
LIOUVILLE CLOSED H-FIELDS

MATTHIAS ASCHENBRENNER AND LOU VAN DEN DRIES

Abstract. H-fields are fields with an ordering and a derivation sub-
ject to some compatibilities. (Hardy fields extending R and fields of
transseries over R are H-fields.) We prove basic facts about the loca-
tion of zeros of differential polynomials in Liouville closed H-fields, and
study various constructions in the category of H-fields: closure under
powers, constant field extension, completion, and building H-fields with
prescribed constant field and H-couple. We indicate difficulties in ob-
taining a good model theory of H-fields, including an undecidability
result. We finish with open questions that motivate our work.
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Introduction

In [2] we introduced H-fields as an abstraction of Hardy fields [7], [26], and
as a step towards a model-theoretic understanding of the differential field
R((t))LE of logarithmic-exponential series [12]. Here we develop the subject
of H-fields further. Recall from [2] that an H-field is an ordered differential
field K with constant field C such that for every f ∈ K:

(1) if f > c for all c ∈ C, then f ′ > 0;
(2) if |f | < d for some positive d ∈ C, then there exists c ∈ C such that

|f − c| < d for all positive d ∈ C.
Every Hardy field K ⊇ R is an H-field, as is every ordered differential
subfield K ⊇ R of R((t))LE. In the rest of the paper we assume familiarity
with [2], including its notational conventions.

Our first aim is to prove some basic facts on zeros of differential polyno-
mials over Liouville closed H-fields, such as the following two results. (An
H-field K is said to be Liouville closed if K is real closed, and for any a ∈ K
there exist y, z ∈ K with y′ = a and z 6= 0, z′/z = a.) Let K be a Liouville
closed H-field with constant field C and let P (Y ) ∈ K{Y } be a non-zero
differential polynomial.

Theorem. Suppose the coefficients of P (Y ) lie in some H-subfield of K
with a smallest comparability class. Then there exists a > C in K such that
P (y) 6= 0 for all y in all H-field extensions L of K with CL < y < a, where
CL is the constant field of L. (See Section 1 for “comparability class.”)

More precise versions are in Section 2, with preliminaries on asymptotic rela-
tions involving exponentiation in Section 1. The hypothesis in this theorem
is always satisfied for K = R((t))LE, see Section 2. This hypothesis can be
omitted if P is of order 1, see Proposition 2.7, or homogeneous of order 2,
see Corollary 12.14. An example in [3] shows that the hypothesis cannot be
omitted for differential polynomials of order 3. (This example also produces
a differentially algebraic “gap” over a Liouville closed H-field, answering a
question formulated at the end of [2].)

While the previous theorem concerns nonexistence of “small” infinite ze-
ros, the next result claims nonexistence of “large” infinite zeros.

Theorem. There exists b ∈ K such that P (y) 6= 0 for all y in all H-field
extensions of K with y > b.

This is shown in a stronger form in Section 3. Next we prove in Section 4
an intermediate value property for differential polynomials of order 1 over
H-fields. Section 5 concerns the valuation of higher derivatives, and is used
in Section 6 to study simple zeros of differential polynomials over H-fields.

For deeper results on solving algebraic differential equations in H-fields
we shall need to adapt the Newton polygon methods developed for fields of
transseries by J. van der Hoeven in Chapters 3–5 of his Thèse [16]. Here we
focus on what can be done by cruder methods under weaker assumptions on
the H-fields considered.
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Sections 7–11 have a different character, and contain topics that should
be part of any systematic development of the subject of H-fields: intro-
ducing exponential maps and power functions on Liouville closed H-fields
(Section 7), adjoining powers to H-fields (Section 8), constant field exten-
sion (Section 9), completion (Section 10), and building H-fields with given
constant field and asymptotic couple via a generalized series construction
(Section 11).

In Section 12 we study “gaps” in H-fields and fill in the details of an
example in Section 6 of [2]. In Section 13 we show that the set of integers is
existentially definable in the differential field R((x−1))E of exponential series.
(Hence the theory of this differential field is undecidable.) In Section 14 we
summarize what we know about existentially closed H-fields, and list open
problems.

Notations. The notations and conventions introduced in [1] and [2] remain
in force; in particular, m and n range over N = {0, 1, 2, . . . }.

Let K be a differential field of characteristic 0. For i = (i0, . . . , in) ∈ Nn+1

we put |i| := i0+i1+· · ·+in (the degree of i), wi := i1+2i2+3i3+· · ·+nin
(the weight of i), and we set Y i := Y i0(Y ′)i1 · · · (Y (n))in for a differential
indeterminate Y , and yi := yi0(y′)i1 · · · (y(n))in for an element y of K. Fol-
lowing a suggestion by J. van der Hoeven, we denote the logarithmic de-
rivative y′/y of y ∈ K× = K \ {0} by y†. Let the differential polynomial
P ∈ K{Y } be of order at most n. Thus

P (Y ) =
∑

i

aiY
i,

where the sum is understood to range over all i ∈ Nn+1, and ai ∈ K for
every i, with ai 6= 0 for only finitely many i. For P 6= 0 the (total) degree
of P is the largest natural number d such that d = |i| for some i ∈ Nn+1

with ai 6= 0. We also set, for i = (i0, . . . , in) ∈ Nn+1,

P (i) =
∂|i|P

∂Y i
:=

∂i0

∂(Y (0))i0
· · · ∂in

∂(Y (n))in
P,

a differential polynomial of order ≤ n.
An element y of a differential field extension L of K is said to be dif-

ferentially algebraic over K if it satisfies an algebraic differential equation
P (y) = 0 with P (Y ) ∈ K{Y }\{0}. An extension L|K of differential fields is
called differentially algebraic if every element y of L is differentially algebraic
over K.

1. Asymptotic Relations and Exponentiation

Asymptotic relations among elements of H-fields can be expressed in terms
of the valuation and the function ψ induced on the value group, as we did
in [2]. In the present paper we often use the following shorter notations
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suggested to us by J. van der Hoeven. Let K be a pre-differential-valued
field and f, g ∈ K. Then

(1) f � g :⇐⇒ v(f) ≥ v(g),
(2) f � g :⇐⇒ f � g and g � f ⇐⇒ v(f) = v(g),
(3) f ≺ g :⇐⇒ v(f) > v(g),
(4) f ∼ g :⇐⇒ f − g ≺ g,
(5) f �� g :⇐⇒ f, g 6= 0 and f † � g†,
(6) f −� g :⇐⇒ f, g 6= 0 and f † � g†,
(7) f ≺≺ g :⇐⇒ f, g 6= 0 and f † ≺ g†.

In particular, if K is a pre-H-field, then

f � g ⇐⇒ |f | ≤ a|g| for some a ∈ O>0.

We also write f � g as g � f , and f ≺ g as g � f . To negate any of the
above relations we use a slash; for example, f 6� g means that v(f) 6= v(g).
These relations among elements of K are all preserved (in both directions)
when K is replaced by a pre-differential-valued field extension. Note that
� and ∼ are equivalence relations on K and K× respectively. When using
��, −�, and ≺≺ it is often convenient to exclude elements f � 1. Indeed, if
f, g 6= 0 and f, g 6� 1, then we have the equivalences

f �� g ⇐⇒ ψ
(
v(f)

)
≥ ψ

(
v(g)

)
,

f −� g ⇐⇒ ψ
(
v(f)

)
= ψ

(
v(g)

)
,

f ≺≺ g ⇐⇒ ψ
(
v(f)

)
> ψ

(
v(g)

)
.

Thus we say that f, g are comparable if f, g 6= 0, f, g 6� 1 and f −� g.
Comparability is an equivalence relation on {f ∈ K : 0 6= f 6� 1}. The
corresponding equivalence class of f with 0 6= f 6� 1 is called its compa-
rability class, and written as Cl(f). The set of comparability classes is
linearly ordered by setting

Cl(f) ≤ Cl(g) :⇐⇒ f �� g.

We have an order reversing bijection Cl(f) 7→ ψ(v(f)) = v(f †) from the set
of comparability classes onto the subset Ψ of Γ. For 0 6= f 6� 1 the elements
f , −f , 1/f and −1/f are comparable, so if K is a pre-H-field, then each
comparability class contains positive infinite elements (elements > O), and
usually we take such elements when dealing with comparability. If K is even
a Hardy field and f, g are positive infinite, then f ≺≺ g if and only if fn < g
for all n, so our use of the term “comparability class” and the ordering
on the set of comparability classes agrees with Rosenlicht’s use for Hardy
fields in [27]. For Liouville closed H-fields we shall similarly characterize
comparability in terms of “powers” f c with f > C and c ∈ C, see §7.

The following lemma lists some simple rules about these relations.

Lemma 1.1. Let f, g ∈ K. Then
(1) If f 6� 1 and g 6� 1, then f � g if and only if f ′ � g′,
(2) If f ≺ g 6� 1, then f ′ ≺ g′,
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(3) If f � g 6� 1 and f ′ ∼ g′, then f ∼ g.
(4) If 1 ≺ f � g, then f �� g.
(5) If K is an H-field and f, g > C, f ≺≺ g, then fn < g for all n.

Proof. Apart from notation and terminology, (1), (2) and (4) are in [2]. For
(3), consider the case f − g 6� 1, where we can apply (1), and the case
f − g � 1, which under the hypothesis of (3) implies f � g, hence g � 1,
and thus f − g ≺ g. With the hypothesis of (5), suppose fn ≥ g, n > 0.
Then 1 ≺ g � fn, so g �� fn �� f by (4), contradiction. �

Exponentials in Liouville closed H-fields. In this subsection K will
denote a Liouville closed H-field. We shall need a crude substitute for an
exponential function on K, and accordingly we choose for every f ∈ K an
element E(f) ∈ K>0 such that E(f)† = f ′. (So for g ∈ K>0 we have g† = f ′

if and only if g = cE(f) for some positive constant c.) Here are some simple
rules about E. Let f, g ∈ K; then

(E1) E(f + g) = cE(f) E(g) and E(−f) = dE(f)−1, where c, d ∈ C>0;
(E2) f � 1 ⇐⇒ E(f) � 1;
(E3) f > C ⇐⇒ E(f) � 1; f < C ⇐⇒ E(f) ≺ 1;
(E4) 1 ≺ f =⇒ f ≺≺ E(f);
(E5) f > C =⇒ E(f) > fn ; f < C =⇒ 0 < E(f) < |f |−n < C>0 ;
(E6) If f, g 6� 1, then f ≺ g ⇐⇒ E(f) ≺≺ E(g).

In Section 7 we show that if C = R, then the map f 7→ E(f) can be chosen
such that the constants c and d in (E1) are always equal to 1. Proof of (E2):

f � 1 ⇐⇒ v(f) ≥ 0 ⇐⇒ v(f ′) = v
(
E(f)†

)
> Ψ

⇐⇒ v(E(f)) = 0 ⇐⇒ E(f) � 1.

Proof of (E3): suppose f > C; then f ′ = E(f)† > 0, so E(f) 6≺ 1, and hence
E(f) � 1 by (E2). For f < C, use the second part of (E1) to conclude
E(f) ≺ 1. Proof of (E4): suppose 1 ≺ f ; then v(f) < 0, so

ψ
(
v(f)

)
= v(f ′/f) > v(f ′) = ψ

(
v
(
E(f)†

))
,

hence f ≺≺ E(f). Now (E5) follows from (E3), (E4) and part (5) of the last
lemma. Proof of (E6): with f, g 6� 1 we have

f ≺ g ⇐⇒ f ′ ≺ g′ ⇐⇒ E(f)† ≺ E(g)† ⇐⇒ E(f) ≺≺ E(g).

Similarly, for all f ∈ K with f > 0 we choose L(f) ∈ K such that L(f)′ = f †.
(Thus g ∈ K satisfies g′ = f † if and only if g = L(f) + c for some constant
c.) Clearly L

(
E(f)

)
= c+ f and E

(
L(f)

)
= d · f for some constants c, d of

K. For f, g ∈ K>0, we have
(L1) L(f · g) = c+ L(f) + L(g) and L(f−1) = d− L(f), where c, d ∈ C;
(L2) f � 1 ⇐⇒ L(f) � 1;
(L3) f � 1 ⇐⇒ L(f) > C; f ≺ 1 ⇐⇒ L(f) < C;
(L4) f 6� 1 =⇒ L(f) ≺≺ f ;
(L5) f � 1 =⇒

(
L(f)

)n
< f ; f ≺ 1 =⇒ C < |L(f)|n < f−1;
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(L6) If f, g 6� 1, then L(f) ≺ L(g) ⇐⇒ f ≺≺ g.
(Here, (L2) and (L3) immediately follow from (E2) and (E3), respectively.
For (L4), note that f 6� 1 implies 1 ≺ L(f) by (L2), (L3); so L(f) ≺≺
E
(
L(f)

)
−� f by (E4). Now (L5) follows from (L3), (L4) and part (5) of

Lemma 1.1, and (L6) follows from (E6).)
Let En denote the n-th iterate of the map f 7→ E(f) : K → K>0. So

E0 = idK , E1 = E, E2 = E ◦E, and so on. The function L maps K>C into
itself, by (L3). Let Ln : K>C → K>C be the n-th iterate of

f 7→ L(f) : K>C → K>C ,

so L0 is the identity map onK>C . In the next two lemmas, used in Section 3,
we assume that x is an element of K with x > C and x′ = 1.

Lemma 1.2. Let y ∈ K, y � E(x2). Then C < y(n)/y ≺≺ y, for each n > 0.

Proof. We may assume y > 0 (replacing y by −y, if y < 0). From y �
E(x2) � 1 we get y �� E(x2), that is, y† � E(x2)† = 2x, hence y† > C.
Moreover, 1/y† � 1/x ≺ 1, so by Lemma 1.1, (1) we get −y††/y† = (1/y†)′ �
(1/x)′ = −1/x2 ≺ 1, and thus y† ≺≺ y. This proves the desired inequalities
for n = 1. For n > 1, write

y(n)/y =
(
y(n−1)

)† · y(n−1)/y,

and use a straightforward induction argument. �

Lemma 1.3. Let y, f ∈ K, y 6= 0 and f ≥ x2.
(1) If y† < f , then |y| < E(xf).
(2) If y† < En(f), then |y| < En+1(f), for all n > 0.

Proof. We may as well assume that y > 0 (by replacing y by −y, if y < 0).
Suppose y† < f . Since f ≥ x2 � x > C, we have f ′ � x′ = 1 and f ′ > 0,
that is, f ′ > C. Therefore(

xf − L(y)
)′ = xf ′ + f − y† > xf ′ > C,

hence in particular
(
xf − L(y)

)′ � 1 = x′, so xf − L(y) � x � 1. It follows
that xf − L(y) > C, so

E(xf)/y � E
(
xf − L(y)

)
> xf − L(y) � 1,

by (E1) and (E5). Hence E(xf) > y, showing (1).
For (2), note that it suffices to consider the case n = 1, because En−1(f) >

f ≥ x2 for n > 1, by (E5). We prove the stronger statement

y � E2(f) =⇒ y† � E(f).

Suppose y � E2(f). Since f > C, we have E2(f) � 1 by (E3), so y† �
E2(f)† = E(f)′ by Lemma 1.1, (4). Now f � x � 1 implies E(f)† = f ′ �
x′ = 1, hence y† � E(f)′ = E(f) E(f)† � E(f) as required. �
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2. Nonexistence of Small Infinite Zeros

A small infinite element of an H-field is one that is just a bit larger than
all constants. Many difficulties in the subject arise from properties of small
infinite elements. In this section we focus on the property of being a zero of
a given differential polynomial.

Since the above description of small infinite element is not a precise def-
inition, we shall avoid this term below, but it might be helpful to keep in
the back of one’s mind.

Lemma 2.1. Let E ⊆ F be an extension of pre-H-fields with trdeg(F |E) ≤
n. Then there are at most n comparability classes of F without representative
in E.

This is proved just like Proposition 5 in [27] about Hardy fields.

Lemma 2.2. Let E be a pre-H-field contained in a Liouville closed H-field
F , and let a ∈ E be positive infinite, such that E has comparability classes
smaller than that of a. Then there exists a positive infinite b ∈ E such that
b � L(a) in F .

This is proved just like Proposition 6 of Rosenlicht’s paper [27].

Lemma 2.3. Let E ⊆ F be pre-H-subfields of a Liouville closed H-field L,
such that E has a smallest comparability class, and trdeg(F |E) ≤ n. Then
there are integers r, s ≥ 0 with r + s ≤ n such that

(1) F has a smallest comparability class, and it contains an element
� Lr(a) for any positive infinite a ∈ E of smallest comparability
class in E;

(2) for each b ∈ F there is a ∈ E such that b < Es(a).

This is again proved like Theorem 3 of [27], using Lemmas 2.1 and 2.2. Note
that a pre-H-field E has a smallest comparability class if and only if the set

ΨE =
{
v(a†) : a ∈ E×, a 6� 1

}
has a largest element.

In the rest of this section K is an H-field and P (Y ) =
∑

i aiY
i ∈ K{Y }

a non-zero differential polynomial of order at most n. The last lemma im-
mediately implies:

Theorem 2.4. Suppose the coefficients of P lie in some pre-H-subfield of K
with a smallest comparability class Cl(f), f ∈ K>C . Then P (y) 6= 0 for all
y in all Liouville closed H-field extensions L of K with CL < y < Ln+1(f).

The hypothesis on the coefficients of P is automatically satisfied if K is a
directed union of pre-H-subfields each of which has a smallest comparability
class. For example,

R((x−1))LE =
⋃
n

R
((

1
`n

))E
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is such a representation of R((x−1))LE as directed union, with

`n := logn x = log log · · · log x (n times)

representing the smallest comparability class of R
((

1
`n

))E
. Thus we may

conclude:

Corollary 2.5. Let K = R((x−1))LE. There is no element b in any differ-
entially algebraic H-field extension L of K such that CL < b < a for all
a ∈ K>R. �

Such a representation as directed union is not always possible. Indeed, we
cannot omit the condition on P in the last theorem, see [3]. The following
is much weaker than the conclusion of the last theorem, but at least it holds
unconditionally:

Corollary 2.6. Let K be Liouville closed. Then there is a > C in K such
that P has no zero y ∈ K with C < y < a.

Proof. Suppose not. Then there is an elementary extension L of K and
a u ∈ L with CL < u < K>C and P (u) = 0. By Lemma 2.1, the pre-
H-subfield K〈u〉 = K(u, u′, . . . ) of L has a smallest comparability class,
since K〈u〉 has finite transcendence degree over K and Cl(u) < Cl(f) for all
f ∈ K, 0 6= f 6� 1. Hence, by the last theorem, there is a positive infinite
g ∈ K〈u〉 such that any zero > CL of P in L is ≥ Ln+1(g). But L is an
elementary extension of K, so K must then have an element a > C such
that P has no zeros y ∈ K with C < y < a. �

We say that a term ajY
j (with j ∈ Nn+1 such that aj 6= 0) is the domi-

nating term of P at a point y ∈ K, if

aiy
i ≺ ajy

j for all i 6= j in Nn+1.

(In that case P (y) ∼ ajy
j and hence signP (y) = sign ajy

j .)
As in [2], we say that K is closed under asymptotic integration if

for each a ∈ K there is b ∈ K with b′ ∼ a; equivalently, (id+ψ)(Γ∗) = Γ.

