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Abstract We introduce H-fields as ordered differential fields of a cer-
tain kind. Hardy fields extending R, as well as the field of logarithmic-
exponential series over R are H-fields. We study Liouville extensions in
the category of H-fields, as a step towards a model theory of H-fields. The
main result is that an H-field has at most two Liouville closures.
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Introduction

There are two algebraically flavoured theories about the asymptotic be-
haviour at infinity of real valued functions on halflines (a,+∞), with a ∈
R. One is the theory of Hardy fields (see Bourbaki [5], Rosenlicht [17],
[18]). The other approach studies the field of “transseries” (Écalle [7], Van
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der Hoeven [8]), also called the field of “logarithmic-exponential series”
(“LE-series” for short), see [6].

Hardy fields are ordered differential fields of germs at +∞ of real val-
ued C1-functions on halflines (a,+∞). Their elements are analytic ob-
jects, amenable to analytic methods, see for example Boshernitzan [3]. In
contrast, LE-series are formal objects, and typically occur as “expansions”
of elements of Hardy fields. These series can be manipulated formally and
combinatorially.

In order to find out how these two views of “orders of infinity” are re-
lated, we introduce the purely algebraic notion of “H-field”. Before defin-
ingH-fields we state here a result which involves only Hardy fields and the
field R((x−1))LE of real LE-series. It will be obtained in §6 of this paper.

Theorem. Let e : K → R((x−1))LE be an ordered differential field embed-
ding of the Hardy field K ⊇ R into the field of real LE-series such that
e(r) = r for r ∈ R. Then e extends to an ordered differential field embed-
ding from the Liouville closure Li(K) of K into the field of real LE-series.

The Liouville closure Li(K) of K is the smallest real closed Hardy field
extension of K that is closed under exponentiation and integration; see [3]
or [17] for existence of Li(K). (Thus if f ∈ Li(K), then exp(f) ∈ Li(K),
and f = g′ for some g ∈ Li(K).)

Viewing e as a formal expansion operator and its inverse as a summation
operator, the theorem says that such operators automatically extend to the
Liouville closures of their domains of definition. We remark that integration
can create new kinds of divergence in series expansions.

Conventions used throughout this paper

For a field K we put K× := K \ {0}, the multiplicative group of K. “Dif-
ferential field” will mean “ordinary differential field of characteristic 0”,
and the derivative of an element a of a differential field will be written as
a′. If a differential field is denoted by the capital K, then we shall write C
for its constant field, while if a differential field is denoted by another sym-
bol, say L, then its constant field will be written as CL. An “ordering” on a
field is a linear order on the field compatible with the field operations, in the
sense of “ordered field”. An ordered differential field is just a differential
field with an ordering on the field, and no relation between derivation and
ordering is assumed. For a linearly ordered set S, a ∈ S and A ⊆ S, put

S<a := {x ∈ S : x < a}, S<A := {x ∈ S : x < A}

and define S>a and S>A similarly.
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Definition. An H-field is an ordered differential field K such that

(H1) a ∈ K, a > C ⇒ a′ > 0,
(H2) O = C + m, where O :=

{
a ∈ K : |a| ≤ |c| for some c ∈ C

}
, and

m is the maximal ideal of the convex subring O of K.

Thus Hardy fields extending R are H-fields, and so are ordered differential
subfields of R((x−1))LE that contain R (see [6], Prop. 4.3). The real closure
of an H-field (equipped with the unique derivation that extends the given
derivation) is again an H-field, see Corollary 3.10. An H-field K is said
to be Liouville closed if K is real closed and for each a ∈ K there exist
y, z ∈ K such that y′ = a and z 6= 0 with z′/z = a. In particular, maximal
Hardy fields are Liouville closed H-fields in this sense, as is R((x−1))LE

(see [17], Cor. 1, [6], Cor. 5.7).
A Liouville extension of a differential field K is a differential field

extension L of K such that CL is algebraic over C and for each a ∈ L
there are t1, . . . , tn ∈ L with a ∈ K(t1, . . . , tn) and for each i = 1, . . . , n
one of the following holds:

(1) ti is algebraic over K(t1, . . . , ti−1),
(2) t′i ∈ K(t1, . . . , ti−1),
(3) ti 6= 0 and t′i/ti ∈ K(t1, . . . , ti−1).

A Liouville closure of anH-fieldK is a Liouville closedH-field extension
L of K such that L is a Liouville extension of K. (For example, if K is a
Hardy field extending R, then Li(K) as defined above is indeed a Liouville
closure of K in this sense.)

We can now state the main result of this paper, proved in §6.

Theorem. Let K be an H-field. Then one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K,
(II) K has exactly two Liouville closures up to isomorphism over K.

Remarks. Let K be an H-field, v : K× → Γ = v(K×) the (Krull) valua-
tion on K whose valuation ring is the convex hull of C in K. Then

(1) v(a′/a) < v(b′) for all a, b ∈ K× with 0 < v(a), v(b). There is at
most one γ ∈ Γ such that v(a′/a) < γ < v(b′) for all such a, b.

(2) If
{
v(a′/a) : a ∈ K×, 0 < v(a)

}
has a largest element, then no γ as

in (1) exists and Case (I) of the theorem occurs. ((I) can also occur in
other ways.)

(3) If there is γ as in (1), then Case (II) of the theorem occurs, and in one
Liouville closure L1 of K, all s ∈ K with v(s) = γ have the form b′

with v(b) < 0, while in another Liouville closure L2 of K all s ∈ K
with v(s) = γ have the form b′ with v(b) > 0.
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(4) The situation of (3) is the fork in the road towards a Liouville closure:
(II) is equivalent to the existence of a Liouville H-field extension of K
for which the hypothesis of 3 is satisfied. See §6 for details.

The “fork in the road” of remark (3) manifests itself already in the value
group. Indeed, after a preliminary first section, we study in §2 the “asymp-
totic couples” (enriched value groups) that are associated to H-fields. We
establish there several extension lemmas for these couples, as tools in ob-
taining corresponding extension results about H-fields in sections 3–5.

The present paper is also meant as a further step (after [1] and [6]) to-
wards a model theory of the differential field of LE-series. A key problem is
whether the theory ofH-fields has something like a model completion with
R((x−1))LE as model. The “fork in the road” phenomenon is an obstruction,
but one that seems managable.

We freely use elementary differential algebra. The “logarithmic-derivative”
identity (ab)′

ab = a′

a + b′

b (for non-zero a, b in a differential field) is in
the background of several computations. We shall also use results on val-
ued fields, in particular concerning henselization, and pseudo-Cauchy se-
quences. (See e.g. [10] or [11].)

Further conventions and notations

A valued field is just a field equipped with a valuation ring of the field, and
the corresponding (Krull) valuation on the field is generally indicated by v,
even if more than one valued field is in play. In particular, the valuation of
an element a of a valued field will always be indicated by v(a). If a val-
ued field is indicated by the capital K, then its valuation ring will always
be written as O, the maximal ideal of O as m, the value group v(K×) as
Γ . Also Γ ∗ := Γ \ {0}, and Γ∞ := Γ ∪ {∞}, with the usual conven-
tion on extending the addition and ordering on Γ to Γ∞. If a valued field
is indicated by the capital L, then the corresponding objects are denoted
by the same symbols with a subscript L attached, for example OL is the
valuation ring of L. The residue fields of valued fields K and L are de-
noted by res(K) := O/m and res(L) := OL/mL. Thus a valued field
extension K ⊆ L gives rise to a field extension res(K) ⊆ res(L) and to
an ordered group extension Γ ⊆ ΓL. A valued differential field is just a
differential field equipped with a valuation ring of the field, and no relation
between derivation and valuation is assumed, in contrast to our use of the
term “differential-valued field”, which is a valued differential field where
the derivation and valuation are linked in a certain way, see §1 below.

The terms “embedding” and “extension” are used as in model theory.
For example, let K and L be valued differential fields. Then an embedding
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h : K → L is a differential field embedding from K into L such that for all
a ∈ K we have: a ∈ O ⇔ h(a) ∈ OL. We say that L extends K (notation:
K ⊆ L) if the underlying set ofK is a subset of the underlying set of L and
the inclusion map K ↪→ L is an embedding (tacitly: of valued differential
fields).

Throughout we let m and n range over N := {0, 1, 2, . . . }.

1 H-Fields and Differential-Valued Fields

In this section we obtain some simple properties ofH-fields, and relate this
notion to earlier work by Robinson [12] and Rosenlicht [15].

Lemma 1.1. Let K be an H-field, and a, b ∈ m, b 6= 0. Then a′b/b′ ∈ m.

Proof. Replacing b by −b if necessary we may assume that b > 0. Then
1/b > C, so −b′/b2 > 0, that is, b′ < 0. Let c > 0 in C. Then c + a > m
and c−a > m, so (c+a)/b > C and (c−a)/b > C. Taking derivatives in
the last two relations gives a′b− (c+ a)b′ > 0 and −a′b− (c− a)b′ > 0.
Dividing by b′ < 0 gives −(c − a) < a′b/b′ < c + a. This holds for all
positive c ∈ C, so a′b/b′ ∈ m. ut

We consider from now on an H-field as an ordered valued differential field
by taking as the valuation ring the convex hull of its constant field. The
lemma says that the valuation of an H-field is a differential valuation in the
sense of Rosenlicht [15]. Some arguments and constructions with H-fields
become more transparent in the setting of differential-valued fields, or even
pre-differential-valued fields, and we now turn to these objects.

Differential-valued fields

A differential valuation on a differential field K is by definition a valua-
tion on K with valuation ring O such that

(DV1) O = C + m;
(DV2) if a, b ∈ m and b 6= 0, then a′b/b′ ∈ m.

By (DV1) the constant field C maps isomorphically onto the residue field
O/m under the residue class map O → O/m. In terms of the valuation v
we can reformulate (DV2) as follows

(DV2)
(
v(a) > 0, v(b) > 0 and b 6= 0

)
⇒ v(a′) > v(b′/b).

Note that in the presence of (DV1) we can replace (DV2) by

(DV2′)
(
v(a) ≥ 0, v(b) > 0 and b 6= 0

)
⇒ v(a′) > v(b′/b).
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We define a differential-valued field to be a valued differential field K
such that O is the valuation ring of a differential valuation on K.

SupposeK is a valued differential subfield of a differential-valued field.
It may happen that K is not differential-valued, because of the possible
failure of clause (DV1) in the definition of differential valuation. But K is
clearly a pre-differential-valued field in the following sense.

Definition 1.2. A pre-differential-valued field is a valued differential field
that satisfies (DV2′) above.

In a pre-differential-valued field K the valuation is trivial on the constant
field: otherwise there would be a non-zero constant b of positive valuation,
contradicting (DV2′) above for a = 0. (Thus the map ε 7→ ε′ : m → K
is one-to-one.) Note also that any differential field with the trivial valua-
tion is a pre-differential-valued field. We shall prove in §4 that every pre-
differential-valued field is a valued differential subfield of some differen-
tial-valued field.

Theorem 1 from [15] gives in effect several equivalent conditions for a
valued differential field to be a pre-differential-valued field (without using
this terminology), and its corollaries 1 and 2 state some consequences that
we shall use below.

Pre-H-fields

If K is a differential subfield of an H-field, then K with the induced order-
ing and valuation is clearly a pre-H-field in the following sense.

Definition 1.3. A pre-H-field is an ordered valued differential fieldK such
that

(PH1) K is a pre-differential-valued field,
(PH2) the valuation ring is convex with respect to the ordering,
(PH3) f ∈ K, f > O ⇒ f ′ > 0.

Examples. Every H-field is a pre-H-field. Every Hardy field (not neces-
sarily extending R) is a pre-H-field. Any ordered differential field with the
trivial valuation is a pre-H-field.

Let K be a pre-H-field. Then the function ε 7→ ε′ : m → K is strictly
decreasing. This follows from the additivity of this map, noting that ε′ <
0 for 0 < ε ∈ m because f = ε−1 > O. Thus the derivation is also
strictly decreasing on each coset a + m in K. However, the behaviour of
the derivation “in the large” is better described in terms of the valuation as
follows:
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Lemma 1.4. Let K be a pre-H-field and a, b ∈ K× with v(a) < v(b).
Then a′

a > b′

b .

Proof. Write a = bc. Then v(c) < 0, so c′/c > 0, thus a′/a = b′/b +
c′/c > b′/b. ut

Invariance under change of derivation

If K is a pre-differential-valued field and a ∈ K×, then K remains a pre-
differential-valued field if we replace its derivation ∂ by the derivation a∂,
keeping the same valuation. The constant field of K is invariant under this
change. Similarly, if K is a pre-H-field, and a ∈ K>0, then K remains a
pre-H-field if we replace its derivation ∂ by the derivation a∂, keeping the
same ordering and valuation.

This way of changing the derivation is not directly used in the present
paper, but we expect it to become an effective tool in later developments.
Such a change of derivation would correspond to a “change of independent
variable” if the elements of K were (germs of) functions.

Robinson’s work

Abraham Robinson [12] defined a regular ordered differential field to be
an ordered differential field K with an element x > C satisfying x′ = 1
and such that if y ∈ K with y > C, then y′ > 0. He shows that some
basic Hardy field asymptotics can be done in this abstract setting. How-
ever, he also constructs a regular ordered differential field K containing
an l > 0 such that l′ = 1/x, but l < c for some constant c ∈ C, see
[12], pp. 331–332. We note here that this example cannot be embedded as
ordered differential field in any H-field.

Robinson shows this pathology of “l = log x” disappears if the constant
field is archimedean. (See Remark 1.5 below.) However, being archimedean
notoriously fails to be a first-order property (in the logical sense). Thus
he may have intended his example as indicating an obstacle to a possible
model theory of Hardy fields. In any case, this pathology vanishes in the
first-order setting of pre-H-fields. Indeed, we conjecture that the asymp-
totic rules valid in all Hardy fields will hold also for all pre-H-fields K
with a distinguished element x > O, x′ = 1. (“Asymptotic rule” means
“universal property in the natural language of ordered valued differential
fields”.)

The following remark shows in particular that regular ordered differen-
tial fields with archimedean constant field are pre-H-fields for the valuation
whose valuation ring is the convex hull of the constant field.
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Remark 1.5. Let K be an ordered differential field satisfying axiom (H1)
for H-fields. Give K the valuation with O = convex hull of C. Identify C
in the natural way with a subfield of the residue field res(K), which carries
a natural ordering.

Suppose C is dense in res(K). (This assumption is satisfied if C is
archimedean.) Then K is a pre-H-field. To see this, let a, b ∈ K with
v(a) ≥ 0 and b 6= 0, v(b) > 0; we have to show v(a′) > v(b′/b). Passing
from a to −a if necessary, we may assume a′ ≤ 0; similarly, we may
assume b > 0, so a′b/b′ ≥ 0. Let 0 < c ∈ C; choose d ∈ C such that
a − c < d < a in res(K), where a is the residue class of a. Then we have
(a− d)/b > C, and taking derivatives and then dividing by b′ < 0, we get
a′b/b′ − (a − d) < 0, hence 0 ≤ a′b/b′ < a − d < c. Since this holds for
all c ∈ C>0, we get a′b/b′ ∈ m as required.

2 Asymptotic Couples

Let K be a pre-differential-valued field. By Corollary 1 of [15], v(a′) is
uniquely determined by v(a) for a ∈ K× with v(a) 6= 0. Thus v induces a
map ψ : Γ ∗ → Γ given by

ψ
(
v(a)

)
= v(a′)− v(a) = v(a′/a) for a ∈ K× with v(a) 6= 0.

