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Abstract. We show that all maximal Hardy fields are elementarily equivalent

as differential fields, and give various applications of this result and its proof.

We also answer some questions on Hardy fields posed by Boshernitzan.
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Preface

A Hardy field is said to be maximal if it has no proper Hardy field extension. In
these notes we show that all maximal Hardy fields are elementarily equivalent, as
ordered differential fields, to the ordered differential field T of transseries. This is
part of our main result, Theorem 6.7.22.

We shall depend heavily on our book [ADH], which contains a model-theoretic
analysis of T. Besides developing further the asymptotic differential algebra from
that book we require also a good dose of analysis. These notes are divided in
Parts 1–7, preceded by a somewhat lengthy Introduction including a sketch of
the proof of our main result. Parts 1–4 consist of further asymptotic differential
algebra and culminates in various normalization theorems for algebraic differential
equations over suitable H-fields. Parts 5 and 6 are more analytic and apply the
normalization theorems to Hardy fields. Part 7 consists of applications. We finish
with an index and a list of symbols newly introduced in this work. (All other
notation is standard or comes from [ADH].)

The present notes are probably not suitable for publication as a journal article, since
we took the liberty of including extensive sections with complete proofs on classical
topics such as self-adjoint linear differential operators, almost periodic functions,
uniform distribution modulo 1, and Bessel functions. This was partly done for our
own education, and partly to put things in a form convenient for our purpose. We
also took the opportunity to develop some topics a bit further than needed for the
main theorem, and in this way we could also answer in Part 5 some questions about
Hardy fields raised by Boshernitzan. We have in mind further use of the material
here, for example in [15] and in relation to open problems posed in [ADH]. (Our
main theorem solves one of those problems.)

Readers only interested in the proof of our main result can skip Sections 1.3, 2.4,
5.4, as well as several subsections of other sections in Parts 1–6. These (sub)sections
are marked by an asterisk (∗).

The main results in these notes are really about differentially algebraic Hardy field
extensions, especially their construction. We complement this in [14] with an ac-
count of constructing differentially transcendental Hardy field extensions, leading
to the result that all maximal Hardy fields are η1 in the sense of Hausdorff: in
other words, given any Hardy field H and countable subsets A < B in H, there is
an element f in a Hardy field extension of H such that A < f < B. This can be
used to show that all maximal Hardy fields are back-and-forth equivalent, which
is considerably stronger than their elementary equivalence. We mention this here
because the proof of a key ingredient in [14] makes essential use of the main result
from the present notes.

We are still deliberating how to publish this material (these notes and [14]), but
thought it best to make it available for now on the arxiv.
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Introduction

Du Bois-Reymond’s “orders of infinity” [28]–[31] were put on a firm basis by Har-
dy [87], leading to the notion of a Hardy field (Bourbaki [39]). A Hardy field is a
field H of germs at +∞ of differentiable real-valued functions on intervals (a,+∞)
such that for any differentiable function whose germ is inH the germ of its derivative
is also in H. (See Section 5.3 for more precision.) Every Hardy field is naturally
a differential field, and an ordered field with the germ of f being > 0 iff f(t) > 0,
eventually. Hardy fields are the natural domain of asymptotic analysis, where all
rules hold, without qualifying conditions [170, p. 297]. The basic theory of Hardy
fields was mostly developed by Boshernitzan [32]–[35] and Rosenlicht [170]–[174].

The germs of Hardy’s logarithmico-exponential functions [84] furnish the classical
example of a Hardy field: these functions are the real-valued functions that can be
built from real constants and the identity function x, using addition, multiplication,
division, taking logarithms, and exponentiating. Examples include the germs of the

functions (0,+∞) → R given by xr (r ∈ R), ex2

, and log log x. Other Hardy fields
contain (germs of) differentially transcendental functions, such as the Riemann ζ-
function and Euler’s Γ-function [170], and even functions ultimately growing faster
than each iterate of the exponential function [34]. One source of Hardy fields is
o-minimality: every o-minimal structure on the real field naturally gives rise to a
Hardy field (of germs of definable functions). This yields a wealth of examples such
as those obtained from quasi-analytic Denjoy-Carleman classes [166], or containing
certain transition maps of plane analytic vector fields [110], and explains the role
of Hardy fields in model theory and its applications to real analytic geometry and
dynamical systems [8, 22, 139]. Hardy fields have also found applications in com-
puter algebra [176, 177, 185], ergodic theory (see, e.g., [20, 37, 73, 115]), and other
areas of mathematics [19, 42, 44, 68, 80].

In the remainder of this introduction, H is a Hardy field. Then H(R) (obtained
by adjoining the germs of the constant functions) is also a Hardy field, and for
any h ∈ H, the germ eh generates a Hardy field H(eh) over H, and so does any
differentiable germ with derivative h. Moreover, H has a unique Hardy field ex-
tension that is algebraic over H and real closed. (See [32, 165, 171] or Section 5.3
below.) Our main result is Theorem 6.7.22, and it yields what appears to be the
ultimate fact about differentially algebraic Hardy field extensions:

Theorem A. Let P (Y ) be a differential polynomial in a single differential indeter-
minate Y over H, and let f < g in H be such that P (f) < 0 < P (g). Then there
is a y in a Hardy field extension of H such that f < y < g and P (y) = 0.

By Zorn, every Hardy field extends to a maximal Hardy field, so by the theorem
above, maximal Hardy fields have the intermediate value property for differential
polynomials. (In [14] we show there are very many maximal Hardy fields, namely 2c

many, where c is the cardinality of the continuum.) By the results mentioned ear-
lier, maximal Hardy fields are also Liouville closed H-fields in the sense of [6]; thus
they contain the germs of all logarithmico-exponential functions. Hiding behind
the intermediate value property of Theorem A are two more fundamental proper-
ties, ω-freeness and newtonianity, which are central in our book [ADH]. (Roughly
speaking, ω-freeness controls the solvability of second-order homogeneous differen-
tial equations, and newtonianity is a strong version of differential-henselianity.) We
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show that any Hardy field has an ω-free Hardy field extension (Theorem 5.6.2), and
next the much harder result that any ω-free Hardy field extends to a newtonian
ω-free Hardy field: Theorem 6.7.22, which is really the main result of this paper. It
follows that every maximal Hardy field is, in the terminology of [12], an H-closed
field with small derivation. Now the elementary theory TH of H-closed fields with
small derivation (denoted by T nl

small in [ADH]) is complete, by [ADH, 16.6.3]. This
means in particular that any two maximal Hardy fields are indistinguishable as to
their elementary properties:

Corollary 1. If H1 and H2 are maximal Hardy fields, then H1 and H2 are ele-
mentarily equivalent as ordered differential fields.

To derive Theorem A we use also the key results from the book [103] to the effect
that Tg, the ordered differential field of grid-based transseries, is H-closed with
small derivation and the intermediate value property for differential polynomials.
In particular, it is a model of the complete theory TH . Thus maximal Hardy fields
have the intermediate value property for differential polynomials as well, and this
amounts to Theorem A, obtained here as a byproduct of more fundamental results.
(A more detailed account of the differential intermediate value property for H-fields
is in [13].) We sketch the proof of our main result (Theorem 6.7.22) later in this
introduction, after describing further consequences.

Further consequences of our main result. In [ADH] we prove more than com-
pleteness of TH : a certain natural extension by definitions of TH has quantifier
elimination. This leads to a strengthening of Corollary 1 by allowing parameters
from a common Hardy subfield of H1 and H2. To fully appreciate this statement
requires more knowledge of model theory, as in [ADH, Appendix B], which we
do not assume for this introduction. However, we can explain a special case in
a direct way, in terms of solvability of systems of algebraic differential equations,
inequalities, and asymptotic inequalities. Here we find it convenient to use the no-
tation for asymptotic relations introduced by du Bois-Reymond and Hardy instead
of Bachmann-Landau’s O-notation: for germs f , g in a Hardy field set

f ≼ g :⇐⇒ f = O(g) :⇐⇒ |f | ⩽ c|g| for some real c > 0,

f ≺ g :⇐⇒ f = o(g) :⇐⇒ |f | < c|g| for all real c > 0.

Let now Y = (Y1, . . . , Yn) be a tuple of distinct (differential) indeterminates, and
consider a system of the following form:

(∗)


P1(Y ) ϱ1 Q1(Y )

...
...

...

Pk(Y ) ϱk Qk(Y )

Here each Pi, Qi is a differential polynomial in Y (that is, a polynomial in the
indeterminates Yj and their formal derivatives Y ′

j , Y
′′
j , . . . ) with coefficients in our

Hardy field H, and each ϱi is one of the symbols =, ̸=, ⩽, <, ≼, ≺. Given a
Hardy field E ⊇ H, a solution of (∗) in E is an n-tuple y = (y1, . . . , yn) ∈ En such
that for i = 1, . . . , k, the relation Pi(y) ϱiQi(y) holds in E. Here is a Hardy field
analogue of the “Tarski Principle” of real algebraic geometry [ADH, B.12.14]:

Corollary 2. If the system (∗) has a solution in some Hardy field extension of H,
then (∗) has a solution in every maximal Hardy field extension of H.
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(The symbols ̸=, ⩽, <, ≼ in (∗) are for convenience only: their occurrences can be
eliminated at the cost of increasing m, n. But ≺ is essential; see [ADH, 16.2.6].)
Besides the quantifier elimination alluded to, Corollary 2 depends on Lemma 7.1.1,
which says that for any Hardy field H all maximal Hardy field extensions of H
induce the same ΛΩ-cut on H, as defined in [ADH, 16.3].

In particular, taking for H the smallest Hardy field Q, we see that a system (∗)
with a solution in some Hardy field has a solution in every maximal Hardy field,
thus recovering a special case of our Corollary 1. Call such a system (∗) over Q
consistent. For example, with X, Y , Z denoting here single distinct differential
indeterminates, the system

Y ′Z ≼ Z ′, Y ≼ 1, 1 ≺ Z

is inconsistent, whereas for any Q ∈ Q{Y } and n ⩾ 2 the system

XnY ′ = Q(Y ), X ′ = 1, Y ≺ 1

is consistent. As a consequence of the completeness of TH we obtain the existence
of an algorithm (albeit a very impractical one) for deciding whether a system (∗)
over Q is consistent, and this opens up the possibility of automating a substantial
part of asymptotic analysis in Hardy fields. We remark that Singer [188] proved the
existence of an algorithm for deciding whether a given system (∗) over Q without
occurrences of ≼ or ≺ has a solution in some ordered differential field (and then it
will have a solution in the ordered differential field of germs of real meromorphic
functions at 0); but there are such systems, like

X ′ = 1, XY 2 = 1−X,

which are solvable in an ordered differential field, but not in a Hardy field. Also,
algorithmically deciding the solvability of a system (∗) over Q in a given Hardy
field H may be impossible when H is “too small”: e.g., if H = R(x), by [55].

As these results suggest, the aforementioned quantifier elimination for TH yields
a kind of “resultant” for systems (∗) that allows one to make explicit within H
itself for which choices of coefficients of the differential polynomials Pi, Qi the
system (∗) has a solution in a Hardy field extension of H. Without going into
details, we only mention here some attractive consequences for systems (∗) depend-
ing on parameters. For this, let X1, . . . , Xm, Y1, . . . , Yn be distinct indeterminates
and X = (X1, . . . , Xm), Y = (Y1, . . . , Yn), and consider a system

(∗∗)


P1(X,Y ) ϱ1 Q1(X,Y )

...
...

...

Pk(X,Y ) ϱk Qk(X,Y )

where Pi, Qi are now differential polynomials in (X,Y ) over H, and the ϱi are as
before. Specializing X to c ∈ Rm then yields a system

(∗c)


P1(c, Y ) ϱ1 Q1(c, Y )

...
...

...

Pk(c, Y ) ϱk Qk(c, Y )

where Pi(c, Y ), Qi(c, Y ) are differential polynomials in Y with coefficients in the
Hardy fieldH(R). (We only substitute real constants, so may assume that the Pi,Qi
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are polynomial inX, that is, none of the derivativesX ′
j , X

′′
j , . . . occur in the Pi, Qi.)

Using [ADH, 16.0.2(ii)] we obtain:

Corollary 3. The set of all c ∈ Rm such that the system (∗c) has a solution in
some Hardy field extension of H is semialgebraic.

Recall: a subset of Rm is said to be semialgebraic if it is a finite union of sets{
c ∈ Rm : p(c) = 0, q1(c) > 0, . . . , ql(c) > 0

}
where p, q1, . . . , ql ∈ R[X] are ordinary polynomials. (The topological and geometric
properties of semialgebraic sets have been studied extensively [24]. For example, it
is well-known that a semialgebraic set can have only have finitely many connected
components, and that each such component is itself semialgebraic.)

In connection with Corollary 3 we mention that the asymptotics of Hardy field
solutions to algebraic differential equations Q(Y ) = 0, where Q is a differential
polynomial with constant real coefficients, has been investigated by Hardy [85]
and Fowler [72] in cases where orderQ ⩽ 2 (see [18, Chapter 5]), and later by
Shackell [175, 183, 184] in general. Special case of our corollary: for any differential
polynomial P (X,Y ) with constant real coefficients, the set of parameters c ∈ Rm
such that the differential equation P (c, Y ) = 0 has a solution y in some Hardy field,
in addition possibly also satisfying given asymptotic side conditions (such as y ≺ 1),
is semialgebraic. Example: the set of real parameters (c1, . . . , cm) ∈ Rm for which
the homogeneous linear differential equation

y(m) + c1y
(m−1) + · · ·+ cmy = 0

has a nonzero solution y ≺ 1 in a Hardy field is semialgebraic; in fact, it is the set of
all (c1, . . . , cm) ∈ Rm such that the polynomial Y m+c1Y

m−1+ · · ·+cm ∈ R[Y ] has
a negative real zero. (Below we discuss more general linear differential equations
over Hardy fields.) Nonlinear example: for g2, g3 ∈ R the differential equation

(Y ′)2 = 4Y 3 − g2Y − g3

has a nonconstant solution in a Hardy field iff g32 = 27g23 and g3 ⩽ 0. In both cases,
the Hardy field solutions are germs of logarithmico-exponential functions. But the
class of differentially algebraic germs in Hardy fields is much more extensive; for

example, the antiderivatives of ex
2

are not logarithmico-exponential (Liouville).

Instead of c ∈ Rm, substitute h ∈ Hm for X in (∗∗), resulting in a system

(∗h)


P1(h, Y ) ϱ1 Q1(h, Y )

...
...

...

Pk(h, Y ) ϱk Qk(h, Y )

where Pi(h, Y ), Qi(h, Y ) are now differential polynomials in Y with coefficients
in H. It is well-known that for any semialgebraic set S ⊆ Rm+1 there is a natural
number B = B(S) such that for every c ∈ Rm, if the section

{
y ∈ R : (c, y) ∈ S

}
has > B elements, then this section has nonempty interior in R. In contrast, the
set of solutions of (∗h) for n = 1 in a maximal H can be simultaneously infinite
and discrete in the order topology of H: this happens precisely if some nonzero
one-variable differential polynomial over H vanishes on this solution set [ADH,
16.6.11]. (Consider the example of the single algebraic differential equation Y ′ = 0,
which has solution set R in each maximal Hardy field.) Nevertheless, we have the
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following uniform finiteness principle for solutions of (∗h); its proof is considerably
deeper than Corollary 3 and also draws on results from [10].

Corollary 4. There is a natural number B = B(∗∗) such that for all h ∈ Hm: if
the system (∗h) has > B solutions in some Hardy field extension of H, then (∗h)
has continuum many solutions in every maximal Hardy field extension of H.

Next we turn to issues of smoothness and analyticity in Corollary 2. By definition,
a Hardy field is a differential subfield of the differential ring C<∞ consisting of
the germs of functions (a,+∞) → R (a ∈ R) which are, for each n, eventually n-
times continuously differentiable. Now C<∞ has the differential subring C∞ whose
elements are the germs that are eventually C∞. A C∞-Hardy field is a Hardy
fieldH ⊆ C∞. (See [77] for an example of a Hardy fieldH ̸⊆ C∞.) A C∞-Hardy field
is said to be C∞-maximal if it has no proper C∞-Hardy field extension. Now C∞ in
turn has the differential subring Cω whose elements are the germs that are eventually
real analytic, and so we define likewise Cω-Hardy fields (Cω-maximal Hardy fields,
respectively). Our main theorems go through in the C∞- and Cω-settings; combined
with model completeness of TH shown in [ADH, 16.2] this ensures the existence of
solutions with appropriate smoothness in Corollary 2:

Corollary 5. If H ⊆ C∞ and the system (∗) has a solution in some Hardy field
extension of H, then (∗) has a solution in every C∞-maximal Hardy field extension
of H. In particular, if H is C∞-maximal and (∗) has a solution in a Hardy field
extension of H, then it has a solution in H. (Likewise with Cω in place of C∞.)

We already mentioned Tg as a quintessential example of an H-closed field. Its
cousin T, the ordered differential field of transseries, extends Tg and is alsoH-closed
with constant field R [ADH, 15.0.2]. The elements of T are certain generalized series
(in the sense of Hahn) in an indeterminate x > R with real coefficients, involving
exponential and logarithmic terms, such as

f = e
1
2 ex −5 ex

2

+ex
−1+2x−2+··· +

3
√
2 log x− x−1 + e−x+e−2x+ · · ·+ 5 e−x

3/2

.

Mathematically significant examples are the more simply structured transseries

Ai =
e−ξ

2
√
πx1/4

∑
n

(−1)ncnξ
−n, Bi =

eξ√
πx−1/4

∑
n

cnξ
−n,

where cn =
(2n+ 1)(2n+ 3) · · · (6n− 1)

(216)nn!
and ξ =

2

3
x3/2,

which are R-linearly independent solutions of the Airy equation Y ′′ = xY [144,
Chapter 11, (1.07)]. For information about T see [ADH, Appendix A] or [62, 103].
We just mention here that like each H-field, T comes equipped with its own versions
of the asymptotic relations ≼, ≺, defined as for H above. The asymptotic rules
valid in all Hardy fields, such as

f ≼ 1 ⇒ f ′ ≺ 1, f ≼ g ≺ 1 ⇒ f ′ ≼ g′, f ′ = f ̸= 0 ⇒ f ≻ xn

also hold in T. Here x denotes, depending on the context, the germ of the identity
function on R, as well as the element x ∈ T. (We make this precise in Section 7.3,
where we also give a finite axiomatization of these rules.)

Now suppose that we are given an embedding ι : H → T of ordered differential fields.
We may view such an embedding as a formal expansion operator and its inverse
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as a summation operator. (See Section 7.3 below for an example of a Hardy field,
arising from a fairly rich o-minimal structure, which admits such an embedding.)
From (∗) we obtain a system

(ι∗)


ι(P1)(Y ) ϱ1 ι(Q1)(Y )

...
...

...

ι(Pk)(Y ) ϱm ι(Qk)(Y )

of algebraic differential equations and (asymptotic) inequalities over T, where ι(Pi),
ι(Qi) denote the differential polynomials over T obtained by applying ι to the
coefficients of Pi, Qi, respectively. A solution of (ι∗) is a tuple y = (y1, . . . , yn) ∈ Tn
such that ι(Pi)(y) ϱi ι(Qi)(y) holds in T, for i = 1, . . . ,m. Differential-difference
equations in T are sometimes amenable to functional-analytic techniques like fixed
point theorems or small (compact-like) operators [102], and the formal nature of
transseries also makes it possible to solve algebraic differential equations in T by
quasi-algorithmic methods [100, 103]. The simple example of the Euler equation

Y ′ + Y = x−1

is instructive: its solutions in C<∞ are given by the germs of

t 7→ e−t
∫ t

1

es

s
ds+ c e−t : (1,+∞) → R (c ∈ R),

all contained in a common Hardy field extension of R(x). The solutions of this
differential equation in T are∑

n

n!x−(n+1) + c e−x (c ∈ R),

where the particular solution
∑
n n!x

−(n+1) is obtained as the unique fixed point
of the operator f 7→ x−1 − f ′ on the differential subfield R((x−1)) of T (cf. [ADH,
2.2.13]). (Note:

∑
n n! t

−(n+1) diverges for each t > 0.) In general, the existence of
a solution of (ι∗) in T entails the existence of a solution of (∗) in some Hardy field
extension of H and vice versa; more precisely:

Corollary 6. The system (ι∗) has a solution in T iff (∗) has a solution in some
Hardy field extension of H. In this case, we can choose a solution of (∗) in a Hardy
field extension E of H for which ι extends to an embedding of ordered differential
fields E → T.

In particular, a system (∗) over Q is consistent if and only if it has a solution in T.
(The “if” direction already follows from [ADH, Chapter 16] and [104]; the latter
constructs a summation operator on the ordered differential subfield Tda ⊆ T of
differentially algebraic transseries.)

It may seem remarkable that a result about differential polynomials in one dif-
ferentiable indeterminate, like Theorem A (or Theorem B below), yields similar
facts about systems of algebraic differential equations and asymptotic inequalities
in several indeterminates over Hardy fields as in the corollaries above; we owe
this to the strength of the model-theoretic methods employed in [ADH]. But our
theorem in combination with [ADH] already has interesting consequences for one-
variable differential polynomials over H and over its “complexification” K := H[i]
(where i2 = −1), which is a differential subfield of the differential ring C<∞[i].
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Some of these facts are analogous to familiar properties of ordinary one-variable
polynomials over the real or complex numbers. First, it follows from Theorem A
that every differential polynomial in a single differential indeterminate over H of
odd degree has a zero in a Hardy field extension of H. (See Corollary 7.1.20.) For
example, a differential polynomial like

(Y ′′)5 +
√
2 ex(Y ′′)4Y ′′′ − x−1 log xY 2Y ′′ + Y Y ′ − Γ

has a zero in every maximal Hardy field extension of the Hardy field R⟨ex, log x,Γ⟩.
Passing to K = H[i] we have:

Corollary 7. For each differential polynomial P /∈ K in a single differential in-
determinate with coefficients in K there are f , g in a Hardy field extension of H
such that P (f + gi) = 0.

In particular, each linear differential equation

y(n) + a1y
(n−1) + · · ·+ any = b (a1, . . . , an, b ∈ K)

has a solution y = f + gi where f , g lie in some Hardy field extension of H. (Of
course, if b = 0, then we may take here the trivial solution y = 0.) Although
this special case of Corollary 7 concerns differential polynomials of degree 1, it
seems hard to obtain this result without recourse to our more general extension
theorems: a solution y of a linear differential equation of order n over K as above
may simultaneously be a zero of a non-linear differential polynomial P over K of
order < n, and the structure of the differential field extension of K generated by y
is governed by P (when taken of minimal complexity in the sense of [ADH, 4.3]).

Turning now to homogeneous linear differential equations over Hardy fields, we first
introduce some notation and terminology. Let R[∂] be the ring of linear differential
operators over a differential ring R: this ring is a free left R-module with ba-
sis ∂

n (n ∈ N) such that ∂
0 = 1 and ∂ · f = f∂ + f ′ for f ∈ R, where ∂ := ∂

1.
(See [ADH, 5.1] or [158, 2.1].) Any operator A ∈ R[∂] gives rise to an addi-
tive map y 7→ A(y) : R→ R, with ∂

n(y) = y(n) (the nth derivative of y in R)
and r(y) = ry for r = r ·1 ∈ R ⊆ R[∂]. The elements of ∂

n+R∂
n−1+ · · ·+R ⊆ R[∂]

are said to be monic of order n. It is well-known [43, 136, 137] that for R = C<∞[i],
each monic A ∈ R[∂] factors as a product of monic operators of order 1 in R[∂];
if A ∈ K[∂], then such a factorization already happens over the complexification of
some Hardy field extension of H:

Corollary 8. If H is maximal, then each monic operator in K[∂] is a product of
monic operators of order 1 in K[∂].

This follows quite easily from Corollary 7 using the Riccati transform [ADH, 5.8].
In the remainder of this subsection we let A ∈ K[∂] be monic of order n, and we fix
a maximal Hardy field extension E of H. The factorization result in Corollary 8
gives rise to a description of a fundamental system of solutions for the homogeneous
linear differential equation A(y) = 0 in terms of Hardy field germs. Here, of course,
complex exponential terms naturally appear, but only in a controlled way: the
C-linear space consisting of all y ∈ C<∞[i] with A(y) = 0 has a basis of the form

f1 e
ϕ1i, . . . , fn e

ϕni

where fj ∈ E[i] and ϕj ∈ E with ϕj = 0 or |ϕj | > R for j = 1, . . . , n. We can
arrange here that for i, j = 1, . . . , n we have ϕi = ϕj or |ϕi − ϕj | > R. (Note that
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for ϕ in a Hardy field we have ϕ > R iff ϕ(t) → +∞ as t→ +∞.) In this case, the
basis elements fi e

ϕii for distinct frequencies ϕi are pairwise orthogonal in a sense
made precise in Section 7.4.

Example. If y ∈ C<∞[i] is holonomic, that is, L(y) = 0 for some monic L ∈ C(x)[∂],
then y is a C-linear combination of germs f eϕi where f ∈ E[i], ϕ ∈ E, and ϕ = 0
or |ϕ| > R. Here, more information about the f , ϕ is available (see, e.g., [70, VIII.7],
[204, §19.1]). Many special functions are holonomic [70, B.4].

By the usual correspondence between linear differential operators and matrix differ-
ential equations (see, e.g., [ADH, 5.5]), our results about zeros of linear differential
operators also yield facts about systems y′ = Ny of linear differential equations
over Hardy fields. If the matrix N has suitable symmetry, we can even guarantee
the existence of a nonzero solution y which lies in E[i]n (and thus does not exhibit
oscillating behavior). A sample result, also shown in Section 7.4: every matrix
differential equation y′ = Ny, where N is an n × n matrix over K (n ⩾ 1), has a
nonzero solution y ∈ E[i]n provided n is odd and N is skew-symmetric. (The study
of such matrix differential equations, for n = 3, goes back at least to Darboux [54,
Livre I, Chapitre II].) For example, for each c, d ∈ C there is a nonzero y ∈ E[i]3

such that

y′ =


0 −c − d

ex+e−x

c 0
ex− e−x

ex+e−x
d

ex+e−x
e−x− ex

ex+e−x
0

 y.

(For c = 0, d = 2
√
2, this equation is studied in [2].)

We now return to the operator setting and focus on the case where A is real, that
is, A ∈ H[∂]. Mammana [137] conjectured that each monic operator in C<∞[∂] of
odd order has a monic factor of order 1; this is false in general [178] but holds in
the Hardy field world, thanks to our “real” version of Corollary 8:

Corollary 9. Suppose A ∈ H[∂]. Then A is a product of monic operators in E[∂],
each of order 1 or irreducible of order 2.

As a consequence, the R-linear space of zeros of A ∈ H[∂] in C<∞ has a basis

g1 cosϕ1, g1 sinϕ1, . . . , gr cosϕr, gr sinϕr, h1, . . . , hs (2r + s = n)

where gj , ϕj ∈ E with ϕj > R for j = 1, . . . , r and hk ∈ E for k = 1, . . . , s. In
particular, if n is odd, then A(y) = 0 for some nonzero y ∈ E.

A function y : [a,+∞) → R (a ∈ R) is non-oscillating if sign y(t) is eventually
constant (and otherwise y oscillates). Similarly we define (non-) oscillation of germs.
No germ in a Hardy field oscillates. The following corollary characterizes when A
in Corollary 9 is a product of monic operators of order 1 in E[∂]:

Corollary 10. The (monic) operator A ∈ H[∂] is a product of monic operators
of order 1 in E[∂] iff no zero of A in C<∞ oscillates. In this case E contains a
basis y1 ≺ · · · ≺ yn of the R-linear space of zeros of A in C<∞, and

A = (∂ − an) · · · (∂ − a1)

for a unique tuple (a1, . . . , an) ∈ En such that for all sufficiently small f > R in E
we have aj + (f ′′/f ′) < aj+1 for j = 1, . . . , n− 1.
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Factorizations of linear differential operators as in Corollary 10 are closely connected
to the classical topic of disconjugacy. We recall the definition, which arose from
the calculus of variations [212]. Let f1, . . . , fn : I → R be continuous, where I =
[a,+∞), a ∈ R. The linear differential equation

(L) y(n) + f1y
(n−1) + · · ·+ fny = 0

on I is said to be disconjugate if every nonzero solution y ∈ Cn(I) of (L) has at
most n − 1 zeros, counted with their multiplicities. (For example, y(n) = 0, on
any such I, is disconjugate.) The solutions of disconjugate linear differential equa-
tions are suitable for approximation and interpolation purposes; see [52, Chapter 3]
and [56, Chapter 3, §11]. We also say that (L) is eventually disconjugate if for
some b ⩾ a the linear differential equation on J := [b,+∞) obtained from (L) by re-
stricting f1, . . . , fn to J is disconjugate. If (L) is eventually disconjugate, then it has
no oscillating solutions in Cn(I). The converse of this implication holds when n ⩽ 2
but fails for each n > 2 [81]. There is an extensive literature, mostly dating back
to the 1970s, which develops sufficient conditions for (eventual) disconjugacy of
linear differential equations (see, e.g. [52, 63, 64, 78, 198]), often by restricting the
growth of the fi; for example, (L) is disconjugate if

∫∞
a

|fi(t)|(t − a)i−1 dt < ∞
for i = 1, . . . , n (cf. [209]). Corollary 10 allows us to contribute another natural
criterion for eventual disconjugacy:

Corollary 11. If the germs of f1, . . . , fn lie in a Hardy field and (L) has no
oscillating solutions in Cn(I), then (L) is eventually disconjugate.

A fundamental property of disconjugate linear differential operators is the existence
of a canonical factorization discovered by Trench [200]. (See also Proposition 5.2.42
below.) Corollary 10 can also be used to strengthen this factorization in the situa-
tion of Corollary 11. See Corollary 7.4.58 for the details.

We finish with discussing the instructive case of an operator A ∈ H[∂] of order 2.
If such A has a non-oscillating zero y ̸= 0 in C<∞, then by Sturm’s Oscillation
Theorem all zeros of A in C<∞ are non-oscillating and hence contained in every
maximal Hardy field, by Corollary 5.5.7 or [33, Theorem 16.7], [171, Corollary 2].
For example, the germs of the R-linearly independent solutions Ai,Bi: R → R of
the Airy equation Y ′′ − xY = 0 given by

Ai(t) =
1

π

∫ ∞

0

cos

(
s3

3
+ st

)
ds,

Bi(t) =
1

π

∫ ∞

0

[
exp

(
−s

3

3
+ st

)
+ sin

(
s3

3
+ st

)]
ds

lie in each maximal Hardy field, with Ai ≺ 1 ≺ Bi. In the oscillating case, we have:

Corollary 12. If A ∈ H[∂] of order 2 has an oscillating zero in C<∞, then
there are g, ϕ ∈ E with ϕ > R such that the zeros of A in C<∞ are exactly the
germs cg cos(ϕ+ d) (c, d ∈ R).

This corollary was announced by Boshernitzan as part of [35, Theorem 5.4], but ap-
parently a proof of this theorem never appeared in print. (See also [33, Conjecture 4
in §20].) In Section 7.5 below we state and prove a strengthening of his theorem;
this includes a criterion for the uniqueness of the germs g, ϕ. For every ϕ > R in E
there is at most one g ∈ E (up to multiplication by a nonzero constant) such that
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the conclusion of Corollary 12 holds; in general, the pair (g, ϕ) is not unique (up to
multiplication of g by a nonzero constant and addition of a constant to ϕ), but it
is if the coefficients of A are differentially algebraic (over R). As a final example,
consider the Bessel equation of order ν ∈ R (see, e.g., [66, VII], [144, I, §9], [205]):

x2Y ′′ + xY ′ + (x2 − ν2)Y = 0.

It is well-known that each solution y ∈ C<∞ of this equation satisfies

y = cx−1/2 cos(x+ d) + o(x−1/2) for some c, d ∈ R.

(See [18, Chapter 6, §18], [91, Corollary XI.8.1], [204, Example 13.2].) We give a
similar parametrization using germs in Hardy fields. More precisely, we show that
there is a unique germ ϕ = ϕν in a Hardy field with ϕ − x ≼ x−1 such that every
solution y ∈ C<∞ of the Bessel equation has the form

y = cx−1/2g cos(ϕ+ d) for some c, d ∈ R and g := 1/
√
ϕ′.

This explains the phenomenon, observed in [95, 96], that the Bessel equation admits
a non-oscillating phase function. Knowing that ϕ lives in a Hardy field allows one to
reprove a number of classical results about Bessel functions in a short transparent
way. Remarkably, every maximal Hardy field contains the phase function ϕ, and ϕ
has an asymptotic expansion

ϕ ∼ x+
µ− 1

8
x−1 +

µ2 − 26µ+ 25

384
x−3 +

µ3 − 115µ2 + 1187µ− 1073

5120
x−5 + · · ·

where µ = 4ν2. Only for special choices of ν is the germ ϕ contained in the Liouville
closure of R(x), and hence easily obtainable by the classical extension results for
Hardy fields from [32, 84, 171]: by results of Liouville [132] this holds precisely
if ν ∈ 1

2 + Z; see Section 7.6 for a proof.

Michael Boshernitzan’s papers [32]–[36] on Hardy fields have been a frequent source
of inspiration for us, and we dedicate this work to his memory. He paid particular
attention to the germs in C<∞, such as ϕν above, that lie in every maximal Hardy
field. They form a Liouville closed Hardy field E properly containing Hardy’s differ-
ential field of logarithmico-exponential functions. In the course of our work below
we prove Conjecture 1 from [32, §10] and Conjecture 4 from [33, §20] about E. We
also prove Conjecture 17.11 from [33, §17] and answer Question 4 from [34, §7].
(See Corollaries 7.2.14, Theorems 7.5.1 and 5.5.38, and Proposition 5.6.6, respec-
tively.) Section 7.7 contains some additional observations which may eventually
help to shed further light on the nature of the Hardy field E.

Synopsis of the proof of our main theorem. In the rest of the paper we
assume familiarity with the terminology and concepts of asymptotic differential
algebra from our book [ADH]. (We review some of this in the last subsection of
the introduction below.) The proof of our main result requires, besides differential-
algebraic and valuation-theoretic tools from [ADH], also analytic arguments in an
essential way. Some of our analytic machinery is obtained by adapting material
from [104] to a more general setting. As explained earlier, our main Theorem A is
a consequence of the following extension theorem:

Theorem B. Every ω-free Hardy field has a newtonian Hardy field extension.

The proof of this is long, so it may be useful to outline the strategy behind it.
13



Holes and slots. For now, let K be an H-asymptotic field with rational asymp-
totic integration. In Section 3.2 below we introduce the apparatus of holes in K
as a means to systematize the study of solutions of algebraic differential equa-
tions over K in immediate asymptotic extensions of K: such a hole in K is a

triple (P,m, f̂) where P is a differential polynomial in a single differential indeter-

minate Y with coefficients in K, P ̸= 0, 0 ̸= m ∈ K, and f̂ /∈ K lies an immediate

asymptotic extension of K with P (f̂) = 0 and f̂ ≺ m. It is sometimes technically
convenient to work with the more flexible concept of a slot in K, where instead

of P (f̂) = 0 we only require P to vanish at (K, f̂) in the sense of [ADH, 11.4]. The

complexity of a slot (P,m, f̂) is the complexity of the differential polynomial P as
in [ADH, p. 216]. Now if K is ω-free, then by Lemma 3.2.1,

K is newtonian ⇐⇒ K has no hole.

This equivalence suggests an opening move for proving Theorem B by induction on
complexity as follows: Let H ⊇ R be an ω-free Liouville closed Hardy field, and
suppose H is not newtonian; it is enough to show that then H has a proper Hardy

field extension. By the above equivalence, H has a hole (P,m, f̂), and we can take

here (P,m, f̂) to be of minimal complexity among holes in H. This minimality
has consequences that are important for us; for example r := orderP ⩾ 1, P is a

minimal annihilator of f̂ over H, and H is (r − 1)-newtonian as defined in [ADH,

14.2]. We arrange m = 1 by replacing (P,m, f̂) with the hole (P×m, 1, f̂/m) in H.

Solving algebraic differential equations over Hardy fields. For Theorem B it is
enough to show that under these conditions P is a minimal annihilator of some
germ f ∈ C<∞ that generates a (necessarily proper) Hardy field extension H⟨f⟩
of H. So at a minimum, we need to find a solution in C<∞ to the algebraic differ-
ential equation P (Y ) = 0. For this, it is natural to use fixed point techniques as
in [104]. Notation: for a ∈ R, let Cna be the R-linear space of functions [a,+∞) → R
which extend to an n-times continuously differentiable function U → R on an open
subset U ⊇ [a,+∞) of R. For any a and n, each germ in C<∞ has representatives
in Cna .

A fixed point theorem. Let L := LP ∈ H[∂] be the linear part of P . Replac-

ing (P, 1, f̂) with another minimal hole in H we arrange orderL = r. Representing
the coefficients of P (and thus of L) by functions in C0

a we obtain an R-linear op-
erator y 7→ L(y) : Cra → C0

a. For now we make the bold assumption that L ∈ H[∂]
splits over H. Using such a splitting and increasing a if necessary, r-fold integration
yields an R-linear operator L−1 : C0

a → Cra which is a right-inverse of L : Cra → C0
a,

that is, L
(
L−1(y)

)
= y for all y ∈ C0

a. Consider the (generally non-linear) operator

f 7→ Φ(f) := L−1
(
R(f)

)
on Cra; here P = P1−R where P1 is the homogeneous part of degree 1 of P . We try
to show that Φ restricts to a contractive operator on a closed ball of an appropriate
subspace of Cra equipped with a suitable complete norm, whose fixed points are
then solutions to P (Y ) = 0; this may also involve increasing a again and replacing
the coefficient functions of P by their corresponding restrictions. To obtain such
contractivity, we would need to ensure that R is asymptotically small compared

to P1 in a certain sense. This can indeed be achieved by transforming (P, 1, f̂)
14



into a certain normal form through successive refinements and (additive, multi-

plicative, and compositional) conjugations of the hole (P, 1, f̂). This normalization
is done under more general algebraic assumptions in Section 3.3. The analytic
arguments leading to fixed points are in Sections 6.1–6.3. Developments below in-
volve the algebraic closure K := H[i] of H and we work more generally with a

decomposition P = P̃1 − R where P̃1 ∈ K{Y } is homogeneous of degree 1, not

necessarily P̃1 = P1, such that LP̃1
∈ K[∂] splits and R is “small” compared to P̃1.

Passing to the complex realm. In general we are not so lucky that L splits over H.

The minimality of our hole (P, 1, f̂) does not even ensure that L splits over K. At
this point we recall from [ADH, 11.7.23] that K is ω-free because H is. We can also
draw hope from the fact that every nonzero linear differential operator overK would
split over K if H were newtonian [ADH, 14.5.8]. Although H is not newtonian,
it is (r − 1)-newtonian, and L is only of order r, so we optimistically restart our

attempt, and instead of a hole of minimal complexity in H, we now let (P,m, f̂)
be a hole of minimal complexity in K. Again it follows that r := orderP ⩾ 1,

P is a minimal annihilator of f̂ over K, and K is (r − 1)-newtonian. As before
we arrange that m = 1 and the linear part LP ∈ K[∂] of P has order r. We can

also arrange f̂ ∈ K̂ = Ĥ[i] where Ĥ is an immediate asymptotic extension of H.

So f̂ = ĝ + ĥi where ĝ, ĥ ∈ Ĥ satisfy ĝ, ĥ ≺ 1, and ĝ /∈ H or ĥ /∈ H, say ĝ /∈ H.

Now minimality of (P, 1, f̂) and algebraic closedness of K give that K is r-linearly
closed, that is, every nonzero A ∈ K[∂] of order ⩽ r splits over K (Corollary 3.2.4).
Then LP splits overK as desired, and a version of the above fixed point construction
with Cra[i] in place of Cra can be carried out successfully to solve P (Y ) = 0 in the
differential ring extension C<∞[i] of C<∞.

Return to the real world. But at this point we face another obstacle: even once we
have our hands on a zero f ∈ C<∞[i] of P , it is not clear why g := Re f should
generate a proper Hardy field extension of H: Let Q be a minimal annihilator of ĝ
over H; we cannot expect that Q(g) = 0. If LQ ∈ H[∂] splits over K, then we can

try to apply fixed point arguments like the ones above, with (P, 1, f̂) replaced by
the hole (Q, 1, ĝ) in H, to find a zero y ∈ C<∞ of Q. (We do need to take care
that constructed zero is real.) Unfortunately we can only ascertain that 1 ⩽ s ⩽ 2r
for s := orderQ, and since we may have s > r, we cannot leverage the minimality

of (P, 1, f̂) anymore to ensure that LQ splits over K, or to normalize (Q, 1, ĝ)

in the same way as indicated above for (P, 1, f̂). This situation seems hopeless,
but now a purely differential-algebraic observation comes to the rescue: although

the linear part LQ+ĝ
∈ Ĥ[∂] of the differential polynomial Q+ĝ ∈ Ĥ{Y } also has

order s (which may be > r), if K̂ is r-linearly closed, then LQ+ĝ
does split over K̂;

see [ADH, 5.1.37]. If moreover g ∈ H is sufficiently close to ĝ, then the linear
part LQ+g ∈ H[∂] of Q+g ∈ H{Y } is close to an operator in H[∂] that does split
over K = H[i], and so using (Q+g, 1, ĝ− g) instead of (Q, 1, ĝ) may offer a way out
of this impasse.

Approximating ĝ. Suppose for a moment that H is (valuation) dense in Ĥ. Then

by extending Ĥ we arrange that Ĥ is the completion of H, and K̂ ofK (as in [ADH,

4.4]). In this case K̂ inherits from K the property of being r-linearly closed, by
results in Section 1.8, and the desired approximation of ĝ by g ∈ H can be achieved.
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We cannot in general expect H to be dense in Ĥ. But we are saved by Section 1.6 to
the effect that ĝ can be made special over H in the sense of [ADH, 3.4], that is, some
nontrivial convex subgroup ∆ of the value group of H is cofinal in v(ĝ−H). Then
passing to the ∆-specializations of the various valued differential fields encountered
above (see [ADH, 9.4]) we regain density and this allows us to implement the desired
approximation. The technical details are involved, and are carried out in the first
three sections of Part 4. A minor obstacle to obtain the necessary specialness
of ĝ is that the hole (Q, 1, ĝ) in H may not be of minimal complexity. This can
be ameliorated by using a differential polynomial of minimal complexity vanishing
at (H, ĝ) instead of Q, in the process replacing the hole (Q, 1, ĝ) in H by a slot
in H, which we then aim to approximate by a strongly split-normal slot in H;
see Definition 4.5.32. Another caveat: to carry out our approximation scheme we
require degP > 1. Fortunately, if degP = 1, then necessarily r = orderP = 1, and
this case can be dealt with through separate arguments: see Section 6.7 where we
finish the proof of Theorem B.

Enlarging the Hardy field. Now suppose we have finally arranged things so that our
Fixed Point Theorem applies: it delivers g ∈ C<∞ such that Q(g) = 0 and g ≺ 1.
(Notation: for a germ ϕ ∈ C<∞[i] and 0 ̸= n ∈ H we write ϕ ≺ n if ϕ(t)/n(t) → 0
as t → +∞.) However, in order that g generates a proper Hardy field exten-
sion H⟨g⟩ of H isomorphic to H⟨ĝ⟩ by an isomorphism over H sending g to ĝ
requires that g and ĝ have similar asymptotic properties with respect to the ele-
ments of H. For example, suppose h, n ∈ H and ĝ − h ≺ n ≼ 1; then we must
show g − h ≺ n. (Of course, we need to show much more about the asymptotic
behavior of g, and this is expressed using the notion of asymptotic similarity : see
Sections 6.6 and 6.7.) Now the germ (g − h)/n ∈ C<∞ is a zero of the conjugated

differential polynomial Q+h,×n ∈ H{Y }, as is the element (ĝ−h)/n ≺ 1 of Ĥ. The
Fixed Point Theorem can also be used to produce a zero y ≺ 1 of Q+h,×n in C<∞.
Set g1 := yn+ h; then Q(g) = Q(g1) = 0 and g, g1 ≺ 1. We are thus naturally lead
to consider the difference g−g1 between the solutions g, g1 ∈ C<∞ of the differential
equation (with asymptotic side condition)

(E) Q(Y ) = 0, Y ≺ 1.

If we manage to show g−g1 ≺ n, then g−h = (g−g1)−yn ≺ n as required. Simple
estimates coming out of the proof of the Fixed Point Theorem are not good enough
for this (cf. Lemma 6.2.5). We need a generalization of the Fixed Point Theorem for
weighted norms with (the germ of) the relevant weight function given by n, shown
in Section 6.5. To render this generalized version useful, we also have to make the
construction of the right-inverse A−1 of the linear differential operator A ∈ H[∂],
which splits over K and approximates LQ as postulated by strong split-normality,
and which is central for the definition of the contractive operator used in the Fixed
Point Theorem, in some sense uniform in n. This is carried out in Section 4.5,
refining our approximation arguments by improving strong split-normality to strong
repulsive-normality as defined in 4.5.32.

Exponential sums. Just for this discussion, call ϕ ∈ C<∞[i] small if ϕ ≺ n for
all n ∈ H with vn ∈ v(ĝ − H). Thus our aim is to show that differences between
solutions of (E) in C<∞ are small in this sense. We show that each such difference
gives rise to a zero z ∈ C<∞[i] of A with z ≺ 1 whose smallness would imply the
smallness of the difference under consideration. To ensure that every zero z ≺ 1
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of A is indeed small requires us to have performed beforehand yet another (rather
unproblematic) normalization procedure on our slot, transforming it into ultimate
shape. (See Section 4.4.) Recall the special fundamental systems of solutions to
linear differential equations over maximal Hardy fields explained after Corollary 8:
since A splits over K, our zero z of A is a C-linear combination of exponential
terms. As a tool for systematically dealing with such exponential sums over K
in a formal way, we introduce the concept of the universal exponential extension
of a differential field. Finally, from conditions like z ≺ 1 we need to be able to
obtain asymptotic information about the summands of z when expressed as an
exponential sum in a certain canonical way. For this we are able to exploit facts
about uniform distribution mod 1 for germs in Hardy fields due to Boshernitzan [36];
see Sections 5.8–5.10.

Organization of the manuscript. Part 1 has preliminaries on linear differential
operators and differential polynomials, on the group of logarithmic derivatives, on
special elements, and on differential-henselianity and newtonianity. In Part 2 we
define the universal exponential extension of a differential field, and we consider
the eigenvalues of linear differential operators and their connections to splittings.
Part 3 then introduces holes and slots, and proves the Normalization Theorem
hinted at earlier in this introduction. In Part 4 we focus on slots in H-fields and
their algebraic closures, and implement the approximation arguments for obtaining
(strongly) split-normal or repulsive-normal slots. In Part 5 we begin the analytic
part of the paper, introducing Hardy fields, showing that maximal Hardy fields
are ω-free, and investigating the universal exponential extensions of Hardy fields.
In the final act (Part 6) we prove our Fixed Point Theorem and give the proof of
Theorem B. We finish with a coda (Part 7) consisting of applications, including
the proof of Theorem A and the corollaries above. We refer to the introduction of
each part for more details about their respective contents.

Previous work. Theorem A for P of order 1 is in [59]. By [104] there exists a
Hardy field H ⊇ R isomorphic as an ordered differential field to Tg, so by [103]
this H has the intermediate value property for all differential polynomials over it.
We announced the ω-freeness of maximal Hardy fields already in [12].

Notations and terminology. We freely use the notations and conventions from
our book [ADH], and recall here a few. Throughout, m, n range over the set N =
{0, 1, 2, . . . }. Given an additively written abelian group A we let A ̸= := A \ {0}.
Rings (usually, but not always, commutative) are associative with identity 1. For a
ring R we let R× be the multiplicative group of units of R (consisting of the a ∈ R
such that ab = ba = 1 for some b ∈ R).

A differential ring is a commutative ring R containing (an isomorphic copy of) Q
as a subring and equipped with a derivation ∂ : R→ R, in which case CR := ker ∂ is
a subring of R, called the ring of constants of R, and Q ⊆ CR. A differential field is
a differential ring K whose underlying ring is a field. In this case CK as a subfield
of K, and if K is understood from the context we often write C instead of CK .
An ordered differential field is an ordered field equipped with a derivation on its
underlying field; such an ordered differential field is in particular a differential ring.

Often we are given a differential fieldH in which−1 is not a square, and thenH[i]
is a differential field extension with i2 = −1. Then for z ∈ H[i], z = a+bi, a, b ∈ H
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we set Re z := a, Im z := b, and z := a − bi. Hence z 7→ z is an automorphism of
the differential field H. If in addition there is given a differential field extension F
of H in which −1 is not a square, we always tacitly arrange i to be such that H[i]
is a differential subfield of the differential field extension F [i] of F .

Let R be a differential ring and a ∈ R. When its derivation ∂ is clear from the
context we denote ∂(a), ∂

2(a), . . . , ∂
n(a), . . . by a′, a′′, . . . , a(n), . . . , and if a ∈ R×,

then a† := a′/a denotes the logarithmic derivative of a, so (ab)† = a† + b† for
all a, b ∈ R×. We have the differential ring R{Y } = R[Y, Y ′, Y ′′, . . . ] of differential
polynomials in a differential indeterminate Y over R. Given P = P (Y ) ∈ R{Y },
the smallest r ∈ N such that P ∈ R[Y, Y ′, . . . , Y (r)] is called the order of P , de-
noted by r = order(P ); if P has order r, then P =

∑
i PiY

i, as in [ADH, 4.2],

with i ranging over tuples (i0, . . . , ir) ∈ N1+r, Y i := Y i0(Y ′)i1 · · · (Y (r))ir , coeffi-
cients Pi in R, and Pi ̸= 0 for only finitely many i. For P ∈ R{Y } and a ∈ R we
let P+a(Y ) := P (a + Y ) and P×a(Y ) := P (aY ) be the additive conjugate and the
multiplicative conjugate of P by a, respectively. For ϕ ∈ R× we also let Rϕ be the
compositional conjugate of R by ϕ: the differential ring with the same underlying
ring as R but with derivation ϕ−1

∂ (usually denoted by δ) instead of ∂. We have
an R-algebra isomorphism P 7→ Pϕ : R{Y } → Rϕ{Y } such that Pϕ(y) = P (y) for
all y ∈ R; see [ADH, 5.7].

For a field K we have K× = K ̸=, and a (Krull) valuation on K is a surjective
map v : K× → Γ onto an ordered abelian group Γ (additively written) satisfying
the usual laws, and extended to v : K → Γ∞ := Γ ∪ {∞} by v(0) = ∞, where the
ordering on Γ is extended to a total ordering on Γ∞ by γ < ∞ for all γ ∈ Γ. A
valued field K is a field (also denoted by K) together with a valuation ring O of
that field, and the corresponding valuation v : K× → Γ on the underlying field is
such that O = {a ∈ K : va ⩾ 0} as explained in [ADH, 3.1].

Let K be a valued field with valuation ring OK and valuation v : K× → ΓK .
Then OK is a local ring with maximal ideal OK = {a ∈ K : va > 0} and residue
field res(K) = OK/OK . If res(K) has characteristic zero, then K is said to be of
equicharacteristic zero. When, as here, we use the capital K for the valued field
under consideration, then we denote ΓK , OK , OK , by Γ, O, O, respectively. A very
handy alternative notation system in connection with the valuation is as follows.
With a, b ranging over K, set

a ≍ b :⇔ va = vb, a ≼ b :⇔ va ⩾ vb, a ≺ b :⇔ va > vb,

a ≽ b :⇔ b ≼ a, a ≻ b :⇔ b ≺ a, a ∼ b :⇔ a− b ≺ a.

It is easy to check that if a ∼ b, then a, b ̸= 0 and a ≍ b, and that ∼ is an equivalence
relation on K×. Given a valued field extension L of K, we identify in the usual
way res(K) with a subfield of res(L), and Γ with an ordered subgroup of ΓL. We use
pc-sequence to abbreviate pseudocauchy sequence, and aρ ⇝ a indicates that (aρ)
is a pc-sequence pseudoconverging to a; here the aρ and a lie in a valued field
understood from the context, see [ADH, 2.2, 3.2].

As in [ADH], a valued differential field is a valued field of equicharacteristic zero
together with a derivation, generally denoted by ∂, on the underlying field. (Un-
like [11] we do not assume in this definition that ∂ is continuous with respect to the
valuation topology.) A valued differential field K is said to have small derivation
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if ∂O ⊆ O; then also ∂O ⊆ O [ADH, 4.4.2], and so ∂ induces a derivation on res(K)
making the residue morphism O → res(K) into a morphism of differential rings.

We shall also consider various special classes of valued differential fields introduced
in [ADH], such as the class of asymptotic fields (and their relatives, H-asymptotic
fields) and its subclass of pre-d-valued fields, which in turn contains the class of
d-valued fields [ADH, 9.1, 10.1]. (As usual in [ADH], the prefix “d” abbreviates “dif-
ferential”.) Every asymptotic field K has its associated asymptotic couple (Γ, ψ),
where ψ : Γ ̸= → Γ satisfies ψ(vg) = v(g†) for g ∈ K× with vg ̸= 0. See [ADH,
9.1, 9.2] for more on asymptotic couples, in particular the taxonomy of asymptotic
fields introduced via their asymptotic couples: having a gap, being grounded, having
asymptotic integration, and having rational asymptotic integration.

An ordered valued differential field is a valued differential field K equipped with
an ordering on K making K an ordered field. An ordered differential field K is
called an H-field if for all f ∈ K with if f ≻ 1 we have f† > 0, and O = C + O

where O =
{
g ∈ K : |g| ⩽ c for some c ∈ C

}
and O is the maximal ideal of the

convex subring O of K. Thus K equipped with its valuation ring O is an ordered
valued differential field. Pre-H-fields are the ordered valued differential subfields of
H-fields. See [ADH, 10.5] for basic facts about (pre-) H-fields. An H-field K is said
to be Liouville closed if K is real closed and for all f, g ∈ K there exists y ∈ K×

with y′ + fy = g. Every H-field extends to a Liouville closed one; see [ADH, 10.6].

We alert the reader that in a few places we refer to the Liouville closed H-field Tg

of grid-based transseries from [103], which is denoted there by T. Here we adopt
the notation of [ADH] where T is the larger field of logarithmic-exponential series.
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Part 1. Preliminaries

After generalities on linear differential operators and differential polynomials in
Section 1.1, we investigate the group of logarithmic derivatives in valued differential
fields of various kinds (Section 1.2) and recall how iterated logarithmic derivatives
can be used to study the asymptotic behavior of differential polynomials over such
valued differential fields for “large” arguments (Section 1.3). We also assemble
some basic preservation theorems for λ-freeness and ω-freeness (Section 1.4) and
continue the study of linear differential operators over H-asymptotic fields initiated
in [ADH, 5.6, 14.2] (Section 1.5). In our analysis of the solutions of algebraic
differential equations over H-asymptotic fields in Part 3, special pc-sequences in the
sense of [ADH, 3.4] play an important role; Section 1.6 explains why. A cornerstone
of [ADH] is the concept of newtonianity , an analogue of henselianity appropriate for
H-asymptotic fields with asymptotic integration [ADH, Chapter 14]. Related to this
is differential-henselianity [ADH, Chapter 7], which makes sense for a broader class
of valued differential fields. In Sections 1.7 and 1.8 we further explore these notions.
Among other things, we study their persistence under taking the completion of a
valued differential field with small derivation (as defined in [ADH, 4.4]).

1.1. Linear Differential Operators and Differential Polynomials

This section gathers miscellaneous facts of a general nature about linear differential
operators and differential polynomials, sometimes in a valued differential setting.
We first discuss splittings and least common left multiples of linear differential
operators, then recall the complexity and the separant of differential polynomials,
and finally deduce some useful estimates for derivatives of exponential terms.

Splittings. In this subsection K is a differential field. Let A ∈ K[∂]̸= be monic
of order r ⩾ 1. A splitting of A over K is a tuple (g1, . . . , gr) ∈ Kr such
that A = (∂ − g1) · · · (∂ − gr). If (g1, . . . , gr) is a splitting of A over K and n ∈ K×,
then (g1 − n†, . . . , gr − n†) is a splitting of A⋉n = n−1An over K.

Suppose A = A1 · · ·Am where every Ai ∈ K[∂] is monic of positive order ri (so r =
r1 + · · ·+ rm). Given any splittings

(g11, . . . , g1r1), . . . , (gm1, . . . , gmrm)

of A1, . . . , Am, respectively, we obtain a splitting(
g11, . . . , g1r1 , . . . , gm1, . . . , gmrm

)
of A by concatenating the given splittings of A1, . . . , Am in the order indicated, and
call it a splitting of A induced by the factorization A = A1 · · ·Am. For B ∈ K[∂]
of order r ⩾ 1 we have B = bA with b ∈ K× and monic A ∈ K[∂], and then a
splitting of B over K is by definition a splitting of A over K. A splitting of B
over K remains a splitting of aB over K, for any a ∈ K×. Thus:

Lemma 1.1.1. If B ∈ K[∂] has order r ⩾ 1, and (g1, . . . , gr) is a splitting of B
over K and n ∈ K×, then (g1 − n†, . . . , gr − n†) is a splitting of B⋉n over K and a
splitting of Bn over K.

