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Abstract. We show that the iterative logarithm of the power series ez − 1 is

differentially transcendental over the ring of convergent power series.

1. Introduction

Let p > 1 and

f = z +
∑

n>p+1

fnz
n ∈ C[[z]] (fn ∈ C, fp+1 6= 0) (1.1)

be a formal power series with complex coefficients. In the theory of analytic iteration
and conjugate power series, Julia’s equation

y ◦ f = y · f ′ (1.2)

plays a central role. (See, e.g., [8], [13], and [14, Section 8.5].) The functional
equation (1.2) has a unique solution ỹ ∈ C[[z]] of the form

ỹ = fp+1z
p+1 +

∑
n>p+2

ynz
n (yn ∈ C), (1.3)

and the general solution of (1.2) is given by y = c · ỹ where c ∈ C. (See, e.g.,
Lemma 3.2 below.) The power series y0 is called the iterative logarithm of f ,
denoted here by itlog(f). Conversely, equating coefficients of z2p+j−1 on both sides
of (1.2), one sees easily that given a formal power series ỹ as in (1.3) there exists a
unique f as in (1.1) with itlog(f) = ỹ. Thus, also setting itlog(z) := 0, we obtain
a bijective correspondence

z + z2C[[z]]→ z2C[[z]] : f 7→ itlog(f).

A somewhat more conceptual route to this bijection leads via the Lie algebra of
the (infinite-dimensional) matrix group of iteration matrices (see, e.g., [1]). Using
this approach one also sees fairly easily that corresponding properties of the matrix
exponential imply that for f, g ∈ z + z2C[[z]] which commute (i.e., f ◦ g = g ◦ f)
one has

itlog(f ◦ g) = itlog(f) + itlog(g),

and hence
itlog(f [k]) = k itlog(f) for every k ∈ Z,

where f [0] := z and for n > 0, f [n] denotes the nth compositional iterate of f and
f [−n] is the compositional inverse of f [n]. (This explains the terminology of the

“iterative logarithm,” which was introduced by Écalle [8].)
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If f as in (1.1) is convergent, then only in exceptional circumstances is itlog(f)
also convergent. For example, by a theorem of Erdős and Jabotinsky [9] in combi-
nation with results of Baker [2] and Szekeres [21], it is known that if f is the Taylor
series at 0 of a meromorphic function on the whole complex plane which is regular
at 0, then itlog(f) always has radius of convergence 0 except when

f =
z

1− cz
(c ∈ C),

in which case itlog(f) = cz2. (However, Écalle [7] has shown that itlog(f) is always
Borel summable.)

Similarly, itlog(f) rarely satisfies a non-trivial algebraic differential equation. Let
R be a subring of C[[z]] containing the polynomial ring C[z], and assume R is closed
under differentiation. A formal power series y ∈ C[[z]] is said to be differentially
algebraic over R if it satisfies an equation

P (y, y′, . . . , y(n)) = 0

where P is a non-zero polynomial in n + 1 indeterminates with coefficients in R,
and y is said to be differentially transcendental over R otherwise. If one simply
speaks of y being differentially algebraic respectively differentially transcendental,
then R = C[z] is understood. Many formal power series arising naturally in number
theory are differentially algebraic (see [16]). If y =

∑
n>0 ynz

n ∈ C[[z]] is differ-

entially algebraic then its coefficient sequence (yn) satisfies a certain kind of (in
general, non-linear) recurrence relation [17, pp. 186–194]. Of particular importance
in combinatorial enumeration is the class of D-finite (also called holonomic) power
series [20, Chapter 6]. These are the differentially algebraic power series whose co-
efficient sequence satisfies a homogeneous linear recurrence relation of finite degree
with polynomial coefficients. Equivalently [20, Proposition 6.4.3] a formal power
series y ∈ C[[z]] is D-finite if and only if y satisfies a non-trivial linear differential
equation

a0y + a1y
′ + · · ·+ any

(n) = 0 (ai ∈ C[z], an 6= 0).

A family F of elements of C[[z]] is said to be uniformly differentially algebraic (or
coherent) if there is a non-zero polynomial P in n+ 2 indeterminates with constant
complex coefficients (for some n) such that P (z, y, y′, . . . , y(n)) = 0 for every y ∈ F .
Boshernitzan and Rubel [6] showed that the iterative logarithm of a given power
series f ∈ z+z2C[[z]] is differentially algebraic if and only if the family f [1], f [2], . . .
of iterates of f is uniformly differentially algebraic. Bergweiler [4], on the other
hand, showed that the iterates of the Taylor series at 0 of a transcendental entire
function are not uniformly differentially algebraic.

