (]

Below H O R is a Hardy field. We set
H* := {f € H: f is overhardian},
the transexponential (or overhardian) part of H. By Corollary 5.11 we have
H* = {f € H: f>exp,(x) for all n},

so H' is closed upward in H>®. On H' we define the equivalence relation ~exp
of exponential equivalence by

frepg = f<exp,(g9)andyg

< exp,,(f) for some n
<~ f<exp,,(9) and g < exp,,(f) for some m, n.

Let *f be the exponential equivalence class of f € H', a convex subset of H*. We
linearly order the set *H® of exponential equivalence classes by:

xf <xg <= exp,(f) <gforalln (f,g € H™).
For a Hardy field extension H; of H we have Hi* N H = H'*, and we identify *H

with a subset of *H{® via the order-preserving embedding
xf (in *H") — xf (in xH[®) for f € H*.

Note that R(z)*® = @. If H is Liouville closed, then exp(xf) = log(xf) = *f
for f € H'*. We record a few other properties of ~cy, used later:

Lemma 7.3. Let f € H*. Then
(i) (ef) - (f) = =f;
(i) if g € H>® and [vf] = [vg], then g € H* and xf = *g;
(iii) (xf)T = «f and I(xf) = f.

Proof. Parts (i) and (ii) follow easily from the definitions. For (iii), note first that fT
is overhardian by a remark before Corollary 5.7 and log f < fT by Lemma 5.9,
so f < exp(fT), and fT < f < exp(f), and thus f1 ~eyp f. This yields (xf)7 = *f,
hence d(xf) = *f by (i). g

Using results of the previous section we shall prove:

Proposition 7.4. Suppose P, Q is a countable gap in xH'. Then H has Hardy
field extensions Hy = H(fo), H1 = H(f1) with fo € H®, f1 € H{®, such that

P < xfy <Q, P <xf1 <Q,
Hy and Hy have no common Hardy field extension, and
*H® = «H" U {xfo}, *H® = «H" U {xf}.

We accept this for the moment, and indicate how it enables a binary tree construc-
tion leading to Theorem 7.1. Let | X| denote the cardinality of the set X, and iden-
tify as usual a cardinal with the least ordinal of that cardinality, where an ordinal A
is considered as the set of ordinals < A. Let H be the set of all Hardy fields H O R
such that [*H'| < ¢. We build by transfinite recursion a binary tree in H by
assigning to each ordinal A < ¢ and function s: A — {0,1} a Hardy field H; € H
with [«H!| < |A|. For A = 0 the function s has empty domain and we take Hy, = R.
Suppose s: A — {0,1} as above and Hs; € H are given with [«H!°| < |A|. Then
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Lemma 7.2 provides a countable gap P, @ in *H'°. Let s0,s1: A+ 1 — {0,1} be
the obvious extensions of s, and let Hyg, Hs1 € H be obtained from H, as Hy, Hy
are obtained from H in Proposition 7.4. Let A < ¢ be an infinite limit ordi-
nal and s: A — {0,1}; assume that for every a < A there is given H,, € H
with Hyj, € Hyg whenever o < f < A. Then we set H, := |J, .y Hsjo. Assuming
also inductively that |*H§fa| < |af for all a < A, we obtain [«H | < |A] - |A] = |Al,
as desired. This finishes the construction of our tree. It yields for any func-
tion s: ¢ — {0,1} a Hardy field H, := .. Hyjx, and the way we constructed
the tree guarantees that if s,s: ¢ — {0, 1} are different, then H; and Hy have no
common Hardy field extension. Thus there are 2° many maximal Hardy fields.

It remains to prove Proposition 7.4. This goes via some lemmas.

Lemma 7.5. Let K be an asymptotic field with value group T' and ¥ := (T'7) its
W-set. Let L be an asymptotic field extension of K of finite transcendence degree
over K. Then Uy \ ¥ is finite, where Uy, is the U-set of L.

Proof. By [ADH, 3.1.11] (Zariski-Abhyankar), I';, /T has finite rational rank. Now
use that if ~v1,...,v, € 1"7; and ﬂ,...,'ﬁl are pairwise distinct and not in U,
then ~v1,...,7v, are Z-linearly independent modulo T'. (Il

Lemma 7.6. Let L O H O R be Hardy fields where L is d-algebraic over H.
Then xH" = xL'*. (In particular, *xH'* = x Li(H)*.)

Proof. Let y € L*; we claim that y ~ex, h for some h € H*. To prove this,
set v := vy. Then v < Y(y) < --- < YP"(y) < Y"H(y) < --- <0, so Lemma 7.5
gives n > 1 with " (y) € T' := v(H*), say ¢"(vy) = vh with h € H>. Then h is
overhardian and y ~exp b by Lemma 7.3. O

Lemma 7.7. Let H O R be a Hardy field and let P, Q be a countable gap

in *H*. Then H has a Hardy field extension H{y) with overhardian y € C<*
such that P < xy < Q. For any such y we have xH (y)*® = «H* U {xy}.

Proof. Using Lemma 7.6 we arrange that H is Liouville closed, in particular,
exp, () € H for all n. Assume for now that Q # (. Then P, Q gives rise to
a wide gap A, B in H by

A = {expn(m) in= 0,1,2,...}U {expn(a) n=0,1,2,..., a € H*®, %a € P},
B = {log,(b):n=0,1,2,..., be H*, xbe Q},

with cf(A) = w and ci(B) = w. Then Corollary 6.7 yields an overhardian y € C<*

with A <, y <. B. Given any such y it generates a Hardy field H(y) over H by
Lemma 6.3, with P < xy < Q. Moreover, by the proof of that lemma,

v(H(y)*) = v(H*)® @Zv(y<">),

with convex subgroups A of v(H *) (as defined in that proof) and A+D of v(H (y)*)
with D := @9, Zv(y™). Let f € H(y)**. There are three possibilities:
(1) vf € A. Then *f € xH'®.
(2) vf € A+ D, vf < A. Then vf = moy'” + o(vy'?) for some i and
some m > 1, hence xf = xy by Lemma 7.3.
(3) vf < A+ D. Then an easy argument gives b > A in H with vf = vb+o(vb),
hence *f = xb € xH" by Lemma 7.3.
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If @ = 0, then we set A := H>® B := ), and proceed as before, using results from
Section 5 instead of Corollary 6.7 to obtain the existence of an overhardian y € C<*°
with A <. y, and using instead of Lemma 6.3 the remark following the proof of
that lemma. (]

The following consequence of Lemmas 7.7 and 7.2 is worth recording. (It also uses
the fact that any Hardy field, as a subset of C, has cardinality < ¢.)

Corollary 7.8. If H is a mazimal Hardy field, then the ordered set *H' is 1y,
and |«H"*| = ¢.

As to the H-field T of transseries that was studied extensively in [ADH], we usually
think of T as rather large, but H* = () for any Hardy field H O R which embeds
into T (as H-fields); those H are dwarfed by any maximal Hardy field.

Next, given ¢ € C<®, call ¢ hardy-small if ¢(® < 1 for all n, and hardy-
bounded if ¢(™ < 1 for all n. For example, sinz is hardy-bounded. Here are
some simple observations about these notions: If ¢, € C<*>° are hardy-small, then
sois ¢+ 6. If ¢ € C<> is hardian and ¢ < 1, then ¢ is hardy-small. If ¢ € C<*>®
is hardian and ¢ < 1, then ¢ is hardy-bounded. If ¢ € C<*° is hardy-bounded
and 0 € C<*° is hardy-small, then ¢6 is hardy-small. If ¢,6 € C<* are hardy-
bounded, then so are ¢ + 6 and ¢0. A routine computation gives:

Lemma 7.9. If ¢ € C<* is hardy-small, then (1 + ¢)~1 =1+ 6 for some hardy-
small § € C<>°, and so (1 + ¢)~! is hardy-bounded.