From [ADH, 5.1, 5.7] we know that if A ∈ K[∂] splits over K, then for any ϕ ∈ K×

the operator Aϕ ∈ Kϕ[δ] splits over Kϕ; here is how a splitting of A over K
transforms into a splitting of Aϕ over Kϕ:
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Lemma 1.1.2. Let ϕ ∈ K× and

A = c(∂ − a1) · · · (∂ − ar) with c ∈ K× and a1, . . . , ar ∈ K.

Then in Kϕ[δ] we have

Aϕ = cϕr(δ − b1) · · · (δ − br) where bj := ϕ−1
(
aj − (r − j)ϕ†

)
(j = 1, . . . , r).

Proof. Induction on r. The case r = 0 being obvious, suppose r ⩾ 1, and set B :=
(∂ − a2) · · · (∂ − ar). By inductive hypothesis

Bϕ = ϕr−1(δ − b2) · · · (δ − br) where bj := ϕ−1
(
aj − (r − j)ϕ†

)
for j = 2, . . . , r.

Then

Aϕ = cϕ
(

δ − (a1/ϕ)
)
Bϕ = cϕr

(
δ − (a1/ϕ)

)
⋉ϕr−1 (δ − b2) · · · (δ − br)

with (
δ − (a1/ϕ)

)
⋉ϕr−1 = δ − (a1/ϕ) + (r − 1)ϕ†/ϕ

by [ADH, p. 243]. □

A different kind of factorization, see for example [156], reduces the process of solving
the differential equation A(y) = 0 to repeated multiplication and integration:

Lemma 1.1.3. Let A ∈ K[∂] ̸= be monic of order r ⩾ 1. If b1, . . . , br ∈ K× and

A = b1 · · · br−1br(∂b
−1
r )(∂b−1

r−1) · · · (∂b
−1
1 ),

then (ar, . . . , a1), where aj := (b1 · · · bj)† for j = 1, . . . , r, is a splitting of A over K.
Conversely, if (ar, . . . , a1) is a splitting of A over K and b1, . . . , br ∈ K× are such

that b†j = aj − aj−1 for j = 1, . . . , r with a0 := 0, then A is as in the display.

This follows easily by induction on r.

Real splittings. Let H be a differential field in which −1 is not a square. Then
we let i denote an element in a differential field extension of H with i2 = −1, and
consider the differential field K = H[i]. Suppose A ∈ H[∂] is monic of order 2 and
splits over K, so

A = (∂ − f)(∂ − g), f, g ∈ K.

Then
A = ∂

2 − (f + g)∂ + fg − g′,

and thus f ∈ H iff g ∈ H. One checks easily that if g /∈ H, then there are
unique a, b ∈ H with b ̸= 0 such that

f = a− bi + b†, g = a+ bi,

and thus
A = ∂

2 − (2a+ b†)∂ + a2 + b2 − a′ + ab†.

Conversely, if a, b ∈ H and b ̸= 0, then for f := a − bi + b† and g := a + bi we
have (∂ − f)(∂ − g) ∈ H[∂].

Let now A ∈ H[∂] be monic of order r ⩾ 1.

Lemma 1.1.4. Suppose A splits over K. Then A = A1 · · ·Am for some A1, . . . , Am
in H[∂] that are monic and irreducible of order 1 or 2 and split over K.

Proof. By [ADH, 5.1.35], A = A1 · · ·Am, where every Ai ∈ H[∂] is monic and
irreducible of order 1 or 2. By [ADH, 5.1.22], such Ai split over K. □
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Definition 1.1.5. A real splitting of A (over K) is a splitting of A over K that
is induced by a factorization A = A1 · · ·Am where every Ai ∈ H[∂] is monic of
order 1 or 2 and splits over K. (Note that we do not require the Ai of order 2 to
be irreducible in H[∂].)

Thus if A splits over K, then A has a real splitting over K by Lemma 1.1.4. Note
that if (g1, . . . , gr) is a real splitting of A and n ∈ H×, then (g1 − n†, . . . , gr − n†)
is a real splitting of A⋉n.

It is convenient to extend the above slightly: for B ∈ H[∂] of order r ⩾ 1 we
have B = bA with b ∈ H× and monic A ∈ H[∂], and then a real splitting
of B (over K) is by definition a real splitting of A (over K).

In later use, H is a valued differential field with small derivation such that −1
is not a square in the differential residue field res(H). For such H, let O be the
valuation ring of H. We make K a valued differential field extension of H with
small derivation by taking OK = O + Oi as the valuation ring of K. We have
the residue map a 7→ res a : OK → res(K), so res(K) = res(H)[i], writing here i
for res i. We extend this map to a ring morphism B 7→ resB : OK [∂] → res(K)[∂]
by sending ∂ ∈ O[∂] to ∂ ∈ res(K)[∂].

Lemma 1.1.6. Suppose (g1, . . . , gr) ∈ res(K)r is a real splitting of a monic oper-
ator D ∈ res(H)[∂] of order r ⩾ 1. Then there are b1, . . . , br ∈ OK such that

B := (∂ − b1) · · · (∂ − br) ∈ O[∂],

(b1, . . . , br) is a real splitting of B, and res bj = gj for j = 1, . . . , r.

Proof. We can assume r ∈ {1, 2}. The case r = 1 is obvious, so let r = 2. Then the
case where g1, g2 ∈ res(H) is again obvious, so let g1 = res(a) − res(b)i + (res b)†,
g2 = res(a) + res(b)i where a, b ∈ O, res b ̸= 0. Set b1 := a − bi + b†, b2 := a + bi.
Then b1, b2 ∈ OK with res b1 = g1, res b2 = g2, and B := (∂ − b1)(∂ − b2) ∈ O[∂]
have the desired properties. □

Least common left multiples and complex conjugation. In this subsec-
tion H is a differential field. Recall from [ADH, 5.1] the definition of the least
common left multiple lclm(A1, . . . , Am) of operators A1, . . . , Am ∈ H[∂] ̸=, m ⩾ 1:
this is the monic operator A ∈ H[∂] such that H[∂]A1 ∩ · · · ∩ H[∂]Am = H[∂]A.
For A,B ∈ H[∂] ̸= we have:

max
{
order(A), order(B)

}
⩽ order

(
lclm(A,B)

)
⩽ order(A) + order(B).

For the inequality on the right, note that the natural H[∂]-module morphism

H[∂] →
(
H[∂]/H[∂]A

)
×
(
H[∂]/H[∂]B

)
has kernel H[∂] lclm(A,B), and for D ∈ H[∂]̸=, the H-linear space H[∂]/K[∂]D has
dimension orderD.

We now assume that −1 is not a square in H; then we have a differential field ex-
tension H[i] where i2 = −1. The automorphism a+bi 7→ a+ bi := a−bi (a, b ∈ H)
of the differential field H[i] extends uniquely to an automorphism A 7→ A of the
ring H[i][∂] with ∂ = ∂. Let A ∈ H[i][∂]; then A = A⇐⇒ A ∈ H[∂]. Hence if A ̸= 0
is monic, then L := lclm(A,A) ∈ H[∂] and thus L = BA = BA where B ∈ H[i][∂].

Example 1.1.7. Let A = ∂ − a where a ∈ H[i]. If a ∈ H, then lclm(A,A) = A, and
if a /∈ H, then lclm(A,A) = (∂ − b)(∂ − a) = (∂ − b)(∂ − a) where b ∈ H[i] \H.
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Let now F be a differential field extension of H in which −1 is not a square; we
assume that i is an element of a differential ring extension of F .

Lemma 1.1.8. Let A ∈ H[i][∂] ̸= be monic, b ∈ H[i], and f ∈ F [i] such that
A(f) = b. Let B ∈ H[i][∂] be such that L := lclm(A,A) = BA. Then L(f) = B(b)
and hence L

(
Re(f)

)
= Re

(
B(b)

)
and L

(
Im(f)

)
= Im

(
B(b)

)
.

In Sections 6.4 and 6.7 we need a slight extension of this lemma:

Remark 1.1.9. Let F be a differential ring extension ofH in which−1 is not a square
and let i be an element of a commutative ring extension of F such that i2 = −1 and
the F -algebra F [i] = F+F i is a free F -module with basis 1, i. For f = g+hi ∈ F [i]
with g, h ∈ F we set Re(f) := g and Im(f) := h. We make F [i] into a differential
ring extension of F in the only way possible (which has i′ = 0). Then Lemma 1.1.8
goes through.

Complexity and the separant. We recall some definitions and observations
from [ADH, 4.3]. Let K be a differential field and P ∈ K{Y }, P /∈ K, and
set r = orderP , s = degY (r) P , and t = degP . Then the complexity of P is
the triple c(P ) = (r, s, t) ∈ N3; we order N3 lexicographically. Let a ∈ K.
Then c(P+a) = c(P ), and c(P×a) = c(P ) if a ̸= 0. The differential polyno-
mial SP := ∂P

∂Y (r) is called the separant of P ; thus c(SP ) < c(P ) (giving com-
plexity (0, 0, 0) to elements of K), and SaP = aSP if a ̸= 0. Moreover:

Lemma 1.1.10. We have

SP+a
= (SP )+a, SP×a

= a · (SP )×a, and SPϕ = ϕr(SP )
ϕ for ϕ ∈ K×.

Proof. For SP+a and SP×a this is from [ADH, p. 216]; for SPϕ , express P as a

polynomial in Y (r) and use (Y (r))ϕ = ϕrY (r) + lower order terms. □

Some transformation formulas. In this subsection K is a differential ring.
Let u ∈ K×. Then in K[∂] we have

(∂ − u†)0 = 1,

(∂ − u†)1 = ∂ − u′u−1,

(∂ − u†)2 = ∂
2 − 2u′u−1

∂ +
(
2(u′)2 − u′′u

)
u−2.

More generally:

Lemma 1.1.11. There are differential polynomials Qnk (X) ∈ Q{X} (0 ⩽ k ⩽ n),
independent of K and u, such that Qnn = 1 and

(∂ − u†)n = Qnn(u)∂
n +Qnn−1(u)u

−1
∂
n−1 + · · ·+Qn0 (u)u

−n.

Setting Qn−1 := 0, we have

Qn+1
k (X) = Qnk (X)′X +Qnk (X)(k − n− 1)X ′ +Qnk−1(X) (0 ⩽ k ⩽ n).

Hence every Qnk with 0 ⩽ k ⩽ n has integer coefficients and is homogeneous of
degree n− k and isobaric of weight n− k.
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Proof. By induction on n. The case n = 0 is obvious. Suppose for a certain n we
have Qnk for 0 ⩽ k ⩽ n as above. Then

(∂ − u†)n+1 = (∂ − u†)

n∑
k=0

Qnk (u)u
k−n

∂
k

=

n∑
k=0

((
Qnk (u)u

k−n)′ − u†Qnk (u)u
k−n

)
∂
k +

n∑
k=0

Qnk (u)u
k−n

∂
k+1

=

n∑
k=0

(
Qnk (u)

′u+Qnk (u)(k − n− 1)u′
)
uk−(n+1)

∂
k +

n+1∑
k=1

Qnk−1(u)u
k−(n+1)

∂
k,

and this yields the inductive step. □

For f ∈ K we have

(fu−1)(n) = (∂n)⋉u−1(f)u−1 = (∂⋉u−1)n(f)u−1 = (∂ − u†)n(f)u−1

and hence:

Corollary 1.1.12. Let f ∈ K; then

(fu−1)(n) = Qnn(u)f
(n)u−1 +Qnn−1(u)f

(n−1)u−2 + · · ·+Qn0 (u)fu
−(n+1).

Estimates for derivatives of exponential terms. In this subsection K is an
asymptotic differential field with small derivation, and ϕ ∈ K. We also fix m ∈ K×

with m ≺ 1. Recall from [ADH, 4.2] that for P ∈ K{Y } ̸= the multiplicity of P
at 0 is mul(P ) = min{d ∈ N : Pd ̸= 0}, where Pd denotes the homogeneous part of
degree d of P . Here is a useful bound:

Lemma 1.1.13. Let r ∈ N and y ∈ K satisfy y ≺ mr+m ≺ 1. Then P (y) ≺ mmµP
for all P ∈ K{Y }̸= of order at most r with µ = mul(P ) ⩾ 1.

Proof. Note that 0 ̸= m ≺ 1 and r +m ⩾ 1. Hence

y′ ≺ (mr+m)′ = (r +m)mr+m−1m′ ≺ mr−1+m,

so by induction y(i) ≺ mr−i+m for i = 0, . . . , r. Hence yi ≺ m(r+m)|i|−∥i∥ ≼ mm|i|

for nonzero i = (i0, . . . , ir) ∈ N1+r, which yields the lemma. □

Corollary 1.1.14. If f ∈ K and f ≺ mn, then f (k) ≺ mn−k for k = 0, . . . , n.

Proof. This is a special case of Lemma 1.1.13. □

Corollary 1.1.15. Let f ∈ K× and n ⩾ 1 be such that f ≼ mn. Then f (k) ≺ mn−k

for k = 1, . . . , n.

Proof. Note that mn ̸= 0, so f ′ ≼ (mn)′ = nmn−1m′ ≺ mn−1 [ADH, 9.1.3]. Now
apply Corollary 1.1.14 with f ′, n− 1 in place of f , n. □

In the remainder of this subsection we let ξ ∈ K× and assume ξ ≻ 1 and ζ := ξ† ≽ 1.

Lemma 1.1.16. The elements ξ, ζ ∈ K have the following asymptotic properties:

(i) ζn ≺ ξ for all n;
(ii) ζ(n) ≼ ζ2 for all n.

Thus for each P ∈ O{Z} there is an N ∈ N with P (ζ) ≼ ζN , and hence P (ζ) ≺ ξ.
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Proof. Part (i) follows from [ADH, 9.2.10(iv)] for γ = v(ξ). As to (ii), if ζ ′ ≼ ζ,
then ζ(n) ≼ ζ by [ADH, 4.5.3], and we are done. Suppose ζ ′ ≻ ζ and set γ := v(ζ).
Then γ, γ† < 0, so γ† = o(γ) by [ADH, 9.2.10(iv)] and hence v(ζ(n)) = γ + nγ† >
2γ = v(ζ2) by [ADH, 6.4.1(iv)]. □

Recall from [ADH, 5.8] that for a homogeneous differential polynomial P ∈ K{Y }
of degree d ∈ N the Riccati transform Ri(P ) ∈ K{Z} of P satisfies

Ri(P )(z) = P (y)/yd for y ∈ K×, z = y†.

In the next two corollaries, l ∈ Z, ξ = ϕ′, and eϕ denotes a unit of a differential
ring extension of K with multiplicative inverse e−ϕ and such that (eϕ)′ = ϕ′ eϕ.

Corollary 1.1.17. (ξl eϕ)(n) = ξl+n(1 + ε) eϕ where ε ∈ K, ε ≺ 1.

Proof. By Lemma 1.1.16(i) we have lζ + ξ ∼ ξ ≻ 1. Now use (ξl eϕ)(n)/(ξl eϕ) =
Rn(lζ + ξ) for Rn = Ri(Y (n)) in combination with [ADH, 11.1.5]. □

Applying the corollary above with ϕ, ξ replaced by −ϕ, −ξ, respectively, we obtain:

Corollary 1.1.18. (ξl e−ϕ)(n) = (−1)nξl+n(1 + δ) e−ϕ where δ ∈ K, δ ≺ 1.

Estimates for Riccati transforms. In this subsection K is a valued differential
field with small derivation. For later use we prove variants of [ADH, 11.1.5].

Lemma 1.1.19. If z ∈ K≻1, then Rn(z) = zn(1+ε) with vε ⩾ v(z−1)+o(vz) > 0.

Proof. This is clear for n = 0 and n = 1. Suppose z ≻ 1, n ⩾ 1, and Rn(z) =
zn(1 + ε) with ε as in the lemma. As in the proof of [ADH, 11.1.5],

Rn+1(z) = zn+1

(
1 + ε+ n

z†

z
(1 + ε) +

ε′

z

)
.

Now v(z†) ⩾ o(vz): this is obvious if z† ≼ 1, and follows from ▽(γ) = o(γ) for γ ̸= 0
if z† ≻ 1 [ADH, 6.4.1(iii)]. This gives the desired result in view of ε′ ≺ 1. □

Lemma 1.1.20. Suppose ∂O ⊆ O. If z ∈ K≽1, then Rn(z) = zn(1+ ε) with ε ≺ 1.

Proof. The case z ≻ 1 follows from Lemma 1.1.19. For z ≍ 1, proceed as in the
proof of that lemma, using ∂O ⊆ O. □

By [ADH, 9.1.3 (iv)] the condition ∂O ⊆ O is satisfied ifK is d-valued, or asymptotic
with Ψ ∩ Γ> ̸= ∅.

Lemma 1.1.21. Suppose K is asymptotic, and z ∈ K with 0 ̸= z ≼ z′ ≺ 1.
Then Rn(z) ∼ z(n−1) for n ⩾ 1.

Proof. Induction on n gives z ≼ z′ ≼ · · · ≼ z(n) ≺ 1 for all n. We now show Rn(z) ∼
z(n−1) for n ⩾ 1, also by induction. The case n = 1 is clear from R1 = Z, so
suppose n ⩾ 1 and Rn(z) ∼ z(n−1). Then

Rn+1(z) = zRn(z) +Rn(z)
′

where Rn(z)
′ ∼ z(n) by [ADH, 9.1.4(ii)] and zRn(z) ≍ zz(n−1) ≺ z(n−1) ≼ z(n).

Hence Rn+1(z) ∼ z(n). □
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Valued differential fields with very small derivation (∗). The generalities
in this subsection will be used in Section 7.3. Let K be a valued differential
field with derivation ∂. Recall that if K has small derivation (that is, ∂O ⊆ O),
then also ∂O ⊆ O by [ADH, 4.4.2], so we have a unique derivation on the residue
field k := O/O that makes the residue morphism O → k into a morphism of differ-
ential rings (and we call k with this induced derivation the differential residue field
of K). We say that ∂ is very small if ∂O ⊆ O. So K has very small derivation
iff K has small derivation and the induced derivation on k is trivial. If K has small
derivation and O = C + O, then K has very small derivation. If K has very small
derivation, then so does every valued differential subfield of K, and if L is a valued
differential field extension of K with small derivation and kL = k, then L has very
small derivation. Moreover:

Lemma 1.1.22. Let L be a valued differential field extension of K, algebraic
over K, and suppose K has very small derivation. Then L also has very small
derivation.

Proof. By [ADH, 6.2.1], L has small derivation. The derivation of k is trivial and kL
is algebraic over k [ADH, 3.1.9], so the derivation of kL is also trivial. □

Next we focus on pre-d-valued fields with very small derivation. First an easy
observation about asymptotic couples:

Lemma 1.1.23. Let (Γ, ψ) be an asymptotic couple; then

(Γ, ψ) has gap 0 ⇐⇒ (Γ, ψ) has small derivation and Ψ ⊆ Γ<.

In particular, if (Γ, ψ) has small derivation and does not have gap 0, then each
asymptotic couple extending (Γ, ψ) has small derivation.

Corollary 1.1.24. Suppose K is pre-d-valued with small derivation, and suppose 0
is not a gap in K. Then K has very small derivation.

Proof. The previous lemma gives g ∈ K× with g ̸≍ 1 and g† ≼ 1. Then for
each f ∈ K with f ≼ 1 we have f ′ ≺ g† ≼ 1. □

Corollary 1.1.25. Suppose K is pre-d-valued of H-type with very small derivation.
Then the d-valued hull dv(K) of K has small derivation.

Proof. By Lemma 1.1.23, if 0 is not a gap in K, then every pre-d-valued field
extension of K has small derivation. If 0 is a gap in K, then no b ≍ 1 in K satis-
fies b′ ≍ 1, sinceK has very small derivation. Thus Γdv(K) = Γ by [ADH, 10.3.2(ii)],
so 0 remains a gap in dv(K). In both cases, dv(K) has small derivation. □

If K is pre-d-valued and ungrounded, then for each ϕ ∈ K which is active in K,
the pre-d-valued field Kϕ (with derivation δ = ϕ−1

∂) has very small derivation.

Now a fact about A ∈ F [∂], where F is any differential field. For the definition
of A(n), see [ADH, p. 243]. Recall that Ri(A) ∈ F{Z}. For P ∈ F{Z} we denote
by P[0] the isobaric part of P of weight 0, as in [ADH, p. 212], so P ∈ F [Z].

Lemma 1.1.26. For P := Ri(A)[0] we have Ri(A(n))[0] = P (n) for all n.

Proof. We treat the case n = 1; the general case then follows by induction on n.
By F -linearity of A 7→ Ri(A) we reduce to the case A = ∂

m, m ⩾ 1, so P = Zm.
Then A′ = m∂

m−1, so Ri(A′) = mRm−1 and hence Ri(A′)[0] = mZm−1 = P ′. □
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We need this for the next lemma, which in turn is used in proving Corollary 1.8.50.
As usual, we extend the residue map a 7→ res a : O → k to the ring morphism

P 7→ resP : O[Y ] → k[Y ], Y 7→ Y.

Lemma 1.1.27. Let K have very small derivation, A ∈ O[∂], R := Ri(A), so R ∈
O{Z}, and P := R[0] ∈ O[Z]. Let a ∈ O, so Q := (R+a)[0] ∈ O[Z]. Then

(resP )+res a = resQ.

Proof. It suffices to show P+a − Q ≺ 1. We have R(a) ≡ R[0](a) mod O, as K

has very small derivation. Applying this to Ri(A(n)) in place of R = Ri(A) and
using Lemma 1.1.26 yields Ri(A(n))(a) ≡ P (n)(a) mod O for all n. Now use P+a =∑
n

1
n!P

(n)(a)Zn by Taylor expansion and R+a =
∑
n

1
n! Ri(A

(n))(a)Rn by [ADH,

p. 301], so Q =
∑
n

1
n! Ri(A

(n))(a)Zn. □

Rosenlicht’s proof of a result of Kolchin (∗). Corollary 1.1.30 below will be
used in Section 7.4. Let K be a differential field andm ⩾ 1, P ∈ K{Y }, degP < m.

Lemma 1.1.28. Let L be a differential field extension of K and t ∈ L, t′ ∈ K+tK,
and suppose L is algebraic over K(t). If ym = P (y) for some y ∈ L, then zm = P (z)
for some z in a differential field extension of K which is algebraic over K.

Proof. We may assume t is transcendental over K. View K(t) as a subfield of
the Laurent series field F = K((t−1)). We equip F with the valuation ring OF =
K[[t−1]] and the continuous derivation extending that of K(t), cf. [ADH, p. 226].
Then the valued differential field F is monotone. Hence the valued differential
subfield K(t) of F is also monotone. We equip L with a valuation ring OL lying
over OF ∩ K(t). Then L is monotone by [ADH, 6.3.10]. We identify K with its
image under the residue morphism a 7→ res a : OL → kL := res(L). Then K is
a differential subfield of the differential residue field kL of L, and kL is algebraic
overK. Let now y ∈ L with ym = P (y), and towards a contradiction suppose y ≻ 1.
Then y† ≼ 1, thus y(n) = y Rn(y

†) ≼ y for all n, and hence ym = P (y) ≼ yd

where d = degP < m, a contradiction. Thus y ≼ 1, and z := res y ∈ kL has the
required property. □

We recall from [ADH, p. 462] that a Liouville extension of K is a differential field
extension E of K such that CE is algebraic over C and for each t ∈ E there
are t1, . . . , tn ∈ L such that t ∈ K(t1, . . . , tn) and for i = 1, . . . , n:

(1) ti is algebraic over K(t1, . . . , ti−1), or
(2) t′i ∈ K(t1, . . . , ti−1), or
(3) t′i ∈ tiK(t1, . . . , ti−1).

Proposition 1.1.29 (Rosenlicht [167, p. 371]). Suppose ym = P (y) for some y
in a Liouville extension of K. Then zm = P (z) for some z in a differential field
extension of K which is algebraic over K.

Proof. A Liouville sequence over K is by definition a sequence (t1, . . . , tn) of ele-
ments of a differential field extension E of K such that for i = 1, . . . , n:

(1) ti is algebraic over K(t1, . . . , ti−1), or
(2) t′i ∈ K(t1, . . . , ti−1), or
(3) t′i ∈ tiK(t1, . . . , ti−1).
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Note that then Ki := K(t1, . . . , ti) is a differential subfield of E for i = 1, . . . , n.
By induction on d ∈ N we now show: if (t1, . . . , tn) is a Liouville sequence over K
with trdeg

(
K(t1, . . . , tn)|K

)
= d and ym = P (y) for some y ∈ K(t1, . . . , tn), then

the conclusion of the proposition holds. This is obvious for d = 0, so let (t1, . . . , tn)
be a Liouville sequence overK with trdeg

(
K(t1, . . . , tn)|K

)
= d ⩾ 1 and ym = P (y)

for some y ∈ K(t1, . . . , tn). Take i ∈ {1, . . . , n} maximal such that ti is transcen-
dental over Ki−1 = K(t1, . . . , ti−1). Then t

′
i ∈ Ki−1 + tiKi−1, and K(t1, . . . , tn) is

algebraic over K(t1, . . . , ti). Applying Lemma 1.1.28 to Ki−1, ti in the role of K, t
yields a z in an algebraic differential field extension of Ki−1 with zm = P (z). Now
apply the inductive hypothesis to the Liouville sequence (t1, . . . , ti−1, z) overK. □

Corollary 1.1.30 (Kolchin). Let A ∈ K[∂] ̸=, and suppose A(y) = 0 for some y ̸= 0
in a Liouville extension of K. Then A(y) = 0 for some y ̸= 0 in a differential field
extension of K with y† algebraic over K.

Proof. Let m = orderA and note that Ri(A) = Zm + Q with degQ < m [ADH,
p. 299]. Now apply the proposition above. □

Remark. Corollary 1.1.30 goes back to Liouville [131] in an analytic setting for A
of order 2 and K = C(x) with C = C, x′ = 1.

Results of Srinivasan (∗). Corollary 1.1.35 and Lemma 1.1.36 below will be used
in Section 7.6. In this subsection K is a differential field and a2, . . . , an ∈ K, n ⩾ 2,
an ̸= 0. We investigate the solutions of the differential equation

(1.1.1) y′ = a2y
2 + a3y

3 + · · ·+ any
n

in Liouville extensions of K. For n = 3 this is a special case of Abel’s differential
equation of the first kind, first studied by Abel [1] (cf. [111, §A.4.10]). In the next
three lemmas and in Proposition 1.1.34 we let y be an element of a differential field
extension L of K satisfying (1.1.1). At various places we consider a field E((t)) of
Laurent series over a field E; it is to be viewed as a valued field in the usual way.

Lemma 1.1.31. Suppose y is transcendental over K. Then K⟨y⟩† ∩K = K†.

Proof. We view K⟨y⟩ = K(y) as a differential subfield of K((y)) equipped with the
unique continuous derivation extending that of K(y). Let f =

∑
j⩾k fjy

j ∈ K((y))
with k ∈ Z, all fj ∈ K, and fk ̸= 0. Then

f ′ = f ′ky
k + (f ′k+1 + kfka2)y

k+1 +
(
f ′k+2 + kfka3 + (k + 1)fk+1a2

)
yk+2 + · · · .

Hence if f ′ = af where a ∈ K, then f ′k = afk and so a ∈ K†. □

Lemma 1.1.32. Suppose y transcendental over K and R is a differential subring
of K with C ⊆ R = ∂(R) and a2, . . . , an ∈ R. Then ∂(K⟨y⟩) ∩K = ∂(K).

Proof. Let K((y)) and f be as in the proof of Lemma 1.1.31. Then

g := f ′ =
∑
j⩾k

gjy
j where gj = f ′j +

n−1∑
i=1

(j − i)fj−iai+1 and fl := 0 for l < k.

Towards a contradiction, suppose f ′ = a ∈ K \ ∂(K). By induction on j ⩾ k we
show that then fj ∈ R and gj = 0. We have gk = f ′k, and if f ′k ̸= 0, then k = 0
and a = f ′k ∈ ∂(K), a contradiction. Therefore fk ∈ C× and gk = 0. Suppose j ⩾
k+1 and fk, . . . , fj−1 ∈ R. Take h ∈ R with h′ =

∑n−1
i=1 (j − i)fj−iai+1. Now gj =

(fj + h)′ ̸= a since a /∈ ∂(K), hence gj = 0 and thus fj ∈ −h+ C ⊆ R. □
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Lemma 1.1.33. Let t ∈ L× and suppose L is algebraic over K(t). If

(i) t′ ∈ K \ ∂(K) and there is a differential subring of K with C ⊆ R = ∂(R)
and a2, . . . , an ∈ R, or

(ii) t† ∈ K \QK†,

then y is algebraic over K.

Proof. We may assume that t is transcendental overK. Suppose y is transcendental
over K. Then t is algebraic over K(y) = K⟨y⟩. If t′ ∈ K, then with R = K⟨y⟩,
r = t′, and x = t in [ADH, 4.6.10] we obtain t′ ∈ ∂(K⟨y⟩). If t† ∈ K, then
with R = K⟨y⟩, r = t†, and x = t in [ADH, 4.6.11] we get t† ∈ QK⟨y⟩†. Thus (i)
contradicts Lemma 1.1.32 and (ii) contradicts Lemma 1.1.31. □

Proposition 1.1.34. Suppose C is algebraically closed, R is a differential subring
of K with C ⊆ R = ∂(R) and a2, . . . , an ∈ R, and L is a Liouville extension of K.
Then y is algebraic over K.

Proof. By induction on d ∈ N we show: if (t1, . . . , tm) ∈ Lm is a Liouville sequence
over K with trdeg

(
K(t1, . . . , tm)|K

)
= d and y ∈ K(t1, . . . , tm), then y is algebraic

over K. This is clear for d = 0, so let (t1, . . . , tm) ∈ Lm be a Liouville sequence
over K with trdeg

(
K(t1, . . . , tm)|K

)
= d ⩾ 1 and y ∈ K(t1, . . . , tm). Take i ∈

{1, . . . ,m} maximal such that ti is transcendental over Ki−1 := K(t1, . . . , ti−1).

Then t′i ∈ Ki−1 \ ∂(Ki−1) or t†i ∈ Ki−1 \ QK†
i−1. Hence y is algebraic over Ki−1

by Lemma 1.1.33 applied to Ki−1, ti, K(t1, . . . , tm) in the role of K, t, L. Now
apply the (tacit) inductive hypothesis to the Liouville sequence (t1, . . . , ti−1, y)
over K. □

In the remainder of this subsection C is algebraically closed, x ∈ K, x′ = 1 (so x
is transcendental over C), and a2, . . . , an ∈ C[x]. Applying Proposition 1.1.34
with C(x), C[x] in place of K, R, respectively, yields [196, Proposition 4.1] with a
shorter proof:

Corollary 1.1.35 (Srinivasan). Any y in any Liouville extension of C(x) satisfy-
ing (1.1.1) is algebraic over C(x).

We now assume a2, . . . , an ∈ C and put P := a2Y
2 + · · · + anY

n ∈ C[Y ]. We
equip C(Y ) with the derivation that is trivial on C and satisfies Y ′ = 1. Thus
the field isomorphism C(x) → C(Y ) over C with x 7→ Y is an isomorphism be-
tween the differential subfield C(x) of K and C(Y ). Next a special case of [194,
Proposition 3.1]:

Lemma 1.1.36 (Srinivasan). The following are equivalent:

(i) there is a non-constant y in a differential field extension of C(x) such that y
is algebraic over C(x) and y′ = P (y);

(ii) there exists Q ∈ C(Y ) such that Q′ = 1/P .

Proof. Let y /∈ C be algebraic over C(x) with y′ = P (y). Then y is transcendental
over C, hence x is algebraic over C(y) and so x ∈ C(y) by [ADH, 4.6.10] applied
to R = C(y). Take Q ∈ C(Y ) such that x = Q(y). Then 1 = x′ = Q(y)′ =
Q′(y)P (y) and thus Q′ = 1/P . This shows (i) ⇒ (ii). Conversely, let Q ∈ C(Y )
be such that Q′ = 1/P , and let Q = A/B with A,B ∈ C[Y ], B ̸= 0. By [ADH,
4.6.14] we have y in a differential field extension of C(x) with constant field C
such that y′ = P (y) and B(y) ̸= 0. Then Q(y)′ = Q′(y)y′ = (1/P (y))P (y) = 1,
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so Q(y) = x+ c ∈ C(y) with c ∈ C. Then y /∈ C, hence y is transcendental over C
and y is algebraic over C(x). □

Here are two applications of Lemma 1.1.36. In the proofs we extend the derivation
of C(Y ) to the continuous C-linear derivation on C((Y )) with Y ′ = 1.

Corollary 1.1.37. Suppose n ⩾ 3, a2, a3 ̸= 0, and y in a Liouville extension
of C(x) satisfies y′ = P (y). Then y ∈ C.

Proof. In C((Y )) we have 1/P = (1/a2)Y
−2−(a3/a

2
2)Y

−1+· · · and hence Q′ ̸= 1/P
for all Q ∈ C((Y )), so y ∈ C by Corollary 1.1.35 and Lemma 1.1.36. □

Corollary 1.1.38. Suppose P has a simple zero in C and y in a Liouville extension
of C(x) satisfies y′ = P (y). Then y ∈ C.

Proof. Let c ∈ C with P (c) = 0, P ′(c) ̸= 0. Then in C((Y )) we have 1/P (Y + c) ∈
aY −1 + C[[Y ]] where a ∈ C×, hence Q′ ̸= 1/P for all Q ∈ C((Y )). Thus y ∈ C by
Corollary 1.1.35 and Lemma 1.1.36. □

1.2. The Group of Logarithmic Derivatives

Let K be a differential field. The map y 7→ y† : K× → K is a morphism from the
multiplicative group of K to the additive group of K, with kernel C×. Its image

(K×)† =
{
y† : y ∈ K×}

is an additive subgroup ofK, which we call the group of logarithmic derivatives
of K. The morphism y 7→ y† induces an isomorphism K×/C× → (K×)†. To
shorten notation, set 0† := 0, so K† = (K×)†. For ϕ ∈ K× we have ϕ(Kϕ)† = K†.
The group K× is divisible iff both C× and K† are divisible. If K is algebraically
closed, then K× and hence K† are divisible, making K† a Q-linear subspace of K.
Likewise, ifK is real closed, then the multiplicative subgroupK> ofK× is divisible,
so K† = (K>)† is a Q-linear subspace of K.

Lemma 1.2.1. Suppose K† is divisible, L is a differential field extension of K
with L† ∩ K = K†, and M is a differential field extension of L and algebraic
over L. Then M† ∩K = K†.

Proof. Let f ∈M× be such that f† ∈ K. Then f† ∈ L, so for n := [L(f) : L],

nf† = trL(f)|L(f
†) = NL(f)|L(f)

† ∈ L†

by an identity in [ADH, 4.4]. Hence nf† ∈ K†, and thus f† ∈ K†. □

In particular, if K† is divisible and M is a differential field extension of K and
algebraic over K, then M† ∩K = K†.

In the next two lemmas a, b ∈ K; distinguishing whether or not a ∈ K† helps to
describe the solutions to the differential equation y′ + ay = b:

Lemma 1.2.2. Suppose ∂K = K, and let L be differential field extension of K
with CL = C. Suppose also a ∈ K†. Then for some y0 ∈ K× and y1 ∈ K,

{y ∈ L : y′ + ay = b} = {y ∈ K : y′ + ay = b} = Cy0 + y1.

Proof. Take y0 ∈ K× with y†0 = −a, so y′0 + ay0 = 0. Twisting ∂ + a ∈ K[∂]
by y0 (see [ADH, p. 243]) transforms the equation y′ + ay = b into z′ = y−1

0 b.
This gives y1 ∈ K with y′1 + ay1 = b. Using CL = C, these y0, y1 have the desired
properties. □
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Lemma 1.2.3. Let L be a differential field extension of K with L† ∩ K = K†.
Assume a /∈ K†. Then there is at most one y ∈ L with y′ + ay = b.

Proof. If y1, y2 are distinct solutions in L of the equation y′ + ay = b, then we
have −a = (y1 − y2)

† ∈ L† ∩K = K†, contradicting a /∈ K†. □

Logarithmic derivatives under algebraic closure. In this subsection K is a
differential field. We describe for real closedK howK† changes if we pass fromK to
its algebraic closure. More generally, suppose the underlying field of K is euclidean;
in particular, −1 is not a square in K. We equip K with the unique ordering
making K an ordered field. For y = a + bi ∈ K[i] (a, b ∈ K) we let |y| ∈ K⩾ be
such that |y|2 = a2 + b2. Then y 7→ |y| : K[i] → K⩾ is an absolute value on K[i],
i.e., for all x, y ∈ K[i],

|x| = 0 ⇐⇒ x = 0, |xy| = |x||y|, |x+ y| ⩽ |x|+ |y|.
For a ∈ K we have |a| = max{a,−a}. We have the subgroup

S :=
{
y ∈ K[i] : |y| = 1

}
=
{
a+ bi : a, b ∈ K, a2 + b2 = 1

}
of the multiplicative group K[i]×. By an easy computation all elements of K[i]
are squares in K[i]; hence K[i]† is 2-divisible. The next lemma describes K[i]†; it
partly generalizes [ADH, 10.7.8].

Lemma 1.2.4. We have K[i]× = K> · S with K> ∩ S = {1}, and
K[i]† = K† ⊕ S† (internal direct sum of subgroups of K[i]†).

For a, b ∈ K with a+ bi ∈ S we have (a+ bi)† = wr(a, b)i. Thus K[i]† ∩K = K†.

Proof. Let y = a + bi ∈ K[i]× (a, b ∈ K), and take r ∈ K> with r2 = a2 + b2;
then y = r · (y/r) with y/r ∈ S. Thus K[i]× = K> · S, and clearly K> ∩ S = {1}.
Hence K[i]† = K† + S†. Suppose a ∈ K×, s ∈ S, and a† = s†; then a = cs
with c ∈ CK[i], and CK[i] = C[i] by [ADH, 4.6.20] and hence max{a,−a} = |a| =
|c| ∈ C, so a ∈ C and thus a† = s† = 0; therefore the sum is direct. Now if a, b ∈ K
and |a+ bi| = 1, then

(a+ bi)† = (a′ + b′i)(a− bi)

= (aa′ + bb′) + (ab′ − a′b)i

= 1
2

(
a2 + b2

)′
+ (ab′ − a′b)i = (ab′ − a′b)i = wr(a, b)i. □

Corollary 1.2.5. For y ∈ K[i]× we have Re(y†) = |y|†, and the group mor-
phism y 7→ Re(y†) : K[i]× → K has kernel C>S.

If K is real closed and O a convex valuation ring of K, then O[i] = O +Oi is the
unique valuation ring of K[i] that lies over O, and so S ⊆ O[i]×, hence y ≍ |y| for
all y ∈ K[i]×. Thus by [ADH, 10.5.2(i)] and Corollary 1.2.5:

Corollary 1.2.6. If K is a real closed pre-H-field, then for all y, z ∈ K[i]×,

y ≺ z =⇒ Re(y†) < Re(z†).

We also have a useful decomposition for S:

Corollary 1.2.7. Suppose K is a real closed H-field. Then

S = SC ·
(
S ∩ (1 + OK[i])

)
where SC := S ∩ C[i]× and S ∩ (1 + OK[i]) are subgroups of O[i]×.
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Proof. The inclusion ⊇ is clear. For the reverse inclusion, let a, b ∈ K, a2 + b2 = 1
and take the unique c, d ∈ C with a − c ≺ 1 and b − d ≺ 1. Then c2 + d2 = 1
and a+ bi ∼ c+ di, and so (a+ bi)/(c+ di) ∈ S ∩ (1 + OK[i]). □

Logarithmic derivatives in asymptotic fields. Let K be an asymptotic field.
If K is henselian and k := resK, then by [ADH, remark before 3.3.33], K× is
divisible iff the groups k× and Γ are both divisible. Recall that in [ADH, 14.2] we
defined the O-submodule

I(K) = {y ∈ K : y ≼ f ′ for some f ∈ O}

of K. We have ∂O ⊆ I(K), hence (1 + O)† ⊆ (O×)† ⊆ I(K). One easily verifies:

Lemma 1.2.8. Suppose K is pre-d-valued. If I(K) ⊆ ∂K, then I(K) = ∂O.
If I(K) ⊆ K†, then I(K) = (O×)†, with I(K) = (1 + O)† if K is d-valued.

If K is d-valued or K is pre-d-valued without a gap, then

I(K) = {y ∈ K : y ≼ f ′ for some f ∈ O}.

For ϕ ∈ K× we have ϕ I(Kϕ) = I(K). If K has asymptotic integration and L is an
asymptotic extension of K, then I(K) = I(L) ∩K. The following is [ADH, 14.2.5]:

Lemma 1.2.9. If K is H-asymptotic, has asymptotic integration, and is 1-linearly
newtonian, then it is d-valued and ∂O = I(K) = (1 + O)†.

We now turn our attention to the condition I(K) ⊆ K†. If I(K) ⊆ K†, then
also I(Kϕ) ⊆ (Kϕ)† for ϕ ∈ K×, where

(Kϕ)† := {ϕ−1f ′/f : f ∈ K×} = ϕ−1K†.

By [ADH, Section 9.5 and 10.4.3]:

Lemma 1.2.10. Let K be of H-type. If K is d-valued, or pre-d-valued without a
gap, then K has an immediate henselian asymptotic extension L with I(L) ⊆ L†.

Corollary 1.2.11. Suppose K has asymptotic integration. Let L be an asymptotic
field extension of K such that L× = K×C×

L (1 + OL). Then L† = K† + (1 + OL)
†,

and if I(K) ⊆ K†, then L† ∩K = K†.

Proof. Let f ∈ L×, and take b ∈ K×, c ∈ C×
L , g ∈ OL with f = bc(1 + g);

then f† = b† + (1 + g)†, showing L† = K† + (1 + OL)
†. Next, suppose I(K) ⊆ K†,

let b, c, f , g be as before, and assume a := f† ∈ K; then

a− b† ∈ (1 + OL)
† ∩K ⊆ I(L) ∩K = I(K) ⊆ K†

and hence a ∈ K†. This shows L† ∩K = K†. □

Two cases where the assumption on L in Corollary 1.2.11 is satisfied: (1) L is an
immediate asymptotic field extension of K, because then L× = K×(1 + OL); and
(2) L is a d-valued field extension of K with Γ = ΓL.

If F is a henselian valued field of residue characteristic 0, then clearly the sub-
group 1 + OF of F× is divisible. Hence, if K and L are as in Corollary 1.2.11 and
in addition K† is divisible and L is henselian, then L† is divisible.
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Example 1.2.12. Let C be a field of characteristic 0 and Q be a subgroup of Q
with 1 ∈ Q. The Hahn field C((tQ)) = C[[xQ]], with x = t−1, is given the natural
derivation with c′ = 0 for all c ∈ C and x′ = 1: this derivation is defined by(∑

q∈Q
cqx

q

)′

:=
∑
q∈Q

qcqx
q−1 (all cq ∈ C).

Then C((tQ)) has constant field C, and is d-valued of H-type. Thus K := C((tQ))
satisfies I(K) ⊆ K† by Lemma 1.2.10. Hence by Lemma 1.2.8,

I(K) = (1 + O)† =
{
f ∈ K : f ≺ x† = t

}
= O t.

It follows easily that K† = Qt⊕ I(K) (internal direct sum of subgroups of K†) and
thus (Kt)† = Q ⊕ O ⊆ O. In particular, if Q = Z (so K = C((t))), then (Kt)† =
Z ⊕ tC[[t]]. Moreover, if L := P(C) ⊆ C((tQ)) is the differential field of Puiseux
series over C, then (Lt)† = Q⊕ OL.

In the next three corollaries we continue with the d-valued Hahn field K = C((tQ))
from the example above. So CK† = Ct ⊕ I(K) (internal direct sum of C-linear
subspaces of K) where I(K) = Ot, hence CK† = Ot. For f =

∑
q∈Q fqx

q ∈ K

(all fq ∈ C) we have the “residue” f−1 of f , and we observe that f 7→ f−1 : K → C
is C-linear with kernel ∂(K). Thus:

Corollary 1.2.13. ∂(K) ∩ CK† = I(K).

This yields a fact needed in Section 7.6:

Corollary 1.2.14. Let F := C(x) ⊆ K. Then ∂(F ) ∩ CF † = {0}.

Proof. We arrange that C is algebraically closed. Let f ∈ ∂(F ) ∩ CF †. Then
f ∈ I(K) = Ot by Corollary 1.2.13, so it suffices to show f ∈ C[x]. For c ∈ C,
let vc : F

× → Z be the valuation on F with v(C×) = {0} and v(x− c) = 1.
Then vc = v◦σc where σc is the C-linear automorphism of the field F with x 7→ c+ t.
Hence it suffices that σc(f) ≼ 1 for all c ∈ C. For c ∈ C, g ∈ F we have σc(g)

′ =
−t2σc(g′), so −t2σc(f) ∈ ∂(F )∩CF † ⊆ Ot, hence σc(f) ≺ x and thus σc(f) ≼ 1. □

For the next corollary, compare [86, p. 14] and think of yj as log(x− cj).

Corollary 1.2.15 (Linear independence of logarithms). Let c1, . . . , cn ∈ C be
distinct, and let y1, . . . , yn in a common differential field extension of C(x) be such
that y′j = (x− cj)

−1 for j = 1, . . . , n. Then for all a1, . . . , an ∈ C,

a1y1 + · · ·+ anyn ∈ C(x) =⇒ a1 = · · · = an = 0.

Proof. Set F := C(x) and suppose a1, . . . , an ∈ C and f := a1y1 + · · ·+ anyn ∈ F .
Then f ′ = a1(x− c1)

−1 + · · ·+ an(x− cn)
−1 ∈ ∂(F )∩CF †, so by Corollary 1.2.14,

a1(x− c1)
−1 + · · ·+ an(x− cn)

−1 = 0.

Multiplying both sides of this equality by
∏n
j=1(x − cj) and substituting cj for x

yields aj = 0, for j = 1, . . . , n. □
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The real closed case. In this subsection H is a real closed asymptotic field whose
valuation ring O is convex with respect to the ordering of H. (In later use H is
often a Hardy field, which is why we use the letter H here.) The valuation ring of
the asymptotic field extension K = H[i] of H is then OK = O + Oi, from which
we obtain I(K) = I(H)⊕ I(H)i. Let

S :=
{
y ∈ K : |y| = 1

}
, W :=

{
wr(a, b) : a, b ∈ H, a2 + b2 = 1

}
,

so S is a subgroup of O×
K with S† = W i and K† = H† ⊕W i by Lemma 1.2.4.

Since ∂O ⊆ I(H), we have W ⊆ I(H), and thus: W = I(H) ⇐⇒ I(H)i ⊆ K†.

Lemma 1.2.16. The following are equivalent:

(i) I(K) ⊆ K†;
(ii) W = I(H) ⊆ H†.

Proof. Assume (i). Then I(H) i ⊆ I(K) ⊆ K†, so W = I(H) by the equivalence
preceding the lemma. Also I(H) ⊆ I(K) and K† ∩ H = H† (by Lemma 1.2.4),
hence I(H) ⊆ H†, so (ii) holds. For the converse, assume (ii). Then

I(K) = I(H)⊕ I(H)i ⊆ H† ⊕W i = K†. □

Applying now Lemma 1.2.9 we obtain:

Corollary 1.2.17. If H is H-asymptotic and has asymptotic integration, and K is
1-linearly newtonian, then K is d-valued and I(K) ⊆ K†; in particular, W = I(H).

Corollary 1.2.18. Suppose H has asymptotic integration and W = I(H). Let F
be a real closed asymptotic extension of H whose valuation ring is convex. Then

F [i]† ∩K = (F † ∩H)⊕ I(H)i.

If in addition H† = H, then F [i]† ∩K = H ⊕ I(H)i = K†.

Proof. We have

F † ∩H ⊆ F [i]† ∩K and I(H)i =W i ⊆ K† ∩Hi ⊆ F [i]† ∩K,
so (F †∩H)⊕ I(H)i ⊆ F [i]†∩K. For the reverse inclusion, F [i]† = F †⊕WF i, with

WF :=
{
wr(a, b) : a, b ∈ F, a2 + b2 = 1

}
⊆ I(F ),

hence

F [i]† ∩K = (F † ∩H)⊕ (WF ∩H)i

⊆ (F † ∩H)⊕
(
I(F ) ∩H

)
i = (F † ∩H)⊕ I(H)i,

using I(F )∩H = I(H), a consequence of H having asymptotic integration. If H† =
H then clearly F † ∩H = H, hence F [i]† ∩K = K†. □

Trigonometric closure. In this subsection H is a real closed H-field. Let O be
its valuation ring and O the maximal ideal of O. The algebraic closure K = H[i]
of H is a d-valued H-asymptotic extension with valuation ring OK = O +Oi. We
have the “complex conjugation” automorphism z = a+ bi 7→ z = a− bi (a, b ∈ H)
of the valued differential field K. For such z, a, b we have

|z| =
√
zz =

√
a2 + b2 ∈ H⩾.

Lemma 1.2.19. Suppose θ ∈ H and θ′i ∈ K†. Then θ′ ∈ ∂O, and there is a
unique y ∼ 1 in K such that y† = θ′i. For this y we have |y| = 1, so y−1 = y.
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Proof. From θ′i ∈ K† we get θ′ ∈ W ⊆ I(H), so θ ≼ 1, hence θ′ ∈ ∂O = ∂O.
Let z ∈ K× and z† = θ′i. Then Re z† = 0, so by Corollaries 1.2.5 and 1.2.7 we
have z = cy with c ∈ C×

K and y ∈ S ∩ (1 + OK) where S = {a ∈ K : |a| = 1}.
Hence y ∼ 1, |y| = 1, and y† = θ′i. If also y1 ∈ K and y1 ∼ 1, y†1 = θ′i,
then y1 = c1y with c1 ∈ C×

K , so c1 = 1 in view of y ∼ y1. □

By [ADH, 10.4.3], if y in an H-asymptotic extension L of K satisfies y ∼ 1
and y† ∈ ∂OK , then the asymptotic field K(y) ⊆ L is an immediate extension of K,
and so is any algebraic asymptotic extension of K(y).

Call H trigonometrically closed if for all θ ≺ 1 in H there is a (necessarily
unique) y ∈ K such that y ∼ 1 and y† = θ′i. (By convention “trigonometrically
closed” includes “real closed”.) For such θ and y we think of y as eiθ and accordingly

of the elements y+y2 = y+y−1

2 and y−y
2i = y−y−1

2i of H as cos θ and sin θ; this explains
the terminology. By Lemma 1.2.19 the restrictions θ ≺ 1 and y ∼ 1 are harmless.
Our aim in this subsection is to construct a canonical trigonometric closure of H.

Note that if I(K) ⊆ K†, thenH is trigonometrically closed. As a partial converse,
if I(H) ⊆ H† ∩ ∂H and H is trigonometrically closed, then I(K) ⊆ K†; this is an
easy consequence of I(K) = I(H) + I(H)i. Thus for Liouville closed H we have:

H is trigonometrically closed ⇐⇒ I(K) ⊆ K†.

Note also that for trigonometrically closed H there is no y in any H-asymptotic
extension of K such that y /∈ K, y ∼ 1, and y† ∈ (∂O)i.

If H is Schwarz closed, then H is trigonometrically closed by the next lemma:

Lemma 1.2.20. Suppose H is Liouville closed and ω(H) is downward closed.
Then H is trigonometrically closed.

Proof. Let 0 ̸= θ ≺ 1 in H. By Lemma 1.2.19 it suffices to show that then θ′i ∈ K†.
Note that h := θ′ ∈ I(H )̸=; we arrange h > 0. Now

f := ω(−h†) + 4h2 = σ(2h), 2h ∈ H> ∩ I(H),

hence 2h ∈ H>\Γ(H) by [ADH, 11.8.19]. So f ∈ ω(H)↓ = ω(H) by [ADH, 11.8.31],
and thus dimCH

ker 4∂
2 + f ⩾ 1 by [ADH, p. 258]. Put A := ∂

2 − h†∂ + h2 ∈ H[∂].

The isomorphism y 7→ y
√
h : ker(4∂

2 + f) → kerA of CH -linear spaces [ADH,

5.1.13] then yields an element of ker̸=A that for suggestiveness we denote by cos θ.
Put sin θ := −(cos θ)′/h. Then

(sin θ)′ = −(cos θ)′′/h+ (cos θ)′h†/h

=
(
−h†(cos θ)′ + h2 cos θ

)
/h+ (cos θ)′h†/h = h cos θ

and thus y† = θ′i for y := cos θ + i sin θ ∈ K×. □

If H is H-closed, then H is Schwarz closed by [ADH, 14.2.20], and thus trigono-
metrically closed. Using also Lemma 1.2.16 and remarks preceding it this yields:

Corollary 1.2.21. If H is H-closed, then I(K) ⊆ K† = H ⊕ I(H)i.

Suppose now that H is not trigonometrically closed; so we have θ ≺ 1 in H
with θ′i /∈ K†. Then [ADH, 10.4.3] provides an immediate asymptotic exten-
sionK(y) ofK with y ∼ 1 and y† = θ′i. To simplify notation and for suggestiveness
we set

cos θ :=
y + y−1

2
, sin θ :=

y − y−1

2i
,
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so y = cos θ + i sin θ and (cos θ)2 + (sin θ)2 = 1. Moreover (cos θ)′ = −θ′ sin θ
and (sin θ)′ = θ′ cos θ. It follows that H+ := H(cos θ, sin θ) is a differential subfield
of K(y) with K(y) = H+[i], and thus H+, as a valued differential subfield of H(y),
is an asymptotic extension of H.

Lemma 1.2.22. H+ is an immediate extension of H.

Proof. Since (y−1)† = −θ′i, the uniqueness property stated in [ADH, 10.4.3] allows
us to extend the complex conjugation automorphism of K (which is the identity
on H and sends i to −i) to an automorphism σ of the valued differential field K(y)
such that σ(y) = y−1. Then σ(cos θ) = cos θ and σ(sin θ) = sin θ, so H+ = Fix(σ).
Let k be the residue field of H; so k[res i] is the residue field of K and of its
immediate extension K(y). Now σ(OK(y)) = OK(y), so σ induces an automorphism
of this residue field k[res i] which is the identity on k and sends res i to − res i.
Hence res i does not lie in the residue field of H+, so this residue field is just k. □

Equip H+ with the unique field ordering making it an ordered field extension of H
in which OH+ is convex; see [ADH, 10.5.8]. Then H+ is an H-field, and its real
closure is an immediate real closed H-field extension of H.

Lemma 1.2.23. The H-field H+ embeds uniquely over H into any trigonometri-
cally closed H-field extension of H.

Proof. Let H∗ be a trigonometrically closed H-field extension of H. Take the
unique z ∼ 1 in H∗ such that z† = θ′i. Then any H-field embedding H+ → H∗

over H extends to a valued differential field embedding H+[i] = K(y) → H∗[i]
sending i ∈ K to i ∈ H∗[i], and this extension must send y to z. Hence there is
at most one H-field embedding H+ → H∗ over H. For the existence of such an
embedding, the uniqueness properties from [ADH, 10.4.3] yield a valued differential
field embedding K(y) → H∗[i] over H sending i ∈ K to i ∈ H∗[i] and y to z. This
embedding maps H+ into H∗. The uniqueness property of the ordering on H+

shows that this embedding restricts to an H-field embedding H+ → H∗. □

By iterating the extension step that leads from H to H+, alternating it with taking
real closures, and taking unions at limit stages we obtain:

Proposition 1.2.24. H has a trigonometrically closed H-field extension Htrig that
embeds uniquely over H into any trigonometrically closed H-field extension of H.

This is an easy consequence of Lemma 1.2.23. Note that the universal property
stated in Proposition 1.2.24 determines Htrig up-to-unique-isomorphism of H-fields
overH. We refer to suchHtrig as the trigonometric closure ofH. Note thatHtrig

is an immediate extension of H, by Lemma 1.2.22, and that Htrig[i] is a Liouville
extension of K and thus of H.

A trigonometric extension of H is a real closed H-field extension E of H such that
for all a ∈ E there are real closed H-subfields H0 ⊆ H1 ⊆ · · · ⊆ Hn of E such that

(1) H0 = H and a ∈ Hn;
(2) for j = 0, . . . , n − 1 there are θj ∈ Hj and yj ∈ Hj+1[i] ⊆ E[i] such

that yj ∼ 1, θ′ji = y†j , and Hj+1[i] is algebraic over Hj [i](yj).

If E is a trigonometric extension of H, then E is an immediate extension of H
and E[i] is an immediate Liouville extension of K and thus of H. The next lemma
states some further easy consequences of the definition above:
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Lemma 1.2.25. If E is a trigonometric extension of H, then E is a trigonometric
extension of any real closed H-subfield F ⊇ H of E. If H is trigonometrically
closed, then H has no proper trigonometric extension.