Put together, these results imply that if f ∈ z + z2C[[z]] is transcendental with
infinite radius of convergence, then itlog(f) is both differentially transcendental and
has radius of convergence 0. Obviously, the question of a common generalization
of these facts arises:

Question. Let C{z} denote the ring of convergent power series in the indeterminate
z, i.e., the subring of C[[z]] consisting of those power series which converge abso-
lutely in a neighborhood of 0. Let f ∈ z + z2C{z} be transcendental with infinite
radius of convergence. Is itlog(f) differentially transcendental over C{z}?
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To answer this question in full generality might be quite difficult. In this note
we consider a test case and show:

Theorem 1.1. The power series

itlog(ez − 1) =
1

2
z2 − 1

12
z3 +

1

48
z4 − 1

180
z5 +

11

8640
z6 − 1

6720
z7 + · · ·

is differentially transcendental over C{z}.

The power series itlog(ez − 1) is of interest (to this author) since it is the expo-
nential generating function of a sequence

0, 1,−1

2
,

1

2
,−2

3
,

11

12
,−3

4
,−11

6
,

29

4
,

493

12
,−2711

6
,−12406

15
,

2636317

60
, . . .

of rational numbers which recently arose both in a conjecture made by Shadrin and
Zvonkine [19] (and proved in [1]) in connection with a generating series for Hurwitz
numbers, and also in another context (joint work of the author with van den Dries
and van der Hoeven on asymptotic differential algebra). We do not know whether
the ordinary generating function of this sequence is differentially transcendental
(over C[z], let alone over C{z}).

Our strategy for the proof of Theorem 1.1 is to argue by contradiction: assuming
that y = itlog(ez − 1) is differentially algebraic over C{z}, let P be a non-zero
polynomial in n+1 indeterminates (for some n) with coefficients in C{z} such that
P (y, y′, . . . , y(n)) = 0. We deduce (in Section 3) that such P , if chosen to be of
minimal complexity (as defined in Section 2), has to have a very specific shape,
entailing that certain functional equations have non-trivial solutions in C{z}. On
the other hand, in Section 4 we argue, by refining the elementary technique of
Lewin [15], based on growth properties of entire functions and used in his proof
that itlog(ez − 1) /∈ C{z}, that these equations only admit trivial solutions in
convergent power series, leading to the desired contradiction.

Our arguments also allow us to reduce the general case of the question above to
the consideration of (perhaps novel) variations of Julia’s equation (see Section 5):

Proposition 1.2. Let f ∈ z+ z2C[[z]], f 6= z, have infinite radius of convergence,
and suppose that there are no integers k > 0 and non-zero y ∈ zC{z} such that

y ◦ f =
y

1− (f ′′/f ′)y
· (f ′)k or y ◦ f =

y

1− S(f)y
· (f ′)k,

where

S(f) = (f ′′/f ′)′ − 1

2
(f ′′/f ′)2 = f (3)/f ′ − 3

2
(f ′′/f ′)2.

Then itlog(f) is differentially transcendental over C{z}.

We conjecture that the condition in this proposition is always satisfied (and hence
the question posed above has a positive answer). More generally, we conjecture: Let
f ∈ z + z2C{z} have infinite radius of convergence, and let g ∈ C{z} be the Taylor
series at 0 of a meromorphic function on C. Then there is no non-zero y ∈ zC{z}
satisfying

y ◦ f =
y

1− gy
· (f ′)k (k > 0).

Notation. Throughout the paper, m, n range over the set N = {0, 1, 2, . . . } of
natural numbers.
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2. Differential Polynomials

A differential ring is a commutative ring R equipped with a derivation of R,
i.e., a map ∂ : R→ R which is additive (∂(f + g) = ∂(f) + ∂(g) for all f, g ∈ R) and
satisfies the Leibniz Rule (∂(f ·g) = f ·∂(g)+ ∂(f) ·g for all f, g ∈ R). We also write
y′ instead of ∂(y) and similarly y(n) instead of ∂

n(y), where ∂
n is the nth iterate of

∂. A subring of R which is closed under ∂ is called a differential subring of R.
Let Y be a differential indeterminate over the differential ring R. Then R{Y }

denotes the ring of differential polynomials in Y over R. As ring, R{Y } is just
the polynomial ring R[Y, Y ′, Y ′′, . . . ] in the distinct indeterminates Y (n) over R,
where as usual we write Y = Y (0), Y ′ = Y (1), Y ′′ = Y (2). We consider R{Y }
as the differential ring whose derivation, extending the derivation of R and also
denoted by ∂, is given by ∂(Y (n)) = Y (n+1) for every n. For P (Y ) ∈ R{Y } and y
an element of a differential ring containing R as a differential subring, we let P (y)
be the element of that extension obtained by substituting y, y′, . . . for Y, Y ′, . . .
in P , respectively. We say that an element y of a differential ring extension of
R is differentially algebraic over R if there is some P ∈ R{Y }, P 6= 0, such
that P (y) = 0, and if y is not differentially algebraic over R, then y is said to be
differentially transcendental over R. Clearly to be algebraic over R means in
particular to be differentially algebraic over R.