For the proof of Proposition 7.4 we shall use (see also [8, Corollary 5.14]):

Lemma 7.10 (Boshernitzan [13, Theorem 13.6]). Suppose ¢ € C<*° is overhardian
and 6 € C<*° is hardy-bounded. Then ¢ + 0 is overhardian.

Proof. Note that ¢ + 6 € (C<>°)* by Corollary 5.7. Moreover,

A 0\ (6/)
p+0) = [¢.(1+>] ¢*+(1+) = ¢l + :
+0 z z T+ (0/3)
Now ¢~ is hardy-small, so §/¢ and (8/¢)" are hardy-small. Hence by Lemma 7.9,
(1 +(8/ q[))_l is hardy-bounded, and so 078 g hardy-small. Therefore, as ¢! is

] ) ) 1+0/¢) ™
still overhardian, we can iterate the above to obtain

(¢ + 9)<"> = ¢™ 4+0,, with hardy-small 6,, for n > 1.
Thus ¢ + 0 is overhardian in view of Corollary 5.7. O
In particular, if ¢ € C<*° is overhardian, then so is ¢ + sinx. Thus for H, P, Q as

in the hypothesis of Proposition 7.4 and taking y as in Lemma 7.7, the conclusion
of that proposition holds for fy := y and f; := y+sinx by the proof of Lemma 7.7.

8. THE H-COUPLE OF A MAXIMAL HARDY FIELD

Taking into account Lemma 1.1, proving Theorem A has now been reduced to
showing that the value group of every maximal Hardy field is 7. Let H be a
maximal Hardy field. Then H is an asymptotic field in the sense of [ADH, 9.1], so
it has an H-asymptotic couple (I',¢) where I is the value group of H.

Let us consider more generally any asymptotic field K with its asymptotic cou-
ple (I',4). Recall that 1: I7 — T is given by ¥(y) = v(g'), with ¢ € K*
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such that v(g) = 7, and that (v) is also written as «f. Recall also that
is a valuation on I'. Let (y,) be a pc-sequence in I'" with respect to the valua-
tion ¢ on I'. Take g, € K* with v(g,) = 7,. Then (g;) is a pc-sequence in K,
since v(g} — g;) = (Yo — )" for ¢ > p, provided p is sufficiently large. Sup-
pose g;f) ~ g' with nonzero g in some asymptotic field extension L of K (possi-
bly L = K). We claim that then for v = vg we have «, ~» ~. This is because
eventually (v —v,)" = v(g" — g;), and the latter is eventually strictly increasing,
using also that eventually v, # v. In particular, if K = K t and every pc-sequence
in K of length w has a pseudolimit in K, then every pc-sequence in I' of length w
has a pseudolimit in I'. Thus by Corollaries 3.2, 4.8, and 5.2:

Corollary 8.1. If H is a mazimal Hardy field with asymptotic couple (I',1)), then
every pe-sequence in (I',¥) of length w has a pseudolimit in (T',4), and

cf(T) = ci(l”) > w, cil) = cf(T) > w.

Corollary 8.1 includes [8, Proposition 8.1]: every maximal Hardy field contains
a germ ¢ which is translogarithmic, that is, R < ¢ < ¥, for all n, where ¢, is
inductively defined by ¢y := x and ¢,,4+1 := log ¢,,.

Ordered vector spaces and H-couples over an ordered field. In the rest of
this section we fix an ordered field k (only the case k = R is really needed) and
use notation, terminology, and results from [6]. Let T be an ordered vector space
over k (as defined there). For a € T we defined its k-archimedean class

[alk == {v€T: |y <al and |a| < c|y| for some ¢ € k7 },

and we linearly ordered the set [T']g of k-archimedean classes. We defined T to
be a Hahn space if for all a,y € I'” with [a]x = [y]x there is a scalar ¢ € k*
such that [a — 7]k < [a]e. (If K = R, then the k-archimedean class [ of an
element « in an ordered vector space over k equals its archimedean class [a], and
every ordered vector space over k is a Hahn space.) For an ordered vector space A
over k extending I we identify [I']x with a subset of [A]g via the order-preserving
embedding [1]x > [y]x: [Tk — [Alk.
Let now (T, %) be an H-couple over k, as defined in [6], so for all a, 8 € ['7,

lale < [Ble = ¢(a) = ().

We defined (T',¢) to be of Hahn type if for all o, 8 € T7 with 1)(a) = ¥() there
exists a scalar ¢ € k™ such that 9 (a — ¢8) > 1(a); a consequence of “Hahn type”
is that for all o, f € T'#,

[k < Bl = Y(a) = P(B),

and so the underlying ordered vector space I' over k is a Hahn space. We de-
fined (T',v) to be closed if ¥ := ¢)(T'7) is downward closed in the ordered set T,
and (T, 1) has asymptotic integration.

Let now K be a Liouville closed H-field. Recall from [6] that its value group T
is then an ordered vector space over its (ordered) constant field C, with scalar
multiplication given by cvf = vg whenever f, g € K* and cft = ¢'. Its asymptotic
couple (T, ) with this scalar multiplication is a closed H-couple over C' of Hahn
type. For a Liouville closed Hardy field H O R its constant field is R, and we
construe its asymptotic couple as an H-couple over R as indicated.
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Elements of countable type. Let I' be an ordered vector space over k. Let (8
be an element in an ordered vector space over k that extends I'. Then we say
that 8 has countable type over I'if 8 ¢ I' and cf(I'<?),ci(I'>#) < w; in that
case every element in (I' + kB) \ T has countable type over I'. See [ADH, 2.2] for
immediate extensions of valued abelian groups and [ADH, 2.4] for the k-valuation
of an ordered vector space over k.

Lemma 8.2. Suppose 8 has countable type over I' and the ordered vector space
'+ kB over k is an immediate extension of I' with respect to the k-valuation.
Then (B is a pseudolimit of a divergent pc-sequence in I' of length w.

Proof. The assumptions yield a countable (necessarily infinite) set A C T" such that
for every v € T there exists an o € A with [a — 8]k < [y — B]x. This easily yields a
divergent pc-sequence (a,) in I' with all «,, € A such that a,, ~ f. O

Lemma 8.3. Suppose cf(T"),cf(I'<) > w, and 8 has countable type over T'. Then
cf(T<F) = ci(I™f) = w.

Proof. If 3 < T, then ci(I>?) = ci(T') = cf(I') > w, contradicting ci(I'>?) < w.
Thus T<P # (). If cf(T'<P) # w, then I'<? has a largest element v, so I'># = I'>7,
contradicting ci(T>7) = cf(T'<) > w. Thus cf(I'<?) = w; likewise, ci(I>?) =w. O

For us the relevant fact relating “countable type” to the ni-property is as follows:
given an H-couple (T, v) over k,

there is no H-couple over k extending (T, )

Dism { with an element of countable type over I'.

(For “<” use model-theoretic compactness.)

Lemma 8.4. Let (T',) be a closed H-couple over k, and suppose 3 in an H-
couple over k extending (T,1)) has countable type over I and 37 ¢ T'. Then BT has
countable type over T'.

Proof. Without loss of generality we assume 8 > 0. Consider first the case where
we have a strictly increasing sequence (a.,) in ' and a strictly decreasing se-
quence (7,) in T'”, such that a,, < 8 < 7, for all m, n, and (a,,) is cofinal
in I'A, and (v,) is coinitial in T>#. Then (af,) is decreasing, (v/) is increasing,
al > BT > 4! for all m, n. Using that the H-couple (T',%) is closed we also ob-
tain that (o)) is coinitial in T>#" and that (v]) is cofinal in <A Thus B has
countable type over I'. Next consider the case 8 > I'. Then the cofinality of I is w,
Bt < T, and so 8 has countable type over I, since the coinitiality of T' is also w.

The case that there are a,y € I'” with a < 8 < v and there is a largest « € I'>
with @ < 8 or a least v € I'” with 8 < 7 cannot occur, since for such a largest «
we would have a < 8 < 2a, so af = BT, contradicting 37 ¢ I' (and a least such
yields the same contradiction).