Proposition 2.7. Suppose K is closed under asymptotic integration, Ψ is
not bounded from below in Γ, and P (Y ) is of order at most 1. Then there
exist a, b ∈ K with C < a and i, j, k, l ∈ N such that for all y in all H-field
extensions of K:

(1) if C < y < a, then a(i,j)Y
i(Y ′)j is the dominating term of P at y,

(2) if y > b, then a(k,l)Y
k(Y ′)l is the dominating term of P at y.

Proof. This follows from the fact that the function

Γ<0 → Γ: γ 7→ rγ + sψ(γ),

for given integers r, s, not both zero, is monotone and does not assume a
largest or a smallest value. See [2], Section 2, for details. �
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Example. Let K = R((x−1))LE, and consider the differential polynomial
P (Y, Y ′) = xY ′ + Y Y ′ − Y ∈ K{Y }. Let y ∈ K>0. Then P (y, y′) ∼ −y if
1 ≺ y ≺≺ x, and P (y, y′) ∼ yy′, if x ≺ y.

Remark. Proposition 2.7 does not generalize to differential polynomials
P (Y ) of order > 1: consider the differential polynomial P (Y ) = Y ′′Y +(Y ′)2

of order 2 over K = R((x−1))LE; then for all sufficiently large y ∈ K>0,
we have y′′y � (y′)2, by Lemma 5.2, (1) below. Similarly, for P (Y ) =
Y ′′ + tY ′ ∈ K{Y } we have y′′ � ty′ for all sufficiently small y > R in K, by
Corollary 5.2, (2).

3. Nonexistence of Large Infinite Zeros

Let K be a pre-differential-valued field, with corresponding asymptotic cou-
ple (Γ, ψ).

Lemma 3.1. The derivation a 7→ a′ : K → K is continuous with respect to
the valuation topology of K.

Proof. The result being obvious if Γ = {0}, we may assume Γ 6= {0}. Since
the derivation is additive we only have to show continuity at 0. Let γ ∈ Γ.
By the proof of Corollary 2 in [24] there exists x ∈ K× such that v(x) > 0
and v(x′) > γ. It follows that for all y ∈ K with v(y) > v(x) we have
v(y′) > γ. �

In fact, the derivation being additive, it is uniformly continuous in the fol-
lowing sense: for each γ ∈ Γ there is δ ∈ Γ such that whenever x, y ∈ K and
v(x− y) > δ, then v(x′ − y′) > γ.

An obvious consequence of this continuity property is that each dif-
ferential polynomial P (Y ) ∈ K{Y } gives rise to a continuous function
y 7→ P (y) : K → K. Here continuity is with respect to the valuation topol-
ogy. Note that if K is a pre-H-field and the valuation of K is non-trivial,
this topology coincides with the order topology of K.

Lemma 3.2. Let P (Y ) = a0Y + · · · + anY
(n), all ai ∈ K, an 6= 0. Then

each level set P−1(s) (s ∈ K) is a discrete subset of K.

Proof. Suppose y ∈ P−1(s) is not isolated in P−1(s). After a translation
we can assume that y = s = 0. Then there exist zeros y0, . . . , yn ∈ K× of
P such that 1 � y0 � y1 � · · · � yn, but then y0, y1, . . . , yn are linearly
independent over C, a contradiction. �

Lemma 3.3. No differential polynomial P (Y ) ∈ K{Y }\{0} vanishes iden-
tically on any non-empty open subset of K.

Proof. We proceed by induction on d(P ) :=
∑

i degY (i) P . If d(P ) = 0,
then P ∈ K×, and the result holds trivially. Let d(P ) > 0, and let U be
a nonempty open subset of K. For a ∈ U and y ∈ K we have by Taylor
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expansion

P (a+y) = P (a)+
∑
i

∂P

∂Y (i)
(a) ·y(i) + terms of higher degree in (y, y′, . . . ).

Let ai := ∂P
∂Y (i) (a). Since d

(
∂P
∂Y (i)

)
< d(P ) for all i and ∂P

∂Y (i) 6= 0 for some i,
we may assume inductively that a ∈ U has been chosen such that ai 6= 0 for
some i. By the previous lemma we can then choose arbitrarily small y 6= 0
in K such that

∑
i aiy

(i) 6= 0. Then, with c ∈ C, we have

P (a+ cy) = P (a) + c
∑
i

aiy
(i) + terms of higher degree in c,

which can vanish for only finitely many values of c. �

The case of H-fields. In the rest of this section we assume that K is an
H-field with a distinguished element x > C such that x′ = 1. We want to
show:

Theorem 3.4. Let P (Y ) ∈ K{Y } \ {0} have order at most n. There exists
an element f of the subfield of K generated by x and the coefficients of P
such that either P (y) > 0 for all y > En(f) in all Liouville closed H-field
extensions of K, or P (y) < 0 for all y > En(f) in all Liouville closed H-field
extensions of K.

Corollary 3.5. Suppose K is Liouville closed, P (Y ) ∈ K{Y } \ {0}, and
a ∈ K. Then there exists ε ∈ K>0 such that either P (y) > 0 for all y in
each H-field extension of K with a < y < a + ε, or P (y) < 0 for all y in
each H-field extension of K with a < y < a+ ε. (In particular, the zero set
of P in K is discrete.)

Proof. We may assume a = 0. Then apply the last theorem to the differential
polynomial Q(Y ) := Y 2dP (1/Y ) with d the (total) degree of P . �

Remark. In Corollary 3.5 we cannot omit the condition that K is Liouville
closed: the conclusion fails for the Hardy field K = R(x), a = 0 and the
differential polynomial

P (Y ) := Y Y ′′x− (Y ′)2x+ Y Y ′,

whose zero set is {cxk : c ∈ R, k ∈ Z}.

In the proof of Theorem 3.4, we shall use the following lemma.

Lemma 3.6. Let Y be a differential indeterminate (over the trivial dif-
ferential field Q), and put Z = Y ′/Y ∈ Q〈Y 〉. Then for each n ≥ 1 we
have

Y (n)/Y = pn(Z)

for some differential polynomial pn of order n− 1 with integral coefficients.
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Proof. By induction on n. For n = 1 we put pn(Z) = Z. Suppose Y (n)/Y =
pn(Z) where pn has integral coefficients and order n− 1. Then(

Y (n)/Y
)′ =

(
Y (n+1)/Y

)
− (Y ′/Y ) ·

(
Y (n)/Y

)
= pn(Z)′,

so
Y (n+1)/Y = pn(Z)′ + Z · pn(Z) = pn+1(Z),

where pn+1 is of order n and has integral coefficients. �

Proof of Theorem 3.4. It is convenient to establish by induction on n a
slightly stronger result:

(Hn) Let P (Y ) ∈ K{Y } \K be of order at most n, and 0 < g ∈ K. Then
there exists an element f of the subfield of K generated by g, x, and
the coefficients of P such that either P (y) ≥ g for all y ≥ En(f) in
each Liouville closed H-field extension of K, or P (y) ≤ −g for all
y ≥ g in each Liouville closed H-field extension of K.

For n = 0 we have

P (Y ) = adY
d + ad−1Y

d−1 + · · ·+ a0 (ai ∈ K, ad 6= 0, d > 0).

Then f := 1 + |ad−1/ad| + · · · + |a0/ad| + |g/ad| ∈ Q(a0, . . . , ad, g) has the
desired property.

Suppose n > 0 and (Hn−1) holds. Let P =
∑

i aiY
i ∈ K{Y } \ K be

of order ≤ n and of total degree d > 0, and g ∈ K>0. Let Q be the
homogeneous part of degree d of P , that is, Q =

∑
|i|=d aiY

i, and write
P = Q+R, so R =

∑
|i|<d aiY

i. Consider a multiindex i ∈ Nn+1 of degree
< d and an element y in a Liouville closed H-field extension of K, with
|y| ≥ E(x2). As 1 ≺ y(i)/y ≺≺ y for each i ≥ 0 (Lemma 1.2), we have
yi/y|i| ≺≺ y, hence in particular

yi/yd � yi/y1+|i| ≺ 1,

since |i| < d. Thus |aiy
i/yd| ≤ |ai| for all terms aiY

i of R, and hence

(3.1)
∣∣R(y)/yd

∣∣ ≤ ∑
|i|<d

|aiy
i/yd| ≤

∑
|i|<d

|ai| =: h.

Note that h is an element of the subfield of K generated by the coefficients
ai of P .

We first consider the case that some Y (i) with i > 0 actually occurs in Q.
Let Z = Y ′/Y ∈ K〈Y 〉. Then by Lemma 3.6,

Q/Y d = Q
(
1, Y ′/Y, . . . , Y (n)/Y

)
= q(Z)

for a differential polynomial q ∈ F{Z} of order ≤ n− 1, where F is the sub-
field of K generated by the coefficients of Q, and Z is treated as a differential
indeterminate; in fact, the order of q is one less than the maximal i such
that Y (i) occurs in Q, in particular q /∈ K. By the inductive assumption,
there exists f ∈ F (g, h, x) such that either

(3.2) q(z) ≥ h+ g



12 MATTHIAS ASCHENBRENNER AND LOU VAN DEN DRIES

for all z ≥ En−1(f) in each Liouville closed H-field extension of K, or

q(z) ≤ −h− g

for all z ≥ En−1(f) in each Liouville closed H-field extension of K. We may
of course assume that f ≥ x2. Suppose the first alternative holds, and let y
be an element of a Liouville closed H-field extending K, and{

y ≥ E(xf) if n = 1,
y ≥ En(f) if n > 1.

Then z = y† ≥ En−1(f) by Lemma 1.3, hence

P (y)/yd = R(y)/yd + q(z) ≥ g

by (3.1) and (3.2), thus

P (y) ≥ P (y)/yd ≥ g.

If the second alternative holds, one concludes similarly that

P (y) ≤ −g.

This finishes the inductive step in case some Y (i) with i > 0 actually occurs
in Q.

Suppose no Y (i) with i > 0 occurs in Q. Then Q = adY
d, where ad ∈ K×.

Let y be an element of a Liouville closed H-field extension of K such that
y ≥ max

{
E(x2),

(
(g+h)/ad

)2}. As before, using Lemma 1.2 one shows that
|aiy

i/yd−1/2| ≤ |ai| for all terms aiY
i of R, hence∣∣R(y)/yd−1/2

∣∣ ≤ h.

Now ady
1/2 ≥ g+h if ad > 0, and ady1/2 ≤ −g−h if ad < 0. Thus if ad > 0,

then
P (y)/yd−1/2 = R(y)/yd−1/2 + ady

1/2 ≥ g,

hence P (y) ≥ g, and if ad < 0, then

P (y)/yd−1/2 = R(y)/yd−1/2 + ady
1/2 ≤ −g,

implying that P (y) ≤ −g. �

Corollary 3.7. If y in a Liouville closed H-field extension of K satisfies
P (y) = 0, where P (Y ) ∈ K{Y } \ {0} has order at most n, then |y| < En(f)
for some f ∈ K. �

Remarks.
(1) For n = 0 this corollary is well-known. (See [4], Lemma 1.2.11.)

For n = 1 and K = R(x) (with x the germ at +∞ of the identity
function) the corollary is due to Borel ([5], p. 30). The proof of
Theorem 3.4 generalizes the main idea of Borel’s argument. In [6],
[26] and [29] similar but weaker results are proved for Hardy fields.
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(2) For the Hardy field R(x) Corollary 3.7 is best possible in the following
sense: En(x), for n > 0, is a zero of a differential polynomial of order
n over R(x), and En(x) > En−1(f) for each f ∈ R(x), see [7].

(3) For equations of order 1 over Hardy fields more precise results are
available: see [15] for the case K = R(x) and [26] for the case of an
arbitrary Hardy field containing x.

(4) The second theorem of the Introduction follows from Theorem 3.4.
This is because any Liouville closed H-field turns into one that con-
tains a positive x � 1 with x′ = 1 after replacing its derivation ∂ by
a∂ for a suitable a > 0.

4. Intermediate Value Property
for First-Order Differential Polynomials

We begin this section by showing that linear differential polynomials of order
1 have the intermediate value property in Liouville closed H-fields. Next we
prove an intermediate value property for arbitrary differential polynomials
of order 1.

Proposition 4.1. Let K be a Liouville closed H-field. Then each of the
functions

y 7→ y′ : K → K, y 7→ y† : K<0 → K, y 7→ y† : K>0 → K

is surjective and has the intermediate value property.

Proof. Let a, b ∈ K, a < b, and let s ∈ K lie strictly between a′ and b′. We
have to find y ∈ (a, b) with y′ = s. Now since K is Liouville closed, there
exists z ∈ K such that z′ = s. Passing from (a, b) to (a− z, b− z), we may
assume that s = 0. So we have a′b′ < 0, and we have to find y ∈ C ∩ (a, b).
If a < 0 < b, we may take y := 0. Suppose 0 < a < b. (The case a < b < 0
is similar.) If b > O, then b′ > 0, and necessarily a ∈ O, so certainly
C ∩ (a, b) 6= ∅. If b ∈ O and b′ < 0 < a′, then a < y < b for y ∈ C with
y ∼ a. If b ∈ O and a′ < 0 < b′, and c, d ∈ C are such that c ∼ a, d ∼ b,
then c < d, and for any y ∈ C ∩ (c, d) we have a < y < b as required. Thus
y 7→ y′ : K → K has the intermediate value property.

We now prove the intermediate value property for y 7→ y† : K>0 → K.
(Since y† = (−y)† for y ∈ K×, this will also imply the intermediate value
property for y 7→ y† : K<0 → K.) Let 0 < a < b be in K, and s ∈ K strictly
between a† and b†. We have to find y ∈ (a, b) with y† = s. Since K is
Liouville closed we can choose z ∈ K>0 with z† = s, by Liouville closedness
of K. Passing from (a, b) to (a/z, b/z), we may assume s = 0. So a′b′ < 0,
and we have to show C ∩ (a, b) 6= ∅. But this follows from the intermediate
value property of y 7→ y′ on K. �

Corollary 4.2. Let K be a Liouville closed H-field, and α, β ∈ K. The
differential polynomial function

y 7→ αy + βy′ : K → K
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has the intermediate value property.

Proof. This is clear from the previous result if α = 0 or β = 0. Let α, β 6= 0;
we can assume β = 1. Let a < b in K and suppose s ∈ K lies strictly
between αa + a′ and αb + b′. We have to find y with a < y < b such that
αy+y′ = s. Since K is Liouville closed, there exists z ∈ K with αz+z′ = s,
so passing from (a, b) to (a − z, b − z), we reduce to the case s = 0. If
a < 0 < b, we can take y = 0. Otherwise, either a < b < 0 or 0 < a < b,
and by the intermediate value property of y† on K<0 and K>0, respectively,
it follows that there exists y ∈ (a, b) with y† = −α, that is, αy + y′ = 0 as
required. �

The main result in this section is an intermediate value property where we
allow extensions of H-fields:

Theorem 4.3. Let K be an H-field, and F (Y, Z) ∈ K[Y, Z]. Let φ < θ
in K such that F (φ, φ′) and F (θ, θ′) are non-zero and of opposite sign in
K. Then there is an H-field extension L of K with an element η such that
φ < η < θ and F (η, η′) = 0.

See [10] for the analogue of this result for the category of Hardy fields. In
the proof of Theorem 4.3, we need the chain rule from the next subsection.

Composing derivations and semialgebraic functions. Let K be a real
closed field equipped with a derivation a 7→ a′. In the following, the term
“semialgebraic” is to be taken in the sense of K. (See [4] for basic facts
about semialgebraic sets and functions.)

Lemma 4.4. Let U ⊆ Kn be an open semialgebraic set, g : U → K a semi-
algebraic function of class C1, and suppose we have a polynomial P ∈ K[X],
with X = (X1, . . . , Xn+1), such that P

(
u, g(u)

)
= 0 and ∂P

∂Xn+1

(
u, g(u)

)
6= 0

for all u ∈ U . Then there is a continuous semialgebraic function g̃ : U → K
such that

(4.1) g(u)′ = g̃(u) +
n∑
i=1

∂g

∂xi
(u) · u′i for all u = (u1, . . . , un) ∈ U .

Proof. Define g̃ : U → K with g̃(u) = g(u)′ −
∑n

i=1
∂g
∂xi

(u) · u′i. We have to
show that g̃ is continuous and semialgebraic. Put Pi := ∂P

∂Xi
∈ K[X] for

i = 1, . . . , n + 1, and write P =
∑

α cαX
α with coefficients cα ∈ K. Then

we have for u ∈ U

P
(
u, g(u)

)′ = P̃
(
u, g(u)

)
+

(
n∑
i=1

Pi
(
u, g(u)

)
· u′i

)
+Pn+1

(
u, g(u)

)
·g(u)′ = 0,

where P̃ :=
∑

α c
′
αX

α ∈ K[X]. Differentiating the identity P
(
u, g(u)

)
= 0

with respect to xi for i = 1, . . . , n gives

Pi
(
u, g(u)

)
+ Pn+1

(
u, g(u)

)
· ∂g
∂xi

(u) = 0
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on U . Substituting this into the preceding identity for P
(
u, g(u)

)′ gives

P̃
(
u, g(u)

)
+

(
n∑
i=1

−Pn+1

(
u, g(u)

)
· ∂g
∂xi

(u) · u′i

)
+ Pn+1

(
u, g(u)

)
· g(u)′ = 0

on U , which implies

g̃(u) = −P̃
(
u, g(u)

)
/Pn+1

(
u, g(u)

)
on U , so g̃ is indeed continuous semialgebraic on U . �

Remarks.
(1) The proof shows that if ∗K is a real closed differential extension field

of K, then (4.1) remains valid when we replace U , g and g̃ by their
extensions ∗U , ∗g and ∗g̃ that are defined by the same formulas in
the language of ordered rings over K as U , g and g̃, respectively.

(2) Suppose the derivation on K is continuous with respect to the order
topology. (For example, this is the case if K is a real closed H-
field, see §3.) Then the hypothesis in the lemma on the existence
of the polynomial P vanishing nonsingularly on the graph of g may
be dropped. To see this, note that then the function g̃ : U → K
defined by g̃(u) = g(u)′ −

∑n
i=1

∂g
∂xi

(u) · u′i is continuous, because of
the continuity of the derivation of K. Hence it suffices to find finitely
many semialgebraic open subsets of U whose union is dense in U ,
and on each of which g̃ is semialgebraic. This allows us to reduce to
the case treated in the lemma.

We shall also need the following general extension result.

Lemma 4.5. Let K be a pre-H-field such that Ψ has no largest element.
Let L be an ordered differential field extension of K such that if f ∈ L and
f > r for some r ∈ K with r > O, then f ′ > 0. Then L is a pre-H-field
with respect to the valuation with valuation ring

OL :=
{
u ∈ L : |u| < r for each r ∈ K with r > O

}
.

Proof. Let u ∈ OL and 0 6= b ∈ m. We claim that then v(u′) > v(b†). To
see this, let any r ∈ K with r > O be given. Then r − u > r/2 > O,
and similarly r + u > r/2 > O, so r′ − u′ > 0 and r′ + u′ > 0. Hence
|u′| ≤ |r′|, so v(u′) ≥ v(r′). Since the set Ψ =

{
v(b†) : 0 6= b ∈ m

}
has no

largest element, every element of Ψ is bounded from above by an element
of (id+ψ)

(
Γ<0

)
=
{
v(r′) : r ∈ K, r > O

}
. Hence v(u′) > v(b†) for all

b ∈ m \ {0}, as we claimed.
Next, let f ∈ L× with v(f) 6= 0. We claim that then v(f †) ≤ v(r†) for

some r ∈ K with r > O. (Note that the lemma follows from this claim
in combination with the previous claim.) We may assume that f > OL.
Then f > r > O for some r ∈ K. Since Γ has no smallest positive element,
we can decrease r if necessary so that v(f) < v(r) < 0. Then f/r > OL,
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hence (f/r)′ > 0, so f † = f ′/f > r′/r = r† > 0, and thus v(f †) ≤ v(r†), as
promised. �

Proof of Theorem 4.3. After passing to the real closure of K we may
assume that K is already real closed. We then carry out a reduction to the
proposition below exactly as in the setting of Hardy fields, see [10].