For any (r + 1)-tuple i = (i0, . . . , ir) of natural numbers put

Y i := Y i0(Y ′)i1 · · · (Y (r))ir .

We also set

|i| := i0 + · · ·+ ir, ‖i‖ := i1 + 2i2 + · · ·+ rir.

Let P ∈ R{Y }. The smallest r ∈ N such that P ∈ R[Y, Y ′, . . . , Y (r)] is called the
order of the differential polynomial P . Let r = order(P ), and let i = (i0, . . . , ir)
range over N1+r. We denote by Pi ∈ R the coefficient of Y i in P ; then

P (Y ) =
∑
i

Pi Y
i.

We also define the support of P as

suppP :=
{
i ∈ N1+r : Pi 6= 0

}
,

and for each i ∈ N we define

suppr,i P :=
{
i ∈ suppP : ir = i

}
.

For P 6= 0, by the complexity of P we mean the triple (r, d, s) ∈ N3 where
r = order(P ), d is the degree of P in the indeterminate Y (r), and s is the number
of elements of the set suppr,d P . In this context we order N3 lexicographically.

3. A Criterion for Differential Transcendence over a Subring

In the following we view C[[z]] as a differential ring with the derivation d
dz ; then

C{z} is a differential subring of C[[z]]. Moreover, if y ∈ C{z} then y ◦ f ∈ C{z} for
all f ∈ zC{z} and y/f ∈ C{z} for all non-zero f ∈ C{z} with ord(y) > ord(f). Here
and below, given a non-zero power series f ∈ C[[z]] with f ∈ znC[[z]]\zn+1C[[z]] we
let ord(f) = n, and we set ord(0) := +∞ > N. More generally, given a subring R
of C[[z]] and f ∈ zC[[z]], we say that R is closed under substitution of f if R is
closed under the C-algebra endomorphism y 7→ y ◦ f of C[[z]], and we say that R is
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closed under division in C[[z]] if for all y, f ∈ R with f 6= 0 and ord(y) > ord(f)
we have y/f ∈ R.

We set φ = ez−1 ∈ zQ[[z]]. As a first step in the proof of Theorem 1.1, we want
to give a criterion for solutions of Julia’s equation (1.2) with f = φ to be algebraic
over certain kinds of differential subrings of C[[z]]:

Proposition 3.1. Let R be a differential subring of C[[z]] which contains C[e±z]
and which is closed under substitution of φ and closed under division. Suppose that
for every integer k > 0, R does not contain non-zero solutions y of the functional
equations

y ◦ φ = y · ekz (3.1)

and

y ◦ φ =
y

1− y
· ekz, y ∈ zC[[z]]. (3.2)

Then every h ∈ C[[z]] which is differentially algebraic over R and satisfies Julia’s
equation h ◦ φ = h · ez is algebraic over R.

We denote by
[
j
i

]
the Stirling numbers of the first kind (the number of per-

mutations of a j-element set having i disjoint cycles). Towards a proof of this
proposition, we first note that an easy induction on n, using the familiar recurrence
relation for the Stirling numbers of the first kind (see [10, (6.8)]), shows that for
every h ∈ C[[z]] and every n we have

(h(n) ◦ φ) · enz =

n∑
m=0

(−1)n−m
[
n

m

]
(h ◦ φ)(m).

Let now h ∈ C[[z]] and suppose that h ◦ φ = h · ez. Then we further have

(h(n) ◦ φ) · enz = ez
n∑
k=0

(
n∑

m=k

(−1)n−m
(
m

k

)[
n

m

])
h(k). (3.3)

The coefficients of the h(k) in this sum are given by the entries of the bi-infinite
triangular matrix

(Hkn) :=



1 1 0 0 0 0 · · ·
1 1 −1 2 −6 · · ·

1 0 −1 5 · · ·
1 −2 5 · · ·

1 −5 · · ·
1 · · ·

. . .


.

It is easy to see that

Hn,n+1 = (n+ 1)
(

1− n

2

)
for every n.

In particular, for each n > 0 there is some k < n such that Hkn 6= 0 (namely,
k = n− 1 if k 6= 3 and k = 1 if n = 3).

Let now R be a differential subring of C[[z]] closed under substitution of φ and
containing C[e±z], and let H denote the endomorphism of the ring R{Y } extending
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the endomorphism y 7→ y ◦ φ of R such that

Y (n) 7→ e(1−n)z
n∑
k=0

Hkn Y
(k) for every n.

For every P ∈ R{Y } we then have

P (h) ◦ φ = H(P )(h).