It remains to consider the case 0 < 8 < I'”. Then 8 being of countable type
over I' yields a strictly decreasing sequence (7,) in I'” that is coinitial in I'~.
Then (v},) is increasing, (v/,) is decreasing, i, < BT <~/ for all m, n, and (v},) is
cofinal in I<#" and (},) is coinitial in I'>8". So here At is also of countable type
over I'. g
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Good approximations. Let I' be an ordered vector space over k, and let «, v
range over I'. An extension of I' is an ordered vector space over k extending I'.

Lemma 8.5. Let 5 ¢ T be an element in an extension of I'. Then for any «,
[~ o € Tk = 8~ ale = min 5~ .

If '+ kB is a Hahn space, then this implication turns into an equivalence.

Proof. If [6 — 7]k < [8 — ]k, then (8 —a) — (8 —7) = v — a yields [ — a]x =

[v — o]k € [T']x; this gives (the contrapositive of) “=". Suppose I + kS is a Hahn

space. If [8 — a] € [k, say [8 — o]k = [Y]k, then [ — (o + 0’7)]k < [ — a]g for
some ¢ € k*; this proves (the contrapositive of) “<”. O

Suppose § ¢ T lies in an extension of I'. Then a good approximation of § in I’
is by definition an a such that [8 — a]x ¢ [I']kx. Note that a good approximation
of 8 in T exists iff [I" + kf]x # [[|x. Together with Lemma 8.2 this yields:

Corollary 8.6. Suppose [ lies in an extension I'* of T' and I'* is a Hahn space.
Assume also that there is no divergent pc-sequence of length w in T' and that 5 has
countable type over I'. Then B has a good approximation in I

Lemma 8.7. Suppose 8 ¢ I' in an extension of I has a good approzimation o inT'.
Then the following holds:

(i) if [Blk € [Tk, then a #0, [8 — ok < [Blk = []k; and

(i) for allvy, if sign(f —~) # sign(B — ), then [a =)k = [B =]k > [6 — k.
Proof. Part (i) is clear. For (ii), assume o < 8 < «; the case v < 8 < « reduces

to this case by taking negatives. Then vy —a > 8 —a >0, so [y — o] > [ — ok,
since [8 — o]k ¢ [[g. Thus [3 —~]k = [(B—a) + (a —7)], = [@ = V- 0

In the rest of this section (I',%) is an H-couple over k, and «, v range over T'.
By an extension of (I',1) we mean an H-couple over k that extends (T',v). We
consider (I';1) as a valued ordered vector space over k with the valuation on T
given by 1, so a ~~ means (o — )t > af. For a # 0 we set ™ := {y: a ~~}.

Lemma 8.8. Suppose (TI',1) is closed and o # 0. Then
cf(a™) = ci(a™) = cf(I'S) = ci(T7).

Proof. We have o™ = {a +y:qt > aT}. The map a4 v — o — 7 is a decreasing
permutation of a™, so cf(a™) = ci(a™). We also have the decreasing map

cu—&—vl—wyT:o/vﬁf‘>a—>I‘>aT

whose image is coinitial in T>®" | since (I', %)) is closed. Hence cf(a™) = ci(I'>*")
ci(>) by [ADH, 2.1.4].

Ol

Lemma 8.9. Suppose (I',v) is of Hahn type, closed, and cf(T'),cf(I'<) > w. Let 3
in an extension of (I',1) have countable type over T' with [Blx ¢ [[x. Then Bt ¢ T,
and so BT has countable type over I' by Lemma 8.4.

Proof. We may replace 8 by —f, and so we arrange 8 > 0. For 0 < a < § < vy
we have [a]x < [Blx < [V]r, and so af > BT > ~T but af > 4 by the Hahn type
assumption. Suppose towards a contradiction that gt € T'. We distinguish two
cases. First case: af = g1 for some o with 0 < a < 8. Then g > ~1 for all v > 3,
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but then ci(I'>#) = w (by Lemma 8.3) and (T',+) being closed gives for such
that cf(F<O‘f) = cf(I‘<5T) < w, contradicting cf(F<‘ﬂ) > w. Second case: 31 = T
for some v > 5. This leads to a contradiction in a similar way. |

We say that (I',4) is countably spherically complete if every pc-sequence in
it of length w pseudoconverges in it. In particular, if (I',v) is the H-couple of a
maximal Hardy field (with k = R), then (T',4) is of Hahn type, closed, countably
spherically complete, and cf(T"), cf(T'<) > w. (See Corollary 8.1.)

If (T',4) is of Hahn type, then the valuation ¢ on T' is equivalent to the k-
valuation of I' [ADH, p. 82]. If in addition (I", ) is countably spherically complete,
then by Corollary 8.6, any £ in an extension of (I',¢) and of countable type over I'
and such that I' + k3 is a Hahn space has a good approximation in I'.

In the next lemma only part (i) of the conclusion is needed later. The other
parts are included for their independent interest.

Lemma 8.10. Suppose (T, %)) is of Hahn type, closed, and cf(T"),cf(I'<) > w. Let 3
in an extension of (I',1) have countable type over T, with [k € [[|k, and let ag
be a good approzimation of B in I'. Then

(i) Bs:=(B— o)t ¢ T, and B, has countable type over T';
(ii) if ag < B, then there is a sequence (vy,) in I'>P such that

B — o)k < [ — Bl < [Ble, foralln,

and ([, — Blk) is strictly decreasing and coinitial in [T
(iil) if B < o, then there is a sequence () in TP such that

[B— aole < [B—Ynlk < [Blk, for alln,

and ([8 — Ynlk) is strictly decreasing and coinitial in [I']
(iv) ag ~ B, that is, By« > oz(T) = gf.

>[B—aolk ,
k ;

;wﬁm]k; and

Proof. Applying Lemma 8.9 to 8 —«y in the role of 3 gives (i). Asto (ii), let ag < 3
and suppose [a]g > [8 — aolk; then [ax = [y — Bk for some v > §: taking a > 0,
this holds with v := ag + «. Hence

(=Bl y> B8} = [ZPoclk

by Lemma 8.7(ii). Using also (i) we have a decreasing bijection
b =Bl (v =) MR T (3> ).

Thus ci([F]z[ﬂ_ao]’“) = cf(I'<F+) = w by (i) and Lemma 8.3 applied to 3. in the role
of 8, and [B]r > [8 — o)k by Lemma 8.7(i). This proves (ii), and taking negatives
we obtain (iii). For (iv) first note that cf(ay) = cf(I') > w by Lemma 8.8.
If ap < v < B, then ag ~ : otherwise ag < v < S and [y—aolk = [aolk > [B—0]k,
which is impossible. The set af must contain elements > [, since otherwise ag’
would be a cofinal subset of I'<?, contradicting cf(I'<#) = w. Thus ag ~ B. O

Case (b) extensions. In this subsection (T',v) is an H-couple over k with asymp-
totic integration, and B ¢ T is in an H-couple (I'*,¢*) over k that extends (T',1)).
Let (I'(8), ¥3) be the H-couple over k generated by 5 over (I',¢) in (I'*,%4*). The
structure of the extension (I'(3),vg) of (', %) is described in detail in [6, Section 4]:
the possibilities are listed in [6, Proposition 4.1] as (a), (b), (c),,, and (d),,. Case (b)
is as follows:
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(b) We have a sequence (;) in T and a sequence (5;) in I'* that is k-linearly

independent over I', such that Sy = 8 — ag and B;11 = ﬁ;r — 41 for all 4,
and such that T'(8) =T @® @, kb;.

Lemma 8.11. Suppose (T',) is of Hahn type, closed, countably spherically com-
plete, and cf(T'),cf(I'<) > w. Assume also that T* is a Hahn space, and 8 has
countable type over I'. Then [ falls under Case (b).