We also put ψ(0) := ∞. Following Rosenlicht [16] we call (Γ, ψ) the
asymptotic couple of K. It encodes key features of the valued differential
field K in a similar way as the value group does for a valued field.

Lemma 2.1. Let α, β ∈ Γ . Then

(1) ψ(α+ β) ≥ min
{
ψ(α), ψ(β)

}
, that is, ψ : Γ → Γ∞ is a valuation on

the ordered abelian group Γ ,
(2) ψ(rα) = ψ(α) for r ∈ Z \ {0},
(3) ψ(α) < ψ(β) + |β| for α 6= 0.

Proof. This is Theorem 4 of [15] extended from differential-valued fields
to pre-differential-valued fields. The proof there goes through. ut

With id denoting the identity function on Γ , we further note that

ψ(Γ ∗) = ψ
(
Γ>0

)
=
{
v(a′/a) : 0 6= a ∈ m

}
,

(id+ψ)(Γ ∗) =
{
v(a′) : a ∈ K×, v(a) 6= 0

}
,

(id+ψ)
(
Γ>0

)
=
{
v(a′) : 0 6= a ∈ m

}
.

In the case that K is a pre-H-field, the map ψ is decreasing on Γ>0:



H-fields and their Liouville Extensions 9

Lemma 2.2. Let K be a pre-H-field and γ, δ ∈ Γ . Then

0 < γ < δ =⇒ ψ(γ) ≥ ψ(δ). (2.1)

Proof. Suppose 0 < γ < δ. Choose a, b > O such that v(a) = −δ and
v(b) = −γ, so v(a) < v(b) < 0. By Lemma 1.4 we have a′/a > b′/b > 0,
so v(a′/a) ≤ v(b′/b), that is, ψ(γ) ≥ ψ(δ). ut

Independently of their connection to pre-differential-valued fields we define
(as in [16]) an asymptotic couple to be a pair (Γ, ψ) where Γ is an ordered
abelian group and ψ : Γ ∗ = Γ \{0} → Γ is a function such that Lemma 2.1
holds, where ψ is extended to all of Γ by setting ψ(0) := ∞. We will
refer to (1), (2), (3) of Lemma 2.1 as axioms (1), (2), (3), respectively, for
asymptotic couples.

The rest of this section concerns only asymptotic couples in this abstract
sense. The main fact we prove about them is Theorem 2.6 below. Readers
may prefer to skip the rest of this section and return when it gets used later
in the paper.

Notation. Let Γ be an ordered abelian group. We define an equivalence
relation ∼ on Γ by

α ∼ β :⇐⇒ |α| ≤ m|β| and |β| ≤ n|α| for some m,n > 0.

The equivalence class of an element α ∈ Γ is written as [α], and is called its
archimedean class. (This notation is used with a slightly different meaning
in [1].) We let [Γ ] denote the set of archimedean classes of Γ , and [Γ ∗] :=
[Γ ] \

{
[0]
}

. We linearly order [Γ ] by setting

[α] < [β] :⇐⇒ n|α| < |β| for all n > 0.

An embedding i : Γ → Γ ′ of ordered abelian groups induces an embedding
[Γ ] → [Γ ′] of linearly ordered sets. In case Γ ⊆ Γ ′ and i is the inclusion
map we regard [Γ ] as an ordered subset of [Γ ′] via this induced embedding.

Basic properties of asymptotic couples

In the following, let (Γ, ψ) be an asymptotic couple. We set Ψ := ψ(Γ ∗).

Remark. For α ∈ Γ we define ψ + α : Γ ∗ → Γ by

(ψ + α)(x) := ψ(x) + α for x ∈ Γ ∗.

Then (Γ, ψ + α) is also an asymptotic couple, with (ψ+α)(Γ ∗) = Ψ +α.
Replacing the derivation ∂ of a pre-differential-valued field K by a∂, a ∈
K×, has the effect that the asymptotic couple (Γ, ψ) of K gets replaced by
(Γ, ψ + α), with α := v(a).



10 Matthias Aschenbrenner, Lou van den Dries

Proposition 2.3. (Basic properties of ψ; cf. [16], [1].) Let α, β ∈ Γ .

(1) If α, β < (id+ψ)
(
Γ>0

)
, then ψ(α− β) > min{α, β}. In particular, if

α, β 6= 0, then ψ
(
ψ(α)− ψ(β)

)
> min

{
ψ(α), ψ(β)

}
.

(2) If α, β 6= 0, then n
(
ψ(β)− ψ(α)

)
< |α|.

(3) If α, β 6= 0 and α 6= β, then
[
ψ(α)− ψ(β)

]
< [α− β].

(4) The map x 7→ x+ ψ(x) : Γ ∗ → Γ is strictly increasing.
(5) (id+ψ)

(
Γ<0

)
=(− id+ψ)

(
Γ>0

)
⊆
{
γ ∈ Γ : γ < δ for some δ ∈ Ψ

}
.

Proof. For (1), let α < β < (id+ψ)
(
Γ>0

)
. Then ψ(β−α)+(β−α) > β,

hence ψ(β − α) > α, as required.— Property (2) is Theorem 5 in [15].—
For (3), let α, β 6= 0 with γ := α − β 6= 0. We have to show that then
n
∣∣ψ(α) − ψ(β)

∣∣ < |γ| for all n. If ψ(γ) > ψ(β), then by axiom (1),
ψ(α) = ψ(β). Suppose ψ(γ) ≤ ψ(β). Then by axiom (1) again we have
ψ(γ) ≤ ψ(α), hence by (2):

nψ(γ) ≤ nψ(β) < nψ(γ) + |γ|, nψ(γ) ≤ nψ(α) < nψ(γ) + |γ|.

Thus n
∣∣ψ(α)−ψ(β)

∣∣ < |γ| in all cases.— Property (4) follows easily from
(3).— The equality in (5) follows from ψ being an even function, and the
inclusion is clear. ut

We shall consider Γ as a subgroup of the divisible abelian group QΓ =
Q⊗Z Γ via the embedding γ 7→ 1⊗ γ. We also equip QΓ with the unique
linear order that makes it into an ordered abelian group containing Γ as
ordered subgroup. Using part (2) of the previous proposition, ψ extends
uniquely to a map (QΓ )∗ → QΓ , also denoted by ψ, such that (QΓ, ψ)
is an asymptotic couple. Note that ψ

(
(QΓ )∗

)
= Ψ and [QΓ ] = [Γ ]. If

dimQ QΓ is finite, then Ψ = ψ(Γ ∗) is a finite set.
The following proposition generalizes part of Proposition 3.1 in [1]; the

proof given there goes through.

Proposition 2.4. There is at most one element γ ∈ Γ such that

Ψ < γ < (id+ψ)
(
Γ>0

)
. (2.2)

If Ψ has a largest element, then there is no γ ∈ Γ satisfying (2.2). ut

In thinking about asymptotic couples, we found the picture in §1 of [1] very
helpful, and we advise the reader to have a look. It gives an impression of
how the maps ψ and id+ψ on Γ ∗ behave, especially in the case that ψ is
decreasing on Γ>0.

Lemma 2.5. The following conditions on an element α ∈ Γ are equivalent:

(1) α ∈ (id+ψ)(Γ ∗).
(2) ψ

(
α− ψ(β)

)
= ψ(β) for some β ∈ Γ ∗.
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(3) ψ
(
α− ψ(β)

)
≤ ψ(β) for some β ∈ Γ ∗.

Proof. For (1) ⇒ (2), assume α = β + ψ(β) for some β ∈ Γ ∗. Then
α − ψ(β) = β 6= 0, so ψ

(
α − ψ(β)

)
= ψ(β). Conversely, if β ∈ Γ ∗ and

ψ
(
α− ψ(β)

)
= ψ(β), then

α =
(
α− ψ(β)

)
+ ψ(β) =

(
α− ψ(β)

)
+ ψ

(
α− ψ(β)

)
,

showing that α ∈ (id+ψ)(Γ ∗). This proves (2) ⇒ (1). The implication
(2) ⇒ (3) being trivial, it remains to show (3) ⇒ (1). So assume we have
β ∈ Γ ∗ with ψ

(
α − ψ(β)

)
≤ ψ(β), but α /∈ (id+ψ)(Γ ∗). By (1) ⇔ (2),

ψ
(
α − ψ(β)

)
< ψ(β). By passing from ψ to ψ − α, if necessary, we

may assume α = 0. Hence ψ2(β) = ψ
(
−ψ(β)

)
< ψ(β), so by Proposi-

tion 2.3, (1),

ψ
(
ψ(β)− ψ2(β)

)
> min

{
ψ(β), ψ2(β)

}
= ψ2(β). (2.3)

Also ψ2(β) 6= ψ3(β) by (1) ⇔ (2). Now (2.3) implies

min
{
ψ2(β), ψ3(β)

}
= ψ

(
ψ(β)− ψ2(β)

)
> ψ2(β),

a contradiction. ut

Remark. Since ψ(Γ ∗) = ψ
(
(QΓ )∗

)
, this lemma implies that for α ∈ Γ

we have:

α ∈ (id+ψ)(Γ ∗) ⇐⇒ α ∈ (id+ψ)(QΓ ∗).

The following result was proved in [14], but the first part only under the
assumption that Ψ is well-ordered.

Theorem 2.6. The set Γ \ (id+ψ)(Γ ∗) has at most one element. If maxΨ
exists, then Γ \ (id+ψ)(Γ ∗) = {maxΨ}.

Proof. Suppose α 6= β in Γ and α, β /∈ (id+ψ)(Γ ∗). Then for all γ ∈ Γ ∗
we have ψ

(
α−ψ(γ)

)
> ψ(γ) and ψ

(
β−ψ(γ)

)
> ψ(γ). Applying this to

γ := α− β =
(
α− ψ(γ)

)
−
(
β − ψ(γ)

)
, we get

ψ(α− β) ≥ min
{
ψ
(
α− ψ(γ)

)
, ψ
(
β − ψ(γ)

)}
> ψ(γ),

a contradiction.— Now suppose maxΨ exists. If maxΨ = α + ψ(α) for
some α ∈ Γ ∗, then α < 0 by axiom (3) for asymptotic couples, hence
ψ(α) = maxΨ − α > maxΨ ≥ ψ(α), a contradiction. ut

Lemma 2.7. If α ∈ Γ , α 6= 0, α /∈ (id+ψ)(Γ ∗), then ψ2(α) = ψ(α).

Proof. Note that ψ(α) 6= 0, since α 6= α + ψ(α). By 2.5, (1) ⇔ (3), we
have ψ

(
α− ψ(α)

)
> ψ(α), so ψ2(α) = ψ

(
ψ(α)− α+ α) = ψ(α). ut
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Remarks. Assume that (id+ψ)(Γ ∗) = Γ \ {β0}, β0 ∈ Γ . Then we can
express the unique solution x ∈ Γ ∗ to any equation x + ψ(x) = α with
α ∈ Γ \{β0} in terms of α and β0, namely x = α−ψ(β0−α). To see this,
note that γ := β0−α /∈

(
id+(ψ−α)

)
(Γ ∗), γ 6= 0, hence (ψ−α)(γ) 6= 0

and

ψ(γ)− α = (ψ − α)(γ) = (ψ − α)2(γ) = ψ
(
α− ψ(γ)

)
− α

by Lemma 2.7. This says −x = ψ(x)− α, so x+ ψ(x) = α.
Now suppose (Γ, ψ) is the asymptotic couple of the differential-valued

field K, and a ∈ K×. As in [18], call b ∈ K an asymptotic integral of
a if b′ is close to a in the sense that v(a − b′) > v(a). It is easy to see
(cf. [14], §3) that a has an asymptotic integral in K if and only if v(a) ∈
(id+ψ)(Γ ∗). Reinterpreting the previous remark in this setting, we get: If
b0 ∈ K× has no asymptotic integral, then for all a ∈ K× with v(a) 6=
v(b0), the element b := a/

(
(b0/a)′/(b0/a)

)
∈ K satisfies v(b′) = v(a),

and hence there exists a non-zero constant c such that cb is an asymptotic
integral of a.

In [1], we indicate an asymptotic couple (Γ, ψ) such that maxΨ exists, and
one that contains an element β with Ψ < β < (id+ψ)

(
Γ>0

)
. In fact, the

asymptotic couples considered in that paper satisfy (2.1) in Lemma 2.2, and
for such an asymptotic couple (Γ, ψ) and β ∈ Γ we have:

β /∈ (id+ψ)(Γ ∗) ⇐⇒ β = maxΨ or Ψ < β < (id+ψ)
(
Γ>0

)
.

(See Lemma 3.1 in [1], which generalizes to the asymptotic couples satis-
fying (2.1) in Lemma 2.2 above.)

However, “(id+ψ)(Γ ∗) 6= Γ ” can also occur in other ways. This came
as a surprise to us, and explains some case distinctions to be made in later
sections. In Example 2.8 below we construct an asymptotic couple (Γ, ψ)
with an element β ∈ Γ \ (id+ψ)(Γ ∗), but β > (id+ψ)(α) for some
α ∈ Γ>0. Example 2.9 describes an asymptotic couple (Γ, ψ) with an
element β ∈ Γ \ (id+ψ)(Γ ∗) and β < ψ(α) for some α ∈ Γ ∗. In both
examples we arrange β = 0. (Results from [16], §2, imply that there exists
a differential-valued field whose asymptotic couple is isomorphic to that of
Example 2.8; similarly for Example 2.9.)

Example 2.8. Let Γ be the free abelian group on generators

α = ψ0(α), ψ1(α), ψ2(α), . . . (2.4)

Setting ε0 := α + ψ1(α) and εn := ψn(α) − ψn+1(α) for n > 0, we see
that

Γ =
⊕
n∈N

Zψn(α) = Zα⊕
⊕
n∈N

Zεn,
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with ψn(α) = −α + ε0 − ε1 − · · · − εn−1 for n > 0. We make Γ into an
ordered group by imposing α > 0, εn < 0 and

[0] < · · · < [εn+1] < [εn] < · · · < [ε1] < [ε0] < [α].

Now define a map ψ : Γ ∗ → Γ by

ψ
(∑

rnψ
n(α)

)
:= ψm+1(α), where m = min{n ∈ N : rn 6= 0}.

(Note that this definition implies ψ
(
ψm(α)

)
= ψm+1(α), in accordance

with our notation for the generators (2.4) of Γ .) We haveψn(α) < ψn+1(α)
for all n > 0.

We verify that (Γ, ψ) is an asymptotic couple. Axioms (1) and (2) are
straightforward to check. For (3), let γ, δ ∈ Γ ∗, δ > 0,

γ =
∑

rnψ
n(α), δ =

∑
snψ

n(α), with rn, sn ∈ Z.

We have to show ψ(γ) < δ + ψ(δ). Set

m := min{n ∈ N : rn 6= 0}, p := min{n ∈ N : sn 6= 0}.

If m ≤ p, then

ψ(γ) = ψm+1(α) ≤ ψp+1(α) = ψ(δ) < δ + ψ(δ).

So assume m > p. Then

0 < ψm+1(α)− ψp+1(α) = −εp+1 − εp+2 − · · · − εm.

Let q := max{n ∈ N : sn 6= 0}, q ≥ p. If p > 0, then

δ = µ
(
−α+ ε0 − ε1 − · · · − εp−1

)
−

q−p−1∑
k=0

 q∑
n=p+k+1

sn

 εp+k,

where µ :=
∑q

n=p sn. Hence (since sp 6= 0) either [δ] = [α] (if µ 6= 0), or
[δ] = [εp] (if µ = 0). If p = 0, we have similarly

δ = µ′α+ (s0 − µ′)ε0 −
q−1∑
k=1

(
q∑

n=k+1

sn

)
εk,

with µ′ := s0 −
∑q

n=1 sn. Thus if µ′ 6= 0, we have [δ] = [α], and if
µ′ = 0, we have [δ] = [ε0]. In any case, [δ] > [εp+1], and it follows that
ψm+1(α)− ψp+1(α) < δ, as required.