Suppose R satisfies all hypotheses of Proposition 3.1, and assume that h is differ-
entially algebraic over R. Let P ∈ R{Y } be non-zero of lowest complexity (r, d, s)
(with respect to the lexicographic ordering of N3) such that P (h) = 0. We want to
deduce that then r = 0 (hence h is algebraic over R), so for a contradiction assume
r > 0 (and hence d > 0). Below we let i, j range over N1+r. For every i we have

H(PiY
i) = (Pi ◦ φ)e(|i|−‖i‖)zY i + terms of degree < ir in Y (r)

and thus

H(P ) =

 ∑
j∈suppr,d P

(Pj ◦ φ)e(|j|−‖j‖)zY j

+ terms of degree < d in Y (r).

Take j ∈ suppr,d P , and define

Q := (Pj ◦ φ)e(|j|−‖j‖)z P − Pj H(P ) ∈ R{Y }.

Then the differential polynomial Q has smaller complexity than P and also satisfies
Q(h) = 0; hence Q = 0 by choice of P and thus

suppP = suppH(P ). (3.4)

As we shall see, the fact that Q = 0 also severely restricts the shape of P . We first
observe that by the displayed formula for H(P ) above, Q = 0 yields

(Pj ◦ φ)e(|j|−‖j‖)zPi = Pje
(|i|−‖i‖)z(Pi ◦ φ)

for every i ∈ suppr,d P . For every such i, setting y := Pi/Pj if ord(Pj) 6 ord(Pi)
and y := Pj/Pi if ord(Pj) > ord(Pi), we therefore obtain a non-zero solution y ∈ R
of (3.1) with k = ±(|j| − |i|+ ‖i‖−‖j‖). Our assumption on the solutions of (3.1)
in R yields k 6 0; the case k < 0 can be excluded on formal grounds, cf. Lemma 3.2
below. Therefore we have k = 0, that is, |i| − ‖i‖ = |j| − ‖j‖. Since j ∈ suppr,d P
was arbitrary, we thus have shown:

|i| − ‖i‖ = |j| − ‖j‖ for all i, j ∈ suppr,d P . (3.5)

Next, we concentrate on the terms of Y (r)-degree d− 1 in H(P ). Writing

H(P ) =

d∑
i=0

H(P )i (Y (r))i where H(P )i ∈ R[Y, Y ′, . . . , Y (r−1)],

and for every i = (i0, . . . , ir) setting i′ := (i0, . . . , ir−1), we have

H(P )d =
∑

j∈suppr,d P

(Pj ◦ φ)e(|j|−‖j‖)zY j′



ITERATIVE LOGARITHMS 7

and

H(P )d−1 =∑
j∈suppr,d P

r−1∑
k=0

dHkr (Pj ◦φ)e(|j|−‖j‖)zY j′Y (k) +
∑

i∈suppr,d−1 P

(Pi ◦φ)e(|i|−‖i‖)zY i′ .

Using (3.5) one easily shows:

Claim 1. For each i there exists at most one pair (j, k) where j ∈ suppr,d P and

k ∈ {0, . . . , r − 1} such that Y i′ = Y j′Y (k).

Moreover, (3.4) implies:

Claim 2. Let j ∈ suppr,d P and k < r with Hkr 6= 0. Then there is some

i ∈ suppr,d−1 P such that Y i′ = Y j′Y (k).

(If not, then Y j′Y (k) appears with the non-zero coefficient dHkr (Pj◦φ)e(|j|−‖j‖)z

in H(P )d−1, by Claim 1 and the displayed formula for H(P )d−1, and hence also
appears with a non-zero coefficient in Pd−1, since suppP = suppH(P ), a contra-
diction.)

Take j ∈ suppr,d P and k ∈ {0, . . . , r − 1} with Hkr 6= 0 and i ∈ suppr,d−1 P

such that Y i′ = Y j′Y (k). Note that |i| = |j| and ‖i‖ = ‖j‖ + k − r. Now the
vanishing of Q yields the identity

(Pj ◦ φ)e(|j|−‖j‖)z Pi = Pj

(
c (Pj ◦ φ)e(|j|−‖j‖)z + (Pi ◦ φ)e(|i|−‖i‖)z

)
,

where c := dHkr 6= 0. Suppose ordPi > ordPj . Setting y := Pi/(cPj) ∈ R we then
obtain

y ◦ φ = e(k−r)z · (y − 1).

Substituting z = 0 gives a contradiction. Now suppose ordPi < ordPj . Then
setting y := cPj/Pi ∈ R we obtain ord y > 0 and

(1− y) · (y ◦ φ) = y · e(r−k)z.