Proof. Suppose f3 falls under Case (a). This means (I' + kB)" = I'f. In particular,
BT € T, hence [B]x € [ by Lemma 8.9, so (8 — a)f ¢ T for some «, by Lem-
ma 8.10(i) and the remark preceding that lemma, contradicting (I' + kB)T = I'T.

Next, assume § falls under Case (c),,. Then we have ay,...,a, € T', and non-
zero Bo, ..., 0, € I'* such that By = 8 — g, Bit1 = ﬁg — ;41 for 0 < @ < n, the
vectors SBo, - . ., Bn, Bl are k-linearly independent over ', and (I +kf})T =T'f. As 3
has countable type over T', an induction using Lemma 8.4 gives that o, ..., Bn, B
have countable type over I'. But then Case (a) would apply to 3! in the role of j3,
and we already excluded that possibility.

The cases (d),, are excluded because (T', 1)) is closed, as noted after the proof of
Proposition 4.1 in [6]. O

Here is more information about Case (b):

Lemma 8.12. Let (o) and (B;) be as in (b). Then:
(1) BT ¢ T for all i, and thus [B;]x ¢ [Tk for all i;
Qo 18 a good approzimation of B in I';

(i

iil) a1 s a ood approximation o [3T i T, for all i;
+ g

ii)
i)
(iv) ,BH 41 for all i;
(v) (81 is stmctly increasing, and thus ([3i]k) is strictly decreasing;
(1)[(}} i U {[Bilk :zeN},andthusllfﬁz\I'U{ﬁg:iEN};
(vii) there is no 6 € T'(B) with ¥ < § < (I'”)’;

(viii) T'< 4s cofinal in T{B)<
If (T, %) is closed and n in an extension of (I',1) realizes the same cut in T as 3,
then there is an isomorphism (F(ﬂ>,’l[)5) — (F(n),wn) of H-couples over k that is
the identity on I and sends B8 to n. If (T',4) is of Hahn type, then so is (I'(8),13).

Proof. Except for (ii), (iii), (iv), and the isomorphism claim this is in [6, Lemma 4.2].

Now (ii) holds by [8— aplx = [Bolk ¢ [k, and (iii) by [ﬁ —ait1)k = [Bivile € [Tk-
As to (iv), this is because [8]]x = [8] — ait1]k = [Bit1]r by (iii) and Lemma 8.5.
Now assume (T',4)) is closed and n in an extension (I'1,11) of (T',4) realizes
the same cut in T" as 8, in particular, n ¢ T". The case (I'1,91) = (I'*,¢*) is
actually part of [6, Lemma 4.2], and one can reduce to that case: the theory of
closed H-couples over k has QE in the language specified in [6, Section 3], and so
there is an H-couple ('}, ¥7) extending (T, ) with embeddings (T'*, ¢*) — (T, ¥7)
and (T'y,¢1) — (T'5,97) over T O

We add the following observations:

Corollary 8.13. Suppose («;) = (g, 1,03, ...) and (8;) = (Bo, 1, B2, ...) are as
in (b). Then —p falls under Case (b) with associated sequences (—ag, a1, qa,...)
and (—Bo,B1,P2,...). Also, for any i, BJ falls under Case (b) with associated
sequences (41, Qir2, it3,...) and (Bir1, Bit2, Bitss---)-
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Corollary 8.14. Suppose (T, v) is closed, 8 has countable type over T', a < B <y
for some «, v, and (o), (B;) are as in (b). Then cf(T'<F) = ci(T>P) = w for all i.

Proof. Induction using Lemma 8.4 shows that every S; has countable type over T’
and for every i there are o, v with @ < 8; < . It follows from Lemma 8.12(viii)
that for any n € T'(5)\I" the ordered set I'<" has no largest element and the ordered
set I'>" has no least element. Applying this to the 3; gives the desired result. O

In the next corollary we let kg be an ordered subfield of k. Then (T, 1), (I'*,¢*)
are also H-couples over k.

Corollary 8.15. Let («;) be a sequence in I' and (B;) be a sequence in I'*. Then
falls under Case (b) with respect to («;), (8;) iff 8 falls under Case (b) with respect
to (a;), (B;) when (T,v) and (T*,v¥*) are viewed as H-couples over k.

Proof. Use Lemma 8.12(i),(v) and 8] = Bi11 + ciy1. O

Although the element 3 of (I'*,¢*) does not determine uniquely the sequence (3;)
in Case (b), it follows from Lemma 8.12(i),(v),(vi) that 5 does determine uniquely
the sequences (ﬂj ) and ([Bl]k) Without changing 8 we still have considerable
flexibility in choosing the «; and f;:

Lemma 8.16. Let (a;), (B;) be as in (b). Let afy be a good approximation of f3
in I', and of,; a good approximation of ﬁj in I', for all i. Set B = 5 — af
and B}, = ﬁj —aj . Then (af) and (3f) are also as in (b), with [}k = [Bi]k
and B — B; € I for all i.

Proof. We have ] —3; = a; —a; € T for each i and so I'(8) = T & @;-, kB;. From
Lemma 8.5 and Lemma 8.12(ii),(iii) we get [3;]x = [Bi]x for all i, and so 3}, =

B —ar, = (8)F —az,, as required. 0

Next we consider a shift (I, — ) of (I', %) and replace 8 by 8 — v, viewed as an
element of the extension (I'*,¥* —~) of (I',¢ — ~):

Lemma 8.17. Let (o), (Bi) be as in (b). Then B —~ falls under (b) with respect
to the indicated shifts, as witnessed by the sequences (a; —7y), (Bi)-

At the end of the introduction we defined a{™. This comes into play now.

Lemma 8.18. Let (a;) and (B;) be as in (b), and suppose that B;r < 0 for all i.

Then ﬂi(n—H) < ﬂL_n < 0 for all t and all n.

Proof. This is trivial for n = 0. Suppose 5l§n+1> < BL_R. Then by Lemma 8.12(iv),

(n+2) Tt ]
Bi < 61’+n < ﬂi+n+1 . D
We next discuss a situation where we can arrange that BJ < 0 for all 7.

Remark 8.19. Suppose cf(I'S) > w and (), (8;) are as in (b). Then cf(¥) =
cf(I'<) > w, so we have v € U with ,6’3 < « for all 7, hence BJ — v < 0 for all 1.
Thus 8 —~ falls under Case (b) with respect to the shifts (', 1) —~) and (I'*, y* —~)
and for the associated sequences (a; — ), (3;) we have (¢¥* —)(8;) < 0 for all 1,
so that the hypothesis of Lemma 8.18 is satisfied for this shifted situation.
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Constructing a case (b)-extension. Let K be a Liouville closed H-field; below
we view its asymptotic couple (I',9) as an H-couple over k := Q. Assume S ¢ T’
in an extension (I'*,4*) of (I, ) falls under Case (b). We show:

Proposition 8.20. There exists an H-field extension K{(y) of K such that:
(i) y > 0 and vy ¢ T realizes the same cut in T as B;
(i) for any H-field extension M of K and any z € M~ such that vz ¢ T and vz
realizes the same cut in T as 8, there is an H-field embedding K (y) — M
over K sending y to z.

Proof. Model-theoretic compactness gives a Liouville closed H-field extension L
of K with y € L~ such that vy ¢ T realizes the same cut in " as . Lemma 8.12
then yields an isomorphism (I‘(ﬂ), 1/15) — (I‘(vy), z/Jy) of H-couples over QQ that is
the identity on I and sends S to vy. (Here (I‘(Uy>,wy) is the H-couple over Q
generated by I' U {vy} in the H-couple of L over Q.) It follows that I'(vy)/T" has
infinite dimension as a vector space over QQ, so y is differentially transcendental
over K in view of I'(vy) C v(K ) where K, is the real closure of K(y) in L. We
claim that K (y) has the properties stated in the proposition; in particular, we show
that K(y) is an H-subfield of L, not just an asymptotic (ordered) subfield of L.