Induction on m shows that if E is a trigonometric extension of H, then for any
a1, . . . , am ∈ E there are real closed H-subfields H0 ⊆ H1 ⊆ · · · ⊆ Hn of E such
that H0 = H, a1, . . . , am ∈ Hn and (2) above holds. This helps in proving:

Corollary 1.2.26. A trigonometric extension of a trigonometric extension of H
is a trigonometric extension of H, and Htrig is a trigonometric extension of H.

Asymptotic fields of Hardy type. Let (Γ, ψ) be an asymptotic couple, Ψ :=
ψ(Γ̸=), and let γ, δ range over Γ. Recall that [γ] denotes the archimedean class
of γ [ADH, 2.4]. Following [169, Section 3] we say that (Γ, ψ) is of Hardy type
if for all γ, δ ̸= 0 we have [γ] ⩽ [δ] ⇐⇒ ψ(γ) ⩾ ψ(δ). Note that then (Γ, ψ) is of
H-type, and ψ induces an order-reversing bijection [Γ ̸=] → Ψ. If Γ is archimedean,
then (Γ, ψ) is of Hardy type. If (Γ, ψ) is of Hardy type, then so is (Γ, ψ + δ) for
each δ. We also say that an asymptotic field is of Hardy type if its asymptotic couple
is. Every asymptotic subfield and every compositional conjugate of an asymptotic
field of Hardy type is also of Hardy type. Moreover, every Hardy field is of Hardy
type [ADH, 9.1.11]. Let now ∆ be a convex subgroup of Γ. Note that ∆ contains
the archimedean class [δ] of each δ ∈ ∆. Hence, if δ ∈ ∆ ̸= and γ /∈ ∆, then [δ] < [γ]
and thus:

Lemma 1.2.27. If (Γ, ψ) is of Hardy type and γ /∈ ∆, δ ∈ ∆ ̸=, then ψ(γ) < ψ(δ).

Corollary 1.2.28. Suppose (Γ, ψ) is of Hardy type with small derivation, γ, δ ̸= 0,
ψ(δ) ⩽ 0, and [γ′] > [δ]. Then ψ(γ) < ψ(δ).

Proof. Let ∆ be the smallest convex subgroup of Γ with δ ∈ ∆; then γ′ /∈ ∆,
and ψ(δ) ∈ ∆ by [ADH, 9.2.10(iv)]. Thus γ /∈ ∆ by [ADH, 9.2.25]. □

In [7, Section 7] we say that an H-field H is closed under powers if for all c ∈ C
and f ∈ H× there is a y ∈ H× with y† = cf†. (Think of y as f c.) Thus if H is
Liouville closed, then H is closed under powers. In the rest of this subsection we
let H be an H-field closed under powers, with asymptotic couple (Γ, ψ) and constant
field C. We recall some basic facts from [7, Section 7]. First, we can make the value
group Γ into an ordered vector space over the constant field C:

Lemma 1.2.29. For all c ∈ C and γ = vf with f ∈ H× and each y ∈ H×

with y† = cf†, the element vy ∈ Γ only depends on (c, γ) (not on the choice of f
and y), and is denoted by c · γ. The scalar multiplication (c, γ) 7→ c · γ : C × Γ → Γ
makes Γ into an ordered vector space over the ordered field C.

Let G be an ordered vector space over the ordered field C. From [ADH, 2.4] recall
that the C-archimedean class of a ∈ G is defined as

[a]C :=
{
b ∈ G : 1

c |a| ⩽ |b| ⩽ c|a| for some c ∈ C>
}
.

Thus if C = Q, then [a]Q is just the archimedean class [a] of a ∈ G. Moreover,
if C∗ is an ordered subfield of C, then [a]C∗ ⊆ [a]C for each a ∈ G, with equality
if C∗ is cofinal in C. Hence if C is archimedean, then [a] = [a]C for all a ∈ G.
Put [G]C :=

{
[a]C : a ∈ G

}
and linearly order [G]C by

[a]C < [b]C :⇐⇒ [a]C ̸= [b]C and |a| < |b|.
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Thus [G]C has smallest element [0]C = {0}. We also set [G̸=]C := [G]C \
{
[0]C

}
.

From [7, Proposition 7.5] we have:

Proposition 1.2.30. For all γ, δ ̸= 0 we have

[γ]C ⩽ [δ]C ⇐⇒ ψ(γ) ⩾ ψ(δ).

Hence ψ induces an order-reversing bijection [Γ̸=]C → Ψ = ψ(Γ̸=).

Proposition 1.2.30 yields:

Corollary 1.2.31. H is of Hardy type ⇐⇒ [γ] = [γ]C for all γ. Hence if C is
archimedean, then H is of Hardy type; if Γ ̸= {0}, then the converse also holds.

1.3. The Valuation of Differential Polynomials at Infinity (∗)

Our goal in this work is to solve certain kinds of algebraic differential equations in
Hardy fields. In this section we review some general facts about the asymptotic
behavior of solutions of algebraic differential equations in H-asymptotic fields. We
will not need these results in order to achieve our main objective, but they will
be used at a few points for applications and corollaries; see Section 5.4 and Corol-
lary 7.1.20. Throughout this section K is an H-asymptotic field, and f , g range
over K.

Iterated logarithmic derivatives. Let (Γ, ψ) be an H-asymptotic couple. As
usual we introduce a new symbol ∞ /∈ Γ, extend the ordering of Γ to an ordering
on Γ∞ = Γ ∪ {∞} such that ∞ > Γ, and extend ψ : Γ ̸= → Γ to a map Γ∞ → Γ∞
by setting ψ(0) := ψ(∞) := ∞. (See [ADH, 6.5].) We let γ range over Γ, and we
define γ⟨n⟩ ∈ Γ∞ inductively by γ⟨0⟩ := γ and γ⟨n+1⟩ := ψ(γ⟨n⟩). The following
is [5, Lemma 5.2]; for the convenience of the reader we include a proof:

Lemma 1.3.1. Suppose that 0 ∈ (Γ<)′, γ ̸= 0, and n ⩾ 1. If γ⟨n⟩ < 0, then γ⟨i⟩ < 0
for i = 1, . . . , n and [γ] > [γ†] > · · · > [γ⟨n−1⟩] > [γ⟨n⟩].

Proof. By [ADH, 9.2.9], (Γ, ψ) has small derivation, hence the case n = 1 follows
from [ADH, 9.2.10(iv)]. Assume inductively that the lemma holds for a certain value
of n ⩾ 1, and suppose γ⟨n+1⟩ < 0. Then γ⟨n⟩ ̸= 0, so we can apply the case n = 1
to γ⟨n⟩ instead of γ and get [γ⟨n⟩] > [γ⟨n+1⟩]. By the inductive assumption the
remaining inequalities will follow from γ⟨n⟩ < 0. From 0 ∈ (Γ<)′ we obtain an
element 1 of Γ> with 0 = (−1)′ = −1 + 1†. Suppose γ⟨n⟩ ⩾ 0. Then γ⟨n⟩ ∈ Ψ,
thus 0 < γ⟨n⟩ < 1 + 1† = 1 + 1 and so [γ⟨n⟩] ⩽ [1]. Hence 0 > γ⟨n+1⟩ ⩾ 1† = 1, a
contradiction. □

Suppose now that (Γ, ψ) is the asymptotic couple ofK. If y ∈ K× and (vy)⟨n⟩ ̸= ∞,
then the nth iterated logarithmic derivative y⟨n⟩ of y is defined (see [ADH, 4.2]),
and v(y⟨n⟩) = (vy)⟨n⟩ ∈ Γ. Recall from [ADH, p. 383] that for f, g ̸= 0,

f ≺≺ g :⇔ f† ≺ g†, f ⪯⪯ g :⇔ f† ≼ g†, f −≍ g :⇔ f† ≍ g†,

hence, assuming also f, g ̸≍ 1,

f ≺≺ g ⇒ [vf ] < [vg], [vf ] ⩽ [vg] ⇒ f ⪯⪯ g.

In the rest of this section we are given x ≻ 1 in K with x′ ≍ 1. Then 0 ∈ (Γ<)′, so
from the previous lemma we obtain:
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Corollary 1.3.2. If y ∈ K×, y ̸≍ 1, n ⩾ 1, and (vy)⟨n⟩ < 0, then y⟨i⟩ ≻ 1
for i = 1, . . . , n and [vy] >

[
v(y†)

]
> · · · >

[
v(y⟨n−1⟩)

]
>
[
v(y⟨n⟩)

]
.

Let i = (i0, . . . , in) ∈ Z1+n and y ∈ K× be such that y⟨n⟩ is defined; we put

y⟨i⟩ := (y⟨0⟩)i0 · · · (y⟨n⟩)in ∈ K.

If y⟨n⟩ ̸= 0, then i 7→ y⟨i⟩ : Z1+n → K× is a group morphism. Suppose now
that y ∈ K×, (vy)⟨n⟩ < 0, and i = (i0, . . . , in) ∈ Z1+n, i ̸= 0, and m ∈ {0, . . . , n}
is minimal with im ̸= 0. Then by Corollary 1.3.2,

[
v(y⟨i⟩)

]
=
[
v(y⟨m⟩)

]
. Thus

if y ≻ 1, we have the equivalence y⟨i⟩ ≻ 1 ⇔ im ⩾ 1. If K is equipped with an
ordering making it a pre-H-field and y ≻ 1, then y† > 0, so y⟨i⟩ > 0 for i = 1, . . . , n,
and thus sign y⟨i⟩ = sign yi0 .

Iterated exponentials. In this subsection we assume that Ψ is downward closed.
For f ≻ 1 we have f ′ ≻ f†, so we can and do choose E(f) ∈ K× such that E(f) ≻ 1
and E(f)† ≍ f ′, hence f ≺ E(f) and f ≺≺ E(f). Moreover, if f, g ≻ 1, then

f ≺ g ⇐⇒ E(f) ≺≺ E(g).

For f ≻ 1 define En(f) ∈ K≻1 inductively by

E0(f) := f, En+1(f) := E
(
En(f)

)
,

and thus by induction

En(f) ≺ En+1(f) and En(f) ≺≺ En+1(f) for all n.

In the rest of this subsection f ≽ x, and y ranges over elements of H-asymptotic
extensions of K. The proof of the next lemma is like that of [7, Lemma 1.3(2)].

Lemma 1.3.3. If y ≽ En+1(f), n ⩾ 1, then y ̸= 0 and y† ≽ En(f).

Proof. If y ≽ E2(f), then y ̸= 0, and using E2(f) ≻ 1 we obtain

y† ≽ E2(f)
† ≍ E(f)′ = E(f) E(f)† ≍ E(f)f ′ ≽ E(f),

Thus the lemma holds for n = 1. In general, En−1(f) ≽ f ≽ x, hence the lemma
follows from the case n = 1 applied to En−1(f) in place of f . □

An obvious induction on n using Lemma 1.3.3 shows: if y ≽ En(f), then (vy)⟨n⟩ ⩽
vf < 0. We shall use this fact without further reference.

Lemma 1.3.4. If y ≽ En+1(f), then y
⟨n⟩ is defined and y⟨n⟩ ≽ E(f).

Proof. First note that if y ̸= 0, n ⩾ 1, and (y†)⟨n−1⟩ is defined, then y⟨n⟩ is defined
and y⟨n⟩ = (y†)⟨n−1⟩. Now use induction on n and Lemma 1.3.3. □

Lemma 1.3.5. If y ≽ En(f
2), then y⟨n⟩ is defined and y⟨n⟩ ≽ f , with y⟨n⟩ ≻ f

if f ≻ x.

Proof. This is clear if n = 0, so suppose y ≽ En+1(f
2). Then by Lemma 1.3.4

(applied with f2 in place of f) we have y⟨n⟩ ≽ E(f2) ≻ 1, so

y⟨n+1⟩ = (y⟨n⟩)† ≽ E(f2)† ≍ (f2)′ = 2ff ′ ≽ f,

with y⟨n+1⟩ ≻ f if f ≻ x, as required. □

Corollary 1.3.6. Suppose y ≽ En(f
2), and let i ∈ Z1+n be such that i > 0

lexicographically. Then y⟨n⟩ is defined and y⟨i⟩ ≽ f , with y⟨i⟩ ≻ f if f ≻ x.
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Proof. By Lemma 1.3.5, y⟨n⟩ is defined with y⟨n⟩ ≽ f , and y⟨n⟩ ≻ f if f ≻ x.
Let m ∈ {0, . . . , n} be minimal such that im ̸= 0; so im ⩾ 1. If m = n then y⟨i⟩ =
(y⟨n⟩)in ≽ y⟨n⟩, hence y⟨i⟩ ≽ f , with y⟨i⟩ ≻ f if f ≻ x. Suppose m < n. Then y ≽
Em+1(f

2) and hence y⟨m⟩ ≽ E(f2) by Lemma 1.3.4. Also, f −≍ f2 ≺≺ E(f2),
thus y⟨m⟩ ≻≻ f . The remarks following Corollary 1.3.2 now yield y⟨i⟩ ≻ f . □

Asymptotic behavior of P (y) for large y. In this subsection i, j, k range
over N1+n. Let P⟨i⟩ ∈ K be such that P⟨i⟩ = 0 for all but finitely many i

and P⟨i⟩ ̸= 0 for some i, and set P :=
∑

i P⟨i⟩Y
⟨i⟩ ∈ K⟨Y ⟩. So if P ∈ K{Y },

then P =
∑

i P⟨i⟩Y
⟨i⟩ is the logarithmic decomposition of the differential polyno-

mial P as defined in [ADH, 4.2]. If y is an element in a differential field exten-
sion L of K such that y⟨n⟩ is defined, then we put P (y) :=

∑
i P⟨i⟩y

⟨i⟩ ∈ L (and
for P ∈ K{Y } this has the usual value). Let j be lexicographically maximal such
that P⟨j⟩ ̸= 0, and choose k so that P⟨k⟩ has minimal valuation. If P⟨k⟩/P⟨j⟩ ≻ x,

set f := P⟨k⟩/P⟨j⟩; otherwise set f := x2. Then f ≻ x and f ≽ P⟨i⟩/P⟨j⟩ for all i.
The following is a more precise version of [ADH, 16.6.10] and [103, (8.8)]:

Proposition 1.3.7. Suppose Ψ is downward closed, and y in an H-asymptotic
extension of K satisfies y ≽ En(f

2). Then y⟨n⟩ is defined and P (y) ∼ P⟨j⟩y
⟨j⟩.

Proof. Let i < j. We have f ≻ x, so y⟨j−i⟩ ≻ f ≽ P⟨i⟩/P⟨j⟩ by Corollary 1.3.6.

Hence P⟨j⟩y
⟨j⟩ ≻ P⟨i⟩y

⟨i⟩. □

From Corollary 1.3.2, Lemma 1.3.5, and Proposition 1.3.7 we obtain:

Corollary 1.3.8. Suppose Ψ is downward closed and y in an H-asymptotic exten-
sion of K satisfies y ≻ K. Then y is d-transcendental over K, and for all n, y⟨n⟩ is
defined, y⟨n⟩ ≻ K, and y⟨n+1⟩ ≺≺ y⟨n⟩. The H-asymptotic extension K⟨y⟩ of K has
residue field resK⟨y⟩ = resK and value group ΓK⟨y⟩ = Γ⊕

⊕
n Zv(y⟨n⟩) (internal

direct sum), and ΓK⟨y⟩ contains Γ as a convex subgroup.

Suppose now that K is equipped with an ordering making it a pre-H-field. From
Proposition 1.3.7 we recover [7, Theorem 3.4] in slightly stronger form:

Corollary 1.3.9. Suppose y lies in a Liouville closed H-field extension of K.
If y ≽ En(f

2), then y⟨n⟩ is defined and signP (y) = signP⟨j⟩y
j0 . In particular,

if y⟨n⟩ is defined and P (y) = 0, then y ≺ En(f
2).

Example. Suppose P ∈ K{Y }. Using [ADH, 4.2, subsection on logarithmic decom-
position] we obtain j0 = degP , and the logarithmic decomposition

P (−Y ) =
∑
i

P⟨i⟩(−1)i0Y ⟨i⟩.

If degP is odd, and y > 0 lies in a Liouville closed H-field extension of K such
that y ≽ En(f

2), then

signP (y) = signP⟨j⟩, signP (−y) = − signP⟨j⟩ = − signP (y).

1.4. λ-freeness and ω-freeness

This section contains preservation results for the important properties of λ-freeness
and ω-freeness from [ADH]. Let K be an ungrounded H-asymptotic field such
that Γ ̸= {0}, and as in [ADH, 11.5], fix a logarithmic sequence (ℓρ) forK and define
the pc-sequences (λρ) = (−ℓ††ρ ) and (ωρ) = (ω(λρ)) in K, where ω(z) := −2z′ − z2.
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Recall that K is λ-free iff (λρ) does not have a pseudolimit in K, and K is ω-free
iff (ωρ) does not have a pseudolimit in K. If K is ω-free, then K is λ-free. We refer
to [ADH, 11.6, 11.7] for this and other basic facts about λ-freeness and ω-freeness
used below. (For ω-free Hardy fields, see also Section 5.6.) As in [ADH], L being
λ-free or ω-free includes L being an ungrounded H-asymptotic field with ΓL ̸= {0}.

Preserving λ-freeness and ω-freeness. In this subsection K is an ungrounded
H-asymptotic field with Γ ̸= {0}, and (ℓρ), (λρ), (ωρ) are as above. If K has a
λ-free H-asymptotic field extension L such that Γ< is cofinal in Γ<L , then K is
λ-free, and similarly with “ω-free” in place of “λ-free” [ADH, remarks after 11.6.4,
11.7.19]. The property of ω-freeness is very robust; indeed, by [ADH, 13.6.1]:

Theorem 1.4.1. If K is ω-free and L is a pre-d-valued d-algebraic H-asymptotic
extension of K, then L is ω-free and Γ< is cofinal in Γ<L .

In contrast, λ-freeness is more delicate: Theorem 1.4.1 fails with “λ-free” in place
of “ω-free”, as the next example shows.

Example 1.4.2. The H-field K = R⟨ω⟩ from [ADH, 13.9.1] is λ-free, but its H-field
extension L = R⟨λ⟩ is not, and this extension is d-algebraic: 2λ′ + λ2 + ω = 0.

In the rest of this subsection we consider cases where parts of Theorem 1.4.1 do
hold. Recall from [ADH, 11.6.8] that ifK is λ-free, thenK has (rational) asymptotic
integration, and K is λ-free iff its algebraic closure is λ-free. Moreover, λ-freeness
is preserved under adjunction of constants:

Proposition 1.4.3. Suppose K is λ-free and L = K(D) is an H-asymptotic ex-
tension of K with D ⊇ C a subfield of CL. Then L is λ-free with ΓL = Γ.

We are going to deduce this from the next three lemmas. Recall that K is pre-d-
valued, by [ADH, 10.1.3]. Let dv(K) be the d-valued hull of K (see [ADH, 10.3]).

Lemma 1.4.4. Suppose K is λ-free. Then L := dv(K) is λ-free and ΓL = Γ.

Proof. The first statement is [75, Theorem 10.2], and the second statement follows
from [ADH, 10.3.2(i)]. □

If L = K(D) is a differential field extension of K with D ⊇ C a subfield of CL,
then D = CL, and K and D are linearly disjoint over C [ADH, 4.6.20]. If K is
d-valued and L = K(D) is an H-asymptotic extension of K with D ⊇ C a subfield
of CL, then L is d-valued and ΓL = Γ [ADH, 10.5.15].

Lemma 1.4.5. Suppose K is d-valued and λ-free, and L = K(D) is an H-
asymptotic extension of K with D ⊇ C a subfield of CL. Then L is λ-free.

Proof. First, (λρ) is of transcendental type over K: otherwise, [ADH, 3.2.7] would
give an algebraic extension of K that is not λ-free. Next, our logarithmic se-
quence (ℓρ) for K remains a logarithmic sequence for L.

Zorn and the ∀∃-form of the λ-freeness axiom [ADH, 1.6.1(ii)] reduce us to the
case D = C(d), d /∈ C, d transcendental over K, so L = K(d). Suppose L is
not λ-free. Then λρ ⇝ λ ∈ L, and such λ is transcendental over K and gives an
immediate extension K(λ) of K by [ADH, 3.2.6]. Hence L is algebraic over K(λ),
so resL is algebraic over resK(λ) = resK ∼= C and thus d is algebraic over C, a
contradiction. □
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Lemma 1.4.6. Suppose K is λ-free and L is an H-asymptotic extension of K,
where L = K(d) with d ∈ CL. Then L is pre-d-valued.

Proof. Let La be an algebraic closure of the H-asymptotic field L, and let Ka be
the algebraic closure of K inside La. Then Ka is pre-d-valued by [ADH, 10.1.22].
Replacing K, L by Ka, Ka(d) we arrange that K is algebraically closed. We may
assume d /∈ C, so d is transcendental over K by [ADH, 4.1.1, 4.1.2].

Suppose first that res(d) ∈ res(K) ⊆ res(L), and take b ∈ O such that y :=
b − d ≺ 1. Then b′ /∈ ∂O: otherwise y′ = b′ = δ′ with δ ∈ O, so y = δ ∈ K and
hence d ∈ K, a contradiction. Also vb′ ∈ (Γ>)′: otherwise vb′ < (Γ>)′, by [ADH,
9.2.14], and vb′ would be a gap inK, contradicting λ-freeness ofK. Hence L = K(y)
is pre-d-valued by [ADH, 10.2.4, 10.2.5(iii)] applied to s := b′.

If res(d) /∈ res(K), then res(d) is transcendental over res(K) by [ADH, 3.1.17],
hence ΓL = Γ by [ADH, 3.1.11], and so L has asymptotic integration and thus is
pre-d-valued by [ADH, 10.1.3]. □

Proof of Proposition 1.4.3. By Zorn we reduce to the case L = K(d) with d ∈ CL.
Then L is pre-d-valued by Lemma 1.4.6. By Lemma 1.4.4, the d-valued hull K1 :=
dv(K) of K is λ-free with ΓK1

= Γ, and by the universal property of d-valued hulls
we may arrange that K1 is a d-valued subfield of L1 := dv(L) [ADH, 10.3.1]. The
proof of [ADH, 10.3.1] gives L1 = L(E) where E = CL1 , and so L1 = K1(E). Hence
by Lemma 1.4.5 and the remarks preceding it, L1 is λ-free with ΓL1 = ΓK1 = Γ.
Thus L is λ-free with ΓL = Γ. □

Lemma 1.4.7. Let H be a λ-free real closed H-field. Then the trigonometric
closure Htrig of H is λ-free.

Proof. We show that H+ as in Lemma 1.2.22 is λ-free. There H+[i] = K(y)
where K is the H-asymptotic extension H[i] of H and y ∼ 1, y† /∈ K†, y† ∈ i∂OH .
Then K is λ-free, so K(y) is λ-free by [75, Proposition 7.2], hence H+ is λ-free. □

In Example 1.4.2 we have a λ-free K and an H-asymptotic extension L of K that
is not λ-free, with trdeg(L|K) = 1. The next proposition shows that the second
part of the conclusion of Theorem 1.4.1 nevertheless holds for such K,L.

Proposition 1.4.8. The following are equivalent:

(i) K has rational asymptotic integration;
(ii) for every H-asymptotic extension L of K with trdeg(L|K) ⩽ 1 we have

that Γ< is cofinal in Γ<L .

Proof. For (i) ⇒ (ii), assume (i), and let L be an H-asymptotic extension of K
with trdeg(L|K) ⩽ 1. Towards showing that Γ< is cofinal in Γ<L we can arrange
thatK and L are algebraically closed. Suppose towards a contradiction that γ ∈ ΓL
and Γ< < γ < 0. Then Ψ < γ′ < (Γ>)′, and so Γ is dense in Γ + Qγ′ by [ADH,
2.4.16, 2.4.17], in particular, γ /∈ Γ + Qγ′. Thus γ, γ′ are Q-linearly independent
over Γ, which contradicts trdeg(L|K) ⩽ 1 by [ADH, 3.1.11].

As to (ii) ⇒ (i), we prove the contrapositive, so assume K does not have rational
asymptotic integration. We arrange again that K is algebraically closed. Then K
has a gap vs with s ∈ K×, and so [ADH, 10.2.1 and its proof] gives anH-asymptotic
extension K(y) of K with y′ = s and 0 < vy < Γ>. □

Recall from [ADH, 11.6] that Liouville closed H-fields are λ-free. To prove the next
result we also use Gehret’s theorem [75, Theorem 12.1(1)] that an H-field H has
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up to isomorphism over H exactly one Liouville closure iff H is grounded or λ-free.
Here isomorphism means of course isomorphism of H-fields, and likewise with the
embeddings referred to in the next result:

Proposition 1.4.9. Let H be a grounded or λ-free H-field. Then H has a trigono-
metrically closed and Liouville closed H-field extension Htl that embeds over H
into any trigonometrically closed Liouville closed H-field extension of H.

Proof. We build real closed H-fields H0 ⊆ H1 ⊆ H2 ⊆ · · · as follows: H0 is a real
closure of H, and, recursively, H2n+1 is a Liouville closure of H2n, and H2n+2 :=

Htrig
2n+1 is the trigonometric closure of H2n+1. Then H

∗ :=
⋃
nHn is a trigonomet-

rically closed Liouville closed H-field extension of H. Induction using Lemma 1.4.7
shows that all Hn with n ⩾ 1 are λ-free, and that H2n has for all n up to iso-
morphism over H a unique Liouville closure. Given any trigonometrically closed
Liouville closed H-field extension E of H we then use the embedding properties
of Liouville closure and trigonometric closure to construct by a similar recursion
embeddings Hn → E that extend to an embedding H∗ → E over H. □

ForH as in Proposition 1.4.9, theH∗ constructed in its proof is minimal: Let E ⊇ H
be any trigonometrically closed Liouville closed H-subfield of H∗. Then induction
on n yields Hn ⊆ E for all n, so E = H∗. It follows that any Htl as in Proposi-
tion 1.4.9 is isomorphic overH toH∗, and we refer to suchHtl as a trigonometric-
Liouville closure of H. Here are some useful facts about Htl:

Corollary 1.4.10. Let H be a λ-free H-field. Then CHtl is a real closure of CH ,
the H-asymptotic extension Ktl := Htl[i] of Htl is a Liouville extension of H
with I(Ktl) ⊆ (Ktl)†, and Γ<H is cofinal in Γ<

Htl . Moreover,

H is ω-free ⇐⇒ Htl is ω-free.

Proof. The construction of H∗ in the proof of Proposition 1.4.9 gives that CH∗ is
a real closure of CH , and that the H-asymptotic extension K∗ := H∗[i] of H∗ is
a Liouville extension of H with I(K∗) ⊆ (K∗)†. Induction using Lemma 1.4.7 and
Proposition 1.4.8 shows that Hn is λ-free and Γ<H is cofinal in Γ<Hn

, for all n, so Γ<H
is cofinal in Γ<H∗ .

The final equivalence follows from Theorem 1.4.1 and a remark preceding it. □

Proposition 1.4.8 and [ADH, remarks after 11.6.4 and after 11.7.19] yield:

Corollary 1.4.11. Suppose K has rational asymptotic integration, and let L be an
H-asymptotic extension of K with trdeg(L|K) ⩽ 1. If L is λ-free, then so is K,
and if L is ω-free, then so is K.

We also have a similar characterization of λ-freeness:

Proposition 1.4.12. The following are equivalent:

(i) K is λ-free;
(ii) every H-asymptotic extension L of K with trdeg(L|K) ⩽ 1 has asymptotic

integration.

Proof. Assume K is λ-free; let L be an H-asymptotic extension of K such that
trdeg(L|K) ⩽ 1. By Proposition 1.4.8, Γ< is cofinal in Γ<L , so L is ungrounded.
Towards a contradiction, suppose vf (f ∈ L×) is a gap in L. Passing to algebraic
closures we arrange that K and L are algebraically closed. Set λ := −f†. Then
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for all active a in L we have λ + a† ≺ a by [ADH, 11.5.9] and hence λρ ⇝ λ

by [ADH, 11.5.6]. By λ-freeness of K and [ADH, 3.2.6, 3.2.7], the valued field ex-
tension K(λ) ⊇ K is immediate of transcendence degree 1, so L ⊇ K(λ) is algebraic
and Γ = ΓL. Hence vf is a gap in K, a contradiction. This shows (i) ⇒ (ii).

To show the contrapositive of (ii)⇒ (i), suppose λ ∈ K is a pseudolimit of (λρ). If
the algebraic closureKa ofK does not have asymptotic integration, then clearly (ii)
fails. If Ka has asymptotic integration, then −λ creates a gap over K by [ADH,
11.5.14] applied to Ka in place of K, hence (ii) also fails. □

The next two lemmas include converses to Lemmas 1.4.4 and 1.4.5.

Lemma 1.4.13. Let E be a pre-d-valued H-asymptotic field. Then:

(i) if E is not λ-free, then dv(E) is not λ-free;
(ii) if E is not ω-free, then dv(E) is not ω-free.

Proof. This is clear if E has no rational asymptotic integration, because then dv(E)
has no rational asymptotic integration either, by [ADH, 10.3.2]. Assume E has ra-
tional asymptotic integration. Then dv(E) is an immediate extension of E by [ADH,
10.3.2], and then (i) and (ii) follow from the characterizations of λ-freeness and ω-
freeness in terms of nonexistence of certain pseudolimits. □

Lemma 1.4.14. Let E be a d-valued H-asymptotic field and F an H-asymptotic
extension of E such that F = E(CF ). Then:

(i) if E is not λ-free, then F is not λ-free;
(ii) if E is not ω-free, then F is not ω-free.

Proof. By [ADH, 10.5.15] E and F have the same value group. The rest of the
proof is like that for the previous lemma, with F instead of dv(E). □

In the rest of this subsection K is in addition a pre-H-field and L a pre-H-field
extension of K. The following is shown in the proof of [75, Lemma 12.5]:

Proposition 1.4.15 (Gehret). Suppose K is a λ-free H-field and L is a Liouville
H-field extension of K. Then L is λ-free and Γ< is cofinal in Γ<L .

Example 1.4.16. Let K = R⟨ω⟩ be the λ-free but non-ω-free H-field from [ADH,
13.9.1]. ThenK has a unique Liouville closure L, up to isomorphism overK, by [75,
Theorem 12.1(1)]. By Proposition 1.4.15, L is not ω-free; [9] has another proof of
this fact. By [ADH, 13.9.5] we can take here K to be a Hardy field, and then L is
isomorphic over K to a Hardy field extension of K [ADH, 10.6.11].

Applying Corollary 1.4.10 to H := R⟨ω⟩ yields a Liouville closed H-field Htl

that is not ω-free but does satisfy I(Ktl) ⊆ (Ktl)† for Ktl := Htl[i].

For a pre-H-field H we singled out in [ADH, p. 520] the following subsets:

Γ(H) := (H≻1)†, Λ(H) := −(H≻1)††, ∆(H) := −(H ̸=,≺1)′†.

Lemma 1.4.17. Suppose K is λ-free, λ ∈ Λ(L)↓, ω := ω(λ) ∈ K, and sup-
pose ω

(
Λ(K)

)
< ω < σ

(
Γ(K)

)
. Then λρ ⇝ λ, and the pre-H-subfield K⟨λ⟩ = K(λ)

of L is an immediate extension of K (and so K⟨λ⟩ is not λ-free).

Proof. From Λ(L) < ∆(L) [ADH, p. 522] and ∆(K) ⊆ ∆(L) we obtain λ < ∆(K).
The restriction of ω to Λ(L)↓ is strictly increasing [ADH, p. 526] and Λ(K) ⊆ Λ(L),
so ω

(
Λ(K)

)
< ω = ω(λ) gives Λ(K) < λ. Hence λρ ⇝ λ by [ADH, 11.8.16].

Also ωρ ⇝ ω by [ADH, 11.8.30]. Thus K⟨λ⟩ is an immediate extension of K
by [ADH, 11.7.13]. □
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Achieving ω-freeness for pre-H-fields. In the rest of this section H is a pre-
H-field and L is a Liouville closed d-algebraic H-field extension of H. Thus if H
is ω-free, then so is L, by Theorem 1.4.1.

The lemmas below give conditions guaranteeing that L is ω-free, while H is not.

Lemma 1.4.18. Suppose H is grounded or has a gap. Then L is ω-free.

Proof. Suppose H is grounded. Let Hω be the ω-free pre-H-field extension of H
introduced in connection with [ADH,11.7.17] (where we use the letter F instead
of H). Identifying Hω with its image in L under an embedding Hω → L over H of
pre-H-fields, we apply Theorem 1.4.1 to K := Hω to conclude that L is ω-free.

Next, suppose H has a gap β = vb, b ∈ H×. Take a ∈ L with a′ = b and a ̸≍ 1.
Then α := va satisfies α′ = β, and so the pre-H-field H(a) ⊆ L is grounded,
by [ADH, 9.8.2 and remarks following its proof]. Now apply the previous case
to H(a) in place of H. □

Lemma 1.4.19. Suppose H has asymptotic integration and divisible value group,
and s ∈ H creates a gap over H. Then L is ω-free.

Proof. Take f ∈ L× with f† = s. Then by [ADH, remark after 11.5.14], vf is a gap
in H⟨f⟩ = H(f), so L is ω-free by Lemma 1.4.18 applied to H⟨f⟩ in place of H. □

Lemma 1.4.20. Suppose H is not λ-free. Then L is ω-free.

Proof. By [ADH, 11.6.8], the real closure Hrc of H inside L is not λ-free, hence
replacing H by Hrc we arrange that H is real closed. If H does not have asymptotic
integration, then we are done by Lemma 1.4.18. So suppose H has asymptotic
integration. Then some s ∈ H creates a gap over H, by [ADH, 11.6.1], so L is
ω-free by Lemma 1.4.19. □

Corollary 1.4.21. Suppose H is λ-free and λ ∈ Λ(L)↓ is such that ω := ω(λ) ∈ H
and ω

(
Λ(H)

)
< ω < σ

(
Γ(H)

)
. Then L is ω-free.

Proof. By Lemma 1.4.17, the pre-H-subfield H⟨λ⟩ = H(λ) of L is an immediate
non-λ-free extension of H. Now apply Lemma 1.4.20 to H⟨λ⟩ in place of H. □

1.5. Complements on Linear Differential Operators

In this section we tie up loose ends from the material on linear differential operators
in [ADH, 14.2] and [11, Section 8]. Throughout K is an ungrounded asymptotic field,
a, b, f , g, h range over arbitrary elements of K, and ϕ over those active in K, in
particular, ϕ ̸= 0. Recall from [ADH, p. 479] our use of the term “eventually”: a
property S(ϕ) of elements ϕ is said to hold eventually if for some active ϕ0 in K,
S(ϕ) holds for all ϕ ≼ ϕ0.

We shall consider linear differential operators A ∈ K[∂] ̸= and set r := order(A).
In [ADH, Section 11.1] we introduced the set

E e(A) = E e
K(A) :=

{
γ ∈ Γ : nwtA(γ) ⩾ 1

}
=
⋂
ϕ

E (Aϕ)

of eventual exceptional values of A. For a ̸= 0 we have E e(aA) = E e(A) and
E e(Aa) = E e(A) − va. An easy consequence of the definitions: E e(Af ) = E e(A)
for f ̸= 0. A key fact about E e(A) is that if y ∈ K×, vy /∈ E e(A), then A(y) ≍ Aϕy,

eventually. Since Aϕy ̸= 0 for y ∈ K×, this gives v(ker ̸=A) ⊆ E e(A).
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Lemma 1.5.1. If L is an ungrounded asymptotic extension of K, then E e
L(A) ∩ Γ ⊆

E e(A), with equality if Ψ is cofinal in ΨL.

Proof. For the inclusion, use that dwt(Aϕ) decreases as vϕ strictly increases [ADH,
11.1.12]. Thus its eventual value nwt(A), evaluated in K, cannot strictly increase
when evaluated in an ungrounded asymptotic extension of K. □

In the rest of this section we assume in addition that K is H-asymptotic with
asymptotic integration. Then by [ADH, 14.2.8]:

Proposition 1.5.2. If K is r-linearly newtonian, then v(ker ̸=A) = E e(A).

Remark 1.5.3. If K is d-valued, then |v(ker ̸=A)| = dimC kerA ⩽ r by [ADH, 5.6.6],
using a reduction to the case of “small derivation” by compositional conjugation.

Corollary 1.5.4. Suppose K is d-valued, E e(A) = v(ker ̸=A), and 0 ̸= f ∈ A(K).
Then A(y) = f for some y ∈ K with vy /∈ E e(A).

Proof. Let y ∈ K, A(y) = f , with vy maximal. Then vy /∈ E e(A): otherwise we
have z ∈ kerA with z ∼ y, so A(y − z) = f and v(y − z) > vy. □

Corollary 1.5.5. Suppose K is ω-free. Then
∑
γ∈Γ nwtA(γ) = |E e(A)| ⩽ r.

Proof. The remarks following [ADH, 14.0.1] give an immediate asymptotic exten-
sion L ofK that is newtonian. Then L is d-valued by Lemma 1.2.9, hence |E e(A)| =
|E e
L(A)| ⩽ r by Proposition 1.5.2 and Remark 1.5.3. By [ADH, 13.7.10] we have

nwtA(γ) ⩽ 1 for all γ ∈ Γ, thus
∑
γ∈Γ nwtA(γ) = |E e(A)|. □

In [ADH, Section 11.1] we defined veA : Γ → Γ by requiring that for all γ ∈ Γ:

(1.5.1) vAϕ(γ) = veA(γ) + nwtA(γ)vϕ, eventually.

We recall from that reference that for a ̸= 0 and γ ∈ Γ we have

veaA(γ) = va+ veA(γ), veAa(γ) = veA(va+ γ).

As an example from [ADH, p. 481], ve
∂
(γ) = γ+ψ(γ) for γ ∈ Γ \ {0} and ve

∂
(0) = 0.

By [ADH, 14.2.7 and the remark preceding it] we have:

Lemma 1.5.6. The restriction of veA to a function Γ \ E e(A) → Γ is strictly
increasing, and v

(
A(y)

)
= veA(vy) for all y ∈ K with vy ∈ Γ \ E e(A). Moreover,

if K is ω-free, then veA
(
Γ \ E e(A)

)
= Γ.

The following is [ADH, 14.2.10] without the hypothesis of ω-freeness:

Corollary 1.5.7. Suppose K is r-linearly newtonian. Then for each f ̸= 0 there
exists y ∈ K× such that A(y) = f , vy /∈ E e(A), and veA(vy) = vf .

Proof. If r = 0, then E e(A) = ∅ and our claim is obviously valid. Suppose r ⩾ 1.

Then K is d-valued by Lemma 1.2.9, and v(ker ̸=A) = E e(A) by Proposition 1.5.2,
Moreover, by [ADH, 14.2.2], K is r-linearly surjective, hence f ∈ A(K). Now
Corollary 1.5.4 yields y ∈ K× with A(y) = f and vy /∈ E e(A). By Lemma 1.5.6 we
have veA(vy) = v

(
A(y)

)
= vf . □

From the proof of [ADH, 14.2.10] we extract the following:

Corollary 1.5.8. Suppose K is r-linearly newtonian with small derivation, and
A ∈ O[∂] with a0 := A(1) ≍ 1, and f ≍♭ 1. Then there is y ∈ K× such
that A(y) = f and y ∼ f/a0. For any such y we have vy /∈ E e(A) and veA(vy) = vf .
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Proof. The case r = 0 is trivial. Assume r ⩾ 1, so K is d-valued by Lemma 1.2.9.
Hence f† ≺ 1, that is, f ′ ≺ f , so f (n) ≺ f for all n ⩾ 1 by [ADH, 4.4.2].
Then Af ≼ f by [ADH, (5.1.3), (5.1.2)], and A(f) ∼ a0f , so A⋉f ∈ O[∂]
and A⋉f (1) ∼ a0. Thus we may replace A, f by A⋉f , 1 to arrange f = 1.
Now a0 ≍ 1 gives dwm(A) = 0, so dwt(Aϕ) = 0 eventually, by [ADH, 11.1.11(ii)],
that is, nwt(A) = 0. Also Aϕ(1) = A(1) = a0 ≍ 1, so ve(A) = 0. Arguing as in the
proof of [ADH, 14.2.10] we obtain y ∈ K× with A(y) = 1 and y ∼ 1/a0. It is clear
that vy = 0 /∈ E e(A) and veA(vy) = ve(A) = 0 = vf for any such y. □

In the next few subsections below we consider more closely the case of order r = 1,
and in the last subsection the case of arbitrary order.

First-order operators. In this subsection A = ∂ − g. By [ADH, p. 481],

E e(A) = E e
K(A) =

{
vy : y ∈ K×, v(g − y†) > Ψ

}
has at most one element. We also have |v(ker ̸=A)| = dimC kerA ⩽ 1 in view
of C× ⊆ O×. Proposition 1.5.2 holds under a weaker assumption on K for r = 1:

Lemma 1.5.9. Suppose I(K) ⊆ K†. Then v(ker ̸=A) = E e(A).

Proof. It remains to show “⊇”. Suppose E e(A) = {0}. Then g − y† ∈ I(K)
with y ≍ 1 in K, hence g ∈ I(K) ⊆ K†, so g = h† with h ≍ 1, and thus 0 = vh ∈
v(ker ̸=A). The general case reduces to the case E e(A) = {0} by twisting. □

Lemma 1.5.10. Suppose L is an ungrounded H-asymptotic extension of K. Then
E e
L(A) ∩ Γ = E e(A).

Proof. Lemma 1.5.1 gives E e
L(A) ∩ Γ ⊆ E e(A). Next, let vy ∈ E e(A), y ∈ K×.

Then v(g − y†) > Ψ and so v(g − y†) ∈ (Γ>)′ since K has asymptotic integration.
Hence v(g − y†) > ΨL and thus vy ∈ E e

L(A), by [ADH, p. 481]. □

Recall also from [ADH, 9.7] that for an ordered abelian group G and U ⊆ G, a
function η : U → G is said to be slowly varying if η(α) − η(β) = o(α − β) for
all α ̸= β in U ; then the function γ 7→ γ + η(γ) : U → G is strictly increasing. The
quintessential example of a slowly varying function is ψ : Γ ̸= → Γ [ADH, 6.5.4(ii)].

Proposition 1.5.11. There is a unique slowly varying function ψA : Γ\E e(A) → Γ
such that for all y ∈ K× with vy /∈ E e(A) we have v

(
A(y)

)
= vy + ψA(vy).

Proof. For d-valued K, use [11, 8.4]. In general, pass to the d-valued hull L :=
dv(K) of K from [ADH, 10.3] and use ΓL = Γ [ADH, 10.3.2]. □

If b ̸= 0, then E e(A⋉b) = E e(A)−vb and ψA⋉b
(γ) = ψA(γ+vb) for γ ∈ Γ\E e(A⋉b).

Example. We have E e(∂) = {0} and ψ∂ = ψ. More generally, if g = b†, b ̸= 0,
then A⋉b = ∂ and so E e(A) = {vb} and ψA(γ) = ψ(γ − vb) for γ ∈ Γ \ {vb}.

If Γ is divisible, then Γ \ v
(
A(K)

)
has at most one element by [ADH, 11.6.16].

Also, K is λ-free iff v
(
A(K)

)
= Γ∞ for all A = ∂ − g by [ADH, 11.6.17].

Lemma 1.5.12. Suppose K is λ-free and f ̸= 0. Then for some y ∈ K× with
vy /∈ E e(A) we have A(y) ≍ f . (Hence γ 7→ γ+ψA(γ) : Γ\E e(A) → Γ is surjective.)
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Proof. [ADH, 11.6.17] gives y ∈ K× with Aϕy ≍ f eventually. Now

Aϕy = ϕyδ − (g − y†)y in Kϕ[δ], δ := ϕ−1
∂.

Since v(Aϕy) = vf eventually, this forces g− y† ≻ ϕ eventually, so vy /∈ E e(A). □

Call A steep if g ≻♭ 1, that is, g ≻ 1 and g† ≽ 1. If K has small derivation and A
is steep, then g† ≺ g by [ADH, 9.2.10].

Lemma 1.5.13. Suppose K has small derivation, A is steep, and y ∈ K× such
that A(y) = f ̸= 0, g ≻ f†, and vy /∈ E e(A). Then y ∼ −f/g.

Proof. We have

(f/g)† − g = f† − g† − g ∼ −g ≻ g†,

hence v(f/g) /∈ E e(A), and

A(f/g) = (f/g)′ − (f/g)g = (f/g) ·
(
f† − g† − g

)
∼ (f/g) · (−g) = −f.

Since A(y) = f ∼ A(−f/g) and vy, v(f/g) ∈ Γ \ E e(A), this gives y = u · f/g
where u ≍ 1, by Proposition 1.5.11. Now u† ≺ 1 ≺ g and (f/g)† = f† − g† ≺ g,
hence y† ≺ g and so

f = A(y) = y · (y† − g) ∼ −yg.
Therefore y ∼ −f/g. □

Lemma 1.5.14. Suppose K has small derivation and y ∈ K× is such that A(y) =
f ̸= 0, g − f† ≻♭ 1 and vy /∈ E e(A). Then y ∼ f/(f† − g).

Proof. From g − f† ≻ 1 we get vf /∈ E e(A). Now A(y) = f ≺ f(f† − g) = A(f),
so y ≺ f by [ADH, 5.6.8], and v(y/f) /∈ E e(A⋉f ) = E e(A) − vf . Since A⋉f =
∂− (g−f†) is steep, Lemma 1.5.13 applies to A⋉f , y/f , 1 in the role of A, y, f . □

Suppose K is λ-free and f ̸= 0. Then [ADH, 11.6.1] gives an active ϕ0 in K
with f† − g − ϕ† ≽ ϕ0 for all ϕ ≺ ϕ0. The convex subgroups Γ♭ϕ of Γ become

arbitrarily small as we let vϕ increase cofinally in Ψ↓, so ϕ ≺♭ϕ ϕ0 eventually, and

hence f† − g − ϕ† ≻♭ϕ ϕ eventually, that is, ϕ−1(f/ϕ)† − g/ϕ ≻♭ϕ 1 eventually. So

replacing K by Kϕ, A by ϕ−1Aϕ = δ−(g/ϕ) in Kϕ[δ], and f and g by f/ϕ and g/ϕ,
for suitable ϕ, we arrange f† − g ≻♭ 1. Thus by Lemma 1.5.14:

Corollary 1.5.15. If K is λ-free, y ∈ K×, A(y) = f ̸= 0, and vy /∈ E e(A),
then y ∼ f/

(
(f/ϕ)† − g

)
, eventually.

Example. If K is λ-free and y ∈ K, y′ = f ̸= 0 with y ̸≍ 1, then y ∼ f/(f/ϕ)†,
eventually.

From K to K[i]. In this subsection K is a real closed H-field. ThenK[i] with i2 =
−1 is anH-asymptotic extension ofK, with ΓK[i] = Γ. Consider a linear differential

operator B = ∂ − (g + hi) over K[i]. Note that g + hi ∈ K[i]† iff g ∈ K† and hi ∈
K[i]†, by Lemma 1.2.4. Under further assumptions on K, the next two results give
explicit descriptions of ψB when g ∈ K†.

Proposition 1.5.16. Suppose K[i] is 1-linearly newtonian and g ∈ K†. Then:

(i) if hi ∈ K[i]†, then for some β ∈ Γ we have

E e(B) = {β}, ψB(γ) = ψ(γ − β) for all γ ∈ Γ \ {β};
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(ii) if hi /∈ K[i]† and g = b†, b ̸= 0, then

E e(B) = ∅, ψB(γ) = min
(
ψ(γ − vb), vh

)
for all γ ∈ Γ.

Proof. As to (i), apply the example following Proposition 1.5.11 toK[i], B, g+hi in
the roles of K, A, g. For (ii), assume hi /∈ K[i]†, g = b†, b ̸= 0. Replacing B by B⋉b
we arrange g = 0, b = 1, B = ∂ − hi. Corollary 1.2.17 gives K[i]† = K† ⊕ I(K)i,
so h /∈ I(K), and thus vh ∈ Ψ↓. Let y ∈ K[i]×, and take z ∈ K× and s ∈ I(K)
with y† = z† + si. Then vh < vs, hence

v(y† − hi) = min
(
v(z†), v(s− h)

)
= min

(
v(z†), vs, vh

)
= min

(
v(y†), vh

)
,

where the last equality uses v(y†) = min
(
v(z†), vs

)
. Thus v(y† − hi) ∈ Ψ↓ and

v
(
B(y)

)
− vy = v(y† − hi) = min

(
v(y†), vh

)
= min

(
ψ(vy), vh

)
,

which gives the desired result. □

Corollary 1.5.17. Suppose K is ω-free, g ∈ K†, g = b†, b ̸= 0. Then either for
some β ∈ Γ we have E e(B) = {β} and ψB(γ) = ψ(γ − β) for all γ ∈ Γ \ {β},
or E e(B) = ∅ and ψB(γ) = min

(
ψ(γ − vb), vh

)
for all γ ∈ Γ.

Proof. By [ADH, 14.0.1 and remarks following it] we have an immediate newtonian
extension L ofK. Then L is still a real closedH-field [ADH, 10.5.8, 3.5.19], and L[i]
is newtonian [ADH, 14.5.7], so Proposition 1.5.16 applies to L in place of K. □

Higher-order operators. We begin with the following observation:

Lemma 1.5.18. Let B ∈ K[∂]̸= and γ ∈ Γ. Then nwtAB(γ) ⩾ nwtB(γ), and

γ /∈ E e(B) =⇒ nwtAB(γ) = nwtA
(
veB(γ)

)
and veAB(γ) = veA

(
veB(γ)

)
.

Proof. We have nwtAB(γ) = dwt(AB)ϕ(γ) eventually, and (AB)ϕ = AϕBϕ. Hence
by [ADH, Section 5.6] and the definition of veB(γ) in (1.5.1):

nwtAB(γ) = dwtAϕ

(
vBϕ(γ)

)
+ dwtBϕ(γ)

= dwtAϕ

(
veB(γ) + nwtB(γ)vϕ

)
+ nwtB(γ), eventually,

so nwtAB(γ) ⩾ nwtB(γ). Now suppose γ /∈ E e(B). Then nwtB(γ) = 0, so

nwtAB(γ) = dwtAϕ

(
veB(γ)

)
= nwtA

(
veB(γ)

)
, eventually.

Moreover, v(AB)ϕ = vAϕBϕ = vAϕ ◦ vBϕ , hence using (1.5.1):

v(AB)ϕ(γ) = vAϕ

(
vBϕ(γ)

)
= vAϕ

(
veB(γ)

)
, eventually,

and thus eventually

veAB(γ) = v(AB)ϕ(γ)− nwtAB(γ)vϕ

= vAϕ

(
veB(γ)

)
− nwtA

(
veB(γ)

)
vϕ = veA

(
veB(γ)

)
. □

Lemmas 1.5.6 and 1.5.18 yield:

Corollary 1.5.19. Let B ∈ K[∂] ̸=. Then

E e(AB) = (veB)
−1
(
E e(A)

)
∪ E e(B)

and hence |E e(AB)| ⩽ |E e(A)|+ |E e(B)|, with equality if veB
(
Γ \ E e(B)

)
= Γ.

As an easy consequence we have a variant of Corollary 1.5.5:

Corollary 1.5.20. If A splits over K, then |E e(A)| ⩽ r.
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To study veA in more detail we introduce the function

ψA : Γ \ E e(A) → Γ, γ 7→ veA(γ)− γ.

For monic A of order 1 this agrees with ψA as defined in Proposition 1.5.11. For A =
a (a ̸= 0) we have E e(A) = ∅ and ψA(γ) = va for all γ ∈ Γ.

Lemma 1.5.21. Let B ∈ K[∂]̸= and γ ∈ Γ \ E e(AB). Then

ψAB(γ) = ψA
(
veB(γ)

)
+ ψB(γ).

Proof. We have γ /∈ E e(B) and veB(γ) /∈ E e(A) by Corollary 1.5.19, hence

ψAB(γ) = veA
(
veB(γ)

)
− γ = veB(γ) + ψA

(
veB(γ)

)
− γ = ψA

(
veB(γ)

)
+ ψB(γ)

by Lemma 1.5.18. □

Thus for a ̸= 0 and γ ∈ Γ we have

ψaA(γ) = va+ψA(γ) if γ /∈ E e(A), ψAa(γ) = ψA(va+ γ) + va if γ /∈ E e(A)− va.

Example. Suppose K has small derivation and x ∈ K, x′ ≍ 1. Then vx < 0
and E e(∂2) = {vx, 0}, and ψ∂2(γ) = ψ

(
γ + ψ(γ)

)
+ ψ(γ) for γ ∈ Γ \ E e(∂2).

Lemma 1.5.22. Suppose ψA is slowly varying. Let ∆ be a convex subgroup of Γ
and let y, z ∈ K× be such that vy, vz /∈ E e(A). Then

v∆(y) < v∆(z) ⇐⇒ v∆
(
A(y)

)
< v∆

(
A(z)

)
.

Proof. By Lemma 1.5.6 we have

v
(
A(y)

)
− v
(
A(z)

)
= veA(vy)− veA(vz) = vy − vz + ψA(vy)− ψA(vz)

and ψA(vy)− ψA(vz) = o(vy − vz) if vy ̸= vz. □

Call A asymptotically surjective if veA
(
Γ\E e(A)

)
= Γ and ψA is slowly varying.

If A is asymptotically surjective, then so are aA and Aa for a ̸= 0, and if A has
order 0, then A is asymptotically surjective. IfK is λ-free and A has order 1, then A
is asymptotically surjective, thanks to Proposition 1.5.11 and Lemma 1.5.12.
The next lemma has an obvious proof.

Lemma 1.5.23. Let G be an ordered abelian group and U, V ⊆ G. If η1, η2 : U → G
are slowly varying, then so is η1+η2. If η : U → G and ζ : V → G are slowly varying
and γ + ζ(γ) ∈ U for all γ ∈ V , then the function γ 7→ η

(
γ + ζ(γ)

)
: V → G is also

slowly varying.

Lemma 1.5.24. If A and B ∈ K[∂]̸= are asymptotically surjective, then so is AB.

Proof. Let A, B be asymptotically surjective and γ ∈ Γ. This gives α ∈ Γ \ E e(A)
with veA(α) = γ and β ∈ Γ \ E e(B) with veB(β) = α. Then β /∈ E e(AB) by
Corollary 1.5.19, and veAB(β) = γ by Lemma 1.5.18. Moreover, ψAB is slowly
varying by Lemmas 1.5.21 and 1.5.23. □

A straightforward induction on r using this lemma yields:

Corollary 1.5.25. If K is λ-free and A splits over K, then A is asymptotically
surjective.

We can now add to Lemma 1.5.6:

Corollary 1.5.26. Suppose K is ω-free. Then A is asymptotically surjective.
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Proof. By the second part of Lemma 1.5.6 it is enough to show that ψA is slowly
varying. For this we may replace K by any ω-free H-asymptotic extension L of K
with Ψ cofinal in ΨL. Thus we can arrange by [ADH, 14.5.7, remarks following
14.0.1] that K is newtonian, and by passing to the algebraic closure, algebraically
closed. Then A splits over K by [ADH, 5.8.9, 14.5.3], and so A is asymptotically
surjective by Corollary 1.5.25. □

1.6. Special Elements

Let K be a valued field and let â be an element of an immediate extension of K
with â /∈ K. Recall that

v(â−K) =
{
v(â− a) : a ∈ K

}
is a nonempty downward closed subset of Γ := v(K×) without a largest ele-
ment. Call â special over K if some nontrivial convex subgroup of Γ is cofinal
in v(â−K) [ADH, p. 167]. In this case v(â−K) ∩ Γ> ̸= ∅, and there is a unique
such nontrivial convex subgroup ∆ of Γ, namely

∆ =
{
δ ∈ Γ : |δ| ∈ v(â−K)

}
.

We also call â almost special over K if â/m is special over K for some m ∈ K×.
If Γ ̸= {0} is archimedean, then â is special over K iff v(â −K) = Γ, iff â is the
limit of a divergent c-sequence in K. (Recall that “c-sequence” abbreviates “cauchy
sequence” [ADH, p. 82].) In the next lemma a ranges over K and m, n over K×.

Lemma 1.6.1. Suppose â ≺ m and â/m is special over K. Then for all a, n,
if â− a ≺ n ≼ m, then (â− a)/n is special over K.

Proof. Replacing â, a, m, n by â/m, a/m, 1, n/m, respectively, we arrange m = 1.
So let â be special over K with â ≺ 1. It is enough to show: (1) â − a is special
over K, for all a; (2) for all n, if â ≺ n ≼ 1, then â/n is special over K. Here (1)
follows from v(â− a−K) = v(â−K). For (2), note that if â ≺ n ≼ 1, then vn ∈ ∆
with ∆ as above, and so v(â/n−K) = v(â−K)− vn = v(â−K). □

The remainder of this section is devoted to showing that (almost) special elements
arise naturally in the analysis of certain immediate d-algebraic extensions of valued
differential fields. We first treat the case of asymptotic fields with small derivation,
and then focus on the linearly newtonian H-asymptotic case.