This contradicts our assumptions on the solutions of (3.2) in R. These two contra-
dictions finish the proof of Proposition 3.1. �

Before we continue, it is perhaps worth pointing out that (3.1) and (3.2) always

have non-zero formal solutions. As in the introduction, we write fn = 1
n!
dnf
dzn (0) for

the nth coefficient of the power series f ∈ C[[z]].

Lemma 3.2. Let f ∈ z + zp+1C[[z]] with fp+1 6= 0 and k ∈ Z, k 6= 0. If k > 0,
then the functional equation

y ◦ f = y · (f ′)k (3.6)

has a unique solution y ∈ zk(p+1)C[[z]] such that yk(p+1) = (fp+1)k, namely y =

itlog(f)k, and the general solution of (3.6) is given by y = c · itlog(f)k where c ∈ C.
If k < 0, then the only solution y ∈ C[[z]] to (3.6) is y = 0.

Proof. Write f ′ = 1 + zpg where g ∈ C[[z]]; then (f ′)k = 1 + zph where h0 = kg0 =
k(p+ 1)fp+1. Suppose the formal power series

y =
∑
n>0

ynz
n ∈ C[[z]]
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with indeterminate coefficients yn ∈ C satisfies (3.6). Substituting into (3.6) and
subtracting y on both sides of the equation one obtains∑

n>1

n∑
i=1

(
n

i

)
ynz

n−iri =
∑
n>0

(
n∑
i=0

hi+pyn−i

)
zn+p

where

r := f − z =
∑

n>p+1

fnz
n ∈ zp+1C[[z]].

Comparing the coefficients of zp+j , where j > 0, on both sides of this equation
yields

jyjfp+1 +Aj = k(p+ 1)fp+1yj +Bj

where Aj , Bj are linear combinations of yi with 0 6 i < j. This easily yields the
lemma. �

For (3.2) we show, slightly more generally:

Lemma 3.3. Let f ∈ z + zp+1C[[z]] with fp+1 6= 0 and g ∈ C[[z]] with ord(g) >
p > 1. Then there exists a unique y ∈ zpC[[z]] such that yp = 1

2 (pfp+1 − gp) and

y ◦ f =
y

1− y
· (1 + g). (3.7)

Proof. Set

y =
∑
n>p

ynz
n ∈ zpC[[z]]

with indeterminate coefficients yn. Substituting into (3.7) and subtracting y on
both sides we obtain∑

n>p

n∑
i=1

(
n

i

)
ynz

n−iri =
∑
n>0

(
n∑
i=0

gi+pyn−i+p

)
zn+2p + (y2 + y3 + · · · )(1 + g)

where r := f − z. We now equate the coefficients of zp+j , where j > p, on both
sides of this equation. On the left-hand side we obtain jyjfp+1 + Aj where Aj is
a linear combination of yi with p 6 i < j (with coefficients depending only on the
fn). The coefficient of zp+j in the first summand on the right-hand side is gpyj+Bj
where Bj is a linear combination of yi with p 6 i < j (with coefficients depending
only on the gn). The coefficient of zp+j in ymg, where m > 2, is given by∑

i0+···+im=j
i1,...,im>p

gp+i0yi1 · · · yim

and hence is a polynomial in yi with p 6 i < j. The coefficient of zp+j in ym, where
m > 2, is ∑

i1+···+im=p+j
i1,...,im>p

yi1 · · · yim .

If m > 3 then this sum only involves yi with p 6 i < j, and if m = 2 then this sum
has the form 2yjyp + quadratic form in yi with p 6 i < j. In summary, we obtain
the equations

jyjfp+1 = gpyj + 2ypyj + Cj (j > p) (3.8)
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where Cj is a polynomial in yi with p 6 i < j (depending only on the fn and gn)
with Cp = 0. For j = p this equation for yp reads

pypfp+1 = gpyp + 2(yp)
2,

with zeros yp = 0 and yp = 1
2 (pfp+1− gp). Moreover, if we have yp = 1

2 (pfp+1− gp)
then (3.8) simplifies to yj · (j − p)fp+1 = Cj , hence in this case, the yj with j > p
are uniquely determined. This yields the lemma. �

Since C{z} is well-known to be algebraically closed in C[[z]] (a consequence of
Puiseux’s Theorem), Proposition 3.1 and the following proposition imply Theo-
rem 1.1:

Proposition 3.4. Let k > 0 be an integer. Then the only y ∈ C{z} satisfying
(3.1) or (3.2) is y = 0.

The proof of this proposition is given in the next section.