Let (o) and (8;) be as in (b); for each i, take f; € K~ such that vf; = «;.
We define y; € K(y) by recursion: yo := y/fo, and y;41 = yj/le; to make this
recursion possible we simultaneously show by induction on 4 that y; # 0 and vy; ¢ T
realizes the same cut in I" as f3;, and v(yj) ¢ T realizes the same cut in I' as §;.
This is all straightforward using the above isomorphism

(8.1) (T(B),v8) = (T(vy), vy),

which sends (; to vy; for all 7. Likewise we obtain that for all n,
Kn = K(y7yl7ay(n)) = K(y077yn) = K<y’7y<n))7 and
v(Ky) = T @ Zvy @ - @ Zvy, C T{vy),

with the above isomorphism (8.1) restricting to an isomorphism

POZB®--OLB — TOLvy @ ®Lvyn, Pirrvy: (i=0,...,n)
of ordered abelian groups. Hence the residue field res(K,) of the valued sub-
field K,, of L is algebraic over res(K) by [ADH, 3.1.11] (Zariski-Abhyankar), and
so res(K) being real closed gives res(kK,) = res(K). Then from K(y) = U, K, we
obtain res(K(y)) = res(K), so K(y) is an H-subfield of L with the same constant
field as K, by [ADH, 9.1.2]. So far we only used y # 0 rather than y > 0.

Next, let M be any H-field extension of K and z € M* such that vz ¢ T realizes

the same cut as 8 in I'. By increasing M we can assume M is Liouville closed, and
then all the above goes through with z instead of y. In particular, setting zy :=

z/fo and zj41 = zj /fit+1, we obtain for each n an isomorphism of the valued
subfield K, of L onto the valued subfield K(zg,...,2,) of M over K, sending y;
to z; for ¢ =0,...,n. These have a common extension to a valued differential

field isomorphism K(y) — K (z) over K sending y to z. For this isomorphism to
preserve the ordering, we now assume besides y > 0 that also z > 0. Induction on ¢
then shows that y; and z; are both positive, or both negative, for each i: use that
all f; > 0 and that for any ¢ in any H-field we have:

g>1:>gT>0, g-<1:>gT<0.
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The valuation determines for every polynomial P(Yy,...,Y,) € K[Yy,...,Y,]” the
unique dominant term in P(yo,...,Yyn) and in P(zg,...,2,) in the same way, so
this isomorphism K (y) — K (z) is also order-preserving. O

Remark 8.21. Let K(y) be an H-field extension of K with y > 0 such that vy
realizes the same cut in T' as 3, with real closure F := K(y)**. By the proof
above F has the same constant field as K, and the H-couple of F' over Q is generated
over (I',%) by vy, as witnessed by an isomorphism (F<B>,?/Jﬁ) — (T'p,¢p) over T
sending [ to vy.

With f;, y; as in the proof above (so yj = fit1yi41 for all 4), we think informally
of the element y in Proposition 8.20 as given in terms of the f; by

S
[ f2y2 [ fae
fina fie fie
y = foyo = foef = foef = = foef
In the next section we show how to construct such a y analytically when K is a
Liouville closed Hardy field containing R, under additional hypotheses on .

9. FILLING GAPS OF TYPE (b)

In Section 8—see in particular the remark at the beginning of that section and the
remark preceding Lemma 8.4—we showed that Theorem A reduces to:

Lemma 9.1. Let H be a mazimal Hardy field with H-couple (T,1) over R. Then
no element in any extension of (I',;v) has countable type over T'.

Proof. Suppose towards a contradiction that 8 in some extension of (T',4) has
countable type over I'. Then § falls under Case (b) by the remarks that precede
Lemma 8.10 and by Lemma 8.11. Let (o), (8;) be as in (b). Then (BJ) is strictly
increasing by Lemma 8.12(v). Since cf(I'<) = cf(¥) > w, we can take v € ¥ such
that ] < v for all i. Take g € H> with vg = v, and £ € H with ¢/ = g, so £ > R.
Composing with £V yields a maximal Hardy field H o £V whose H-couple over R
we identify with the shift (I';¢ — «) of (T',¢). As indicated in Remark 8.19 this
allows us to replace H by H o /¥ and 3 by 3 — . By renaming we thus arrange
that B;r < 0 for all 4. This situation is impossible by Theorem 9.2 below. O

Theorem 9.2 is of interest independent of Theorem A and Lemma 9.1, since it
involves a new way of constructing certain Hardy field extensions.

Theorem 9.2. Let H D R be a Liouville closed Hardy field with H-couple (T, )
over R. Suppose B in an extension of (U',¥) and of countable type over T' falls
under Case (b), and B,T < 0 for all i, where (cy), (Bi) are as in (b). Then there
exists y # 0 in a Hardy field extension of H such that vy realizes the same cut in T’

as 3.

The special cases § < I and 8 > I' of Theorem 9.2 are taken care of by Section 5:
say 8 < T'; then ci(T') = c¢f(H) = w, and so there are overhardian y >, H, and any
such y has the desired property by Corollary 5.10.

The rest of this section proves Theorem 9.2 in the case where a < § < 7 for
some «a,y € I'. As we saw, this is also the final step in proving Theorem A.
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Some useful inclusions. Let H D R be a Liouville closed Hardy field with H-
couple (T',v) over R, and let «, v range over I'. Let § in an extension of (I", 1) of
Hahn type be such that o < 8 <  for some a, 7, [3] ¢ [['] (so 8T ¢ '), and g™ < 0
for all n > 1. (We do allow 8 > 0, but use —|3| below to arrange a value < 0,
with (—|B)™ = B for n > 1.) Set
A= {heH®: —|B|<vh}, B:= {heH®:vh<—|g|}.
Then AUB = H>®, A < B, and so there is no h € H with A < h < B. Also
vAUvB = TS, vB < —|f] < v4 < 0,

and so there is no o with vB < o < v A.

Lemma 9.3. The sets A and B have the following properties:
(i) e, :==exp,(z) € A for alln, and B # (;
(ii) A =sq(A) and B = VB.
Proof. Asto (i), an easy induction shows that ef =e;---e,_; forn > 1 and eﬁlm ~

eLme for n > m > 1. In particular, eﬁlm ~ 1 forn > 1. Since ﬂ<"> < 0 for

all n > 1, this gives v(e,) > S for all n. Item (ii) follows from [3] ¢ [I]. O
We now set

At = {aT: a €A, aT>1}, BT = {bT: beB}, so in view of BT ¢ I':

At = {heH”®: gl <vh}, B' = {he H*®:vh <}
Thus AT U Bt = H>R, A" < BT, and there is no h € H with AT < h < Bf. Also

v(AHUv(BT) = T<, o(B") < g7 < v(4?) < 0,

and there is no a with v(BT) < a < v(AT). Note also that e, € A for all n > 2.
Corollary 9.4. log A C At C A and logB D BT O B.

Proof. If h € H, h > ey, then logh < (logh) = hf. Then by Lemma 9.3(i) we
have log A C A'. Now use log A < log B and logAUlog B = AT U Bt = H>R. As
to AT C A: if h € H>® and hf = 1, then vh! = o(vh) by [ADH, 9.2.10(iv)]. O

To indicate the dependence of A, B, A, Bt on 8 we may denote these sets by

AB), B(B), A'B), B'B).

In fact, these four sets depend only on [5] rather than 3, in view of [5] ¢ [T].
Recall that 37 ¢ T" and BT < 0, so if BT has a good approximation in T, it has a
good approximation < 0 in I'. Note: if [37] ¢ [['], then 0 is a good approximation
of #in I' and any good approximation o < 0 to 81 in I' satisfies 8T < a.
Suppose now that a < 0 is a good approximation of 37 in T, so [3T — a] ¢ [[].
Set Bhext 1= BT — «a, and assume also that ﬂé@t < 0 for all n > 1. This means that

the conditions we imposed earlier on 3 are now also satisfied by Bpext. Since [Bnext]
does not depend on the particular good approximation o < 0 of 8T in T,

A(Bnext) = {h S H>]R : Uh > 7|Bnext|}

doesn’t either, and the assumption that Bflz})(t < 0 for all n > 1 will still be satisfied
for any such a.