We recall some notation: for an ordered abelian group Γ and α ∈ Γ∞, β ∈ Γ,
γ ∈ Γ> we mean by “α ⩾ β + o(γ)” that α ⩾ β − (1/n)γ for all n ⩾ 1, while “α <
β+o(γ)” is its negation, that is, α < β− (1/n)γ for some n ⩾ 1; see [ADH, p. 312].
Here and later inequalities are in the sense of the ordered divisible hull QΓ of the
relevant Γ.

A source of special elements. We recall that a differential field F is said to
be r-linearly surjective (r ∈ N) if A(F ) = F for every nonzero A ∈ F [∂] of order
at most r. In this subsection K is an asymptotic field with small derivation, value
group Γ = v(K×) ̸= {0}, and differential residue field k; we also let r ∈ N⩾1. Below
we use the notion neatly surjective from [ADH, 5.6]: A ∈ K[∂]̸= is neatly surjective
iff for all b ∈ K× there exists a ∈ K× such that A(a) = b and vA(va) = vb. We

often let f̂ be an element in an immediate asymptotic extension K̂ of K, but in the

statement of the next lemma we take f̂ ∈ K:
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Lemma 1.6.2. Assume k is r-linearly surjective, A ∈ K[∂] ̸= of order ⩽ r is neatly

surjective, γ ∈ QΓ, γ > 0, f̂ ∈ K×, and v
(
A(f̂)

)
⩾ v(Af̂) + γ. Then A(f) = 0

and v(f̂ − f) ⩾ v(f̂) + γ + o(γ) for some f ∈ K.

Proof. Set B := g−1Af̂ , where we take g ∈ K× such that vg = v(Af̂). Then B ≍ 1,

B is still neatly surjective, and B(1) = g−1A(f̂), v
(
B(1)

)
⩾ γ. It suffices to

find y ∈ K such that B(y) = 0 and v(y − 1) ⩾ γ + o(γ), because then f := f̂y has
the desired property. If B(1) = 0, then y = 1 works, so assume B(1) ̸= 0. By [ADH,

7.2.7] we have an immediate extension K̂ of K that is r-differential henselian.

Then K̂ is asymptotic by [ADH, 9.4.2 and 9.4.5]. Set R(Z) := Ri(B) ∈ K{Z}.
Then the proof of [ADH, 7.5.1] applied to K̂ and B in the roles of K and A

yields z ≺ 1 in K̂ with R(z) = 0. Now R(0) = B(1), hence by [ADH, 7.2.2] we can
take such z with v(z) ⩾ β+o(β) where β := v

(
B(1)

)
⩾ γ. As in the proof of [ADH,

7.5.1] we next take y ∈ K̂ with v(y−1) > 0 and y† = z to get B(y) = 0, and observe
that then v(y − 1) ⩾ β + o(β), by [ADH, 9.2.10(iv)], hence v(y − 1) ⩾ γ + o(γ). It
remains to note that y ∈ K by [ADH, 7.5.7]. □

By a remark following the proof of [ADH, 7.5.1] the assumption that k is r-linearly
surjective in the lemma above can be replaced for r ⩾ 2 by the assumption that k
is (r − 1)-linearly surjective.

Next we establish a version of the above with f̂ in an immediate asymptotic ex-
tension of K. Recall that an asymptotic extension of K with the same value group
as K has small derivation, by [ADH, 9.4.1].

Lemma 1.6.3. Assume k is r-linearly surjective, A ∈ K[∂] ̸= of order ⩽ r is neatly

surjective, γ ∈ QΓ, γ > 0, K̂ is an immediate asymptotic extension of K, f̂ ∈ K̂×,

and v
(
A(f̂)

)
⩾ v(Af̂) + γ. Then for some f ∈ K we have

A(f) = 0, v(f̂ − f) ⩾ v(f̂) + γ + o(γ).

Proof. By extending K̂ we can arrange that K̂ is r-differential henselian, so A

remains neatly surjective as an element of K̂[∂], by [ADH, 7.1.8]. Then by Lem-

ma 1.6.2 with K̂ in the role of K we get f ∈ K̂ such that A(f) = 0 and v(f̂ − f) ⩾
v(f̂) + γ + o(γ). It remains to note that f ∈ K by [ADH, 7.5.7]. □

We actually need an inhomogeneous variant of the above:

Lemma 1.6.4. Assume k is r-linearly surjective, A ∈ K[∂]̸= of order ⩽ r is neatly

surjective, b ∈ K, γ ∈ QΓ, γ > 0, v(A) = o(γ), v(b) ⩾ o(γ), K̂ is an immediate

asymptotic extension of K, f̂ ∈ K̂, f̂ ≼ 1, and v
(
A(f̂)− b

)
⩾ γ + o(γ). Then

A(f) = b, v(f̂ − f) ⩾ (1/2)γ + o(γ)

for some f ∈ K.

Proof. Take y ∈ K with A(y) = b and v(y) ⩾ o(γ). Then A(ĝ) = A(f̂) − b

for ĝ := f̂ − y, so v
(
A(ĝ)

)
⩾ γ + o(γ) and v(ĝ) ⩾ o(γ). We distinguish two cases:

(1) v(ĝ) ⩾ (1/2)γ + o(γ). Then v(f̂ − y) ⩾ (1/2)γ + o(γ), so f := y works.

(2) v(ĝ) < (1/2)γ + o(γ). Then by [ADH, 6.1.3],

v(Aĝ) < (1/2)γ + o(γ), v
(
A(ĝ)

)
⩾ γ + o(γ),
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so v
(
A(ĝ)

)
⩾ v(Aĝ) + (1/2)γ. Then Lemma 1.6.3 gives an element g ∈ K such

that A(g) = 0 and v(ĝ − g) ⩾ (1/2)γ + o(γ). Hence f := y + g works. □

Recall from [ADH, 7.2] that O is said to be r-linearly surjective if for every A
in K[∂] ̸= of order r with v(A) = 0 there exists y ∈ O with A(y) = 1.

Proposition 1.6.5. Assume O is r-linearly surjective, P ∈ K{Y }, order(P ) ⩽ r,
ddegP = 1, and P (â) = 0, where â ≼ 1 lies in an immediate asymptotic extension
of K and â /∈ K. Then â is special over K.

Proof. The hypothesis on O yields: k is r-linearly surjective and all A ∈ K[∂] ̸= of
order ⩽ r are neatly surjective. Let 0 < γ ∈ v(â − K); we claim that v(â − K)
has an element ⩾ (4/3)γ. We arrange P ≍ 1. Take a ∈ K with v(â − a) = γ.
Then P+a ≍ 1, ddegP+a = 1, so

P+a,1 ≍ 1, P+a,>1 ≺ 1, P+a = P (a) + P+a,1 + P+a,>1

and

0 = P (â) = P+a(â− a) = P (a) + P+a,1(â− a) + P+a,>1(â− a),

with

v
(
P+a,1(â− a) + P+a,>1(â− a)

)
⩾ γ + o(γ),

and thus v(P (a)) ⩾ γ + o(γ). Take g ∈ K× with vg = γ and set Q := g−1P+a,×g,
so Q = Q0 +Q1 +Q>1 with

Q0 = Q(0) = g−1P (a), Q1 = g−1(P+a,1)×g, Q>1 = g−1(P+a,>1)×g,

hence

v(Q0) ⩾ o(γ), v(Q1) = o(γ), v(Q>1) ⩾ γ + o(γ).

We set f̂ := g−1(â−a), soQ(f̂) = 0 and f̂ ≍ 1, andA := LQ ∈ K[∂]. ThenQ(f̂) = 0
gives

Q0 +A(f̂) = Q0 +Q1(f̂) = −Q>1(f̂), with v
(
Q>1(f̂)

)
⩾ γ + o(γ),

so v
(
Q0 + A(f̂)

)
⩾ γ + o(γ). Since v(A) = v(Q1) = o(γ), Lemma 1.6.4 then

gives f ∈ K with v(f̂ − f) ⩾ (1/3)γ. In view of â− a = gf̂ , this yields

v
(
â− (a+ gf)

)
= γ + v(f̂ − f) ⩾ (4/3)γ,

which proves our claim. It gives the desired result. □

A source of almost special elements. In this subsection K, Γ, k, and r are as
in the previous subsection, and we assume that O is r-linearly surjective. (So k is
r-linearly surjective, and supΨ = 0 by [ADH, 9.4.2].) Let â be an element in an
immediate asymptotic extension of K such that â /∈ K and K⟨â⟩ has transcendence
degree ⩽ r over K. We shall use Proposition 1.6.5 to show:

Proposition 1.6.6. If Γ is divisible, then â is almost special over K.

Towards the proof we first note that â has a minimal annihilator P (Y ) over K of
order ⩽ r. We also fix a divergent pc-sequence (aρ) in K such that aρ ⇝ â. We
next show how to improve â and P (without assuming divisibility of Γ):

Lemma 1.6.7. For some b̂ in an immediate asymptotic extension of K we have:

(i) v(â−K) = v(̂b−K);
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(ii) (aρ) has a minimal differential polynomial Q over K of order ⩽ r such

that Q is also a minimal annihilator of b̂ over K.

Proof. By [ADH, 6.8.1, 6.9.2], (aρ) is of d-algebraic type over K with a minimal
differential polynomial Q(Y ) over K such that orderQ ⩽ orderP ⩽ r. By [ADH,

6.9.3, 9.4.5] this gives an element b̂ in an immediate asymptotic extension of K such

that Q is a minimal annihilator of b̂ over K and aρ ⇝ b̂. Then Q and b̂ have the
desired properties. □

Proof of Proposition 1.6.6. Replace â and P by b̂ and Q from Lemma 1.6.7 (and
rename) to arrange that P is a minimal differential polynomial of (aρ) over K.
Now assuming Γ is divisible, [160, Proposition 3.1] gives a ∈ K and g ∈ K× such
that â− a ≍ g and ddegP+a,×g = 1.

Set F := P+a,×g and f̂ := (â − a)/g. Then ddegF = 1, F (f̂) = 0, and f̂ ≼ 1.

Applying Proposition 1.6.5 to F and f̂ in the role of P and â yields a nontrivial

convex subgroup ∆ of Γ that is cofinal in v(f̂ − K). Setting α := vg, it follows
that α+∆ is cofinal in v

(
(â− a)−K

)
= v(â−K). □

We can trade the divisibility assumption in Proposition 1.6.6 against a stronger
hypothesis on K, the proof using [160, 3.3] instead of [160, 3.1]:

Corollary 1.6.8. If K is henselian and k is linearly surjective, then â is almost
special over K.

The linearly newtonian setting. In this subsection K is an ω-free r-linearly
newtonian H-asymptotic field, r ⩾ 1. Thus K is d-valued by Lemma 1.2.9. We
let ϕ range over the elements active in K. We now mimick the material in the

previous two subsections. Note that for A ∈ K[∂] ̸= and any element f̂ in an

asymptotic extension of K we have A(f̂) ≼ Aϕf̂ , since A(f̂) = Aϕ(f̂).

Lemma 1.6.9. Assume that A ∈ K[∂]̸= has order ⩽ r, γ ∈ QΓ, γ > 0, f̂ ∈
K×, and v

(
A(f̂)

)
⩾ v(Aϕf̂) + γ, eventually. Then there exists an f ∈ K such

that A(f) = 0 and v(f̂ − f) ⩾ v(f̂) + γ + o(γ).

Proof. Take ϕ such that vϕ ⩾ γ† and v
(
A(f̂)

)
⩾ v(Aϕf̂) + γ. Next, take β ∈ Γ

such that β ⩾ γ and v
(
A(f̂)

)
⩾ v(Aϕf̂) + β. Then vϕ ⩾ β†, so β > Γ♭ϕ, hence the

valuation ring of the flattening (Kϕ, v♭ϕ) is r-linearly surjective, by [ADH, 14.2.1].
We now apply Lemma 1.6.2 to

(Kϕ, v♭ϕ), Aϕ, β̇ := β + Γ♭ϕ

in the role of K, A, γ to give f ∈ K with A(f) = 0 and v♭ϕ(f̂−f) ⩾ v♭ϕ(f̂)+β̇+o(β̇).
Then also v(f̂ − f) ⩾ v(f̂) + β + o(β), and thus v(f̂ − f) ⩾ v(f̂) + γ + o(γ). □

Lemma 1.6.10. Assume A ∈ K[∂]̸= has order ⩽ r, K̂ is an immediate d-algebraic

asymptotic extension of K, γ ∈ QΓ, γ > 0, f̂ ∈ K̂×, and v
(
A(f̂)

)
⩾ v(Aϕf̂) + γ

eventually. Then A(f) = 0 and v(f̂ − f) ⩾ v(f̂) + γ + o(γ) for some f ∈ K.

Proof. Since K is ω-free, so is K̂ by Theorem 1.4.1. By [ADH, 14.0.1 and subse-

quent remarks] we can extend K̂ to arrange that K̂ is also newtonian. Then by

Lemma 1.6.9 with K̂ in the role of K we get f ∈ K̂ with A(f) = 0 and v(f̂ − f) ⩾
v(f̂) + γ + o(γ). Now use that f ∈ K by [ADH, line before 14.2.10]. □
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Lemma 1.6.11. Assume A ∈ K[∂]̸= has order ⩽ r, b ∈ K, γ ∈ QΓ, γ > 0, K̂

is an immediate d-algebraic asymptotic extension of K, and f̂ ∈ K̂, v(f̂) ⩾ o(γ).

Assume also that eventually v(b) ⩾ v(Aϕ)+o(γ) and v
(
A(f̂)−b

)
⩾ v(Aϕ)+γ+o(γ).

Then for some f ∈ K we have A(f) = b and v(f̂ − f) ⩾ (1/2)γ + o(γ).

Proof. We take y ∈ K with A(y) = b as follows: If b = 0, then y := 0. If b ̸= 0,
then Corollary 1.5.7 yields y ∈ K× such that A(y) = b, vy /∈ E e(A), and veA(vy) =
vb. In any case, vy ⩾ o(γ): when b ̸= 0, the sentence preceding [ADH, 14.2.7]
gives vAϕ(vy) = vb, eventually, to which we apply [ADH, 6.1.3].

Now A(ĝ) = A(f̂)− b for ĝ := f̂ − y, so v(ĝ) ⩾ o(γ), and eventually v
(
A(ĝ)

)
⩾

v(Aϕ) + γ + o(γ). We distinguish two cases:

(1) v(ĝ) ⩾ (1/2)γ + o(γ). Then v(f̂ − y) ⩾ (1/2)γ + o(γ), so f := y works.

(2) v(ĝ) < (1/2)γ + o(γ). Then by [ADH, 6.1.3] we have eventually

v(Aϕĝ) < v(Aϕ) + (1/2)γ + o(γ), v
(
A(ĝ)

)
⩾ v(Aϕ) + γ + o(γ),

so v(A(ĝ)) ⩾ v(Aϕĝ) + (1/2)γ, eventually. Lemma 1.6.10 gives an element g ∈ K
with A(g) = 0 and v(ĝ − g) ⩾ (1/2)γ + o(γ). Hence f := y + g works. □

Proposition 1.6.12. Suppose that P ∈ K{Y }, orderP ⩽ r, ndegP = 1, and
P (â) = 0, where â ≼ 1 lies in an immediate asymptotic extension of K and â /∈ K.
Then â is special over K.

The proof is like that of Proposition 1.6.5, but there are some differences that call
for further details.

Proof. Given 0 < γ ∈ v(â−K), we claim that v(â−K) has an element ⩾ (4/3)γ.
Take a ∈ K with v(â − a) = γ. Then ndegP+a = 1 by [ADH, 11.2.3(i)], so
eventually we have

P (a) ≼ Pϕ+a,1 ≻ Pϕ+a,>1, Pϕ+a = P (a) + Pϕ+a,1 + Pϕ+a,>1

and

0 = P (â) = Pϕ+a(â− a)

= P (a) + Pϕ+a,1(â− a) + Pϕ+a,>1(â− a),

v
(
Pϕ+a,1(â− a) + Pϕ+a,>1(â− a)

)
⩾ v(Pϕ+a,1) + γ + o(γ),

and thus eventually v
(
P (a)

)
⩾ v(Pϕ+a,1) + γ + o(γ). Take g ∈ K× with vg = γ

and set Q := g−1P+a,×g, so Q = Q0 +Q1 +Q>1 with

Q0 = Q(0) = g−1P (a), Q1 = g−1(P+a,1)×g, Q>1 = g−1(P+a,>1)×g.

Then v(Q0) = v
(
P (a)

)
− γ ⩾ v(Pϕ+a,1) + o(γ), eventually. By [ADH, 6.1.3],

v(Qϕ1 ) = v(Pϕ+a,1) + o(γ), v(Qϕ>1) ⩾ v(Pϕ+a,>1) + γ + o(γ)

for all ϕ. Since Pϕ+a,>1 ≼ Pϕ+a,1, eventually, the last two displayed inequalities

give v(Qϕ>1) ⩾ v(Qϕ1 ) + γ + o(γ), eventually. We set f̂ := g−1(â− a), so Q(f̂) = 0

and f̂ ≍ 1. Set A := LQ ∈ K[∂]. Then Q(f̂) = 0 gives

Q0 +A(f̂) = Q0 +Q1(f̂) = −Qϕ>1(f̂),
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with v
(
Qϕ>1(f̂)

)
⩾ v(Qϕ1 ) + γ + o(γ), eventually, so

v
(
Q0 +A(f̂)

)
⩾ v(Aϕ) + γ + o(γ), eventually.

Moreover, v(Q0) ⩾ v(Aϕ) + o(γ), eventually. Lemma 1.6.11 then gives f ∈ K

with v(f̂ − f) ⩾ (1/3)γ. In view of â− a = gf̂ , this yields

v
(
â− (a+ gf)

)
= γ + v(f̂ − f) ⩾ (4/3)γ,

which proves our claim. □

In the rest of this subsection we assume that â /∈ K lies in an immediate asymptotic
extension of K and K⟨â⟩ has transcendence degree ⩽ r over K.

Proposition 1.6.13. If Γ is divisible, then â is almost special over K.

Towards the proof, we fix a minimal annihilator P (Y ) of â over K, so orderP ⩽ r.
We also fix a divergent pc-sequence (aρ) in K such that aρ ⇝ â. We next show
how to improve â and P if necessary:

Lemma 1.6.14. For some b̂ in an immediate asymptotic extension of K we have:

(i) v(â− a) = v(̂b− a) for all a ∈ K;
(ii) (aρ) has a minimal differential polynomial Q over K of order ⩽ r such

that Q is also a minimal annihilator of b̂ over K.

Proof. By the remarks following the proof of [ADH, 11.4.3] we have P ∈ Z(K, â).
Take Q ∈ Z(K, â) of minimal complexity. Then orderQ ⩽ orderP ⩽ r, and Q is a
minimal differential polynomial of (aρ) over K by [ADH, 11.4.13]. By [ADH, 11.4.8

and its proof] this gives an element b̂ in an immediate asymptotic extension of K

such that (i) holds and Q is a minimal annihilator of b̂ over K. Then Q and b̂ have
the desired properties. □

Proof of Proposition 1.6.13. Assume Γ is divisible. Replace â, P by b̂, Q from
Lemma 1.6.14 and rename to arrange that P is a minimal differential polynomial
of (aρ) overK. By [ADH, 14.5.1] we have a ∈ K and g ∈ K× such that â−a ≍ g and

ndegP+a,×g = 1. Set F := P+a,×g and f̂ := (â−a)/g. Then ndegF = 1, F (f̂) = 0,

and f̂ ≼ 1. Applying Proposition 1.6.12 to F and f̂ in the role of P and â yields a

nontrivial convex subgroup ∆ of Γ that is cofinal in v(f̂ −K). Setting α := vg, it
follows that α+∆ is cofinal in v

(
(â− a)−K

)
= v(â−K). □

Corollary 1.6.15. If K is henselian, then â is almost special over K.

The proof is like that of Proposition 1.6.13, using [159, 3.3] instead of [ADH, 14.5.1].

The case of order 1. We show here that Proposition 1.6.12 goes through in the
case of order 1 under weaker assumptions: in this subsection K is a 1-linearly
newtonian H-asymptotic field with asymptotic integration. Then K is d-valued
with I(K) ⊆ K†, by Lemma 1.2.9, and λ-free, by [ADH, 14.2.3]. We let ϕ range
over elements active in K. In the next two lemmas A ∈ K[∂]̸= has order ⩽ 1,

γ ∈ QΓ, γ > 0, and K̂ is an immediate asymptotic extension of K.

Lemma 1.6.16. Let f̂ ∈ K̂× be such that v
(
A(f̂)

)
⩾ v(Aϕf̂)+γ eventually. Then

there exists f ∈ K such that A(f) = 0 and v(f̂ − f) ⩾ v(f̂) + γ.
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Proof. Note that order(A) = 1; we arrange A = ∂ − g (g ∈ K). If A(f̂) = 0, then f̂

is in K [ADH, line before 14.2.10], and f := f̂ works. Assume A(f̂) ̸= 0. Then

v
(
Aϕ(f̂)

)
= v
(
A(f̂)

)
⩾ v(Aϕf̂) + γ > v(Aϕf̂), eventually,

so v(f̂) ∈ E e(A), and Lemma 1.5.9 yields an f ∈ K with f ∼ f̂ and A(f) = 0. We

claim that this f has the desired property. Set b := A(f̂). By the remarks preceding

Corollary 1.5.15 we can replace K, K̂, A, b by Kϕ, K̂ϕ, ϕ−1Aϕ, ϕ−1b, respectively,
for suitable ϕ, to arrange that K has small derivation and b† − g ≻♭ 1. Using the

hypothesis of the lemma we also arrange vb ⩾ v(Af̂) + γ. It remains to show that

for ĝ := f̂ − f ̸= 0 we have v(ĝ) ⩾ v(f̂) + γ. Now A(ĝ) = b with v(ĝ) /∈ E e(A),

hence ĝ ∼ b/(b†−g) ≺♭ b by Lemma 1.5.14, and thus v(ĝ) > vb ⩾ v(Af̂)+γ, so it is

enough to show v(Af̂) ⩾ v(f̂). Now b = A(f̂) = f̂(f̂† − g) and Af̂ = f̂
(

∂+ f̂† − g
)
.

As vb ⩾ v(Af̂) + γ > v(Af̂), this yields v(f̂† − g) > 0, so v(Af̂) = v(f̂). □

Lemma 1.6.17. Let b ∈ K and f̂ ∈ K̂ with v(f̂) ⩾ o(γ). Assume also that

eventually v(b) ⩾ v(Aϕ) + o(γ) and v
(
A(f̂) − b

)
⩾ v(Aϕ) + γ + o(γ). Then for

some f ∈ K we have A(f) = b and v(f̂ − f) ⩾ (1/2)γ + o(γ).

The proof is like that of Lemma 1.6.11, using Lemma 1.6.16 instead of Lemma 1.6.10.
In the same way Lemma 1.6.11 gave Proposition 1.6.12, Lemma 1.6.17 now yields:

Proposition 1.6.18. If P ∈ K{Y }, orderP ⩽ 1, ndegP = 1, and P (â) = 0,
where â ≼ 1 lies in an immediate asymptotic extension of K and â /∈ K, then â is
special over K.

Remark. Proposition 1.6.13 does not hold for r = 1 under present assumptions. To
see this, let K be a Liouville closed H-field which is not ω-free, as in Example 1.4.16
or [9]. Then K is 1-linearly newtonian by Corollary 1.8.29 below. Consider the
pc-sequences (λρ) and (ωρ) in K as in [ADH, 11.7], let ω ∈ K with ωρ ⇝ ω,
and P = 2Y ′ + Y 2 + ω. Then [ADH, 11.7.13] gives an element λ in an immediate
asymptotic extension of K but not in K with λρ ⇝ λ and P (λ) = 0. However, λ is
not almost special over K [ADH, 3.4.13, 11.5.2].

Relating Z(K, â) and v(â −K) for special â. In this subsection K is a valued
differential field with small derivation ∂ ̸= 0 such that Γ ̸= {0} and Γ> has no least
element. We recall from [11] that a valued differential field extension L of K is said
to be strict if for all ϕ ∈ K×,

∂O ⊆ ϕO ⇒ ∂OL ⊆ ϕOL, ∂O ⊆ ϕO ⇒ ∂OL ⊆ ϕOL.

(IfK is asymptotic, then any immediate asymptotic extension ofK is automatically
strict, by [11, 1.11].) Let â lie in an immediate strict extension ofK such that â ≼ 1,
â /∈ K, and â is special over K. We adopt from [11, Sections 2, 4] the definitions
of ndegP for P ∈ K{Y }̸= and of the set Z(K, â) ⊆ K{Y }̸=. Also recall that Γ(∂) :=
{vϕ : ϕ ∈ K×, ∂O ⊆ ϕO}.

Lemma 1.6.19. Let P ∈ Z(K, â) and P ≍ 1. Then v
(
P (â)

)
> v(â−K).

Proof. Take a divergent pc-sequence (aρ) in O with aρ ⇝ â, and as in [ADH, 11.2]
let a := cK(aρ). Then ndega P ⩾ 1 by [11, 4.7]. We arrange γρ := v(â− aρ) to be
strictly increasing as a function of ρ, with 0 < 2γρ < γs(ρ) for all ρ. Take gρ ∈ O
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with gρ ≍ â−aρ; then 1 ⩽ d := ndega P = ndegP+aρ,×gρ for all sufficiently large ρ,
and we arrange that this holds for all ρ. We have â = aρ + gρyρ with yρ ≍ 1, and

P (â) = P+aρ,×gρ(yρ) =
∑
i

(P+aρ,×gρ)i(yρ).

Pick for every ρ an element ϕρ ∈ K× such that 0 ⩽ v(ϕρ) ∈ Γ(∂) and (P
ϕρ

+aρ,×gρ)i ≼

(P
ϕρ

+aρ,×gρ)d for all i. Then for all ρ and i,

(P+aρ,×gρ)i(yρ) = (P
ϕρ

+aρ,×gρ)i(yρ) ≼ (P
ϕρ

+aρ,×gρ)i ≼ (P
ϕρ

+aρ,×gρ)d with

v
(
(P

ϕρ

+aρ,×gρ)d
)
⩾ dγρ + o(γρ) ⩾ γρ + o(γρ),

where for the next to last inequality we use [ADH, 11.1.1, 5.7.1, 5.7.5, 6.1.3].
Hence v

(
P (â)

)
⩾ γρ + o(γρ) for all ρ, and thus v

(
P (â)

)
> v(â−K). □

We also have a converse under extra assumptions:

Lemma 1.6.20. Assume K is asymptotic and Ψ ⊆ v(â −K). Let P ∈ K{Y } be
such that P ≍ 1 and v

(
P (â)

)
> v(â−K). Then P ∈ Z(K, â).

Proof. Let ∆ be the nontrivial convex subgroup of Γ that is cofinal in v(â − K).
Let κ := cf(∆). Take a divergent pc-sequence (aρ)ρ<κ in K such that aρ ⇝ â. We
arrange γρ := v(â − aρ) is strictly increasing as a function of ρ, with γρ > 0 for
all ρ; thus aρ ≼ 1 for all ρ. Consider the ∆-coarsening v̇ = v∆ of the valuation v

of K; it has valuation ring Ȯ with differential residue field K̇. Consider likewise the
∆-coarsening of the valuation of the immediate extension L = K⟨â⟩ of K. Let a∗

be the image of â in the differential residue field L̇ of (L, v̇). Note that L̇ is an

immediate extension of K̇. The pc-sequence (aρ) then yields a sequence (ȧρ) in K̇

with v(a∗ − ȧρ) = γρ for all ρ. Thus (ȧρ) is a c-sequence in K̇ with ȧρ → a∗,

so Ṗ (ȧρ) → Ṗ (a∗) by [ADH, 4.4.5]. From v
(
P (â)

)
> ∆ we obtain Ṗ (a∗) = 0,

and so Ṗ (ȧρ) → 0. So far we have not used our assumption that K is asymptotic
and Ψ ⊆ v(â−K). Using this now, we note that for α ∈ ∆> we have 0 < α′ = α+α†,

so α′ ∈ ∆, hence the derivation of K̇ is nontrivial. Thus we can apply [ADH,

4.4.10] to K̇ and modify the aρ without changing γρ = v(a∗ − ȧρ) to arrange that

in addition Ṗ (ȧρ) ̸= 0 for all ρ. Since κ = cf(∆), we can replace (aρ) by a cofinal
subsequence so that P (aρ)⇝ 0, hence P ∈ Z(K, â) by [11, 4.6]. □

To elaborate on this, let ∆ be a convex subgroup of Γ and K̇ the valued differential
residue field of the ∆-coarsening v∆ of the valuation v of K. We view K̇ in the

usual way as a valued differential subfield of the valued differential residue field
˙̂
K

of the ∆-coarsening of the valuation of K̂ by ∆; see [ADH, pp. 159–160 and 4.4.4].

Corollary 1.6.21. Suppose K is asymptotic, Ψ ⊆ v(â − K), and ∆ is cofinal

in v(â−K). Let P ∈ K{Y } with P ≍ 1. Then P ∈ Z(K, â) if and only if Ṗ ( ˙̂a) = 0

in
˙̂
K. Also, P is an element of Z(K, â) of minimal complexity if and only if Ṗ is

a minimal annihilator of ˙̂a over K̇ and Ṗ has the same complexity as P .

Proof. The first statement is immediate from Lemmas 1.6.19 and 1.6.20. For the
rest use that for R ∈ Ȯ{Y } we have c(Ṙ) ⩽ c(R) and that for all Q ∈ K̇{Y } there

is an R ∈ Ȯ{Y } with Q = Ṙ and Qi ̸= 0 iff Ri ̸= 0 for all i, so c(Ṙ) = c(R). □
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1.7. Differential Henselianity of the Completion

Let K be a valued differential field with small derivation. We let Γ := v(K×) be
the value group of K and k := res(K) be the differential residue field of K, and we
let r ∈ N. The following summarizes [ADH, 7.1.1, 7.2.1]:

Lemma 1.7.1. The valued differential field K is r-d-henselian iff for each P
in K{Y } of order ⩽ r with ddegP = 1 there is a y ∈ O with P (y) = 0.

Recall that the derivation of K being small, it is continuous [ADH, 4.4.6], and
hence extends uniquely to a continuous derivation on the completion Kc of the
valued field K [ADH, 4.4.11]. We equip Kc with this derivation, which remains
small [ADH, 4.4.12], so Kc is an immediate valued differential field extension of K
with small derivation, in particular, k = res(Kc).

Below we characterize in a first-order way when Kc is r-d-henselian. We shall
use tacitly that for P ∈ K{Y } we have P (g) ≼ P×g for all g ∈ K; to see this,
replace P by P×g to reduce to g = 1, and observe that P (1) =

∑
∥σ∥=0 P[σ] ≼ P .

Lemma 1.7.2. Let P ∈ Kc{Y }, b ∈ Kc with b ≼ 1 and P (b) = 0, and γ ∈ Γ>.
Then there is an a ∈ O with v

(
P (a)

)
> γ.

Proof. To find an a as claimed we take f ∈ K satisfying f ≍ P and replace P , γ
by f−1P , γ − vf , respectively, to arrange P ≍ 1 and thus P+b ≍ 1. We also
assume b ̸= 0. Since K is dense in Kc we can take a ∈ K such that a ∼ b
(so a ∈ O) and v(a− b) > 2γ. Then with g := a− b, using [ADH, 4.5.1(i) and 6.1.4]
we conclude

v
(
P (a)

)
= v
(
P+b(g)

)
⩾ v
(
(P+b)×g

)
⩾ v(P+b) + vg + o(vg) = vg + o(vg) > γ

as required. □

Recall that if K is asymptotic, then so is Kc by [ADH, 9.1.6].

Lemma 1.7.3. Suppose K is asymptotic, Γ ̸= {0}, and for every P ∈ K{Y } of or-
der at most r with ddegP = 1 and every γ ∈ Γ> there is an a ∈ O with v

(
P (a)

)
> γ.

Then Kc is r-d-henselian.

Proof. The hypothesis applied to P ∈ O{Y } of order ⩽ r with ddegP = degP = 1
yields that k is r-linearly surjective. Let now P ∈ Kc{Y } be of order ⩽ r
with ddegP = 1. We need to show that there exists b ∈ Kc with b ≼ 1 and P (b) = 0.
First we arrange P ≍ 1. By [ADH, remarks after 9.4.11] we can take b ≼ 1 in an
immediate d-henselian asymptotic field extension L of Kc with P (b) = 0. We
prove below that b ∈ Kc. We may assume b /∈ K, so v(b −K) has no largest ele-
ment, since L ⊇ K is immediate. Note also that ddegP+b = 1 by [ADH, 6.6.5(i)];
since P (b) = 0 we thus have ddegP+b,×g = 1 for all g ≼ 1 in L× by [ADH, 6.6.7].

Claim : Let γ ∈ Γ> and a ∈ K with v(b − a) ⩾ 0. There is a y ∈ O such
that v

(
P (y)

)
> γ and v(b− y) ⩾ v(b− a).

To prove this claim, take g ∈ K× with vg = v(b−a). Then by [ADH, 6.6.6] and the
observation preceding the claim we have ddegP+a,×g = ddegP+b,×g = 1. Thanks
to density of K in Kc we may take Q ∈ K{Y } of order ⩽ r with P+a,×g ∼ Q
and v(P+a,×g − Q) > γ. Then ddegQ = 1, so by the hypothesis of the lemma we
have z ∈ O with v

(
Q(z)

)
> γ. Set y := a+gz ∈ O; then v

(
P (y)

)
= v
(
P+a,×g(z)

)
>

γ and v(b− y) = v(b− a− gz) ⩾ v(b− a) = vg as claimed.
59



Let now γ ∈ Γ>; to show that b ∈ Kc, it is enough by [ADH, 3.2.15, 3.2.16] to
show that then v(a − b) > γ for some a ∈ K. Let A := LP+b

∈ L[∂]; then A ≍ 1.

Since |EL(A)| ⩽ r by [ADH, 7.5.3], the claim gives an a ∈ O with v
(
P (a)

)
> 2γ

and 0 < v(b− a) /∈ EL(A). Put g := a− b and R := (P+b)>1. Then R ≺ 1 and

P (a) = P+b(g) = A(g) +R(g)

where by the definition of EL(A) and [ADH, 6.4.1(iii), 6.4.3] we have in QΓ:

v
(
A(g)

)
= vA(vg) = vg + o(vg) < vR+ (3/2)vg ⩽ vR(vg) ⩽ v

(
R(g)

)
and so v

(
P (a)

)
= vg + o(vg) > 2γ. Therefore v(a− b) = vg > γ as required. □

The last two lemmas yield an analogue of [ADH, 3.3.7] for r-d-henselianity and a
partial generalization of [ADH, 7.2.15]:

Corollary 1.7.4. Suppose K is asymptotic and Γ ̸= {0}. Then the following are
equivalent:

(i) Kc is r-d-henselian;
(ii) for every P ∈ K{Y } of order at most r with ddegP = 1 and every γ ∈ Γ>

there exists a ∈ O with v
(
P (a)

)
> γ.

In particular, if K is r-d-henselian, then so is Kc.

1.8. Complements on Newtonianity

In this section K is an ungrounded H-asymptotic field with Γ = v(K×) ̸= {0}.
Note that then Kc is also H-asymptotic. We let r range over N and ϕ over the
active elements of K. Our first aim is a newtonian analogue of Corollary 1.7.4:

Proposition 1.8.1. For d-valued and ω-free K, the following are equivalent:

(i) Kc is r-newtonian;
(ii) for every P ∈ K{Y } of order at most r with ndegP = 1 and every γ ∈ Γ>

there is an a ∈ O with v
(
P (a)

)
> γ.

If K is d-valued, ω-free, and r-newtonian, then so is Kc.

The final statement in this proposition extends [ADH, 14.1.5]. Towards the proof
we first state a variant of [ADH, 13.2.2] which follows easily from [ADH, 11.1.4]:

Lemma 1.8.2. Assume K has small derivation and let P,Q ∈ K{Y }̸= and ϕ ≼ 1.
Then Pϕ ≍♭ P , and so we have the three implications

P ≼♭ Q =⇒ Pϕ ≼♭ Qϕ, P ≺♭ Q =⇒ Pϕ ≺♭ Qϕ, P ∼♭ Q =⇒ Pϕ ∼♭ Qϕ.
The last implication gives: P ∼♭ Q =⇒ ndegP = ndegQ and nmulP = nmulQ.

For Pϕ ≍♭ P and the subsequent three implications in the lemma above we can
drop the assumption that K is ungrounded.

Lemma 1.8.3. Suppose K is d-valued, ω-free, and for every P ∈ K{Y } of order
at most r with ndegP = 1 and every γ ∈ Γ> there is an a ∈ O with v

(
P (a)

)
> γ.

Then Kc is d-valued, ω-free, and r-newtonian.

Proof. By [ADH, 9.1.6 and 11.7.20], Kc is d-valued and ω-free. Let P ∈ Kc{Y } be
of order ⩽ r with ndegP = 1. We need to show that P (b) = 0 for some b ≼ 1 in Kc.
To find b we may replace K, P by Kϕ, Pϕ; in particular we may assume that K has
small derivation and Γ♭ ̸= Γ. By [ADH, 14.0.1 and the remarks following it] we can
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take b ≼ 1 in an immediate newtonian extension L of Kc such that P (b) = 0. We
claim that b ∈ Kc. To show this we may assume b /∈ K, so v(b−K) does not have a
largest element. By [ADH, 11.2.3(i)] we have ndegP+b = 1 and so ndegP+b,×g = 1
for all g ≼ 1 in L× by [ADH, 11.2.5], in view of P (b) = 0.

Claim : Let γ ∈ Γ> and a ∈ K with v(b − a) ⩾ 0. There is a y ∈ O such
that v

(
P (y)

)
> γ and v(b− y) ⩾ v(b− a).

The proof is similar to that of the claim in the proof of Lemma 1.7.3: Take g ∈ K×

with vg = v(b−a). Then ndegP+a,×g = ndegP+b,×g = 1 by [ADH, 11.2.4] and the
observation preceding the claim. Density of K in Kc yields Q ∈ K{Y } of order ⩽ r
with v(P+a,×g −Q) > γ and P+a,×g ∼♭ Q, the latter using Γ♭ ̸= Γ. Then ndegQ =
ndegP+a,×g = 1 by Lemma 1.8.2, so the hypothesis of the lemma gives z ∈ O
with v

(
Q(z)

)
> γ. Setting y := a + gz ∈ O we have v

(
P (y)

)
= v

(
P+a,×g(z)

)
> γ

and v(b− y) = v(b− a− gz) ⩾ vg = v(b− a).

Let γ ∈ Γ>; to get b ∈ Kc, it is enough to show that then v(a − b) > γ for
some a ∈ K. Let A := LP+b

∈ L[∂]. Since |E e
L(A)| ⩽ r by [ADH, 14.2.9], by

the claim we can take a ∈ O with v
(
P (a)

)
> 2γ and 0 < v(b − a) /∈ E e

L(A).

Now put g := a − b and take ϕ with vg /∈ ELϕ(Aϕ); note that then Aϕ = LPϕ
+b
.

Replacing K, L, P by Kϕ, Lϕ, Pϕ we arrange vg /∈ EL(A), and (changing ϕ if
necessary) ddegP+b = 1. We also arrange P+b ≍ 1, and then (P+b)>1 ≺ 1. As in
the proof of Lemma 1.7.3 above we now derive v(a− b) = vg > γ. □

Combining Lemmas 1.7.2 and 1.8.3 now yields Proposition 1.8.1. □

To show that newtonianity is preserved under specialization, we assume below
that Ψ ∩ Γ> ̸= ∅, so K has small derivation. Let ∆ ̸= {0} be a convex subgroup
of Γ with ψ(∆ ̸=) ⊆ ∆. Then 1 ∈ ∆ where 1 denotes the unique positive element
of Γ fixed by the function ψ: use that ψ(γ) ⩾ 1 for 0 < γ < 1. (Conversely, any
convex subgroup G of Γ with 1 ∈ G satisfies ψ(G̸=) ⊆ G.) Let v̇ be the coarsening

of the valuation v of K by ∆, with valuation ring Ȯ, maximal ideal Ȯ of Ȯ, and
residue field K̇ = Ȯ/Ȯ. The derivation of K is small with respect to v̇, and K̇ with

the induced valuation v : K̇× → ∆ and induced derivation as in [ADH, p. 405] is an
asymptotic field with asymptotic couple (∆, ψ|∆ ̸=), and so is of H-type with small

derivation. If K is d-valued, then so is K̇ by [ADH, 10.1.8], and if K is ω-free, then

so is K̇ by [ADH, 11.7.24]. The residue map a 7→ ȧ := a+Ȯ : Ȯ → K̇ is a differential

ring morphism, extends to a differential ring morphism P 7→ Ṗ : Ȯ{Y } → K̇{Y } of

differential rings sending Y to Y , and ddegP = ddeg Ṗ for P ∈ Ȯ{Y } with Ṗ ̸= 0.
We now restrict ϕ to range over active elements ofO. Then vϕ ⩽ 1+1, so vϕ ∈ ∆,

and hence ϕ is a unit of Ȯ. It follows that ϕ̇ is active in K̇, and every active element
of K̇ lying in its valuation ring is of this form. Moreover, the differential subrings Ȯ
of K and Ȯϕ := (Ȯ)ϕ of Kϕ have the same underlying ring, and the derivation

of Kϕ is small with respect to v̇. Thus the differential residue fields K̇ = Ȯ/Ȯ
and K̇ϕ := Ȯϕ/Ȯ have the same underlying field and are related as follows:

K̇ϕ = (K̇)ϕ̇.

For P ∈ Ȯ{Y } we have Pϕ ∈ Ȯϕ{Y }, and the image of Pϕ under the residue

map Ȯϕ{Y } → K̇ϕ{Y } equals Ṗ ϕ̇; hence ndegP = ndeg Ṗ for P ∈ Ȯ{Y } satisfy-

ing Ṗ ̸= 0. These remarks imply:
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Lemma 1.8.4. If K is r-newtonian, then K̇ is r-newtonian.

Combining Proposition 1.8.1 and Lemmas 1.8.3 and 1.8.4 yields:

Corollary 1.8.5. Suppose K is d-valued, ω-free, and r-newtonian. Then K̇ and
its completion are d-valued, ω-free, and r-newtonian.

We finish with a newtonian analogue of [ADH, 7.1.7]:

Lemma 1.8.6. Suppose (K, Ȯ) is r-d-henselian and K̇ is r-newtonian. Then K
is r-newtonian.

Proof. Let P ∈ K{Y } be of order ⩽ r and ndegP = 1; we need to show the
existence of b ∈ O with P (b) = 0. Replacing K and P by Kϕ and Pϕ for suitable ϕ
(and renaming) we arrange ddegP = 1; this also uses [ADH, section 7.3, subsection

on compositional conjugation]. We can further assume that P ≍ 1. Put Q := Ṗ ∈
K̇{Y }, so ndegQ = 1, and thus r-newtonianity of K̇ yields an a ∈ O with Q(ȧ) = 0.

Then P (a) ≺̇ 1, P+a,1 ∼ P1 ≍ 1, and P+a,>1 ≺ 1. Since (K, Ȯ) is r-d-henselian,
this gives y ∈ Ȯ with P+a(y) = 0, and then P (b) = 0 for b := a+ y ∈ O. □

Lemmas 1.8.4, 1.8.6, and [ADH, 14.1.2] yield:

Corollary 1.8.7. K is r-newtonian iff (K, Ȯ) is r-d-henselian and K̇ is r-newto-
nian.

Invariance of Newton quantities. In this subsection P ∈ K{Y }̸=. In [ADH,
11.1] we associated to P its Newton weight nwtP , Newton degree ndegP , and
Newton multiplicity nmulP at 0, all elements of N, as well as the element ve(P )
of Γ; these quantities do not change when passing to an H-asymptotic extension L
of K with Ψ cofinal in ΨL, cf. [ADH, p. 480], where the assumptions on K, L
are slightly weaker. Thus by Theorem 1.4.1, these quantities do not change for
ω-free K in passing to an H-asymptotic pre-d-valued d-algebraic extension of K.
Below we improve on this in several ways. First, for orderP ⩽ 1 we can drop Ψ
being cofinal in ΨL by a strengthening of [ADH, 11.2.13]:

Lemma 1.8.8. Suppose K is H-asymptotic with rational asymptotic integration
and P ∈ K[Y, Y ′] ̸=. Then there are w ∈ N, α ∈ Γ>, A ∈ K[Y ]̸=, and an active ϕ0
in K such that for every asymptotic extension L of K and active f ≼ ϕ0 in L,

P f = fwA(Y )(Y ′)w +Rf , Rf ∈ Lf [Y, Y ′], v(Rf ) ⩾ v(P f ) + α.

For such w,A we have for any ungrounded H-asymptotic extension L of K,

nwtL P = w, ndegL P = degA+w, nmulL P = mulA+w, veL(P ) = v(A).

Proof. Let w be as in the proof of [ADH, 11.2.13]. Using its notations, this proof
yields an active ϕ0 in K such that

(1.8.1) wγ + v(Aw) < jγ + v(Aj)

for all γ ⩾ v(ϕ0) in Ψ↓ and j ∈ J \ {w}. This gives β ∈ QΓ such that β > Ψ
and (1.8.1) remains true for all γ ∈ Γ with v(ϕ0) ⩽ γ < β. Since (QΓ, ψ) has
asymptotic integration, β is not a gap in (QΓ, ψ), so β > β0 > Ψ with β0 ∈ QΓ.
This yields an element α ∈ (QΓ)> such that for all γ ∈ QΓ with v(ϕ0) ⩽ γ ⩽ β0
we have

(1.8.2) wγ + v(Aw) + α ⩽ jγ + v(Aj)
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Since Γ has no least positive element, we can decrease α to arrange α ∈ Γ>.
Now (1.8.2) remains true for all elements γ of any divisible ordered abelian group
extending QΓ with v(ϕ0) ⩽ γ ⩽ β0. Thus w, α, A = Aw, and ϕ0 are as required.

For any ungrounded H-asymptotic extension L of K we obtain for active f ≼ ϕ0
in L that v(P f ) = v(A)+wv(f), so veL(P ) = v(A) in view of the identity in [ADH,
11.1.15] defining veL(P ). □

For quasilinear P we have:

Lemma 1.8.9. Suppose K is λ-free and ndegP = 1. Then there are active ϕ0
in K and a, b ∈ K with a ≼ b ̸= 0 such that either (i) or (ii) below holds:

(i) P f ∼♭ϕ0
a+ bY for all active f ≼ ϕ0 in all H-asymptotic extensions of K;

(ii) P f ∼♭ϕ0

f
ϕ0
b Y ′ for all active f ≼ ϕ0 in all H-asymptotic extensions of K.

In particular, for each ungrounded H-asymptotic extension L of K,

nwtL P = nwtP ⩽ 1, ndegL P = 1, nmulL P = nmulP, veL(P ) = ve(P ).

Proof. From [ADH, 13.7.10] we obtain an active ϕ0 in K and a, b ∈ K with a ≼ b
such that in Kϕ0{Y }, either Pϕ0 ∼♭ϕ0

a + bY or Pϕ0 ∼♭ϕ0
b Y ′ (so b ̸= 0). In the

first case, set A(Y ) := a+ bY , w := 0; in the second case, set A(Y ) := bY ′, w := 1.
Then Pϕ0 = A+R where R ≺♭ϕ0

b ≍ Pϕ0 in Kϕ0{Y }.
Let L be an H-asymptotic extension of K. Then R ≺♭ϕ0

Pϕ0 remains true

in Lϕ0{Y }, and if f ≼ ϕ0 is active in L, then P f = (Pϕ0)f/ϕ0 = (f/ϕ0)
wA+Rf/ϕ0

where Rf/ϕ0 ≺♭ϕ0
P f by Lemma 1.8.2 and the remark following its proof. As

to veL(P ) = ve(P ) for ungrounded L, the identity from [ADH, 11.1.15] defining
these quantities shows that both are vb in case (i), and v(b)−v(ϕ0) in case (ii). □

Lemma 1.8.9 has the following consequence, partly generalizing Corollary 1.5.5:

Corollary 1.8.10. Suppose K is λ-free, A ∈ K[∂] ̸= and L is an ungrounded H-
asymptotic extension of K. Then for γ ∈ Γ the quantities nwtA(γ) ⩽ 1 and veA(γ)
do not change when passing from K to L; in particular,

E e(A) =
{
γ ∈ Γ : nwtA(γ) = 1

}
= E e

L(A) ∩ Γ.

This leads to a variant of Corollary 1.5.20:

Corollary 1.8.11. Suppose K is λ-free. Then |E e(A)| ⩽ orderA for all A ∈ K[∂] ̸=.

Proof. By [ADH, 10.1.3],K is pre-d-valued, hence by [ADH, 11.7.18] it has an ω-free
H-asymptotic extension. It remains to appeal to Corollaries 1.5.5 and 1.8.10. □

For completeness we next state a version of Lemma 1.8.9 for ndegP = 0; the proof
using [ADH, 13.7.9] is similar, but simpler, and hence omitted.

Lemma 1.8.12. Suppose K is λ-free and ndegP = 0. Then there are an active ϕ0
in K and a ∈ K× such that P f ∼♭ϕ0

a for all active f ≼ ϕ0 in all H-asymptotic
extensions of K.

In particular, for K, P as in Lemma 1.8.12, no H-asymptotic extension of K
contains any y ≼ 1 such that P (y) = 0.

For general P and ω-free K we can still do better than stated earlier:
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Lemma 1.8.13. Suppose K is ω-free. Then there are w ∈ N, A ∈ K[Y ] ̸=, and an
active ϕ0 in K such that for all active f ≼ ϕ0 in all H-asymptotic extensions of K,

P f ∼♭ϕ0
(f/ϕ0)

wA(Y )(Y ′)w.

For such w, A, ϕ0 we have for any ungrounded H-asymptotic extension L of K,

nwtL P = w, ndegL P = degA+ w,

nmulL P = mulA+ w, veL(P ) = v(A)− wv(ϕ0).

Proof. By [ADH, 13.6.11] we have active ϕ0 in K and A ∈ K[Y ]̸= such that

Pϕ0 = A · (Y ′)w +R, w := nwtP, R ∈ Kϕ0{Y }, R ≺♭ϕ0
Pϕ0 .

(Here ϕ0 and A are the e and aA in [ADH, 13.6.11].) The rest of the argument is
just like in the second part of the proof of Lemma 1.8.9. □

Remarks on newton position. For the next lemma we put ourselves in the
setting of [ADH, 14.3]: K is ω-free, P ∈ K{Y }̸=, and a ranges over K. Recall
that P is said to be in newton position at a if nmulP+a = 1.

Suppose P is in newton position at a; then A := LP+a
∈ K[∂] ̸=. Recall the

definition of ve(P, a) = veK(P, a) ∈ Γ∞: if P (a) = 0, then ve(P, a) = ∞; if P (a) ̸= 0,

then ve(P, a) = vg where g ∈ K× satisfies P (a) ≍ (P+a)
ϕ
1,×g eventually, that is,

vAϕ(vg) = v
(
P (a)

)
eventually. In the latter case nwtA(vg) = 0, that is, vg /∈ E e(A),

and veA(vg) = v
(
P (a)

)
, since vAϕ(vg) = veA(vg) + nwtA(vg)vϕ eventually. For

any f ∈ K×, P f is also in newton position at a, and ve(P f , a) = ve(P, a). Note also
that P+a is in newton position at 0 and ve(P+a, 0) = ve(P, a). Moreover, in passing
from K to an ω-free extension, P remains in newton position at a and ve(P, a) does
not change, by Lemma 1.8.13.

In the rest of this subsection P is in newton position at a, and â is an element of

an H-asymptotic extension K̂ of K such that P (â) = 0. (We allow â ∈ K.) We
first generalize part of [ADH, 14.3.1], with a similar proof:

Lemma 1.8.14. ve(P, a) > 0 and v(â− a) ⩽ ve(P, a).

Proof. This is clear if P (a) = 0. Assume P (a) ̸= 0. Replace P , â, a by P+a, â−a, 0,
respectively, to arrange a = 0. Recall that Kϕ has small derivation. Set γ :=

ve(P, 0) ∈ Γ and take g ∈ K with vg = γ. Now (Pϕ1 )×g ≍ P0, eventually,

and nmulP = 1 gives P (0) ≺ Pϕ1 , eventually, hence g ≺ 1. Moreover, for j ⩾ 2,

Pϕ1 ≽ Pϕj , eventually, so (Pϕ1 )×g ≻ (Pϕj )×g, eventually, by [ADH, 6.1.3]. Thus

for j ⩾ 1 we have (Pϕ×g)j = (Pϕj )×g ≼ P (0), eventually; in particular, there is

no y ≺ 1 in any H-asymptotic extension of K with P×g(y) = 0. Since P (â) = 0,
this yields v(â) ⩽ γ = ve(P, 0). □

Here is a situation where v(â− a) = ve(P, a):

Lemma 1.8.15. Suppose Ψ is cofinal in ΨK̂ , â − a ≺ 1, and v(â − a) /∈ E e
K̂
(A)

where A := LP+a
. Then v(â− a) = ve(P, a).

Proof. Note that K̂ is ungrounded, so E e
K̂
(A) is defined, and K̂ is pre-d-valued.

As in the proof of Lemma 1.8.14 we arrange a = 0. As an asymptotic subfield

of K̂, K⟨â⟩ is pre-d-valued. Hence K⟨â⟩ is ω-free by Theorem 1.4.1. The remarks
preceding Lemma 1.8.14 then allow us to replace K by K⟨â⟩ to arrange â ∈ K.
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The case â = 0 is trivial, so assume 0 ̸= â ≺ 1. Now nmulP = 1 gives for j ⩾ 2

that Pϕ1 ≽ Pϕj , eventually, hence (Pϕ1 )×â ≻ (Pϕj )×â, eventually, by [ADH, 6.1.3].

Moreover, P1(â) = A(â) = Aϕ(â) ≍ Aϕâ, eventually, using v(â) /∈ E e
K̂
(A) in the

last step, so for j ⩾ 2, eventually

P1(â) ≍ (Pϕ1 )×â ≻ (Pϕj )×â ≽ P
ϕ
j (â) = Pj(â).

Also P1(â) ̸= 0, sinceAϕâ ̸= 0. Then P (â) = 0 gives P (0) ≍ P1(â). Thus v
(
P (0)

)
=

vAϕ

(
v(â)

)
, eventually, so ve(P, 0) = v(â) by the definition of ve(P, 0). □

Corollary 1.8.16. Suppose K̂ is ungrounded and equipped with an ordering making
it a pre-H-field, and assume â − a ≺ 1 and v(â − a) /∈ E e

K̂
(A) where A := LP+a

.

Then v(â− a) = ve(P, a).

Proof. In view of Lemma 1.5.1 and using [ADH, 14.5.11] we can extend K̂ to
arrange that it is an ω-free newtonian Liouville closed H-field. Next, let H be

the real closure of the H-field hull of K⟨â⟩, all inside K̂. Then H is ω-free, by

Theorem 1.4.1, and hence has a Newton-Liouville closure L inside K̂ [ADH, 14.5].

Since L ≼ K̂ by [ADH, 16.2.5], we have v(â− a) /∈ E e
L(A). Now L is d-algebraic

over K by [ADH, 14.5.9], so Ψ is cofinal in ΨL by Theorem 1.4.1. It remains to
apply Lemma 1.8.15. □

Newton position in the order 1 case. In this subsection K is λ-free, P ∈ K{Y }
has order 1, and a ∈ K. We basically copy here a definition and two lemmas
from [ADH, 14.3] with the ω-free assumption there replaced by the weaker λ-
freeness, at the cost of restricting P to have order 1.

Suppose nmulP = 1, P0 ̸= 0. Then [ADH, 11.6.17] yields g ∈ K× with P0 ≍
Pϕ1,×g, eventually. Since P0 ≺ Pϕ1 , eventually, we have g ≺ 1. Moreover, if i ⩾ 2,

then Pϕ1 ≽ P
ϕ
i , eventually, hence P

ϕ
1,×g ≻ Pϕi,×g, eventually. Thus ndegP×g = 1.

Define P to be in newton position at a if nmulP+a = 1. Suppose P is
in newton position at a; set Q := P+a, so Q(0) = P (a). If P (a) ̸= 0, then the

above yields g ∈ K× with P (a) = Q(0) ≍ Qϕ1,×g, eventually; as vg does not

depend on the choice of such g, we set ve(P, a) := vg. If P (a) = 0, then we
set ve(P, a) := ∞ ∈ Γ∞. In passing from K to a λ-free extension, P remains in
newton position at a and ve(P, a) does not change, by Lemma 1.8.8. In the rest of
this subsection we assume P is in newton position at a.