Proposition 4.6. Let K be a real closed H-field, I an interval in K and
f : I → K a continuous semialgebraic function. Let a, b ∈ I with a < b such
that a′− f(a) and b′− f(b) are non-zero and of opposite sign. Then there is
a real closed H-field extension of K containing an element c with a < c < b
such that c′ = f(c).

In the proposition’s conclusion, and its proof below, f is extended in the
usual way to any real closed field extending K; this extension of f is also
denoted by f .

Proof (of Proposition 4.6). By suitably extending K we may assume that
Ψ has no largest element. We now first consider the case that a′ < f(a) and
b′ > f(b). Let

A :=
{
y ∈ (a, b) : y′ < f(y)

}
, B :=

{
y ∈ (a, b) : y > A

}
.

Then A and B are non-empty. If A has a supremum c in K, then c′ = f(c)
by continuity, and we are done, by taking L := K as the desired H-field. So
we may assume in the following that A has no supremum in K, and thus
that B has no infimum in K. Let K(c) be an ordered field extension of K
with A < c < B, and let L be the real closure of K(c). Equip L with the
unique derivation that extends the one on K and satisfies c′ = f(c).

Claim. Let s ∈ L and s > r for some r ∈ K with r > O. Then s′ > 0.

Once this claim is established, it follows from Lemma 4.5 that L with the
given ordering and derivation, and the valuation with valuation ring

OL :=
{
u ∈ L : |u| < r for each r ∈ K with r > O

}
is a pre-H-field (which hence can be embedded into a real closed H-field as
desired).

Proceeding to the proof of the claim, write s = g(c) with g : J → K a
semialgebraic function, J ⊆ K an open interval containing c. After decreas-
ing J suitably we may assume that g is of class C1 and that some polynomial
in K[X1, X2] vanishes nonsingularly on the graph of g, as in the hypothesis
of Lemma 4.4. Hence there is a continous semialgebraic function g̃ : J → K
such that

g(y)′ = g̃(y) + g′(y)y′ for all y ∈ J .
By the first remark following that lemma,

s′ = g(c)′ = g̃(c) + g′(c)c′ = g̃(c) + g′(c)f(c).

From s = g(c) > r > O we obtain g(y) > r for all y ∈ J , after decreasing
J once more if necessary. Hence g(y)′ = g̃(y) + g′(y)y′ > 0 for y ∈ J .
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Suppose for a contradiction that s′ ≤ 0, so g̃(c) + g′(c)f(c) ≤ 0, and hence
g̃(y) + g′(y)f(y) ≤ 0 for y ∈ J , after perhaps decreasing J again. Hence
g′(y)

(
y′ − f(y)

)
> 0 for y ∈ J . We now choose a subinterval J0 of J

containing both elements in A and in B (so c belongs to the natural extension
of J0 in L), such that

(1) if g′(c) > 0, then g′(y) > 0 for all y ∈ J0,
(2) if g′(c) < 0, then g′(y) < 0 for all y ∈ J0.

(The case g′(c) = 0 cannot occur since g′(y) 6= 0 for y ∈ J .) In case (1) we
obtain y′ − f(y) > 0 for all y ∈ J0, contradicting A ∩ J0 6= ∅. In case (2) we
obtain y′ − f(y) < 0 for all y ∈ J0, contradicting B ∩ J0 6= ∅.

The case that a′ > f(a) and b′ < f(b) is treated in the same way, after
setting A :=

{
y ∈ (a, b) : y′ > f(y)

}
and B :=

{
y ∈ (a, b) : y > A

}
. �

5. The Valuation of Higher Derivatives

Let (Γ, ψ) be an asymptotic couple. We define for each n a map

ψ(n) : Γ∞ → Γ∞ : ψ(0) := idΓ∞ , ψ(n+1) := ψ(n) + ψ ◦ ψ(n).

So ψ(n) is the n-fold iterate of the map id+ψ : Γ∞ → Γ∞. An easy induction
on n shows that if (Γ, ψ) is the asymptotic couple of a pre-differential-valued
field K and ψ(n)

(
v(a)

)
6= ∞, a ∈ K, then ψ(n)

(
v(a)

)
= v

(
a(n)

)
, where a(n)

is the n-th derivative of a. This is why we write ψ(n)—not to be confused
with the n-th iterate ψn of ψ—and why we derive identities for ψ(n)(α).

Lemma 5.1. For all α ∈ Γ,
(1) ψ(α) < ψ2(α) ⇒ ψ(n)(α) = α+ nψ(α), for all n,
(2) ψ(α) > ψ2(α) ⇒ ψ(n)(α) = α+ψ(α)+ (n− 1)ψ2(α), for all n > 0,

Proof. We first show (1). For n = 0 and n = 1 this holds by definition.
Assume (1) holds for a certain n > 0. Let α ∈ Γ∗ with ψ(α) < ψ2(α). Then

ψ(n+1)(α) = ψ(n)(α) + ψ
(
ψ(n)(α)

)
= α+ nψ(α) + ψ

(
α+ nψ(α)

)
.

From ψ(α) < ψ2(α) we get ψ
(
α+ nψ(α)

)
= ψ(α), so

ψ(n+1)(α) = α+ (n+ 1)ψ(α).

Next we prove by induction on n > 0 that (2) holds. The case n = 1 is trivial.
Assume (2) holds for a certain n > 0. Let α ∈ Γ∗ with ψ(α) > ψ2(α). Then

ψ(ψ2(α)− ψ(α)) > min
{
ψ2(α), ψ(α)

}
= ψ2(α),

hence

ψ
(
nψ2(α)

)
= ψ

(
ψ2(α)

)
= ψ

(
ψ2(α)− ψ(α) + ψ(α)

)
= ψ2(α).

This equality and the preceding inequality imply

ψ
(
ψ(α) + (n− 1)ψ2(α)

)
= ψ

(
ψ(α)− ψ2(α) + nψ2(α)

)
= ψ2(α).
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Therefore, using the inductive assumption,

ψ(n+1)(α) = ψ(n)(α) + ψ
(
ψ(n)(α)

)
= α+ ψ(α) + (n− 1)ψ2(α) + ψ

(
α+ ψ(α) + (n− 1)ψ2(α)

)
= α+ ψ(α) + nψ2(α).

�

Remark. Recall from [2] that an asymptotic couple (Γ, ψ) is said to be of
H-type if 0 < α ≤ β ⇒ ψ(α) ≥ ψ(β) for all α, β ∈ Γ. If (Γ, ψ) is of H-type,
then

(5.1) ψ(α+ β) = min
{
ψ(α), ψ(β)

}
for α, β ∈ Γ>0.

Lemma 5.2. Let 1 ∈ Γ>0 be such that ψ(1) = 1, and identify Z with the
subgroup Z · 1 of Γ via k 7→ k · 1. Then we have for α ∈ Γ∗:

(1) ψ(α) < 1 ⇒ ψ(α) < ψ2(α) and ψ(n)(α) = α+ nψ(α) for all n,
(2) ψ(α) > 1 ⇒ ψ(α) > ψ2(α) and ψ(n)(α) = α + ψ(α) + (n − 1) for

all n > 0,
(3) ψ(α) > 0 ⇒ ψ(n)(α) > α for all n > 0,
(4) if (Γ, ψ) is of H-type, α > 0 and ψ(α) = 1, then ψ(n)(α) = α+n for

all n.

Proof. If ψ(α) < 1, then −1 < −ψ(α), hence 0 = −1 + ψ(−1) < −ψ(α) +
ψ
(
−ψ(α)

)
= −ψ(α) + ψ2(α), that is, ψ(α) < ψ2(α). Similarly, one shows

that ψ(α) > 1 implies ψ(α) > ψ2(α). Moreover, if ψ(α) ≥ 1, then

ψ
(
ψ(α)− 1

)
= ψ

(
ψ(α)− ψ(1)

)
> min

{
ψ(α), ψ(1)

}
= 1,

hence ψ2(α) = ψ(ψ(α − 1) + 1) = 1. So parts (1) and (2) follow from
Lemma 5.1. Easy inductions on n prove (3) and (4). (Use (5.1) for (4).) �

Remark. Sometimes we cannot assume that there exists 1 ∈ Γ>0 with ψ(1) =
1 but only that ψ(1)

(
Γ>0

)
⊆ Γ>0. With this weaker assumption we can still

conclude:(
α ∈ Γ, ψ(α) ≤ 0

)
⇒

(
ψ(n)(α) = α+ nψ(α) for all n

)
.

To see this, show that ψ(α) ≤ 0 implies ψ(α) < ψ2(α), and apply Lemma 5.1.

Lemma 5.3. Suppose (Γ, ψ) is of H-type and ψ(1) = 1, with 1 ∈ Γ>0. Then
for all α ∈ Γ∗ and n > 0, we have

ψ(n)(α) < α ⇐⇒ ψ(α) < 0,

ψ(n)(α) = α ⇐⇒ ψ(α) = 0.

Proof. Let α ∈ Γ∗, n > 0. Suppose ψ(α) ≤ 0. Then ψ(n)(α) = α+ nψ(α) ≤
α, with equality exactly if ψ(α) = 0. Conversely, ψ(n)(α) ≤ α implies
ψ(α) ≤ 0 by part (3) of the previous lemma. �
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Lemma 5.4. Let K be a pre-differential-valued field whose asymptotic cou-
ple (Γ, ψ) is of H-type, and let ψ(1) = 1, with 1 ∈ Γ>0. Then

v(yi) = |i|v(y) + (wi)ψ
(
v(y)

)
for i ∈ Nn+1 and y ∈ K× with v(y) ≥ 1.

Proof. For such y we have ψ(y) ≤ ψ(1) = 1. Hence by parts (1) and (4) of
Lemma 5.2 we have ψ(k)

(
v(y)

)
= v(y) + kψ

(
v(y)

)
= v

(
y(k)

)
, for all k ∈ N.

Now use the definition of yi as the product of factors
(
y(k)

)ik . �

6. Simple Zeros of Differential Polynomials

Let K be a pre-differential-valued field with corresponding asymptotic cou-
ple (Γ, ψ). Let P ∈ K{Y } be of order n. Taylor expansion around a ∈ K
gives

P (a+ Y ) =
∑

i

1
i!
∂|i|P

∂Y i
(a)Y i

= P (a) +
n∑
i=0

∂P

∂Y (i)
(a)Y (i) + terms of degree at least 2.

Definition 6.1. We say that a ∈ K is a simple zero of P (Y ) if P (a) = 0
and ∂P

∂Y (i) (a) 6= 0 for some i.

If Ψ is bounded from below in Γ, then by Kolchin [18] each simple zero of
P in K is isolated in the set of all zeros of P in K. For the rest of this
section, we suppose that (Γ, ψ) is of H-type, with an element 1 ∈ Γ>0 such
that ψ(1) = 1, and that Ψ is not bounded from below in Γ. We will show:

Proposition 6.2. Let a ∈ K be a simple zero of P , and let m be maximal
such that ∂P

∂Y (m) (a) 6= 0. There exists 0 6= ε ≺ 1 such that for all y ≺ ε in all
pre-differential-valued field extensions of K of H-type, and for all i ∈ Nn+1

with |i| > 1 or wi < m:

∂P

∂Y (m)
(a)y(m) � ∂|i|P

∂Y i
(a)yi.

(So the term ∂P
∂Y (m) (a)y(m) of the Taylor expansion of P around a dominates

the other terms. In particular, a is isolated in the set of zeros of P in K.)
For the proof of the proposition, we first note that after translating by

−a we may assume a = 0. So we can write P =
∑

i aiY
i, where the sum

ranges over all i ∈ Nn+1 with |i| > 0, ai ∈ K, all but finitely many zero,
and ai 6= 0 for some i with |i| = 1. The proposition now follows from:

Lemma 6.3. Let i, j ∈ Nn+1 and a, b ∈ K×. The following are equivalent:
(1) There exists ε ≺ 1 in K× such that ayi � byj for all non-zero y ≺ ε

in all pre-differential-valued field extensions of K of H-type.
(2) One of the following holds:
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(a) |i| < |j|, or
(b) |i| = |j| and wi > wj, or
(c) |i| = |j|, wi = wj, and a � b.

This lemma is an immediate consequence of the last lemma in the previous
section.

The case of H-fields. Suppose now in addition that K is an H-field. In
the next proposition, if I is an interval in K, we also write I for the natural
extension of I to an interval in an ordered field extension L of K.

Proposition 6.4. Suppose that an := ∂P
∂Y (n) (a) 6= 0. Then there exists an

interval I around a in K such that in every H-field extension of K, the map
y 7→ P (y) is strictly increasing on I if an > 0 and n is even, or an < 0 and
n is odd, and strictly decreasing on I otherwise.

Proof. By passing from P (Y ) to P (Y + a) if necessary, we may assume
a = 0. Below, let i range over the (finitely many) multiindices in Nn+1 with
∂|i|P/∂Y i 6= 0. Let β be an element of K such that

β

∣∣∣∣∣ ∂|i|∂Y i
(0)

∣∣∣∣∣ <
∣∣∣∣ ∂P

∂Y (n)
(0)
∣∣∣∣ for all i.

By continuity there exists ε > 0 in K such that for all y in all H-field
extensions of K with −2ε < y < 2ε:

β

∣∣∣∣∣ ∂|i|∂Y i
(y)

∣∣∣∣∣ <
∣∣∣∣ ∂P

∂Y (n)
(y)
∣∣∣∣ for all i.

Decreasing ε if necessary, we may assume in addition that for all those y, if
y 6= 0, then 0 6= y(i) ≺ 1 for i = 0, . . . , n, so sign y(n) = (−1)n sign y, and

βy(n) � yi for i with |i| > 1 or wi < n,

by Lemma 6.3. Now let y and z be elements of an H-field extending K with
−ε < y < z < ε. Taylor expansion around y gives

P (z) = P (y) +
n∑
i=0

∂P

∂Y (i)
(y)(z − y)(i) +

∑
|i|>1

1
i!
∂|i|P

∂Y i
(y)(z − y)i.

By choice of ε and β we have, for all i with |i| > 1 or wi < n:

∂|i|P

∂Y i
(y)(z − y)i ≺ ∂P

∂Y (n)
(y)(z − y)(n).

Hence

sign
(
P (z)− P (y)

)
= sign

(
∂P

∂Y (n)
(y)(z − y)(n)

)
= (−1)n sign an.

So P (y) < P (z) if n is even and an > 0 or if n is odd and an < 0, and
P (y) > P (z) otherwise. �



LIOUVILLE CLOSED H-FIELDS 21

Remark. Suppose an = 0. Then there is by Corollary 3.5 an ε ∈ K>0

such that either ∂P
∂Y (n) (y) > 0 for all y in all H-field extensions of K with

a < y < a + ε, or ∂P
∂Y (n) (y) < 0 for all y in all H-field extensions of K with

a < y < a+ ε. Take such an ε and assume we are in the first case (positive
sign) and n is even. By the proposition, each y0 in any H-field extension
with a < y0 < a + ε has an interval in that H-field extension around it on
which the differential polynomial function y 7→ P (y) is strictly increasing.
Can one choose ε such that this function is even strictly increasing on the
entire interval (a, a+ ε) in all H-field extensions of K?

7. Exponential Maps and Powers

In this section we study exponential maps and power functions on H-fields.
By an exponential map on an ordered field K we mean an isomorphism
K → K>0 of the ordered additive group of K onto its ordered multiplicative
group of positive elements. (See [21] for general facts on exponential maps.)
We first show that any exponential map on the constant field C of a Liouville
closed H-field K can be extended to an exponential map on K.

A Hardy field K ⊇ R is closed under powers if f c ∈ K for all f ∈ K>0

and c ∈ R; such y = f c satisfies the differential equation y† = cf †. We use
this observation to define when an H-field is closed under powers, and how
to make the value group of such an H-field into an ordered vector space over
the constant field.

Lemma 7.1. Let K be a Liouville closed H-field.
(1) There is an order preserving isomorphism

a 7→ exp(a) : m → 1 + m

from the additive group m onto the multiplicative group 1 + m that
assigns to each a ∈ m the unique y = exp(a) ∈ 1 + m such that
y† = a′.

(2) There is an order preserving group isomorphism

K/O → K>0/C>0(1 + m)

that assigns to each additive coset a + O the multiplicative coset
yC>0(1 + m) where y is any element of K>0 such that y† = a′.

Proof. For part (1), we first show that for a ∈ m, the equation y† = a′ has
a unique solution in 1 + m. Take y0 ∈ K× with y†0 = a′. Then necessarily
y0 � 1. Take c ∈ C× with cy0 ∼ 1. Then cy0 ∈ 1+m is a solution of y† = a′.
If y, z ∈ 1 + m and y† = z† = a′, then y/z ∈ (1 + m) ∩ C = {1}, so y = z.
Thus exp: m → 1 + m is a surjective homomorphism of groups.

Let 0 < a ∈ m. We have to show that then exp(a) > 1. Note that a′ < 0
by a remark preceding Lemma 1.4 in [2], so with exp(a) = 1 + b, b ∈ m,
we have (b + 1)† = a′ < 0, and thus b′ < 0. The derivation being strictly
decreasing on m, we have b > 0, as required.
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The map defined in part (2) is clearly a surjective group homomorphism.
To finish the proof of (2), let y ∈ K>0, y† = a′, a ∈ K, a > O. We have to
show that y � 1. If y ≺ 1, then y† < 0 < a′, a contradiction. If y � 1, then
y† � y′ ≺ a′, a contradiction. Hence y � 1. �

Remark. Let K be a Liouville closed H-field. Since O is a C-linear subspace
of K we can choose a C-linear subspace A of K that is a direct summand
to O: K = A ⊕ O. The group homomorphism y 7→ y† : K>0 → K is
surjective and K>0 is divisible and torsion-free, so we can choose a divisible
subgroup F of K>0 that is mapped injectively onto A′ := {a′ : a ∈ A} by
this homomorphism. The previous lemma tells us that then F is a direct
factor in K>0 of C>0(1 + m), in particular K>0 = F · C>0(1 + m). This
gives us an isomorphism

expA,F : A→ F

of ordered abelian groups, which sends a ∈ A to the unique y ∈ F such
that y† = a′. Suppose that in addition there is given an exponential map
expC on the ordered field C. We combine these two exponential maps with
the isomorphism exp: m → 1 + m in part (1) of the lemma to obtain an
exponential map

exp: K = A⊕ C ⊕m → F · C>0(1 + m) = K>0

on the ordered field K: exp(a+ c+ ε) := expA,F (a) exp(c) exp(ε) for a ∈ A,
c ∈ C and ε ∈ m. (If C = R, we can of course take for expC the usual
exponential function x 7→ ex.) We then have exp(f)† = f ′ for all f ∈ K; in
particular, E = exp satisfies (E1)–(E6) from Section 1.

Corollary 7.2. No Liouville closed H-field is maximally valued.