Also note that ψ(γ) 6= γ for all γ ∈ Γ ∗. So (Γ, ψ) is an asymptotic
couple with 0 > α+ ψ(α), α ∈ Γ>0, but 0 /∈ (id+ψ)(Γ ∗).
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Example 2.9. We slightly modify the previous example to obtain an asymp-
totic couple (Γ, ψ) and an element α ∈ Γ>0 with ψ(α) > 0, where
0 /∈ (id+ψ)(Γ ∗). Take Γ =

⊕
n∈N Zψn(α) as before, but now let εn :=

ψn(α)− ψn+1(α) for all n ∈ N. Again

Γ =
⊕
n∈N

Zψn(α) = Zα⊕
⊕
n∈N

Zεn,

with ψn(α) = α− ε0 − ε1 − · · · − εn−1 for each n ∈ N. We make Γ into
an ordered group by setting α > 0 and εn < 0 for all n ∈ N, as well as

[0] < · · · < [εn+1] < [εn] < · · · < [ε1] < [ε0] < [α].

Define ψ : Γ ∗ → Γ as above. Note that 0 < α < ψ(α) and ψ(γ) 6= γ
for all γ ∈ Γ ∗. That (Γ, ψ) is an asymptotic couple follows much as in the
previous example.

Embedding results

Let (Γ1, ψ1) and (Γ2, ψ2) be asymptotic couples. An embedding

h : (Γ1, ψ1) → (Γ2, ψ2)

is an embedding h : Γ1 → Γ2 of ordered abelian groups such that

ψ2

(
h(γ)

)
= h

(
ψ1(γ)

)
for γ ∈ Γ ∗1 .

If Γ1 ⊆ Γ2 and the inclusion Γ1 ↪→ Γ2 is an embedding (Γ1, ψ1) →
(Γ2, ψ2), then we call (Γ2, ψ2) an extension of (Γ1, ψ1).

In the next four lemmas we fix an asymptotic couple (Γ, ψ), and show
that if β ∈ Γ \ (id+ψ)(Γ ∗), then (Γ, ψ) can be embedded into an asymp-
totic couple (Γ1, ψ1) with β ∈ (id+ψ1)(Γ ∗1 ).

Lemma 2.10. Let β ∈ Γ and Ψ < β < (id+ψ)
(
Γ>0

)
. Then there is an

asymptotic couple
(
Γ ⊕ Zα, ψα

)
extending (Γ, ψ), with α > 0, such that:

(1) α+ ψα(α) = β.
(2) Given any embedding i : (Γ, ψ) → (Γ ′, ψ′) of asymptotic couples and

any element α′ ∈ Γ ′ with α′ > 0 and α′ + ψ′(α′) = i(β), there is a
unique extension of i to an embedding j :

(
Γ ⊕ Zα, ψα

)
→ (Γ ′, ψ′)

with j(α) = α′.

Proof. Let Γα := Γ ⊕ Zα be an ordered group extension of Γ such that
0 < nα < Γ>0 for all n > 0. We extend ψ to a function ψα :

(
Γα
)∗ → Γα

by

ψα(γ + rα) :=

{
ψ(γ), if γ 6= 0,
β − α, otherwise,
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for γ ∈ Γ , r ∈ Z, with γ + rα 6= 0. Note that α+ ψα(α) = β.
It is tedious but routine to check that axiom (1) holds for (Γα, ψα).

Axiom (2) is trivially satisfied.— For axiom (3), we take γ + rα, δ + sα ∈
Γ ∗ (γ, δ ∈ Γ , r, s ∈ Z) with δ+sα > 0 (hence δ > 0 if δ 6= 0); we have to
show ψα(γ+rα) < ψα(δ+sα)+(δ+sα). We can assume ψα(γ+rα) >
ψα(δ+sα) (otherwise ψα(γ+rα) ≤ ψα(δ+sα) < ψα(δ+sα)+(δ+sα)).
We claim that δ > 0. If not, then δ = 0, so γ 6= 0 and

ψα(γ + rα) > ψα(δ + sα) = β − α,

henceψα(γ+rα) = ψ(γ), and thus β−ψ(γ) < α. This implies β−ψ(γ) <
0, contradicting β > Ψ . So δ > 0 as claimed. If moreover γ = 0, then
[0] < [α] < [Γ ∗] and β < (id+ψ)

(
Γ>0

)
imply β − (s+ 1)α < δ + ψ(δ),

i.e.
ψα(γ + rα)− ψα(δ + sα) = β − α− ψ(δ) < δ + sα,

as required. Similarly, if γ 6= 0, we get

ψα(γ + rα) = ψ(γ) < ψ(δ) + (δ + sα),

by axiom (3) for (Γ, ψ), and [0] < [α] < [Γ ∗].
Let now i : (Γ, ψ) → (Γ ′, ψ′) be an embedding of asymptotic couples,

and α′ ∈ Γ ′ with α′ > 0 and i(β) = α′ + ψ′(α′).
Then 0 < nα′ < i

(
Γ>0

)
for all n > 0: For n = 1 this is because

id+ψ′ is strictly increasing on (Γ ′)>0. Assume there is a counterexample.
Take n > 0 minimal such that 0 < i(γ) ≤ nα′ for some γ ∈ Γ>0. So
n > 1. Then

i
(
γ + ψ(γ)

)
≤ nα′ + ψ′(nα′) = (n− 1)α′ + i(β),

so 0 < i
(
γ + ψ(γ)− β

)
≤ (n− 1)α′, contradicting the minimality of n.

It follows that i extends to an embedding Γα → Γ of ordered groups
which sends α to α′. It is easy to check that this is in fact an embedding(
Γα, ψα

)
→ (Γ ′, ψ′). ut

In a similar way one shows:

Lemma 2.11. Let β ∈ Γ and Ψ < β < (id+ψ)
(
Γ>0

)
. Then there is an

asymptotic couple
(
Γ ⊕ Zα, ψα

)
extending (Γ, ψ), with α < 0, such that:

(1) α+ ψα(α) = β.
(2) Given any embedding i : (Γ, ψ) → (Γ ′, ψ′) of asymptotic couples and

any element α′ ∈ Γ ′ with α′ < 0 and α′ + ψ′(α′) = i(β), there is a
unique extension of i to an embedding j :

(
Γ ⊕ Zα, ψα

)
→ (Γ ′, ψ′)

with j(α) = α′. ut
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Lemma 2.12. Let β ∈ Γ \ (id+ψ)(Γ ∗) and suppose β ≤ ψ(γ) for some
γ ∈ Γ ∗. Then (Γ, ψ) extends to an asymptotic couple (Γ ⊕ Zα, ψα) such
that:

(1) α+ ψα(α) = β.
(2) Given any embedding i : (Γ, ψ) → (Γ ′, ψ′) of asymptotic couples and

any elementα′ ∈ Γ ′ withα′+ψ′(α′) = i(β), there is a unique extension
of i to an embedding j : (Γ ⊕ Zα, ψα) → (Γ ′, ψ′) with j(α) = α′.

Proof. Let C :=
{
γ ∈ (QΓ )∗ : γ+ψ(γ) < β

}
, so C ⊆ (QΓ )<0 is closed

downward. Let Γα := Γ ⊕ Zα be an ordered abelian group extension of
Γ such that in QΓα the element α realizes the cut C in QΓ , i.e. C < α <
(QΓ ) \ C. In particular α < 0. Note that for γ ∈ Γ , r ∈ Z, we have
γ + rα > 0 if and only if

(1′) γ = 0 and r < 0, or
(2′) γ 6= 0 and γ + r

(
β − ψ(γ)

)
> 0.

(This is clear if γ = 0 or r = 0. If γ 6= 0, r 6= 0, say r > 0, then
γ + rα > 0 if and only if −γ/r < α, which is equivalent, by the definition
of C, to −γ/r+ ψ(−γ/r) < β, that is, to γ + r

(
β − ψ(γ)

)
> 0. If r < 0,

one argues in a similar way, using also the remark after Lemma 2.5.) We
extend ψ to a map ψα :

(
Γα
)∗ → Γα by setting

ψα(γ + rα) :=

{
ψ(γ), if γ 6= 0,
β − α, otherwise,

for γ ∈ Γ , r ∈ Z, with γ + rα 6= 0. Observe that ψα(γ + rα) =
min

{
ψ(γ), β − α

}
: This is clear if β = ψ(γ) or γ = 0; if γ 6= 0 and

β 6= ψ(γ), then ψ(γ) < ψ
(
ψ(γ) − β

)
by Lemma 2.5, hence ψ(γ) − β +(

β − ψ
(
ψ(γ)− β

))
< 0, giving ψ(γ) < β − α by the remarks above.

We claim that (Γα, ψα) is an asymptotic couple. Verifying axioms (1)
and (2) presents no problem. For axiom (3), let γ, δ ∈ Γ , r, s ∈ Z, with
γ + rα 6= 0, δ + sα > 0; we have to show

ψα(γ + rα) < ψα(δ + sα) + (δ + sα).

We may assume ψα(γ + rα) > ψα(δ + sα). We claim that δ 6= 0. Other-
wise, just like in the proof of Lemma 2.10, it follows that γ 6= 0 and β −
ψ(γ) < α. Hence β 6= ψ(γ) and

(
β − ψ(γ)

)
+ ψ

(
β − ψ(γ)

)
< β,

since α realizes the cut C. So ψ(γ) > ψ
(
β − ψ(γ)

)
, contradicting β /∈

(id+ψ)(Γ ∗) by Lemma 2.5. So δ 6= 0 as claimed. Since δ + sα > 0 this
gives

s
(
ψ(δ)− β

)
< δ (2.5)

by (2′) above.
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First assume γ = 0. By Lemma 2.5 we have ψ
(
β − ψ(δ)

)
> ψ(δ), and

thus ψ
(
β − ψ(δ)− δ

)
= ψ(δ); from (2.5) we obtain(

β − ψ(δ)− δ
)

+ (s+ 1)ψ
(
β − ψ(δ)− δ

)
< (s+ 1)β.

Therefore (using the definition of C) β − ψ(δ)− δ < (s+ 1)α, hence

ψα(γ + rα)− ψα(δ + sα) = β − α− ψ(δ) < δ + sα,

as required.
Next assume γ 6= 0. Then ψα(γ + rα)− ψα(δ + sα) = ψ(γ)− ψ(δ),

so it is enough to show that ψ(γ) − ψ(δ) − δ < sα. Now, by axiom (3),
ψ(γ) 6= ψ(δ) + δ, since otherwise δ < 0, hence ψ(γ) = ψ(δ) + δ < ψ(δ),
contradicting the assumption ψα(γ+rα) > ψα(δ+sα). So we are reduced
to showing that(

ψ(γ)− ψ(δ)− δ
)

+ sψ
(
ψ(γ)− ψ(δ)− δ

)
< sβ,

that is, since ψ
(
ψ(γ) − ψ(δ)

)
> min

{
ψ(γ), ψ(δ)

}
= ψ(δ) by Proposi-

tion 2.3 (1), to
ψ(γ) < ψ(δ) + δ + s

(
β − ψ(δ)

)
.

To prove this, we may assume, by passing from ψ to ψ − β, if necessary,
that β = 0; hence ψ(η) < ψ2(η) for all η ∈ Γ ∗, by Lemma 2.5. Hence
ψ(δ + ψ(δ)) = ψ(δ), and thus ψ

(
sψ(δ)− δ − ψ(δ)

)
= ψ(δ), in particular

sψ(δ)− δ − ψ(δ) 6= 0. To get a contradiction, assume

−ψ(γ) ≤ sψ(δ)− δ − ψ(δ).

If ψ(γ) 6= 0, we use that id+ψ is increasing on Γ ∗ to obtain (by (2.5))

− ψ(γ) + ψ2(γ) ≤
(
sψ(δ)− δ − ψ(δ)

)
+ ψ

(
sψ(δ)− δ − ψ(δ)

)
= sψ(δ)− δ < 0,

contradicting ψ(γ) < ψ2(γ). But if ψ(γ) = 0, then 0 < sψ(δ)− δ−ψ(δ),
hence by axiom (3)

0 = ψ(γ) <
(
sψ(δ)− δ − ψ(δ)

)
+ ψ

(
sψ(δ)− δ − ψ(δ)

)
= sψ(δ)− δ,

contradicting sψ(δ) < δ.
To prove part (2) of the statement, we may assume that (Γ ′, ψ′) ⊇

(Γ, ψ), and α′ ∈ (Γ ′)∗ is such that α′ + ψ′(α′) = β; we then have to
show that there is an embedding of (Γα, ψα) into (Γ ′, ψ′) which is the
identity on Γ and sends α to α′. Since id+ψ is strictly increasing on Γ ∗,
α and α′ realize the same cut (namely C) in QΓ . Hence there is an em-
bedding Γα = Γ ⊕ Zα → Γ ′ of ordered groups that is the identity on Γ
and sends α to α′. Clearly ψ′(γ + rα′) = min

{
ψ(γ), β − α′

}
for γ ∈ Γ ,

r ∈ Z, with γ+ rα′ 6= 0. Hence the map Γα → Γ ′ is in fact an embedding
(Γα, ψα) → (Γ ′, ψ′). ut
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Lemma 2.13. Let β ∈ Γ \ (id+ψ)(Γ ∗), and suppose γ + ψ(γ) < β for
some γ ∈ Γ>0. Then (Γ, ψ) extends to an asymptotic couple (Γ ⊕Zα, ψα)
such that:

(1) α+ ψα(α) = β.
(2) Given any embedding i : (Γ, ψ) → (Γ ′, ψ′) of asymptotic couples and

any elementα′ ∈ Γ ′ withα′+ψ′(α′) = i(β), there is a unique extension
of i to an embedding j : (Γ ⊕ Zα, ψα) → (Γ ′, ψ′) with j(α) = α′.

Proof. We proceed as in the proof of the last lemma, except that the cut C
is now defined as C := {0} ∪

{
γ ∈ (QΓ )∗ : γ + ψ(γ) < β

}
. Then α > 0,

and for γ ∈ Γ , r ∈ Z we have γ + rα > 0 if and only if γ = 0 and r > 0,
or γ 6= 0 and γ + r

(
β − ψ(γ)

)
> 0. ut

Remark. In Lemmas 2.10–2.13, Ψα := ψα
(
(Γα)∗

)
= Ψ ∪ {β − α} has

maximum β − α, so

(id+ψα)
(
(Γα)∗

)
= Γα \ {β − α}.

Hence (id+ψα)
(
(Γα)>0

)
is closed upward and there is no γ ∈ Γα with

Ψα < γ < (id+ψα)
(
(Γα)>0

)
.

In the next two lemmas, needed in §5, we let (Γ, ψ) be an asymptotic
couple of H-type, that is, an asymptotic couple with the property that ψ
is decreasing on Γ>0: 0 < α ≤ β ⇒ ψ(α) ≥ ψ(β). (By Lemma 2.2
asymptotic couples of pre-H-fields have this property.) Note that then ψ is
constant on archimedean classes of Γ , i.e. for α, β ∈ Γ ∗ with [α] = [β] we
have ψ(α) = ψ(β). Also, given any γ ∈ Γ>0 and setting δ := ψ(γ) − γ,
we get anH0-couple (QΓ, ψ − δ) with distinguished positive element γ, as
defined in §6 of [1].