4. Two Functional Equations

To prove Proposition 3.4, we follow the geometric argument of Lewin [15] showing
that itlog(φ) /∈ C{z}. Of course, the part of Proposition 3.4 which concerns (3.1)
also follows from Lemma 3.2 and the general fact, indicated in the introduction,
that itlog(f) always has radius of convergence 0 for f ∈ z+z2C{z}, f 6= z. However,
the argument of [15] will, with some modifications, also apply to (3.2), therefore we
first show how to deal with (3.1) by this method. Lewin first observed the following
elementary properties of the entire function ez − 1:

Lemma 4.1. Let z ∈ C with −π < Im z 6 π, and w = ez − 1. Then

(1) if Re z 6 0, then |w| < |z|; and
(2) if Re z > 0, then either Rew 6 0 or |w| > |z|.

Let now h be a non-constant holomorphic function defined in a neighborhood U
of 0 in C, and V ⊆ U a neighborhood of 0 in C mapped into U under z 7→ ez − 1,
and suppose h satisfies the functional equation

h(ez − 1) = g(h(z)) · ekz for every z ∈ V , (4.1)

where k ∈ Z and g : h(V ) → C is an injective holomorphic map. (In view of (3.1)
and (3.2), of course, we are mainly interested in g(z) = z and g(z) = z

1−z .) Let
% > 0 be the radius of convergence of the Taylor series of h at 0. Lemma 4.1 above
implies that % =∞. To see how, suppose % <∞, and let z0 be a singular point of
h on the circle of convergence of h around 0. Since h is periodic with period 2πi
(if V is large enough) we may assume that −π < Im z0 6 π. Thus if Re z0 6 0
then w0 = ez0 − 1 satisfies |w0| < |z0| by Lemma 4.1, (1) and thus lies inside the
circle of convergence of h around 0; however, w0 is also a singularity of h, by (4.1),
a contradiction. Suppose Re z0 > 0, and let w0 ∈ C such that ew0 − 1 = z0 and
−π < Imw0 6 π. Then 1 < |z0 + 1| = |ew0 | = eRew0 , hence Rew0 > 0 and thus
|w0| < |z0| by part (2) of Lemma 4.1, whereas by (4.1), w0 is a singular point of h;
this is again a contradiction. These contradictions show that % =∞.

This argument and the following lemma together already demonstrate that (3.1)
has only the trivial solution in C{z}:
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Lemma 4.2. Let h : C→ C be an entire function and k ∈ Z, k 6= 0 such that

h(ez − 1) = h(z) · ekz for every z ∈ C. (4.2)

Then h ≡ 0.

Before we give a proof of this lemma, we establish some auxiliary facts (in a
generality which is sufficient to later aid in dealing with (3.1) as well).

Lemma 4.3. Let V : R>0 → R be a convex function and s0 ∈ R>0 such that for
some real constants b, c, d and C with c > b > 0 and c > 1 we have

V (cs) 6 bV (s) + ds+ C for all s > s0. (4.3)

Then there are A,B ∈ R such that

V (s) 6 As+B for all s > s0. (4.4)

Proof. Choose A > 0 such that both

K := A(c− b)− d > 0

and

A(c− 1)s0 > (b− 1)V (s0) + ds0 + C.

Set B := V (s0)−As0. Then the last inequality yields

(b− 1)B = (b− 1)V (s0)− (b− 1)As0 6 Ks0 − C

and hence

bB + C 6 B +Kcns0 for every n. (4.5)

An easy induction on n now shows V (cns0) 6 A(cns0) + B for every n: the case
n = 0 holds by choice of B, and if the inequality in question has been shown for a
given value of n, then

V (cn+1s0) 6 d(cns0) + bV (cns0) + C (by (4.3))

6 d(cns0) + bA(cns0) + bB + C (by inductive hypothesis)

= (Ac−K)cns0 + bB + C

6 Acn+1s0 +B (by (4.5)).

Hence (4.4) holds for all s of the form s = cns0 (for some n). Convexity of V yields
that then (4.4) also holds for all s with cns0 < s < cn+1s0 for some n. Hence (4.4)
holds for all s > s0. �

This lemma, in combination with Hadamard’s Three Circle Theorem, has a useful
consequence. Given an entire function f we denote as usual by

M(r, h) = max
|z|=r

|h(z)| (r > 0)

the maximum modulus of h on the circle |z| = r (an increasing function of r).

Corollary 4.4. Let h be an entire function, and suppose that for some real con-
stants b, c, d, C with c > 0 and C > 0 we have

M(r, h) 6 C
(
M(c log r, h)

)b
rd for all sufficiently large r > 0.