Lemma 9.5. A(Bnext) C log A(S).
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Proof. Let h € A(Buext); it suffices to show that then e® € A(3). Suppose towards a
contradiction that e” € B. Then ve" < —|B|, so v(e?)! = vh' < gT < 0. If [8T] € T,
then [B'] > [Buext)s 50 I € B(Bnext), and thus h € B(Buext) by Lemma 1.13(ii)
applied to B(Buext) in the role of B. If [31] ¢ T, then [81] = [Bnext), and again b’ €
B(Bnext), S0 b € B(Bnext). In both cases we contradict h € A(Bpext)- O

The diagram in Figure 10 depicts the gaps

(A7B) = (A(B)’B(ﬂ))’ (ATvBT)’ (logA,logB), (A(ﬂnext)aB(Bnext))

in H and hypothetical H-hardian germs y, ynext With A < y < B and A(Bnext) <
Ynext < B(Bnext), as well as y' and logy.

FIGURE 10. Various gaps in H associated to (A, B)

Lemma 9.6. We have [3] > [Buext]- If there is no v such that [B8] > [v] > [Buext),
then A(B) = A(Bnext), B(8) = B(Buext), and A, B is a wide gap.

Proof. From [ADH, 9.2.10(iv)] and 37 < 0 we get 3T = o(3), so [8] > [BT] = [Buext]-
Suppose there is no v with [8] > [y] > [Bnext]. Then clearly A(8) = A(Bnext)
and B(8) = B(Bnext), s0 A C log A by Lemma 9.5. Thus A, B is a wide gap. O

By Lemma 9.3 we have e,, € A(Bnext) for all n. In combination with the next result
this gives further information about the behavior of A and B and of the gap between
them. For p, ¢ € C with ¢ >, 0 we have the germ ¢P € C. Let p € H; then h € H>
gives h? = exp(plogh) € H”, and for S C H” we set SP :={h? : he S} C H”.

Proposition 9.7. The sets A, AT, A(Buext), B have the following properties:
(1) A(ﬁncxt) : AT g AT;
(ii) if p € A(Buext), then AP C A and BY? C B;
(iil) if p € A(Buext), ¢ € C, and A <o ¢ <o B, then A <, ¢*/P <, ¢ <. ¢P < B.

Proof. For (i) we distinguish two cases. Suppose first that 37 < .. Let p € A(Buext),
h € A'; we need to show ph € Af, that is, v(ph) > BT, equivalently, vp > Bt — vh.
Since vp > Prext = BT —a, we do have vp > BT —vh if vh > a. If vh < @, then BT <
vh < a, so vh is also a good approximation of 4t in I', and then replacing a by vh
yields vp > BT — vh in view of remarks made earlier about A(Byext)-

Next, suppose o < BT, so [3T] € [I'] by an earlier remark. Let p € A(Bye

xt)a
h € AT; as before we need to show vp >  —vh. Now o < BT < vh gives [a — ] <
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[3" — vh] by Lemma 8.7(ii). Since a — 87 and BT — vh are both negative, this
yields o — gt > Bt — vh, which together with vp > a — 1 gives vp > T — vh.
As to (ii), let p € A(Bnext) and h € A. We have h? > R and

(h")' = (plogh)" = p'logh + ph',

and pht < 1 or pht € AT by (i). Also p’ € A(Buext) or 0 < p’ < 1, by Lemma 1.12,
and log h € At by Corollary 9.4, so p’logh < 1 or p’logh € At by (i). Hence (h?)T €
At and thus h? € A. Next, let p € A(Bnext) and h € B. Then h'/? ¢ B would
mean h'/P € A or 0 < h'/P < 1, and in either case h = (h'/P)P would give h € A
or h < 1, contradicting h € B. This concludes the proof of (ii).

Property (iii) is a routine consequence of (ii). O

Part (iii) of Proposition 9.7 is only relevant if there is any ¢ € C with A <, ¢ <. B.
There are indeed such ¢ if cf(A) = ci(B) = w, by Corollary 2.8.

To describe A(Bnext) directly in terms of A, take f € H> with vf = a. Then:
Lemma 9.8. If 5T < a, then f € AT or f <1, and
AlBnext) = HZFNTIAL B(Bae) = 7B
If a < BT, then f € BY, [T —a] < [BT] = [a] € [I'], and
A(Bnext) = HZEn (BN, f(AN) ™! is a coinitial subset of B(Bnext)-

Proof. If Bt < «, then the inclusion A(Buex) 2 H>F N f~'A! and the equal-
ity B(Buext) = f~'B' are almost obvious, and one can use a < 0 to prove the
inclusion A(Buext) € H>® N f71AT

Next, suppose a < (f. Then for the inclusion A(Bpexs) 2 H>® N (BT,
use BT < o — B, and for the statement about B(fuext), note that

B(Bext) = {he H®: vh <a— B}, and
fAN = {he H®: a<vh<a-pih O
Using the first part of Lemma 9.8 we obtain:
Corollary 9.9. Suppose Buext < 0 and zg,z1 € C<*° are such that
>0, 2 = fa, AlBuext) <e 21 <e B(Buext).
Then A <¢ zp <e¢ B.

Proof. Let h € A. Then f~'ht € A(Buexs) or f71AT <1, 50 7R <4 2y = f’lzg,
and thus At <, zg. Then Lemma 2.16 gives ¢ € R™ with ch <, 29. Applying this
argument to h? instead of h gives d € R> with dh? <, 2o, which in view of h <. dh?
gives h <. zp. In the same way one shows that if A € B, then zy <. h. ]

Likewise, using the second part of Lemma 9.8:
Corollary 9.10. If Buext > 0 and 2q, 21 € C<*° are such that

20,21 >e 0, 2 = fla, A(Brext) <e 21 <e B(Prext),

then A <. zg < B.
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What remains to be done. Let H O R be a Liouville closed Hardy field with
H-couple (I',9) over R, and let «, v range over I'. Suppose § in an extension
of (I',9) is of countable type over I' and falls under Case (b), with (o), (8;) as
in (b), and ﬁ;r < 0, a;41 < 0 for all i. Assume also that a < 8 < v for some «a, 7.
Then (F<B>7’(/Jﬁ> is of Hahn type, by the last claim in Lemma 8.12, and so all j3;
lie in this extension of (I', %) of Hahn type; this is significant because of the initial
assumption on 8 in the previous subsection. Note also that for all ¢ there are «, v
with a < ; < 7, and that by Lemma 8.18 we have ﬁ§n> < 0 forall i and all n > 1.
Thus we can apply the previous subsection to each §; in the role of § there. Set

A; = {heH®:vh>—|B]}, B; = {heH:vh<—|Bl},

so A; = A(B;), B; = B(Bi), and Bi11 = (Bi)next in the notation of the previous
subsection. Thus by lemmas in that subsection:

(i) e, € A; for all 4, n;

(ii) A; and sq(A;) are cofinal, and B; and +/B; are coinitial;

(iii) h € A; = h*» € A;, and h € B; = h'/*" € B;;
By Corollary 8.14 we have cf(I'<%) = ci(I'>%) = w for all i. Hence cf(A;) =
ci(B;) = w for all i. What remains to be done is to show the existence of a y > 0
in a Hardy field extension of H such that vy realizes the same cut in I" as .

For each i, take f; € H”> with vf; = a5, and f; > 1 for i > 1. To get the right
idea for our reverse engineering, suppose y > 0 is H-hardian and vy realizes the
same cut in I as S. As in the proof of Proposition 8.20, let y; € H(y) be given
by yo := y/fo, and y;y1 = yj/le. Then vy; realizes the same cut in I' as f;,
soy; = 1if B; <0 and y; < 1if 8; > 0. To have only positive infinite germs, set

zi = |yi| if B <0, zi = |yl 7t if B >0.
One verifies easily that then A; <, z; <e B;, and

Bit1 <0 = Z;r = fit1%it1, Biy1 >0 = ZZT = fix1/%is1-
We first deal with a “wide gap” case:

Lemma 9.11. Suppose for some n there is no v with [8,] > [v] > [Bn+1]. Then
there exists H-hardian y > 0 such that vy realizes the same cut in I' as (.