Proof. LetK be a Liouville closedH-field, and let A, F , and expA,F : A→ F
be as in the remark above. Then we define an ordered group embedding
s : Γ → K by

s(γ) = a ⇐⇒ v
(
− expA,F (a)

)
= γ,

for γ ∈ Γ, a ∈ K. This map satisfies s(Γ) ∩ O = {0} and K = s(Γ)⊕O.
In [20], Theorem 4, it is shown that the existence of such a map is incom-

patible with K being maximally valued. �

H-Fields closed under powers. Let K be an H-field. We say that K
is closed under powers if for every c ∈ C and f ∈ K×, the differential
equation

(7.1) y† = cf †

has a solution y in K×. (So if K is Liouville closed, then K is closed under
powers.) The ratio of any two solutions to (7.1) inK× is a non-zero constant.

In the rest of this section K is an H-field closed under powers.
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We extend the map (k, f) 7→ fk : Z×K>0 → K>0 to a map

(c, f) 7→ f c : C ×K>0 → K>0

such that for each f ∈ K>0 and c ∈ C, the element y = f c satisfies (7.1).
(For what follows it doesn’t matter how such a map is chosen.)

We write f =C g, for f, g ∈ K, if f = cg for some c ∈ C>0. With this
notation we have the following simple rules, for f, g ∈ K>0 and c, c1, c2 ∈ C:

(P1) f =C g ⇒ f c =C g
c.

(P2) f c1f c2 =C f
c1+c2 ;

(P3) (f c1)c2 =C f
c1c2 ;

(P4) (fg)c =C f
cgc;

(P5) suppose c > 0; then f ≺ g ⇐⇒ f c ≺ gc; also f � g ⇐⇒ f c � gc.

The proofs of (P1)–(P4) are obvious. For (P5) we first use (P4) to reduce
to the case g = 1. So let 0 < f ≺ 1; it suffices to show that then f c ≺ 1.
(For the converse, take 1/c instead of c.) We have (f c)† = cf † < 0, so
f c � 1. If f c � 1, then (f c)† � ε′ for some infinitesimal ε, hence (f c)† ≺ f †,
a contradiction. Thus f c ≺ 1, as required.

We can now characterize comparability in terms of powers as promised in
§1. Recall in this connection that for f, g ∈ K with f, g > C we have

Cl(f) < Cl(g) ⇐⇒ f ≺≺ g ⇐⇒ f † ≺ g†.

Proposition 7.3. Let f, g ∈ K, f, g > C. Then

f ≺≺ g ⇐⇒ f c < g for all c ∈ C>0.

Proof. Suppose that f c < g for all c ∈ C>0. Then f c ≺ f c+1 < g for all
c ∈ C>0, so f c ≺ g for all c ∈ C>0, hence (f c)† = cf † < g† for all c ∈ C>0,
by Lemma 1.4 in [2]. Thus f † ≺ g†. The converse follows by reversing these
steps. �

In the remainder of this section we establish a link to the notions and re-
sults from [1]. This link will play a role in our further work on asymptotic
differential algebra, in collaboration with J. van der Hoeven. We first make
the value group Γ into an ordered vector space over the constant field C:

Lemma 7.4. For c ∈ C, γ = v(f) ∈ Γ with f ∈ K>0 and y ∈ K>0 with
y† = cf †, the element v(y) ∈ Γ only depends on (c, γ) (not on the choice of
f and y), and is denoted by c · γ. The scalar multiplication (c, γ) 7→ c · γ :=
v(f c) : C × Γ → Γ makes Γ into an ordered vector space over the ordered
field C.

Proof. That v(y) depends only on (c, γ) follows from (P5). The second
assertion of the lemma then follows easily from (P1)–(P5). �

Next we recall the definition of “Hahn space” from [1]. Let V be an ordered
vector space over an ordered field k. Then the k-archimedean class [v]k of
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a vector v ∈ V is its equivalence class under the equivalence relation on V
defined by

v ∼ w :⇐⇒ ∃λ ∈ k>1 :
1
λ
|v| ≤ |w| ≤ λ|v|.

(If Γ is a divisible ordered abelian group, considered as ordered vector space
over Q, then [γ]Q coincides with the archimedean class [γ] of γ ∈ Γ as defined
in [2], §2.) We put [V ]k :=

{
[v]k : v ∈ V

}
and linearly order [V ]k by

[v]k < [w]k :⇐⇒ [v]k 6= [w]k and |v| < |w|.

Then V is said to be a Hahn space if for all vectors v, w ∈ V ∗

[v]k = [w]k ⇒ ∃λ ∈ k : [v − λw]k < [w]k.

Hahn spaces behave nicely under scalar extension, and satisfy an analogue
of the Hahn embedding theorem for ordered abelian groups (see [1], §2).

Proposition 7.5. The ordered vector space Γ = v(K×) over C is a Hahn
space, and for all γ, δ ∈ Γ∗ we have

(7.2) [γ]C ≤ [δ]C ⇐⇒ ψ(γ) ≥ ψ(δ).

If K has an element x > C with x′ = 1, then (Γ, ψ) is an H-couple over C,
with distinguished positive element 1 := v(x−1). If in addition K is Liouville
closed, then (Γ, ψ) is a closed H-couple. (On H-couples, see [2].)

Proof. We first show (7.2), and then derive the Hahn space property of Γ.
Since ψ is decreasing on Γ>0 (Lemma 2.2 in [2]) and ψ(c · γ) = ψ(γ) for all
c ∈ C× and γ ∈ Γ∗, the direction from left to right in (7.2) is clear. The
converse is an easy consequence of Proposition 7.3.

It now follows quickly that Γ is a Hahn space over C: Let f, g ∈ K>0 with
f, g 6� 1 and

[
v(f)

]
C

=
[
v(g)

]
C
. Then ψ

(
v(f)

)
= ψ

(
v(g)

)
, so there exists a

constant c such that f † ∼ cg†. Then we have ψ
(
v(f)− v(gc)

)
> ψ

(
v(f)

)
, so

by (7.2),
[
v(f)− c · v(g)

]
C

=
[
v(f)− v(gc)

]
C
<
[
v(f)

]
C
, as desired. �

In the next section we need the following lemma which gives the first terms
in the “binomial expansion” for powers of elements of 1 + m.

Lemma 7.6. Let c ∈ C, ε ∈ K, ε ≺ 1. Then (1 + ε)c =C 1 + cε + z with
z � ε2.

Proof. For y ∈ K>0 with y =C (1 + ε)c, we have y† = c(1 + ε)† ∼ cε′, hence
y � 1. Thus we can take y ∈ K>0 with y =C (1 + ε)c and y ∼ 1. Then
y = 1 + δ with δ ≺ 1, so δ′ = y′ ∼ y† ∼ cε′, hence δ � ε. Put z := δ − cε.
Then

z′ = δ′ − cε′ = y′ − y†(1 + ε) = y†
(
y − (1 + ε)

)
= y†(δ − ε) � cε′ε � (ε2)′,

and since z, ε2 ≺ 1, this yields z � ε2. �
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8. Adjoining Powers

We continue here our study of powers. The reason we pay so much at-
tention to this issue is our ultimate interest in existentially closed H-fields,
see Section 14. Such H-fields are closed under powers, so their asymptotic
couples carry a “definable” ordered vector space structure as indicated in
the last section. Among our conjectures on existentially closed H-fields is
that their asymptotic couples carry no further (definable) structure, see the
introduction of [1]. Thus we expect the structure coming from powers to be
important in any model-theoretic analysis of (existentially closed) H-fields.
In this section we generalize the main results on adjoining powers to Hardy
fields from [28] to the setting of H-fields.

Power extensions and closure under powers. A power extension of
a differential field K of characteristic 0 is a differential field extension L of
K such that CL|C is algebraic, and for each a ∈ L there are t1, . . . , tn ∈ L×
with a ∈ K(t1, . . . , tn) and for each i = 1, . . . , n, either

(1) ti is algebraic over K(t1, . . . , ti−1), or
(2) t†i = cf † for some c ∈ CL, 0 6= f ∈ K(t1, . . . , ti−1).

(So a power extension is in particular a Liouville extension as defined in [2].)

Definition 8.1. A closure under powers of an H-field K is an H-field L
extending K which is real closed, closed under powers, and such that L|K
is a power extension.

Note that if K is an H-field with trivial derivation (K = C), then its real
closure is, up to isomorphism over K, the unique closure under powers of
K.

In this section we prove that every H-field K has (up to isomorphism over
K) at least one and at most two closures under powers. The arguments are
similar to those used in proving analogous facts for Liouville closures in [2].

Lemmas on power extensions. We need variants of some results from
[2]. In the next three lemmas and accompanying remarks K is a real closed
H-field.

Lemma 8.2. If K is closed under powers, then K has no proper power
extension with the same constants as K.

(See the proof of part (1) of Lemma 6.3 in [2].)

Lemma 8.3. Let r, b ∈ K× be such that r 6= a† for all a ∈ K× and v(r−b†) ∈
(id+ψ)

(
Γ>0

)
. Let L = K(z) be a field extension of K with z transcendental

over K, and equip L with the unique derivation extending the derivation of
K such that z† = r. Then there is a unique pair consisting of a valuation
on L and an ordering of L that makes L a pre-H-field extension of K with
z ∼ b. With this valuation and ordering L is an H-field and an immediate
extension of K.
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Proof. Set y := (z/b)− 1, so (1 + y)† = r− b†. Now apply Lemma 5.2 in [2]
and the remark following it to s := r − b† and L = K(y). �

Remark. WithK, b and r as in the lemma, let E ⊇ K be anH-field extension
with CE = C and z0 ∈ E× such that z†0 = r. Then v

(
(z0/b)†

)
= v(r − b†) ∈

(id+ψ)
(
Γ>0

)
, so z0 � b. Hence cz0 ∼ b for some c ∈ C. With z := cz0 this

gives an H-subfield L = K(z) of E exactly as in the lemma.

Lemma 8.4. Let s, b ∈ K× be such that v(s− a†) < (id+ψ)
(
Γ>0

)
for each

a ∈ K×, b > 0, and Ψ < v(s− b†) < (id+ψ)
(
Γ>0

)
. Let L = K(y) be a field

extension of K with y transcendental over K, and equip L with the unique
derivation extending the derivation of K such that y† = s. Then CL = C,
and the following holds.

(1) There is a unique pair consisting of a valuation of L and an ordering
on L that makes L a pre-H-field extension of K with y > 0 and
y 6� b. With this valuation and ordering L is an H-field. Letting
z := y/b, we have z /∈ C, 0 < |v(z)| < Γ>0, ΓL = Γ ⊕ Zv(z), and
ΨL = Ψ ∪

{
v(z†)

}
, with v(z†) = v(s− b†) /∈ Ψ.

(2) There is a unique pair consisting of a valuation of L and an ordering
on L that makes L a pre-H-field extension of K with y > 0 and
y ∼ b. With this valuation and ordering L is an H-field. Letting
z := (y/b) − 1, we have z /∈ C, 0 < v(z) < Γ>0, ΓL = Γ ⊕ Zv(z),
and ΨL = Ψ ∪

{
v(z†)

}
, with v(z†) = v(s− b†)− v(z) /∈ Ψ.

Proof. Passing from s to s−b† and from y to y/b, we may assume that b = 1.
So Ψ < v(s) < (id+ψ)

(
Γ>0

)
. Replacing s by −s and y by 1/y if necessary,

we may also assume that s < 0. By [2] the H-field K has Liouville closures
M1,M2 such that s = f ′ for some f � 1 in M1 and s = g′ for some g ≺ 1 in
M2.

For part (1), let y1 ∈M>0
1 be such that y†1 = s. Then necessarily y1 6� 1.

Equip L = K(y) with the ordering and valuation such that the isomorphism
of differential fields K(y1) → K(y) which is the identity on K and maps y1

to y becomes an isomorphism of valued ordered differential fields. Then L
is an H-field. For any η 6= 0 in any H-field extension of K such that η† = s
and η 6� 1, we have η ≺ 1 (since s < 0), hence 0 < v(η) < Γ>0. Applying
this to y = η the rest of (1) follows easily.

For (2), let y2 ∈ M>0
2 be such that y†2 = s. Then necessarily y2 � 1, and

passing from y2 to cy2 for a certain constant c > 0, we may assume y2 ∼ 1.
Equip L = K(y) with the ordering and valuation such that the isomorphism
of differential fields K(y2) → K(y) which is the identity on K and maps
y2 to y becomes an isomorphism of valued ordered differential fields. Then
L is an H-field. Given any η > 0 in any H-field extension of K such that
η† = s and η ∼ 1, we have ζ := η − 1 ≺ 1 and ζ ′ = sη < 0, hence ζ > 0 and
0 < v(ζ) < Γ>0. Applying this to y := η the rest of (2) follows easily. �

Remark. With K, s and b as in the hypothesis of the lemma, let E ⊇ K

be an H-field extension with CE = C and y0 ∈ E>0 such that y†0 = s and
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y0 � b. Let c ∈ C>0 be such that cy0 ∼ b. Then y := cy0 is transcendental
over K, y† = s, and the H-field K(y) is exactly as described in part (2) of
the lemma.

Remarks. Let s ∈ K× be such that s 6= a† for every a ∈ K×, and put

S :=
{
v(s− b†) : b ∈ K>0

}
⊆ Γ.

Then exactly one of the following three cases applies:
(1) S ∩ (id+ψ)

(
Γ>0

)
6= ∅.

(2) S ∩ (id+ψ)
(
Γ>0

)
= ∅, and for each α ∈ S there exists γ ∈ Γ∗ with

α ≤ ψ(γ).
(3) S ∩ (id+ψ)

(
Γ>0

)
= ∅, and there exists a β ∈ S such that

Ψ < β < (id+ψ)
(
Γ>0

)
.

In case (1) the hypothesis of Lemma 8.3 holds for r := s. In case (2) the
hypothesis of Lemma 5.3 in [2] is satisfied when s < 0. In case (3) we can
take b ∈ K>0 such that Ψ < v(s− b†) < (id+ψ)

(
Γ>0

)
; then the hypothesis

of Lemma 8.4 is satisfied.

Constructing a closure under powers. Let K be an H-field. A tower
on K of power extensions is a strictly increasing chain (Kλ)λ≤µ of H-
fields with corresponding asymptotic couples (Γλ, ψλ), Ψλ := ψλ(Γ∗λ), and
constant fields Cλ, indexed by the ordinals λ less than or equal to some
ordinal µ, such that

(1) K0 = K,
(2) if λ is a limit ordinal, 0 < λ ≤ µ, then Kλ =

⋃
κ<λKκ,

(3) for λ < µ, either
(a) Kλ+1 is a real closure of Kλ,

or Kλ is already real closed, Kλ+1 = Kλ(yλ) with 0 < yλ /∈ Kλ (so
yλ is transcendental over Kλ),

y†λ = sλ where 0 6= sλ = cλf
†
λ, cλ ∈ C

×
λ , fλ ∈ K×

λ ,

and one of the following holds:
(b) sλ 6= a† for all a ∈ K×

λ , and there exists bλ ∈ K>0
λ with v(sλ −

b†λ) ∈ (id+ψλ)
(
Γ>0
λ

)
, yλ ∼ bλ;

(c) sλ < 0 and for all a ∈ K×
λ there exists γ ∈ Γ∗λ with v(sλ−a†) ≤

ψλ(γ);
(d) v(sλ − a†) < (id+ψλ)

(
Γ>0
λ

)
for all a ∈ K×

λ , and there exists
bλ ∈ K>0

λ with Ψλ < v(sλ − b†λ) < (id+ψλ)
(
Γ>0
λ

)
, and yλ 6� bλ;

(e) v(sλ − a†) < (id+ψλ)
(
Γ>0
λ

)
for all a ∈ K×

λ , and there exists
bλ ∈ K>0

λ with Ψλ < v(sλ − b†λ) < (id+ψλ)
(
Γ>0
λ

)
, and yλ ∼ bλ.

The H-field Kµ is called the top of the tower (Kλ)λ≤µ. Note that clause (a)
corresponds to the last part of §3 in [2], (b) to Lemma 8.3, (c) to Lemma 5.3
in [2], and (d), (e) to Lemma 8.4, (1) and (2), respectively.

Remarks. Let (Kλ)λ≤µ be a tower as above. Then:
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(1) Kµ is a power extension of K.
(2) Cµ is a real closure of C if µ > 0.
(3) card(Kµ) = card(K), hence µ < card(K)+. (By Lemma 6.1 in [2].)
(4) For λ < µ, we have:

(a) If Kλ+1 is a real closure of Kλ, then Γλ+1 = QΓλ.
(b) If Kλ+1 = Kλ(yλ) is as in 3(b), then Γλ+1 = Γλ.
(c) Suppose Kλ+1 = Kλ(yλ) is as in 3(c). Then Γλ+1 = Γλ⊕Zv(yλ)

and Ψλ is cofinal in Ψλ+1. If Ψλ has a largest element, then
Ψλ+1 has the same largest element. If Ψλ has no largest element,
then Γ>0

λ is coinitial in Γ>0
λ+1. (For the last two claims, use

remarks at end of §5 in [2].)
(d) If Kλ+1 = Kλ(yλ) is as in 3(d), then, setting zλ := yλ/bλ, we

have zλ /∈ Cλ, Γλ+1 = Γλ ⊕ Zv(zλ), Ψλ+1 = Ψλ ∪
{
v(z†λ)

}
, and

max Ψλ+1 = v(z†λ) = v(sλ − b†λ) ∈ Γλ \Ψλ.
(e) If Kλ+1 = Kλ(yλ) is as in 3(e), then, with zλ := (yλ/bλ)−1, we

have zλ /∈ Cλ, Γλ+1 = Γλ ⊕ Zv(zλ), Ψλ+1 = Ψλ ∪
{
v(z†λ)

}
, and

max Ψλ+1 = v(z†λ) = v(sλ − b†λ)− v(zλ) /∈ Ψλ.
(5) In the situation of (c) we have ψλ+1

(
v(yλ)

)
= ψλ

(
v(fλ)

)
, hence Ψλ

is coinitial in Ψλ+1. It follows easily that the set Ψ is coinitial in Ψµ.

By (3) there exists a maximal tower (Kλ)λ≤µ on K of power extensions, that
is, (Kλ)λ≤µ is a tower on K of power extensions that cannot be extended to
a tower (Kλ)λ≤µ+1 on K of power extensions. Given such a maximal tower,
Kµ is real closed, Kµ|K is a power extension of K, and, by the Remarks
following Lemma 8.4, Kµ is closed under powers, hence Kµ is a closure under
powers of K.

Conclusion: each H-field has a closure under powers.

At most two closures under powers. Let K be an H-field with real
closed constant field C 6= K. Take a maximal tower (Kλ)λ≤µ on K of power
extensions. Its top L := Kµ is a closure under powers of K. Let (ΓL, ψL)
be the asymptotic couple corresponding to L. We distinguish the following
two cases:

Case 1. For each λ < µ, Kλ+1 is obtained from Kλ as in 3(a), 3(b), or
3(c) above. Then ΓL = CΓ and Ψ is cofinal in ΨL. In this case L is the
unique closure under powers of K, up to isomorphism over K: Let L′ be
any closure under powers of K. Then we copy the tower (Kλ) inside L′,
more precisely, we inductively construct H-field embeddings jλ : Kλ → L′

for λ ≤ µ such that j0 is the natural inclusion K → L′ and jλ′ extends
jλ whenever λ < λ′ ≤ µ. (This is possible by the uniqueness parts of
Lemmas 8.3 and [2], 5.3, and the remarks following them.) By Lemma 8.2,
we have L′ = jµ(L).