The first lemma is an analog of Lemma 3.2 in [1], with a similar proof:

Lemma 2.14. Let i : Γ → Γ ′ an embedding of ordered abelian groups such
that the induced map [Γ ] → [Γ ′] is bijective. There is a unique function
ψ′ : (Γ ′)∗ → Γ ′ such that (Γ ′, ψ′) is an asymptotic couple of H-type and
i
(
ψ(γ)

)
= ψ′

(
i(γ)

)
for all γ ∈ Γ ∗. ut

We now generalize Lemma 3.6 in [1]. Given a cutC in a linearly ordered set
(S,<) (i.e.C is a downward closed subset of S) we say that an element a of
a linearly ordered set extending (S,<) realizes the cutC ifC < a < S\C.

Lemma 2.15. LetC be a cut in [Γ ∗] and β∈Γ such that β<(id+ψ)
(
Γ>0

)
,

ψ(γ) ≤ β for all γ ∈ Γ ∗ with [γ] /∈ C, and β ≤ ψ(δ) for all δ ∈ Γ ∗ with
[δ] ∈ C. Then there exists an asymptotic couple (Γ ⊕ Zα, ψα) of H-type
extending (Γ, ψ), with α > 0, such that:

(1) [α] /∈ [Γ ∗] realizes the cut C in [Γ ∗], ψα(α) = β.
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(2) Given any embedding i of (Γ, ψ) into an asymptotic couple (Γ ′, ψ′) of
H-type and any element α′ ∈ (Γ ′)>0 such that [α′] /∈

[
i(Γ ∗)

]
realizes

the cut
{[
i(δ)

]
: [δ] ∈ C

}
in
[
i(Γ ∗)

]
and ψ′(α′) = i(β), there is a

unique extension of i to an embedding j : (Γ ⊕ Zα, ψα) → (Γ ′, ψ′)
with j(α) = α′.

Proof. Embed the ordered abelian group Γ into an ordered abelian group
Γα := Γ ⊕ Zα with α > 0 such that [α] /∈ [Γ ] realizes the cut C in [Γ ∗].
(See proof of Lemma 3.6 in [1].) Note that then [Γα] = [Γ ] ∪

{
[α]
}

. We
extend ψ : Γ ∗ → Γ to a map ψα : (Γα)∗ → Γ by setting

ψα(γ + rα) := min
{
ψ(γ), β

}
for γ ∈ Γ , r ∈ Z, r 6= 0.

(So ψα
(
(Γα)∗

)
= Ψ ∪{β}.) A tedious but routine checking of cases shows

that ψα is decreasing on (Γα)>0, and that axioms (1) and (2) for asymptotic
couples hold for (Γα, ψα). Axiom (3) can be verified in a similar way as
the corresponding part in the proof of Lemma 3.6 in [1], in the case k = Q.
This proves part (1) of the lemma. Part (2) is routine. ut

Remark. In the context of Lemma 2.15, assume that (id+ψ)(Γ ∗) = Γ ,
that is, Ψ has no largest element, and there is no γ ∈ Γ with Ψ < γ <
(id+ψ)

(
Γ>0

)
. Then also Ψα := ψα

(
(Γα)∗

)
= Ψ ∪ {β} has no largest el-

ement, and there is no γ ∈ Γα such that Ψα < γ < (id+ψα)
(
(Γα)>0

)
. To

see this, suppose γ ∈ Γα and Ψα < γ < (id+ψα)
(
(Γα)>0

)
. Then γ /∈ Γ ,

hence γ /∈ QΓ ⊆ QΓα. Since Ψ has no maximum, [Γ ∗] has no minimum.
Therefore Γ>0 is coinitial in

(
QΓ
)>0, and thus Ψ = ψ

(
(QΓ )∗

)
< γ <

(id+ψ)
(
QΓ
)>0. Lemma 4.5 in [1] then implies [Γα] = [QΓ⊕Qγ] = [Γ ],

contradicting [α] /∈ [Γ ].

3 Algebraic Extensions of H-Fields

In this section we show that an algebraic extension field of a pre-diffe-
rential-valued field K is again a pre-differential-valued field. (Here the al-
gebraic extension is equipped with the unique derivation that extends the
derivation of K, and with any valuation that extends the one of K.) Simi-
larly, we show that an ordered valued algebraic extension field L of a pre-
H-field K such thatOL is the convex hull in L ofO is again a pre-H-field.

In all lemmas in this section we make the following standing assump-
tion:

K is a pre-differential-valued field, and K ⊆ L is a valued differen-
tial field extension. (Thus Γ ⊆ ΓL and res(K) ⊆ res(L).)
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Under various extra hypotheses (specified in the lemmas) we shall then
derive that L is also a pre-differential-valued field. In remarks following
these lemmas we consider the case that K is in addition a pre-H-field.

Lemmas 3.1, 3.3 and 3.7 are modifications of results in [15].

Lemma 3.1. Assume Γ = ΓL and suppose U ⊇ K is a K-linear subspace
of L such that L =

{
u1/u2 : u1, u2 ∈ U, u2 6= 0

}
and(

u ∈ U, v(u) ≥ 0, b ∈ K×, v(b) > 0
)

=⇒ v(u′) > v(b′/b). (3.1)

Then L is a pre-differential-valued field.

Proof. Let f, g ∈ L, v(f) ≥ 0, g 6= 0, v(g) > 0. We have to show
that v(f ′) > v(g′/g). Write f = a/u with a, u ∈ U , u 6= 0. Dividing
a and u by an element of K of valuation v(u) we reduce to the case that
v(f) = v(a) ≥ 0 and v(u) = 0. From f ′ = 1

ua
′ − f

uu
′ and (3.1) we

obtain v(f ′) > v(b′/b) for all b ∈ K× with v(b) > 0. Now write g = bh
with b ∈ K and v(g) = v(b) > 0, v(h) = 0. Then g′ = b′h + bh′. But
v(b′h) = v(b′) < v(bh′) by the above result with h instead of f . Thus
v(g′) = v(b′). Hence v(f ′) > v(b′/b) = v(g′/g) as desired. ut

Remarks.

(1) The lemma above remains valid if we add the assumption res(K) =
res(L) and replace in (3.1) the condition v(u) ≥ 0 by v(u) > 0. To see
this, note that with the added assumption each u ∈ U with v(u) ≥ 0 is
of the form u = a+ u1 with a ∈ O and u1 ∈ U with v(u1) > 0.

(2) Suppose K is a pre-H-field and L is equipped with an ordering ex-
tending that of K in whichOL is convex. Then the lemma above holds
with the conclusion that L is a pre-H-field. To see this, let f ∈ L
with f > OL, and take positive g ∈ K with v(g) = v(f) < 0. Then
f
g −

f ′

g′ ∈ mL, since L is a pre-differential-valued field, and f/g > mL,
so f ′/g′ > mL. Since g′ > 0 this implies f ′ > 0.

The following is an easy consequence of the above, and deserves special
mention, since we shall use it several times.

Corollary 3.2. LetK be a pre-H-field, andL a pre-differential-valued field
extension of K such that as valued field L is an immediate extension of K.
Then the field L has a unique ordering extending that of K in which OL is
convex. With this ordering L is a pre-H-field and OL is the convex hull of
O in L.

Proof. The existence and uniqueness of the ordering of L with the stated
properties is well-known (see for example [10], III, §2, Satz 11). For the
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reader’s convenience we briefly indicate the argument. Write each f ∈ L×
as f = g(1 + ε) with g ∈ K× and ε ∈ L such that v(f) = v(g) and
v(ε) > 0. Then in any ordering of L with the stated properties we must
have f > 0 in L if and only if g > 0 in K. This equivalence also shows
how to define the desired ordering of L. The last statement of the lemma
now follows from remark (2) after Lemma 3.1. ut

Lemma 3.3. Assume res(K) = res(L), and suppose T ⊇ K× is a multi-
plicative subgroup of L× such that L = K(T ) (as fields), each element of
K[T ] \ {0} is of the form t1 + · · · + tk with k ≥ 1, t1, . . . , tk ∈ T and
v(t1) < v(ti) for 2 ≤ i ≤ k, and such that(

a, b ∈ T, v(a) ≥ 0, v(b) > 0
)

=⇒ v(a′) > v(b′/b). (3.2)

Then L is a pre-differential-valued field.

Proof. Let f, g ∈ L×, v(f) ≥ 0, v(g) > 0. We have to show that v(f ′) >
v(g′/g). By the assumptions on T we can write

g = b ·
∑m

i=1 ai∑n
j=1 bj

where m,n ≥ 1, b ∈ T , ai, bj ∈ T for all i, j, a1 = b1 = 1, v(ai) > 0 for
2 ≤ i ≤ m, and v(bj) > 0 for 2 ≤ j ≤ n. So v(g) = v(b) > 0, and we
claim that v(g′) = v(b′). For this, note that

g′

g
=
b′

b

(
1 +

∑
i>1 a

′
ib/b

′

1 +
∑

i>1 ai
−
∑

j>1 b
′
jb/b

′

1 +
∑

j>1 bj

)
.

By (3.2) we have v(a′ib/b
′), v(b′jb/b

′) > 0 for i, j > 1. Thus v(g′/g) =
v(b′/b) by the equation above, that is, v(g′) = v(b′) as claimed.

First assume v(f) = 0, and write f = a + h with a ∈ K, v(a) = 0
and h ∈ L, v(h) > 0. (This is possible since res(K) = res(L).) Then f ′ =
a′ + h′. By the claim above, applied to h instead of g, we find t ∈ T ∪ {0}
with v(h) = v(t) and v(h′) = v(t′). Hence v(f ′) ≥ min

{
v(a′), v(t′)

}
>

v(b′/b) = v(g′/g), as desired. If v(f) > 0, the argument goes through by
setting a := 0, h := f . ut

Remarks.

(1) The proof shows that the case v(a) = 0 of (3.2) is only needed when
a ∈ K. Thus if K is a differential-valued field, we can replace (3.2) by(

a, b ∈ T, v(a) > 0, v(b) > 0
)

=⇒ v(a′) > v(b′/b).
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(2) Suppose that K is a pre-H-field, and that L is equipped with an order-
ing extending that ofK in whichOL is convex. Add to the assumptions
of the lemma that for all t ∈ T with v(t) < 0 we have sgn(t) = sgn(t′).
With this extra assumption the lemma above yields the conclusion that
L is a pre-H-field. To see this, let f ∈ L with f > OL, and take t ∈ T
with v(t) = v(f) < 0. Then f

t −
f ′

t′ ∈ mL. If t > 0, then f/t > mL,
so f ′/t′ > mL, and thus f ′ > 0, using t′ > 0. If t < 0 the argument is
similar, using t′ < 0.

The following easy fact will be used repeatedly in the next sections, in
conjunction with the previous lemma.

Lemma 3.4. Let K ⊆ L be an extension of pre-differential-valued fields
such that res(K) = res(L). If the valuation ofK is a differential valuation,
so is the valuation of L, and CL = C. ut

Lemma 3.5. Suppose L (as valued field extension of K) is a henselization
of K. Then L is a pre-differential-valued field.

Proof. If the valuation is trivial (K = O), then L = K and there is nothing
to prove. So we shall assume the valuation is not trivial. We now replace the
assumption thatL is a henselization ofK by the assumption thatL = K(x)
for some x ∈ L× that is algebraic over K, with v(x) > 0, and whose
minimum polynomial f(X) = Xn + an−1X

n−1 + · · · + a1X + a0 over
K has coefficients in O, with a1 /∈ m and a0 ∈ m. We are allowed to
make this reduction because the henselization of K is a directed union of
subextensions of K that have this form.
Claim 1. v(x) = v(a0) and v(x′) = v(a′0).
That v(x) = v(a0) follows from f(x) = 0 and v(aix

i) > v(a1x) =
v(x) for 2 ≤ i ≤ n (with an := 1). Next, f ′(x) = a1 +

∑n
i=2 iaix

i−1,
so v(a1) = 0 gives v

(
f ′(x)

)
= 0. Now 0 = f(x)′ = f ′(x)x′ + a′0 +∑n−1

i=1 a
′
ix

i, hence

x′ = −
a′0 +

∑n−1
i=1 a

′
ix

i

f ′(x)
. (3.3)

For 1 ≤ i < n we have v(a′ix
i) ≥ v(a′i) + v(a0) > v(a′0), where the last

inequality uses that K is a pre-differential-valued field. Thus (3.3) implies
v(x′) = v(a′0), which finishes the proof of Claim 1.
Claim 2. For each α ∈ O[x] there exists a ∈ O such that v(α′) ≥ v(a′).
This property certainly holds for α ∈ O, as well as for α = x by Claim 1,
and is clearly inherited under taking sums and products. Thus Claim 2 fol-
lows.

Let n := (m, x)O[x], a maximal ideal of O[x]. We note that OL =
S−1O[x] with S = 1 + n.
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Claim 3. For each α ∈ OL there exists a ∈ O such that v(α′) ≥ v(a′).

This follows from Claim 2 by writing α ∈ OL as α = β/(1 + ε) with
β ∈ O[x] and ε ∈ n, and differentiating this quotient, using v(ε) > 0.

We finish the proof by noting that by Claim 3 the hypothesis of Lem-
ma 3.1 holds for U := L. ut

Remark. Suppose in addition to the hypothesis of the last lemma that K
is also equipped with an ordering making it a pre-H-field. Then by Corol-
lary 3.2 there is a unique ordering of L extending that of K in which OL is
convex; with this ordering L is a pre-H-field.

Lemma 3.6. Suppose that the field extension L|K is of finite degree, with
[L : K] =

[
res(L) : res(K)

]
= n > 1. Then L is a pre-differential-valued

field.

Proof. Take x ∈ OL such that res(L) = res(K)[x] where x is the residue
class of x in res(L). Let f(X) = Xn + cn−1X

n−1 + · · · + c1X + c0 ∈
O[X] be the minimum polynomial of x over K, so its reduction f(X)
is the minimum polynomial of x over res(K). Hence f ′(x) 6= 0, that is,
v
(
f ′(x)

)
= 0. In combination with

x′ = −
∑n−1

i=0 c
′
ix

i

f ′(x)

this implies that v(x′) ≥ v(c′i) for some i ∈ {0, . . . , n− 1}.
We now write an arbitrary element u ∈ OL as u = u0 + u1x + · · · +

un−1x
n−1 with all uj ∈ O. Then

u′ = u′0 + u′1x+ u1x
′ + · · ·+ u′n−1x

n−1 + (n− 1)un−1x
n−2x′.

Considering the terms in this sum and using what we just proved about x′,
we see that v(u′) ≥ v(a′) for some a ∈ O. We also note that necessarily
Γ = ΓL. Thus the hypotheses of Lemma 3.1 hold for U = L. ut

Remark. Suppose that in the situation of the lemma, K is a pre-H-field
and L is equipped with an ordering extending that of K in which OL is a
convex subring of L. Then L is a pre-H-field as well. (This follows from
remark (2) after Lemma 3.1.)

Next we extend a lemma in [15].