Proof. Let n be as in the hypothesis. Then A,,, B, is a wide gap by Lemma 9.6,
hence Section 6 gives an H-hardian z, such that A, <. z, <c B,. Let L :=
L1(H<zn>) Then we have z,_1,...,20 € L~ such that for all i < n:

Biv1 <0 = ZJ = fit1%it1, Biy1 >0 = ZI = fiy1/ziq1.

Downward induction on ¢ using Corollaries 9.9 and 9.10 then gives A; <¢ z; <o B;
for all ¢ < n. Thus if By < 0, then v(zp) realizes the same gap in I' as Sy, and
s0 y := fozo has the desired property. If Sy > 0, then v(zg) realizes the same gap
in " as — B, and so y := fo/z0 has the desired property. O

It remains to consider the case that for all i there exists v with [B;] > [v] > [Bix1]-
We assume this for the rest of this section. The goal of our reverse engineering will
be to construct germs z; as in the next lemma:
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Lemma 9.12. Let the germs z; € C<*° be such that for all i, A; <. z; <. B; and

Bir1 <0 = 2z = fiizi, Bir1 >0 = 2 = fiy1/zin.

Then there exists H-hardian y > 0 such that vy realizes the same cut in T" as (3.

Proof. Note that for each n we have the ordered subgroup I' ® ZBy ® --- ® ZfS,
of T'(3), and likewise with Q instead of Z. We prove by induction on n that zg, . .., 2,
generate a Hausdorff field H,, := H(zo,...,z,) over H, with

v(H)) = T®Zvzg P -+ B Loz,

n

and with an ordered abelian group isomorphism that is the identity on I':
TeZBy® LB, —» T BZv2g® - ®Zvzyn, —|Bil— vz (i=0,...,n).

For n = 0 this follows from Lemma 1.11. Assume that the above holds for a
certain n. Then for the real closure H)® of H,, as a Hausdorff field extension of H,,

v(H*) = T®Quzg® -+ & Quzy,
with an ordered abelian group isomorphism that is the identity on I':
FreQBd---®QB, = T®Quzp® - ®Quz,, —|Bi|l—=wvz (i=0,...,n).
Thus [v(H*)] = [T]U {[vz0], ..., [vzn]} by Lemma 8.12.

Claim: For each f € H!®>, either f X h for some h € A,i1, or f = h for
some h € Byy1.

Otherwise we have f € HJ® with A,41 < f < Bpy1, so [vf] ¢ [T] and vf re-
alizes the same cut in I' as —|B,41|. Taking v with [5,] > [y] > [Bn+1] we ob-
tain [vzo] > -+ > [vz,] > [7] > [vf], contradicting vf € v(HL™).

The claim and Lemma 1.11 give a Hausdorff field extension H(z,+1) of H:®, and
the resulting Hausdorff field extension H, 1 = H,(z,+1) of H has the properties
that the inductive step requires. This concludes the proof by induction.

An easy induction on n now shows that for z := zy the elements z, 2/, ..., z("
of C<° generate the Hausdorff field H(z, 2/, ... ,z(")) = H, over H, and so we have
a Hardy field H(z) over H. If By < 0, then y := fyzo has the desired property, and
if By > 0, then y := fy/20 has the desired property. O

First step in reverse engineering. To construct germs z; as in Lemma 9.12
we first take for each ¢ a continuous function [0, +00) — R~ that represents the
germ f; € H and to be denoted also by f;, and with f; > 1 on [0, +00) for ¢ > 1.
Next, let (a;) be a strictly increasing sequence of real numbers > 0 tending to +o00
such that fo,..., fm are of class C™ on [a,,+00). Let there also be given for
each m > 1 a continuous function z,—1,m: [@m—1,am] — R”. Then we define the
continuous function zg m,: [ag, am] = R” for 0 < k < m by downward recursion:
Zm—1,m for m > 1 is already given to us, and for 1 < k < m,

Zr—1,k(t) for ap_1 <t < ay,
t
Zg—1,k(ak) ~exp/ J1(8)zkm(s)ds for ap <t < ap, if B <0,
Zh—1.m(t) = an
t
Zk—1,k(ak) - exp 1(5) ds for ap, <t < am, if B > 0.

ag Zk'»m (8)
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Downward induction on k gives 2., = Zkm+1 ON [ak, Gy) for k& < m. This fact
gives for each k € N a continuous function z: [ag, +00) — R” such that zx, = 2z
on [ag, ay), for all m > k. Thus for k£ > 1 and ¢ > a; we have

Br <0 = zp_1(t) = zr—1(ag) -exp fi(8)zr(s) ds,

ak

t
B >0 = Zk_l(t) = zk_1(ak)~exp/
ag

i (s) ds,
zk(s)
S0 zgx_1 is of class C! on [ag, +00), and:
B <0 = 211—1 = fr 2z on [ag, +00),
Br >0 = z};_l = fr/zr on [ag, +00).

Hence induction on m gives that z; is of class C™ on [agym,+00) (for all k, m),
and thus (the germ of) each zj, lies in C<°.

The above is a general construction of functions whose germs satisfy the equalities
in Lemma 9.12. More work is needed to satisfy also the inequalities A; <e z; <e B
in that lemma. We now turn to this task.

Second step in reverse engineering. Assume in this subsection that z;_; ; > 1
on [ag_1,ag], for all k > 1. Then z, > 1 on [ag,+o0) for all k. For k > 1 we
have zg_1(t), z};fl(t) > 0 for all t > ag, so zp_1 is strictly increasing on [aj, +00).
For each k, let pg,qx: [ax, +00) — R> be continuous functions such that

Pm-1 S Zm-1m S ¢m-1 ON [am—lvam]a for all m > 1.

We try to find conditions on the families (py) and (g;) so that these inequalities
extend to p < Zkm < @i ON [ag, an) for all k, m with k < m (and thus py < 2z < ¢
on [ak, +o00) for all k). Let 1 < k < m and assume inductively that py < zgm < ¢k
on [ak, am]. On [ar_1,ar] we have pr_1 < 2zp—1.5x < qr—1, S0 Pp—1 < Zk—1,m < Qh—1,
as desired.

First suppose S < 0. Then for ax <t < a,,, we have
t
etnlt) = (o) e [ u(s)znm(5)ds,
ag
hence
t t
pk_l(ak)exp/ Tr(8)pr(s)ds < zp_1m(t) < Qk—l(ak)eXp/ fu(s)ar(s)ds,
ag ag

and so the desired pr_1 < zZg—1,m < @r—1 O [ak—_1, Q] would follow if

t
(Ix) pe—1(t) < pk_l(ak)exp/ fe(s)pr(s) ds for all t > ay,

ay
t

(I1x) gr-1(t) = qr-1(ax) exp/ fe(s)qr(s) ds for all t > ay.

ar
Now assume S5 > 0. Then for a; <t < a,, we have

b fe(s)

ag Zkvm (S)

9

Zh—1,m(t) = zr—1x(ar)exp
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and so
t t
fr(s) Ji(s)
- ds < z—1,m(t) < q— ds,
Pr—1(ax) exp . () S Zk—1,m(t) qr—1(ax) exp ” Pu(s)
and so the desired pr_1 < 2Zg—1,m < @r—1 O [ak_1, Q] would follow if
t
(I11) Pr—-1(t) < pr—1(ax)exp 1(s) ds for all t > ayg,
ak qk(s)
t
(IVi) ar-1(t) > qk_l(ak)eXp/ Jils) 4 for all t > a.
ay pk(s)

The above leads to the following;:

Lemma 9.13. Let p; € A; and q; € B; fori=0,1,2,... be given such that
Byt < 0 = pl < fipisr, @ = firdin (in H),
Bix1i > 0 = pl < fiyr/@isr, 4} = fier/pin  (in H).