Then h is a polynomial.
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Proof. This is clear if b 6 0: if M(r, h) 6 1 for all sufficiently large r > 0, then
h is constant, while if b 6 0 and M(r, h) > 1 for sufficiently large r > 0 then the
hypothesis of the lemma implies M(r, h) 6 C rd for sufficiently large r > 0, hence
h is a polynomial by Liouville’s Theorem. Thus, from now on we assume b > 0.
Increasing c if necessary, we then further reduce to the case that c > 1 and c > b.
Put V (s) = logM(r, h) where r = es. By Hadamard’s theorem, s 7→ V (s) is a
convex function, and by our hypothesis

V (cs) = logM(rc, h) 6 logC + b logM(c2 log r, h) + cds 6

logC + b logM(r, h) + cds = logC + bV (s) + cds

for sufficiently large s > 0. Thus the previous lemma applies to V , with logC in
place of C and cd in place of d. Phrased in terms of M(r, h) the lemma yields the
existence of constants α, β > 0 such that M(r, h) 6 βrα for sufficiently large r.
Hence h is a polynomial. �

By a classical result of Pólya [18] (see also [11, Theorem 2.9]) there exists a
constant c ∈ (0, 1) such that for all entire functions f , g with g(0) = 0,

M(r, f ◦ g) >M
(
cM( r2 , g), f

)
for all r > 0. (4.6)

We now show Lemma 4.2. So suppose h is an entire function satisfying (4.2), where
k ∈ Z, k 6= 0. Note that h is periodic (with period 2πi), so if h is a polynomial,
then h is constant and hence 0. Thus it is enough to show that h is a polynomial.
Let r, s range over R>0, and write M(r) = M(r, h). By Pólya’s inequality and
(4.2) we have

M(c(er/2 − 1)) 6M
(
cM( r2 , e

z − 1)
)
6M(r, h(ez − 1))

6M(r) ·M(r, ekz) = M(r) · e|k|r for all r.

Since M(r) is an increasing function of r, we have M(er/4) 6 M(c(er/2 − 1)) for
sufficiently large r, and hence

M(s) 6M(4 log s) · s4|k| for sufficiently large s.

By the corollary above we see that h is a polynomial as desired. �

Now we turn to the functional equation (3.2). The analogue of Lemma 4.2 in
this case is:

Lemma 4.5. Suppose h : C → C is an entire function with h(0) = 0, and k ∈ Z
such that

h(ez − 1) =
h(z)

1− h(z)
ekz for every z ∈ C. (4.7)

Then h ≡ 0.

For the proof, it is convenient, in addition to M(r, f), to employ the Nevanlinna
characteristic

T (r, f) =
1

2π

∫ 2π

0

log+|f(reiθ)| dθ (r > 0)

of an entire function f . Here log+ x = log x for every real x > 1 and log+ x := 0 if
0 6 x 6 1. Some basic properties of T include, for all entire functions f and g and
all r > 0:

T (r, fg) 6 T (r, f) + T (r, g)
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and

T

(
r,

1

f − a

)
6 T (r, f) +O(1) for a ∈ C \ f(C).

Moreover, for all entire f we have

T (r, f) 6 log+M(r, f) 6 3T (2r, f) for all r > 0, (4.8)

see [11, Theorem 1.6]. There also do exist analogues of Pólya’s inequality concern-
ing the Nevanlinna characteristic of composite functions (instead of the maximum
modulus); see, e.g., [5]. However, the Pólya inequality (4.6) in combination with
(4.8) suffices for our purposes.

We are now ready to show Lemma 4.5. Let h be an entire function vanishing at
the origin and k ∈ Z satisfying (4.7). As in the proof of Lemma 4.2 it is enough to
show that h is a polynomial. If h is bounded, then h is constant, and we are done;
hence we can assume that h is unbounded; in particular log+M(r, h) = logM(r, h)
for sufficiently large r > 0. Since T (r, ekz) = kr/π, by (4.7) we have

T (r, h(ez − 1)) 6 2T (r, h) +
kr

π
+O(1).

Using (4.6) and (4.8) this yields

logM
(
c(er/4 − 1), h

)
6 logM

(r
2
, h(ez − 1)

)
6 6 logM(r, h) +

3kr

π
+O(1)

where c ∈ (0, 1). Hence

logM(s, h) 6 6 logM(8 log s, h) +
24k

π
log s+O(1)

for sufficiently large s, or equivalently, for some constant C > 0,

M(s, h) 6 C
(
M(8 log s, h)

)6
s24k/π for sufficiently large s.

Corollary 4.4 now shows that h is a polynomial. �

5. The General Case

In this final section we make a few remarks about how one could go about answering
the question posed in the introduction about differential transcendence of itlog(f)
over C{z} for general f ∈ z + z2C{z}∞, following the strategy employed above in
the case f = φ = ez − 1.

We first consider a generalization of the transformation formula (3.3). In the
following we fix f ∈ z + z2C[[z]]. Note that f ′ ∈ 1 + zC[[z]] is a unit in C[[z]].
Set Gmn := 0 if m > n or m = 0 < n, and G00 := (f ′)−1, and define Gmn with
0 < m 6 n by the recurrence

Gm,n+1 = (1− 2n)Gmnf
′′ + (G′mn +Gm−1,n)f ′.