Case 2. There exists λ < µ such that Kλ+1 is obtained from Kλ as in 3(d)
or 3(e). Given such λ, the set Ψλ+1 has a maximum, and it follows that
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Kν+1 is obtained from Kν as in 3(a), 3(b), or 3(c), whenever λ < ν < µ.
In particular, there is only one such λ. By an argument as in the previous
paragraph, using Lemma 8.2, the uniqueness parts of Lemmas 8.3, 8.4 and
[2], 5.3, and the remarks following them, one easily shows that K has exactly
two closures under powers, up to isomorphism over K.

We summarize this discussion:

Proposition 8.5. Let K be an H-field with real closed constant field C 6= K.
Then K has at least one and most two closures under powers, up to K-
isomorphism. �

In the rest of this section we show how to detect in K itself whether K has
one or two closures under powers.

Power products. Let L be an H-field extension of an H-field K such that
L is closed under powers and CL = C. By Lemma 7.4, ΓL is an ordered
vector space over the ordered field C. Let CΓ be the C-linear subspace of
ΓL spanned by Γ. A power product of f1, . . . , fn ∈ L>0 is an f ∈ L such
that f =C f c11 · · · f cnn . Note that then f † = c1f

†
1 + · · · + cnf

†
n; in particular

f † ∈ K if f1, . . . , fn ∈ K. For every positive element a of L with v(a) ∈ CΓ
there exists a power product f of elements of K such that a ∼ f .

Lemma 8.6. Let K ′ ⊇ K be an H-subfield of L such that ΓK′ = CΓ and
f c ∈ K ′ for all f ∈ K>0 and c ∈ C. For every power product f ∈ L
of positive elements of K ′ there exists a power product g ∈ K ′ of positive
elements of K and an ε ∈ L such that f = g(1 + ε) and ε � δ ≺ 1 for some
δ ∈ K ′.

Proof. Let f ∈ L, f1, . . . , fm ∈ (K ′)>0 and c1, . . . , cm ∈ C such that f =C

f c11 · · · f cmm . Using ΓK′ = CΓ we have fi =C gci11 · · · gcinn (1 + εi) for i =
1, . . . ,m, where g1, . . . , gn ∈ K>0, cij ∈ C, and εi ∈ K ′, εi ≺ 1, for i =
1, . . . ,m and j = 1, . . . , n. Hence

f =C g
e1
1 · · · gen

n (1 + ε1)c1 · · · (1 + εm)cm

where ej = c1c1j + · · ·+cmcmj for j = 1, . . . , n. By Lemma 7.6, we also have
(1 + εi)ci =C 1 + ciεi + zi with zi ∈ L and v(zi) ≥ 2v(εi), so

f =C g
e1
1 · · · gen

n (1 + ε) with v(ε) ≥ min
i
v(εi).

�

When are there two closures under powers? For the rest of this sec-
tion K is an H-field with real closed constant field C 6= K. To detect in K
itself when K has two closures under powers, we distinguish three mutually
exclusive cases:

(1) The set Ψ has a largest element.
(2) There exist c1, . . . , cn ∈ C and f1, . . . , fn ∈ K>0 such that

Ψ < v(c1f
†
1 + · · ·+ cnf

†
n) < (id+ψ)

(
Γ>0

)
.
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(3) Neither (1) nor (2) holds.
In this subsection, we say that K has type (n), for n = 1, 2, 3, if K satisfies
condition (n) above. Familiar examples show that types (1) and (3) occur.
The following observation will be used in Section 11 to show that type (2)
also occurs:

Lemma 8.7. Suppose that K is real closed, and let z ∈ K be such that

Ψ < v(z) < (id+ψ)
(
Γ>0

)
and let f ∈ K×, c ∈ C be such that v(cf †− b†) < v(z) for all b ∈ K×. Let y
be an element in a Liouville closure of K with y > 0 and y† = z−cf †. Then
K(y) is an H-field with real closed constant field C, and K(y) has type (2).

Proof. Put s = z − cf †. Changing from z to −z and from c to −c, if
necessary, we may assume that s < 0. Then K and s satisfy the hypotheses
of Lemma 5.3 in [2]. By the uniqueness part of that lemma and Remark (1)
following it, K(y) is an H-field with constant field C, and ΨK(y) < v(z) =
v(cf † + y†) < (id+ψK(y))

(
Γ>0
K(y)

)
. Hence K(y) has type (2). �

Fix a closure under powers L of K. Let K ′ be the real closure inside L of its
H-subfield K

(
f c : f ∈ K>0, c ∈ C

)
. Let (Γ′, ψ′) be the asymptotic couple

of K ′; so CΓ ⊆ Γ′. The following lemma describes (Γ′, ψ′) depending on the
type of K.

Lemma 8.8.
(1) If K has type (1), then Γ′ = CΓ and max Ψ′ = maxΨ.
(2) Suppose f1, . . . , fn ∈ K>0 and c1, . . . , cn ∈ C are such that f :=

f c11 · · · f cnn ∈ K ′ satisfies Ψ < v(f †) < (id+ψ)
(
Γ>0

)
. Then either

(a) Γ′ = CΓ, max Ψ′ = v(f †), and Ψ is cofinal in Ψ′ \
{
v(f †)

}
, or

(b) there exists z ∈ K ′ \ C such that 0 < v(z) < (CΓ)>0, Γ′ =
Qv(z) ⊕ CΓ, max Ψ′ = v(z†) = v(f †) − v(z), and Ψ is cofinal
in Ψ′ \

{
v(z†)

}
.

(3) If K has type (3), then Γ′ = CΓ, and Γ>0 is coinitial in (Γ′)>0.

Proof. Let (Kλ)λ≤µ be a tower on K of power extensions such that Kµ = K ′

and fλ ∈ K for λ < µ, with fλ as in the definition of “tower of power
extensions”.

Suppose first that K has type (1) or (3). Towards a contradiction, assume
that Kλ+1 is obtained from Kλ as in 3(d) or 3(e), for some (necessarily
unique) λ < µ. Hence Kν+1 is obtained from Kν as in 3(a), 3(b) or 3(c), for
each ordinal ν < λ. By induction on ν it follows that Γν ⊆ CΓ for ν ≤ λ.
Hence we can take a power product g ∈ Kλ of positive elements of K such
that g ∼ bλ. Since Ψλ < v(sλ − b†λ) < (id+ψλ)

(
Γ>0
λ

)
, we have

sλ − b†λ � (bλ/g)′ � (bλ/g)† = (sλ − g†)− (sλ − b†λ),

so sλ − g† ∼ sλ − b†λ. Hence f = yλ/g is a power product of positive
elements of K with Ψ < v(f †) < (id+ψ)

(
Γ>0

)
, a contradiction. Thus Kλ+1
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is obtained from Kλ as in 3(a), 3(b), or 3(c), for all λ < µ. Parts (1) and
(3) of the lemma now follow.

Suppose f ∈ K ′ is as in (2), so Ψ has no maximum. Towards a contradic-
tion, suppose that for all λ < µ, Kλ+1 is obtained from Kλ as in 3(a), 3(b)
or 3(c). In view of the properties listed in parts (a), (b) and (c) of the re-
marks after the definition of towers of power extensions, it follows that Γ>0

is coinitial in (Γ′)>0. Hence Ψ′ < v(f †) < (id+ψ′)
(
(Γ′)>0

)
. But v(f †) ∈ Ψ′

if f 6� 1, and v(f †) = v(f ′) ∈ (id+ψ′)
(
(Γ′)>0

)
if f � 1, a contradiction in

both cases. Thus Kλ+1 is obtained from Kλ as in 3(d) or 3(e) for a unique
λ < µ. Note that Γ>0 is coinitial in Γ>0

λ , and that Γλ ⊆ CΓ.
Suppose that Kλ+1 is obtained from Kλ as in 3(d). Then v(f †) and v(z†λ)

are both elements of Γλ strictly between Ψλ and (id+ψλ)(Γ>0
λ ), so v(f †) =

v(z†λ) = maxΨλ+1 = maxΨ′ < (id+ψ)
(
Γ>0. We also have Γ′ = CΓ. Hence

Ψ′ =
{
v(g†) : g ∈ K ′ is a power product of elements of K>0, v(g) 6= 0

}
.

Therefore Ψ′ ⊆ Γ, which in combination with Ψ′ < (id+ψ)
(
Γ>0

)
yields that

Ψ is cofinal in Ψ′ \
{
v(f †)

}
, as claimed.

Finally, suppose that Kλ+1 is obtained from Kλ as in 3(e). Put z :=
zλ ∈ K ′, so Γλ+1 = Zv(z) ⊕ Γλ with 0 < v(z) < Γ>0

λ . Then v(f †) and
v(z†) are both elements of Γλ strictly between Ψλ and (id+ψλ)(Γ>0

λ ), hence
v(f †) = v(z†). Also, if λ < ν < µ, then Kν+1 is obtained from Kν as in
3(a), 3(b) or 3(c), with fν ∈ K. It follows that

max Ψ′ = maxΨλ+1 = v(z†) = v(f †)− v(z) /∈ Γλ, Γ′ = Qv(z)⊕ CΓ.

In view of ψ′
(
(CΓ)∗

)
⊆ Γ, this yields 0 < v(z) < (CΓ)>0. Thus

Ψ′ \
{
v(z†)

}
= ψ′

(
(CΓ)∗

)
⊆ Γ, Ψ′ \

{
v(z†)

}
< v(f †).

Hence Ψ is cofinal in Ψ′ \
{
v(z†)

}
. �

In part (2) of this lemma we have f 6� 1 in case (a), and f � 1 in case
(b). The lemma shows that if K has type (1) or (2), then K ′ has type (1).
Moreover:

Lemma 8.9. If K has type (3), then K ′ also has type (3).

Proof. Suppose K has type (3). Then Ψ′ has no largest element, and Γ′ =
CΓ, by the previous lemma. Towards a contradiction, assume K ′ has type
(2). Take a power product f ∈ L of positive elements of K ′ such that
Ψ′ < v(f †) < (id+ψ′)

(
(Γ′)>0

)
. Lemma 8.6 yields a power product g ∈ K ′

of positive elements of K such that f = g(1 + ε) with ε � δ ≺ 1, δ ∈ K ′.
Then

v(f † − g†) = v(ε′) ≥ v(δ′) > v(f †),

so f † ∼ g†, and thus Ψ < v(g†) < (id+ψ)
(
Γ>0

)
, a contradiction. �

We are now in a position to prove the main result of this subsection:
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Proposition 8.10. The H-field K has two closures under powers, non-
isomorphic over K, if and only if K has type (2).

Proof. The backward direction follows from the treatment of type (2) in the
proof of Lemma 8.8.

Suppose that K is not of type (2). By induction on n we define an
increasing sequence

K(0) ⊆ K(1) ⊆ · · · ⊆ K(n) ⊆ · · ·

of H-subfields of L as follows: put K(0) := K, and assuming that K(n) ⊇ K
has already been defined as an H-subfield of L, put

K(n+1) := real closure inside L of K(n)
(
f c : 0 < f ∈ K(n), c ∈ C

)
.

The union of this sequence is an H-subfield of L which is closed under
powers and contains K; thus L =

⋃
nK

(n), by Lemma 8.2. By Lemmas 8.8
and 8.9 it follows inductively that each K(n) has the same type as K. By
the proof of Lemma 8.8, L is the only closure under powers of K, up to
K-isomorphism. �

Corollary 8.11. The value group of a closure under powers of K is as
follows:

(1) If K has type (1), then K has only one closure under powers L, up
to K-isomorphism, and ΓL = CΓ, max ΨL = maxΨ.

(2) If K has type (2), and c1, . . . , cn ∈ C and f1, . . . , fn ∈ K>0 are such
that

Ψ < β := v(c1f
†
1 + · · ·+ cnf

†
n) < (id+ψ)

(
Γ>0

)
,

then in one closure under powers L1 of K we have

ΓL1 = CΓ, max ΨL1 = β,

and Ψ is cofinal in ΨL1 \ {β}, and in another closure under powers
L2 of K there exists z ∈ L2 such that 0 < v(z) < (CΓ)>0 and

ΓL2 = CΓ⊕ Cv(z), max ΨL2 = v(z†) = β − v(z),

and Ψ is cofinal in ΨL2 \
{
v(z†)

}
.

(3) If K is of type (3), then K has only one closure under powers L, up
to K-isomorphism, and ΓL = CΓ, Γ>0 is coinitial in Γ>0

L .

Corollary 8.12. Suppose Ψ is a singleton. Then K has exactly one clo-
sure under powers L, up to K-isomorphism, and ΓL = CΓ, ΨL = Ψ. (In
particular, dimC ΓL = 1.) �

Remarks. The results in this section are close to those in [26] on Hardy
fields. But Hardy fields have only one “Hardy field” closure under powers,
and this fact obscures issues that come to light in the setting of H-fields.

Our Lemma 8.9 and the remarks preceding it are analogous to Corollary 1
of the main theorem in [26]. One particular inference (“therefore . . . ”, last
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two lines on p. 834) in the proof of that Corollary 1 seems problematic; we
needed Lemma 8.6 above to get around this.

9. Constant Field Extension

In this section we show that H-fields are well-behaved under constant field
extensions.

Let K be a differential-valued field, and L an extension field of K with
a subfield D ⊇ C such that K and D are linearly disjoint over C and
L = K(D). Then Theorem 3 of [24] says that there is a unique derivation
on L that extends the one of K and is trivial on D; this derivation has D
as its constant field. There is also a unique valuation of L that extends the
valuation of K and is trivial on D; this valuation of L has the same value
group as K, and is a differential valuation of L with respect to the derivation
of L that extends the one of K and is trivial on D. In the proposition below
we consider L as being equipped with this derivation and valuation.

Proposition 9.1. Let K and D also be equipped with orderings that make
K an H-field for the given derivation and valuation of K, and D an ordered
field extension of C. Then there is a unique ordering of L extending the
orderings of K and D in which the valuation ring of L is convex. With this
ordering L is an H-field for the derivation and valuation of L.

Proof. We first note that as a consequence of the proof of Theorem 3 in
[24] each f ∈ K[D] \ {0} is of the form f = λ1a1 + · · · + λnan with all
λi ∈ D×, and all ai ∈ K×, with v(a1) < v(ai) for all i = 2, . . . , n. We may
of course also assume here that a1 > 0. For any such expression of f we
have v(f) = v(a1). Next we observe that for a, b ∈ K we have v(a) = v(b) if
and only if a and b have the same C-archimedean class, that is, there exist
λ, µ ∈ C>0 such that λa ≤ b ≤ µa. It follows that K as ordered vector space
over C is a Hahn space in the sense of [1]. (See also §7.) Hence the D-linear
isomorphismK⊗CD ∼= K[D] given by a⊗λ 7→ λa implies by Proposition 2.2
in [1] that K[D] can be made in a unique way into an ordered vector space
over D such that for any f =

∑
i λiai as above (with a1 > 0) we have f > 0

if and only if λ1 > 0. It is easily checked that this ordering is compatible
with multiplication: if 0 < f, g ∈ K[D], then 0 < fg. This ordering extends
uniquely to the fraction field L of K[D] to make it an ordered field. Clearly
this ordering on L is the only candidate for meeting the requirements. It
does extend the orderings of K and D, and it is an easy exercise to check
that OL is the convex hull of D in L. The last statement of the proposition
is now clear from remark (2) following Lemma 3.1 in [2]. �

10. Completing H-Fields

We recall that any valued field K can be completed : it is dense (with respect
to the valuation topology) in a valued field extension Kc such that for each
valued field extension K ⊆ L with K dense in L there is a unique valued field
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embedding L → Kc that is the identity on K. These properties determine
Kc up to unique valued field isomorphism over K, and Kc is called the
completion of K. We note that Kc|K is an immediate extension. See [23]
for these facts.

Lemma 10.1. Suppose the derivation of the valued differential field K is
continuous. Then there is a unique continuous derivation on Kc that ex-
tends the derivation of K. Moreover, if K is differential-valued, then Kc is
differential-valued as well.

Proof. The derivation of K being additive, it is even uniformly continuous
(with respect to the uniform structure whichK has as an additive topological
group). Thus it extends uniquely to a continuous map Kc → Kc, and this
map is a derivation.

Let K be differential-valued, and let a ∈ Kc, v(a) > 0. In order to prove
that Kc is differential-valued, it suffices to show that then v(a′) > Ψ, by
remark (1) following Lemma 3.1 and Lemma 3.4 in [2]. Choose 0 6= b ∈
m with v

(
(a − b)′

)
> Ψ. Since v(b′) > Ψ, it follows that v(a′) > Ψ as

required. �

Suppose K is as in the lemma. Consider Kc as the valued differential field
whose derivation is the unique continuous derivation on Kc that extends
the one of K. If K ⊆ L is a valued differential field extension such that
K is dense in L and the derivation of L is continuous with respect to the
valuation topology, then the unique valued field embedding L→ Kc that is
the identity on K is a differential field embedding.

Assume moreover that K is equipped with an ordering such that the
valuation ring O of K is a convex subring of K. The ordering on K extends
uniquely to an ordering on Kc such that the valuation ring of Kc is convex.
The ordered field K is dense in Kc with respect to the order topology, and
if O 6= K, then for each ordered field extension K ⊆ L with K dense in L
there is a unique ordered field embedding L → Kc that is the identity on
K. If K is real closed, then so is Kc. We refer to [23] for proofs of these
and some other facts about Kc.

For the rest of this section we let K be an H-field. Then its derivation
is continuous with respect to the order topology, and extends uniquely to a
continuous derivation on Kc. It is worth noting that if K ⊆ L is an H-field
extension and B is a subset of L such that for each b ∈ B and ε ∈ K>0

there is a ∈ K with |a − b| < ε, then K is dense in the ordered differential
subfield K〈B〉 of L.

Lemma 10.2. The ordered differential field Kc is an H-field. If K is Li-
ouville closed, so is Kc.

Proof. The first statement follows from Lemma 10.1 and remark (2) after
Lemma 3.1 in [2]. Suppose K is Liouville closed; we want to show that Kc

is Liouville closed. For this, it is enough to show, by the remark preceding
the lemma: if a ∈ Kc and y, z are elements of a Liouville closure of Kc with
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y′ = a and z 6= 0, z† = a, then for all ε ∈ K>0 there exist y0, z0 ∈ K such
that |y0−y| < ε and |z0−z| < ε. We may suppose ε ∈ m; we find y0 ∈ K with
(y0 − y)′ = y′0 − a ≺ ε′, hence |y0 − y| < ε. Similarly, assuming that ε ≺ z,
we choose z0 ∈ K× such that (z0/z)† = b† − a ≺ (ε/z)′. Then z � z0, and
by multiplying z0 by a suitable non-zero constant, we may assume z ∼ z0.
So (z0/z − 1)′ = (z0/z)′ ≺ (ε/z)′. It follows that z0/z − 1 ≺ ε/z and hence
|z0 − z| < ε as required. �

Example. Recall (from [12], p. 69) the construction of the field R((t))E of
exponential series as a subfield of the series field R((GE)). Here GE denotes
the ordered abelian subgroup of (R((t))E)>0 consisting of the E-monomials
of R((t))E. The valued field R((t))E is dense in the maximally valued field
R((GE)), hence R((GE)) is the completion of R((t))E. By the results above,
the derivation on R((t))E extends uniquely to a continuous derivation on
R((GE)). With this derivation and its usual ordering, R((GE)) is an H-field
extension of R((t))E.