Lemma 3.7. Let p be a prime number, and letL = K
(
u1/p

)
where u ∈ K×

with v(u) /∈ p · v(K×). Then L is a pre-differential-valued field.
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Proof. Let ui/p :=
(
u1/p

)i for i ∈ Z, and put T :=
⋃p−1

i=0 K
×ui/p. Thus T

is a multiplicative subgroup of L×. By general valuation theory, res(K) =
res(L), and each element ofL has the form t1+· · ·+tk with t1, . . . , tk ∈ T ,
v(t1) < · · · < v(tk). The remaining hypothesis (3.2) of Lemma 3.3 now
follows as in the proof of a similar lemma on p. 316 of [15]. ut

Remark. Suppose that in the situation of the lemma K is a pre-H-field
and L is given an ordering extending that of K such that OL is convex in
L. Then L is a pre-H-field. This follows from part (2) of the remark after
Lemma 3.3: Let t = aui/p ∈ T (a ∈ K×, 0 ≤ i < p) with v(t) < 0. Then
v(tp) < 0 and tp ∈ K×, so p(t′/t) = (tp)′/tp > 0 by Lemma 1.4, hence
sgn t = sgn t′.

Corollary 3.8. Suppose K is a pre-differential-valued field and the valued
differential field extension L|K is algebraic. Then L is a pre-differential-
valued field.

Proof. The property of being a pre-differential-valued field is inherited by
valued differential subfields, so we may as well assume by Lemma 3.5 that
K is henselian, and that L is an algebraic closure of K. We then reach L
in two steps. In the first step we pass from K to its maximal unramified
extension Kunr inside L. The valuation on Kunr remains a pre-differential
valuation by Lemma 3.6. In the second step we obtain L as a purely rami-
fied extension of Kunr, and now Lemma 3.7 can be applied. ut

Remark 3.9. If K is a differential-valued field, then its algebraic closure
K̃, with any valuation extending the valuation of K, is also a differential-
valued field. (Since C eK = algebraic closure of C, and res(K̃) = algebraic
closure of res(K).)

Theorem 6 of [15] asserts more generally that if L is any valued differential
field extension of a differential-valued field K and L|K is algebraic, then
L is also differential-valued. However, this Theorem 6 is incorrect. (The
problem is with the first sentence of its proof. The argument following that
sentence is correct, but only treats the case that L is an algebraic closure
of K. The referee informed us that Rosenlicht later became aware of this
error.) Below is a counterexample.

Counterexample. Let K be the Hardy field Q(x), with x > Q, x′ = 1.
Then C = Q maps onto the residue field, so K is a differential-valued
field. Let L = K(y) be the Hardy field with y = (2 + x−1)1/2. Since
L = Q(y), it follows that Q is algebraically closed in L, so Q is also the
constant field of L. But the residue class of y is

√
2. Thus L is algebraic

over K, but is not a differential-valued field, only a pre-differential-valued
field.
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The L in this example is a Hardy field, and thus also a pre-H-field, while
the Hardy field K is even an H-field. Hence the example also shows that
an ordered valued differential extension field of an H-field may very well
be algebraic over that H-field, and still fail to be an H-field itself. But we
do have the following positive result.

Corollary 3.10. Suppose K is a pre-H-field and L is an ordered valued
differential field extension of K such that L|K is algebraic and OL is the
convex hull in L of O. Then L is a pre-H-field.

Proof. Since ordered valued differential subfields of pre-H-fields are again
pre-H-fields, we may assume, first, that L is real closed, and second, by
Lemma 3.5 and Corollary 3.2, that K is henselian. Now proceed as in
the proof of Corollary 3.8, also using the remarks after Lemma 3.6 and
Lemma 3.7. ut

In particular, the real closure of a pre-H-field K is again a pre-H-field,
where the valuation on the real closure has as valuation ring the convex
hull of O, and the derivation extends the derivation of K. If moreover K
is an H-field, then its real closure is again an H-field. (Since the constant
field of the real closure of K is the real closure of the constant field of K,
and the same holds for the residue fields.)

4 Embedding Pre-H-Fields into H-Fields

Here we show that each pre-differential-valued field extends to a differen-
tial-valued field, and that each pre-H-field extends to an H-field. We ac-
tually construct such an extension that is minimal in a certain sense, and
is determined up to isomorphism by this minimality property, see Corol-
lary 4.6 below.

LetK be a pre-differential-valued field, with associated asymptotic cou-
ple (Γ, ψ), and suppose its valuation is not a differential valuation. Hence
for a certain r ∈ O we have r′ 6= ε′ for all ε ∈ m. Put s := r′. Thus
for K to extend to a differential-valued field, there must exist an element
y in some valued differential field extension of K such that y′ = s and
v(y) > 0, and such that K(y) with its induced valuation and derivation is
a pre-differential-valued field.

Conversely, in order to construct a differential-valued field extension of
K, we consider the field extension L = K(y) of K, with y transcendental
over K, and we extend the derivation and valuation of K to a derivation
and valuation on K(y) such that y′ = s and v(y) > 0. The key fact to
be established is that (under mild assumptions on K) this can be done in
a unique way such that K(y) remains a pre-differential-valued field. The
analysis splits into two cases:
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Special case. v(s) < (id+ψ)
(
Γ>0

)
.

Other case. v(s) ≥ γ + ψ(γ) for some γ ∈ Γ>0.

The next lemma covers the “special case” (and more). The “other case”
is harder: by Lemma 4.2 we reduce to the situation that (id+ψ)

(
Γ>0

)
is

closed upward, and then we construct in Proposition 4.3 a pseudo-Cauchy
sequence and let y be a pseudo-limit.

Lemma 4.1. Let K be a pre-differential-valued field and Ψ < v(s) <
(id+ψ)

(
Γ>0

)
, s ∈ K. Let L = K(y) be a field extension of K with y

transcendental over K. Equip L with the unique derivation extending that
of K such that y′ = s. Then there exists exactly one valuation on L ex-
tending the one on K such that L is a pre-differential-valued field with
v(y) > 0.

Proof. Let L be given a valuation making it into a pre-differential-valued
field with v(y) > 0, and with asymptotic couple (ΓL, ψL). Then v(y) +
ψL

(
v(y)

)
= v(s), so Γ<0 < nv(y) < 0 for all n > 0, cf. proof of

Lemma 2.10. This condition determines a valuation on L extending the
valuation on K.

Conversely, equip L with the unique valuation extending that ofK such
that 0 < nv(y) < Γ>0 for all n > 0. We show that then L is a pre-
differential-valued field. Note that ΓL := v(L×) = Γ ⊕ Zv(y). We extend
ψ to a map ψL : (ΓL)∗ → ΓL such that (ΓL, ψL) is an asymptotic couple
with v(y) + ψL

(
v(y)

)
= v(s), as in Lemma 2.10, with β := v(s).

We shall verify the conditions of Lemma 3.3 for the multiplicative sub-
group T :=

⋃
j∈ZK

×yj of L×. From general valuation theory we know
that res(K) = res(L), and that every element of K[T ] \ {0} is of the form
t1 + · · ·+ tk with k ≥ 1, t1, . . . , tk ∈ T , and v(t1) < · · · < v(tk).

Let f, g ∈ T with v(f) ≥ 0 and v(g) > 0. We have to show that then
v(f ′) > v(g′/g). First assume v(f) > 0. Write f = ayp and g = byq with
a, b ∈ K× and p, q ∈ Z. Then

f ′ = a′yp + payp−1y′ = ayp
(
(a′/a) + p(y′/y)

)
and v(f) = v(a) + pα, so we get v

(
(a′/a) + p(y′/y)

)
= ψL

(
v(f)

)
and

hence v(f ′) = v(f) + ψL

(
v(f)

)
. Similarly, v(g′/g) = ψL

(
v(g)

)
. So

v(f ′) = v(f) + ψL

(
v(f)

)
> ψL

(
v(g)

)
= v(g′/g),

by axiom (3) for asymptotic couples, applied to (ΓL, ψL). If v(f) = 0, then
f ∈ K×, so v(f ′) ≥ v(s) > ΨL. Hence in particular, v(f ′) > v(g′/g). ut
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Remarks.

(1) In this lemma we did not assume the existence of r ∈ O such that
s = r′, although this is the relevant case for constructing a differential-
valued field extension of K as explained in the beginning of this sec-
tion. The extra generality is needed later when we construct Liouville
closures.

(2) With the hypotheses of the lemma, suppose also that K is differential-
valued. Then there is a unique valuation on L that extends the valuation
on K and makes L a pre-differential-valued field with v(y) < 0. The
proof is similar to that of Lemma 4.1, first deriving that such a valuation
satisfies Γ<0 < nv(y) < 0 for all n > 0, then using Lemma 2.11
instead of 2.10, and using the stronger assumption on K to handle the
case v(f) = 0.

(3) With the assumptions on K and s of the lemma, let E be a differential-
valued field extension ofK with an element y ∈ E such that y′ = s and
v(y) ≥ 0. Subtracting a constant from y if necessary, we can achieve
v(y) > 0. Then the beginning of the proof of the lemma shows that
0 < nv(y) < Γ>0 for all n > 0. Hence y is transcendental over K,
and thus the pre-differential-valued subfield L = K(y) of E is exactly
as described in the lemma.

(4) With the assumptions on K and s of the lemma, suppose that in ad-
dition K is differential-valued, and let E be a differential-valued field
extension of K, y ∈ E such that y′ = s and v(y) < 0. As in the last
remark it follows that y is transcendental over K, hence L = K(y) is
exactly the pre-differential-valued field as described in remark (2).

(5) In the setting of the lemma, assume moreover that K is a differential-
valued field. Then also L is a differential-valued field with CL = C,
for the valuation on L of the lemma, as well as for the valuation on L
described in remark (2). (Use Lemma 3.4.)

(6) In the setting of the lemma, let L have the valuation described there.
Let in addition K be equipped with an ordering making it a pre-H-
field. We claim:

There is a unique ordering on L making it a pre-H-field exten-
sion of K. If K is an H-field, so is L with that unique ordering,
and CL = C.

The last part of the claim follows from the first part and remark (5). To
see that the first part of the claim holds, we distinguish two cases:
(a) s < 0. Then m < y < K>m for any ordering of L as in the claim.

Conversely, this inequality uniquely determines an ordering mak-
ing L an ordered extension field of K. One easily verifies using re-
mark (2) after Lemma 3.3 with T :=

⋃
j∈ZK

×yj and Lemma 1.4
that L with this ordering is indeed a pre-H-field.
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(b) s > 0. The same argument as in (a) shows that K<m < y < m (so
y < 0) uniquely determines the ordering of L satisfying our claim.

(7) Suppose that in the context of the lemma, K is equipped with an or-
dering making it an H-field. As in (6), one shows that for the valuation
on L such that v(y) < 0, there exists a unique ordering on L making it
a pre-H-field extension of K. (If s < 0, then K<O < y < O, and if
s > 0, then O < y < K>O.) In fact, with that valuation and ordering,
L is an H-field with CL = C.

Along similar lines, but using Lemmas 2.12 and 2.13 instead of Lem-
ma 2.10, one shows:

Lemma 4.2. Let K be a pre-differential-valued field, s ∈ K with v(s) /∈
(id+ψ)(Γ ∗), and suppose there exists γ ∈ Γ>0 such that v(s) ≤ ψ(γ) or
v(s) > γ + ψ(γ). Let L = K(y) with y transcendental over K. Equip L
with the unique derivation extending the derivation on K such that y′ = s.
Then there is a unique valuation on L extending the valuation on K such
that L is a pre-differential-valued field and v(y) 6= 0. ut

Remarks.

(1) With the assumptions on K and s as in the lemma, let E be a diffe-
rential-valued field extension of K with an element y ∈ E such that
y′ = s. Subtracting a constant from y if necessary, we may assume
v(y) 6= 0. Then y is transcendental over K, and the pre-differential-
valued subfield K(y) of E is exactly as described in the lemma.

(2) If in this lemma K is even a differential-valued field, then L is also a
differential-valued field with C = CL, by Lemma 3.4.

(3) If in this lemma K is equipped with an ordering making it a pre-H-
field, then v(s) = maxΨ (hence Γ<0 < nv(y) < 0 for all n > 0), and
there is a unique ordering on L = K(y) making L into a pre-H-field
extension of K. This is established as in remark (7) after Lemma 4.1.

Proposition 4.3. Let K be a pre-differential-valued field, henselian as val-
ued field, with (id+ψ)

(
Γ>0

)
closed upward, and let s ∈ K be such that

v(s) ∈ (id+ψ)
(
Γ>0

)
but s 6= ε′ for all ε ∈ m. Let L = K(y) be a field

extension of K with y transcendental over K, and let L be equipped with
the unique derivation extending the derivation of K such that y′ = s.

Then there is a unique valuation of L that makes L a pre-differential-
valued field extension of K with v(y) 6= 0. Moreover, this valuation makes
L an immediate extension of K with v(y) > 0.

Proof. Put S :=
{
v(s− ε′) : ε ∈ m

}
.

Claim 1. The set S has no largest element.
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To see this, note first that v(s) ∈ S. Let γ ∈ S with γ ≥ v(s), and write
γ = v(s − ε′) with ε ∈ m. Since {v(b′) : b ∈ m} is closed upward by
assumption, there exists b ∈ m with v(b′) = γ. Thus for some u ∈ K with
v(u) = 0 we have v(s − ε′ − ub′) > γ. Now v(u′b) > v(b′) = γ, so
v
(
s− ε′ − (ub)′

)
> γ. This proves Claim 1.

Let κ = cofinality(S), so κ is an infinite cardinal. Let (ελ)λ<κ be a se-
quence in m such that

(
v(s − ε′λ)

)
is a strictly increasing sequence in S,

and cofinal in S. Then v(s − ε′λ) = v
(
(ελ − εµ)′

)
for λ < µ < κ, and

hence v
(
(ελ − εµ)′

)
< v

(
(εµ − εν)′

)
for λ < µ < ν < κ. Hence

v(ελ − εµ) < v(εµ − εν) for λ < µ < ν < κ. Thus (ελ) is a pseudo-
Cauchy sequence.

Claim 2. The pseudo-Cauchy sequence (ελ) has no pseudo-limit in K.

To see this, suppose ε ∈ K is a pseudo-limit of this sequence. We have
v(ε − ελ) = v(εµ − ελ) > 0 for λ < µ < κ, in particular ε ∈ m. Also,
v(ε′ − ε′λ) = v(ε′µ − ε′λ) for λ < µ < κ. Hence v(s− ε′) ≥ v(s− ε′λ) for
all λ < κ, contradicting Claim 1. This proves Claim 2.

Assume for a moment that L is given a valuation making it a pre-diffe-
rential-valued field extension of K with v(y) 6= 0. Then v(y) > 0, since
v(y) < 0 would give v(y′) < v(ε′) for all ε ∈ m. Also, since y′ = s, the
sequence

(
v(y′− ε′λ)

)
is strictly increasing, and thus

(
v(y− ελ)

)
is strictly

increasing. So y is a pseudo-limit of (ελ).

Since K is henselian, it follows from Claim 2 that K(y) has a unique
valuation that extends the valuation of K in which y is a pseudo-limit
of (ελ). (See [10], III, §3, Sätze 6 and 7, Lemma 11.) In the following
K(y) is equipped with this valuation. (We just saw that no other choice
is possible.) Then K(y)|K is an immediate extension, v(y) > 0, and
v(y − ελ) = v(εµ − ελ) for λ < µ < κ. Note also that for any poly-
nomial f(Y ) ∈ K[Y ] we have v

(
f(y)

)
= v

(
f(ελ)

)
eventually. (Here and

below “eventually” means “for all sufficiently large λ < κ”.) It remains to
establish the following.

Claim 3. L is a pre-differential-valued field.

It will suffice to verify the hypotheses of Lemma 3.1 for U = K[y]. In view
of the remark following the proof of that lemma we consider a polynomial
f(Y ) ∈ K[Y ] such that v

(
f(y)

)
> 0 and an element b ∈ K× with v(b) >

0, and have to show that v
(
f(y)′

)
> v(b′/b). We may assume f(Y ) /∈ K.