Lemma 1.8.17. If P (a) ̸= 0, then there exists b ∈ K with the following properties:

(i) P is in newton position at b, v(a− b) = ve(P, a), and P (b) ≺ P (a);
(ii) for all b∗ ∈ K with v(a− b∗) ⩾ ve(P, a): P (b∗) ≺ P (a) ⇔ a− b ∼ a− b∗;
(iii) for all b∗ ∈ K, if a − b ∼ a − b∗, then P is in newton position at b∗

and ve(P, b∗) > ve(P, a).

This is shown as in [ADH, 14.3.2]. Next an analogue of [ADH, 14.3.3], with the
same proof, but using Lemma 1.8.17 in place of [ADH, 14.3.2]:

Lemma 1.8.18. If there is no b with P (b) = 0 and v(a−b) = ve(P, a), then there is
a divergent pc-sequence (aρ)ρ<λ in K, indexed by all ordinals ρ smaller than some
infinite limit ordinal λ, such that a0 = a, v(aρ−aρ′) = ve(P, aρ) for all ρ < ρ′ < λ,
and P (aρ)⇝ 0.

The next result is proved just like Lemma 1.8.14:
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Lemma 1.8.19. If P (â) = 0 with â in an H-asymptotic extension of K, then
ve(P, a) > 0 and v(â− a) ⩽ ve(P, a).

Next an analogue of Lemma 1.8.15 using Propositions 1.4.8 and 1.4.12 in its proof:

Lemma 1.8.20. Suppose â in an ungrounded H-asymptotic extension K̂ of K sat-
isfies P (â) = 0, â−a ≺ 1, and v(â−a) /∈ E e

K̂
(A), where A := LP+a . Then v(â− a) =

ve(P, a).

Proof. We arrange a = 0 and assume â ̸= 0. Then L := K⟨â⟩ has asymptotic
integration, by Proposition 1.4.12, and v(â) /∈ E e

L(A) by Lemma 1.5.10 (applied

with L, K̂ in place of K, L). Moreover, Ψ is cofinal in ΨL by Proposition 1.4.8.
As in the proof of Lemma 1.8.15 this leads to P1(â) = A(â) = Aϕ(â) ≍ Aϕâ,
eventually, and then as in the rest of that proof we derive ve(P, 0) = v(â). □

Zeros of differential polynomials of order and degree 1. In this subsection K
has asymptotic integration. We fix a differential polynomial

P (Y ) = a(Y ′ + gY − u) ∈ K{Y } (a, g, u ∈ K, a ̸= 0),

and set A := LP = a(∂+ g) ∈ K[∂]. Section 1.2 gives for y ∈ K the equivalence y ∈
I(K) ⇔ vy > Ψ, so by Section 1.5, E e(A) = ∅ ⇔ g /∈ I(K) +K†, and v(ker ̸=

K̂
A) ⊆

E e(A) for each immediate H-asymptotic field extension K̂ of K. Thus:

Lemma 1.8.21. If g /∈ I(K) +K†, then each immediate H-asymptotic extension
of K contains at most one y such that P (y) = 0.

If ∂K = K and g ∈ K†, then P (y) = 0 for some y ∈ K, and if moreover K is d-
valued, then any y in any immediate H-asymptotic extension of K with P (y) = 0
lies in K. (Lemma 1.2.2.) If y ≺ 1 in an immediate H-asymptotic extension of K
satisfies P (y) = 0, then by [ADH, 11.2.3(ii), 11.2.1] we have

nmulP = nmulP+y = mulP+y = 1.

Lemma 1.8.18 yields the following partial converse (a variant of [11, Lemma 8.5]):

Corollary 1.8.22. Suppose K is λ-free and nmulP = 1. Then there is a y ≺ 1 in
an immediate H-asymptotic extension of K with P (y) = 0.

Proof. ReplacingK by its henselization and using [ADH, 11.6.7], we arrange thatK
is henselian. Suppose that P has no zero in O. Then P is in newton position at 0,
and so Lemma 1.8.18 yields a divergent pc-sequence (aρ)ρ<λ in K, indexed by all
ordinals ρ smaller than some infinite limit ordinal λ, with a0 = 0, v(aρ − aρ′) =
ve(P, aρ) for all ρ < ρ′ < λ, and P (aρ) ⇝ 0. Since degP = orderP = 1 and K
is henselian, P is a minimal differential polynomial of (aρ) over K, and v(aρ) =
ve(P, 0) > 0 for all ρ > 0. Hence [ADH, 9.7.6] yields a pseudolimit y of (aρ) in an
immediate asymptotic extension of K with P (y) = 0 and y ≺ 1, as required. □

We say that P is proper if u ̸= 0 and g + u† ≻♭ 1. If P is proper, then so is bP
for each b ∈ K×. For m ∈ K× we have

P×m = am
(
Y ′ + (g +m†)Y − um−1

)
,

hence if P is proper, then so is P×m. If u ̸= 0, then P is proper iff a−1A⋉u =
∂ + (g + u†) is steep, as defined in Section 1.5. Note that

Pϕ = aϕ
(
Y ′ + (g/ϕ)Y − (u/ϕ)

)
.
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Lemma 1.8.23. Suppose K has small derivation, and P is proper. Then Pϕ is
proper (with respect to Kϕ) for all ϕ ≼ 1.

Proof. Let ϕ ≼ 1. Then we have ϕ ≍♭ 1 and hence ϕ† ≍♭ ϕ′ ≼ 1 ≺♭ g + u†. Thus

g + (u/ϕ)† = (g + u†)− ϕ† ∼♭ g + u† ≻♭ 1 ≽ ϕ,

hence (g/ϕ) + ϕ−1(u/ϕ)† ≻♭ 1 and so (g/ϕ) + ϕ−1(u/ϕ)† ≻♭ϕ 1. Therefore Pϕ is

proper (with respect to Kϕ). □

Lemma 1.8.24. Suppose K is λ-free and u ̸= 0. Then there is an active ϕ0 in K
such that for all ϕ ≺ ϕ0, P

ϕ is proper with g + (u/ϕ)† ∼ g + (u/ϕ0)
†.

Proof. The argument before Corollary 1.5.15 yields an active ϕ0 in K such that

u† + g − ϕ† ≽ ϕ0 for all ϕ ≺ ϕ0. For such ϕ we have ϕ† − ϕ†0 ≺ ϕ0 as noted
just before [ADH, 11.5.3], and so (u/ϕ)† + g ∼ (u/ϕ0)

† + g. The argument before
Corollary 1.5.15 also gives ϕ−1(u/ϕ)† + g/ϕ ≻♭ϕ 1 eventually, and if ϕ−1(u/ϕ)† +

g/ϕ ≻♭ϕ 1, then Pϕ is proper. □

Lemma 1.8.25. We have nmulP = 1 iff u ≺ g or u ∈ I(K). Moreover, if K is
λ-free, nmulP = 1, and u ̸= 0, then u ≺♭ϕ g + (u/ϕ)†, eventually.

Proof. For the equivalence, note that the identity above for Pϕ yields:

nmulP = 0 ⇐⇒ u ≽ g, and u/ϕ ≽ 1 eventually.

Suppose K is λ-free, nmulP = 1, and u ̸= 0. If u ∈ I(K), then u ≺ ϕ ≺♭ϕ g+(u/ϕ)†,

eventually, by Lemma 1.8.24. Suppose u /∈ I(K). Then v(u) ∈ Ψ↓ and u ≺ g. Hence
by [ADH, 9.2.11] we have (u/ϕ)† ≺ u ≺ g, eventually, and thus u ≺ g ∼ g+(u/ϕ)†,
eventually. Thus u ≺♭ϕ g + (u/ϕ)†, eventually. □

Assume now P (y) = 0 with y in an immediate H-asymptotic extension of K;
so A(y) = u. Note: if vy ∈ Γ \ E e(A), then u ̸= 0. From Lemma 1.5.14 we get:

Lemma 1.8.26. If K has small derivation, P is proper, and vy ∈ Γ \ E e(A),
then y ∼ u/(g + u†).

By Lemmas 1.8.24 and 1.8.26, and using Lemma 1.8.25 for the last part:

Corollary 1.8.27. If K is λ-free and vy ∈ Γ \ E e(A), then

y ∼ u/
(
g + (u/ϕ)†

)
eventually.

If in addition nmulP = 1, then y ≺ 1.

A characterization of 1-linear newtonianity. In this subsection K has asymp-
totic integration. We first expand [ADH, 14.2.4]:

Proposition 1.8.28. The following are equivalent:

(i) K is 1-linearly newtonian;
(ii) every P ∈ K{Y } with nmulP = degP = 1 and orderP ⩽ 1 has a zero

in O;
(iii) K is d-valued, λ-free, and 1-linearly surjective, with I(K) ⊆ K†.
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Proof. The equivalence of (i) and (ii) is [ADH, 14.2.4], and the implication (i)⇒ (iii)
follows from [ADH, 14.2.2, 14.2.3, 14.2.5]. To show (iii) ⇒ (ii), suppose (iii) holds,
and let g, u ∈ K and P = Y ′ + gY − u with nmulP = 1. We need to find y ∈ O

such that P (y) = 0. Corollary 1.8.22 gives an element y ≺ 1 in an immediate
H-asymptotic extension L of K with P (y) = 0. It suffices to show that then y ∈ K
(and thus y ∈ O). If g /∈ K†, then this follows from Lemma 1.8.21, using I(K) ⊆ K†

and 1-linear surjectivity of K; if g ∈ K†, then this follows from Lemma 1.2.2
and ∂K = K. □

By the next corollary, each Liouville closed H-field is 1-linearly newtonian:

Corollary 1.8.29. Suppose K† = K. Then the following are equivalent:

(i) K is 1-linearly newtonian;
(ii) K is d-valued and 1-linearly surjective;
(iii) K is d-valued and ∂K = K.

Proof. Note that K is λ-free by [ADH, remarks following 11.6.2]. Hence the equiv-
alence of (i) and (ii) follows from Proposition 1.8.28. For the equivalence of (ii)
with (iii), see [ADH, example following 5.5.22]. □

Linear newtonianity descends. In this subsection H is d-valued with valuation
ring O and constant field C. Let r ∈ N⩾1. If H is ω-free, Γ is divisible, and H has
a newtonian algebraic extension K = H(CK), then H is also newtonian, by [ADH,
14.5.6]. Here is an analogue of this for r-linear newtonianity:

Lemma 1.8.30. Let K = H(CK) be an algebraic asymptotic extension of H which
is r-linearly newtonian. Then H is r-linearly newtonian.

Proof. Take a basis B of the C-linear space CK with 1 ∈ B, and let b range over B.
We haveH(CK) = H[CK ], andH is linearly disjoint from CK over C [ADH, 4.6.16],
so B is a basis of the H-linear space H[CK ]. Let P ∈ H{Y } with degP = 1
and order(P ) ⩽ r be quasilinear; then P as element of K{Y } remains quasilinear,
since ΓK = Γ by [ADH, 10.5.15]. Let y ∈ OK be a zero of P . Take yb ∈ H (b ∈ B)
with yb = 0 for all but finitely many b and y =

∑
b yb b. Then yb ∈ O for all b, and

0 = P (y) = P0 + P1(y) = P0 +
∑
b

P1(yb)b,

so P (y1) = P0 + P1(y1) = 0. □

Thus if H[i] with i2 = −1 is r-linearly newtonian, then H is r-linearly newtonian.

Cases of bounded order. In the rest of this section r ∈ N⩾1. Define K
to be strongly r-newtonian if K is r-newtonian and for each divergent pc-
sequence (aρ) in K with minimal differential polynomial G(Y ) over K of order ⩽ r
we have ndegaG = 1, where a := cK(aρ). Given P ∈ K{Y }̸=, a K-external

zero of P is an element â of some immediate asymptotic extension K̂ of K such
that P (â) = 0 and â /∈ K. Now [ADH, 14.1.11] extends as follows with the same
proof:

Lemma 1.8.31. Suppose K has rational asymptotic integration and K is strongly
r-newtonian. Then no P ∈ K{Y } ̸= of order ⩽ r can have a K-external zero.

The following is important in certain inductions on the order.
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Lemma 1.8.32. Suppose K has asymptotic integration, is 1-linearly newtonian,
and r-linearly closed. Then K is r-linearly newtonian.

Proof. Note that K is λ-free and d-valued by Proposition 1.8.28. Let P ∈ K{Y } be
such that nmulP = degP = 1 and orderP ⩽ r; by [ADH, 14.2.6] it suffices to show
that then P has a zero in O. By [ADH, proof of 13.7.10] we can compositionally
conjugate, pass to an elementary extension, and multiply by an element of K× to
arrange that K has small derivation, P0 ≺♭ 1, and P1 ≍ 1. Let A := LP . The
valuation ring of the flattening (K, v♭) is 1-linearly surjective by [ADH, 14.2.1], so
all operators in K[∂] of order 1 are neatly surjective in the sense of (K, v♭). Since A
splits over K, we obtain from [ADH, 5.6.10(ii)] that A is neatly surjective in the
sense of (K, v♭). As v♭(A) = 0 and v♭(P0) > 0, this gives y ∈ K with v♭(y) > 0
such that P0 +A(y) = 0, that is, P (y) = 0. □

Using the terminology of K-external zeros, we can add another item to the list of
equivalent statements in Proposition 1.8.28:

Lemma 1.8.33. Suppose K has asymptotic integration. Then we have:

K is 1-linearly newtonian ⇐⇒ K is λ-free and no P ∈ K{Y } with degP = 1

and orderP = 1 has a K-external zero.

Proof. SupposeK is 1-linearly newtonian. Then by (i)⇒ (iii) in Proposition 1.8.28,
K is λ-free, d-valued, 1-linearly surjective, and I(K) ⊆ K†. Let P ∈ K{Y }
where degP = orderP = 1 and y in an immediate asymptotic extension L of K
with P (y) = 0. Then [ADH, 9.1.2] and Corollary 1.2.11 give L†∩K = K†, so y ∈ K
by Lemmas 1.2.2 and 1.2.3. This gives the direction ⇒. The converse follows from
Corollary 1.8.22 and (ii) ⇒ (i) in Proposition 1.8.28. □

Here is a higher-order version of Lemma 1.8.33:

Lemma 1.8.34. Suppose K is ω-free. Then

K is r-linearly newtonian ⇐⇒ no P ∈ K{Y } with degP = 1 and orderP ⩽ r

has a K-external zero.

Proof. Suppose K is r-linearly newtonian. Then K is d-valued by Lemma 1.2.9.
Let P ∈ K{Y } be of degree 1 and order ⩽ r, and let y be in an immediate
asymptotic extension L of K with P (y) = 0. Then A(y) = b for A := LP ∈
K[∂], b := −P (0) ∈ K. By [ADH, 14.2.2] there is also a z ∈ K with A(z) = b,
hence y − z ∈ kerLA = kerA by [ADH, remarks after 14.2.9] and so y ∈ K. This
gives the direction ⇒. For the converse note that every quasilinear P ∈ K{Y }
has a zero â ≼ 1 in an immediate asymptotic extension of K by [ADH, 14.0.1 and
subsequent remarks]. □

We also have the following r-version of [ADH, 14.0.1]:

Proposition 1.8.35. If K is λ-free and no P ∈ K{Y } ̸= of order ⩽ r has a K-
external zero, then K is ω-free and r-newtonian.

Proof. The ω-freeness follows as before from [ADH, 11.7.13]. The rest of the proof
is as in [ADH, p. 653] with P restricted to have order ⩽ r. □
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Application to solving asymptotic equations. Here K is d-valued, ω-free,
with small derivation, and M is a monomial group of K. We let a, b, y range
over K. In addition we fix a P ∈ K{Y }̸= of order ⩽ r and a ≼-closed set E ⊆ K×.
(Recall that r ⩾ 1.) This gives the asymptotic equation

(E) P (Y ) = 0, Y ∈ E .

This gives the following r-version of [ADH, 13.8.8], with basically the same proof:

Proposition 1.8.36. Suppose Γ is divisible, no Q ∈ K{Y }̸= of order ⩽ r has a
K-external zero, d := ndegE P ⩾ 1, and there is no f ∈ E ∪ {0} with mulP+f = d.
Then (E) has an unraveler.

Here is an r-version of [ADH, 14.3.4] with the same proof:

Lemma 1.8.37. Suppose K is r-newtonian. Let g ∈ K× be an approximate zero
of P with ndegP×g = 1. Then there exists y ∼ g such that P (y) = 0.

For the next three results we assume the following:

C is algebraically closed, Γ is divisible, and no Q ∈ K{Y }̸= of order ⩽ r has a
K-external zero.

These three results are r-versions of [ADH, 14.3.5, 14.3.6, 14.3.7] with the same
proofs, using Propositions 1.8.35 and 1.8.36 instead of [ADH, 14.0.1, 13.8.8]:

Proposition 1.8.38. If ndegE P > mul(P ) = 0, then (E) has a solution.

Corollary 1.8.39. K is weakly r-differentially closed.

Corollary 1.8.40. Suppose g ∈ K× is an approximate zero of P . Then P (y) = 0
for some y ∼ g.

A useful equivalence. Suppose K is ω-free. (No small derivation or monomial
group assumed.) Recall that r ⩾ 1. Here is an r-version of [159, 3.4]:

Corollary 1.8.41. The following are equivalent:

(i) K is r-newtonian;
(ii) K is strongly r-newtonian;
(iii) no P ∈ K{Y } ̸= of order ⩽ r has a K-external zero.

Proof. Since K is ω-free it has rational asymptotic integration [ADH, p. 515]. Also,
if K is 1-newtonian, then K is henselian [ADH, p. 645] and d-valued [ADH, 14.2.5].
For (i) ⇒ (ii), use [159, 3.3], for (ii) ⇒ (iii), use Lemma 1.8.31, and for (iii) ⇒ (i),
use Proposition 1.8.35. □

Next an r-version of [ADH, 14.5.3]:

Corollary 1.8.42. Suppose K is r-newtonian, Γ is divisible, and C is algebraically
closed. Then K is weakly r-differentially closed, so K is (r+1)-linearly closed and
thus (r + 1)-linearly newtonian.

Proof. To show that K is weakly r-differentially closed we arrange by composi-
tional conjugation and passing to a suitable elementary extension that K has small
derivation and K has a monomial group. Then K is weakly r-differentially closed
by Corollaries 1.8.39 and 1.8.41. The rest uses [ADH, 5.8.9] and Lemma 1.8.32. □
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Complementing [ADH, 14.2.12] (∗). In this subsection P (Y ) ∈ O{Y } has order
at most r ∈ N⩾1.

Lemma 1.8.43. Let y ∈ K×, y′ ≼ y ≺ 1, and P (0) = P (y). Then LP (y) ≺ y.

Proof. Induction on n gives y(n) ≼ y(n−1) ≼ · · · ≼ y ≺ 1 for all n. Hence if i =
(i0, . . . , ir) ∈ N1+r, |i| ⩾ 2, then yi = yi0(y′)i1 · · · (y(r))ir ≼ y|i| ≺ y. Now

P (y) = P (0) + LP (y) +
∑
|i|⩾2

Pi y
i,

so LP (y) +
∑

|i|⩾2 Pi y
i = 0, and thus LP (y) ≺ y. □

We extend the residue map a 7→ res a : O → k := res(K) to the ring morphism

p 7→ res p : O[Y ] → k[Y ], Y 7→ Y.

For w ∈ N we let P[w] be the isobaric part of P of weight w, as in [ADH, 4.2].
Thus p := P[0] ∈ O[Y ].

Corollary 1.8.44. Suppose the derivation of K is very small, and let a ∈ O, y ∈ O

with P (a) = P (a+ y) and (res p)′(res a) ̸= 0. Then y′ ≽ y.

Proof. Put R :=
∑
w⩾1 P[w] = P − p. Now a(n) ≺ 1 for all n ⩾ 1, so

(
∂R
∂Y

)
(a) ≺ 1.

Towards a contradiction, assume y′ ≺ y. Then LP+a
(y) ≺ y by Lemma 1.8.43

applied to P+a in place of P . Induction on n gives y(n) ≺ y(n−1) ≺ · · · ≺ y ≺ 1
for all n and so LR+a(y) =

∑
n

(
∂R

∂Y (n)

)
(a)y(n) ≺ y. Together with LP+a(y) =

p′(a)y + LR+a(y) and p
′(a) ≍ 1 this yields the desired contradiction. □

In the next corollary we assume that K has asymptotic integration. We let ϕ range
over active elements of K, and we let O♭ϕ = {f ∈ O : f ′ ≽ fϕ} be the maximal ideal

of the flattened valuation ring of Kϕ; cf. [ADH, pp. 406–407].

Corollary 1.8.45. Suppose K is r-newtonian. Let u ∈ O and A ∈ k[Y ] be such
that A(resu) = 0, A′(resu) ̸= 0, and DPϕ ∈ k×A, eventually. Then P has a zero
in u+ O, and for all zeros a, b ∈ u+ O of P we have: a− b ∈ O♭ϕ, eventually.

Proof. For the first claim, see [ADH, 14.2.12]. Suppose DPϕ ∈ k×A and take m ∈
K× with m ≍ Pϕ, so Q := m−1Pϕ ∈ Kϕ{Y } and q := Q[0] satisfy vQ = 0

and res q ∈ k×A. Note that K is d-valued by [ADH, 14.2.5]; hence Kϕ has very
small derivation. Let a, b ∈ u + O and P (a) = P (b) = 0; then y := b − a ∈ O, and
so Corollary 1.8.44 applied to Kϕ, Q in place of K, P yields y′ ≽ yϕ. □

Newton polynomials of Riccati transforms (∗). In this subsection we assume
that K has small derivation and asymptotic integration. Let

A = a0 + a1∂ + · · ·+ ar∂
r ∈ K[∂] where a0, . . . , ar ∈ K, ar ̸= 0,

with Riccati transform

R := Ri(A) = a0R0(Z) + a1R1(Z) + · · ·+ arRr(Z) ∈ K{Z},
and set

P := a0 + a1Z + · · ·+ arZ
r ∈ K[Z].

We equip the differential fraction field K⟨Z⟩ of K{Z} with the gaussian extension
of the valuation of K and likewise with Kϕ instead of K. Then Kϕ⟨Z⟩ is a valued
differential field with small derivation by [ADH, 6.3]. (Although K is asymptotic,
K⟨Z⟩ is not, by [ADH, 9.4.6].)
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Lemma 1.8.46. Eventually, Rϕ ∼ P .

Proof. It is enough to show that Rn(Z)
ϕ ∼ Zn eventually. For n = 0, 1 we

have Rn(Z) = Zn. Now Rn+1(Z) = ZRn(Z) + ∂
(
Rn(Z)

)
, so by [ADH, 5.7.1],

Rn+1(Z)
ϕ = ZRn(Z)

ϕ + ϕδ
(
Rn(Z)

ϕ
)
, δ := ϕ−1

∂.

Assuming Rn(Z)
ϕ ∼ Zn eventually, this yields Rn+1(Z)

ϕ ∼ Zn+1 eventually . □

Remark. Suppose K is d-valued and equipped with a monomial group. In [ADH,
13.0.1] we associate to Q ∈ K{Z} ̸= its Newton polynomial NQ ∈ C{Z} such
that DQϕ = NQ, eventually. Then NR = DP ∈ C[Z] by Lemma 1.8.46.

Next an application of Lemma 1.8.46. For simplicity, assume vA = 0, so P ∈ O[Z],
vP = 0. We also let Q 7→ resQ : O[Z] → k[Z] be the extension of the residue
map a 7→ res a : O → k to a ring morphism with Z 7→ Z.

Corollary 1.8.47. Suppose K is (r − 1)-newtonian, r ⩾ 1. Then for all α ∈ k
with resP (α) = 0 and (resP )′(α) ̸= 0 there is a ∈ O with R(a) = 0 and res a = α.

Proof. If r = 1, use R = P = a0 + a1Z. Assume r ⩾ 2. By Lemma 1.8.46 we
have DRϕ ∈ k× · resP , eventually, so we can apply [ADH, 14.2.12] to R, resP in
the role of P , A there. □

In the rest of this subsection we assume A ∈ O[∂] is monic. To what extent is the
zero a of R in Corollary 1.8.47 unique? Corollaries 1.8.49 and 1.8.50 below give
answers to this question.

Lemma 1.8.48. Let a, b ∈ O be such that R(a) = R(b) = 0 and y := b − a ≺ 1.
Then y′ ≼ y.

Proof. Replace R by R+a to arrange a = 0, b = y, so a0 = 0. Note that r ⩾ 1.
Towards a contradiction, assume y ≺ y′. Then Rn(y) ∼ y(n−1) for all n ⩾ 1 by
Lemma 1.1.21, and y ≺ y′ ≺ · · · ≺ y(r−1), so

R(y) = a1R1(y) + · · ·+ ar−1Rr−1(y) +Rr(y) ∼ y(r−1),

hence R(y) ̸= 0, a contradiction. □

Corollary 1.8.49. Suppose K has very small derivation, α ∈ k is a simple zero
of resP , and a, b ∈ O, R(a) = R(b) = 0, and res a = res b = α. Then for y := b− a
we have y′ ≍ y.

Proof. We have y′ ≼ y by Lemma 1.8.48, and y′ ≽ y by Corollary 1.8.44 applied
to R in place of P , using R[0] = P . □

In the next result we assume K = H[i] where H is a real closed differential subfield
of K such that the valuation ring OH := O ∩H of H is convex with respect to the
ordering of H and OH = CH +OH . So C = CH [i] and O = C+O (cf. remarks after
Corollary 1.2.5). We identify C with k via the residue morphism O → k.

Corollary 1.8.50. Let α ∈ C be a simple zero of resP ∈ C[Z] such that for all
zeros β ∈ C of resP we have Reα ⩽ Reβ. Then there is at most one a ∈ O
with R(a) = 0 and res a = α.
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Proof. Let a ∈ O, R(a) = 0, and res a = α. Towards a contradiction, suppose
b ∈ O, b ̸= a, R(b) = 0, and res b = α. By Lemma 1.1.27 we may replace a, R
by 0, R+a to arrange a = 0. Then 0 ̸= b ≺ 1 and a0 = R(0) = 0, so P = QZ
where Q ∈ O[Z] and all zeros of resQ in C have nonnegative real part. Moreover
b′ ≍ b by Corollary 1.8.49. Take c ∈ C× with b′ ∼ bc. By Lemma 1.1.21 and [ADH,
9.1.4(ii)] we get Rn(b) ∼ b(n−1) ∼ bcn−1 for n ⩾ 1. Now R = a1R1 + · · · + arRr
gives Q = a1 + · · ·+ arZ

r−1, so R(b) ∈ b ·
(
Q(c) + O

)
, hence (resQ)(c) = 0 in view

of R(b) = 0, and thus Re c ⩾ 0. On the other hand, b ≺ 1 and Corollary 1.2.6
give Re(b†) < 0, so Re c < 0, a contradiction. □
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Part 2. The Universal Exponential Extension

Let K be an algebraically closed differential field. In Section 2.2 below we extend K
in a canonical way to a differential integral domain U = UK whose differential
fraction field has the same constant field C as K, called the universal exponential
extension of K. (The universal exponential extension of T[i] appeared in [103]
in the guise of “oscillating transseries”; we explain the connection at the end of
Section 2.5.) The underlying ring of U is a group ring of a certain abelian group
over K, and we therefore first review some relevant basic facts about such group
rings in Section 2.1. The main feature of U is that if K is 1-linearly surjective,
then each A ∈ K[∂] of order r ∈ N which splits over K has r many C-linearly
independent zeros in U. This is explained in Section 2.5, after some differential-
algebraic preliminaries in Sections 2.3 and 2.4, where we consider a novel kind of
spectrum of a linear differential operator over a differential field. In Section 2.6 we
introduce for H-asymptotic K with small derivation and asymptotic integration
the ultimate exceptional values of a given linear differential operator A ∈ K[∂] ̸=.
These help to isolate the zeros of A in U much like the exceptional values of A help
to locate the zeros of A in immediate asymptotic extensions of K as in Section 1.5.
In Section 5.10 below we discuss the analytic meaning of U when K is the algebraic
closure of a Liouville closed Hardy field containing R as a subfield.

2.1. Some Facts about Group Rings

In this section G is a torsion-free abelian group, written multiplicatively, K is a
field, and γ, δ range over G. For use in Section 2.2 below we recall some facts
about the group ring K[G]: a commutative K-algebra with 1 ̸= 0 that contains G
as a subgroup of its multiplicative group K[G]× and which, as a K-linear space,
decomposes as

K[G] =
⊕
γ

Kγ (internal direct sum).

Hence for any f ∈ K[G] we have a unique family (fγ) of elements of K, with fγ = 0
for all but finitely many γ, such that

(2.1.1) f =
∑
γ

fγγ.

We define the support of f ∈ K[G] as above by

supp(f) := {γ : fγ ̸= 0} ⊆ G.

In the rest of this section f , g, h range over K[G]. For any K-algebra R, every
group morphism G→ R× extends uniquely to a K-algebra morphism K[G] → R.

Clearly K[G]× ⊇ K×G; in fact:

Lemma 2.1.1. The ring K[G] is an integral domain and K[G]× = K×G.

Proof. We take an ordering of Gmaking G into an ordered abelian group; see [ADH,
2.4]. Let f, g ̸= 0 and set

γ− := min supp(f), γ+ := max supp(f), δ− := min supp(g), δ+ := max supp(g);
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so γ− ⩽ γ+ and δ− ⩽ δ+. We have (fg)γ−δ− = fγ−gδ− ̸= 0, and likewise
with γ+, δ+ in place of γ−, δ−. In particular, fg ̸= 0, showing that K[G] is an inte-
gral domain. Now suppose fg = 1. Then supp(fg) = {1}, hence γ−δ− = 1 = γ+δ+,
so γ− = γ+, and thus f ∈ K×G. □

Lemma 2.1.2. Suppose K has characteristic 0 and G ̸= {1}. Then the fraction
field Ω of K[G] is not algebraically closed.

Proof. Let γ ∈ G\{1} and n ⩾ 1. We claim that there is no y ∈ Ω with y2 = 1−γn.
For this, first replace G by its divisible hull to arrange that G is divisible. Towards
a contradiction, suppose f, g ∈ K[G]̸= and f2 = g2(1 − γn). Take a divisible
subgroup H of G that is complementary to the smallest divisible subgroup γQ of G
containing γ, so G = HγQ and G∩γQ = {1}. ThenK[G] ⊆ K(H)[γQ] (inside Ω), so
we may replace K, G byK(H), γQ to arrange G = γQ. For suitablem ⩾ 1 we apply
the K-algebra automorphism of K[G] given by γ 7→ γm to arrange f, g ∈ K[γ, γ−1]
(replacing n by mn). Then replace f , g by γmf , γmg for suitable m ⩾ 1 to
arrange f, g ∈ K[γ]. Now use that 1−γ is a prime divisor of 1−γn of multiplicity 1
in the UFD K[γ] to get a contradiction. □

The K-linear map

f 7→ tr(f) := f1 : K[G] → K

is called the trace of K[G]. Thus

tr(fg) =
∑
γ

fγgγ−1 .

We claim that tr ◦σ = tr for every automorphism σ of the K-algebra K[G]. This
invariance comes from an intrinsic description of tr(f) as follows: given f we have
a unique finite set U ⊆ K[G]× = K×G such that f =

∑
u∈U u and u1/u2 /∈ K×

for all distinct u1, u2 ∈ U ; if U ∩ K× = {c}, then tr(f) = c; if U ∩ K× = ∅,
then tr(f) = 0. If G0 is a subgroup of G and K0 is a subfield of K, then K0[G0] is
a subring of K[G], and the trace of K[G] extends the trace of K0[G0].

The automorphisms of K[G]. For a commutative group H, written multiplica-
tively, Hom(G,H) denotes the set of group morphisms G → H, made into a
group by pointwise multiplication. Any χ ∈ Hom(G,K×)—sometimes called a
character—gives a K-algebra automorphism f 7→ fχ of K[G] defined by

(2.1.2) fχ :=
∑
γ

fγχ(γ)γ.

This yields a group action of Hom(G,K×) on K[G] by K-algebra automorphisms:

Hom(G,K×)×K[G] → K[G], (χ, f) 7→ fχ.

Sending χ ∈ Hom(G,K×) to f 7→ fχ yields an embedding of the group Hom(G,K×)
into the group Aut(K[G]|K) of automorphisms of the K-algebra K[G]; its image
is the (commutative) subgroup of Aut(K[G]|K) consisting of the K-algebra auto-
morphisms σ of K[G] such that σ(γ)/γ ∈ K× for all γ. Identify Hom(G,K×) with
its image under this embedding. From K[G]× = K×G we obtain σ(K×G) = K×G
for all σ ∈ Aut(K[G]|K), and using this one verifies easily that Hom(G,K×) is a
normal subgroup of Aut(K[G]|K). We also have the group embedding

Aut(G) → Aut(K[G]|K)
75



assigning to each σ ∈ Aut(G) the unique automorphism of the K-algebra K[G]
extending σ. Identifying Aut(G) with its image in Aut(K[G]|K) via this embedding
we have Hom(G,K×)∩Aut(G) = {id} and Hom(G,K×) ·Aut(G) = Aut(K[G], |K)
inside Aut(K[G]|K), and thus Aut(K[G]|K) = Hom(G,K×)⋊Aut(G), an internal
semidirect product of subgroups of Aut(K[G]|K).

The gaussian extension. In this subsection v : K× → Γ is a valuation on the
field K. We extend v to a map vg : K[G]̸= → Γ by setting

(2.1.3) vgf := min
γ
vfγ (f ∈ K[G] ̸= as in (2.1.1)).

Proposition 2.1.3. The map vg : K[G] ̸= → Γ is a valuation on the domain K[G].

Proof. We can reduce to the case that G is finitely generated, since K[G] is the di-
rected union of its subringsK[G0] with G0 a finitely generated subgroup of G. Then
we have a group isomorphism G→ Zn inducing a K-algebra isomorphism K[G] →
K[X1, X

−1
1 , . . . , Xn, X

−1
n ] (with distinct indeterminatesX1, . . . , Xn) under which vg

corresponds to the gaussian extension of the valuation of K to K(X) restricted to
its subring K[X1, X

−1
1 , . . . , Xn, X

−1
n ]; see [ADH, Section 3.1]. □

We call vg the gaussian extension of the valuation of K to K[G]. We denote
by ≼g the dominance relation on Ω := Frac(K[G]) associated to the extension
of vg to a valuation on the field Ω [ADH, (3.1.1)], with corresponding asymptotic
relations ≍g and ≺g. For the subring O[G] of K[G] generated by G over O we have

O[G] = {f : f ≼g 1}.
The residue morphism O → k := O/O extends to a surjective ring morphism
O[G] → k[G] with γ 7→ γ for all γ and whose kernel is the ideal

O[G] := {f : f ≺g 1}
of O[G]. Hence this ring morphism induces an isomorphism O[G]/O[G] ∼= k[G].
If G0 is subgroup of G and K0 is a valued subfield of K, then the restriction of vg
to a valuation on K0[G0] is the gaussian extension of the valuation of K0 to K0[G0].

An inner product and two norms. In the rest of this section H is a real closed
subfield of K such that K = H[i] where i2 = −1. In later useH will be a Hardy field,
which is why we use the letter H here. Note that the only nontrivial automorphism
of the (algebraically closed) field K over H is complex conjugation:

z = a+ bi 7→ z := a− bi (a, b ∈ H).

For f as in (2.1.1) we set

f∗ :=
∑
γ

fγγ
−1,

so (f∗)∗ = f , and f 7→ f∗ lies in Aut
(
K[G]|H

)
. We define the function

(f, g) 7→ ⟨f, g⟩ : K[G]×K[G] → K

by

⟨f, g⟩ := tr
(
fg∗
)

=
∑
γ

fγgγ .

One verifies easily that this is a “positive definite hermitian form” on the K-linear
space K[G]: it is additive on the left and on the right, and for all f , g and all λ ∈ K:

⟨λf, g⟩ = λ⟨f, g⟩, ⟨g, f⟩ = ⟨f, g⟩, ⟨f, f⟩ ∈ H⩾, and ⟨f, f⟩ = 0 ⇔ f = 0, and thus
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also ⟨f, λg⟩ = λ⟨f, g⟩. (Hermitian forms are usually defined only on C-linear spaces
and are C-valued, which is why we used quote marks, as we do below for norm and
orthonormal basis; see [122, Chapter XV, §5] for the more general case.) Note:

⟨f, gh⟩ = tr
(
f(gh)∗

)
=
〈
fg∗, h

〉
.

Lemma 2.1.4. Let u,w ∈ K[G]×. If u /∈ K×w, then ⟨u,w⟩ = 0, and if u ∈ K×w,
then ⟨u,w⟩ = uw∗.

Proof. Take a, b ∈ K× and γ, δ such that u = aγ, w = bδ. If u /∈ K×w, then γ ̸= δ,
so ⟨u,w⟩ = 0. If u ∈ K×w, then γ = δ, hence ⟨u,w⟩ = ab = uw∗. □

For z ∈ K we set |z| :=
√
zz ∈ H⩾, and then define ∥ · ∥ : K[G] → H⩾ by

∥f∥2 = ⟨f, f⟩ =
∑
γ

|fγ |2.

As in the case H = R and K = C one derives the Cauchy-Schwarz Inequality:

|⟨f, g⟩| ⩽ ∥f∥ · ∥g∥.
Thus ∥ · ∥ is a “norm” on the K-linear space K[G]: for all f, g and all λ ∈ K,

∥f + g∥ ⩽ ∥f∥+ ∥g∥, ∥λf∥ = |λ| · ∥f∥, ∥f∥ = 0 ⇔ f = 0.

Note that G is an “orthonormal basis” ofK[G] with respect to ⟨ , ⟩, and fγ = ⟨f, γ⟩.
We also use the function ∥ · ∥1 : K[G] → H⩾ given by

∥f∥1 :=
∑
γ

|fγ |,

which is a “norm” on K[G] in the sense of obeying the same laws as we mentioned
for ∥ · ∥. The two “norms” are in some sense equivalent:

∥f∥ ⩽ ∥f∥1 ⩽
√
n∥f∥ (n := |supp(f)|).

where the first inequality follows from the triangle inequality for ∥ · ∥ and the second
is of Cauchy-Schwarz type. Moreover:

Lemma 2.1.5. Let u ∈ K[G]×. Then ∥fu∥ = ∥f∥ ∥u∥ and ∥fu∥1 = ∥f∥1 ∥u∥1.

Proof. We have

∥fγ∥ = ⟨fγ, fγ⟩ =
〈
fγγ∗, f

〉
=
〈
f, f

〉
= ∥f∥

using γ∗ = γ−1. Together with K[G]× = K×G this yields the first claim; the
second claim follows easily from the definition of ∥ · ∥1. □

Corollary 2.1.6. ∥fg∥ ⩽ ∥f∥ · ∥g∥1 and ∥fg∥1 ⩽ ∥f∥1 · ∥g∥1.

Proof. By the triangle inequality for ∥ · ∥ and the previous lemma,

∥fg∥ ⩽
∑
γ

∥fgγγ∥ =
∑
γ

∥f∥ ∥gγγ∥ = ∥f∥
∑
γ

|gγ | = ∥f∥ ∥g∥1.

The inequality involving ∥fg∥1 follows likewise. □

In the next lemma we let χ ∈ Hom(G,K×); recall from (2.1.2) the automor-
phism f 7→ fχ of the K-algebra K[G].

Lemma 2.1.7. (fχ)
∗ = (f∗)χ iff |χ(γ)| = 1 for all γ ∈ supp(f).

Proof. Let a ∈ K; then
(
(aγ)χ

)∗ = aχ(γ)γ−1 and
(
(aγ)∗

)
χ = aχ(γ)−1γ−1. □
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Corollary 2.1.8. Let χ ∈ Hom(G,K×) with |χ(γ)| = 1 for all γ. Then ⟨fχ, gχ⟩ =
⟨f, g⟩ for all f , g, and hence ∥fχ∥ = ∥f∥ for all f .

Proof. Since tr ◦σ = tr for every automorphism σ of the K-algebra K[G],

⟨fχ, gχ⟩ = tr
(
fχ(gχ)

∗) = tr
(
(fg∗)χ

)
= tr(fg∗) = ⟨f, g⟩,

where we use Lemma 2.1.7 for the second equality. □

Valuation and norm. Let v : H× → Γ be a convex valuation on the ordered
field H, extended uniquely to a valuation v : K× → Γ on the field K = H[i],
so a ≍ |a| for a ∈ K. (See the remarks before Corollary 1.2.6.) Let vg : K[G]̸= → Γ
be the gaussian extension of v, given by (2.1.3).

Lemma 2.1.9. ∥f∥1 ≼ 1 ⇔ f ≼g 1, and ∥f∥1 ≺ 1 ⇔ f ≺g 1.

Proof. Using that the valuation ring of H is convex we have

∥f∥1 =
∑
γ

|fγ | ≼ 1 ⇐⇒ |fγ | ≼ 1 for all γ ⇐⇒ fγ ≼ 1 for all γ ⇐⇒ f ≼g 1.

Likewise one shows: ∥f∥1 ≺ 1 ⇔ f ≺g 1. □

Corollary 2.1.10. ∥f∥ ≍ ∥f∥1 ≍g f .

Proof. This is trivial for f = 0, so assume f ̸= 0. Take a ∈ H> with a ≍g f , and
replace f by f/a, to arrange f ≍g 1. Then ∥f∥ ≍ ∥f∥1 ≍g 1 by Lemma 2.1.9. □

2.2. The Universal Exponential Extension

As in [ADH, 5.9], given a differential ringK, a differential K-algebra is a differential
ring R with a morphism K → R of differential rings. If R is a differential ring
extension of a differential ring K we consider R as a differential K-algebra via the
inclusion K → R.

Exponential extensions. In this subsection R is a differential ring and K is a
differential subring of R. Call a ∈ R exponential over K if a′ ∈ aK. Note that
if a ∈ R is exponential over K, then K[a] is a differential subring of R. If a ∈ R
is exponential over K and ϕ ∈ K×, then a, as element of the differential ring
extension Rϕ of Kϕ, is exponential over Kϕ. Every c ∈ CR is exponential over K,
and every u ∈ K× is exponential over K. If a, b ∈ R are exponential over K,
then so is ab, and if a ∈ R× is exponential over K, then so is a−1. Hence the
units of R that are exponential over K form a subgroup E of the group R× of
units of R with E ⊇ C×

R ·K×; if R = K[E], then we call R exponential over K.
An exponential extension of K is a differential ring extension of K that is
exponential over K. If R = K[E] where E is a set of elements of R× which are
exponential over K, then R is exponential over K. If R is an exponential extension
of K and ϕ ∈ K×, then Rϕ is an exponential extension of Kϕ. The following lemma
is extracted from the proof of [168, Theorem 1]:

Lemma 2.2.1 (Rosenlicht). Suppose K is a field and R is an integral domain
with differential fraction field F . Let I ̸= R be a differential ideal of R, and
let u1, . . . , un ∈ R× (n ⩾ 1) be exponential over K with ui /∈ ujC

×
FK

× for i ̸= j.
Then

∑
i ui /∈ I.
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Proof. Suppose u1, . . . , un is a counterexample with minimal n ⩾ 1. Then n ⩾ 2
and

∑
i u

′
i ∈ I, so ∑

i

u′i − u†1
∑
i

ui =
∑
i>1

(ui/u1)
†ui ∈ I.

Hence (ui/u1)
† = 0 and thus ui/u1 ∈ C×

F , for all i > 1, a contradiction. □

Corollary 2.2.2. Suppose K is a field and F = K(E) is a differential field ex-
tension of K with CF = C, where E is a subgroup of F× whose elements are
exponential over K. Then {y ∈ F× : y is exponential over K} = K×E.

Proof. Let y ∈ F× be exponential over K. Take K-linearly independent u1, . . . , un
in E and a1, . . . , an, b1, . . . , bn ∈ K with bj ̸= 0 for some j, such that

y =
(∑

i aiui

)/(∑
j bjuj

)
.

Then
∑
j bjyuj −

∑
i aiui = 0, and so Lemma 2.2.1 applied with R = F , I = {0}

gives bjyuj ∈ aiuiK
× for some i, j with ai, bj ̸= 0, and thus y ∈ K×E. □

Remark. In the context of Corollary 2.2.2, see [168, Theorem 1] for the structure
of the group of elements of F× exponential over K, for finitely generated E.

Lemma 2.2.3. Suppose C×
R is divisible and E is a subgroup of R× containing C×

R .
Then there is a group morphism e : E† → E such that e(b)† = b for all b ∈ E†.

Proof. We have a short exact sequence of commutative groups

1 → C×
R

ι−−→ E
ℓ−−→ E† → 0,

where ι is the natural inclusion and ℓ(a) := a† for a ∈ E. Since C×
R is divisible, this

sequence splits, which is what we claimed. □

Let E, e, R be as in the previous lemma. Then e is injective, and its image is a
complement of C×

R in E. Moreover, given also a group morphism ẽ : E† → E such

that ẽ(b)† = b for all b ∈ E†, the map b 7→ e(b)ẽ(b)−1 is a group morphism E† → C×
R .

In the rest of this section K is a differential field with algebraically closed constant
field C and divisible group K† of logarithmic derivatives. (These conditions are
satisfied if K is an algebraically closed differential field.) In the next subsection
we show that up to isomorphism over K there is a unique exponential extension R
of K satisfying CR = C and (R×)† = K. By Lemma 2.2.3 we must then have a
group embedding e : K → R× such that e(b)† = b for all b ∈ K; this motivates the
construction below.

The universal exponential extension. We first describe a certain exponential
extension of K. For this, take a complement Λ of K†, that is, a Q-linear subspace
of K such that K = K† ⊕ Λ (internal direct sum of Q-linear subspaces of K).
Below λ ranges over Λ. Let e(Λ) be a multiplicatively written abelian group, iso-
morphic to the additive subgroup Λ of K, with isomorphism λ 7→ e(λ) : Λ → e(Λ).
Put

U := K
[
e(Λ)

]
,

the group ring of e(Λ) over K, an integral domain. As K-linear space,

U =
⊕
λ

K e(λ) (an internal direct sum of K-linear subspaces).
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For every f ∈ U we have a unique family (fλ) in K such that

f =
∑
λ

fλ e(λ),

with fλ = 0 for all but finitely many λ; we call (fλ) the spectral decomposition
of f (with respect to Λ). We turn U into a differential ring extension of K by

e(λ)′ = λ e(λ) for all λ.

(Think of e(λ) as exp(
∫
λ).) Thus for f ∈ U with spectral decomposition (fλ),

f ′ =
∑
λ

(
f ′λ + λfλ

)
e(λ),

so f ′ has spectral decomposition (f ′λ+λfλ). Note that U is exponential over K by

Lemma 2.1.1: U× = K× e(Λ), so (U×)† = K† + Λ = K.

Example 2.2.4. Let K = C((tQ)) be as in Example 1.2.12, so K† = (Q⊕ O)t. Take
a Q-linear subspace Λc of C with C = Q ⊕ Λc (internal direct sum of Q-linear
subspaces of C), and let

K≻ :=
{
f ∈ K : supp(f) ≻ 1

}
,

a C-linear subspace of K. Then Λ := (K≻ ⊕ Λc)t is a complement to K†, and
hence t−1Λ = K≻⊕Λc is a complement to (Kt)† inKt. Moreover, if L := P(C) ⊆ K
is the differential field of Puiseux series over C and L≻ := K≻ ∩ L, then L≻ ⊕ Λc

is a complement to (Lt)†.

A subgroup Λ0 of Λ yields a differential subring K
[
e(Λ0)

]
of U that is exponen-

tial over K as well. These differential subrings have a useful property. Recall
from [ADH, 4.6] that a differential ring is said to be simple if {0} is its only proper
differential ideal.

Lemma 2.2.5. Let Λ0 be a subgroup of Λ. Then the differential subring K
[
e(Λ0)

]
of U is simple. In particular, the differential ring U is simple.

Proof. Let I ̸= R be a differential ideal of R := K
[
e(Λ0)

]
. Let f1, . . . , fn ∈ K×

and let λ1, . . . , λn ∈ Λ0 be distinct such that f =
∑n
i=1 fi e(λi) ∈ I. If n ⩾ 1,

then Lemma 2.2.1 yields i ̸= j with e(λi)/ e(λj) = cg for some constant c in
the differential fraction field of U and some g ∈ K×, so by taking logarithmic
derivatives, λi − λj ∈ K† and thus λi = λj , a contradiction. Thus f = 0. □

Corollary 2.2.6. Any morphism K
[
e(Λ0)

]
→ R of differential K-algebras, with Λ0

a subgroup of Λ and R a differential ring extension of K, is injective.

The differential ring U is the directed union of its differential subrings of the
form U0 = K

[
e(Λ0)

]
where Λ0 is a finitely generated subgroup of Λ. These U0

are simple by Lemma 2.2.5 and finitely generated as a K-algebra, hence their dif-
ferential fraction fields have constant field C by [ADH, 4.6.12]. Thus the differential
fraction field of U has constant field C.

Lemma 2.2.7. Suppose R is an exponential extension of K and R0 is a differential
subring of R with C×

R ⊆ CR0
and K ⊆ (R×

0 )
†. Then R0 = R.

Proof. Let E be the group of units of R that are exponential over K; so R = K[E].

Given u ∈ E we have u† ∈ K ⊆ (R×
0 )

†, hence we have u0 ∈ R×
0 with u† = u†0,

so u = cu0 with c ∈ C×
R ⊆ CR0

. Thus E ⊆ R0 and so R0 = R. □
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Corollary 2.2.8. Every endomorphism of the differential K-algebra U is an auto-
morphism.

Proof. Injectivity holds by Corollary 2.2.6, and surjectivity by Lemma 2.2.7. □

Every exponential extension of K with constant field C embeds into U, and hence
is an integral domain. More precisely:

Lemma 2.2.9. Let R be an exponential extension of K such that C×
R is divisi-

ble, and set Λ0 := Λ ∩ (R×)†, a subgroup of Λ. Then there exists a morphism
K
[
e(Λ0)

]
→ R of differential K-algebras. Any such morphism is injective, and

if CR = C, then any such morphism is an isomorphism.

Proof. Let E be as in the proof of Lemma 2.2.7, and let eE : E† → E be the map e
from Lemma 2.2.3. Since E† = K† + Λ0 we have

(2.2.1) E = C×
R eE(E

†) = C×
R eE(K

†) eE(Λ0) = C×
R K

× eE(Λ0).

The group morphism e(λ0) 7→ eE(λ0) : e(Λ0) → E (λ0 ∈ Λ0) extends uniquely
to a K-algebra morphism ι : K

[
e(Λ0)

]
→ R = K[E]. One verifies easily that ι is

a differential ring morphism. The injectivity claim follows from Corollary 2.2.6.
If CR = C, then E = K×eE(Λ0) by (2.2.1), whence surjectivity. □

Recall that U is an exponential extension of K with CU = C and (U×)† = K. By
Lemma 2.2.9, this property characterizes U up to isomorphism:

Corollary 2.2.10. If U is an exponential extension of K such that CU = C
and K ⊆ (U×)†, then U is isomorphic to U as a differential K-algebra.

Now U is also an exponential extension of K with CU = C and with the prop-
erty that every exponential extension R of K with CR = C embeds into U as a
differential K-algebra. This property determines U up to isomorphism as well:

Corollary 2.2.11. Suppose U is an exponential extension of K with CU = C
such that every exponential extension R of K with CR = C embeds into U as a
differential K-algebra. Then U is isomorphic to U as a differential K-algebra.

Proof. Any embedding U → U of differential K-algebras gives K ⊆ (U×)†. □

The results above show to what extent U is independent of the choice of Λ. We
call U the universal exponential extension of K. If we need to indicate the
dependence of U on K we denote it by UK . By [ADH, 5.1.40] every y ∈ U =
K{e(Λ)} satisfies a linear differential equation A(y) = 0 where A ∈ K[∂] ̸=; in the
next section we isolate conditions on K which ensure that every A ∈ K[∂] ̸= has a
zero y ∈ U× = K× e(Λ).

Corollary 2.2.10 gives for ϕ ∈ K× an isomorphism UKϕ
∼= (UK)ϕ of differential

Kϕ-algebras. Next we investigate how UK behaves when passing from K to a
differential field extension. Therefore, in the rest of this subsection L is a differential
field extension of K with algebraically closed constant field CL, and L

† is divisible.
The next lemma relates the universal exponential extension UL of L to UK :

Lemma 2.2.12. The inclusion K → L extends to an embedding ι : UK → UL
of differential rings. The image of any such embedding ι is contained in K[E]
where E := {u ∈ U×

L : u† ∈ K}, and if CL = C, then ι(UK) = K[E].
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Proof. The differential subringR := K[E] of UL is exponential overK with (R×)† =
K, hence Lemma 2.2.9 gives an embedding UK → R of differential K-algebras.
Let ι : UK → UL be any embedding of differential K-algebras. Then ι

(
e(Λ)

)
⊆ E,

so ι(UK) ⊆ R; if CL = C, then ι(UK) = R by Lemma 2.2.7. □

Corollary 2.2.13. If L†∩K = K† and ι : UK → UL is an embedding of differential
K-algebras, then L× ∩ ι(U×

K) = K×.

Proof. Assume L† ∩ K = K† and identify UK with a differential K-subalgebra
of UL via an embedding UK → UL of differential K-algebras. Let a ∈ L× ∩ U×

K ;
then a† ∈ L† ∩ K = K†, so a = bc where c ∈ C×

L , b ∈ K×. Now c = a/b ∈
C×
L ∩U×

K = C×, since UK has ring of constants C. So a ∈ K× as required. □

Suppose L† ∩ K = K†. Then the subspace L† of the Q-linear space L has a
complement ΛL ⊇ Λ. We fix such ΛL and extend e: Λ → e(Λ) to a group iso-
morphism ΛL → e(ΛL), also denoted by e, with e(ΛL) a multiplicatively written
commutative group extending e(Λ). Let UL := L

[
e(ΛL)

]
be the corresponding

universal exponential extension of L. Then the natural inclusion UK → UL is an
embedding of differential K-algebras.

Automorphisms of U. These are easy to describe: the beginning of Section 2.1
gives a group embedding

χ 7→ σχ : Hom(Λ,K×) → Aut
(
K[e(Λ)]|K

)
into the group of K-algebra automorphisms of K

[
e(Λ)

]
, given by

σχ(f) := fχ =
∑
λ

fλχ(λ) e(λ) (χ ∈ Hom(Λ,K×), f ∈ K[e(Λ)]).

It is easy to check that if χ ∈ Hom(Λ, C×) ⊆ Hom(Λ,K×), then σχ ∈ Aut∂(U|K),
that is, σχ is a differential K-algebra automorphism of U. Moreover:

Lemma 2.2.14. The map χ 7→ σχ : Hom(Λ, C×) → Aut∂(U|K) is a group isomor-
phism. Its inverse assigns to any σ ∈ Aut∂(U|K) the function χ : Λ → C× given
by χ(λ) := σ

(
e(λ)

)
e(−λ). In particular, Aut∂(U|K) is commutative.

Proof. Let σ ∈ Aut∂(U|K) and let χ : Λ → U× be given by χ(λ) := σ
(
e(λ)

)
e(−λ).

Then χ(λ)† = 0 for all λ. It follows easily that χ ∈ Hom(Λ, C×) and σχ = σ. □

The proof of the next result uses that the additive group Q embeds into C×.

Corollary 2.2.15. If f ∈ U and σ(f) = f for all σ ∈ Aut∂(U|K), then f ∈ K.

Proof. Suppose f ∈ U and σ(f) = f for all σ ∈ Aut∂(U|K). For χ ∈ Hom(Λ, C×)
we have fχ = f , that is, fλχ(λ) = fλ for all λ, so χ(λ) = 1 whenever fλ ̸= 0. Now
use that for λ ̸= 0 there exists χ ∈ Hom(Λ, C×) such that χ(λ) ̸= 1, so fλ = 0. □

Corollary 2.2.16. Every automorphism of the differential field K extends to an
automorphism of the differential ring U.

Proof. Lemma 2.2.3 yields a group morphism µ : K → U× such that µ(a)† = a for
all a ∈ K. Let σ ∈ Aut∂(K). Then σ extends to an endomorphism, denoted also
by σ, of the ring U, such that σ

(
e(λ)

)
= µ

(
σ(λ)

)
for all λ. Then

σ
(
e(λ)′

)
= σ

(
λ e(λ)

)
= σ(λ)µ

(
σ(λ)

)
= µ

(
σ(λ)

)′
= σ

(
e(λ)

)′
,
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hence σ is an endomorphism of the differential ring U. By Lemma 2.2.5, σ is
injective, and by Lemma 2.2.7, σ is surjective. □

The real case. In this subsection K = H[i] where H is a real closed differential
subfield of K and i2 = −1. Set SC :=

{
c ∈ C : |c| = 1

}
, a subgroup of C×. Then

by Lemmas 2.1.7 and 2.2.14:

Corollary 2.2.17. For σ ∈ Aut∂(U|K) we have the equivalence

σ(f∗) = σ(f)∗ for all f ∈ U ⇐⇒ σ = σχ for some χ ∈ Hom(Λ, SC).