Then there are germs z; € C<*° (i =0,1,2,...) such that for all i,

pi<zi<qg mC, Biy1 <0 = Z;r = fix1zix1, Biy1 >0 = ZJ = fit1/%i+1-

Proof. Take a strictly increasing sequence (a;) of real numbers > 0 tending to +oo
and represent p;, ¢; for each i by C!-functions [a;, +00) — R>, also to be denoted
by pi, q;, such that for all m,

e fo,..., fm are of class C"™ on [a;,, +0);

® 1< pm < gm O [am, +00);

® Bny1 <0 = p;fn < fm1Pm+1, Qin 2 fm4+1@m+1 on [am+1ﬂ +00);

® Bns1 >0 = ply < font1/Gme1s @l = Frng1/Pmr1 o [am 1, +00).
Upon replacing (a;) by a strictly increasing sequence (b;) of reals with a; < b; for
all 7 and the p;, g; by their restrictions to [b;, +00), for each i, the conditions above
are obviously still satisfied. For ¢ > a,, we have

t t

pn) = pulans)e [ ph(s)ds an(®) = aulanc)ew [ al(s)ds
Am 41 Am41

and so for all k& > 1 conditions (Iy) and (II;) are satisfied if 8, < 0, and con-

ditions (III;) and (IVy) are satisfied if 8 > 0. Thus by the above we can take

any continuous function z,,—1m: [@m—1,0m] = R with pr_1 < Zm—1m < @m-1

on [apy—1,am,] for m=1,2,... to give germs z; for i =0,1,... as required. (]

Final step in reverse engineering. This step involves a diagonalization. We
take p;, € A; and ¢, € B; (for i = 0,1,2,..., n = 0,1,2,...) such that for
all i, n:

® Din < DPin+1, and {pio,pi1,Pi2,. ..} is cofinal in A;;

® Gin = Gint1, and {g;0,¢i1,¢i2,- - - } is coinitial in By;

o if 5,11 <0, then pj11, = p;r’N/fiH and gjy1p, = q;ryN/le for some N =
N(i,n) > n;
if Bi41 > 0, then p;j1, = fz-ﬂ/qj’N and ¢j41,n = fiﬂ/pI’N for some N =
N(i,n) > n.
It follows from Lemma 9.8 that there is such a family ((pim7 qim)). Setting p; :=p;;
and ¢; := g;; we note that the hypotheses of Lemma 9.13 are satisfied, and this
gives us germs z; € C<* for ¢ = 0,1,2,... such that for all i,
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(1) pi <z <qinC;

(2) Bit1 <0 = ZI = fit1%i+1, Biv1 > 0= ZZT = fix1/Zit1-
We claim that then A; <. z; <. B; for all 4. (Establishing this claim achieves our
goal by Lemma 9.12.) To prove this claim, suppose for a certain pair 4, n with i < n
we have pi11, < Zit1 < ¢ir1.n. (See Figure 11.) As a subclaim we show that
then p; », < 2; < ¢in. Consider first the case 8,11 < 0. Then for N := N(i,n) > n,

fijrl1p1,1v <z o= fihel < fijrllqlzv’ SO pj,N <z < q;N,
which by Lemma 2.16 gives constants ci,c2 > 0 with cip; v < 2; < c2¢i,n, and
sopi N—1 < 2 < gi,N—1- Now N—1 > n, and thus p; , < 2; < ¢, as promised. The
case ;41 > 0 is handled in the same way. Given i < n we have p, ,, < 2, < @n,n,
and so p;n, < 2 < @i, by iterated application of the subclaim. For any fixed 7 this
yields A; <, z; <. B; by the cofinality and coinitiality requirements we imposed on
the p; », and ¢; . This proves the claim, and concludes the proof of Theorem 9.2,
and thus of Theorem A. O

< Po1 <X =< Pon <R = Qn <= Qo1 <
Pro X[Pra] <= pin <z < @i < <@ < g

Pn,o < Pn,1 <= '< Tt Zp ottt '<'< e = qn,1 < Adn,0
FIGURE 11

10. ISOMORPHISM OF MAXIMAL HARDY FIELDS

The cardinality of any Hardy field extending R is 2%°. By Theorem A, all maximal
Hardy fields are 7; and thus Ni-saturated as real closed ordered fields; in particular,
under CH they are all isomorphic as ordered fields. However, they are not N;-
saturated as ordered differential fields, since their constant field R isn’t. Thus to
show they are isomorphic (under CH), we need to argue in a different way, and this
is what we do in this section.

Lemma 10.1. Let K be a countable closed H-field with archimedean constant
field C, let L be a closed H-field with constant field R, and assume L is n;. Let E
be an ®-free H-subfield of K, and let i: E — L be an H-field embedding. Then i
extends to an H-field embedding K — L.
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Proof. We identify C in the usual (and only possible) way with a subfield of R, and
note that then i is the identity on Cr C R. Then [ADH, 10.5.15, 10.5.16] yield an
extension of ¢ to an H-field embedding E(C) — L that is the identity on C' C R.
The H-subfield E(C) of K is d-algebraic over E, so is o-free. Replacing E by E(C)
we reduce to the case that Cg = C. Recall that n;-ordered sets are X;-saturated.
Hence [ADH, 16.2.3] applies and gives the desired conclusion. |

Lemma 10.2. Let Ly, Lo be closed H-fields with small derivation and common
constant field R, and assume that L1 and Lo are n1. Then the collection of H-field
isomorphisms K1 — Ko between countable closed H -subfields K1 of Ly and Ko of Lo
is nonempty and is a back-and-forth system between L1 and Lo. In particular, L,
and Lo are back-and-forth equivalent.

Proof. The theory of closed H-fields with small derivation has a (countable) prime
model, by [ADH, p. 705], and so there is an H-field isomorphism between copies
of that prime model in L; and in Ls. Also, any countable subset of a closed H-
field L is contained in a countable closed H-subfield of L, by downward Lowenheim-
Skolem [ADH, B.5.10]. It remains to use Lemma 10.1. |

A standard argument (cf. proof of [ADH, B.5.3]) using Lemma 10.2 now yields:

Corollary 10.3. Let Ly, Ly as in Lemma 10.2 have cardinality 2%°. Assume CH.
Then Ly and Lo are isomorphic as H-fields.

Next we recall that Berarducci and Mantova [11] defined a derivation dpy on the
real closed field No of surreal numbers and proved that No with dgy; is a Liouville
closed H-field with R C No as its field of constants. Below we consider No as
an H-field in this way, and recall also that its derivation dgys is small. We proved
in [5, Theorems 1 and 2] that No is even a closed H-field, that its real closed
subfield No(w;) is closed under dpy, and that No(wp) as a differential subfield
of No is a closed H-field as well. Moreover, No(w;) has cardinality 2%°, and is 7,
as an ordered set. In combination with Theorem A and Corollary 10.3, with L; any
maximal Hardy field and Ly = No(wy), this yields Corollary B in the introduction;
more precisely, also using [10, Theorem 3], we have:

Corollary 10.4. Let M be a maximal Hardy field. Then the ordered differential
fields M and No(wy) are back-and-forth equivalent. Hence M and No(w;) are
oow-equivalent, and assuming CH, M and No(wy) are isomorphic.

We finish with a lemma on cow-elementary embeddings:

Lemma 10.5. Let Ly and Ly be as in Lemma 10.2, with L1 an H-subfield of L.
Then L1 <oow LQ.

Proof. Let ® be the back-and-forth system from Lemma 10.2. By downward

Lowenheim-Skolem there is for all aq, ..., a, € Ly a countable closed H-subfield Ky
of L, containing aq, ..., an, and then the identity map K7 — K3 belongs to ®. This
yields L1 <ocw L2 by [10, Theorem 4]. O

This will be used in the follow-up paper on maximal analytic Hardy fields.
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