Write f(Y ) = cnY
n+· · ·+c0 (ci ∈ K), and put f∗(Y ) := c′nY

n+· · ·+c′0,
so that

f(y)′ = f∗(y) + f ′(y)y′ = f∗(y) + f ′(y)s,

so we are reduced to showing that v
(
f∗(y) + f ′(y)s

)
> v(b′/b).
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Now v
(
f∗(y) + f ′(y)s

)
= v

(
f∗(ελ) + f ′(ελ)s

)
eventually, so it is

enough to show that v
(
f∗(ελ) + f ′(ελ)s

)
> v(b′/b) eventually. We have

f(ελ)′ = f∗(ελ) + f ′(ελ)ε′λ (4.1)
= f∗(ελ) + f ′(ελ)s+ f ′(ελ)(ε′λ − s).

Now v
(
f(ελ)

)
= v

(
f(y)

)
> 0 eventually, so v

(
f(ελ)′

)
is eventually con-

stant and v
(
f(ελ)′

)
> v(b′/b) eventually. Also, v

(
f∗(ελ) + f ′(ελ)s

)
=

v
(
f∗(y) + f ′(y)s

)
eventually, while

v
(
f ′(ελ)(ε′λ − s)

)
= v
(
f ′(y)

)
+ v(ε′λ − s)

is eventually strictly increasing. It cannot happen that

v
(
f ′(ελ)(ε′λ − s)

)
< v
(
f∗(y) + f ′(y)s

)
eventually, since then, by (4.1), v

(
f(ελ)′

)
= v
(
f ′(ελ)(ε′λ−s)

)
would both

be eventually constant and eventually strictly increasing. Hence

v
(
f ′(ελ)(ε′λ − s)

)
> v
(
f∗(y) + f ′(y)s

)
eventually, and thus v

(
f∗(ελ) + f ′(ελ)s

)
= v

(
f(ελ)′

)
> v(b′/b) eventu-

ally, as desired. ut

Remarks.

(1) Assume K and s are as in the proposition. Let E be any differential-
valued field extension of K, and y ∈ E with y′ = s. After subtracting
a constant from y if necessary, we may assume v(y) > 0. Then y is
transcendental over K. (This is because the sequence (ελ) in the proof
of the proposition has y as pseudo-limit, so we can invoke [10], III, §3,
Lemma 11.) Hence the pre-differential-valued subfield K(y) of L is
exactly as described in the proposition.

(2) If in this propositionK is even a differential-valued field, then L is too,
with CL = C. (Use Lemma 3.4.)

(3) If in this propositionK is equipped with an ordering making it a pre-H-
field (H-field), then there is a unique ordering on L extending that on
K for which L is a pre-H-field (H-field with CL = C, respectively).
This follows from Corollary 3.2 and remark (3).

Theorem 4.4. Let K be a pre-differential-valued field. Then K has a diffe-
rential-valued field extension K̂ such that any embedding of K into any
differential-valued field L can be extended uniquely to an embedding from
K̂ into L.
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Proof. For the purpose of this proof only, a pre-differential-valued field L
is said to be nice if there is no r ∈ OL \ CL with v(r′) < (id+ψL)

(
Γ>0

L

)
,

and (id+ψL)
(
Γ>0

L

)
is closed upward in ΓL. We first introduce a nice pre-

differential-valued field extension K0 of K as follows:

(1) If there exists r ∈ O \ C such that v(r′) < (id+ψ)
(
Γ>0

)
, then we

put s := r′ for such an r, and take K0 := K(y) with v(y) > 0, as in
Lemma 4.1.

(2) If there exists s ∈ K× with v(s) /∈ (id+ψ)
(
Γ>0

)
, but v(s) > γ +

ψ(γ) for some γ ∈ Γ>0, then for such an s we put K0 := K(y) as in
Lemma 4.2.

(3) Otherwise, let K0 := K.

Note that res(K0) = res(K), and that K0 is nice by the remark after
Lemma 2.13. Note also that being nice is preserved under immediate exten-
sions of pre-differential-valued fields. Thus, starting with K0 and iterating
and alternating applications of Lemma 3.5 and Proposition 4.3 we extend
K0 to a nice henselian differential-valued field K ′ such that res(K ′) =
res(K) and any embedding of K into a nice henselian differential-valued
field L can be extended to an embedding of K ′ into L.

Let D be the constant field of K ′; so D maps isomorphically onto
res(K ′) = res(K) under the residue map OK′ → res(K ′). Put K̂ :=
K(D), so K̂ is a differential-valued subfield of K ′. We now show that K̂
has the desired universal property.

Let i : K → L be any embedding of K into a differential-valued field
L. Extend i to an embedding j : K ′ → L′ of valued differential fields.
Then j(D) is the unique subfield of CL′ that maps isomorphically onto
res
(
i(K)

)
under the residue map OL → res(L). Now CL′ = CL gives

j(K̂) ⊆ L. Thus j|K̂ : K̂ → L is the required embedding, which this
argument also shows to be uniquely determined by i. ut

Remark. The universal property in this theorem determines K̂ up to unique
isomorphism as a valued differential field extension of K. Note also that
the proof shows that res(K̂) = res(K). However, it can happen that Γ bK 6=
Γ . In any case, we can determine

(
Γ bK , ψ bK) explicitly in terms of K and

(Γ, ψ):

Corollary 4.5. Let K be a pre-differential-valued field.

(1) Let r ∈ O \ C and v(r′) /∈ (id+ψ)
(
Γ>0

)
. Take the unique y ∈ K̂

such that y′ = r′ and v(y) > 0. Then
(
Γ bK , ψ bK) = (Γα, ψα) with

α := v(y) and β := v(r′), where (Γα, ψα) is as in Lemma 2.10 if
v(r′) < (id+ψ)

(
Γ>0

)
, and as in Lemma 2.13 otherwise.

(2) If no r as in the previous case exists, then Γ bK = Γ .
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Proof. Suppose r is as in case (1). Then we put K0 := K(y) for the y
defined in that case. The proof of Theorem 4.4 shows that theK ′ introduced
there is an immediate extension of K0. Hence K̂ is an immediate extension
of K0 as well, and the desired result follows from Lemmas 2.10 and 2.13.

Suppose we are in case (2). This splits into two subcases. The first sub-
case is that we are in case (3) of the definition of K0 in the proof of Theo-
rem 4.4. We then use that K̂ is an immediate extension of K0 = K. In
the second subcase we have an s as in case (2) of the definition of K0 in
the proof of Theorem 4.4 such that moreover s has no antiderivative in K.
Using the notations from that proof, and with y ∈ K ′ such that y′ = s and
v(y) > 0 we then have CK(y) = C. The desired result Γ bK = Γ easily fol-
lows from the claim that v(yn) /∈ Γ bK for all n > 0. Suppose this claim is
false. Choose n > 0 minimal with v(yn) ∈ Γ bK , say yn = ua with a ∈ K̂,
u ∈ K ′, v(u) = 0. Then

ny′yn−1 = u′a+ ua′,

hence v(yn−1) = −v(s) + v(u′a+ ua′) = v(a′/s) ∈ Γ bK . Thus n = 1 by
minimality of n, that is, v(y) ∈ Γ bK . Then v(s) = v(y′) ∈ (id+ψ bK)

(
Γ>0bK )

,

so there exists ε ∈ m bK with ε′ = s = y′; hence y = ε ∈ K̂ = K(D). But
from general differential algebra (see e.g. [13], p. 292) we know that K(y)
and D are linearly disjoint over CK(y) = C, a contradiction. ut

Corollary 4.6. LetK be a pre-H-field. ThenK has anH-field extension K̂
such that any embedding of K into any H-field L can be extended uniquely
to an embedding from K̂ into L.

Proof. Let K̂ be as in Theorem 4.4. Then K̂ carries a unique ordering
extending the ordering of K in which the valuation ring is convex, using
the proof of the corollary above, Corollary 3.2, and remarks after 4.1, 4.2,
and 4.3. This ordering makes K̂ anH-field extension ofK with the desired
universal property. ut

5 Simple Transcendental Liouville Extensions

In building the Liouville closures of anH-fieldK we have to consider three
more types of extensions of the form K(y) with y transcendental over K,
and either y′ ∈ K, or y′/y ∈ K. This is done in the three lemmas below.
The first two also make sense for differential-valued fields.

Lemma 5.1. Let K be a henselian differential-valued field. Let s ∈ K be
such that S :=

{
v(s − a′) : a ∈ K

}
< (id+ψ)

(
Γ>0

)
, and S has no
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largest element. Let L = K(y) be a field extension of K with y transcen-
dental over K, and let L be equipped with the unique derivation extending
the derivation of K such that y′ = s. Then there is a unique valuation of L
that makes L a pre-differential-valued field extension of K. With this valu-
ation L is a differential-valued field, and an immediate extension of K with
v(y) < 0.

Proof. Let κ = cofinality(S), so κ is an infinite cardinal. Let (aλ)λ<κ be
a sequence in K such that the sequence

(
v(s − a′λ)

)
is strictly increasing

and cofinal in S, with v(s − a′λ) > v(s) for all λ. Then v(s − a′λ) =
v
(
(aλ − aµ)′

)
for λ < µ < κ, and hence v

(
(aλ − aµ)′

)
< v

(
(aµ − aν)′

)
for λ < µ < ν < κ. Note that v(aλ − aµ) < 0 for λ < µ < κ, since
otherwise v(s−a′λ) = v

(
(aλ−aµ)′

)
> Ψ , so v(s−a′λ) ∈ (id+ψ)

(
Γ>0

)
,

contradicting the hypothesis. Hence v(aλ−aµ) < v(aµ−aν) for λ < µ <
ν < κ, by Proposition 2.3, (4). Thus (aλ) is a pseudo-Cauchy sequence.
From v(s − a′λ) > v(s), we obtain v(s) = v(a′λ) < (id+ψ)

(
Γ>0

)
, so

v(aλ) < 0 for all λ.

Claim. The pseudo-Cauchy sequence (aλ) has no pseudo-limit in K.

To see this, suppose a ∈ K is a pseudo-limit of this sequence. Then we
have v(a − aλ) = v(aµ − aλ) < 0, so v(a′ − a′λ) = v(a′µ − a′λ) for
λ < µ < κ. Hence v(s− a′) ≥ v(s− a′λ) for all λ < κ, contradicting the
assumption that S has no largest element. This proves the claim.

Assume for a moment that L is given a valuation making it a pre-differen-
tial-valued field extension of K. Then v(y) < 0, since v(y) ≥ 0 would
give v(s) = v(y′) > Ψ . Also, since y′ = s, the sequence

(
v(y′ − a′λ)

)
is strictly increasing, and thus

(
v(y − aλ)

)
is strictly increasing. So y is a

pseudo-limit of (aλ).

Since K is henselian, it follows from the claim above that K(y) has a
unique valuation that extends the valuation of K in which y is a pseudo-
limit of (aλ). (See proof of Proposition 4.3.) In the following K(y) is
equipped with this valuation. (We just saw that no other choice is possi-
ble.) Then K(y)|K is an immediate extension, v(y) < 0, and v(y − aλ) =
v(aµ−aλ) for λ < µ < κ. Note also that for any polynomial f(Y ) ∈ K[Y ]
we have v

(
f(y)

)
= v
(
f(aλ)

)
eventually. In view of Lemma 3.5 it remains

to show that L is a pre-differential-valued field. This last property is ob-
tained as in the proof of Proposition 4.3 from an analogue of Claim 3 there,
with the sequence (aλ) instead of (ελ). ut

Remarks.

(1) IfK, s and L are as in the lemma andK carries in addition an ordering
making it an H-field, then there is a unique ordering on L making it a
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pre-H-field extension ofK, and with this ordering L is anH-field. (By
Corollary 3.2.)

(2) LetK be a henselianH-field, s ∈ K, and S :=
{
v(s−a′) : a ∈ K

}
⊆

Γ∞. Then we are in exactly one of the following three cases:
(a) S has a maximum β. If β = ∞, then s has an antiderivative in

K. Suppose β ∈ Γ . Then β /∈ (id+ψ)(Γ ∗). To see this, write
β = v(s− a′) with a ∈ K. Assuming β ∈ (id+ψ)(Γ ∗), take b ∈
K× with v(b) 6= 0 such that v(b′) = β. Then for some u ∈ K with
v(u) = 0 we have v

(
s−a′−ub′

)
> β, hence v

(
s−(a+ub)′

)
> β,

a contradiction.
(b) S < (id+ψ)

(
Γ>0

)
and S has no maximum: the situation of Lem-

ma 5.1.
(c) S ∩ (id+ψ)

(
Γ>0

)
6= ∅ and S has no maximum. Take a ∈ K with

v(s−a′) ∈ (id+ψ)
(
Γ>0

)
. Then Proposition 4.3 applies with s−a′

in place of s.
(3) A result in [9] says that if K is a maximally valued differential-valued

field with (id+ψ)(Γ ∗) = Γ , then every element of K has an integral
in K. We recover this fact here in a very different way: Suppose K is a
differential-valued field with (id+ψ)(Γ ∗) = Γ . Then by Lemmas 3.5,
5.1 and Proposition 4.3, there exists an immediate extension L|K of
differential-valued fields such that every element a of L has an integral
in L. (The condition (id+ψ)(Γ ∗) = Γ means that every element of K
has an asymptotic integral in K, see remarks after Lemma 2.7.)

Lemma 5.2. Let K be a henselian differential-valued field, with the set
(id+ψ)

(
Γ>0

)
closed upward, and s ∈ K with v(s) ∈ (id+ψ)

(
Γ>0

)
and s 6= a′/a for all a ∈ K×. Let L = K(y) be a field extension of K
with y transcendental over K, and equip L with the unique derivation ex-
tending the derivation of K such that y′

1+y = s. Then there is a unique
valuation of L that makes L a pre-differential-valued field extension of K
with v(y) 6= 0. With this valuation L is a differential-valued field, and an
immediate extension of K with v(y) > 0.

Proof. Put S :=
{
v
(
s− ε′

1+ε

)
: ε ∈ m

}
.

Claim 1. The set S has no largest element.
To see this, note first that v(s) ∈ S. Let γ ∈ S with γ ≥ v(s), and write
γ = v

(
s− ε′

1+ε

)
with ε ∈ m. Since

{
v(b′) : b ∈ m

}
is closed upward,

there exists b ∈ m with v(b′) = γ. Thus for some u ∈ K with v(u) = 0
we have s− ε′

1+ε = ub′. Now v(u′b) > v(b′) = γ, so with δ ∈ m such that
(1 + ε)(1 + ub) = 1 + δ we have

s− δ′

1 + δ
= s− ε′

1 + ε
− (ub)′

1 + ub
= ub′ − (ub)′

1 + ub
=
u2bb′ − u′b

1 + ub
,
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hence v
(
s− δ′

1+δ

)
> γ. This proves Claim 1.

Let κ = cofinality(S), so κ is an infinite cardinal. Let (ελ)λ<κ be a se-
quence in m such that

(
v
(
s− ε′

λ
1+ελ

))
is a strictly increasing sequence in

S, and cofinal in S. Then v
(
s− ε′

λ
1+ελ

)
= v

(
ε′
λ

1+ελ
− ε′

µ

1+εµ

)
for λ < µ <

κ. Note that for λ < µ < κ we have

ε′λ
1 + ελ

−
ε′µ

1 + εµ
=

(1 + εµ)(ελ − εµ)′ − ε′µ(ελ − εµ)
(1 + ελ)(1 + εµ)

,

and since v
(
(ελ − εµ)′

)
< v
(
ε′µ(ελ − εµ)

)
, this gives

v

(
ε′λ

1 + ελ
−

ε′µ
1 + εµ

)
= v
(
(ελ − εµ)′

)
.