Corollaries 2.2.17 and 2.1.8 together give:

Corollary 2.2.18. Let σ ∈ Aut∂(U|K) satisfy σ(f∗) = σ(f)∗ for all f ∈ U.
Then

〈
σ(f), σ(g)

〉
= ⟨f, g⟩ for all f, g ∈ U, hence ∥σ(f)∥ = ∥f∥ for all f ∈ U.

Next we consider the subgroup

S := {a+ bi : a, b ∈ H, a2 + b2 = 1}

of K×, which is divisible, hence so is the subgroup S† of K†. Lemma 1.2.4
yields K† = H†⊕S† (internal direct sum of Q-linear subspaces of K) and S† ⊆ Hi.
Thus we can (and do) take the complement Λ of K† in K so that Λ = Λr + Λii
where Λr,Λi are subspaces of the Q-linear space H with Λr a complement of H†

in H and Λii a complement of S† in Hi. The automorphism a + bi 7→ a+ bi :=
a− bi (a, b ∈ H) of the differential field K now satisfies in U = K[e(Λ)] the identity

e(λ+ µ) = e(λ) e(µ) (λ, µ ∈ Λ),

so it extends to an automorphism f 7→ f of the ring U as follows: for f ∈ U with
spectral decomposition (fλ), set

f :=
∑
λ

fλ e(λ) =
∑
λ

fλ e(λ),

so e(λ) = e(λ), and f has spectral decomposition (fλ). We have f = f for f ∈ U,

and f 7→ f lies in Aut∂(U|H). If H† = H, then Λr = {0} and hence f = f∗

for f ∈ U, where f∗ is as defined in Section 2.1. For f ∈ U we set

Re f := 1
2 (f + f), Im f := 1

2i (f − f).

(For f ∈ K these agree with the usual real and imaginary parts of f as an element
of H[i].) Consider the differential H-subalgebra

Ur :=
{
f ∈ U : f = f

}
of U. For f ∈ U with spectral decomposition (fλ) we have f ∈ Ur iff fλ = fλ
for all λ; in particular Ur ∩ K = H. For f ∈ U we have f = (Re f) + (Im f)i
with Re f, Im f ∈ Ur, hence

U = Ur ⊕Uri (internal direct sum of H-linear subspaces).

Let D be a subfield of H (not necessarily the constant field of H), so D[i] is a
subfield of K. Let V be a D[i]-linear subspace of U; then Vr := V ∩Ur is a D-linear
subspace of V . If V = V (that is, V is closed under f 7→ f), then Re f, Im f ∈ Vr
for all f ∈ V , hence V = Vr ⊕ Vri (internal direct sum of D-linear subspaces of V ),
so any basis of the D-linear space Vr is a basis of the D[i]-linear space V .
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Suppose now that V =
⊕

λ Vλ (internal direct sum of subspaces of V ) where Vλ
is for each λ a D[i]-linear subspace of K e(λ). Then V = V iff Vλ = Vλ for all λ.
Moreover:

Lemma 2.2.19. Assume H = H†, V0 = {0}, and V = V . Let V ⊆ U× be a basis
of the subspace

∑
Imλ>0 Vλ of V . Then the maps v 7→ Re v, v 7→ Im v : V → Vr are

injective, ReV and ImV are disjoint, and ReV ∪ ImV is a basis of Vr.

Proof. Note that Λ = Λii. Let µ range over Λ>i and set Vµ = V ∩K× e(µi), a basis
of the D[i]-linear space Vµi. Then V =

⋃
µ Vµ, a disjoint union. For v ∈ Vµ we

have v = a e(µi) with a = av ∈ K×, so

Re v = a
2 e(µi) +

a
2 e(−µi), Im v = a

2i e(µi)−
a
2i e(−µi),

from which it is clear that the two maps V → Vr in the statement of the lemma are
injective. It is also easy to check that ReV and ImV are disjoint.

As V is a basis of the D[i]-linear space
∑
µ Vµi =

∑
Imλ>0 Vλ, its set of conju-

gates V is a basis of the D[i]-linear space
∑
µ Vµi =

∑
µ V−µi =

∑
Imλ<0 Vλ, and

so V ∪V (a disjoint union) is a basis of V . Thus ReV ∪ ImV is a basis of V as well.
As ReV ∪ ImV is contained in Vr, it is a basis of the D-linear space Vr. □

If H = H†, then V :=
∑
λ ̸=0K e(λ) gives V = V , so Lemma 2.2.19 gives then

for D := H the basis of the H-linear space Vr consisting of the elements

Re
(
e(λ)

)
= 1

2

(
e(λ) + e(λ)

)
, Im

(
e(λ)

)
= 1

2i

(
e(λ)− e(λ)

)
(Imλ > 0).

Corollary 2.2.20. Suppose H = H†. Set c(λ) := Re
(
e(λ)

)
and s(λ) := Im

(
e(λ)

)
,

for Imλ > 0. Then for V :=
∑
λ ̸=0K e(λ) we have Ur = H + Vr, so

Ur = H ⊕
⊕

Imλ>0

(
H c(λ)⊕H s(λ)

)
(internal direct sum of H-linear subspaces),

and thus Ur = H
[
c(Λ>i i) ∪ s(Λ>i i)

]
.

2.3. The Spectrum of a Differential Operator

In this section K is a differential field, a, b range over K, and A, B over K[∂]. This
and the next two sections are mainly differential-algebraic in nature, and deal with
splittings of linear differential operators. In the present section we introduce the
concept of eigenvalue of A and the spectrum of A (the collection of its eigenvalues).
In Section 2.4 we give criteria for A to have eigenvalue 0, and in Section 2.5 we show
how the eigenvalues of A relate to the behavior of A over the universal exponential
extension of K.

Twisting. Let L be a differential field extension of K with L† ⊇ K. Let u ∈ L×

be such that u† = a ∈ K. Then the twist A⋉u = u−1Au of A by u has the same
order as A and coefficients in K [ADH, 5.8.8], and only depends on a, not on u
or L; in fact, Ri(A⋉u) = Ri(A)+a [ADH, 5.8.5]. Hence for each a we may define

Aa := A⋉u = u−1Au ∈ K[∂]

where u ∈ L× is arbitrary with u† = a. The map A 7→ A⋉u is an automorphism of
the ring K[∂] that is the identity on K (with inverse B 7→ B⋉u−1); so A 7→ Aa is an
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automorphism of the ring K[∂] that is the identity on K (with inverse B 7→ B−a).
Note that ∂a = ∂ + a, and that

(a,A) 7→ Aa : K ×K[∂] → K[∂]

is an action of the additive group of K on the set K[∂], in particular, Aa = A
for a = 0. For b ̸= 0 we have (Aa)⋉b = Aa+b† .

Eigenvalues. In the rest of this section A ̸= 0 and r := order(A). We call

multa(A) := dimC kerK Aa ∈ {0, . . . , r}
the multiplicity of A at a. If B ̸= 0, then multa(B) ⩽ multa(AB), as well as

(2.3.1) multa(AB) ⩽ multa(A) + multa(B),

with equality if and only if Ba(K) ⊇ kerK Aa; see [ADH, remarks before 5.1.12].
For u ∈ K× we have an isomorphism

y 7→ yu : kerK A⋉u → kerK A

of C-linear spaces, hence

multa(A) = multb(A) whenever a− b ∈ K†.

Thus we may define the multiplicity of A at the element [a] := a+K† of K/K†

as mult[a](A) := multa(A).

In the rest of this section α ranges over K/K†. We say that α is an eigenvalue
of A if multα(A) ⩾ 1. Thus for B ̸= 0: if α is an eigenvalue of B of multiplicity µ,
then α is an eigenvalue of AB of multiplicity ⩾ µ; if α is an eigenvalue of AB,
then it is an eigenvalue of A or of B; and if Ba(K) ⊇ kerK(Aa), then α = [a] is an
eigenvalue of AB if and only if it is an eigenvalue of A or of B.

Example 2.3.1. Suppose A = ∂−a. Then for each element u ̸= 0 in a differential field
extension of K with b := u† ∈ K we have Ab = A⋉u = ∂− (a− b), so multb(A) ⩾ 1
iff a− b ∈ K†. Hence the only eigenvalue of A is [a].

The spectrum of A is the set Σ(A) = ΣK(A) of its eigenvalues. Thus Σ(A) = ∅
if r = 0, and for b ̸= 0 we have multa(A) = multa(bA) = multa(A⋉b), so A, bA,
and Ab = bA⋉b all have the same spectrum. By [ADH, 5.1.21] we have

(2.3.2) Σ(A) =
{
α : A ∈ K[∂](∂ − a) for some a with [a] = α

}
.

Hence for irreducible A: Σ(A) ̸= ∅ ⇔ r = 1. From (2.3.1) we obtain:

Lemma 2.3.2. Suppose B ̸= 0 and set s := orderB. Then

multα(B) ⩽ multα(AB) ⩽ multα(A) + multα(B),

where the second inequality is an equality if K is s-linearly surjective. Hence

Σ(B) ⊆ Σ(AB) ⊆ Σ(A) ∪ Σ(B).

If K is s-linearly surjective, then Σ(AB) = Σ(A) ∪ Σ(B).

Example. For n ⩾ 1 we have Σ
(
(∂ − a)n

)
=
{
[a]
}
. (By induction on n, using

Example 2.3.1 and Lemma 2.3.2.)

It follows from Lemma 2.3.2 that A has at most r eigenvalues. More precisely:

Lemma 2.3.3. We have
∑
αmultα(A) ⩽ r. If

∑
αmultα(A) = r, then A splits

over K; the converse holds if r = 1 or K is 1-linearly surjective.
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Proof. By induction on r. The case r = 0 is obvious, so suppose r > 0. We may
also assume Σ(A) ̸= ∅: otherwise

∑
αmultα(A) = 0 and A does not split over K.

Now (2.3.2) gives a, B with A = B(∂ − a). By Example 2.3.1 we have Σ(∂ − a) ={
[a]
}

and multa(∂ − a) = 1. By the inductive hypothesis applied to B and the
second inequality in Lemma 2.3.2 we thus get

∑
αmultα(A) ⩽ r.

Suppose that
∑
αmultα(A) = r. Then

∑
αmultα(B) = r − 1 by Lemma 2.3.2

and the inductive hypothesis applied to B. Therefore B splits over K, again by
the inductive hypothesis, and so does A. Finally, if K is 1-linearly surjective and A
splits over K, then we arrange that B splits over K, so

∑
αmultα(B) = r − 1 by

the inductive hypothesis, hence
∑
αmultα(A) = r by Lemma 2.3.2. □

Section 2.5 gives a more explicit proof of Lemma 2.3.3, under additional hypotheses
on K. Next, let L be a differential field extension of K. Then multa(A) does not
strictly decrease in passing from K to L [ADH, 4.1.13]. Hence the group morphism

a+K† 7→ a+ L† : K/K† → L/L†

restricts to a map ΣK(A) → ΣL(A); in particular, if ΣK(A) ̸= ∅, then ΣL(A) ̸= ∅.
If L† ∩K = K†, then |ΣK(A)| ⩽ |ΣL(A)|, and

∑
αmultα(A) also does not strictly

decrease if K is replaced by L.

Lemma 2.3.4. Let a1, . . . , ar ∈ K and

A = (∂ − ar) · · · (∂ − a1),
∑
α

multα(A) = r.

Then the spectrum of A is
{
[a1], . . . , [ar]

}
, and for all α,

multα(A) =
∣∣{i ∈ {1, . . . , r} : α = [ai]

}∣∣.
Proof. Let i range over {1, . . . , r}. By Lemma 2.3.2 and Example 2.3.1,

multα(A) ⩽
∑
i

multα(∂ − ai) =
∣∣{i : α = [ai]

}∣∣
and hence

r =
∑
α

multα(A) ⩽
∑
α

∣∣{i : α = [ai]
}∣∣ = r.

Thus for each α we have multα(A) =
∣∣{i : α = [ai]

}∣∣ as required. □

Recall from [ADH, 5.1.8] that D∗ ∈ K[∂] denotes the adjoint of D ∈ K[∂], and that
the map D 7→ D∗ is an involution of the ring K[∂] with a∗ = a for all a and ∂

∗ = −∂.
If A splits over K, then so does A∗. Furthermore, (Aa)

∗ = (A∗)−a for all a. By
Lemmas 2.3.3 and 2.3.4:

Corollary 2.3.5. Suppose K is 1-linearly surjective and
∑
αmultα(A) = r. Then

multα(A) = mult−α(A
∗) for all α. In particular, the map α 7→ −α restricts to a

bijection Σ(A) → Σ(A∗).

Let ϕ ∈ K×. Then (Aϕ)a = (Aϕa)
ϕ and hence

multa(A
ϕ) = multϕa(A),

so the group isomorphism

(2.3.3) [a] 7→ [ϕa] : Kϕ/ϕ−1K† → K/K†

maps Σ(Aϕ) onto Σ(A).
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Note that K[∂]/K∂]A as a K-linear space has dimension r = orderA. Recall
from [ADH, 5.1] that A and B ̸= 0 are said to have the same type if the (left)
K[∂]-modules K[∂]/K[∂]A and K[∂]/K[∂]B are isomorphic (and so orderB = r).
By [ADH, 5.1.19]:

Lemma 2.3.6. The operators A and B ̸= 0 have the same type iff orderB = r and
there is R ∈ K[∂] of order < r with 1 ∈ K[∂]R+K[∂]A and BR ∈ K[∂]A.

Hence if A, B have the same type, then they also have the same type as elements
of L[∂], for any differential field extension L of K. Since B 7→ Ba is an automor-
phism of the ring K[∂], Lemma 2.3.6 and [ADH, 5.1.20] yield:

Lemma 2.3.7. If A and B ̸= 0 have the same type, then so do Aa, Ba, for all a,
and thus A, B have the same eigenvalues, with same multiplicity.

By this lemma the spectrum of A depends only on the type of A, that is, on the
isomorphism type of the K[∂]-module K[∂]/K[∂]A, suggesting one might try to
associate a spectrum to each differential module over K. (Recall from [ADH, 5.5]
that a differential module over K is a K[∂]-module of finite dimension as K-linear
space.) Although our focus is on differential operators, we carry this out in the
next subsection: it motivates the terminology of “eigenvalues” originating in the
case of the differential field of Puiseux series over C treated in [158]. This point of
view will be further developed in the projected second volume of [ADH].

The spectrum of a differential module (∗). In this subsection M is a differen-
tial module over K and r = dimKM . For each B we let kerM B denote the kernel
of the C-linear map y 7→ By : M → M . For M = K as horizontal differential
module over K [ADH, 5.5.2], this agrees with the C-linear subspace

kerK B = kerB =
{
y ∈ K : B(y) = 0

}
of K. Also, for B = ∂ we obtain the C-linear subspace kerM ∂ of horizontal elements
of M . We define the spectrum of M to be the set

Σ(M) :=
{
α : kerM (∂ − a) ̸= {0} for some a with [a] = α

}
.

The elements of Σ(M) are called eigenvalues of M . If M = {0}, then Σ(M) = ∅.
Isomorphic differential modules over K have clearly the same spectrum.

Let ϕ ∈ K× and δ = ϕ−1
∂. Then K[∂] = Kϕ[δ] as rings, hence M is also a

differential module over Kϕ with ϕ−1
∂M instead of ∂M as its derivation; we denote

it byMϕ and call it the compositional conjugate ofM by ϕ. Every cyclic vector
of M is also a cyclic vector of Mϕ. The group isomorphism (2.3.3) maps Σ(Mϕ)
onto Σ(M).

In the next lemma we assume r ⩾ 1 and denote the r × r identity matrix
over K by Ir. Below P is also an r × r matrix over K. The C-linear space of
solutions to the matrix differential equation y′ = Py over K is the set of all column
vectors e ∈ Kr such that e′ = Pe, and is denoted by sol(P ) [ADH, p. 276]. Recall
that a is said to be an eigenvalue of P over K if Pe = ae for some nonzero column
vector e ∈ Kr. Recall also from [ADH, p. 277] that we associate to P the differential
moduleMP having the space Kr of column vectors as its underlying K-linear space
and satisfying ∂e = e′ − Pe for all e ∈ Kr. Thus by [ADH, 5.4.8]:

Lemma 2.3.8. Let M =M−P be the differential module over K associated to −P .
Then kerM (∂ − a) = sol(aIr − P ), so dimC kerM (∂ − a) ⩽ r and

Σ(M) =
{
α : sol(aIr − P ) ̸= {0} for some a with [a] = α

}
.
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We define multa(M) := dimC kerM (∂ − a); thus multa(M) ∈ {0, . . . , r} by the
previous lemma. For b ̸= 0 we have a C-linear isomorphism

y 7→ by : kerM (∂ − a) → kerM (∂ − a− b†).

This observation allows us to define the multiplicity multα(M) of M at α as the
quantity multa(M) where a with [a] = α is arbitrary. Clearly isomorphic differential
modules over K have the same multiplicity at a given α.

Lemma 2.3.9. The following are equivalent:

(i) K is r-linearly surjective;
(ii) for each differential module N over K with dimK N = r and every a, the

C-linear map y 7→ (∂ − a)y : N → N is surjective;
(iii) for each differential module N over K with dimK N ⩽ r we have ∂N = N ;
(iv) for n = 1, . . . , r, each matrix differential equation y′ = Fy + g with F an

n× n matrix over K and g ∈ Kn has a solution in K.

Proof. For (i) ⇒ (ii), let K be r-linearly surjective. The case r = 0 being trivial,
let r ⩾ 1, so C ̸= K. Let N be a differential module over K with dimK N = r.
Towards proving that y 7→ (∂−a)y : N → N is surjective, we can assume by [ADH,
5.5.3] that N = K[∂]/K[∂]A with A of order r. Let a, B be given, and let y range
over K. It suffices to find R ∈ K[∂] and y such that (∂ − a)R = yA − B, that
is, yA − B ∈ (∂ − a)K[∂] for some y, equivalently, yAa − Ba ∈ ∂K[∂] for some y.
Taking adjoints this amounts to finding y such that A∗

ay − B∗
a ∈ K[∂]∂, that is,

A∗
a(y) = B∗

a(1). Such y exists because K is r-linearly surjective.
For (ii) ⇒ (iii), use that by [ADH, 5.5.2] each differential module over K of

dimension ⩽ r is a direct summand of a differential module over K of dimension r.
For (iii) ⇒ (iv), note that for an n × n matrix F over K (n ⩾ 1), with associated
differential module MF over K, and g, y ∈ Kn, we have y′ = Fy + g iff ∂y = g
in MF [ADH, p. 277]. For (iv) ⇒ (i), use [ADH, remarks before 5.4.3]. □

The previous lemma refines [ADH, 5.4.2], and leads to a more precise version
of [ADH, 5.4.3] with a similar proof:

Corollary 2.3.10. Suppose K is mn-linearly surjective and L is a differential field
extension of K with [L : K] = m. Then L is n-linearly surjective.

Proof. Let F be an n × n matrix over L, n ⩾ 1, and g ∈ Ln; by (iv) ⇒ (i) in
Lemma 2.3.9 with L in place ofK it is enough to show that the equation y′+Fy = g
has a solution in L. For this, take a basis e1, . . . , em of the K-linear space L. As in
the proof of [ADH, 5.4.3] we obtain an mn×mn matrix F ⋄ over K and a column
vector g⋄ ∈ Kmn such that any solution of z′ = F ⋄z + g⋄ in K yields a solution
of y′ = Fy + g in L. Such a solution z exists by (i) ⇒ (iv) in Lemma 2.3.9. □

Let 0 →M1
ι−−→M

π−−→M2 → 0 be a short exact sequence of differential modules
over K, where for notational simplicity we assume that M1 is a submodule of M
and ι is the natural inclusion. By restriction we obtain a sequence

(2.3.4) 0 → kerM1(∂ − a)
ιa−−→ kerM (∂ − a)

πa−−−→ kerM2(∂ − a) → 0,

of C-linear maps, not necessarily exact, but with im ιa = kerπa. Hence

(2.3.5) multa(M) ⩽ multa(M1) + multa(M2).
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Therefore Σ(M) ⊆ Σ(M1)∪Σ(M2). If (∂−a)M∩M1 = (∂−a)M1, then πa is surjec-
tive, so the sequence of C-linear maps (2.3.4) is exact, hence the inequality (2.3.5)
is an equality. Thus the next corollary whose hypothesis holds if M = M1 ⊕M2

(internal direct sum of submodules of M) and ι and π are the natural morphisms,
and also if K is r1-linearly surjective for r1 := dimKM1, by Lemma 2.3.9:

Corollary 2.3.11. Suppose (∂ − a)M ∩M1 = (∂ − a)M1 for each a. Then

multα(M) = multα(M1) + multα(M2) for each α;

in particular, Σ(M) = Σ(M1) ∪ Σ(M2).

Let E := EndC(M) be the C-algebra of endomorphisms of the C-linear space M .
We have a ring morphism K[∂] → E which assigns to B ∈ K[∂] the element y 7→ By
of E, and we view E accordingly as K[∂]-module: (Bf)(y) := B · f(y) for f ∈ E,
y ∈ M . In the next corollary of Lemma 2.3.9 we let ∂ − a stand for the image
of ∂ − a ∈ K[∂] under the above ring morphism K[∂] → E.

Corollary 2.3.12. If K is r-linearly surjective where r = dimKM , then

Σ(M) =
{
α : (∂ − a) /∈ E× for some a with [a] = α

}
.

Remark. The description of Σ(M) in the previous corollary is reminiscent of the
definition of the spectrum of an element x of an arbitrary K-algebra E with unit
as the set of all a such that (x − a) /∈ E×, as given in [41, §1]. (If C = K,
then K† = {0}, and identifying K/K† with K in the natural way, Σ(M) is the
spectrum of ∂ ∈ E in this sense.)

Let now N be a differential module over K and s := dimK N . From [ADH, p. 279]
recall that the K-linear space HomK(M,N) of all K-linear maps M → N (of
dimension dimK HomK(M,N) = rs) is a differential module over K with

(∂ϕ)(f) := ∂(ϕf)− ϕ(∂f) for ϕ ∈ HomK(M,N) and f ∈M .

Given a K[∂]-linear map θ : N → P into a differential module P over K, this yields
a K[∂]-linear map HomK(M, θ) : HomK(M,N) → HomK(M,P ) which sends any ϕ
in HomK(M,N) to θ◦ϕ ∈ HomK(M,P ). The horizontal elements of HomK(M,N)
are the K[∂]-module morphisms M → N ; they are the elements of a finite-dimen-
sional C-linear subspace HomK[∂](M,N) of HomK(M,N):

Lemma 2.3.13. We have

dimC HomK[∂](M,N) ⩽ dimK HomK(M,N),

with equality iff HomK(M,N) is horizontal.

Proof. By [ADH, 5.4.8 and remarks before 5.5.2], the dimension of the C-linear
space of horizontal elements of M is at most dimKM , with equality iff M is hori-
zontal. Now apply this with HomK(M,N) in place of M . □

Recall: M∗ := HomK(M,K) is the dual of M ; see [ADH, 5.5]. By Lemma 2.3.13,
the dimension of the C-linear subspace HomK[∂](M,K) = kerM∗ ∂ of M∗ is at
most dimKM . For the differential module M = K[∂]/K[∂]A we can say more:

Lemma 2.3.14. Suppose M = K[∂]/K[∂]A and e := 1 + K[∂]A ∈ M . Then for
all ϕ ∈ HomK[∂](M,K) we have ϕ(e) ∈ kerA, and the map

ϕ 7→ ϕ(e) : HomK[∂](M,K)∂ → kerA

is an isomorphism of C-linear spaces.
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Proof. The first claim follows from A(ϕ(e)) = ϕ(Ae) = 0, as Ae = A + K[∂]A is
the zero element of M . This yields a C-linear map as displayed. To show that
it is surjective, let y ∈ kerA be given. Then B 7→ B(y) : K[∂] → K is K[∂]-
linear with K[∂]A contained in its kernel, and thus yields ϕ ∈ HomK[∂](M,K)
with ϕ(e) = y. Injectivity is clear since M = K[∂]e. □

Given a, the map ∂ − a : M → M is a ∂-compatible derivation on the K-linear
space M [ADH, 5.5]. Let Ma be the K-linear space M equipped with this ∂-
compatible derivation. Thus Ma is a differential module over K with

dimKMa = dimKM = r, kerM∗(∂ − a) = HomK[∂](Ma,K).

Moreover, if e is a cyclic vector of M with Ae = 0, then e is a cyclic vector of Ma

with Aae = 0. Hence by the previous lemma:

Corollary 2.3.15. Let A, e, M be as in Lemma 2.3.14. Then for each ϕ ∈
kerM∗(∂ − a) we have ϕ(e) ∈ kerAa, and the map

ϕ 7→ ϕ(e) : kerM∗(∂ − a) → kerAa

is an isomorphism of C-linear spaces. In particular, multα(M
∗) = multα(A), so α

is an eigenvalue of M∗ iff α is an eigenvalue of A.

Recall that every differential module M has finite length, denoted by ℓ(M) [ADH,
pp. 36–38, 251], with ℓ(M) ⩽ dimKM = r. We say that M splits if ℓ(M) = r.
By [ADH, 5.1.25], M = K[∂]/K[∂]A splits iff A splits over K. By additivity of ℓ(−)
and dimK(−) on short exact sequences (see [ADH, 1.2]) we have:

Lemma 2.3.16. Let N be a differential submodule of M . Then M splits iff both N
and M/N split.

Hence if N is a differential module over K, then M ⊕N splits iff M and N split.
Thus the least common left multiple of A1, . . . , Am ∈ K[∂] ̸=, m ⩾ 1, splits over K
iff A1, . . . , Am split over K: use that the differential module

K[∂]/K[∂] lclm(A1, . . . , Am)

over K is isomorphic to the image of the natural (diagonal) K[∂]-linear map

K[∂] →
(
K[∂]/K[∂]A1

)
× · · · × (K[∂]/K[∂]Am

)
.

A K[∂]-linear map M → N into a differential module N over K induces a K[∂]-
linear map ϕ∗ : N∗ →M∗ given by ϕ∗(f) = f ◦ ϕ, and if ϕ is surjective, then ϕ∗ is
injective. This gives a contravariant functor (−)∗ from the category of differential
modules over K to itself; the morphisms of this category are the K[∂]-linear maps
between differential modules over K. Using dimKM = dimKM

∗ < ∞ it follows
easily from these facts that if ϕ : M → N is an injective K[∂]-linear map into a
differential module N , then ϕ∗ : N∗ →M∗ is surjective.

Lemma 2.3.17. ℓ(M) = ℓ(M∗), so if M splits, then M∗ splits as well.

Proof. Induction on ℓ(M) using the canonical K[∂]-linear isomorphism M ∼= M∗∗

and what was said about the functor (−)∗ shows ℓ(M) = ℓ(M∗). □

Let L be a differential field extension of K. Recall from [ADH, 5.9.2] that the base
change L ⊗K M of M to L is a differential module over L with dimL L ⊗K M =
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dimKM . A K[∂]-linear map M → N into a differential module N over K induces
an L[∂]-linear map

L⊗K ϕ : L⊗K M → L⊗K N, λ⊗ x 7→ λ⊗ ϕ(x),

and this yields a covariant functor L⊗K− from the category of differential modules
over K to the category of differential modules over L. Using the above invariance
of dimension one checks easily that this functor transforms short exact sequences
in the first category to short exact sequences in the second category. Hence, by an
easy induction on ℓ(M) we have ℓ(M) ⩽ ℓ(L⊗K M).

We say that M splits over L if L⊗K M splits. The K[∂]-linear isomorphism

x 7→ 1⊗ x : M → K ⊗K M

shows that M splits iff M splits over K, and then M splits over each differential
field extension of K. Let E be a differential field extension of L. Then we have an
E[∂]-linear isomorphism

E ⊗K M → E ⊗L (L⊗K M), e⊗ x 7→ e⊗ (1⊗ x),

so if M splits over L, then M also splits over E. If N is a differential submodule
of M , then M splits over L iff both N and M/N split over L.

Lemma 2.3.18. If M splits over L, then so does M∗.

Proof. For ϕ ∈M∗ we have the L-linear map

idL⊗ϕ : L⊗M → L⊗K K, s⊗ y 7→ s⊗ ϕ(y) (λ, s ∈ L, ϕ ∈M∗, y ∈M).

We also have the L[∂]-linear isomorphism iL : L⊗K K → L given by iL(s⊗ 1) = s
for s ∈ L. It is straightforward to check that this yields an L-linear isomorphism

L⊗K M∗ → (L⊗K M)∗, 1⊗ ϕ 7→ iL ◦ (idL⊗ϕ) (ϕ ∈M∗),

and that this map is even L[∂]-linear. Now use Lemma 2.3.17. □

Call M cyclic if it has a cyclic vector, equivalently, for some A we have

M ∼= K[∂]/K[∂]A, as K[∂]-modules.

Corollary 2.3.19. We have
∑
αmultα(M) ⩽ r, hence |Σ(M)| ⩽ r. If more-

over
∑
αmultα(M) = r, then M splits. Conversely, if K is 1-linearly surjective

and M splits, then
∑
αmultα(M) = r.

Proof. We prove this for M∗ instead of M . (Then by various results above and the
natural K[∂]-linear isomorphism M ∼= M∗∗ it also follows for M .) If M is cyclic,
then

∑
αmultα(M

∗) ⩽ r by Lemma 2.3.3 and Corollary 2.3.15, and the rest follows
using also Lemma 2.3.17 and remarks following Corollary 2.3.15. Thus we are done
if C ̸= K, by [ADH, 5.5.3].

If C = K, then a differential module over K is just a finite-dimensional vector
space M over K equipped with a K-linear map ∂ : M →M , so we can use the well-
known internal direct sum decomposition

∑
a kerM (∂ − a) =

⊕
a kerM (∂ − a). □

Likewise we obtain from Corollary 2.3.5 and [ADH, 5.5.8]:

Corollary 2.3.20. Suppose K is 1-linearly surjective and
∑
αmultα(M) = r.

Then the map α 7→ −α restricts to a bijection Σ(M) → Σ(M∗) with multα(M) =
mult−α(M

∗) for each α.

We now aim for a variant of Corollary 2.3.20: Corollary 2.3.23 below.
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Lemma 2.3.21. Suppose dimC kerA = r. Then dimC kerA∗ = r.

Proof. The case r = 0 being trivial, suppose r ⩾ 1 and set M := K[∂]/K[∂]A,
so M ̸= {0}. By Lemma 2.3.14, M∗ is horizontal, hence M is also horizontal
by [ADH, remark after 5.5.5], and therefore dimC kerA∗ = dimC kerM ∂ = r by
Lemma 2.3.14 and [ADH, 5.5.8]. □

Corollary 2.3.22. Let d := dimC kerA and suppose K is (r−d)-linearly surjective.
Then dimC kerA∗ = d.

Proof. It suffices to show dimC kerA∗ ⩾ d, since then the reverse inequality follows
by interchanging the role of A and A∗. Let y1, . . . , yd be a basis of the C-linear
space kerA. Then

L(Y ) := wr(Y, y1, . . . , yd) ∈ K{Y }
is homogeneous of degree 1 and order d with zero set Z(L) = kerA [ADH, 4.1.13].
So with B ∈ K[∂] the linear part of L we have A = DB where D ∈ K[∂] has
order r − d, by [ADH, 5.1.15(i)], so A∗ = B∗D∗ and D∗(K) = K. Hence

dimC kerA∗ = dimC kerB∗ + dimC kerD∗ ⩾ dimC kerB∗ = dimC kerB = d

where we used [ADH, remark before 5.1.12] for the first equality and the previous
lemma (applied to B in place of A) for the second equality. □

Suppose now that r ⩾ 1 and K is (r− 1)-linearly surjective. Then Corollary 2.3.22
and A∗∗ = A give dimC kerA = dimC kerA∗ (even when dimC kerA = 0). Hence
for all a we have dimC kerAa = dimC ker(A∗)−a. This leads to:

Corollary 2.3.23. If r ⩾ 1 and K is (r − 1)-linearly surjective, then we have a
bijection α 7→ −α : Σ(M) → Σ(M∗), and multα(M) = mult−α(M

∗) for all α.

Complex conjugation (∗). In this subsection K = H[i] where H is a differential
subfield of K, i2 = −1, and i /∈ H. Then C = CH [i]. Recall that A ∈ K[∂] ̸= has
order r. The complex conjugation automorphism z = g+hi 7→ z := g−hi (g, h ∈ H)
of the differential field K induces an automorphism α 7→ α of the group K/K†

with α = [a] for α = [a], a ∈ K. The automorphism z 7→ z of K extends uniquely
to an automorphism D 7→ D of the ring K[∂] with ∂ = ∂. If A and B ̸= 0 have the

same type, then so do A and B. (Lemma 2.3.6.) Now A(f) = A(f) for f ∈ K,
so dimC kerK A = dimC kerK A. Moreover, Aa = Aa, hence multα(A) = multα(A)
for all α; so α is an eigenvalue of A iff α is an eigenvalue of A. Note that A∗ = A∗.
We call A∗ the conjugate adjoint of A. Corollary 2.3.5 yields:

Corollary 2.3.24. If K is 1-linearly surjective and
∑
αmultα(A) = r, then we

have a bijection α 7→ −α : Σ(A) → Σ(A∗), with multα(A) = mult−α(A∗) for all α.

Next, let M be a (left) K[∂]-module. Then we define M as the K[∂]-module arising
from M by replacing its scalar multiplication (A, f) 7→ Af : K[∂]×M →M with

(A, f) 7→ Af : K[∂]×M →M.

We call M the complex conjugate of M . Note that M = M . If ϕ : M → N is
a morphism of K[∂]-modules, then ϕ is also a morphism of K[∂]-modules M → N ,

which we denote by ϕ. Hence we have a covariant functor ( · ) from the category of
K[∂]-modules to itself. We have dimKM = dimKM , hence if M is a differential

module over K, then so is M . Thus ( · ) restricts to a functor from the category
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of differential modules over K to itself. If P is an r × r matrix over K and M =
MP is the differential module associated to P [ADH, p. 277], then the differential
modules M and MP over K both have underlying additive group Kr, and the

map e 7→ e : M →MP is an isomorphism of differential modules over K.

Example 2.3.25. For M = K[∂] we have an isomorphism B 7→ B : M → M of
K[∂]-modules. For N = K[∂]/K[∂]A we have an isomorphism

B +K[∂]A 7→ B +K[∂]A : N → K[∂]/K[∂]A

of differential modules over K.

Below M is a differential module over K and r = dimKM . Then for each B
we have kerM B = kerM B. Hence multα(M) = multα(M) for all α, so α is an

eigenvalue of M iff α is an eigenvalue of M .
Next, let N be a differential module over K. A map ϕ : M → N is K-linear

if ϕ : M → N is K-linear, so HomK(M,N) and HomK(M,N) have the same un-
derlying additive group. It is easy to check that for the differential module P :=
HomK(M,N) we have P = HomK(M,N). Thus M∗ = HomK(M,K). In view
of the isomorphism z 7→ z : K → K of differential modules over K this yields an
isomorphism M∗ ∼=M∗ of differential modules over K. We call M∗ the conjugate
dual of M . From Corollaries 2.3.20 and 2.3.23 we obtain:

Corollary 2.3.26. Suppose K is 1-linearly surjective and
∑
αmultα(M) = r,

or r ⩾ 1 and K is (r − 1)-linearly surjective. Then the map α 7→ −α restricts to a
bijection Σ(M) → Σ(M∗) with multα(M) = mult−α(M∗) for all α.

In the remainder of this section we discuss eigenvalues of differential modules overK
in the presence of a valuation on K. This is only used for the proof of Lemma 7.4.27
in Section 7.4. In preparation for this, we first study lattices over valued fields.

Lattices (∗). In this subsection F is a valued field with valuation ring R. Let L be
an R-module, with its torsion submodule

Ltor =
{
y ∈ L : ry = 0 for some r ∈ R ̸=}.

Call L torsion-free if Ltor = {0}, and a torsion module if Ltor = L. For the following
basic fact, cf. [40, VI, §4, Lemme 1]:

Lemma 2.3.27. Every finitely generated torsion-free R-module is free.

Proof. Let L be a finitely generated torsion-free R-module. Let x1, . . . , xm ∈ L
be distinct such that {x1, . . . , xm} is a minimal set of generators of L [ADH,
p. 44]. Towards a contradiction, suppose r1x1 + · · · + rmxm = 0 with r1, . . . , rm
in R not all zero. By reordering, arrange rj ∈ r1R for j = 2, . . . ,m. Torsion-
freeness of L yields x1 + s2x2 + · · ·+ smxm = 0 where sj := rj/r1 for j = 2, . . . ,m.
Hence {x2, . . . , xm} is also a set of generators of L, contradicting the minimality
of {x1, . . . , xm}. Thus x1, . . . , xm are R-linearly independent. □

Let now M be a finite-dimensional F -linear space and m := dimF M .

Lemma 2.3.28. Let L be a finitely generated R-submodule of M . Then L is free
of rank ⩽ m, and the following are equivalent:

(i) L has rank m;
(ii) L has a basis which is also a basis of the F -linear space M ;
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(iii) L contains a basis of M ;
(iv) L contains a generating set of M ;
(v) the R-module M/L is a torsion module.

Proof. Freeness of L follows from Lemma 2.3.27. Every set of R-linearly inde-
pendent elements of L is F -linearly independent, so rank(L) ⩽ m. Let y1, . . . , yn
be a basis of L. Assuming n < m yields z ∈ M such that y1, . . . , yn, z are F -
linearly independent, so M/L is not a torsion module. This shows (v) ⇒ (i),
and (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) are clear. □

A finitely generated R-submodule L of M is called an R-lattice in M , or just a
lattice inM if R is understood from the context, if it satisfies one of the equivalent
conditions (i)–(v) in Lemma 2.3.28. If L is a lattice in M , then every basis of L
is a basis of the F -linear space M , and every lattice of M is of the form σ(L) for
some automorphism σ of M . Next some easy consequences of Lemma 2.3.28:

Corollary 2.3.29. If π : M → M ′ is a surjective morphism of F -linear spaces
and L a lattice in M , then L′ := π(L) is a lattice in M ′.

Corollary 2.3.30. Let N be an F -linear subspace of M and L a lattice in M .
Then L ∩N is a lattice in N .

Proof. Take a basis x1, . . . , xn of N . Lemma 2.3.28(v) gives r1, . . . , rn ∈ R ̸= with
r1x1, . . . , rnxn ∈ L. Then r1x1, . . . , rnxn is a basis of N contained in L ∩N . Now
apply Lemma 2.3.28(iii) to N , L ∩N in place of M , L. □

Corollary 2.3.31. If L is a lattice in M and E a valued field extension of F
with valuation ring S, then the E-linear space ME := E ⊗F M has dimension m,
and the S-submodule LE of ME generated by the image of L under the F -linear
embedding y 7→ 1⊗ y : M →ME is an S-lattice in ME.

For i = 1, 2 letMi be a F -linear space with mi := dimKMi <∞ and Li be a lattice
in Mi. Then L1 ⊕ L2 is a lattice in M1 ⊕M2, and the R-submodule of M1 ⊗F M2

generated by the elements y1 ⊗ y2 (y1 ∈ L1, y2 ∈ L2) is a lattice in M1 ⊗F M2.
The F -linear space Hom(M1,M2) = HomF (M1,M2) of F -linear maps M1 → M2

has dimension m1m2, and the R-module Hom(L1, L2) of R-linear maps L1 → L2 is
free of rank m1m2. Each R-linear map ϕ : L1 → L2 extends uniquely to an F -linear

map ϕ̂ : M1 →M2, and ϕ 7→ ϕ̂ is an embedding of Hom(L1, L2) into Hom(M1,M2)
viewed as R-module. We identify Hom(L1, L2) via this embedding with its image
in Hom(M1,M2); then Hom(L1, L2) is a lattice in Hom(M1,M2). In particular,
if L is a lattice in M , then L∗ = Hom(L,R) is a lattice in M∗ = Hom(M,F ).

Lattices in differential modules (∗). In the rest of this section K is equipped
with a valuation ring O making K a valued differential field with small derivation.
We also let M be a differential module over K. Thus M is a K[∂]-module which is
finite-dimensional as K-linear space. We have the subring O[∂] of K[∂]. A lattice
in M is an O[∂]-submodule of M that is also an O-lattice in the K-linear space M .
An O-lattice L in the K-linear space M is a lattice in the differential module M
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iff ∂L ⊆ L, iff there is a generating set S of the O-module L with ∂S ⊆ L. If a ̸= 0
and a† ≼ 1 and L is a lattice in M , then aL is also a lattice in M .

Examples 2.3.32.

(1) Suppose M = MN where N is an n × n matrix over O (n ⩾ 1). The
underlying K-linear space of M is Kn, and for each e ∈ M we have ∂e =
e′ −Ne [ADH, p. 277], so L := On is a lattice in M .

(2) SupposeM ∼= K[∂]/K[∂]A where A ∈ O[∂] is monic. Let e be a cyclic vector
of M with Ae = 0. Then the K-linear space M has basis e, ∂e, . . . , ∂

r−1e
and L := Oe+O∂e+ · · ·+O∂

r−1e is a lattice in M .

For i = 1, 2 let Mi be a differential module over K and Li be a lattice in Mi.
Then L1 ⊕ L2 is a lattice in the differential module M1 ⊕ M2 over K, and the
O-submodule of M1 ⊗K M2 generated by the elements y1 ⊗ y2 (yi ∈ Li, i = 1, 2)
is a lattice in the differential module M1 ⊗K M2 over K. Also, Hom(L1, L2) is a
lattice in the differential module HomK(M1,M2) over K.

Let L be a lattice in M . If π : M → N is a surjective morphism of differential
modules over K, then π(L) is a lattice in N . If N is a differential submodule of M ,
then L ∩N is a lattice in N . Using the notation from Corollary 2.3.31 we have:

Lemma 2.3.33. Let L be a lattice in M and E be a valued differential field ex-
tension of K with small derivation. Then LE is a lattice in the base change ME =
E ⊗K M of the differential module M over K to a differential module over E.

If A ∈ O[∂] is monic (of order r by our convention), then O[∂]A is a left ideal of the
ring O[∂], and the resulting left O[∂]-module O[∂]/O[∂]A is free on e, ∂e, . . . , ∂r−1e
for e := 1 + O[∂]A, as is easily verified. Conversely, if L is a left O[∂]-module
free on e, ∂e, . . . , ∂

r−1e, e ∈ L, then the unique monic A ∈ O[∂] (of order r) such
that Ae = 0 yields an isomorphism O[∂]/O[∂]A→ L sending 1 +O[∂]A to e.

Next, let k = O/O be the differential residue field of K; cf. [ADH, 4.4]. Here is
a version of the cyclic vector theorem [ADH, 5.5.3] for lattices:

Proposition 2.3.34. Suppose the derivation on k is nontrivial and L is a lattice
in M and dimKM = r. Then L ∼= O[∂]/O[∂]A for some monic A ∈ O[∂].

The case r = 0 being trivial, we assume for the proof below that r ⩾ 1. We now
introduce a tuple Y = (Y0, . . . , Yr−1) of distinct differential indeterminates over K,
and let i, j, k, l range over {0, . . . , r − 1}.

Lemma 2.3.35. For all i, j, let Pij ∈ Y
(j)
i +

∑
k<r, l<j K Y

(l)
k . Then the coefficient

of Y0Y
′
1 · · ·Y

(r−1)
r−1 in det(Pij) ∈ K{Y } is 1.

Proof. For p = 0, . . . , r − 1 we prove by induction on p that the coefficient of

Y0Y
′
1 · · ·Y

(p)
p in det(Pij)i,j⩽p ∈ K{Y } is 1 (which for p = r − 1 gives the desired

result). The case p = 0 is clear, so assume p ⩾ 1. Then Y
(p)
p occurs in the

matrix (Pij)i,j⩽p only in the (p, p)-entry Ppp ∈ Y
(p)
p +

∑
k<r, l<pK Y

(l)
l , and so

the coefficient of Y0Y
′
1 · · ·Y

(p)
p in det(Pij)i,j⩽p is the coefficient of Y0Y

′
1 · · ·Y

(p−1)
p−1

in det(Pij)i,j⩽p−1, and the latter is 1 by inductive assumption. □

Proof of Proposition 2.3.34. Let z0, . . . , zr−1 be a basis of theO-module L. Consider

the base change M̂ := K{Y } ⊗K M of M to the differential K-algebra K{Y },
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cf. [ADH, p. 304]. So M̂ is a left K{Y }[∂]-module and the K{Y }-module M̂ is free
on 1⊗ z0, . . . , 1⊗ zr−1. Set

ê := Y0 ⊗ z0 + · · ·+ Yr−1 ⊗ zr−1 ∈ M̂

and let Pij ∈ K{Y } be such that

∂
j ê = P0j ⊗ z0 + · · ·+ Pr−1,j ⊗ zr−1.

An easy induction on j using ∂L ⊆ L shows that Pij ∈ Y
(j)
i +

∑
k<r, l<j O Y

(l)
k .

Put P := det(Pij) ∈ O{Y }; then v(P ) = 0 by the lemma above, so [ADH, 4.2.1]
applied to k and the image of P under the natural morphism O{Y } → k{Y } in
place of K and P , respectively, yields an a ∈ Or such that P (a) ≍ 1. We obtain a
K[∂]-module morphism

ϕ : M̂ →M with ϕ(Q⊗ z) = Q(a)z for Q ∈ K{Y } and z ∈M .

Put R := O{Y }, a differential subring of K{Y }, and let L̂ be the R[∂]-submodule

of M̂ generated by 1⊗ z0, . . . , 1⊗ zr−1, so

L̂ = {Q0 ⊗ z0 + · · ·+Qr−1 ⊗ zr−1 : Q0, . . . , Qr−1 ∈ O{Y }}.

Then ∂
j ê ∈ L̂ for all j and ϕ(L̂) = L. With e := ϕ(ê) we have

∂
je = ϕ(∂j ê) = P0j(a)z0 + · · ·+ Pr−1,j(a)zr−1

and det(Pij(a)) = P (a) ∈ O×, so L = Oe + O∂e + · · · + O∂
r−1e. By a remark

preceding Proposition 2.3.34, this concludes its proof. □

Remark. Taking K = O, Proposition 2.3.34 yields another proof of [ADH, 5.5.3],
in the spirit of [51]; cf. [48]. Note also that e as constructed in the proof of Proposi-
tion 2.3.34 is a cyclic vector of M , and so yields the isomorphism M ∼= K[∂]/K[∂]A
sending e to 1 +K[∂]A, with monic A ∈ O (of order r by convention) determined
by the requirement Ae = 0.

Eigenvalues of bounded operators (∗). In this subsection A ∈ O[∂] is monic,
of order r by earlier convention. Recall that [a] := a+K† for a ∈ K. Put

[O] := (O +K†)/K† =
{
[a] : a ∈ O

}
(a divisible subgroup of K/K†).

Thus Σ(A) ⊆ [O] by (2.3.2) and [ADH, 5.6.3]. More precisely, with k denoting
the differential residue field of K, recall from [ADH, 5.6] that the residue map
a 7→ res a : O → k extends to a ring morphism B 7→ resB : O[∂] → k[∂] with ∂ 7→ ∂.
For each B ∈ O[∂] and y ∈ O we have B(y) ∈ O and res

(
B(y)

)
= (resB)(res y).

Also, resA ∈ k[∂] is monic with order resA = orderA = r. By [ADH, 5.6.3],
if B,D ∈ K[∂] are monic and A = BD, then B,D ∈ O[∂]. In particular, all
a1, . . . , ar ∈ K such that A = (∂ − a1) · · · (∂ − ar) are in O, and

resA = (∂ − res a1) · · · (∂ − res ar).

Moreover, using also (2.3.2), we conclude:

Lemma 2.3.36. If A = B(∂ − a), B ∈ K[∂], then a ∈ O, B ∈ O[∂], and resA =
(resB) · (∂ − res a). Hence for each α ∈ Σ(A) there is an a ∈ O such that α = [a]

and res a+ k† ∈ Σ(resA).
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Suppose now ∂O ⊆ O. Then the derivation of k is trivial, and we have a k-algebra
isomorphism P (Y ) 7→ P (∂) : k[Y ] → k[∂]. We let the characteristic polynomial
of B be the χB ∈ k[Y ] satisfying χB(∂) = resB. Then B 7→ χB : O[∂] → k[Y ] is
a ring morphism extending the residue morphism O → k with ∂ 7→ Y . Identify-
ing k/k† with k in the natural way, the set of zeros of χA in k is Σ(resA). Thus
by Lemma 2.3.36:

Corollary 2.3.37. If A ∈ K[∂](∂ − a), then a ∈ O and χA(res a) = 0. Hence for
each α ∈ Σ(A) there is an a ∈ O such that α = [a] and χA(res a) = 0.

If O = C + O, then ∂O ⊆ O and the residue morphism O → k restricts to an
isomorphism C → k, via which we identify k with C making χA an element of C[Y ].

In the rest of this subsection K = H[i] where H is a real closed differential subfield
of K such that the valuation ring OH := O ∩H of H is convex with respect to the
ordering of H and OH = CH+OH . Then C = CH [i]. A remark after Corollary 1.2.5
then yields O = OH + OH i = C + O. Using that remark and Lemma 1.2.4 we
have K† ⊆ H† + OH i ⊆ H† +O, and thus:

Lemma 2.3.38. H† +O = H† + CH + CH i + O =
{
a ∈ K : [a] ∈ [O]

}
.

Lemma 2.3.39. Suppose that CH ⊆ H†, and let α ∈ [O]. Then there is a
unique b ∈ CH such that α = [bi + ε] for some ε ∈ O. For this b we have

(2.3.6) multα(A) ⩽
∑

c∈C, Im c=b

multc(χA).

Proof. Lemma 2.3.38 and CH ⊆ H† yield the existence of b ∈ CH such that α =
[bi + ε] for some ε ∈ O. Since K† ⊆ H + OH i, there is at most one b ∈ CH . We
prove (2.3.6) by induction on r. The cases r = 0 and multα(A) = 0 being trivial,
suppose r ⩾ 1 and α ∈ Σ(A). From (2.3.2) and [ADH, 5.6.3] we get a ∈ O and
monic B ∈ O[∂] with [a] = α and A = B(∂−a). Then multα(A) ⩽ multα(B)+1 by
Lemma 2.3.2, and with c ∈ C such that a− c ≺ 1 we have b = Im c and χA(c) = 0.
Now apply the inductive hypothesis to B in place of A. □

Remark. The inequality (2.3.6) is strict in general: H can be an H-field with an
element x ∈ H such that x′ = 1. Then x ≻ 1, 1/x /∈ I(H), so ε := i/x ∈ O \K†.
Then for A := (∂ − (i + ε))(∂ − i) we have mult[i]A = 1 while χA = (Y − i)2.

Corollary 2.3.40. Suppose K has asymptotic integration and is (r−1)-newtonian,
r ⩾ 1. Let c1, . . . , cr ∈ C be the zeros of χA, and suppose c1, . . . , cr are distinct
and Re c1 ⩾ · · · ⩾ Re cr. Then for each splitting (a1, . . . , ar) of A over K we
have a1, . . . , ar ∈ O. Moreover, there is a unique such splitting of A over K such
that a1 − c1, . . . , ar − cr ≺ 1.

Proof. The first claim is immediate from [ADH, 5.6.3]. We prove the second claim
by induction on r. The case r = 1 being trivial, suppose r > 1. Corollary 1.8.47
yields an ar ∈ O with Ri(A)(ar) = 0 and ar − cr ≺ 1, and then A = B(∂ − ar)
where B ∈ O[∂] is monic, by [ADH, 5.6.3, 5.8.7]. By inductive hypothesis B =
(∂ − a1) · · · (∂ − ar−1) where aj ∈ O with aj − cj ≺ 1 for j = 1, . . . , r − 1. This
shows existence. Uniqueness follows in a similar way, using Corollary 1.8.50. □
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Bounded differential modules (∗). In this subsection A is monic and M is a
differential module over K. We call M bounded if there exists a lattice in M . By
remarks in an earlier subsection the class of bounded differential modules over K is
quite robust: if M1, M2 are bounded differential modules over K, then so are the
differential modulesM1⊕M2, M1⊗KM2, and HomK(M1,M2) over K, and ifM is
bounded, then so is every differential submodule of M , every image of M under a
morphism of differential modules over K, and every base change of M to a valued
differential field extension of K with small derivation.

Example 2.3.41. Let u ∈ K and suppose M = K with ∂a = a′ + ua for all a. Then
for e ∈ K×, Oe is a lattice in M iff e′ + ue = ∂e ∈ Oe. Hence M is bounded
iff u ∈ O +K†.

If A⋉a ∈ O[∂] for some a ̸= 0, then K[∂]/K[∂]A is bounded by Example 2.3.32(2).

Lemma 2.3.42. Suppose M = K[∂]/K[∂]A and r = 1. Then

M is bounded ⇐⇒ A⋉a ∈ O[∂] for some a ̸= 0.

Proof. Let A = ∂ − u, u ∈ K. Identifying K with M via a 7→ a + K[∂]A we
have ∂a = a′ + ua for all a in K = M , so if M is bounded, then Example 2.3.41
gives a ̸= 0 with u ∈ O + a†, hence A⋉a ∈ O[∂]. □

Lemma 2.3.43. Suppose the valuation ring O is discrete (that is, a DVR) andM =
K[∂]/K[∂]A is bounded. Then A⋉a−1 ∈ O[∂] for some a ∈ O ̸=.

Proof. Let L be a lattice inM and e := 1+K[∂]A, a cyclic vector ofM . SinceM/L
is a torsion module we get a ∈ O ̸= with f := ae ∈ L. Because O is noetherian, the
submodule of the finitely generated O-module L generated by f, ∂f, ∂

2f, . . . is itself
finitely generated, and this yields n with ∂

nf ∈ Of+O∂f+· · ·+O∂
n−1f [122, Chap-

ter X, §1]. We obtain a monic B ∈ O[∂] of order n with Bf = 0. Then B⋉ae = 0,
so B ∈ K[∂]A⋉a−1 , and thus A⋉a−1 ∈ O[∂] by [ADH, 5.6.3]. □

If K is monotone K, then v(B⋉a) = v(B) for all B and a ̸= 0, by [ADH, 4.5.4].
If O is discrete, then K is monotone by [ADH, 6.1.2]. Hence by Lemma 2.3.43:

Corollary 2.3.44. Suppose O is discrete. Then:

the differential module K[∂]/K[∂]A over K is bounded ⇐⇒ A ∈ O[∂].

Remark. In the case (K,O) =
(
C((t)),C[[t]]

)
and ∂ = t ddt , bounded differential

modules over K are called regular singular in [158], and Corollary 2.3.44 in this
case is implicit in the proof of [158, Proposition 3.16].

Lemma 2.3.45. Suppose M ∼= K[∂]/K[∂]A where A ∈ O[∂]. Then Σ(M) ⊆ [O].

Proof. The case r = 0 is trivial, so assume r ⩾ 1. Corollary 2.3.15 and remarks in
the last subsection yield Σ(M∗) = Σ(A) ⊆ [O]. By [ADH, 5.5.8] we have M∗ ∼=
K[∂]/K[∂]B where B := (−1)rA∗ ∈ O[∂] is monic. Also M ∼= M∗∗, hence Σ(M) =
Σ(M∗∗) ⊆ [O] by the above applied to M∗, B in place of M , A. □

Corollary 2.3.46. Suppose M is bounded. Assume also that the derivation of k is
nontrivial, or the derivation of K is nontrivial and O is discrete. Then Σ(M) ⊆ [O].

Proof. The remark following the proof of Proposition 2.3.34 and Lemma 2.3.43
yield A ∈ O[∂] with M ∼= K[∂]/K[∂]A, and so Σ(M) ⊆ [O] by Lemma 2.3.45. □
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Corollary 2.3.47. Suppose M splits and is bounded. Then Σ(M) ⊆ [O].

Proof. We proceed by induction on r = dimKM = ℓ(M). If r = 0, then Σ(M) = ∅.
Next suppose r = 1, and take e ∈ M with M = Ke and a ∈ K with ∂e = ae.
Then Σ(M) =

{
[a]
}
by Corollary 2.3.19, and M ∼= K[∂]/K[∂](∂ − a), so [a] ∈ [O]

by Lemma 2.3.42. Now suppose r > 1. Take a differential submodule M1 of M
with ℓ(M1) = r − 1, so ℓ(M2) = 1 for M2 := M/M1. Then M1, M2 split and
are bounded, by Lemma 2.3.16 and the remarks before Example 2.3.41. Hence
by inductive hypothesis Σ(Mi) ⊆ [O] for i = 1, 2, so Σ(M) ⊆ [O] by the remark
after (2.3.5). □

Corollary 2.3.48. Let H be a Liouville closed, trigonometrically closed H-field
with small derivation, K = H[i], and suppose M is bounded. Then Σ(M) ⊆ [O].