Corollary 10.3. Given a Liouville closure L of K, the following are equiv-
alent:

(1) K is dense in L.
(2) Some H-subfield of Kc containing K is Liouville closed.
(3) Kc is Liouville closed.
(4) L is an immediate extension of K.
(5) ΓL = Γ.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) are either clear, or
obvious using the preceding results. So it just remains to show (5) ⇒ (1).
Let Γ = ΓL. Then Γ is divisible, since L is real closed. Assume for a
contradiction that K is not dense in L. By changing the derivation ∂ on
L to a∂, for a suitable a ∈ K>0, we reduce to the case that 0 ∈ Ψ. Let
f ∈ L and ε ∈ L>0. We want to show that K ∩ (f − ε, f + ε) 6= ∅. Since
Γ = ΓL, K>0 is coinitial in L>0, so by decreasing ε if necessary, we may
assume ε ∈ K>0. Multiplying f by 1/ε, we can further reduce to the case
that ε = 1. Let g, h ∈ L× be such that g† = f − 1, h† = f + 1. We claim
that g ≺ h. Otherwise g � h by Lemma 1.4 in [2], hence

1 � h† − g† = (h/g)† � (h/g)′ ≺ 1,

a contradiction. So indeed g ≺ h. Choose a ∈ K× with g ≺ a ≺ h.
(Such a exists since Γ = ΓL is divisible, hence densely ordered.) Hence
f − 1 = g† < a† < h† = f + 1, and thus a† ∈ K ∩ (f − 1, f + 1). �

11. Constructing H-Fields for given H-Couples

Let (V, ψ) be an H-couple over the scalar field k. We shall construct an
H-field K with constant field k which is closed under powers and has (V, ψ)
as its associated H-couple, under the following additional assumption:
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(∗) The k-vector space V has a basis (ei)i∈I consisting of positive ele-
ments, such that [ei]k 6= [ej ]k for all i 6= j in I.

By a theorem of Brown [8], assumption (∗) is satisfied if V is countably gen-
erated as k-vector space. It is also satisfied if [V ∗]k is well-ordered (equiv-
alently, Ψ := ψ(V ∗) is reverse well-ordered): take an injective enumeration(
[ei]k

)
i∈I of [V ∗]k such that each ei is positive; then (ei) is a basis as in (∗).

For the remainder of this section (V, ψ) denotes an H-couple over k,
and (ei)i∈I a basis of V as in (∗). We say that ej occurs in the vector
v =

∑
i∈I λiei (all λi ∈ k, and λi 6= 0 for only finitely many i) just in case

λj 6= 0.
Let tV be a multiplicative copy of the (additive) ordered abelian group

V , ordered such that v 7→ tv : V → tV is an order-reversing isomorphism.
We consider formal sums f =

∑
v∈V avt

v with coefficients av in k. For such
f we define its support as supp f :=

{
v ∈ V : av 6= 0

}
. Let

K := k((tV )) =
{
f : supp f is well-ordered

}
be the field of generalized power series with coefficients in k and exponents
in V , considered as an ordered valued field with value group V in the usual
way (see [12], §1). (In particular, 0 < t := t1 < k>0.) We write v(a) for the
valuation of a ∈ K. The valuation ring of this valuation is O =

{
f ∈ K :

supp f ⊆ V ≥0
}
, with maximal ideal m =

{
f ∈ K : supp f ⊆ V >0

}
.

If fj ∈ K for all j ∈ J for some (possibly infinite) set J , we say that the
sum

∑
j∈J fj exists (in K) if the following two conditions are met:

(1) For each v ∈ V there are only finitely many j ∈ J with v ∈ supp fj .
(2) The union

⋃
j∈J supp fj is well-ordered in V .

If these two requirements are satisfied, we can associate with the family
(fj)j∈J a well-defined element

∑
j∈J fj of K.

We introduce a derivation on K by first considering an element tv, v ∈ V ,
with v =

∑
i∈I λiei ∈ V (λi ∈ k for all i ∈ I, and λi = 0 for all but finitely

many i), and setting

(tv)′ := −
∑
i∈I

λit
ψ(ei)+v, v ∈ V.

(In particular, (tei)′/tei = −tψ(ei) for all i ∈ I. If the distinguished positive
element 1 is among the basis elements ei, then t′ = (t1)′ = −t2 and (t−1)′ =
1.) Next, for f =

∑
v∈V avt

v ∈ K, we put

(11.1) f ′ :=
∑
v∈V

av(tv)′,

In order for (11.1) to make sense, we have to show:
(1) For each w ∈ V there are only finitely many v ∈ supp f such that

w = ψ(ei) + v for some basis vector ei occurring in v.
(2) The set of all w = ψ(ei) + v, where v ∈ supp f and ei occurs in v, is

well-ordered.
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For (1), suppose w = ψ(ei)+u = ψ(ej)+v for elements u < v in supp f , with
ei, ej occurring in u and v, respectively. Then ψ(ei) − ψ(ej) = v − u > 0,
so [ei]k < [ej ]k and [v − u]k =

[
ψ(ei) − ψ(ej)

]
k
< [ei − ej ]k = [ej ]k. Hence

ej occurs in u. So if we have a strictly increasing sequence (vn)n∈N in
supp f and a sequence (in)n∈N in I such that for all n, ein occurs in vn and
ψ(ein) + vn = ψ(ein+1) + vn+1, then all ein occur in v0, which is impossible
as only finitely many ei occur in v0. This proves (1). For (2), suppose for
a contradiction that (in)n∈N is a sequence in I and (vn)n∈N a sequence in
supp f such that ein occurs in vn, for all n, and

ψ(ei0) + v0 > ψ(ei1) + v1 > · · · .
Passing to a subsequence and using that supp f is well-ordered, we reduce
to the case that vn ≤ vn+1 for all n. Hence 0 ≤ vn − v0 < ψ(ei0) − ψ(ein),
so [vn − v0]k ≤

[
ψ(ei0) − ψ(ein)

]
k
< [ei0 − ein ]k = [ein ]k. Thus each ein

occurs in v0. This is impossible as the ein are distinct. (This is because
0 ≤ vn+1 − vn < ψ(ein) − ψ(ein+1) for all n.) This concludes the proof of
(2).

Lemma 11.1. The map f 7→ f ′ : K → K is a derivation on K, and makes
K into an H-field with constant field k and associated asymptotic couple
(V, ψ).

Proof. It is easy to check that the map is a derivation on K, trivial on k.
Let f =

∑
u∈V aut

u ∈ K× with v(f) 6= 0. We claim that v(f ′) = v(f) +
ψ
(
v(f)

)
. Every non-zero term aut

u in f with u 6= 0 contributes au(tu)′ to
f ′, and v

(
au(tu)′

)
= u+ψ(u), see above. As u+ψ(u) is strictly increasing in

u 6= 0, it follows that if u0 = v(f) = min(supp f), then v(f ′) = u0 +ψ(u0) =
v(f) + ψ

(
v(f)

)
.

Next assume f =
∑

u∈V aut
u ∈ K× is such that f ′ = 0. After subtracting

from f its constant term a0, the same argument as before shows that then
f = 0. Thus k is exactly the constant field of the derivation. It is also clear
that O = k⊕m. Let f =

∑
v∈V avt

v ∈ K with f > C = k. We have to show
that then f ′ > 0. We have already seen that v(f ′) = v0 + ψ(ei0), where v0
and i0 are as before, so

f ′ = −av0λi0tv0+ψ(ei0
)(1 + ε) for some ε ∈ m.

Since v(f) < 0 and f > 0, we have λi0 < 0 and av0 > 0, hence f ′ > 0. So K
is an H-field, with associated asymptotic couple (V, ψ). �

Remark. Let Γ be a subgroup of V such that ψ(V ∗) ⊆ Γ. Then k((tΓ)) is
an H-subfield of K = k((tV )) with asymptotic couple (Γ, ψ|Γ∗). Suppose
(id+ψ)(V ∗) = V . Then (id+ψ)(Γ∗) = Γ, hence the H-field k((tΓ)) is closed
under integration. (By Remark (3) after Lemma 5.1 in [2].)

We now show that the H-field K is closed under powers, so that we can
then speak of the H-couple corresponding to K.

The proof of the next lemma is straightforward:
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Lemma 11.2. Suppose
∑

j∈J fj exists in K. Then the sum
∑

j∈J f
′
j also

exists in K, and
(∑

j∈J fj

)′
=
∑

j∈J f
′
j. �

For a formal power series F ∈ k[[X1, . . . , Xn]], let ∂F
∂Xi

denote the formal
partial derivative of F with respect to the variable Xi, 1 ≤ i ≤ n. The
previous lemma and Neumann’s Lemma (see [12]) imply:

Corollary 11.3. Let F ∈ k[[X1, . . . , Xn]] and ε = (ε1, . . . , εn) ∈ m×· · ·×m.
Then (

F (ε)
)′ =

n∑
i=1

∂F

∂Xi
(ε)ε′i.

�

Let f ∈ K×. Write f = atv(1 + ε), where a ∈ k×, v = v(f), and ε ∈ m. For
c ∈ k, we consider the formal power series

(1 +X)c :=
∞∑
n=0

c(c− 1) · · · (c− n+ 1)
n!

Xn ∈ k[[X]].

By Neumann’s Lemma, the map m → 1 + m given by

ε 7→ (1 + ε)c :=
∞∑
n=0

c(c− 1) · · · (c− n+ 1)
n!

εn

is well-defined. Let g := tcv(1 + ε)c ∈ K. Since
(
(1 + ε)c

)′ = c(1 + ε)c−1ε′,
by the corollary, and (tcv)′ = ct(c−1)v(tv)′, we get g′/g = cf ′/f . We have
shown:

Proposition 11.4. The H-field K is closed under powers, and its associated
H-couple is (V, ψ). �

Consider k(tV ), the subfield of K = k((tV )) generated by the (multiplicative)
group tV over k. Then k(tV ) carries the induced ordering and valuation.
The derivation on k((tV )) maps k(tV ) into itself and thus restricts to a
derivation on k(tV ). Since k((tV )) is an immediate extension of k(tV ) with
the same constant field k, we get:

Corollary 11.5. The ordered differential field k(tV ) is an H-subfield of K
with constant field k and associated asymptotic couple (V, ψ). �

Let k′ be an ordered field extension of k. We identify as usual V with a
k-linear subspace of the k′-vector space V ′ = V ⊗k k′. There is a unique
linear ordering on V ′ extending the one on V which makes V ′ into an ordered
vector space over k′ such that [V ′]k′ = [V ]k (Proposition 2.2 in [1]). With
this ordering, V ′ is a Hahn space over k′ which satisfies (∗). Moreover, there
is a unique extension of ψ to a map ψ′ : (V ′)∗ → V such that (V ′, ψ′) is an
H-couple over k′. (Lemma 3.1 in [1].) Let K ′ = k′((tV

′
)), equipped with the

ordering and derivation defined above as for K; then K ′ is an H-field closed
under powers with H-couple (V ′, ψ′).
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Note that the derivation of K ′ maps the subfield k′((tV )) of K ′ into itself.
Hence k′((tV )) with the derivation and ordering induced from K ′ is a real
closed H-subfield of K ′ with constant field k′ and asymptotic couple (V, ψ).
We now apply these remarks to obtain an example of an H-field (with real
closed constant field) which has type (2), in the sense of Section 8:

Example. Suppose w ∈ V satisfies Ψ < w < (id+ψ)
(
V >0

)
. (See [1], (3.3)

for an example of an H-couple (V, ψ) with V satisfying (∗) and containing
an element w with this property.) By Lemma 3.7 in [1] we have

Ψ = Ψ′ < w < (id+ψ′)
(
(V ′)>0

)
.

Assume in addition that k′ is real closed and k′ 6= k. Then V ∩ cV = {0}
for all c ∈ k′ \ k. Now choose 0 6= f ∈ k′((tV )) with f 6� 1 and c ∈ k′ \ k
arbitrarily, and put z = tw ∈ k′((tV )).

Claim. v(cf † − b†) < v(z) for all non-zero b ∈ k′((tV )).

To see this, let 0 6= b ∈ k′((tV )). Note that bf c 6� 1 in K ′, since otherwise
0 6= cv(f) = −v(b) ∈ V ∩ cV . Since cf † − b† = (bf c)† in K ′, we get
v(cf † − b†) = v

(
(bf c)†

)
< v(z) as desired. The claim and Lemma 8.7 imply

that k′((tV )) has an H-field extension of type (2).

We conclude with an example to be used in the next section:

Example. Let L be the multiplicative subgroup of R((x−1))LE generated by
the real powers `an (a ∈ R) of the iterated logarithms `n = logn x of x, and
let LQ be its subgroup generated by the rational powers `an (a ∈ Q). We
equip the real closed field R((L)) with the derivation that is trivial on R,
sends each real power `an to a`a−1

n

(
`0`1 · · · `n−1

)−1 (in particular x′ = 1),
and commutes with infinite summation. Note that R((LQ)) is closed under
this derivation.

Claim. R((L)) and R((LQ)) are H-fields closed under integration.

To prove this we make the R-vector space

V =
⊕
n∈N

Ren

into an ordered vector space over the ordered field R such that en > 0 and
[en+1]R < [en]R for all n. We define ψ : V ∗ → V by making it constant on
each archimedean class, and setting

ψ(en) := e0 + e1 + · · ·+ en for all n.

(Hence ψ(e0) = e0.) One verifies easily that (V, ψ) is an H-couple over the
scalar field R, with distinguished positive element 1 = e0. (Cf. Example 3.3
in [1].) The set Ψ = {e0+e1+ · · ·+en : n ∈ N} does not have a supremum in
V , hence (id+ψ)(V ∗) = V . (To obtain this last equality, use the fact that if
(Γ, ψ) is any asymptotic couple of H-type and β ∈ Γ, then β /∈ (id+ψ)(Γ∗)
if and only if β = supψ(Γ∗), see p. 554 of [2].) The basis (en)n∈N of the
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R-vector space V satisfies the condition (∗) above. The H-field R((tV )) has
constant field R, is closed under powers with associated H-couple (V, ψ),
and is closed under integration. Consider the divisible subgroup

Γ =
⊕
n∈N

Qen

of V =
⊕

n Ren. We have Ψ ⊆ Γ, so R((tΓ)) is a real closed H-subfield of
R((tV )) closed under integration, see the remark following Lemma 11.1. (Its
associated asymptotic couple is (Γ, ψ|Γ∗).)

Now observe that we have a unique isomorphism R((tV )) → R((L)) of
ordered differential fields which is the identity on R, sends taen to 1/`an for all
a ∈ R and all n, and commutes with infinite summation. This isomorphism
maps R((tΓ)) onto R((LQ)).

12. Gaps in H-Fields

In Example 12.7 below we provide the missing details concerning [2], p. 583,
Example. This section deals with gap creation, a troubling phenomenon
for the model theory of H-fields. We show how “gap creators” arise as
pseudo-limits.

Recall from §6 in [2] that a gap in a pre-H-field K is an element γ of its
value group Γ such that Ψ < γ < (id+ψ)

(
Γ>0

)
. It was shown in [2] that if

K is an H-field with a gap, then K has exactly two Liouville closures, up
to isomorphism over K. We record some other basic facts on gaps:

Lemma 12.1. Let K be a pre-H-field.
(1) K has at most one gap.
(2) If Ψ has a largest element, then K has no gap.
(3) If every element of K has an anti-derivative in K, then K has no

gap.
(4) If K has no gap, then the smallest H-field K̂ extending K (as defined

in Section 4 of [2]) also has no gap.
(5) Let L be a pre-H-field extension of K such that Γ>0 is coinitial in

Γ>0
L . Then a gap in K remains a gap in L.

(6) A gap in K remains a gap in the real closure of K.
(7) If K is a directed union of pre-H-subfields that have a smallest com-

parability class, then K has no gap.

Proof. Parts (1)–(3) are from Sections 2 and 6 in [2]. Part (4) follows from
(2) by [2], Corollary 4.5. For (5), note that the set (id+ψ)

(
Γ>0

)
is coinitial

in (id+ψL)
(
Γ>0
L

)
and Ψ is cofinal in ΨL; so if γ ∈ Γ satisfies Ψ < γ <

(id+ψ)
(
Γ>0

)
, then ΨL < γ < (id+ψL)

(
Γ>0
L

)
. Part (6) follows from (5): if

K has a gap, then [Γ∗] has no smallest element, hence Γ>0 is coinitial in
(QΓ)>0. To prove (7), reduce to the case thatK has a smallest comparability
class, that is, Ψ has a largest element; then apply (1). �

Part of the next result was announced at the end of [2].
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Corollary 12.2. No differentially algebraic pre-H-field extension of the
Hardy field R(x) can have a gap. No differentially algebraic pre-H-field
extension of the H-field R((x−1))LE can have a gap.

Proof. The H-fields R(x) and R((x−1))LE satisfy the hypothesis of part (7) of
the above lemma, and thus the differentially algebraic pre-H-field extensions
of these H-fields satisfy this hypothesis as well, by Lemma 2.1. �

Gap creation. The troublesome gaps from [2] arise in a special way, and
to study this situation we assume in the rest of this section:

K is a real closed H-field closed under asymptotic integration.
Thus C 6= K, K has no gap and Ψ has no maximum.

Let s ∈ K. We say that s creates a gap over K if adjoining a “log-
arithmic antiderivative” of s can introduce a gap, that is, v(y) is a gap in
L = K(y), for some element y 6= 0 in some H-field extension of K such that
y† = s.

Lemma 12.3. Suppose s ∈ K creates a gap over K. Then for every a ∈ K×

there exists γ ∈ Γ∗ such that v(s− a†) ≤ ψ(γ).

Proof. Take y and L as in the definition above, and let a ∈ K×. Then y 6� a,
so v(s − a†) = v

(
(y/a)†

)
< (id+ψ)

(
Γ>0

)
, hence v(s − a†) ≤ ψ(γ) for some

γ ∈ Γ∗. �

In particular, a Liouville closed H-field has no gap creator. Suppose s ∈ K
creates a gap over K and y is a non-zero element of an H-field extension of
K with y† = s. Then we claim that L = K(y) ⊇ K is an H-field extension,
v(y) is a gap in L, CL = C, ΓL = Γ⊕Zv(y), and [ΓL] = [Γ]. To see this, note
first that s 6= 0 and y /∈ K by the last lemma, so y is transcendental over K.
The claim now follows from this last lemma, and the uniqueness properties
in Lemma 5.3 of [2], and subsequent Remarks, with s and y replaced by −s
and 1/y if s > 0.

We can detect already in K itself whether s ∈ K creates a gap over K:

Proposition 12.4. Let s ∈ K. The following are equivalent:
(1) s creates a gap over K.
(2) For each non-zero element y in each H-field extension of K with

y† = s, we have ΨL < v(y) < (id+ψL)
(
Γ>0
L

)
, where L = K(y).

(3) For some non-zero element y in some H-field extension of K with
y† = s, we have Ψ < v(y) < (id+ψ)

(
Γ>0

)
.

(4) For each ε ∈ K× with ε ≺ 1, we have ε′† < s < ε††.

Proof. We already saw that (1) ⇒ (2). The implication (2) ⇒ (3) is obvious.
To prove (3) ⇒ (4), let y be as in (3). Then ε′ ≺ y ≺ ε† for ε ≺ 1 in K×,
hence ε′† < y† = s < ε†† for such ε, by Lemma 1.4 in [2].