It follows that v
(
(ελ − εµ)′

)
< v

(
(εµ − εν)′

)
for λ < µ < ν < κ. Hence

v(ελ−εµ) < v(εµ−εν) for λ < µ < ν < κ. Thus (ελ) is a pseudo-Cauchy
sequence.

Claim 2. The pseudo-Cauchy sequence (ελ) has no pseudo-limit in K.

To see this, suppose ε ∈ K is a pseudo-limit of this sequence. Then we have
v(ε − ελ) = v(εµ − ελ) > 0 for λ < µ < κ, in particular ε ∈ m. Hence
v(ε′− ε′λ) = v(ε′µ− ε′λ) > 0 for λ < µ < κ. By the same computations as

those preceding Claim 2 this gives v
(

ε′

1+ε −
ε′
λ

1+ελ

)
= v

(
ε′
µ

1+εµ
− ε′

λ
1+ελ

)
for λ < µ < κ. Hence v

(
s− ε′

1+ε

)
≥ v

(
s− ε′

λ
1+ελ

)
for all λ < κ,

contradicting Claim 1. This proves Claim 2.

Assume for a moment that L is given a valuation making it a pre-differen-
tial-valued field extension of K with v(y) 6= 0. Then v(y) > 0, since if
v(y) < 0, we get ψ

(
v(y)

)
= v(s) ∈ (id+ψ)

(
Γ>0

)
, which is impossi-

ble. Since y′

1+y = s, the sequence
(
v
(

y′

1+y −
ε′
λ

1+ελ

))
is strictly increasing.

Again by estimates as above this implies that
(
v(y−ελ)

)
is strictly increas-

ing. So y is a pseudo-limit of (ελ).
Since K is henselian, it follows from Claim 2 that K(y) has a unique val-
uation that extends the valuation of K in which y is a pseudo-limit of (ελ)
(see proof of Proposition 4.3). In the following K(y) is equipped with this
valuation. (We just saw that no other choice is possible.) Then K(y)|K
is an immediate extension, v(y) > 0, and v(y − ελ) = v(εµ − ελ) for
λ < µ < κ. Note also that for any polynomial f(Y ) ∈ K[Y ] we have
v
(
f(y)

)
= v
(
f(ελ)

)
eventually. By Lemma 3.5 it remains to establish:

Claim 3. L is a pre-differential-valued field.
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We omit the proof of this claim because it is almost identical to that of
Claim 3 in the proof of Proposition 4.3, except that y′ = (1 + y)s instead
of y′ = s. ut

Remark. If K, s and L are as in the lemma and K carries in addition an
ordering making it an H-field, then there is a unique ordering on L making
it a pre-H-field extension of K and with this ordering L is an H-field. (By
Corollary 3.2.)

Lemma 5.3. Let K be a real closed H-field and s ∈ K<0 such that for
each a ∈ K×, there exists γ ∈ Γ ∗ with v(s − a′/a) ≤ ψ(γ). Let L =
K(y) be a field extension of K with y transcendental over K, and let L
be equipped with the unique derivation extending the derivation of K such
that y′/y = s. Then there is a unique pair consisting of a valuation of
L and an ordering on L that makes L a pre-H-field extension of K with
y > 0. With this valuation and ordering L is an H-field with v(y) /∈ Γ and
v(y) > 0.

Proof. Suppose L = K(y) is equipped with a valuation and an ordering
making L a pre-H-field extension of K with y > 0.
Claim 1. v(y) /∈ Γ . Otherwise we can write y = au with a ∈ K× and
u ∈ L with v(u) = 0. Then s− (a′/a) = u′/u, hence v

(
s− (a′/a)

)
> Ψ ,

contradicting the assumption on s.
Claim 2. v(y) > 0. This is because v(y) < 0 would imply s = y′/y > 0.
Claim 3. v(y) < v(b) ⇐⇒ s > b′/b, for all b ∈ K× with v(b) > 0. This
follows from Lemma 1.4.
Claim 3 shows how v(y) determines a cut in Γ . Thus in constructing a val-
uation of L and ordering of L with the desired properties, the three claims
above leave no choice: we equip L with the unique valuation extending the
valuation of K such that 0 < v(y) /∈ Γ realizes the cut in Γ described in
the Claim 3 above, and with the unique ordering extending the ordering of
K in which the valuation ring of L is convex, and with y > 0. It remains to
show that with this valuation and ordering L is an H-field.

Put η := v(y), so ΓL = Γ ⊕ Zη. Note that if a ∈ K× and j ∈ Z, then
0 < v(a) + jη if and only if either

(1) v(a) = 0 and j > 0, or
(2) v(a) 6= 0 and a′/a+ js < 0.

This is clear if v(a) = 0, or v(a) 6= 0 and j = 0, by Claim 2. Assume
v(a) 6= 0 and j < 0. Let d ∈ K be a solution to the equation dj = 1/|a|.
We have 0 < v(a) + jη if and only if η < v(d), which is equivalent to
s > (−1/j) · (a′/a), by definition of the cut in Γ realized by v(y), that is,
to a′/a+ js < 0. If v(a) 6= 0, j > 0, one argues similarly.



H-fields and their Liouville Extensions 37

We observe that for any a ∈ K× and j ∈ Z with v(a)+jη > 0, we have
v(a′/a+ js) ≤ ψ(γ) for some γ ∈ Γ ∗. To see this, we may assume j 6= 0.
Let d ∈ K be a solution to dj = 1/|a|; then v(a′/a+ js) = v(s− d′/d) ≤
ψ(γ) for some γ ∈ Γ ∗. Also note that if b ∈ K× is another element such
that v(a) = v(b), we have v(a′/a+ js) = v(b′/b+ js): Write a = ub with
u ∈ K×, v(u) = 0; then v(u′/u) = v(u′) > Ψ , so v(u′/u) > v(b′/b+js),
and a′/a+ js = (b′/b+ js) + u′/u, implying

v(a′/a+ js) = min
{
v(b′/b+ js), v(u′/u)

}
= v(b′/b+ js),

as required. Now extend ψ : Γ ∗ → Γ to a map ψL : Γ ∗L → Γ by

ψL

(
v(a) + jη

)
:= v(a′/a+ js) for a ∈ K×, j ∈ Z with v(a) + jη 6= 0.

By the previous remarks, ψL is well-defined. Also note that the criterion
given above for v(a)+jη > 0 implies thatψL is decreasing on Γ>0

L . (Hence
ψL is constant on archimedean classes of ΓL, since obviously ψL(rγ) =
ψL(γ) for all γ ∈ Γ ∗L, r ∈ Z \ {0}.) We claim:
Claim 4. (ΓL, ψL) is an asymptotic couple.
First assume [Γ ] = [ΓL]. Then if a ∈ K×, j ∈ Z with v(a) + jη 6=
0, we choose b ∈ K× with

[
v(b)

]
=
[
v(a) + jη

]
. Hence ψL

(
v(a) +

jη
)

= ψL

(
v(b)

)
= v(b′/b) = ψ

(
v(b)

)
. So it follows from Lemma 2.14

that (ΓL, ψL) is an asymptotic couple. Now suppose [Γ ] 6= [ΓL], so [ΓL] =
[Γ ] ∪

{
[γ0]
}

for some γ0 ∈ Γ ∗L with [γ0] /∈ [Γ ]. (Apply Lemma 5.3 in [1]
to k = Q, V0 = Γ , V = QΓL.) Then

ψL

(
v(a)+jγ0

)
= min

{
v(a′/a), ψL(γ0)

}
for all a ∈ K×, j ∈ Z, j 6= 0.

Lemma 2.15 now implies that
(
Γ0, ψL|Γ ∗0

)
is an asymptotic couple, where

Γ0 := Γ ⊕ Zγ0 ⊆ ΓL. Since QΓ0 = QΓL, we see that (ΓL, ψL) is an
asymptotic couple as well.
By Claim 1 and general valuation theory we have res(K) = res(L). Using
this fact and Claim 4 above we can prove very quickly:
Claim 5. L is a differential-valued field.
To see this, put T :=

⋃
j∈ZK

×yj . We consider elements f = ayp and
g = byq of T with a, b ∈ K× and v(f) > 0 and v(g) > 0. By Lemmas 3.4
and 3.5 it suffices to derive v(f ′) > v(g′/g). Clearly v(f) = v(a) + pη,
and v(f ′) = v(a) + pη + v(a′/a + ps) = v(f) + ψL

(
v(f)

)
. Similarly,

v(g′/g) = ψL

(
v(g)

)
. Now ψL

(
v(g)

)
< v(f) + ψL

(
v(f)

)
, since (ΓL, ψL)

is an asymptotic couple, by Claim 4.
To complete the proof of the lemma, it remains to show:
Claim 6. L is an H-field.
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By remark (2) after Lemma 3.3, we must show t′/t > 0 for all t ∈ T
with v(t) < 0. Write t = ayj with a ∈ K×, j ∈ Z; we may assume
j 6= 0. Let d ∈ K as before be a solution to the equation dj = 1/|a|.
First assume j < 0. Then v(a) + jη = v(t) < 0 implies v(d) > v(y), so
s < d′/d = (−1/j) · (a′/a), by the definition of the cut in Γ realized by
v(y). Thus t′/t = a′/a + js > 0, as required. The case j > 0 is similar.
ut

Remarks. Let K, s and L be as in Lemma 5.3.

(1) The proof of the lemma shows that CL = C, and that Ψ is cofinal in
ΨL. In particular, if Ψ has a maximum, then ΨL has the same maximum.

(2) If ΨL < γ < (id+ψ)
(
Γ>0

L

)
for some γ ∈ ΓL \Γ , then [Γ ] = [ΓL], by

the remark after Lemma 2.15.

6 Liouville Closures

In this section we prove the results on Liouville closures stated in the in-
troduction. After some generalities on Liouville closed H-fields we define
“Liouville towers”. It is natural to construct Liouville closures by building
such towers. But in showing that, up to isomorphism, there can be at most
two Liouville closures of a given H-field we face a difficulty:

(1) Lemma 4.1 and remark (2) following it present a choice: either make s
a derivative of an infinitesimal, or make it a derivative of an infinitely
large element. This leads to non-isomorphic Liouville closures.

(2) Applying Lemma 5.3 might create a new element in the value group
that produces the situation of Lemma 4.1.

An example (after Lemma 6.5 below) shows that (2) can really occur. For-
tunately, it can be arranged to occur at most once in building Liouville
closures via towers. This is what we accomplish in the proofs of the main
theorems 6.9, 6.10 and 6.11. We also give an application to Hardy fields
and LE-series, see Theorem 6.7.

Generalities on Liouville closed H-fields

We note that a real closed H-field K is Liouville closed if and only if each
equation y′ + ay = b with a, b ∈ K has a solution in K. It follows easily
that a Liouville closed H-field remains Liouville closed when we replace
its derivation ∂ by a multiple a∂ with a ∈ K>0. If K is a Liouville closed
H-field, then Ψ is downward closed in the value group Γ , and Γ is the
disjoint union of Ψ and (id+ψ)

(
Γ>0

)
. There are two kinds of Liouville

closed H-fields K: those with Ψ < 0, and those with 0 ∈ Ψ . One kind can
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be changed into the other kind by replacing its derivation ∂ by a suitable
multiple a∂ with a ∈ K>0.

Lemma 6.1. Let L be a Liouville extension of the differential field K. Then
card(L) = card(K).

Proof. Define a chain of differential subfields K = K0 ⊆ K1 ⊆ K2 ⊆ · · ·
of L:

Kn+1 =


algebraic closure of Kn in L for n ≡ 0 (mod 3)
Kn

(
{a ∈ L : a′ ∈ Kn}

)
for n ≡ 1 (mod 3)

Kn

(
{a ∈ L× : a′/a ∈ Kn}

)
for n ≡ 2 (mod 3)

Clearly card(Kn) = card(K) for all n (by induction), and L =
⋃

nKn,
so card(L) = card(K). ut

Lemma 6.2. Let K be a differential-valued field (respectively, an H-field),
and let (Ki)i∈I be a family of differential-valued subfields of K (respec-
tively, of H-subfields of K). Then

⋂
iKi is a differential-valued subfield of

K (respectively, an H-subfield of K).

Proof. With Oi the valuation ring of Ki, the valuation ring of
⋂

iKi is⋂
iOi. Now, given any a ∈

⋂
iOi, there is unique c ∈ C and unique ci ∈

CKi for each i such that v(a− c) > 0 and v(a− ci) > 0 for each i. Hence
all ci are equal to c, and thus c ∈

⋂
iKi. We have now checked that the

valuation of
⋂

iKi satisfies condition (1) in §1 for differential valuations.
Condition (2) is obviously also satisfied. ut

Lemma 6.3. Let K be a Liouville closed H-field. Then:

(1) K has no proper Liouville extension with the same constants as K.
(2) Let (Ki)i∈I be a family of Liouville closed H-subfields of K, all with

the same constants as K. Then
⋂

iKi is a Liouville closed H-subfield
of K.

Proof. Suppose L is a proper Liouville extension of the differential field
K with the same constants as K. Up to K-isomorphism the only proper
algebraic extension field of K is K(i) with i2 = −1, and as a differential
field extension of K it contains the constant i /∈ C. Hence L must contain
a solution y /∈ K to an equation y′ = a with a ∈ K, or a solution z /∈ K
with z 6= 0 to an equation z′/z = b with b ∈ K. But given y as above,
take y0 ∈ K with y′0 = a, and then y − y0 ∈ CL \ C, contradiction.
Similarly, given z as above, take z0 ∈ K× with z′0/z0 = b, and note that
then z/z0 ∈ CL \ C, contradiction. This proves the first statement.

For the second statement we first remark that
⋂

iKi is an H-subfield of
K by Lemma 6.2. Now note that a similar argument as in (1) shows that for
a, b ∈

⋂
iKi the equation y′ = a has the same solutions in all Ki, and so

does the equation z′/z = b (subject to z 6= 0). ut
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Let K ⊆ L be an extension of differential fields. Then the subfield of
L generated by any collection of intermediate Liouville extension fields
is also a differential subfield of L and a Liouville extension of K. Hence
there exists a biggest Liouville extension of K contained in L. If L ⊆M is
a further differential field extension and M |K is a Liouville extension, so
is M |L.

Liouville towers

Let K be an H-field. A Liouville tower on K is a strictly increasing chain
(Kλ)λ≤µ of H-fields, indexed by the ordinals less than or equal to some
ordinal µ, such that

(1) K0 = K,
(2) if λ is a limit ordinal, 0 < λ ≤ µ, then Kλ =

⋃
ι<λKι,

(3) for λ < λ+ 1 ≤ µ, either
(a) Kλ+1 is a real closure of Kλ,
or Kλ is already real closed, Kλ+1 = Kλ(yλ) with yλ /∈ Kλ (hence
yλ is transcendental over Kλ), and one of the following holds, where
(Γλ, ψλ) denotes the asymptotic couple of Kλ and Ψλ := ψλ(Γ ∗λ ):
(b) y′λ = sλ ∈ Kλ with v(yλ) > 0 and Ψλ<v(sλ) < (id+ψλ)

(
Γ>0

λ

)
.

(c) y′λ = sλ ∈ Kλ with v(yλ) < 0 and Ψλ<v(sλ) < (id+ψλ)
(
Γ>0

λ

)
.