Proof. We have K† = H ⊕ I(H)i and so O +K† = H ⊕ OH i. Take an H-closed
field extension H1 of H and set K1 := H1[i]. The base change M1 := K1 ⊗K M
of M to K1 splits and is bounded, so Σ(M1) ⊆ [O1] by Corollary 2.3.47. We

have K†
1 = H1 ⊕ I(H1)i by Corollary 1.2.21, so O1 + K†

1 = H1 ⊕ OH1i. This

yields K†
1 ∩K = K† and (O1 +K†

1) ∩K = O +K†, so identifying K/K† with its

image under the group embedding a+K† 7→ a+K†
1 : K/K

† → K1/K
†
1 (a ∈ K) we

have Σ(M) ⊆ Σ(M1) and [O] = [O1] ∩ (K/K†). Thus Σ(M) ⊆ [O]. □

Question. Does it follow from M being bounded and C ̸= K that Σ(M) ⊆ [O]?

2.4. Self-Adjointness and its Variants (∗)

In this section K is a differential field. We let A, B range over K[∂] with A ̸= 0,
and set r := orderA. We also let α range over K/K†. The material in this section
elaborates on Corollaries 2.3.5 and 2.3.20 and shows how symmetries of A force
it to have eigenvalue 0 ∈ K/K†, mainly by making some classical results (cf. [54,
Chapitre V] and [181, §23–25]) precise and putting them into our present context. It
can be skipped on first reading, since it is only needed in Section 7.4 for applications
of our main theorem to linear differential equations over complexified Hardy fields.

Operators of the same type. Suppose B ̸= 0 and set s := orderB. Consider
now the C-linear subspace

E(A,B) :=
{
R ∈ K[∂] : orderR < r and BR ∈ K[∂]A

}
of K[∂]. The next lemma and its corollary elaborate on Lemma 2.3.6.

Lemma 2.4.1. Let M := K[∂]/K[∂]A and N := K[∂]/K[∂]B. Then we have an
isomorphism

R 7→ ϕR : E(A,B) → HomK[∂](N,M)

of C-linear spaces where

ϕR(1 +K[∂]B) = R+K[∂]A for R ∈ E(A,B).

Proof. LetR ∈ E(A,B). Then the kernel of theK[∂]-linear mapK[∂] → K[∂]/K[∂]A
sending 1 to R+K[∂]A contains K[∂]B, hence induces a K[∂]-linear map

ϕR : N = K[∂]/K[∂]B → K[∂]/K[∂]A =M

as indicated. It is easy to check that R 7→ ϕR is C-linear. If ϕR = 0, then
ϕR(1 +K[∂]B) = K[∂]A and hence R ∈ K[∂]A, so R = 0, since orderR < r.
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Given ϕ ∈ HomK[∂](N,M) we have ϕ(1+K[∂]B) = R+K[∂]A where R ∈ K[∂] has
order < r; then BR ∈ K[∂]A, so R ∈ E(A,B), and we have ϕ = ϕR. □

In particular, 0 ⩽ dimC E(A,B) ⩽ rs by Lemmas 2.3.13 and 2.4.1. Moreover:

Corollary 2.4.2. Suppose r = s. Then the isomorphism R 7→ ϕR from the previous
lemma maps the subset

E(A,B)× :=
{
R ∈ E(A,B) : 1 ∈ K[∂]R+K[∂]A

}
of E(A,B) bijectively onto the set of K[∂]-linear isomorphisms N →M .

Set M := K[∂]/K[∂]A. We make the C-module EndK[∂](M) := HomK[∂](M,M)
into a C-algebra with its ring multiplication given by composition. We equip the
C-module E(A) := E(A,A) with the ring multiplication making the map

R 7→ ϕR : E(A) → EndK[∂](M)

an isomorphism of C-algebras. The C-algebra E(A) is called the eigenring of A;
cf. [189] or [158, §2.2]. Note that if r ⩾ 1, then C ⊆ E(A). If the K[∂]-module M
is irreducible, then EndK[∂](M) is a division ring, by Schur’s Lemma [122, Chap-
ter XVII, Proposition 1.1]. Now M is irreducible iff A is irreducible [ADH, p. 251],
hence:

Corollary 2.4.3. Suppose A is irreducible. Then E(A) is a division algebra over C.
If C is algebraically closed, then E(A) = C.

Proof. As to the second claim, let e ∈ E(A). The elements of C commute with e,
so we have a commutative domain C[e] ⊆ E(A), hence e is algebraic over C in view
of dimC E(A) ⩽ r2, and thus e ∈ C if C is algebraically closed. □

We may have E(A) = C without A being irreducible [158, Exercise 2.14]. If A, B
have the same type, then the C-algebras E(A), E(B) are isomorphic. By Lem-
ma 2.4.1 and Corollary 2.4.2 we have:

Corollary 2.4.4. Suppose E(A) = C and A, B have the same type. Then for
some e ∈ E(A,B)̸= we have E(A,B) = Ce, and E(A,B)× = C×e.

Self-duality. Let M be a differential module over K. We say that M is self-dual
if M ∼=M∗. If M is self-dual, then so is of course every isomorphic K[∂]-module, in
particularM∗. Given also a differential module N over K, we say that a K-bilinear
map [ , ] : M ×N → K is ∂-compatible if

∂[f, g] = [∂f, g] + [f, ∂g] for all f ∈M , g ∈ N .

The non-degenerate K-bilinear map

(ϕ, f) 7→ ⟨ϕ, f⟩ := ϕ(f) : M∗ ×M → K

is ∂-compatible by [ADH, (5.5.1)]. One verifies easily:

Lemma 2.4.5. M is self-dual iff there is a non-degenerate ∂-compatible K-bilinear
form on M . In more detail, any isomorphism ι : M →M∗ yields a non-degenerate
∂-compatible K-bilinear form (f, g) 7→ ⟨ι(f), g⟩ : M × M → K, and every non-
degenerate ∂-compatible K-bilinear form on M arises in this way from a unique
isomorphism ι : M →M∗ (of differential modules over K).
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In terms of matrices, let e1, . . . , en be a basis of M and let e∗1, . . . , e
∗
n be the dual

basis of M∗. Let ι : M → M∗ be an isomorphism M → M∗ with matrix P with
respect to these bases. Then for the corresponding K-bilinear form [ , ] on M from
the above lemma we have [ei, ej ] = Pji = (P t)ij .

Next a consequence of Corollaries 2.3.20 and 2.3.23. It provides useful informa-
tion about the spectrum of M , which explains our interest in self-duality.

Corollary 2.4.6. Let dimKM = r, and suppose
∑
αmultα(M) = r and K is

1-linearly surjective, or r ⩾ 1 and K is (r − 1)-linearly surjective. Assume also
that M is self-dual. Then multα(M) = mult−α(M) for all α. Hence if addition-
ally K† is 2-divisible and

∑
αmultα(M) is odd, then 0 ∈ Σ(M).

Suppose now thatM = K[∂]/K[∂]A and r ⩾ 1. ThenM∗ ∼= K[∂]/K[∂]A∗ by [ADH,
5.5.8], henceM is self-dual iff A, A∗ have the same type. By Lemma 2.3.6 this is the
case iff there are R,S ∈ K[∂] of order < r with 1 ∈ K[∂]R+K[∂]A and A∗R = SA.
When E(A) = C, we can replace this with a more symmetric condition:

Lemma 2.4.7. Suppose E(A) = C. Then A, A∗ have the same type iff for
some R ∈ K[∂] of order n < r we have A∗R = (−1)n+rR∗A and 1 ∈ K[∂]R+K[∂]A.

Proof. Suppose A, A∗ have the same type. By Corollary 2.4.4 we obtain R,S ∈ K[∂]
of order < r such that A∗R = SA, 1 ∈ K[∂]R+K[∂]A, and E(A,A∗)× = C×R. Now
taking adjoints yields A∗S∗ = R∗A, so 0 ̸= S∗ ∈ E(A,A∗), hence S∗ ∈ E(A,A∗)×

and thus S∗ = cR (c ∈ C×). Comparing coefficients of the highest order terms on
both sides of cA∗R = R∗A gives c = (−1)n+r. □

We say that A is self-dual if A, A∗ have the same type. Thus if A is self-dual, then
so is A∗, and so is every operator of the same type as A. Moreover, by Lemma 2.3.7,
if A is self-dual, then A, A∗ have the same eigenvalues, with the same multiplicities.
Combining Corollary 2.4.3 with the previous lemma yields:

Corollary 2.4.8. Suppose A is irreducible and C is algebraically closed. Then A
is self-dual iff for some R ∈ K[∂] of order n < r we have A∗R = (−1)n+rR∗A
and 1 ∈ K[∂]R+K[∂]A.

Here is the operator version of Corollary 2.4.6:

Corollary 2.4.9. Suppose A is self-dual, and set s :=
∑
αmultα(A). Also as-

sume K is 1-linearly surjective and s = r, or r ⩾ 1 and K is (r − 1)-linearly
surjective. Then multα(A) = mult−α(A) for each α. Hence if in addition K† is
2-divisible and s is odd, then 0 ∈ Σ(A).

Let ϕ ∈ K×, B ̸= 0. If A, B have the same type, then so do Aϕ, Bϕ ∈ Kϕ[δ], by
Lemma 2.3.6. Hence by the next lemma, if A is self-dual, then so is Aϕ.

Lemma 2.4.10. (Aϕ)∗ = (A∗)ϕ⋉ϕ.

Proof. We have

(∂ϕ)∗ = (ϕδ)∗ = −δϕ = (−ϕδ)⋉ϕ = (−∂)ϕ⋉ϕ = (∂∗)ϕ⋉ϕ,

so the lemma holds for A = ∂. It remains to note that B 7→ (Bϕ)∗ and B 7→ (B∗)ϕ⋉ϕ
are ring morphisms K[∂] → Kϕ[δ]opp that are the identity on K, where Kϕ[δ]opp is
the opposite ring of Kϕ[δ]; cf. [ADH, proof of 5.1.8]. □
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If A∗ = (−1)rA⋉a (a ∈ K×), then A is self-dual, so there is a non-degenerate
∂-compatible K-bilinear form on K[∂]/K[∂]A. The next proposition gives more
information. We say that a K-bilinear form [ , ] on a K-linear space M is (−1)n-
symmetric if [f, g] = (−1)n[g, f ] for all f, g ∈M .

Proposition 2.4.11 (Bogner [25]). Suppose r ⩾ 1, and let M = K[∂]/K[∂]A
and e = 1 +K[∂]A ∈M . Then the following are equivalent:

(i) A∗ = (−1)rA⋉a for some a ∈ K×;
(ii) there is a non-degenerate ∂-compatible K-bilinear form [ , ] on M such that

[e, ∂
je] = 0 for j = 0, . . . , r − 2.

Any form [ , ] on M as in (ii) is (−1)r−1-symmetric.

Proof. We first arrange that A is monic. Let e∗0, . . . , e
∗
r−1 be the basis ofM∗ dual to

the basis e, ∂e, . . . , ∂
r−1e ofM , so e∗ := e∗r−1 is a cyclic vector ofM∗ with A∗e∗ = 0,

by [ADH, 5.5.7]. Below we let i, j range over {0, . . . , r − 1}.
Suppose A∗ = (−1)rA⋉a, a ∈ K×. Then A∗e∗ = 0 gives Aae∗ = 0, so we have

a K[∂]-linear isomorphism φ : M → M∗ with φ(e) = ae∗. Let [ , ] be the non-
degenerate ∂-compatible K-bilinear form on M given by [f, g] = ⟨φ(f), g⟩. Then

[e, ∂
je] = ⟨φ(e), ∂

je⟩ = a⟨e∗, ∂
je⟩ for all j,

proving (ii). Suppose conversely that [ , ] is as in (ii). Then a := [e, ∂
r−1e] ̸= 0

since [ , ] is non-degenerate. Let φ : M → M∗ be the isomorphism with φ(f) =
[f,−] for all f ∈ M . Then [e, ∂

je] = ⟨φ(e), ∂
je⟩ for all j and thus φ(e) = a e∗.

Hence
Aa e∗ = Aφ(e) = φ(Ae) = φ(0) = 0,

and this yields A∗ = (−1)rA⋉a.
Let now [ , ] be as in (ii) and set a := [e, ∂

r−1e]. Induction on i using ∂-
compatibility of [ , ] shows [∂ie, ∂

je] = 0 for i ⩽ r − 2, j ⩽ r − 2− i. In particular,
[∂ie, e] = 0 = [e, ∂

ie] for i ⩽ r − 2. Induction on i using the second display in the
proof of [ADH, 5.5.7] gives

(∂∗)ie∗ ∈ e∗r−1−i +
∑

r−i⩽j⩽r−1

Ke∗j , and hence

(−1)r−1
∂
r−1e∗ ∈ e∗0 +Ke∗1 + · · ·+Ke∗r−1.

It follows that [∂r−1e, e] = ⟨∂r−1ae∗, e⟩ = (−1)r−1a. This covers the base case i = 0
of an induction on i showing [∂ie, g] = (−1)r−1[g, ∂

ie] for all g ∈ M . Suppose this
identity holds for a certain i ⩽ r − 2. Then by ∂-compatibility

[∂i+1e, g] = ∂[∂ie, g]− [∂ie, ∂g] = (−1)r−1
(

∂[g, ∂
ie]− [∂g, ∂

ie]
)
= (−1)r−1[g, ∂

i+1e]

as required. □

See [25] for the geometric significance of operators as in this proposition when K
is the differential field of germs of meromorphic functions at 0.

Let r ⩾ 1, and A, a be as in (i) of Proposition 2.4.11, with

A = ∂
r + ar−1∂

r−1 + · · ·+ a0 (a0, . . . , ar−1 ∈ K).

Then a† = −(2/r)ar−1. Set b := a†. Then the operator B := Ab/2 of order r
satisfies B∗ = (−1)rB, so the cases B∗ = B and B∗ = −B deserve particular
attention:
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Definition 2.4.12. A linear differential operator B is said to be (formally) self-
adjoint if B∗ = B and skew-adjoint if B∗ = −B.

We discuss self-adjoint and skew-adjoint operators in more depth after reviewing
a useful identity relating a linear differential operator and its adjoint, which is
obtained by transferring [ADH, (5.5.1)] to the level of operators.

The Lagrange Identity. Let M be a differential module over K with dimKM =
n ⩾ 1, and suppose e is a cyclic vector of M . Then e0, . . . , en−1 with ei := ∂

ie is a
basis of M . Let e∗0, . . . , e

∗
n−1 be the dual basis of M∗. Then e∗ := e∗n−1 is a cyclic

vector of M∗ [ADH, 5.5.7], so e∗, ∂e∗, . . . , ∂
n−1e∗ is a basis of M∗. Let L ∈ K[∂] be

monic of order n such that Le = 0. Then

L = a0 + a1∂ + · · ·+ an∂
n where a0, . . . , an ∈ K (so an = 1).

By [ADH, 5.5.7] and its proof we have L∗e∗ = 0 and

(2.4.1) e∗n−i−1 = Lie
∗ where Li :=

i∑
j=0

(∂∗)i−jan−j ∈ K[∂] (i = 0, . . . , n− 1).

Let d0, . . . , dn−1 be the basis ofM dual to the basis e∗, ∂e∗, . . . , ∂
n−1e∗ ofM∗. Then

(2.4.2) ⟨e∗n−1, dj⟩ = δ0j , ⟨e∗n−i−1, dn−1⟩ = (−1)n−1δi,n−1 for 1 ⩽ i ⩽ n− 1

(Kronecker deltas) using (2.4.1). Let y, z ∈ K and set

ϕ := ye∗0 + y
′e∗1 + · · ·+ y(n−1)e∗n−1 ∈M∗, f := zd0+ z

′d1+ · · ·+ z(n−1)dn−1 ∈M.

Then

∂ϕ = L(y)e∗n−1, ∂f = (−1)nL∗(z)dn−1.

For the first equality, use the first display in the proof of [ADH, 5.5.7]. The second
equality follows from the first by reversing the roles of M and M∗ and noting
that (−1)nL∗ is monic of order n with (−1)nL∗e∗ = 0. Hence

⟨∂ϕ, f⟩ = L(y)⟨e∗, f⟩ = L(y)z, ⟨ϕ, ∂f⟩ = (−1)nL∗(z)⟨ϕ, dn−1⟩ = −L∗(z)y

by (2.4.2) and so by the identity [ADH, (5.5.1)],

∂⟨ϕ, f⟩ = ⟨∂ϕ, f⟩+ ⟨ϕ, ∂f⟩ = L(y)z − L∗(z)y.

Now ⟨∂ie∗, f⟩ = z(i) for i < n, so ⟨Be∗, f⟩ = B(z) for all B of order < n, hence

⟨ϕ, f⟩ =
n−1∑
i=0

y(n−i−1)⟨Lie∗, f⟩ =
∑

0⩽j⩽i<n

y(n−i−1)(−1)i−j(an−jz)
(i−j) = PL(y, z)

where

(2.4.3) PL(Y, Z) :=
∑

0⩽i⩽j<n

Y (i)(−1)j−i(aj+1Z)
(j−i) ∈ K{Y,Z},

a homogeneous differential polynomial of degree 2. These considerations show:

Proposition 2.4.13 (Lagrange Identity). The map

(y, z) 7→ [y, z]L := PL(y, z) : K ×K → K

is C-bilinear, and for y, z ∈ K we have

(2.4.4) ∂
(
[y, z]L

)
= L(y)z − L∗(z)y.
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We assumed here that L is monic of order n ⩾ 1. For an arbitrary linear differential
operator L = a0+a1∂+· · ·+an∂

n ∈ K[∂] (a0, . . . , an ∈ K) we define PL as in (2.4.3)
and set [y, z]L := PL(y, z) for y, z ∈ K. Then Proposition 2.4.13 continues to hold;
to see (2.4.4) for L ̸= 0, reduce to the monic case, using that for all a ∈ K
and L ∈ K[∂] we have

(2.4.5) PaL(Y,Z) = PL(Y, aZ), hence [y, z]aL = [y, az]L for y, z ∈ K.

The differential polynomial PL is called the concomitant of L; it does not change
when passing from K to a differential field extension.

Lemma 2.4.14 (Hesse). Let L,L1, L2 ∈ K[∂]; then

PL∗(Y,Z) = −PL(Z, Y ) and PL1+L2
(Y,Z) = PL1

(Y,Z) + PL2
(Y,Z).

Proof. By (2.4.4) we have ∂
(
[y, z]L∗

)
= −∂

(
[z, y]L

)
for all y, z in every differ-

ential field extension of K, hence
(
PL∗(Y, Z) + PL(Z, Y )

)′ = 0 in K{Y,Z} and
then PL∗(Y,Z) + PL(Z, Y ) = 0, since PL∗ , PL are homogeneous of degree 2. This
shows the first identity. The second identity is clear by inspection of (2.4.3). □

Example. For L = 0, 1, ∂, ∂
2 we have

P0 = P1 = 0, P∂ = Y Z, P∂2 = Y ′Z − Y Z ′

so for y, z ∈ K:

[y, z]0 = [y, z]1 = 0, [y, z]∂ = yz, [y, z]∂2 = y′z − yz′,

which for L = a∂
2 + b∂ + c (a, b, c ∈ K), using (2.4.5), gives

PL = aY ′Z − aY Z ′ + (b− a′)Y Z, [y, z]L = ay′z − ayz′ + (b− a′)yz.

Below we use that evaluating the differential operator L ∈ K[∂] at the element Y
of the differential ring extension K{Y } of K results in the differential polyno-
mial L(Y ) ∈ K{Y }, which is homogeneous of degree 1. With this notation, we
have PL(Y,Z)

′ = L(Y )Z −L∗(Z)Y . The next result characterizes the concomitant
and adjoint of a differential operator accordingly.

Lemma 2.4.15 (Frobenius). The pair (PL, L
∗) is the only pair (P, L̃) with P

in K{Y,Z} homogeneous of degree 2 and L̃ ∈ K[∂] such that

P (Y,Z)′ = L(Y )Z − L̃(Z)Y.

Proof. If (P, L̃) is such a pair, then P1 := PL − P , L1 := L∗ − L̃ gives P1(Y, Z)
′ =

−L1(Z)Y , and from this one can derive L1 = 0 and then P1 = 0. □

Let now L ∈ K[∂] ̸= be of order n, and set V := kerL, W := kerL∗. Then
for y ∈ V , z ∈ W we have [y, z]L ∈ C by (2.4.4); thus [ , ]L restricts to a C-
bilinear map V ×W → C, also denoted by [ , ]L.

Corollary 2.4.16. Suppose dimC V = n. Then the pairing

[ , ]L : V ×W → C

is non-degenerate.

Proof. By Lemma 2.3.21 we have dimCW = n. Let y ∈ V ̸=. Then PL(y, Z) ∈
K{Z} is homogeneous of degree 1 and order n − 1, hence cannot vanish on the
C-linear subspace W of K of dimension n [ADH, 4.1.14]. Similarly with z ∈ W ̸=,
PL(Y, z) ∈ K{Y }, V in place of y, PL(y, Z), W , respectively. □
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The concomitant of operators which split over K. In this subsection we
assume that A ∈ K[∂] and a1, . . . , ar ∈ K satisfy

A = (∂ − ar) · · · (∂ − a1), so A∗ = (−1)r(∂ + a1) · · · (∂ + ar).

For i = 0, . . . , r we define

(2.4.6) Ai := (∂ − ai) · · · (∂ − a1), Bi := (−1)r−i(∂ + ai+1) · · · (∂ + ar).

Thus Ai has order i, Bi has order r − i, and

A0 = Br = 1, Ar = A, B0 = A∗.

We then have the following formula for PA:

Lemma 2.4.17. PA(Y,Z) =

r−1∑
i=0

Ai(Y )Bi+1(Z).

Towards proving this, take b1, . . . , br ̸= 0 in a differential field extension E of K

with b†j = aj − aj−1 for j = 1, . . . , r, where a0 := 0, and set br+1 := (b1 · · · br)−1.
Lemma 1.1.3 then gives

A = b−1
r+1(∂b

−1
r ) · · · (∂b−1

2 )(∂b−1
1 ).

For i = 0, . . . , r,

Li := b−1
i+1(∂b

−1
i ) · · · (∂b−1

2 )(∂b−1
1 ) ∈ E[∂]

has order i, with L0 = b−1
1 , Lr = A. Likewise we introduce for i = 0, . . . , r,

Mi := (−1)r−ib−1
i+1(∂b

−1
i+2) · · · (∂b

−1
r )(∂b−1

r+1) ∈ E[∂]

of order r − i, so M0 = A∗, Mr = b−1
r+1. Note that

(2.4.7) Li+1 = b−1
i+2∂Li, Mi = −b−1

i+1∂Mi+1 (i = 0, . . . , r − 1).

With these notations, we have:

Lemma 2.4.18 (Darboux). PA(Y, Z) =

r−1∑
i=0

Li(Y )Mi+1(Z) in E{Y, Z}.

Proof. The cases r = 0 and r = 1 are easy to verify directly. Assume r ⩾ 2. It
suffices to show that the differential polynomial P (Y,Z) on the right-hand side of
the claimed equality satisfies P (Y,Z)′ = A(Y )Z−Y A∗(Z). From (2.4.7) we obtain

A(Y )Z = Lr−1(Y )′Mr(Z), −Y A∗(Z) = −YM0(Z) = L0(Y )M1(Z)
′

and(
Li(Y )Mi+1(Z)

)′ = Li(Y )′Mi+1(Z) + Li(Y )Mi+1(Z)
′

= Li(Y )Mi+1(Z)
′ − Li+1(Y )Mi+2(Z)

′ for i = 0, . . . , r − 2.

Now use the cancellations in
∑r−1
i=0

(
Li(Y )Mi+1(Z)

)′. □

This yields Lemma 2.4.17: For i = 0, . . . , r − 1, we have

Li = (bi+1bi · · · b1)−1(∂ − ai) · · · (∂ − a1) =

and

Mi+1 = (−1)r−i−1(bi+2 · · · br+1)
−1(∂ + ai+2) · · · (∂ + ar)

and hence Li(Y )Mi+1(Z) = Ai(Y )Bi+1(Z). □
105



Self-adjoint and skew-adjoint operators. If A is self-adjoint, then r = orderA
is even. Moreover, for B ̸= 0: A is self-adjoint iff B∗AB is self-adjoint. The
self-adjoint operators form a C-linear subspace of K[∂] containing K.

Lemma 2.4.19 (Jacobi). Let s ∈ N and suppose r = 2s. Then A is self-adjoint iff
there are b0, . . . , bs ∈ K such that

A = ∂
sbs∂

s + ∂
s−1bs−1∂

s−1 + · · ·+ b0.

Proof. If A has the displayed shape, then evidently A is self-adjoint. We show
the converse by induction on s. The case s = 0 being trivial, suppose s ⩾ 1.
Say A = ar∂

r + lower order terms (ar ∈ K×). Then B = A− ∂
sar∂

s is self-adjoint
of order < r, hence the inductive hypothesis applies to B. □

Example. If r = 2, then A is self-adjoint iff A = a∂
2 + a′∂ + b (a, b ∈ K). In

particular, ∂
2 + b (b ∈ K) is self-adjoint.

If A is self-adjoint, then [y, z]A = −[z, y]A for all y, z ∈ K, by Lemma 2.4.14.
Thus [y, y]A = 0 for y ∈ K. This fact is used in the proof of the next lemma:

Lemma 2.4.20. Suppose A is self-adjoint and splits over K, and r = 2s, s ∈ N.
Then there are a ∈ K× and a1, . . . , as ∈ K such that

A = (∂ + a1) · · · (∂ + as)a(∂ − as) · · · (∂ − a1).

If A is monic, then a = 1 for any such a.

Proof. By induction on s. The case s = 0 being trivial, suppose s ⩾ 1. Let z ̸= 0
be a zero of A in a differential field extension Ω of K with a1 := z† ∈ K. The
differential polynomial P (Y ) := PA(Y, z) is homogeneous of degree 1 and order r−1
with P (z) = [z, z]A = 0; hence by [ADH, 5.1.21] we obtain A0 ∈ K[∂] with LP =
A0(∂ − a1). By (2.4.4) we have zA = ∂LP = ∂A0(∂ − a1) and so

A = z−1
∂A0(∂ − a1) = (∂ + a1)A1(∂ − a1) where A1 := z−1A0 ∈ Ω[∂].

The inductive hypothesis applies to A1: A1 ∈ K[∂] by [ADH, 5.1.11], A1 is self-
adjoint of order r − 2, and A1 splits over K by [ADH, 5.1.22]. □

This gives rise to the following corollary:

Corollary 2.4.21 (Frobenius, Jacobi). Suppose A is self-adjoint and dimC kerA =
r = 2s. Then A = B∗bB where B = ∂b−1

s · · · ∂b−1
1 with b, b1, . . . , bs ∈ K×.

Proof. From dimC kerA = r we obtain that A splits over K. Hence the previous
lemma yields a1, . . . , as ∈ K, a ∈ K× such that

A = (∂ + a1) · · · (∂ + as)a(∂ − as) · · · (∂ − a1),

and a1, . . . , as ∈ K† by Lemma 2.3.4. Lemma 1.1.3 yields b1, . . . , bs ∈ K× with

(∂ − as) · · · (∂ − a1) = b1 · · · bs∂b−1
s · · · ∂b−1

1 .

Set B := ∂b−1
s · · · ∂b−1

1 . Then A = B∗bB for b := (−1)s(b1 · · · bs)2a. □

Recall that A is called skew-adjoint if A∗ = −A (and then r = orderA is odd). The
skew-adjoint operators form a C-linear subspace of K[∂]. For B ̸= 0, the opera-
tor B∗AB (B ̸= 0) is skew-adjoint iff A is skew-adjoint. We have a characterization
of skew-adjoint operators analogous to Lemma 2.4.19:
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Lemma 2.4.22. Let s ∈ N and suppose r = 2s + 1. Then A is skew-adjoint iff
there are b0, . . . , bs ∈ K such that

A = (∂s+1bs∂
s + ∂

sbs∂
s+1) + (∂sbs−1∂

s−1 + ∂
s−1bs−1∂

s) + · · ·+ (∂b0 + b0∂).

Proof. Suppose A is skew-adjoint. Say A = ar∂
r + lower order terms (ar ∈ K×),

and set bs := ar/2. Then A − (∂s+1bs∂
s + ∂

sbs∂
s+1) is skew-adjoint of order < r.

Hence the forward direction follows by induction on s. The converse is obvious. □

Example. If r = 1, then A is skew-adjoint iff A = a∂ + (a′/2) (a ∈ K×).

For monic A of order 3, A is skew-adjoint iff A = ∂
3 + f∂ + (f ′/2) for some f ∈ K.

In the next lemma we consider this case; for a more general version of this lemma,
see [158, Proposition 4.26(1)].

Lemma 2.4.23. Let f ∈ K, A = ∂
3 + f∂ + (f ′/2), B = 4∂

2 + f and y, z ∈
kerB. Then yz ∈ kerA. Moreover, if y, z is a basis of the C-linear space kerB,
then y2, yz, z2 is a basis of kerA.

Proof. We have

(yz)′ = y′z + yz′, (yz)′′ = y′′z + 2y′z′ + yz′′ = 2y′z′ − (f/2)yz,

hence

(yz)′′′ = 2y′′z′ + 2y′z′′ − (f ′/2)yz − (f/2)(yz)′

= −(f/2)(yz′ + y′z)− (f ′/2)yz − (f/2)(yz)′

= −f(yz)′ − (f ′/2)yz,

and so yz ∈ kerA. Suppose ay2+byz+cz2 = 0 for some a, b, c ∈ C, not all zero; we
claim that then y, z are C-linearly dependent. We have a ̸= 0 or c ̸= 0, and so we
may assume a ̸= 0, z ̸= 0. Then u := y/z satisfies au2+bu+c = 0, so u ∈ C [ADH,
4.1.1], hence y ∈ Cz. □

If A is skew-adjoint, then PA(Y,Z) = PA(Z, Y ), so

PA(Y + Z, Y + Z) = PA(Y, Y ) + PA(Z,Z) + 2PA(Y, Z)

and [y, z]A = [z, y]A for all y, z ∈ K.

Lemma 2.4.24. Suppose r ⩾ 1. Then the following are equivalent:

(i) A is skew-adjoint;
(ii) there is a homogeneous differential polynomial Q ∈ K{Y } of degree 2 such

that A(Y )Y = Q(Y )′.

Moreover, the differential polynomial Q in (ii) is unique, and Q(Y ) = 1
2PA(Y, Y ).

Proof. For (i) ⇒ (ii) take Q(Y ) := 1
2PA(Y, Y ). For the converse let Q be as in (ii).

Let Z be a differential indeterminate over K different from Y and c be a constant
in a differential field extension Ω, with c transcendental over C. Then

A(Y + cZ)(Y + cZ) = Q(Y + cZ)′ in Ω{Y,Z}.
Also, in Ω{Y,Z},

A(Y + cZ)(Y + cZ) = A(Y )Y + c
(
A(Y )Z +A(Z)Y

)
+ c2A(Z)Z.

Take P,R ∈ K{Y,Z} such that

Q(Y + cZ) = Q(Y ) + cP (Y, Z) + c2R(Y, Z).
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Comparing the coefficients of c now yields

A(Y )Z +A(Z)Y = P (Y,Z)′.

Now using Lemma 2.4.15 gives A∗ = −A, P = PA, proving (i). □

In the rest of this subsection A is skew-adjoint, r ⩾ 3, and Q(Y ) := 1
2PA(Y, Y ).

Lemma 2.4.25. If dimC kerA ⩾ 2 and C× is 2-divisible, then A(z) = Q(z) = 0
for some z ∈ K×.

Proof. Apply [122, Chapter XV, Theorem 3.1] to the symmetric bilinear form

(y, z) 7→ [y, z]A : kerA× kerA→ C

on the C-linear space kerA. □

Lemma 2.4.26. Suppose K† is 2-divisible, and z ̸= 0 lies in a differential field
extension of K with A(z) = 0 and z† ∈ K \K†. Then Q(z) = 0.

Proof. From z′ ∈ Kz it follows by induction that (Kz)(n) ⊆ Kz for all n. Us-
ing (2.4.3) this yields Q(z) = az2 for a certain a ∈ K. Also Q(z)′ = A(z)z = 0 and
so if a ̸= 0, then z† = − 1

2a
† ∈ K†, a contradiction. □

Let z ̸= 0 lie in a differential field extension Ω of K with A(z) = Q(z) = 0. The
differential polynomial P (Y ) := PA(Y z, z) ∈ Ω{Y } is homogeneous of degree 1 and
order r−1. Substitution in the identity PA(Y,Z)

′ = A(Y )Z+A(Z)Y gives P (Y )′ =
zA(Y z). The coefficient of Y in P is P (1) = PA(z, z) = 0, hence

P (Y ) = A0(Y
′), A0 ∈ Ω[∂] of order r − 2.

Lemma 2.4.27. In Ω[∂] we have ∂A0∂ = zAz, so A0 is skew-adjoint.

Proof. From P (Y )′ = zA(Y z) and P (Y ) = A0(Y
′) we obtain A0(Y

′)′ = zA(Y z).
In terms of operators this means ∂A0∂ = zAz. □

Next we use these lemmas to prove a skew-adjoint version of Lemma 2.4.20.

Factorization of skew-adjoint operators. In this subsection K is 1-linearly
surjective, K† and C× are 2-divisible, and A is monic.

Proposition 2.4.28. Suppose A is skew-adjoint and splits over K. Then there
are a1, . . . , as ∈ K, where r = 2s+ 1, such that

A = (∂ + a1) · · · (∂ + as)∂(∂ − as) · · · (∂ − a1).

Proof. We proceed by induction on s. The case s = 0 is clear (see the example
following Lemma 2.4.22), so let s ⩾ 1. With Q as in the previous subsection we
claim that A(z) = Q(z) = 0 and z† ∈ K for some z ̸= 0 in a differential field
extension Ω of K. If dimC kerA = r, then Lemma 2.4.25 yields such a z in Ω = K.
Otherwise, Lemma 2.3.3 gives a ∈ K \ K† with multa(A) ⩾ 1, which in turn
gives z ̸= 0 in a differential field extension Ω of K with A(z) = 0 and z† ∈ a+K†,
and thus Q(z) = 0 by Lemma 2.4.26. This proves the claim.

Let z and Ω be as in the claim, set a1 := z†, and let A0 ∈ Ω[∂] be the skew-adjoint
differential operator from the previous subsection. Then

A = z−1
∂A0∂z−1 = (∂ + a1)A1(∂ − a1) where A1 := z−1A0z

−1.

By Lemma 2.4.27, A1 is skew-adjoint of order r − 2. By [ADH, 5.1.11, 5.1.22],
A1 ∈ K[∂] is monic and splits over K, so the inductive hypothesis applies to A1. □
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Corollary 2.4.29 (Darboux). Suppose A is skew-adjoint with dimC kerA = r =
2s + 1. Then A = B∗

∂B for some B. More precisely, there are b1, . . . , bs ∈ K×

such that A = B∗
∂B for B := ∂b−1

s · · · ∂b−1
1 .

Proof. Arguing as in the proof of Corollary 2.4.21, using Proposition 2.4.28 instead
of Lemma 2.4.20, gives A = (−1)sB∗b∂bB with B = ∂b−1

s · · · ∂b−1
1 , b1, . . . , bs ∈ K×,

and b = b1 · · · bs. But A is monic, so (−1)sb2 = 1, hence b ∈ C and A = B∗
∂B. □

Corollary 2.4.30. Suppose A∗ = (−1)rA⋉a with a ∈ K×, and A splits over K.
Then there are a1, . . . , ar ∈ K such that

A = (∂ − ar) · · · (∂ − a1) and aj + ar+1−j = a† for j = 1, . . . , r.

Proof. By a remark preceding Definition 2.4.12 we have B∗ = (−1)rB where B :=
Ab/2, b := a†, so B = A⋉d with d ∈ K×, d2 = a. Suppose r = 2s is even. Then B
is self-adjoint and Lemma 2.4.20 gives

B = (∂ + b1) · · · (∂ + bs)(∂ − bs) · · · (∂ − b1) with b1, . . . , bs ∈ K.

Hence

A = B⋉d−1 = (∂ + b1 − d†) · · · (∂ + bs − d†)(∂ − bs − d†) · · · (∂ − b1 − d†).

with the desired result for aj = bj + d† and ar+1−j = −bj + d†, j = 1, . . . , s. The
case of odd r = 2s+1 is handled in the same way, using Proposition 2.4.28 instead
of Lemma 2.4.20. □

Eigenrings of matrix differential equations. In the rest of this section N ,
N1, N2, P , range over n × n matrices over K (n ⩾ 1). Associated to the matrix
differential equation y′ = Ny over K we have the differential module MN over K
with dimKM = n [ADH, 5.5]. Recall that matrix differential equations y′ = N1y
and y′ = N2y over K are said to be equivalent if MN1

∼= MN2 . Let Kn×n be the
C-linear space of all n× n matrices over K, and consider the subspace

E(N1, N2) :=
{
P : P ′ = N2P − PN1

}
of Kn×n. Given a differential ring extension R of K, each P ∈ E(N1, N2) yields
a CR-linear map y 7→ Py : solR(N1) → solR(N2). By Lemma 2.3.13 and the next
lemma we have dimC E(N1, N2) ⩽ n2:

Lemma 2.4.31. We have an isomorphism

P 7→ ϕP : E(N1, N2) → HomK[∂](MN1
,MN2

)

of C-linear spaces given by

ϕP (y) = Py for P ∈ E(N1, N2) and y ∈MN1
.

Proof. Let P ∈ E(N1, N2), and define ϕP ∈ HomK(MN1 ,MN2) by ϕP (y) = Py.
Then for y ∈MN1

we have

ϕP (∂y) = Py′ − PN1y = Py′ + (P ′y −N2Py) = (Py)′ −N2Py = ∂ϕP (y),

hence ϕP ∈ HomK[∂](MN1 ,MN2). The rest follows easily. □

One verifies easily that E(N) := E(N,N) is a subalgebra of the C-algebra of n×n-
matrices over K and that this yields an isomorphism

P 7→ ϕP : E(N) → EndK[∂](MN )
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of C-algebras. The C-algebra E(N) is called the eigenring of y′ = Ny. We
have 1 ⩽ dimC E(N) ⩽ n2, and C is algebraically closed in K. It follows that
the minimum polynomial of any P ∈ E(N) over K (that is, the monic polyno-
mial f(T ) ∈ K[T ] of least degree with f(P ) = 0) has degree at most n2 and has
its coefficients in C. In particular, if C is algebraically closed, then the eigenvalues
of any P ∈ E(N) are in C. If y′ = N1y and y′ = N2y are equivalent, then their
eigenrings are isomorphic as C-algebras.

Corollary 2.4.32. The isomorphism P 7→ ϕP from the previous lemma restricts
to a bijection between the subset

E(N1, N2)
× := GLn(K) ∩ E(N1, N2)

of E(N1, N2) and the set of isomorphisms MN1 →MN2 . If E(N1) = C · 1 and P ∈
E(N1, N2)

×, then E(N1, N2) = C · P and E(N1, N2)
× = C× · P .

Hence y′ = N1y and y′ = N2y are equivalent iff E(N1, N2)
× ̸= ∅, and in this

case y′ = N1y is also called a gauge transform of y′ = N2y.
For P ∈ E(N1, N2)

× and each differential ring extension R of K we have the
isomorphism

y 7→ Py : solR(N1) → solR(N2)

of CR-modules, and any fundamental matrix F for y′ = N1y in R yields a funda-
mental matrix PF for y′ = N2y in R.

We have a right action of the group GLn(K) on Kn×n given by

(N,P ) 7→ P−1(N) := P−1NP − P−1P ′.

For each N and P ∈ GLn(K), we have P ∈ E(P−1(N), N)×, so the matrix differ-
ential equation y′ = P−1(N)y is a gauge transform of y′ = Ny.

Next we relate the eigenrings of linear differential operators introduced above with
the eigenrings of matrix differential equations over K. We precede this by some
generalities about differential modules: LetM,M1,M2 be (left) K[∂]-modules. The
dual M∗ := HomK(M,K) of M is then a K[∂]-module, and

〈
ϕ, f

〉
:= ϕ(f) ∈ K

for ϕ ∈M∗, f ∈M . This yields the injective K[∂]-linear map

α 7→ α∗ : HomK(M2,M1) → HomK(M∗
1 ,M

∗
2 ) where α∗(ϕ) = ϕ ◦ α for ϕ ∈M∗

1 ,

and 〈
α∗(ϕ), f

〉
=
〈
ϕ, α(f)

〉
for α ∈ HomK(M2,M1), ϕ ∈M∗

1 , f ∈M2.

If M1, M2 are differential modules over K, then α 7→ α∗ is an isomorphism. Note
that HomK[∂](M2,M1) is a C-linear subspace of H := HomK(M2,M1), with

HomK[∂](M2,M1) = kerH ∂.

Hence the K[∂]-module morphism α 7→ α∗ restricts to a C-linear map

HomK[∂](M2,M1) → HomK[∂](M
∗
1 ,M

∗
2 ),

which is bijective if M1, M2 are differential modules over K.
Let N be the companion matrix of a monic operator A ∈ K[∂] of order n, and

set M := K[∂]/K[∂]A, a differential module over K of dimension n, with cyclic
vector e := 1 + K[∂]A, Ae = 0, and with basis e0, . . . , en−1, ej := ∂

je for j =
0, . . . , n − 1. Then M∗ has matrix N with respect to the dual basis e∗0, . . . , e

∗
n−1.

Accordingly we identifyM∗ withMN via the isomorphismM∗ →MN sending e∗j−1

to the jth standard basis vector of Kn, for j = 1, . . . , n.
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In the following lemma N1, N2 are the companion matrices of monic opera-
tors A1, A2 ∈ K[∂] of order n, respectively. Set M1 := K[∂]/K[∂]A1, M2 :=
K[∂]/K[∂]A2 and identify M∗

1 , M
∗
2 with MN1 , MN2 , as we just indicated for M .

Let Φ be the isomorphism of C-linear spaces making the diagram

E(A1, A2)
Φ //

R 7→ϕR

��

E(N1, N2)

P 7→ϕP

��
HomK[∂](M2,M1)

α7→α∗
// HomK[∂](MN1

,MN2
)

commute.

Lemma 2.4.33. Let R = r0+r1∂+ · · ·+rn−1∂
n−1 ∈ E(A1, A2) (r0, . . . , rn−1 ∈ K);

then the first row of the n× n matrix Φ(R) is (r0, r1, . . . , rn−1).

Proof. Set P = Φ(R); so ϕP = ϕ∗R. Let e := 1+K[∂]A1 ∈M1, and let e∗0, . . . , e
∗
n−1

be the basis of MN1
= M∗

1 dual to the basis e, ∂e, . . . , ∂
n−1e of M1. Likewise,

let f := 1 +K[∂]A2 ∈ M2, and let f∗0 , . . . , f
∗
n−1 be the basis of MN2

= M∗
2 dual to

the basis f, ∂f, . . . , ∂
n−1f of M2. Then for j = 0, . . . , n− 1 we have ϕP (e

∗
j ) ∈ M∗

2 ,
and 〈

ϕP (e
∗
j ), f

〉
=
〈
ϕ∗R(e

∗
j ), f

〉
=
〈
e∗j , ϕR(f)

〉
= rj .

Hence the matrix P of the K-linear map ϕP with respect to the standard bases
of MN1 = Kn and MN2 = Kn has first row (r0, r1, . . . , rn−1). □

Self-dual matrix differential equations. Recall that N∗ = −N t by [ADH,
5.5.6] and MN∗ ∼= (MN )∗ by [ADH, p.279]. The adjoint equation of y′ = Ny is the
matrix differential equation y′ = N∗y over K. We say that y′ = Ny is self-dual if
it is equivalent to its adjoint equation [ADH, p. 277]. Hence y′ = Ny is self-dual
iff the differential module MN over K is self-dual. Thus if y′ = Ny is self-dual,
then so is any matrix differential equation over K equivalent to y′ = Ny, as is the
adjoint equation y′ = N∗y of y′ = Ny. By [ADH, 5.5.8, 5.5.9] we have:

Corollary 2.4.34. If C ̸= K, then every self-dual matrix differential equation y′ =
N1y over K is equivalent to a matrix differential equation y′ = N2y with N2 the
companion matrix of a monic self-dual operator in K[∂].

We set multα(N) := multα(MN ) and call

Σ(N) := Σ(MN ) =
{
α : multα(N) ⩾ 1

}
the spectrum of y′ = Ny. The elements of Σ(N) are the eigenvalues of y′ = Ny.

Lemma 2.4.35. Suppose B ∈ K[∂] is monic of order n and N is the compan-
ion matrix of B. Then multα(B) = multα(N) for all α. In particular, α is an
eigenvalue of B iff α is an eigenvalue of y′ = Ny.

Proof. Use Corollary 2.3.15 andMN
∼=M∗ forM := K[∂]/K[∂]B [ADH, 5.5.8]. □

From Corollary 2.4.6 we obtain:

Corollary 2.4.36. Assume that y′ = Ny is self-dual. Suppose in addition that∑
αmultα(N) = n and K is 1-linearly surjective, or K is (n− 1)-linearly surjec-

tive. Then multα(N) = mult−α(N) for all α. Hence, if also K† is 2-divisible
and

∑
αmultα(N) is odd, then 0 ∈ Σ(N).
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Note that

E(N,N∗) =
{
P : P ′ = N∗P − PN

}
, E(N,N∗)× = GLn(K) ∩ E(N,N∗)

are both closed under matrix transpose. The matrix differential equation y′ = Ny is
self-dual iff E(N,N∗)× ̸= ∅. Moreover, there is a (−1)n-symmetric non-degenerate
∂-compatible K-bilinear form on MN iff E(N,N∗)× contains a matrix P such
that P t = (−1)nP . One calls y′ = Ny self-adjoint if N∗ = N , that is, N is
skew-symmetric (in which case, y′ = Ny is self-dual) .

Example 2.4.37. Suppose n = 3m and

N =

 κI
−κI τI

−τI


where I denotes the m × m identity matrix and κ, τ ∈ K. Then y′ = Ny is
self-adjoint. Let π be the permutation of {1, . . . , n} given for i = 1, . . . ,m by

π(i) = 3i− 2, π(m+ i) = 3i− 1, π(2m+ i) = 3i.

Then P ∈ GLn(K) with Pej = eπ(j) (j = 1, . . . , n) gives P ′ = 0 ∈ Kn×n, so

P−1(N) = diag(T, . . . , T ) ∈ Kn×n where T :=

 0 κ 0
−κ 0 τ
0 −τ 0

 ∈ K3×3.

By Corollary 2.3.11, multα(N) = mmultα(T ) for all α, so Σ(N) = Σ(T ). If F
is a fundamental matrix for y′ = Ty, then G := diag(F, . . . , F ) ∈ GLn(K) is
a fundamental matrix for y′ = P−1(N)y, that is, G′ = P−1NPG, so PG is a
fundamental matrix for y′ = Ny. Suppose now that K is 1-linearly surjective, K†

is 2-divisible, and
∑
αmultα(T ) = 3. Then

∑
αmultα(N) = n and multα(T ) =

mult−α(T ) for all α, so Σ(N) = Σ(T ) = {α,−α, 0} for some α.

Lemma 2.4.38. Suppose y′ = Ny is self-adjoint and let y, z ∈ sol(N), where
y = (y1, . . . , yn)

t and z = (z1, . . . , zn)
t. Then y1z1 + · · ·+ ynzn ∈ C.

Proof. With ⟨ · , · ⟩ denoting the usual inner product on Kn, we have

⟨y, z⟩′ = ⟨y′, z⟩+ ⟨y, z′⟩ = ⟨Ny, z⟩+ ⟨y,Nz⟩ = ⟨y,N tz⟩+ ⟨y,Nz⟩ = 0

since N t = −N . □

Thus if y′ = Ny is self-adjoint, then we have a symmetric bilinear form

(y, z) 7→ ⟨y, z⟩ = y1z1 + · · ·+ ynzn (y = (y1, . . . , yn)
t, z = (z1, . . . , zn)

t)

on the C-linear subspace sol(N) of Kn of dimension ⩽ n.

A matrix F ∈ Kn×n is said to be orthogonal if FF t = In, where In denotes the
identity of the ringKn×n of n×n-matrices overK. This yields the subgroup On(K)
of GLn(K) consisting of the orthogonal matrices F ∈ Kn×n.

Suppose F ∈ GLn(K) is a fundamental matrix for y′ = Ny. By [ADH, 5.5.12]
this yields a a fundamental matrix (F t)−1 ∈ GLn(K) for y′ = N∗y, so if F is
orthogonal, then y′ = Ny is self-adjoint. Conversely:

Lemma 2.4.39. Suppose y′ = Ny is self-adjoint, dimC sol(N) = n, and C× is
2-divisible. Then GLn(K) contains an orthogonal fundamental matrix for y′ = Ny.
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Proof. Take a fundamental matrix F ∈ GLn(K) for y′ = Ny. Then G := (F t)−1

is also a fundamental matrix for y′ = Ny, so F tF = G−1F ∈ GLn(C) by [ADH,
5.5.11]. Now the matrix F tF is symmetric, so [122, Chapter XV, Theorem 3.1]

gives D,U in GLn(C) with diagonal D such that F tF = U tDU . Let V :=
√
DU

where
√
D in Cn×n is diagonal with (

√
D)2 = D. Then F tF = V tV and so FV −1 ∈

GLn(K) is an orthogonal fundamental matrix for y′ = Ny by [ADH, 5.5.11]. □

The skew-symmetric n× n matrices over K form a Lie subalgebra

son(K) = {N : N∗ = N}

of Kn×n equipped with the Lie bracket [N1, N2] = N1N2−N2N1. Suppose now n =

2m is even, and set J :=
(

Im
−Im

)
. Then J t = J−1 = −J , and

spn(K) = {N : N∗J = JN}

is also a Lie subalgebra of Kn×n. The matrices in spn(K) are called hamiltonian;
thus N is hamiltonian iff JN is symmetric. We say that the matrix differential
equation y′ = Ny is hamiltonian if N ∈ spn(K); in that case J ∈ E(N,N∗)×,
so y′ = Ny is self-dual. A matrix F ∈ Kn×n is said to be symplectic if F tJF = J .
The symplectic matrices form a subgroup Spn(K) of GLn(K). If y′ = Ny has a
fundamental matrix F ∈ Spn(K), then y′ = Ny is hamiltonian. In analogy with
Lemma 2.4.39 we have a converse:

Lemma 2.4.40. Suppose y′ = Ny is hamiltonian and dimC sol(N) = n. Then
GLn(K) contains a symplectic fundamental matrix for y′ = Ny.

Proof. Take a fundamental matrix F ∈ GLn(K) for y′ = Ny. Then JF and G :=
(F t)−1 are fundamental matrices for y′ = N∗y, so F tJF = G−1JF ∈ GLn(C).
Now F tJF is skew-symmetric, hence F tJF = U tJU with U ∈ Gln(C) [122, Chap-
ter XV, Corollary 8.2]; then FU−1 is a symplectic fundamental matrix for y′ = Ny.

□

For a hamiltonian analogue of Lemma 2.4.38, let ⟨ · , · ⟩ denote the usual inner
product on Kn and let (y, z) 7→ ω(y, z) := ⟨y, Jz⟩ be the standard symplectic
bilinear form on Kn.

Lemma 2.4.41. Suppose y′ = Ny is hamiltonian and y, z ∈ sol(N). Then
ω(y, z) ∈ C.

Proof. We have

ω(y, z)′ = ⟨y′, Jz⟩+⟨y, Jz′⟩ = ⟨Ny, Jz⟩+⟨y, JNz⟩ = ⟨y,N tJz⟩+⟨y, JNz⟩ = 0

where we used −N tJ = N∗J = JN for the last equality. □

Note also that N is hamiltonian iff N = JN tJ . It follows that N is hamiltonian

iff N =
(
Q R
P Q∗

)
where P,R ∈ Km×m are symmetric and Q ∈ Km×m.

Hamiltonian matrix differential equations appear naturally in the study of more
general (non-linear) Hamiltonian systems (as the variational equations along an
integral curve of such a system). See, e.g., [47]. They also arise from self-adjoint
linear differential operators: using Lemma 2.4.19 one can show that if A is self-
adjoint with companion matrix M , then with n := r there is some hamiltonian N
such that E(M,N)× ̸= ∅; see [52, p. 76].
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Anti-self-duality. We now continue in the setting of the subsection Complex con-
jugation in Section 2.3. Thus K = H[i] where H is a differential subfield of K,
i2 = −1, and i /∈ H. The isomorphisms below are of differential modules over K.
Let M be a differential module over K. We establish some analogues of results
above for the conjugate dual of M instead of its dual.

Call M is anti-self-dual if M ∼= M∗. If M is anti-self-dual, then so is every
isomorphic K[∂]-module, in particular, M∗. Here is an analogue of Corollary 2.4.6
which follows immediately from Corollary 2.3.26:

Corollary 2.4.42. Let dimKM = r and assume M is anti-self-dual. Suppose also
that K is 1-linearly surjective and

∑
αmultα(M) = r, or r ⩾ 1 and K is (r − 1)-

linearly surjective. Then multα(M) = mult−α(M) for all α. Hence if addition-
ally K† is 2-divisible and

∑
αmultα(M) is odd, then [bi] ∈ Σ(M) for some b ∈ H.

Suppose now M = K[∂]/K[∂]A and r ⩾ 1. Then M∗ ∼= K[∂]/K[∂]A∗ by [ADH,
5.5.8] and Example 2.3.25. Hence M is anti-self-dual iff A, A∗ have the same type.
We say that A is anti-self-dual if A, A∗ have the same type. If A is anti-self-dual,
then so are A and A∗, and so is every operator of the same type as A. If A is
anti-self-dual, then A, A∗ have the same eigenvalues, with the same multiplicities.
The previous corollary yields:

Corollary 2.4.43. Suppose A is anti-self-dual, and set s :=
∑
αmultα(A). Also

assume K is 1-linearly surjective and s = r, or r ⩾ 1 and K is (r − 1)-linearly
surjective. Then multα(A) = mult−α(A) for all α. Hence if in addition K† is
2-divisible and s is odd, then [bi] ∈ Σ(A) for some b ∈ H.

Later H is usually a Hardy field with H† = H, so α = −α for all α. In this
case Corollaries 2.4.42 and 2.4.43 are less useful than their cousins Corollaries 2.4.6
and 2.4.9. Note also that if A ∈ H[∂], then A is self-dual iff A is anti-self-dual.

We now consider anti-self-duality for a matrix differential equation y′ = Ny
over K. Recall that N is an n × n-matrix over K with n ⩾ 1, and that if M =
MN is the differential module over K associated to N , then M ∼= MN by the
remarks preceding Example 2.3.25, and M∗ ∼= MN∗ by [ADH, pp. 279–280]. We
say that y′ = Ny is anti-self-dual if it is equivalent to the matrix differential
equation y′ = N∗y over K. (Note: N∗ = −N t.) Hence y′ = Ny is anti-self-
dual iff MN is anti-self-dual. If y′ = Ny is anti-self-dual, then so is any matrix
differential equation over K equivalent to y′ = Ny, as are the matrix differential
equations y′ = N∗y and y′ = Ny over K. If N ∈ Hn×n, then the matrix differential
equation y′ = Ny over K is self-dual iff it is anti-self-dual.

Corollary 2.4.44. Suppose C ̸= K and y′ = Ny is anti-self-dual. Then y′ = Ny
is equivalent to a matrix differential equation y′ = ALy with AL the companion
matrix of a monic anti-self-dual L ∈ K[∂].

Proof. By [ADH, 5.5.9], y′ = Ny is equivalent to y′ = ALy where AL is the
companion matrix of a monic L ∈ K[∂]. Then L is anti-self-dual by [ADH, 5.5.8]
and Example 2.3.25. □

We say that y′ = Ny is anti-self-adjoint if N∗ = N , that is, N t = −N . Then y′ =
Ny is in particular anti-self-dual. If N ∈ Hn×n, then y′ = Ny is anti-self-adjoint
iff it is self-adjoint. To state an anti-self-adjoint analogue of Lemma 2.4.38 we use
the “hermitian” inner product ⟨ · , · ⟩ on Kn given by ⟨y, z⟩ = y1z1 + · · · + ynzn
for y = (y1, . . . , yn)

t ∈ Kn and z = (z1, . . . , zn)
t ∈ Kn.
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Lemma 2.4.45. If y′ = Ny is anti-self-adjoint and y, z ∈ sol(N), then ⟨y, z⟩ ∈ C.

Proof. Assume y′ = Ny is anti-self-adjoint. Then N t = −N , so

⟨y, z⟩′ = ⟨y′, z⟩+ ⟨y, z′⟩ = ⟨Ny, z⟩+ ⟨y,Nz⟩ = ⟨y,N tz⟩+ ⟨y,Nz⟩ = 0. □

Thus if y′ = Ny is anti-self-adjoint, then we have a hermitian form

(y, z) 7→ ⟨y, z⟩ = y1z1 + · · ·+ ynzn (y = (y1, . . . , yn)
t, z = (z1, . . . , zn)

t)

on the C-linear subspace sol(N) of Kn of dimension ⩽ n.