To prove (4) ⇒ (1), assume (4). Take some non-zero y in some H-field
extension of K with y† = s. Then ε′ � y � ε† for all ε ≺ 1 in K×, by
Lemma 1.4 in [2]. Since Ψ does not have a maximum, this yields Ψ < v(y) <
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(id+ψ)
(
Γ>0

)
. In particular, v(y) /∈ Γ, hence ΓL = Γ ⊕ Zv(y) where L :=

K(y). The proof of Lemma 4.5 in [1] with b := v(y) then gives [ΓL] = [Γ].
So Ψ = ΨL and Γ>0 is coinitial in Γ>0

L , hence ΨL < v(y) < (id+ψL)
(
Γ>0
L

)
,

that is, v(y) is a gap in L. �

Corollary 12.5. Suppose s ∈ K creates a gap over K.
(1) An element r ∈ K creates a gap over K if and only if v(s− r) > Ψ.
(2) If L ⊇ K is a real closed H-field without a gap such that Γ>0 is

coinitial in Γ>0
L , then s creates a gap over L.

Proof. For (1), suppose first that r ∈ K creates a gap over K. Let y, z be
non-zero elements of a Liouville closure ofK such that y† = r and z† = s. By
the implication (1) ⇒ (2) in Proposition 12.4, we have v(ε′) > v(y), v(z) >
v(ε†) for all ε ≺ 1 in K×. In particular, −v(ε) = v(ε†/ε′) < v(y/z) <
v(ε′/ε†) = v(ε) for all such ε, that is, Γ<0 < v(y/z) < Γ>0. Since Ψ has no
maximum, this yields v(s− r) = v

(
(y/z)†

)
> Ψ. Conversely, suppose r ∈ K

satisfies v(s − r) > Ψ. By Lemma 12.3, we get v(s − r) > v(s − a†) for all
a ∈ K×; hence s > a† ⇐⇒ r > a†, and s < a† ⇐⇒ r < a†, for all a ∈ K×.
Using (1) ⇐⇒ (4) in Proposition 12.4, it follows that r creates a gap over
K.

Part (2) follows from the equivalence of (1), (2), and (3) in Proposi-
tion 12.4. �

The proof of (4) =⇒ (1) in the last proposition yields that if s ∈ K and
E ⊆ m \ {0} is such that v(E) is coinitial in Γ>0, then:

s creates a gap over K ⇐⇒ ε′† < s < ε†† for all ε ∈ E.

Example. Let K = R((x−1))LE. The sequence (`n) is coinitial in K>R, so the
sequence (1/`n) is cofinal in m>0. We define the sequences (yn), (an) and
(bn) in K by

yn = (1/`n)† = − 1
`0`1 · · · `n

,

an = (1/`n)†† = y†n = −
(

1
`0

+
1
`0`1

+ · · ·+ 1
`0`1 · · · `n

)
,

bn = (1/`n)′† = an −
1

`0`1 · · · `n
.

There is clearly no s ∈ K such that an > s > bn for all n. Thus no s ∈ K
creates a gap over K. (This fact also follows from K’s Liouville closedness,
but the proof just given is instructive in view of the examples below.)

An example of a gap creator. We will now study a specific example of
an H-field with a gap creator. Let R((L)) and R((LQ)) be as in the example
at the end of Section 11.

Define the sequences (an) and (bn) in R(`n : n ∈ N) ⊆ R((LQ)) as in the
example above. The sequence (1/`n) is cofinal in

{
f ∈ R((L)) : 0 < f ≺ 1

}
.
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Put

s := −
(

1
`0

+
1
`0`1

+
1

`0`1`2
+ · · ·

)
∈ R((LQ)).

Then an > s > bn for all n, hence s creates a gap over R((LQ)) and over
R((L)). Since R((L)) is closed under powers, Lemma 12.3 yields the following
useful fact:

Lemma 12.6. For every non-zero a ∈ R((LQ)) and every λ ∈ R there exists
γ ∈ Γ∗ such that v(s− λa†) ≤ ψ(γ). �

We now fill in the missing details of the Example in Section 6 of [2]:

Example 12.7. Let E be the real closure inside R((LQ)) of its H-subfield
R(`n : n ∈ N); so R((LQ))|E is an immediate extension of valued fields.
Let K be the real closure inside R((LQ)) of the H-subfield E(s, s′, s′′, . . . )
of R((LQ)) generated by s over E. Clearly K has no gap and is closed
under asymptotic integration, since R((LQ)) has no gap and R((LQ))|K is
immediate. By Proposition 12.4, it follows that s creates a gap over K.
Hence, letting y 6= 0 be an element of a Liouville closure of K with y† = s,
the H-field K(y) has a gap.

The next examples show that gaps can already arise when passing to real
closures and closures under powers. Let K be as in the previous example.
We need the following consequence of the last lemma:

Lemma 12.8. Let a ∈ K× and µ ∈ R \ {1}. Then r = a† + µs does not
create a gap over K.

Proof. By Lemma 12.6, there exists γ ∈ Γ∗ with

v(s− r) = v
(
(1− µ)s− a†

)
= v
(
s− (1− µ)−1a†

)
≤ ψ(γ).

Corollary 12.5, (1) implies that r does not create a gap over K, as claimed.
�

Let λ ∈ R>0, and take an element z > 0 in a Liouville closure of K with z† =
λs. For each a ∈ K× we have v(z†−a†) = v(λs−a†) = v(s−λ−1a†) ≤ ψ(γ)
for some γ ∈ Γ∗, by Lemma 12.6. In particular z /∈ K, so z is transcendental
over K. By [2], Lemma 5.3 and the Remarks following it, K(z) is an H-field
with ΓK(z) = Γ⊕ Zv(z).

Example 12.9. Suppose that λ is an integer, λ > 1. Then K(z) has no
gap, but its real closure has a gap.

Proof. If K(z) has a gap, then this gap has the form v(azk) where a ∈ K×

and k ∈ Z, so (azk)† = a† + kλ · s creates a gap over K, contradicting
Lemma 12.8 (since kλ 6= 1). So K(z) has no gap. Take u in the real
closure L of K(z) with uλ = z, so L is also a real closure of K(u). Then
u† = λ−1z† = s, hence K(u) has gap v(u), which remains a gap in its real
closure L by Lemma 12.1, (6). �
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Example 12.10. Suppose that λ is irrational. Then K(z) has only one
closure under powers, up to K(z)-isomorphism, and K(z) has no gap, but
its closure under powers has a gap.

Proof. The same argument as in the previous example shows that K(z) has
no gap. By Proposition 8.10, K(z) has a unique closure under powers L, up
to isomorphism over K(z). Let f = z1/λ in L, so f † = λ−1z† = λ−1(λs) = s.
By Corollary 12.5, (2), s creates a gap over K(z), so the H-field K(z, f) has
gap v(f). By Corollary 8.11, ΨK(z) is cofinal in ΨL. It follows that v(f)
remains a gap in L, by Lemma 12.1, (5). �

Gap creators as pseudo-limits. We now indicate how the construction
of the gap creator s of R((LQ)) extends to other H-fields, via pseudo-
convergence. In this subsection we strengthen our earlier assumption on
asymptotic integrability by assuming:

K is a real closed closed H-field closed under integration
(so every element of K has an anti-derivative in K).

As in Section 1 we choose for each f ∈ K>0 a “logarithm” L(f) ∈ K
with L(f)′ = f †. Next we introduce “iterated logarithms” `λ, for possibly
transfinite λ. More precisely, (`λ)λ<κ is a strictly decreasing sequence of
elements of K>C , indexed by the ordinals less than some limit ordinal κ.
We choose this sequence by transfinite recursion as follows: take any element
`0 > C in K, and put `λ+1 := L(`λ); if µ is a limit ordinal such that all `λ
with λ < µ have already been chosen, then we choose `µ to be any element
> C such that `µ < `λ for all λ < µ, if there is such a `µ, while if there is
no such element, we put κ := µ.

We put eλ := v(1/`λ) ∈ Γ>0, so v(`†λ) = ψ(eλ). By construction of (`λ)
and property (L4) of L in Section 1, the sequence

(
[eλ]
)
λ

is strictly decreasing
and coinitial in [Γ∗], and

(
ψ(eλ)

)
λ

is strictly increasing and cofinal in Ψ.
From (`λ) we obtain sequences (yλ), (aλ) and (bλ) in K as follows:

yλ := (1/`λ)†, aλ := (1/`λ)†† = y†λ, bλ := (1/`λ)′† = aλ + yλ,

for λ < κ. Then v(yλ) = ψ(eλ) for λ < κ, and:
(1) (1/`λ) is strictly increasing and cofinal in m>0,
(2)

(
v(yλ)

)
is strictly increasing and cofinal in Ψ,

(3) (aλ) is strictly decreasing and coinitial in {ε†† : 0 6= ε ≺ 1}, and
(4) (bλ) is strictly increasing and cofinal in {ε′† : 0 6= ε ≺ 1}.

Hence an element s ∈ K creates a gap over K if and only if aλ > s > bλ for
all λ < κ, by the remark following Corollary 12.5.

Proposition 12.11. For λ < κ, we have aλ+1 − aλ = yλ+1, and for λ <
µ < κ, we have aµ − aλ = yλ+1 + δ with v(δ) > v(yλ+1). In particular, (aλ)
is a pseudo-Cauchy sequence. An element s ∈ K creates a gap over K if
and only if it is a pseudo-limit of (aλ).
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Proof. Note that we have yλ+1 = −`′λ+1/`λ+1 = −(L(`λ))′/`λ+1 = yλ/`λ+1,
that is, yλ+1/yλ = 1/`λ+1. Hence

aλ+1 − aλ = y†λ+1 − y†λ = (yλ+1/yλ)† = (1/`λ+1)† = yλ+1.

Let λ < µ < κ. We have to show that aµ−aλ = yλ+1+δ with v(δ) > v(yλ+1).
We have just shown that for µ = λ + 1 we have δ = 0. In the general case
we use this special case, and the fact that aµ − aλ+1 = (yµ/yλ+1)†, so

v(aµ − aλ+1) = ψ
(
v(yµ/yλ+1)

)
= ψ

(
ψ(eµ)− ψ(eλ+1)

)
> ψ(eλ+1) = v(yλ+1),

by Proposition 2.3, (1) in [2]. Note that since bλ = aλ + yλ for all λ < κ, it
follows that the sequence (bλ) is also a pseudo-Cauchy sequence in K.

We now show that s ∈ K creates a gap over K if and only if s is a pseudo-
limit of (aλ). Let y be a non-zero element in a Liouville closure of K such
that y† = s, and put L = K(y). Suppose first that s creates a gap over K.
So v(y) /∈ (id+ψL)(Γ∗L), hence v(s− aµ) = ψ

(
v(y)− ψ(eµ)

)
> ψ(eµ) for all

µ < κ, by Lemma 2.5 in [2]. So if λ < µ < κ, then v(aλ − aµ) = ψ(eλ+1) ≤
ψ(eµ) < v(s− aµ), hence

v(s− aλ) = v
(
(s− aµ) + (aµ − aλ)

)
< v(s− aµ),

showing that s is a pseudo-limit of (aλ). Conversely, suppose s is a pseudo-
limit of (aλ). Then s is also a pseudo-limit of (bλ): for every λ < κ, we
have

v(s− aλ) = v(aλ − aλ+1) = v(yλ+1) > v(yλ),
hence v(s − bλ) = v(s − aλ − yλ) = v(yλ). Therefore aλ > s > bλ for all
λ < κ; so s creates a gap over K. �

It follows that any maximally valued real closed H-field that is closed under
asymptotic integration has a gap creator. (Use that such an H-field is closed
under integration, by [2], Remark 3 after Lemma 5.1, or [19].) This yields
another proof of Corollary 7.2.

We finish this section by showing:

Proposition 12.12. Suppose that K does not have a gap creator. Let y be
an element of an H-field extension L of K such that

Ψ < v(y) < (id+ψL)
(
Γ>0
L

)
.

Then Q(y) 6= 0 for all non-zero Q(Y ) ∈ K{Y } of order at most 1.

In the proof we shall use:

Lemma 12.13. Let F be an H-field with divisible value group and let y be
a non-zero element of an H-field extension of F such that, with z = y†:

(1) v(y) /∈ ΓF ,
(2) ΓF (z) = ΓF , and
(3) z is transcendental over F .

Then Q(y) 6= 0 for all non-zero Q(Y ) ∈ F{Y } of order at most 1.
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Proof. Suppose for a contradiction that Q(y) = 0 where

Q(Y ) =
∑
i,j

aijY
i(Y ′)j ∈ F{Y } (aij ∈ F )

is of degree d. We introduce a new indeterminate Z and consider the non-
zero polynomial R(Y, Z) ∈ F [Y, Z] given by

R(Y, Z) =
d∑

k=0

ak(Z)Y k, ak(Z) =
∑
i+j=k

aijZ
j ∈ F [Z].

Then R(y, z) = Q(y) = 0 and the polynomial R(Y, z) ∈ F (z)[Y ] is non-zero.
So v(y) ∈

(
divisible hull of ΓF (z)

)
= ΓF , a contradiction. �

Proof (Proposition 12.12). We claim that z = y† is a pseudo-limit of the
pseudo-Cauchy sequence (aλ). To see this, let µ < κ. Since v(y)− ψ(eµ) ∈
Γ>0
L and v(y) < (id+ψL)(Γ>0

L ) we have

v(z − aµ) = ψL
(
v(y)− ψ(eµ)

)
= (id+ψL)

(
v(y)− ψ(eµ)

)
+ ψ(eµ)− v(y) > ψ(eµ).

The claim now follows as in the proof of the “only if” direction in the last
statement of Proposition 12.11. By that proposition, the pseudo-Cauchy
sequence (aλ) has no pseudo-limit in K. Hence the valued field K(z) is an
immediate extension of K ([23], Chapter III, §3, Lemmas 11 and 14). Now
apply the lemma. �

Corollary 12.14. Suppose that K is Liouville closed. Let P (U) ∈ K{U} be
a non-zero homogeneous differential polynomial of order at most 2. There
exists a > C in K such that P (u) 6= 0 for all u in all H-field extensions L
of K with CL < u < a.

Proof. Suppose not. Model-theoretic compactness yields an H-field exten-
sion L of K and a u ∈ L such that CL < u < K>C and P (u) = 0. Let
Y = U † ∈ K〈U〉 and d = degP , hence P/Ud = Q(Y ) with 0 6= Q(Y ) ∈
K{Y } of order ≤ 1, by Lemma 3.6. With y = u† ∈ L we have Q(y) = 0 and
Ψ < v(y) < (id+ψL)

(
Γ>0
L

)
, contradicting Proposition 12.12. �

13. Undecidability

Our long term aim is to describe the elementary theory of the differential
field R((x−1))LE of logarithmic-exponential series. This differential field is
obtained from the smaller differential field R((x−1))E of exponential series in
a very simple way: replace x = `0 successively by `1, `2, `3, . . . , and take the
union. In view of this fact, the next result suggests that R((x−1))LE may be
near the edge of undecidability (or over it).

Theorem 13.1. The set Z ⊆ R((x−1))E of integers is existentially definable
(without parameters) in the differential field R((x−1))E of exponential series.
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Thus, by the negative solution of Hilbert’s 10th Problem (see for exam-
ple [22]), there is no algorithm which, upon input of a differential polyno-
mial P (Y1, . . . , Yn) ∈ Q{Y1, . . . , Yn}, decides whether there exist y1, . . . , yn ∈
R((x−1))E such that P (y1, . . . , yn) = 0. In particular, the elementary theory
of R((x−1))E as a differential field is undecidable.

We view R((x−1))E here as equipped with the derivation d
dx , as usual.

However, for the proof it is convenient to change variables, and express
differential equations in terms of the derivation d

dt := − 1
x2

d
dx where t = x−1.

Thus we turn R((x−1))E = R((t))E into a differential-valued field extension
of the series field R((tR)) as defined in Section 11, and for f ∈ R((t))E we put
f ′ := df

dt .
The theorem above extends a similar result due to Grigor′ev and Singer

[14] for a certain differential subfield of R((tR)).
We consider the following system of algebraic differential equations

(Sβ) Y ′t = βY, Z ′Y t+ Z ′′t2 = −Y + t

in the indeterminates Y, Z, depending on the parameter β ∈ R. Theo-
rem 13.1 above follows easily from the following more general result:

Proposition 13.2. Let K be a differential-valued field extension of R((tR))
with constant field R. Suppose v(K×) contains no γ > 0 such that nγ < v(t)
for all n. Then, for β > 0, the system (Sβ) has a solution in K if and only
if β = 1/n for some positive n.

The constants β ∈ R are singled out inK by the differential equation U ′ = 0,
so the proposition leads to an existential definition of Z ⊆ K in the differ-
ential field K with t as distinguished element. In particular, the elementary
theory Th(K) of the differential field K (with or without naming t) is un-
decidable.

The hypothesis of the proposition is satisfied for K = R((t))E (with deriva-
tion d

dt), and this leads to an existential definition of Z in the differential
field R((x−1))E with derivation d

dx and a name for x. To get such an exis-
tential definition without naming x, note that an element of R((x−1))E has
derivative 1 if and only if it equals x + c for some c ∈ R, and that each
such x+ c is the image of x under an automorphism of the differential field
R((x−1))E, see [12].

The system (Sβ) and the proof of the lemma below are from [14], except
for the correction of some mathematical typos. Note that if y is an element
in a differential field extension K of R(tR) satisfying y′t = βy, where β ∈ R,
then y = ctβ for some constant c ∈ C. We will use this fact without further
mention.

Lemma 13.3. The following are equivalent, for β ∈ R:
(1) The system (Sβ) has a solution in the differential subring R[tQ] of

R((tR)).
(2) The system (Sβ) has a solution in R((tR)).
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(3) β = 1/n for some positive n.

Proof. The implication (1) ⇒ (2) is trivial. Suppose (Sβ) has a solution
(y, z) with y, z ∈ R((tR)). We may assume that z 6= 0, since otherwise y = t
and β = 1. Write z =

∑
r≥r0 art

r with ar ∈ R, ar0 6= 0. We have y 6= 0,
since otherwise z′′ = t−1, contradicting z′ ∈ R((tR)). So y = ctβ for some
c ∈ R×. We have β > 0: if β < 0, then

−ctβ + t = z′yt+ z′′t2 = ar0cr0t
r0+β + terms of order > r0 + β,

which gives a contradiction by distinguishing the cases r0 = 0 and r0 6= 0; if
β = 0, then

−c+ t = z′yt+ z′′t2 =
∑

rar(c+ r − 1)tr,

and by comparing coefficients one reaches a contradiction.
So β > 0; we shall assume β 6= 1

n for all n ≥ 1, and arrive once again at
an impossibility, by showing that then t−β, t−2β, . . . all occur in u := z′ with
non-zero coefficients. Note that u =

∑
r≥r0−1 brt

r with br = (r + 1)ar+1 for
all r, so

−y + t = z′yt+ z′′t2 = uyt+ u′t2 =
∑
r

(cbr−β + rbr) tr+1.

Comparing coefficients of t on both sides of −y + t =
∑

r (cbr−β + rbr) tr+1

gives cb−β = 1, so b−β 6= 0. Comparing the coefficients of t1−nβ with n > 0
yields

cb−(n+1)β = nβb−nβ,

and by induction on n, it follows that b−nβ 6= 0 for all n > 0, as promised.
This finishes the proof of (2) ⇒ (3).