(d) y′λ = sλ ∈ Kλ with v(sλ) = maxΨλ.
(e) y′λ = sλ ∈ Kλ with v(sλ) ∈ (id+ψλ)

(
Γ>0

λ

)
, and sλ 6= ε′ for all

ε ∈ Kλ with v(ε) > 0.
(f) y′λ = sλ ∈ Kλ such that Sλ :=

{
v(sλ − a′) : a ∈ Kλ

}
<

(id+ψλ)
(
Γ>0

λ

)
, and Sλ has no largest element.

(g) y′
λ

1+yλ
= sλ ∈ Kλ with v(yλ) 6= 0, v(sλ) ∈ (id+ψλ)

(
Γ>0

λ

)
, and

sλ 6= a′/a for all a ∈ K×
λ .

(h) y′
λ

yλ
= sλ ∈ K<0

λ with yλ > 0, and for each a ∈ K×
λ there is

γ ∈ Γ ∗λ such that v(sλ − a′/a) ≤ ψλ(γ).

The H-field Kµ is called the top of the tower (Kλ)λ≤µ. Note that clause
(a) corresponds to the last part of §3, (b) to Lemma 4.1, (c) to remark (2)
following Lemma 4.1, (d) to Lemma 4.2, (e) to Proposition 4.3, and (f), (g)
and (h) to Lemmas 5.1, 5.2 and 5.3, respectively.

Remark. Let a tower as above be given. Then:

(1) Kµ is a Liouville extension of K.
(2) The constant field Cµ of Kµ is a real closure of C if µ > 0.
(3) card(Kµ) = card(K), hence µ < card(K)+.
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For (1) and (2) use results of sections 3–5 to show by induction on λ ≤ µ
that Kλ is a Liouville extension of K, and that the constant field of Kλ is
the real closure of C for λ > 0. Item (3) follows from (1) by Lemma 6.1.

Because of remark (3) there is for each H-field K a maximal Liouville
tower (Kλ)λ≤µ on K, “maximal” meaning that it cannot be extended to a
Liouville tower (Kλ)λ≤µ+1 on K. It follows easily that then Kµ is Liou-
ville closed, and hence a Liouville closure of K. Thus each H-field has a
Liouville closure. We now turn to the question to what extent such a Liou-
ville closure is unique.

Lemma 6.4. LetK ⊆ L be an extension ofH-fields such thatL is Liouville
closed. Then there is a unique H-field K ′ such that K ⊆ K ′ ⊆ L and K ′

is a Liouville closure of K.

Proof. LetK ′ be the top of some maximal Liouville tower onK consisting
of H-subfields of L. It is easy to see that K ′ is Liouville closed, and hence
a Liouville closure of K. This proves “existence”. “Uniqueness”: Let K ′

be any H-field such that K ⊆ K ′ ⊆ L and K ′ is a Liouville closure of K.
By Lemma 6.3, (1)K ′ has no proper Liouville extension inside L. ThusK ′

is necessarily the largest Liouville extension of K contained in L. ut

The K ′ in this lemma is called the Liouville closure of K inside L.

For the purpose of this section, a gap in an H-field K is a γ ∈ Γ such that
Ψ < γ < (id+ψ)

(
Γ>0

)
. Note that for an H-field K we have:

(1) If Ψ has a largest element, then K has no gap.
(2) If K is Liouville closed, then K has no gap.
(3) A gap in K remains a gap in its real closure, by the remark after

Lemma 2.5.

Lemma 6.5. Let K be an H-field, (Kλ)λ≤µ a Liouville tower on K such
that no Kλ with λ < µ has a gap. Then every embedding of K into a
Liouville closed H-field L can be extended to an embedding of Kµ into L.
IfKµ is also Liouville closed, thenKµ is the unique Liouville closure ofK,
up to isomorphism over K.

This follows from the uniqueness properties in the results of sections 3–5,
together with Lemma 6.4.

Example

Let LQ be the multiplicative subgroup of R((x−1))LE generated by the
rational powers lan (a ∈ Q) of the iterated logarithms ln of x, that is,
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l0 = x, ln+1 = log(ln). Thus LQ is the set of products la0
0 l

a1
1 · · · lan

n with
a0, . . . , an ∈ Q, and if also b0, . . . , bn ∈ Q, then

la0
0 l

a1
1 · · · lan

n < lb00 l
b1
1 · · · l

bn
n ⇐⇒

(a0, . . . , an) < (b0, . . . , bn) lexicographically.

We consider the formal series field R((LQ)) as an ordered field as usual
(see [6], (1.1)), and equip it with the derivation that is trivial on R, sends
ln to 1/l0l1 · · · ln−1 (in particular x to 1), and that commutes with infinite
summation in R((LQ)). We refer to [2] for more details, and for proofs of
some facts used in this Example, such as the fact that this derivation makes
R((LQ)) into a real closedH-field extension of R(ln : n ∈ N). Let E be the
real closure of R(ln : n ∈ N) inside R((LQ)), so R((LQ))|E is an immediate
extension of valued fields. As in [7], p. 289, (7.9), we put

Λ := l1 + l2 + l3 + · · · =
∞∑

n=1

ln ∈ R((LQ)),

so

Λ′ =
1
l0

+
1
l0l1

+
1

l0l1l2
+ · · · =

∞∑
n=0

1
l0l1 · · · ln

.

Let s = −Λ′ and K be the real closure inside R((LQ)) of the H-subfield
E(s, s′, s′′, . . . ) of R((LQ)) generated by s over E. One can show ([2]) that
thenK has no gap, and that the hypothesis of Lemma 5.3 holds forK and s.
The conclusion of that lemma then gives us anH-field extensionL = K(y)
of K such that y is transcendental over K, y > 0 and y′/y = s. Then v(y)
is a gap in L, see [2].

Thus (h) is special in that it can create a gap, while none of the ex-
tensions of type (b)–(g) can produce a gap that wasn’t already there. This
explains the perhaps curious arrangement of the proofs of the main theo-
rems below.

Application to Hardy fields and LE-series

In the realm of LE-series gaps don’t occur, as the next lemma states in
more detail. For positive infinite f in R((x−1))LE we put L0(f) := f , and
Ln+1(f) := log

(
Ln(f)

)
. Then the sequence

{
Ln(f)

}
is coinitial in the set

of positive infinite elements of R((x−1))LE, see [6].

Lemma 6.6. The H-field R((x−1))LE is Liouville closed, and thus has no
gap. More generally, ifK is any H-subfield of R((x−1))LE not contained in
R, then K has no gap, and any two Liouville closures of K are isomorphic
over K.



H-fields and their Liouville Extensions 43

Proof. See [6] for the fact that R((x−1))LE is Liouville closed. Let K be
an H-subfield of R((x−1))LE not contained in R. Then the derivation on
K is non-trivial, and hence its valuation is non-trivial. Take some positive
infinite f ∈ K. If v

(
Ln(f)

)
∈ Γ for all n, then the remark preceding the

lemma implies that Γ<0 is cofinal in Γ<0
LE , and hence K has no gap (as

R((x−1))LE has none). Suppose that v
(
Ln(f)

)
/∈ Γ for some n, and take

n minimal with this property. Then n > 0 since f ∈ K, and v
(
Ln(f)′

)
=

ψ
(
v
(
Ln−1(f)

))
∈ Ψ \ (id+ψ)(Γ ∗), so v

(
Ln(f)′

)
= maxΨ , and thus K

has no gap. Next we build a Liouville tower onK whose top is the Liouville
closure of K inside R((x−1))LE. Since none of the H-fields in this tower
can have a gap, Lemma 6.5 implies that each Liouville closure of K is
isomorphic over K to the Liouville closure of K inside R((x−1))LE . ut

This lemma implies the following theorem stated in the introduction:

Theorem 6.7. Let K ⊇ R be a Hardy field and e : K → R((x−1))LE an
embedding of ordered differential fields with e|R = idR. Then e can be
extended to an embedding Li(K) → R((x−1))LE of ordered differential
fields.

To see how this follows, note first that if K = R, then by extending e to
R(x) we reduce to the case K 6= R. We can then apply the lemma in view
of the fact that an ordered differential field embedding between H-fields
also respects the valuation, and is thus an H-field embedding.

Constructing Liouville closures

Let α ⊆
{

(a), (b), (c), (d), (e), (f), (g), (h)
}

with (a) ∈ α, and let K be
an H-field. Then the definition of “α-tower on K” is identical to that of
“Liouville tower on K”, except that in clause (3) of that definition only the
items from α occur.

Lemma 6.8. Let K be an H-field such that Ψ has a largest element. There
exists a Liouville tower on K with top L such that:

(1) No H-field in the tower has a gap.
(2) ΨL has a maximum.
(3) For each a ∈ K there exist y, z ∈ L with y′ = a and z 6= 0, z′/z = a.

Proof. Let α :=
{

(a), (e), (f), (g), (h)
}

. Take a maximal α-tower (Kλ)λ≤µ

on K. By remarks following Proposition 4.3 and Lemmas 5.1–5.3, induc-
tion on λ shows that each Ψλ has maximum maxΨ . In particular, no Kλ

has a gap. By maximality with respect to (a), (g) and (h), there is for each
s ∈ K some y ∈ K×

µ with y′/y = s. (Use Lemmas 5.2 and 5.3.) Take
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s ∈ Kµ with v(s) = maxΨ . By Lemma 4.2, there is an H-field exten-
sion L := Kµ(y) of Kµ such that y is transcendental over Kµ and y′ = s.
Then ΨL again has a maximum, namely ψL

(
v(y)

)
> maxΨ . In particu-

lar L has no gap. It only remains to show that each element of K has an
anti-derivative in L. Suppose t ∈ K has no anti-derivative in Kµ. Then the
maximality property of the tower with respect to (a), (e) and (f) implies that
maxΨ = v(t − a′) for some a ∈ Kµ. (See Lemma 5.1 and remark (2)
following it.) Hence t − a′ = cs + d for some c ∈ Cµ and d ∈ Kµ with
v(d) > maxΨ . So d = e′ for an e ∈ Kµ, and thus t = (a+ cy + e)′ in L.
ut

Let us write K ′ for the real closure of an H-field extension L of K as in
this lemma. Then ΨK′ = ΨL, so ΨK′ also has a largest element. Thus we
can iterate this operation, and formK ′′ := (K ′)′,K ′′′ := (K ′′)′, and so on.
Taking the union of the increasing sequence of H-fields built in this way,
and applying Lemma 6.5, we obtain:

Theorem 6.9. Let K be an H-field K such that Ψ has a largest element.
Then K has a Liouville closure L such that any embedding of K into a
Liouville closed H-field M extends to an embedding of L into M . Any two
Liouville closures of K are isomorphic over K. ut

Theorem 6.10. Let K be an H-field with a gap γ ∈ Γ . Then K has Liou-
ville closures L1 and L2, such that any embedding of K into a Liouville
closed H-field M extends to an embedding of L1 or of L2 into M , de-
pending on whether the image of γ in ΓM lies in (id+ψM )

(
Γ<0

M

)
or in

(id+ψM )
(
Γ>0

M

)
. Each Liouville closure of K is K-isomorphic to L1 or to

L2, but L1 and L2 are not K-isomorphic.

Proof. Take s ∈ K such that v(s) = γ. Let K1 := K(y1) and K2 :=
K(y2) be H-field extensions of K with yi transcendental over K and y′i =
s, for i = 1, 2, such that v(y1) < 0 and v(y2) > 0. (Such Ki exist by
Lemma 4.1 and remark (2) following it.) Then ΨK1 and ΨK2 both have a
largest element. Let L1 and L2 be Liouville closures of K1 and K2 re-
spectively. Let an embedding of K into a Liouville closed H-field M be
given. If the image of γ in ΓM lies in (id+ψM )

(
Γ<0

M

)
, then we can extend

that embedding to an embedding of K1 into M , and hence by the previous
theorem, to an embedding of L1 into M . If the image of γ in ΓM lies in
(id+ψM )

(
Γ>0

M

)
, then we can similarly extend that embedding to an em-

bedding of L2 into M . It is now routine to show that L1 and L2 as defined
here have all the properties claimed in the theorem. ut

Remark. Let K be an ordered field, and equip K with the trivial derivation
and trivial valuation. Then K is an H-field with Γ = {0}, and has gap
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0 = v(1). The two Liouville closures L1 and L2 of K in the theorem
satisfy ΨL1 < 0 and 0 ∈ ΨL2 . Replacing the derivation ∂ of L1 by a suitable
multiple a∂, 0 < a ∈ L1, we obtain a K-isomorphic copy of L2.

A more interesting H-field with a gap is the H-field L constructed in
the “Example” after Lemma 6.5, with gap v(y).

The two theorems above concern two special cases, and we now turn to
the general situation. Let K be an H-field. Take a maximal Liouville tower
(Kλ)λ≤µ on K. Then Kµ is a Liouville closure of K. We have two cases:

(I) No Kλ in the tower has a gap. See Lemma 6.5.
(II) SomeKλ in the tower has a gap. Take λminimal with this property. Let

L1 and L2 be the two Liouville closures of Kλ as in the last theorem.
Given any embedding of K into a Liouville closed H-field M , we can
first extend it to an embedding of Kλ into M , and then, by the last
theorem, to an embedding of L1 or of L2 into M . It follows that L1

and L2 are Liouville closures of K (not isomorphic over K), and that
any Liouville closure of K is K-isomorphic to L1 or to L2.

Summarizing the above, we have the following more precise version of the
Main Theorem stated in the introduction.

Theorem 6.11. Let K be an H-field. Then K has at least one and at most
two Liouville closures, up to isomorphism over K. Any embedding of K
into a Liouville closed H-field M extends to an embedding of some Liou-
ville closure of K into M . Moreover, the following are equivalent:

(1) K has two Liouville closures, not isomorphic over K.
(2) There exists a Liouville H-field extension L ⊇ K with a gap.
(3) There exists a Liouville H-field extension L ⊇ K with a gap such that

L embeds over K into any Liouville closed H-field extension of K. ut

Remark. Let K be an H-field such that Ψ has no largest element, and let
L be a Liouville closure of K. Then the theorem implies that L is up to K-
isomorphism the only Liouville closure of K if and only if Γ>0 is coinitial
in Γ>0

L .

7 Concluding Remarks

In this paper we have shown that several results on Hardy fields extend
to the abstract setting of H-fields, with rather different proofs. More sig-
nificant is that the material around “Liouville closures” demands the H-
field setting: Hardy fields and the field R((x−1))LE of LE-series obscure the
“fork in the road” phenomenon. Our real motive for introducingH-fields is
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the possibility of a model theory for the differential field R((x−1))LE, ana-
logous to the subject of real closed fields and semialgebraic sets as a model
theory for the field R.

In a follow-up paper [2] we treat various other issues on H-fields:

(1) Constant field extensions of H-fields.
(2) Adjoining powers to H-fields.
(3) Equipping Liouville closed H-fields with an exponential function.
(4) Algebraic-topological properties of differential polynomials over H-

fields.
(5) Generalized series constructions producing H-fields with given con-

stant field and asymptotic couple.

A critical question is how gaps can arise in H-fields. The example of the
last section illustrates one possibility. Can the trouble caused by gaps be lo-
calized in Liouville extensions, and bypassed in other kinds of differentially
algebraic extensions? More specifically:

Can a differentially algebraicH-field extension of a Liouville closed
H-field K have a gap?

The answer is “no” for K = R((x−1))LE. Perhaps unfortunately, it is “yes”
in some other cases. These facts will be proved in [2].
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