An easy induction on n shows that then for each h ∈ C[[z]] and n we have

(h(n) ◦ f) · (f ′)2n−1 = G1n(f) (h ◦ f)′ +G2n(f) (h ◦ f)′′ + · · ·+Gnn(f) (h ◦ f)(n).
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Organizing the Gmn into a triangular matrix we obtain:

G := (Gmn)m,n =


(f ′)−1 0 0 0 · · ·

1 −f ′′ 3(f ′′)2 − f ′f (3) · · ·
f ′ −3f ′f ′′ · · ·

(f ′)2 · · ·
. . .

 .

Note that Gnn = (f ′)n−1 for each n and

Gn,n+1 = −n(n+ 1)

2
f ′′(f ′)n−1 for every n. (5.1)

Now set

Hkn =

n∑
m=k

(
m

k

)
f (m−k+1)Gmn for k = 0, . . . , n.

So if we define the triangular matrix

B := (Bkm) =


f ′ f ′′ f (3) f (4) · · ·

f ′ 2f ′′ 3f (3) · · ·
f ′ 3f ′′ · · ·

f ′ · · ·
. . .


where Bkm =

(
m

k

)
f (m−k+1) for m > k,

then

B ·G =


1 f ′′ f ′f (3) − (f ′′)2 (f ′)2f (4) − 4f ′f ′′f (3) + 3(f ′′)2 · · ·

f ′ f ′f ′′ −3f ′(f ′′)2 + 2(f ′)2f (3) · · ·
(f ′)2 0 · · ·

(f ′)3 · · ·
. . .

 .

Setting C = (Cmn)m,n with Cnn = (f ′)−n for every n and Cmn = 0 for m 6= n we
finally let

H = (Hkn) := B ·G · C =
1 f ′′/f ′ f (3)/f ′ − (f ′′/f ′)2 [ · · · ] · · ·

1 f ′′/f ′ −3(f ′′/f ′)2 + 2f (3)/f ′ · · ·
1 0 · · ·

1 · · ·
. . .

 .

Note that (5.1) implies

Hn,n+1 = (n+ 1)
(

1− n

2

)
f ′′/f ′ for every n.

Also note that
1

2
H13 = f (3)/f ′ − 3

2
(f ′′/f ′)2
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is the Schwarzian derivative S(f) of f . It is well-known that if g ∈ C{z} and
S(g) = 0 then g is a fractional linear transformation: g = az+b

cz+d for some a, b, c, d ∈ C
with ad− bc 6= 0 (see, e.g., [12, Section 10.1]). Thus:

Lemma 5.1. Suppose f 6= z has infinite radius of convergence. Then for each
n > 0 there is some k < n such that Hkn 6= 0, of the form Hkn = C (f ′′/f ′) or
Hkn = C S(f) where C ∈ Z.

Suppose now that h ∈ C[[z]] and f satisfy Julia’s equation h ◦ f = h · f ′. Then
for every n

(h(n) ◦ f) · (f ′)2n−1 = H0n(f)h+H1n(f)h′ + · · ·+Hnn(f)h(n).

Let R be a differential subring of C[[z]] closed under substitution of f which contains
C[f ′, (f ′)−1], and denote the R-algebra automorphism of R{Y } with

Y (n) 7→ (f ′)1−2n
(
H0n Y +H1n Y

′ + · · ·+Hnn Y
(n)
)

for every n

also by H. Then for every P ∈ K{Y } we have P (h) ◦ f = H(P )(h). Formally
arguing as in the proof of Proposition 3.4, using Lemma 5.1 at the appropriate
places, we therefore arrive at the following generalization of this proposition:

Proposition 5.2. Suppose f 6= z has infinite radius of convergence, and let R be a
differential subring of C[[z]] which contains C[f ′, (f ′)−1] and which is closed under
substitution of f and closed under division. Suppose that for no integer k > 0, R
contains non-zero solutions y of the functional equations

y ◦ f = y · (f ′)k, (5.2)

y ◦ f =
y

1− (f ′′/f ′)y
· (f ′)k, y ∈ zC[[z]], (5.3)

y ◦ f =
y

1− S(f)y
· (f ′)k, y ∈ zC[[z]]. (5.4)

Then every h ∈ C[[z]] which is differentially algebraic over R and satisfies Julia’s
equation h ◦ f = h · f ′ is algebraic over R.

Thus, in order to answer the question posed in the introduction in full generality,
it suffices to show that given a power series f 6= z with infinite radius of conver-
gence and a positive integer k, neither of the functional equations (5.2), (5.3) nor
(5.4) has a non-zero convergent solution y. For (5.2), this follows from Lemma 3.2
and the fact (mentioned in the introduction) that itlog(f) /∈ C{z}. This shows
Proposition 1.2.
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