To prove (3) ⇒ (1), let β = 1/n, n ≥ 1. We claim that (Sβ) has a solution
(y, z) in R[tQ]. If n = 1, we may take (y, z) = (t, 0). Suppose n > 1. We
claim that there exist a1, . . . , an−1, c ∈ R such that (y, z) with

(13.1) y = ct
1
n , z = a1t

1
n + · · ·+ an−1t

n−1
n

is a solution of (Sβ). Clearly any y as in (13.1) is a solution of the first
equation in (Sβ), and (y, z) as in (13.1) is a solution to (Sβ) if and only if

c = a1
1
n

(
1− 1

n

)
ca1

1
n

= a2
2
n

(
1− 2

n

)
...

can−2

(
n− 2
n

)
= an−1

(
n− 1
n

)(
1− n− 1

n

)
can−1

(
n− 1
n

)
= 1.
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These equations imply cn =
(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)
. Choosing c ∈

R with cn equal to the number on the right, we can then determine
a1, . . . , an−1 ∈ R such that the n equations above are satisfied. �

Proof of Proposition 13.2. We still need three lemmas.

Lemma 13.4. Let (Γ, ψ) be an asymptotic couple and ∆ a non-zero convex
subgroup of Γ. The following conditions are equivalent:

(1) ψ(∆∗) ∩∆ 6= ∅.
(2) ψ(∆∗) ⊆ ∆.
(3) (id+ψ)(∆∗) ∩∆ 6= ∅.
(4) (id+ψ)(∆∗) ⊆ ∆.

Proof. Let δ ∈ ∆∗ with ψ(δ) ∈ ∆. Then we have for δ1 ∈ ∆∗:

|ψ(δ)− ψ(δ1)| ≤ |δ − δ1| ∈ ∆,

so ψ(δ1) ∈ ∆. The equivalences now follow easily. �

Below K satisfies the hypotheses of 13.2. Note that the value group ∆ :=
Rv(t) (with v(t) > 0) of R((tR)) is the smallest non-zero convex subgroup of
Γ := v(K×). Accordingly ψ

(
v(t)

)
= −v(t) ∈ ∆ is the largest element of Ψ,

by [25]. So (Γ, ψ) and ∆ satisfy the conditions of the last lemma.

Lemma 13.5. Let u, y ∈ K×, 0 < v(y) ∈ Rv(t) and γ = v(u) 6= 0. Then

v(uyt+ u′t2) = γ + ψ(γ) + 2v(t).

Proof. Write v(y) = βv(t) with β ∈ R>0. Then

v(uyt) = γ + (β + 1)v(t) > γ + v(t) ≥ γ + ψ(γ) + 2v(t) = v(u′t2),

since ψ(γ) ≤ ψ(v(t)) = −v(t). �

Lemma 13.6. There exists an additive subgroup A of K such that K =
R((tR))⊕A and v(a) /∈ ∆ for all a ∈ A.

Proof. We equip Γ/∆ with the ordering induced by the ordering on Γ, and let
π : Γ → Γ/∆ be the natural map. Consider the valuation v∆ = π ◦v : K× →
Γ/∆ on K, with valuation ring

O∆ =
{
a ∈ K : v(a) ≥ δ for some δ ∈ ∆

}
and maximal ideal

m∆ =
{
a ∈ K : v(a) > δ for all δ ∈ ∆

}
.

We equip the residue field F = O∆/m∆ of v∆ with the valuation vF : F× →
∆ such that vF (a) = v(a) for a ∈ O∆ \m∆, where a denotes the image of a
in F×. The residue field of vF is (O/m∆)/(m/m∆), which we identify with
the constant field C = R of K in the usual way. We have R((tR)) ⊆ O∆,
and hence we can naturally construe R((tR)) as a valued subfield of F . Since
R((tR)) is maximally valued, we have in fact R((tR)) = F . Choosing a direct
factor B of the additive group O∆ in K, we get K = R((tR)) ⊕ A for A =
m∆ ⊕B, as required. �
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We now can prove Proposition 13.2. If β = 1/n for some n > 0, then (Sβ)
has a solution in R[tQ], and hence inK, by Lemma 13.3. Conversely, suppose
β > 0 and let (y, z) be a solution to (Sβ) in K. Choose an additive subgroup
A of K as in Lemma 13.6, and write z = z0 +a with z0 ∈ R((tR)) and a ∈ A.
We claim that a = 0, so z = z0. Suppose otherwise; then b = a′ 6= 0 and
byt+ b′t2 = u0yt+ u′0t

2 + y − t ∈ R((tR)), where u0 = z′0 ∈ R((tR)). We have
v(b) /∈ ∆ by Lemma 13.4, and by Lemma 13.5:

v(b) + ψ
(
v(b)

)
+ 2v(t) = v(byt+ b′t2) = v(u0yt+ u′0t

2 + y − t) ∈ ∆.

Thus v(b) +ψ
(
v(b)

)
∈ ∆ and hence v(b) ∈ ∆, again by Lemma 13.4: a con-

tradiction. Hence (y, z) is a solution to (Sβ) in R((tR)), and the implication
(2) ⇒ (3) in Lemma 13.3 yields 1/β ∈ N as required. This concludes the
proof of Proposition 13.2. �

This proof yields the construction of an existential formula in the language
of differential fields that defines Z in R((x−1))E. This formula also defines Z
in its completion R((GE)) (see the Example in Section 10).

14. Existentially Closed H-Fields

In this section we sketch some of our longer term goals in the study of
H-fields.

An H-field K is said to be existentially closed if every algebraic differ-
ential equation (in unknowns Y1, . . . , Yn with Y = (Y1, . . . , Yn))

A(Y ) = 0 (A ∈ K{Y })
with a solution in some H-field extension of K has a solution in K itself.
(Here a solution in the H-field extension L of K is a tuple y ∈ Ln such
that A(y) = 0; a similar convention holds for solutions of the more general
systems considered below.) In this definition we can allow systems

(14.1) A1(Y ) = · · · = Am(Y ) = 0 (A1, . . . , Am ∈ K{Y })
instead of single equations, since (14.1) can be replaced by the single equa-
tion A1(Y )2 + · · · + Am(Y )2 = 0. We can also add differential inequations
and differential inequalities: if K is an existentially closed H-field, then any
system (14.1) augmented by finitely many inequations B(Y ) 6= 0 and in-
equalities C(Y ) > 0 (B,C ∈ K{Y }) that is solvable in an H-field extension
of K is solvable in K. To see this, note that B(Y ) 6= 0 can be replaced by an
equation B(Y )ZB = 1 where ZB is an extra differential unknown; similarly,
C(Y ) > 0 can be replaced by an equation C(Y )Z2

C = 1, by Corollary 3.10
in [2]. In view of [2], Theorem 6.11, it follows that every existentially closed
H-field is Liouville closed.

We may even add asymptotic inequalities of the form F (Y ) � G(Y ),
and of the form F (Y ) ≺ G(Y ), where F,G ∈ K{Y }:

Lemma 14.1. Suppose K is an existentially closed H-field. Then any sys-
tem of equations (14.1) augmented by finitely many inequations, inequalities
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and asymptotic inequalities as above that is solvable in some H-field exten-
sion of K is solvable in K.

Proof. Fix any positive ε ≺ 1 in K. Let L be an H-field extension of K.
Then we have for all z ∈ L:

z � 1 ⇐⇒ ∃c ∈ L
(
c′ = 0 & − c < z < c

)
,

z � 1 ⇐⇒ ∃h, c ∈ L
(
0 < h < ε & c′ = 0 & − cz′ < h† < cz′

)
.

Thus any system (∗) as in the lemma with asymptotic inequalities can be
replaced (using extra unknowns) by a finite system (∗∗) of algebraic differ-
ential equations over K, in the sense that (∗) is solvable in L if and only if
(∗∗) is solvable in L, and (∗) is solvable in K if and only if (∗∗) is solvable
in K. �

Model-theoretic considerations. An easy model-theoretic construction
shows that every H-field can be embedded into an existentially closed H-
field. This fact is of no use by itself, but would acquire force in case of
positive answers to the questions which motivate our work on H-fields in
this paper and its predecessors [1] and [2]:

Is the H-field R((x−1))LE existentially closed?
Is the class of existentially closed H-fields an elementary class?

Positive answers would have many rewarding consequences for asymptotic
differential algebra. The first question is also interesting for various H-
subfields of R((x−1))LE such as the field of acceleration-summable series,
and the field of grid-based series, see [13] and [16].

In order to make the second question precise we specify the (first-order)
language L in which we axiomatize the theory of H-fields. Let

L =
{
0, 1,+,−, ·, ∂,<,�

}
be the language of ordered rings

{
0, 1,+,−, ·, <

}
augmented by a unary

function symbol ∂ and a binary relation symbol �. An H-field K is con-
strued as L-structure in the obvious way, with ∂ interpreted as the deriva-
tion. The axioms for H-fields in [2] can be given by ∀∃-sentences in L; thus
we have a certain set ΣH of ∀∃-sentences in L such that the L-structures sat-
isfying ΣH are exactly the H-fields. The L-substructures of H-fields whose
underlying ring is a field are exactly the pre-H-fields, see [2], §4. By the last
lemma, the existentially closed H-fields are exactly the existentially closed
models of the L-theory of H-fields, as defined in model theory, see [9]. The
second question now has the following precise formulation:

Is there a set Σ of L-sentences such that the H-fields satisfying Σ are
exactly the existentially closed H-fields?

Such a set Σ would axiomatize a model-complete L-theory, and this theory
is then called the model companion of the L-theory of H-fields, see [9]. So
we want to find a set Σ of elementary properties of existentially closed H-
fields such that, conversely, each H-field satisfying Σ is existentially closed.
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In this paper we have shown that existentially closed H-fields K have the
following elementary properties:

(1) K is Liouville closed;
(2) K has the intermediate value property for first-order differential

polynomials: given a first-order differential polynomial P (Y ) ∈
K{Y } and elements φ < θ in K such that P (φ) and P (θ) are non-
zero and of opposite sign, there exists η ∈ K with P (η) = 0 and
φ < η < θ. (This is Theorem 4.3.)

Maximal Hardy fields also satisfy (1) and (2), see [26] and [10].
Our best guess is that (1) and an extension of (2) to all P (Y ) ∈ K{Y }

might yield a set Σ of elementary properties as desired. In the next subsec-
tion we discuss this extension of (2).

The intermediate value property. Let K be an H-field K. Given a
differential polynomial P (Y ) ∈ K{Y } in a single indeterminate Y , we say
that P (Y ) has the intermediate value property in K if for any φ < θ
in K such that P (φ) and P (θ) are non-zero and of opposite sign there
exists η ∈ K with φ < η < θ and P (η) = 0. We say that K has the
intermediate value property if every differential polynomial in K{Y }
has the intermediate value property in K.

Van der Hoeven (in [17]) proved the remarkable fact that the H-field
R((x−1))LE has the intermediate value property. This fact and a potential
analogy with ordered fields suggest that “Liouville closed & intermediate
value property” might single out the existentially closed H-fields among H-
fields. (One side of this analogy would be the fact that the existentially
closed ordered fields are exactly the real closed fields, that is, the ordered
fields with the intermediate value property for ordinary one-variable poly-
nomials.)

We note that “Liouville closed” does not imply “intermediate value prop-
erty”:

Example. Let K = R(x) ⊆ L = R((x−1))LE and P (Y, Y ′) = xY ′ + Y Y ′ −
Y ∈ K{Y }. Then P (y, y′) < 0 for all sufficiently small y > R in L, and
P (y, y′) > 0 for all sufficiently large y > R in L. (See the Example in
Section 2.) Hence P has a zero y ∈ L>R, and such y satisfies

(log y)′ = y† = 1/y − xy′/y2 = (x/y)′,

hence y ·(c+log y) = x for some c ∈ R. As in the proof of [11], Corollary 4.5,
it follows that y is transcendental over the Liouville closure of K in L.

Note that real closed H-fields with trivial derivation have the intermediate
value property. But even for H-fields with non-trivial derivation, “interme-
diate value property” does not imply “Liouville closed”. This follows from
the construction below on H-fields which is useful for other reasons as well.
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Residue fields of H-fields under coarsening. Let K be an H-field such
that 0 < (id+ψ)

(
Γ>0

)
. Let ∆ be a convex subgroup of Γ with ψ(∆∗)∩∆ 6=

∅. Then ψ(∆∗) ⊆ ∆ by Lemma 13.4, and (∆, ψ|∆∗) is an asymptotic couple
of H-type. Since [ψ(γ)] < [γ] for all γ ∈ Γ>∆, we have

(14.2) (id+ψ)
(
Γ>∆

)
= (id+ψ)(Γ∗) ∩ Γ>∆.

As in the proof of Lemma 13.6 we equip Γ/∆ with the unique ordering
making the natural homomorphism π : Γ → Γ/∆ order-preserving, and we
consider the valuation

v∆ = π ◦ v : K× → Γ/∆

on K (a coarsening of v).

Lemma 14.2. The valuation ring O∆ of v∆ and its maximal ideal m∆ are
closed under the derivation of K.

Proof. If f ∈ K× and v(f) > ∆, then v(f ′) > ∆ by (14.2), showing m′
∆ ⊆

m∆. Let f ∈ O∆. Then v(f) ≥ δ where δ ∈ ∆∗, so v(f ′) ≥ δ + ψ(δ) ∈ ∆,
hence f ′ ∈ O∆. �

Thus the derivation f 7→ ∂f of K induces a derivation f 7→ ∂f := ∂f (where
f := f + m∆ for f ∈ O∆) on the residue field F := O∆/m∆ of v∆, turning
F into a differential field. We have a field embedding c 7→ c : C → F , and
we identify C with a subfield of F in this way. The ordering on K induces
an ordering on F which makes F an ordered field:

f > 0 :⇐⇒ f > 0, for f ∈ O∆ \m∆.

The convex hull of C in F is the valuation ring O/m∆ of F , with associated
valuation vF : F× → ∆ given by vF (f) := v(f) for f ∈ O∆ \m∆. Its residue
field is (O/m∆)/(m/m∆), which we identify as usual with O/m = res(K).

Lemma 14.3. The ordered differential field F is an H-field, with constant
field C and asymptotic couple (∆, ψ|∆∗). If K has the intermediate value
property, then so does F .

Proof. To show that the constant field of F is C, let f ∈ O∆ and f ′ ∈ m∆.
If f ∈ O, take c ∈ C such that f − c ∈ m, so (f − c)′ = f ′ ∈ m∆, hence
f − c ∈ m∆ by (14.2). If f /∈ O, then f ∈ m∆, again by (14.2). In both
cases, f ∈ C.

Suppose now that g > C, where g ∈ O∆. Then g > C and hence g′ > 0,
since K is an H-field. Moreover, g ∈ O∆ \ O implies g′ ∈ O∆ \ m∆, by
(14.2); hence g′ > 0. The rest now follows easily. �

With K = R((x−1))LE, put

∆ :=
{
γ ∈ Γ : |γ| ≤ nv(x−1) for some n

}
.

Then by [17] the H-field F as defined above has the intermediate value
property. But F is not Liouville closed, since ψ only takes positive values
on the value group ∆ of F .
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The appearance of gaps. Understanding how gaps can arise seems im-
portant in the model theory of H-fields, and in this direction we can ask:

Is there a set of L-sentences whose models are exactly the H-fields
none of whose differentially algebraic H-field extensions have a gap?

The following lemma might be useful in answering this question:

Lemma 14.4. Let K be an H-field closed under asymptotic integration.
Then K has a differentially algebraic H-field extension with a gap if and only
if there exists an element y of a differentially algebraic H-field extension L
of K such that

(1) CL < y < K>C , and
(2) for every f ∈ K〈y′〉 with f > CL there exists a ∈ K such that

C < a < f .

Proof. Let M be a differentially algebraic H-field extension of K with gap
v(z), z ∈ M>0. Take y � 1 in some H-field extension of M with y′ = z.
Then L := M(y) is a differentially algebraic H-field extension of K and
CL < y < M>CM ; in particular CL < y < K>C . The pre-H-field K〈y′〉 has
gap v(y′); in particular, K〈y′〉 does not have a smallest comparability class.
Since K〈y′〉 is differentially algebraic over K, (2) follows from Lemma 2.1.

Conversely, let y be an element of a differentially algebraic H-field ex-
tension L of K satisfying (1) and (2). By (1), we have Γ<0 < v(y) < 0,
and by (2), Γ<0 is cofinal in Γ<0

K〈y′〉. Hence v(y′) is a gap in the pre-H-
field K〈y′〉. Let M be the smallest H-subfield of L containing K〈y′〉. By
Corollary 4.5, (2) in [2], ΓM = ΓK〈y′〉. Hence M is a differentially algebraic
H-field extension of K with a gap. �

In [3] we give an example of a Liouville closedH-field that has a differentially
algebraic H-field extension with a gap. Here we show:

Proposition 14.5. Let K be an existentially closed H-field.
(1) For every non-zero differential polynomial P (Y ) ∈ K{Y } there exists

an element a > C in K such that P (Y ) has no zero y in any H-field
extension L of K with CL < y < a.

(2) No differentially algebraic H-field extension of K has a gap.

Proof. For (1), let P (Y ) ∈ K{Y } \ {0}. By the Liouville closedness of K
and Corollary 2.6, we can take a > C in K such that P (y) 6= 0 for all y ∈ K
with C < y < a. So if y is an element of an H-field extension L of K with
CL < y < a, then P (y) 6= 0, by Lemma 14.1 and the equivalence

CL < y < a ⇐⇒ 1 ≺ y & 0 < y < a.

Part (2) follows from (1) and Lemma 14.4. �

An open question. At this stage our understanding of existentially closed
H-fields is rudimentary. Many basic problems remain to be solved. Here is
one:
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Is every existentially closed H-field the inductive union of its H-
subfields with a smallest comparability class?

As indicated in Section 2, R((x−1))LE is such an inductive union.

15. Errata to [2]

At the end of the proof of Lemma 5.3, “First assume j < 0” should be “First
assume j > 0”, and the subsequent inequality “s < d′/d” should be “s >
d′/d”. The last sentence of this proof “The case j > 0 is similar.” should
be replaced by: “Suppose j < 0. Then v(d) < v(y), and we distinguish the
cases v(d) > 0 (similar to the case j > 0), v(d) = 0 (where we use s < 0 and
v(s) < v(d′/d) = v(a′/a)), and v(d) < 0 (where we use v(a′/a) = v(d′/d) <
v(s) and a′/a > 0).”

Right after the proof of Lemma 6.3 on p. 581, it is asserted, for any differen-
tial field extension K ⊆ L: “the subfield of L generated by any collection of
intermediate Liouville extension fields is also a differential subfield of L and
a Liouville extension of K. Hence there exists a biggest Liouville extension
of K contained in L.”

This is true with the extra assumption that CL is algebraic over K. For
a counterexample when the extra assumption is omitted, let K = Q and
L = Li(R) (the Liouville closure of R as a Hardy field). Then the Hardy
fields K(x) and K(x+π) are both Liouville extensions of K (with Q as field
of constants), but K(x, x+ π) = K(x, π) is not, since the constant π is not
algebraic over Q.

Consequently, one should add to the hypothesis of Lemma 6.4 that CL is
algebraic over C, and in Lemma 6.6 and its proof, the phrase “not contained
in R” should be replaced by “properly containing R.”
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