A matrix U ∈ Kn×n is unitary if U tU = In, equivalently, ⟨Ux,Uy⟩ = ⟨x, y⟩ for
all x, y ∈ Kn. The unitary matrices form a subgroup Un(K) of GLn(K). Sup-
pose F ∈ GLn(K) is a fundamental matrix for y′ = Ny. Then F is a fundamental
matrix for y′ = Ny, and so (F t)−1 ∈ GLn(K) is a fundamental matrix for y′ = N∗y.
So if F is unitary, then y′ = Ny is anti-self-adjoint. Here is a converse, analogous
to Lemma 2.4.39:

Lemma 2.4.46. Suppose y′ = Ny is anti-self-adjoint, dimC sol(N) = n, and H is
real closed. Then GLn(K) contains a unitary fundamental matrix for y′ = Ny.

Proof. Take a fundamental matrix F ∈ GLn(K) for y′ = Ny. Then G := (F t)−1 is
also a fundamental matrix for y′ = Ny, so F tF = G−1F ∈ GLn(C). Now P := F tF
is hermitian (i.e., P t = P ), so [122, Chapter XV, §5, 6] gives a diagonal D ∈
GLn(CH) and a U ∈ Un(C) with P = U tDU . So for x ∈ Cn and y := U−1x ∈ Cn,

⟨Dx, x⟩ = ⟨DUy,Uy⟩ = ⟨Py, y⟩ = ⟨Fy, Fy⟩,
a sum of squares in H. As CH is also real closed, all entries of D are squares in CH .
Take diagonal E ∈ Cn×nH with E2 = D. Then V := EU ∈ GLn(C) and P = V tV ,
so FV −1 ∈ GLn(K) is a unitary fundamental matrix for y′ = Ny. □

2.5. Eigenvalues and Splittings

In this section K is a differential field such that C is algebraically closed and K† is
divisible. We let A, B range over K[∂], and we assume A ̸= 0 and set r := orderA.

Spectral decomposition of differential operators. Fix a complement Λ of the
subspaceK† of the Q-linear spaceK, let U := K

[
e(Λ)

]
be the universal exponential

extension ofK, let Ω be the differential fraction field of the differentialK-algebra U,
and let λ range over Λ. Then

Aλ = A⋉e(λ) = e(−λ)A e(λ) ∈ K[∂].

Moreover, for every a ∈ K there is a unique λ with a − λ ∈ K†, so mult[a](A) =

multλ(A). Call λ an eigenvalue of A with respect to our complement Λ of K† in K
if [λ] is an eigenvalue of A; thus the group isomorphism λ 7→ [λ] : Λ → K/K† maps
the set of eigenvalues of A with respect to Λ onto the spectrum of A. For f ∈ U
with spectral decomposition (fλ) we have

A(f) =
∑
λ

Aλ(fλ) e(λ),

so A(U×) ⊆ U× ∪{0}. We call the family (Aλ) the spectral decomposition of A
(with respect to Λ). Given a C-linear subspace V of U, we set Vλ := V ∩K e(λ), a
C-linear subspace of V ; the sum

∑
λ Vλ is direct. For V := U we have Uλ = K e(λ),
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and U =
⊕

λUλ with A(Uλ) ⊆ Uλ for all λ. Taking V := kerUA, we obtain Vλ =
(kerK Aλ) e(λ) and hence dimC Vλ = multλ(A), and V =

⊕
λ Vλ. Thus

(2.5.1) |Σ(A)| ⩽
∑
λ

multλ(A) = dimC kerUA ⩽ r.

Moreover:

Lemma 2.5.1. The C-linear space kerUA has a basis contained in U× = K× e(Λ).

Example. We have a C-algebra isomorphism P (Y ) 7→ P (∂) : C[Y ] → C[∂]. Sup-
pose A ∈ C[∂] ⊆ K[∂], let P (Y ) ∈ C[Y ], P (∂) = A, and let c1, . . . , cn ∈ C be the
distinct zeros of P , of respective multiplicities m1, . . . ,mn ∈ N⩾1 (so r = degP =
m1 + · · · +mn). Suppose also C ⊆ Λ, and x ∈ K satisfies x′ = 1. (This holds in
Example 2.2.4.) Then the xi e(cj) ∈ U (1 ⩽ j ⩽ n, 0 ⩽ i < mj) form a basis of the
C-linear space kerUA by [ADH, 5.1.18]. So the eigenvalues of A with respect to Λ
are c1, . . . , cn, with respective multiplicities m1, . . . ,mn.

Corollary 2.5.2. Suppose dimC kerUA = r ⩾ 1 and A = ∂
r + ar−1∂

r−1 + · · ·+ a0
where a0, . . . , ar−1 ∈ K. Then∑

λ

multλ(A)λ ≡ −ar−1 mod K†.

In particular,
∑
λmultλ(A)λ = 0 iff ar−1 ∈ K†.

Proof. Take a basis y1, . . . , yr of kerUA with yj = fj e(λj), fj ∈ K×, λj ∈ Λ. The
Wronskian matrix Wr(y1, . . . , yr) of (y1, . . . , yr) [ADH, p. 206] equals

Wr(y1, . . . , yr) = M

e(λ1)
. . .

e(λr)

 where M ∈ GLn(K).

Then w := wr(y1, . . . , yr) = detWr(y1, . . . , yr) ̸= 0 by [ADH, 4.1.13] and

−ar−1 = w† = (detM)† + λ1 + · · ·+ λr

where we used [ADH, 4.1.17] for the first equality. □

If A splits over K, then so does Aλ. Moreover, if Aλ(K) = K, then A(Uλ) = Uλ:
for f, g ∈ K with Aλ(f) = g we have A

(
f e(λ)

)
= g e(λ). Thus:

Lemma 2.5.3. Suppose K is r-linearly surjective, or K is 1-linearly surjective
and A splits over K. Then A(Uλ) = Uλ for all λ and hence A(U) = U.

In the next subsection we study the connection between splittings of A and bases
of the C-linear space kerUA in more detail.

Constructing splittings and bases. Recall that orderA = r ∈ N. Set U = UK ,
so U× = K× e(Λ). Let y1, . . . , yr ∈ U×. We construct a sequence A0, . . . , An
of monic operators in K[∂] with n ⩽ r as follows. First, set A0 := 1. Next,
given A0, . . . , Ai−1 in K[∂]̸= (1 ⩽ i ⩽ r), set fi := Ai−1(yi); if fi ̸= 0, then fi ∈ U×,

so f†i ∈ K, and the next term in the sequence is

Ai := (∂ − ai)Ai−1, ai := f†i ,

whereas if fi = 0, then n := i− 1 and the construction is finished.

Lemma 2.5.4. kerUAi = Cy1 ⊕ · · · ⊕ Cyi (internal direct sum) for i = 0, . . . , n.
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Proof. By induction on i ⩽ n. The case i = 0 being trivial, suppose 1 ⩽ i ⩽ n
and the claim holds for i − 1 in place of i. Then Ai−1(yi) = fi ̸= 0, hence yi /∈
kerUAi−1 = Cy1 ⊕ · · · ⊕ Cyi−1, and Ai = (∂ − f†i )Ai−1, so by [ADH, 5.1.14(i)] we
have kerUAi = kerUAi−1 ⊕ Cyi = Cy1 ⊕ · · · ⊕ Cyi. □

We denote the tuple (a1, . . . , an) ∈ Kn just constructed by split(y1, . . . , yr), so An =

(∂ − an) · · · (∂ − a1). Suppose r ⩾ 1. Then n ⩾ 1, a1 = y†1, A1 = ∂ − a1,
A1(y2), . . . , A1(yn) ∈ U×, and we have

(a2, . . . , an) = split
(
A1(y2), . . . , A1(yn)

)
.

By Lemma 2.5.4, n ⩽ r is maximal such that y1, . . . , yn are C-linearly independent.
In particular, y1, . . . , yr are C-linearly independent iff n = r.

Corollary 2.5.5. If A(yi) = 0 for i = 1, . . . , n, then A ∈ K[∂]An. Thus if n = r
and A(yi) = 0 for i = 1, . . . , r, then A = a(∂ − ar) · · · (∂ − a1) where a ∈ K×.

This follows from [ADH, 5.1.15(i)] and Lemma 2.5.4.

Suppose that H is a differential subfield of K and y†1, . . . , y
†
r ∈ H. Then we

have split(y1, . . . , yr) ∈ Hn: use that y′ ∈ Hy with y ∈ U gives y(m) ∈ Hy
for all m, so B(y) ∈ Hy for all B ∈ H[∂], hence for such B, if f := B(y) ̸= 0,
then f† ∈ H.

Corollary 2.5.6. Suppose dimC kerUA = r. Then kerUA = kerΩA and A splits
over K. If A = (∂ − ar) · · · (∂ − a1), a1, . . . , ar ∈ K, then the spectrum of A
is
{
[a1], . . . , [ar]

}
, and for all α ∈ K/K†,

multα(A) =
∣∣{i ∈ {1, . . . , r} : α = [ai]

}∣∣.
Proof. A splits over K by Lemma 2.5.1 and Corollary 2.5.5. The rest follows from
Lemma 2.3.4 in view of

∑
λmultλ(A) = dimC kerUA. □

Conversely, we can associate to a given splitting of A over K a basis of kerUA
consisting of r elements of U×, provided K is 1-linearly surjective when r ⩾ 2:

Lemma 2.5.7. Assume K is 1-linearly surjective in case r ⩾ 2. Let

A = (∂ − ar) · · · (∂ − a1) where ai = b†i + λi, bi ∈ K×, λi ∈ Λ (i = 1, . . . , r).

Then there are C-linearly independent y1, . . . , yr ∈ kerUA with yi ∈ K× e(λi)
for i = 1, . . . , r and split(y1, . . . , yr) = (a1, . . . , ar).

Proof. By induction on r. The case r = 0 is trivial, and for r = 1 we can take y1 =
b1 e(λ1). Let r ⩾ 2 and suppose inductively that for

B := (∂ − ar) · · · (∂ − a2)

we have C-linearly independent z2, . . . , zr ∈ kerUB with zi ∈ K× e(λi) for i =
2, . . . , r and split(z2, . . . , zr) = (a2, . . . , ar). For i = 2, . . . , r, Lemma 2.5.3 gives yi ∈
K× e(λi) with (∂ − a1)(yi) = zi. Set y1 := b1 e(λ1), so kerU(∂ − a1) = Cy1.
Then y1, . . . , yr ∈ kerUA are C-linearly independent with yi ∈ K× e(λi) for i =
1, . . . , r, and one verifies easily that split(y1, . . . , yr) = (a1, . . . , ar). □

Corollary 2.5.8. Assume K is 1-linearly surjective when r ⩾ 2. Then

A splits over K ⇐⇒ dimC kerUA = r.
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Remark. If dimC kerUA = r and λ1, . . . , λd are the eigenvalues of A with respect
to Λ, then the differential subring K

[
e(λ1), e(−λ1), . . . , e(λd), e(−λd)

]
of U is the

Picard-Vessiot ring for A over K; see [158, Section 1.3]. If K is linearly closed and
linearly surjective, then U is by Corollary 2.5.8 the universal Picard-Vessiot ring of
the differential field K as defined in [158, Chapter 10]. Our construction of U above
is modeled on the description of the universal Picard-Vessiot ring of the algebraic
closure of C((t)) given in [158, Chapter 3].

Recalling our convention that r = orderA, here is a complement to Lemma 2.5.1:

Corollary 2.5.9. Let V be a C-linear subspace of U with r = dimC V . Then there
is at most one monic A with V = kerUA. Moreover, the following are equivalent:

(i) V = kerUA for some monic A that splits over K;
(ii) V = kerUB for some B ̸= 0;
(iii) V =

∑
λ Vλ;

(iv) V has a basis contained in U×.

Proof. The first claim follows from [ADH, 5.1.15] applied to the differential fraction
field of U in place of K. The implication (i) ⇒ (ii) is clear, (ii) ⇒ (iii) was noted
before Lemma 2.5.1, and (iii) ⇒ (iv) is obvious. For (iv) ⇒ (i), let y1, . . . , yr ∈ U×

be a basis of V . Then split(y1, . . . , yr) = (a1, . . . , ar) ∈ Kr, so V = kerUA for A =
(∂ − ar) · · · (∂ − a1) by Lemma 2.5.4, so (i) holds. □

Let y1, . . . , yr ∈ U× and (a1, . . . , an) := split(y1, . . . , yr). We finish this subsection
with some remarks about (a1, . . . , an). Let A0, . . . , An ∈ K[∂] be as above and
recall that n ⩽ r is maximal such that y1, . . . , yn are C-linearly independent.

Lemma 2.5.10. Assume n = r. Let z1, . . . , zr ∈ U×. The following are equivalent:

(i) z1, . . . , zr are C-linearly independent and (a1, . . . , ar) = split(z1, . . . , zr);
(ii) for i = 1, . . . , r there are cii, ci,i−1, . . . , ci1 ∈ C such that

zi = ciiyi + ci,i−1yi−1 + · · ·+ ci1y1 and cii ̸= 0.

Proof. The case r = 0 is trivial. Let r = 1. If (i) holds, then y†1 = a1 = z†1,
hence z1 ∈ C× y1, so (ii) holds. The converse is obvious. Let r ⩾ 2, and assume (i)
holds. Put ỹi := A1(yi) and z̃i := A1(zi) for i = 2, . . . , r. Then

split(ỹ2, . . . , ỹr) = (a2, . . . , ar) = split(z̃2, . . . , z̃r),

so we can assume inductively to have cij ∈ C (2 ⩽ j ⩽ i ⩽ r) with

z̃i = ciiỹi + ci,i−1ỹi−1 + · · ·+ ci2ỹ2 and cii ̸= 0 (2 ⩽ i ⩽ r).

Hence for 2 ⩽ i ⩽ r,

zi ∈ ciiyi + ci,i−1yi−1 + · · ·+ ci2y2 + kerUA1.

Now use kerUA1 = Cy1 to conclude (ii). For the converse, let cij ∈ C be as
in (ii). Then clearly z1, . . . , zr are C-linearly independent. Let (b1, . . . , br) :=
split(z1, . . . , zr) and Br−1 := (∂ − br−1) · · · (∂ − b1). Then ar = f†r where fr =
Ar−1(yr) ̸= 0, and br = g†r where gr := Br−1(zr) ̸= 0. Now inductively we
have aj = bj for j = 1, . . . , r − 1, so Ar−1 = Br−1, and Ar−1(yi) = 0 for i =
1, . . . , r − 1 by Lemma 2.5.4. Hence gr = crrfr, and thus ar = br. □

Lemma 2.5.11. Let z ∈ U×. Then split(y1z, . . . , yrz) = (a1 + z†, . . . , an + z†).
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Proof. Since for m ⩽ r, the units y1z, . . . , ymz of U are C-linearly independent
iff y1, . . . , ym are C-linearly independent, we see that the tuples split(y1z, . . . , yrz)
and split(y1, . . . , yr) have the same length n. Let (b1, . . . , bn) := split(y1z, . . . , yrz);
we show (b1, . . . , bn) = (a1 + z†, . . . , an + z†) by induction on n. The case n = 0 is

obvious, so suppose n ⩾ 1. Then a1 = y†1 and b1 = (y1z)
† = a1 + z† as required.

By remarks following the proof of Lemma 2.5.4 we have

(a2, . . . , an) = split
(
A1(y2), . . . , A1(yn)

)
where A1 := ∂ − a1.

Now B1 := ∂ − b1 = (A1)⋉z−1 , so likewise

(b2, . . . , bn) = split
(
B1(y2z), . . . , B1(ynz)

)
= split

(
A1(y2)z, . . . , A1(yn)z

)
.

Hence b2 = a2 + z†, . . . , bn = an + z† by our inductive hypothesis. □

For f ∈ ∂K we let
∫
f denote an element of K such that (

∫
f)′ = f .

Lemma 2.5.12. Let g1, . . . , gr ∈ K× and

A = g1 · · · gr(∂g−1
r )(∂g−1

r−1) · · · (∂g
−1
1 ),

and suppose the integrals below can be chosen such that

y1 = g1, y2 = g1
∫
g2, . . . , yr = g1

∫
(g2
∫
g3(· · · (gr−1

∫
gr) · · · )),

Then y1, . . . , yr ∈ K×, n = r, and ai = (g1 · · · gi)† for i = 1, . . . , r.

Proof. Let bi := (g1 · · · gi)† for i = 1, . . . , r. By induction on i = 0, . . . , r we
show n ⩾ i and (a1, . . . , ai) = (b1, . . . , bi). This is clear for i = 0, so sup-
pose i ∈ {1, . . . , r}, n ⩾ i− 1, and (a1, . . . , ai−1) = (b1, . . . , bi−1). Then

Ai−1 = (∂ − ai−1) · · · (∂ − a1) = (∂ − bi−1) · · · (∂ − b1) = g1 · · · gi−1(∂g
−1
i−1) · · · (∂g

−1
1 ),

using Lemma 1.1.3 for the last equality. So Ai−1(yi) = g1 · · · gi ̸= 0, and thus n ⩾ i
and ai = Ai−1(yi)

† = bi. □

Splittings and derivatives (∗). The material in this subsection is only needed
for the proof of Lemma 7.5.29, and not for the proof of our main theorem. In this
subsection A is monic and a0 := A(1) ̸= 0. Let A∂ be the unique element of K[∂]

such that A∂
∂ = ∂A− a†0A. Then A

∂ is monic of order r, and if A ∈ H[∂] for some
differential subfield H of K, then also A∂ ∈ H[∂].

Examples. If orderA = 0 then A∂ = 1, and if orderA = 1 then A∂ = ∂ + (a0 − a†0).
Next, suppose A = ∂

2 + a1∂ + a0 (a0, a1 ∈ K); then

A∂ = ∂
2 + (a1 − a†0)∂ + (a′1 + a0 − a1a

†
0).

If A(y) = 0 with y in a differential ring extension of K, then A∂(y′) = 0. Also:

Lemma 2.5.13. Let R be a differential integral domain extending K. Suppose
the differential fraction field of R has constant field C, and dimC kerRA = r.
Then kerRA

∂ = {y′ : y ∈ kerRA} and dimC kerRA
∂ = r.

Proof. Let y1, . . . , yr be a basis of the C-linear space kerRA, and assume towards a
contradiction that c1y

′
1 + · · ·+ cry

′
r = 0 with c1, . . . , cr ∈ C not all zero. Then y :=

c1y1 + · · · + cryr ∈ ker ̸=R A and y′ = 0. Hence a0y = A(y) = 0 and thus a0 = 0, a
contradiction. □
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Let U = UK and f1 e(λ1), . . . , fr e(λr) ∈ U× be a basis of the C-linear space kerUA,
where fj ∈ K× and λj ∈ Λ for j = 1, . . . , r. Then by Lemma 2.5.13,

(f ′1 + λ1f1) e(λ1), . . . , (f
′
r + λrfr) e(λr) ∈ U×

is a basis of the C-linear space kerUA
∂. Hence by Corollary 2.5.6:

Corollary 2.5.14. Suppose dimC kerUA = r. Then multα(A) = multα(A
∂) for

all α ∈ K/K†, so Σ(A) = Σ(A∂), and both A, A∂ split over K.

Suppose now that K is 1-linearly surjective when r ⩾ 2, and A splits over K.
Then A∂ splits over K by Corollaries 2.5.8 and 2.5.14.

Splitting and adjoints (∗). In this subsection y1, . . . , yr ∈ U×,

(a1, . . . , ar) = split(y1, . . . , yr), A = (∂ − ar) · · · (∂ − a1).

So y1, . . . , yr is a basis of the C-linear space V := kerUA = kerΩA,

A∗ = (−1)r(∂ + a1) · · · (∂ + ar),

and dimCW = r for the C-linear space W := kerUA
∗ = kerΩA

∗ by Lemma 2.3.21.
(Recall here that Ω denotes the differential fraction field of U.) Proposition 2.4.13
with Ω instead of K yields the C-bilinear map [ , ]A : Ω×Ω → Ω, which restricts to
a perfect pairing V ×W → C by Corollary 2.4.16. We let j, k range over {1, . . . , r}
and take λj ∈ Λ such that y†j ≡ λj mod K†, so yj ∈ K× e(λj).

Lemma 2.5.15. Suppose z1, . . . , zr ∈ U× are C-linearly independent such that

split(zr, . . . , z1) = (−ar, . . . ,−a1).
Then z1, . . . , zr is a basis of the C-linear space W , [yj , zk]A = 0 if j < k, and
[yk, zk]A ̸= 0. Moreover, zk ∈ K× e(−λk), and if [yj , zk]A ̸= 0, then λj = λk.

Proof. Let i range over {0, . . . , r}. As in (2.4.6), set

Ai := (∂ − ai) · · · (∂ − a1), Bi := (−1)r−i(∂ + ai+1) · · · (∂ + ar).

Then by Lemma 2.5.4 we have

kerUAi = Cy1 ⊕ · · · ⊕ Cyi, kerUBi = Czr ⊕ · · · ⊕ Czi+1

and thus

Ai(yj) = 0 if i ⩾ j, Bi(zk) = 0 if i+ 1 ⩽ k.

Then Lemma 2.4.17 yields

[yj , zk]A =
∑
i<r

Ai(yj)Bi+1(zk) =
∑

k−2<i<j

Ai(yj)Bi+1(zk),

so [yj , zk]A = 0 whenever j < k. Moreover,

[yk, zk]A = Ak−1(yk)Bk(zk) ̸= 0.

Take µk ∈ Λ with z†k ≡ µk mod K†. Then yj ∈ K e(λj) and zk ∈ K e(µk),
so [yj , zk]A ∈ C ∩K e(λj +µk) by (2.4.3). Hence, if [yj , zk]A ̸= 0, then λj +µk = 0.
In particular, µk = −λk and so zk ∈ K× e(−λk). □

Corollary 2.5.16. Assume K is 1-linearly surjective if r ⩾ 2. Then there is a
basis y∗1 , . . . , y

∗
r of the C-linear space W such that [yj , y

∗
k]A = δjk for all j, k, and

y∗j ∈ K× e(−λj) for all j, split(y∗r , . . . , y
∗
1) = (−ar, . . . ,−a1).
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Proof. Lemma 2.5.7 gives C-linearly independent z1, . . . , zr ∈ U× such that

split(zr, . . . , z1) = (−ar, . . . ,−a1).

Lemma 2.5.15 gives constants ck ∈ C× such that [yj , ckzk]A = δjk for j ⩽ k. We
now set y∗r := crzr, so [yj , y

∗
r ]A = δjr for all j and y∗r ∈ K× e(−λr). Let 1 < k ⩽ r

and assume inductively that we have y∗k, . . . , y
∗
r ∈ W such that for i = k, . . . , r we

have y∗i ∈ Czi + · · ·+ Czr, [yj , y
∗
i ]A = δji for all j, and y

∗
i ∈ K× e(−λi). Then for

y∗k−1 := ck−1zk−1 −
r∑
i=k

[yi, ck−1zk−1]Ay
∗
i

we have

y∗k−1 ∈ Czk−1 + Czk + · · ·+ Czr, [yj , y
∗
k−1]A = δj,k−1 for all j.

If k ⩽ i ⩽ r and [yi, ck−1zk−1]A ̸= 0, then λi = λk−1 by the last part of
Lemma 2.5.15, so y∗k−1 ∈ K× e(−λk−1) by the inductive assumption and zk−1 ∈
K e(−λk−1).

This recursive construction yields a basis y∗1 , . . . , y
∗
r of the C-linear spaceW such

that [yj , y
∗
k] = δjk for all j, k, and y∗i ∈ K× e(−λi) for i = 1, . . . , r. It now follows

from Lemma 2.5.10 that split(y∗r , . . . , y
∗
1) = (−ar, . . . ,−a1). □

Lemma 2.5.15 also yields:

Corollary 2.5.17. If (a1, . . . , ar) = (−ar, . . . ,−a1), then [yj , yr+1−k]A = 0 for
all j < k, and [yk, yr+1−k]A ̸= 0 for all k.

The case of real operators. We now continue the subsection The real case
of Section 2.2. Thus K = H[i] where H is a real closed differential subfield
of K and i2 = −1, and Λ = Λr + Λii where Λr, Λi are subspaces of the Q-
linear space H. The complex conjugation automorphism z 7→ z of the differential
field K extends uniquely to an automorphism B 7→ B of the ring K[∂] with ∂ = ∂.

We have A(f) = A(f) for f ∈ U, from which it follows that dimC kerK A =

dimC kerK A, (A)λ = (Aλ), multλA = multλA, and f 7→ f : U → U restricts to a

CH -linear bijection kerUA→ kerUA.

In the rest of this subsection we assume H = H† (so Λ = Λii) and A ∈ H[∂] (and
by earlier conventions, A ̸= 0 and r := orderA). Then A = A, hence for all λ we
have Aλ = Aλ and multλA = multλA. Thus with µ ranging over Λ>i :∑

λ

multλ(A) = mult0(A) + 2
∑
µ

multµi(A).

Note that 0 is an eigenvalue of A iff kerH A ̸= {0}.

Let V := kerUA, a subspace of the C-linear space U with V = V and dimC V ⩽ r.
Recall that we have the differential H-subalgebra Ur = {f ∈ U : f = f} of U and
the CH -linear subspace Vr = kerUr

A of Ur. Now V = Vr ⊕ Vri (internal direct sum
of CH -linear subspaces), so dimC V = dimCH

Vr. Combining Lemma 2.5.1 and the
remarks preceding it with Lemma 2.2.19 and its proof yields:

121



Corollary 2.5.18. The C-linear space V has a basis

a1 e(µ1i), a1 e(−µ1i), . . . , am e(µmi), am e(−µmi), h1, . . . , hn (2m+ n ⩽ r),

where a1, . . . , am ∈ K×, µ1, . . . , µm ∈ Λ>i , h1, . . . , hn ∈ H×. For such a basis,

Re
(
a1 e(µ1i)

)
, Im

(
a1 e(µ1i)

)
, . . . , Re

(
am e(µmi)

)
, Im

(
am e(µmi)

)
, h1, . . . , hn

is a basis of the CH-linear space Vr, and h1, . . . , hn is a basis of the CH-linear
subspace kerH A = V ∩H of H.

Using H = H†, arguments as in the proof of Lemma 2.5.7 show:

Lemma 2.5.19. Assume H is 1-linearly surjective when r ⩾ 2. Let a1, . . . , ar ∈ H
be such that A = (∂ − ar) · · · (∂ − a1). Then the CH-linear space kerH A has a
basis y1, . . . , yr such that split(y1, . . . , yr) = (a1, . . . , ar).

Recall from Lemma 2.3.3 that if r = 1 or K is 1-linearly surjective, then

A splits over K ⇐⇒
∑
λ

multλ(A) = r.

Now multλ(A) = multλ(A) for all λ, so if multλ(A) = r ⩾ 1, then λ = 0. Also,
for W := V ∩K = kerK A and Wr :=W ∩Ur we have Wr = kerH A and

W = Wr ⊕Wri (internal direct sum of CH -linear subspaces),

so mult0(A) = dimC kerK A = dimCH
kerH A. If y1, . . . , yr is a basis of the CH -

linear space kerH A, then split(y1, . . . , yr) ∈ Hr in reversed order is a splitting of A
over H by Corollary 2.5.5. These remarks and Lemma 2.5.19 now yield:

Corollary 2.5.20. If mult0(A) = r, then A splits over H. The converse holds
if H is 1-linearly surjective or r = 1.

Corollary 2.5.21. Suppose r ⩾ 1, and K is 1-linearly surjective if r ⩾ 2. Then

A splits over H ⇐⇒ mult0(A) = r ⇐⇒ |Σ(A)| = 1.

We now focus on the order 2 case:

Lemma 2.5.22. Suppose r = 2 and A splits over K but not over H. Then

dimC kerUA = 2.

If H is 1-linearly surjective, then A has two distinct eigenvalues.

Proof. We can assume A is monic, so A = (∂−f)(∂−g) with f, g ∈ K and g = a+bi,
a, b ∈ H, b ̸= 0. Then g = d†+µi with d ∈ K× and µ ∈ Λi, and so d e(µi) ∈ kerUA.
From A = A we obtain d e(−µi) ∈ kerUA. These two elements of kerUA are C-
linearly independent, since

d e(µi)/d e(−µi) = (d/d) e(2µi) /∈ C :

this is clear if µ ̸= 0, and if µ = 0, then d† = g, so (d/d)† = g − g = 2bi ̸= 0, and
hence d/d /∈ C. Thus dimC kerUA = 2, and µi, −µi are eigenvalues of A with
respect to Λ. Now assume H is 1-linearly surjective. Then we claim that µ ̸= 0.
To see this note that [ADH, 5.1.21, 5.2.10] and the assumption that A does not
split over H yield dimCH

kerH A = dimC kerK A = 0, hence g /∈ K† and thus µi =
g − d† ̸= 0. □

Combining Lemmas 2.5.19 and 2.5.22 yields:
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Corollary 2.5.23. If H is 1-linearly surjective, A has order 2, and A splits over K,
then dimC kerUA = 2.

In the rest of this subsection H is 1-linearly surjective and A = 4∂
2 + f , f ∈ H.

Let the functions ω : H → H and σ : H× → H be as in [ADH, 5.2]. Then we
have [ADH, remarks before 5.2.1, and (5.2.1)]:

A splits over H ⇐⇒ f ∈ ω(H),

A splits over K ⇐⇒ f ∈ σ(H×) ∪ ω(H).

If A splits over H, then Σ(A) = {0} and mult0(A) = 2, by Corollary 2.5.21.
Suppose A splits over K but not over H, and let y ∈ H× satisfy σ(y) = f /∈ ω(H).
Then by [ADH, p. 262] we have A = 4(∂ + g)(∂ − g) where g = 1

2 (−y
† + yi). Hence

the two distinct eigenvalues of A are (y/2)i +K† and −(y/2)i +K†. We consider
also the skew-adjoint differential operator

B := ∂
3 + f∂ + (f ′/2) ∈ H[∂].

If dimC kerUA = 2, then dimC kerUB = 3 by Lemma 2.4.23. Likewise,

dimCH
kerH A = 2 =⇒ dimCH

kerH B = 3.

Lemma 2.5.24. If A splits over K, then so does B. Likewise with H instead of K.

Proof. If A splits over K, then dimC kerUA = 2 by Corollary 2.5.23 and there-
fore dimC kerUB = 3 by the remark preceding the lemma, so B splits over K by
Corollary 2.5.6. If A splits over H, then dimCH

kerH A = 2 by Lemma 2.5.19 and
hence dimCH

kerH B = 3, so B splits over H by Corollary 2.5.5 and the remark
following it. □

Lemma 2.5.25. Let y ∈ H× with σ(y) = f /∈ ω(H). Then Σ(B) = {β, 0,−β}
where β := yi +K† ̸= 0, and dimCH

kerH B = 1.

Proof. Put g = 1
2 (−y

† + yi), so A = 4(∂ + g)(∂ − g), and take d ∈ K× and µ ∈ Λi

with g = d† + µi. Then d e(µi), d e(−µi) is a basis of kerUA and µ ̸= 0, by the
argument in the proof of Lemma 2.5.22. Hence

d2 e(2µi), |d|2, d2 e(−2µi)

is a basis of kerUB by Lemma 2.4.23, so(
d2 e(2µi)

)†
+K† = 2µi+K†,

(
|d|2
)†
+K† = [0],

(
d2 e(−2µi)

)†
+K† = −2µi+K†

are eigenvalues of B. Since µi /∈ K†, these are distinct eigenvalues, and so there are
no other eigenvalues. Note: g = 1

2 (−y
† + yi) = d† + µi gives yi +K† = 2µi +K†.

Finally, dimCH
kerH B = 1 by Corollary 2.5.18. □

Factoring linear differential operators over H-fields (∗). In this subsection H
is a real closed H-field with x ∈ H, x′ = 1, x ≻ 1, and K = H[i] where i2 = −1.
In the proof of the next lemma we use [ADH, 10.5.2(i)]:

(2.5.2) y, z ∈ H×, y ≺ z =⇒ y† < z†.

Lemma 2.5.26. Let y, z be CH-linearly independent elements of H× and (a, b) :=
split(y, z). If xy ≻ z, then a > b, and if xy ≺ z, then a < b.

Proof. Replacing (y, z) by (1, z/y) we arrange y = 1, a = 0, by Lemma 2.5.11.
Then z′ ̸= 0 and b = z′†. Now x ≻ z implies 1 ≻ z′, and x ≺ z implies 1 ≺ z′. It
remains to use the remark preceding the lemma. □
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In the next three lemmas y1, . . . , yr ∈ H (r ∈ N) are CH -linearly independent
and (a1, . . . , ar) := split(y1, . . . , yr) ∈ Hr. We also assume that H is λ-free.

Lemma 2.5.27. y1 ≻ · · · ≻ yr ⇒ a1 > · · · > ar.

Proof. The cases r = 0, 1 are trivial, so suppose that r ⩾ 2 and y1 ≻ · · · ≻ yr.
We have (a1, . . . , ar−1) = split(y1, . . . , yr−1). Assume a1 > · · · > ar−1 as inductive
hypothesis. It remains to show ar−1 > ar. Put B := (∂ − ar−2) · · · (∂ − a1);
so B = Ar−2 in the notation introduced before Lemma 2.5.4, and (ar−1, ar) =
split

(
B(yr−1), B(yr)

)
. By Lemma 2.5.4, y1, . . . , yr−2 is a basis of the CH -linear

subspace kerH B of H, and hence

v(ker ̸=H B) =
{
v(y1), . . . , v(yr−2)

}
= E e(B)

by Corollary 1.5.20, so v(yr−1), v(yr) /∈ E e(B). Then Lemma 1.5.6 gives B(yr−1) ≻
B(yr), so xB(yr−1) ≻ B(yr). Now Lemma 2.5.26 yields ar−1 > ar. □

Lemma 2.5.28. y1 ≺♭ · · · ≺♭ yr ⇒ a1 < · · · < ar.

Proof. Similar to the proof of Lemma 2.5.27, using in the inductive step that B is
asymptotically surjective by Corollary 1.5.25, hence if y, z ∈ H×, vy, vz /∈ E e(B),
and y ≺♭ z, then B(y) ≺♭ B(z) by Lemma 1.5.22, and so xB(y) ≺ B(z). □

Along the lines of the proof of Lemma 2.5.27 we obtain:

Lemma 2.5.29. Suppose yi ̸≍ yj for all i, j with 1 ⩽ i < j ⩽ r. Then

a1 ⩽ · · · ⩽ ar ⇒ y1 ≺ · · · ≺ yr.

Under present assumptions we can strengthen the conclusion of Lemma 2.5.19:

Lemma 2.5.30. Assume H is Liouville closed. Let a1, . . . , ar ∈ H and set

A := (∂ − ar) · · · (∂ − a1).

Then the CH-linear space kerH A has a basis y1, . . . , yr such that split(y1, . . . , yr) =
(a1, . . . , ar) and yi ̸≍ yj for all i, j with 1 ⩽ i < j ⩽ r.

Proof. The case r = 0 is clear. Let r ⩾ 1 and assume inductively that

B := (∂ − ar) · · · (∂ − a2)

has a basis z2, . . . , zr of kerH B such that split(z2, . . . , zr) = (a2, . . . , ar) and zi ̸≍ zj
whenever 2 ⩽ i < j ⩽ r. Take y1 ∈ H× with y†1 = a1, so kerH(∂ − a1) = Cy1
and E e

H(∂ − a1) = {vy1}. For i = 2, . . . , r, Corollary 1.5.4 then gives yi ∈ H×

with (∂ − a1)(yi) = zi and yi ̸≍ y1. Then y1, . . . , yr ∈ kerH A and yi ̸≍ yj for
all i ̸= j, and split(y1, . . . , yr) = (a1, . . . , ar). □

The valuation of H being trivial on CH , the proof of the next lemma is obvious.

Lemma 2.5.31. Let g1 ≺ · · · ≺ gn in H and let h1, . . . , hn be in the CH-linear
subspace spanned by g1, . . . , gn. Then the following are equivalent:

(i) h1 ≺ · · · ≺ hn;
(ii) for i = 1, . . . , n there are cii, ci,i−1, . . . , ci1 ∈ CH such that

hi = ciigi + ci,i−1gi−1 + · · ·+ ci1g1 and cii ̸= 0.

Below A ∈ H[∂]̸= has order r ⩾ 1. Now the main results of this subsection:
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Lemma 2.5.32. There is at most one splitting (ar, . . . , a1) of A over H such
that a1 ⩽ · · · ⩽ ar.

Proof. Let (ar, . . . , a1), (br, . . . , b1) be splittings of A over H with a1 ⩽ · · · ⩽ ar
and b1 ⩽ · · · ⩽ br. Towards showing that ai = bi for i = 1, . . . , r we arrange
that H is Liouville closed. Then Lemma 2.5.30 yields bases y1, . . . , yr and z1, . . . , zr
of kerH A such that split(y1, . . . , yr) = (a1, . . . , ar), split(z1, . . . , zr) = (b1, . . . , br)
and yi ̸≍ yj , zi ̸≍ zj whenever i ̸= j. By Lemma 2.5.29 we have y1 ≺ · · · ≺ yr
and z1 ≺ · · · ≺ zr, and hence by Lemmas 2.5.10 and 2.5.31,

(a1, . . . , ar) = split(y1, . . . , yr) = split(z1, . . . , zr) = (b1, . . . , br). □

Example. Let a, b ∈ H in this example. Then

(∂ − b)(∂ − a) = ∂
2 − ∂a− b∂ + ab = ∂

2 − (a+ b)∂ + (ab− a′),

so for f, g ∈ H,

(∂ − b)(∂ − a) = (∂ − g)(∂ − f) ⇐⇒ a+ b = f + g and ab− a′ = fg − f ′.

Now take A = ∂
2. Then 1, x is a basis of kerH A, and

A = (∂ − b)(∂ − a) ⇐⇒ a+ b = 0 and ab− a′ = 0

⇐⇒ a = −b = (cx+ d)† for some c, d ∈ CH , not both zero.

Hence if (b, a) is any splitting of A over H, then a ⩾ 0 ⩾ b, and the only split-
ting (b, a) of A over H with a ⩽ b is (b, a) = (0, 0).

We call A scrambled if there are y, z ∈ ker ̸=H A with y ̸≍ z and y ≍♭ z, and
unscrambled otherwise. Hence if r = 1, then A is unscrambled, whereas A = ∂

2 is
scrambled. For a, b ∈ H× we have: A is scrambled ⇔ aAb is scrambled. Moreover:

Lemma 2.5.33. Assume H has asymptotic integration, and let B ∈ H[∂] have
order s ⩾ 1. If B is scrambled, then so is AB. If A is scrambled, B is asymptotically

surjective, E e(B) = v(ker ̸=H B), and kerH A ⊆ B(H), then AB is scrambled.

Proof. The first statement is clear since kerH B ⊆ kerH AB. Suppose B is asymp-

totically surjective, E e(B) = v(ker ̸=H B), and kerH A ⊆ B(H), and let f, g ∈ ker ̸=H A

be such that f ̸≍ g and f ≍♭ g. Corollary 1.5.4 yields y, z ∈ H with B(y) = f ,

B(z) = g and vy, vz /∈ E e(B). Then y, z ∈ ker ̸=H AB, and y ̸≍ z, y ≍♭ z by
Lemmas 1.5.6 and 1.5.22. □

Proposition 2.5.34. Suppose H is Liouville closed, A splits over H, and A
is unscrambled. Then there is a unique splitting (ar, . . . , a1) of A over H such
that a1 ⩽ · · · ⩽ ar. For this splitting we have a1 < · · · < ar.

Proof. We first arrange that A is monic. The uniqueness part is immediate from
Lemma 2.5.32. To obtain a splitting (ar, . . . , a1) of A over H with a1 < · · · < ar,
Lemma 2.5.30 gives a basis y1 ≺ · · · ≺ yr of the CH -linear space kerH A. Now
set (a1, . . . , ar) := split(y1, . . . , yr). Then (ar, . . . , a1) is a splitting of A over H, by
Corollary 2.5.5. Since A is unscrambled, we have y1 ≺♭ · · · ≺♭ yr, so a1 < · · · < ar,
by Lemma 2.5.28. □

In [103, Exercise 7.28] it is claimed that for the Liouville closed H-field H = Tg of
grid-based transseries, if A splits over H, then A always has a splitting (ar, . . . , a1)
over H with a1 ⩽ · · · ⩽ ar. The next example shows this to be incorrect for r = 2:
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Example 2.5.35. Let z ∈ H \CH and suppose A = (∂−g)∂ where g := z′†. Then 1, z
is a basis of kerH A. With a, b ∈ H, this fact leads to the equivalence

A = (∂−b)(∂−a) ⇐⇒ a = g − b = (cz + d)† for some c, d ∈ CH , not both zero.

Now take z = x− x−1, so z′ = 1 + x−2, z′′ = −2x−3, and hence

g = z′† =
z′′

z′
= − 2

x(x2 + 1)
< 0.

Let (b, a) be a splitting of A over H. We claim that then a ⩾ 0 > b. This is
clear if a = 0, so assume a ̸= 0. For c, d ∈ CH , c ̸= 0 we have (cz + d)† ∼ x−1.
Thus a ∼ x−1 and b = g − a ∼ −x−1. Hence a > 0 > b as claimed.

In the rest of this subsection H has asymptotic integration, and ϕ ranges over the
elements of H> that are active in H. Note that if A is unscrambled and ϕ ≼ 1,
then Aϕ ∈ Hϕ[δ] is also unscrambled. Moreover:

Lemma 2.5.36. Aϕ is unscrambled, eventually.

Proof. By Remark 1.5.3 we have |v(ker ̸=H A)| ⩽ r, thus we can take ϕ so that γ − δ /∈
Γ♭ϕ for all γ ̸= δ in v(ker ̸=H A). Now Aϕ is unscrambled since kerH A = kerHϕ Aϕ. □

Lemma 2.5.37. Let (ar, . . . , a1) be a splitting of A over H such that a1 ⩽ · · · ⩽ ar,
suppose ϕ ≺ 1, and set bj := ϕ−1

(
aj − (j−1)ϕ†

)
for j = 1, . . . , r. Then (br, . . . , b1)

is a splitting of Aϕ over Hϕ with b1 < · · · < br.

Proof. By Lemma 1.1.2, (br, . . . , b1) is a splitting of Aϕ over Hϕ. Since ϕ† < 0, we
have b1 < · · · < br. □

Corollary 2.5.38. Suppose H is Liouville closed and A splits over H. Then there
is a unique splitting (ar, . . . , a1) of A over H such that eventually aj + ϕ† < aj+1

for j = 1, . . . , r − 1.

Proof. Let (ar, . . . , a1) be a splitting of A over H and ϕ so that aj + ϕ† < aj+1

for j = 1, . . . , r−1. Set bj := ϕ−1
(
aj− (j−1)ϕ†

)
for j = 1, . . . , r. Then (br, . . . , b1)

is a splitting of Aϕ over Hϕ with b1 < · · · < br. Thus by Lemma 2.5.32 there can be
at most one splitting (ar, . . . , a1) of A over H such that eventually aj + ϕ† < aj+1

for j = 1, . . . , r − 1. (Here we also use (2.5.2).)
For existence, take ϕ with unscrambled Aϕ and a splitting (br, . . . , b1) of Aϕ

over Hϕ with b1 < · · · < br as in Proposition 2.5.34. For j = 1, . . . , r, take aj ∈ H
such that bj = ϕ−1

(
aj − (j − 1)ϕ†

)
. Then (ar, . . . , a1) is a splitting of A over H,

by Lemma 1.1.2, and aj + ϕ† < aj+1 for j = 1, . . . , r − 1. □

Example. Suppose H is Liouville closed and A, g, z = x − x−1 are as in Ex-
ample 2.5.35. Then the unique splitting (b, a) of A over H such that eventu-
ally a+ ϕ† < b is (b, a) = (g, 0). (To see this use that eventually ϕ† ∼ −x−1.)

We finish this subsection with a variant of Proposition 2.5.34 for Pólya-style split-
tings. In [ADH, 11.8] we defined Γ(H) := {h† : h ∈ H≻1}. If H is Liouville closed,
then H> \ I(H) = Γ(H) [ADH, p. 520].

Proposition 2.5.39. Suppose H is Liouville closed and A is monic and splits
over H. Then there are g1, . . . , gr ∈ H> such that

A = g1 · · · gr(∂g−1
r ) · · · (∂g−1

2 )(∂g−1
1 ) and gj ∈ Γ(H) for j = 2, . . . , r.

Such g1, . . . , gr are unique up to multiplication by positive constants.
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Proof. Let (ar, . . . , a1) be the splitting of A overH from Corollary 2.5.38. Take gj ∈
H> such that g†j = aj − aj−1 for j = 1, . . . , r, where a0 := 0. Then

A = g1 · · · gr(∂g−1
r ) · · · (∂g−1

2 )(∂g−1
1 )

by Lemma 1.1.3. For j = 2, . . . , r we have (gj/ϕ)
† > 0, eventually, hence gj/ϕ ≽ 1,

eventually, so gj ∈ H> \ I(H) = Γ(H). Suppose now h1, . . . , hr ∈ H> are such that

A = h1 · · ·hr(∂h−1
r ) · · · (∂h−1

2 )(∂h−1
1 ) and hj ∈ Γ(H) for j = 2, . . . , r.

Set bj := (h1 · · ·hj)† for j = 1, . . . , r. Then A = (∂−br) · · · (∂−b1) by Lemma 1.1.3.
Also

∫
hj ≻ 1 for j = 2, . . . , r, for any choice of the integrals in H. Let

z1 := h1, z2 := h1
∫
h2, . . . , zr := h1

∫
(h2
∫
h3(· · · (hr−1

∫
hr) · · · ))

for some choice of the integrals in H. Then z1, . . . , zr ∈ ker ̸=H A, and induction
on j = 1, . . . , r using [ADH, 9.1.3(iii)] gives z1 ≺ · · · ≺ zj . Then Lemma 2.5.12
yields split(z1, . . . , zr) = (b1, . . . , br). Applied to g1, . . . , gr instead of h1, . . . , hr,

this gives y1 ≺ · · · ≺ yr ∈ ker ̸=H A such that split(y1, . . . , yr) = (a1, . . . , ar).
Now y1, . . . , yr and z1, . . . , zr are both bases of kerH A, so by Lemmas 2.5.31
and 2.5.10:

(a1, . . . , ar) = split(y1, . . . , yr) = split(z1, . . . , zr) = (b1, . . . , br).

So g†j = aj−aj−1 = bj−bj−1 = h†j (b0 := 0), and thus gj ∈ C>H hj , j = 1, . . . , r. □

The case of oscillating transseries (∗). We now apply the results in this section
to the algebraically closed differential field K = T[i]. Note that T[i] has constant
field C and extends the (real closed) differential field T of transseries.

Lemma 2.5.40. T[i] is linearly closed and linearly surjective.

Proof. By [ADH, 15.0.2], T is newtonian, so T[i] is newtonian by [ADH, 14.5.7].
Hence T[i] is linearly closed by [ADH, 5.8.9, 14.5.3], and T[i] is linearly surjective
by [ADH, 14.2.2]. □

Now applying Corollary 2.5.8 and Lemma 2.5.1 to T[i] gives:

Corollary 2.5.41. For K = T[i], there are C-linearly independent units y1, . . . , yr
of UT[i] with A(y1) = · · · = A(yr) = 0.

Next we describe another incarnation of UT[i], namely as a ring of “oscillating”
transseries. Towards this goal we first note that by [ADH, 11.5.1, 11.8.2] we have

I(T) =
{
y ∈ T : y ≼ f ′ for some f ≺ 1 in T

}
=
{
y ∈ T : y ≺ 1/(ℓ0 · · · ℓn) for all n

}
,

so a complement ΛT of I(T) in T is given by

ΛT :=
{
y ∈ T : supp(y) ≻ 1/(ℓ0 · · · ℓn−1ℓ

2
n) for all n

}
.

Since T† = T and I
(
T[i]

)
⊆ T[i]† we have T[i]† = T ⊕ I(T)i by Lemmas 1.2.4

and 1.2.16. We now take Λ = ΛTi as our complement Λ of T[i]† in T[i] and explain
how the universal exponential extension U of T[i] for this Λ was introduced in [103,
Section 7.7] in a different way. Let

T≻ := {f ∈ T : supp f ≻ 1},
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and similarly with ≺ in place of ≻; then T≺ = OT and T≻ are R-linear subspaces
of T, and T decomposes as an internal direct sum

(2.5.3) T = T≻ ⊕ R⊕ T≺

of R-linear subspaces of T. Let eiT≻ = {eif : f ∈ T≻} be a multiplicative copy of
the additive group T≻, with isomorphism f 7→ eif . Then we have the group ring

O := K
[
eiT≻

]
of eiT≻ over K = T[i]. We make O into a differential ring extension of K by

(eif )′ = if ′ eif (f ∈ T≻).

Hence O is an exponential extension of K. The elements of O are called oscillating
transseries. For each f ∈ T there is a unique g ∈ T, to be denoted by

∫
f , such

that g′ = f and g has constant term g1 = 0. The injective map
∫
: T → T is

R-linear; we use this map to show that U and O are disguised versions of each
other:

Proposition 2.5.42. There is a unique isomorphism U = K
[
e(Λ)

]
→ O of differ-

ential K-algebras sending e(hi) to ei
∫
h for all h ∈ ΛT.

This requires the next lemma. We assume familiarity with [ADH, Appendix A], es-
pecially with the ordered group GLE (a subgroup of T×) of logarithmic-exponential
monomials and its subgroup GE =

⋃
nGn of exponential monomials.

Lemma 2.5.43. If m ∈ GLE and m ≻ 1, then suppm′ ⊆ ΛT.

Proof. We first prove by induction on n a fact about elements of GE:

if m ∈ Gn, m ≻ 1, then suppm′ ≻ 1/x.

For r ∈ R> we have (xr)′ = rxr−1 ≻ 1/x, so the claim holds for n = 0. Suppose
the claim holds for a certain n. Now Gn+1 = Gn exp(An), Gn is a convex subgroup
of Gn+1, and

An =
{
f ∈ R[[Gn]] : supp f ≻ Gn−1

}
(where G−1 := {1}).

Let m = n exp(a) ∈ Gn+1 where n ∈ Gn, a ∈ An; then

m ≻ 1 ⇐⇒ a > 0, or a = 0, n ≻ 1.

Suppose m ≻ 1. If a = 0, then m = n, and we are done by inductive hypothesis, so
assume a > 0. Then m′ = (n′ + na′) exp(a) and (n′ + na′) ∈ R[[Gn]], a differential
subfield of T, and exp(a) > R[[Gn]], hence suppm′ ≻ 1 ≻ 1/x as required.

Next, suppose m ∈ GLE and m ≻ 1. Take n ⩾ 1 such that m↑n ∈ GE. We
have (m↑n)′ = (m′ · ℓ0ℓ1 · · · ℓn−1)↑n. For n ∈ suppm′ and using m↑n ≻ 1 this gives

(n · ℓ0ℓ1 · · · ℓn−1)↑n ≻ 1/x

by what we proved for monomials in GE. Applying ↓n this yields n ≻ 1/(ℓ0ℓ1 · · · ℓn),
hence n ∈ ΛT as claimed. □

Proof of Proposition 2.5.42. Applying ∂ to the decomposition (2.5.3) gives

T = ∂(T≻)⊕ ∂(T≺).

Now ∂(T≻) ⊆ ΛT by Lemma 2.5.43, and ∂(T≺) ⊆ I(T), and so these two inclusions
are equalities. Thus

∫
ΛT = T≻, from which the proposition follows. □
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Proposition 2.5.44. There is a unique group morphism exp: K = T[i] → O×

that extends the given exponential maps exp: T → T× and exp: C → C×, and such
that exp(if) = eif for all f ∈ T≻ and exp(ε) =

∑
n
εn

n! for all ε ∈ O. It is surjective,
has kernel 2πiZ ⊆ C, and satisfies exp(f)′ = f ′ exp(f) for all f ∈ K.

Proof. The first statement follows easily from the decompositions

K = T⊕ iT = T⊕ iT≻ ⊕ iR⊕ iOT, C = R⊕ iR, O = OT ⊕ iOT

of K, C, and O = OK as internal direct sums of R-linear subspaces. Next,

O× = K× eiT≻ = T> · SC · (1 + O) · eiT≻ , SC :=
{
z ∈ C : |z| = 1

}
,

by Lemmas 2.1.1 and 1.2.4, and Corollary 1.2.7. Now T> = exp(T) and SC =
exp(iR), so surjectivity follows from exp(O) = 1 + O, a consequence of the well-

known bijectivity of the map ε 7→
∑
n
εn

n! : O → 1 + O, whose inverse is given by

1 + δ 7→ log(1 + δ) :=

∞∑
n=1

(−1)n−1

n
δn (δ ∈ O).

That the kernel is 2πiZ follows from the initial decomposition of the additive group
of K as T ⊕ iT≻ ⊕ iR ⊕ iOT. The identity exp(f)′ = f ′ exp(f) for f ∈ K follows
from it being satisfied for f ∈ T, f ∈ iT≻, f ∈ C, and f ∈ O. □

To integrate oscillating transseries, note first that the R-linear operator
∫
: T → T

extends uniquely to a C-linear operator
∫
: T[i] → T[i]. This in turn extends

uniquely to a C-linear operator
∫
: O → O such that (

∫
Φ)′ = Φ for all Φ ∈ O

and
∫
T[i] eϕi ⊆ T[i] eϕi for all ϕ ∈ T≻: given ϕ ∈ T̸=

≻ and g ∈ T[i], there is a

unique f ∈ T[i[ such that (f eϕi)′ = g eϕi: existence holds because y′ + yϕ′i = g
has a solution in T[i], the latter being linearly surjective, and uniqueness holds by
Lemma 1.2.3 applied to K = L = T[i], because ϕ′i /∈ T[i]† in view of remarks
preceding Lemma 1.2.16. See also Corollary 7.4.45.

The operator
∫

is a right-inverse of the linear differential operator ∂ on O. To ex-

tend this to other linear differential operators, make the subgroup GO := GLE eiT≻

of O× into an ordered group so that the ordered subgroup GLE of T> is a convex
ordered subgroup of GO and eiϕ ≻ GLE for ϕ > 0 in T≻. (Possible in only one
way.) Next, extend the natural inclusion T[i] → C[[GLE]] to a C-algebra embed-
ding O → C[[GO]] by sending eiϕ ∈ O to eiϕ ∈ GO ⊆ C[[GO]]. Identify O with a
subalgebra of C[[GO]] via this embedding, so supp f ⊆ GO for f ∈ O. It makes the
Hahn space C[[GO]] over C an immediate extension of its valued subspace O. The
latter is in particular also a Hahn space over C.

Let A ∈ T[i][∂] ̸=. Then A(O) = O by Lemmas 2.5.3, 2.5.40, and Proposi-
tion 2.5.42. The proof of [ADH, 2.3.22] now gives for each g ∈ O a unique element

f =: A−1(g) ∈ O with A(f) = g and supp(f) ∩ d
(
ker ̸=O A

)
= ∅. This requirement

on suppA−1(g) yields a C-linear operator A−1 on O with A ◦A−1 = idO; we call it
the distinguished right-inverse of the operator A on O. With this definition ∂

−1

is the operator
∫
on O specified earlier.

In the next section we explore various valuations on universal exponential extensions
(such as O) with additional properties.
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2.6. Valuations on the Universal Exponential Extension

In this section K is a valued differential field with algebraically closed constant
field C ⊆ O and divisible group K† of logarithmic derivatives. Then Γ = v(K×) is
also divisible, since we have a group isomorphism

va 7→ a† + (O×)† : Γ → K†/(O×)† (a ∈ K×).

Let Λ be a complement of the Q-linear subspaceK† ofK, let λ range over Λ, let U =
K
[
e(Λ)

]
be the universal exponential extension of K constructed in Section 2.2 and

set Ω := Frac(U). Thus Ω is a differential field with constant field C.

The gaussian extension. We equip U with the gaussian extension vg of the valu-
ation of K as defined in Section 2.1; so for f ∈ U with spectral decomposition (fλ):

vg(f) = min
λ
v(fλ),

and hence
vg(f

′) = min
λ
v(f ′λ + λfλ).

The field Ω with the valuation extending vg is a valued differential field extension
of K, but it can happen that K has small derivation, whereas Ω does not:

Example. Let K = C((tQ)) and Λ be as in Example 2.2.4, so t ≺ 1 ≺ x = t−1

and t′ = −t2. Then K is d-valued of H-type with small derivation, but in Ω with
the above valuation,

t e(x) ≺ 1,
(
t e(x)

)′ = −t2 e(x) + e(x) ∼ e(x) ≍ 1.

To obtain an example where K = H[i] for a Liouville closed H-field H and i2 = −1,
take K := T[i] and Λ := ΛTi as at the end of Section 2.5. Now x ∈ ΛT and in Ω
equipped with the above valuation we have for t := x−1:

t e(xi) ≺ 1,
(
t e(xi)

)′ = −t2 e(xi) + i e(xi) ∼ i e(xi) ≍ 1,

so
(
t e(xi)

)′ ̸≺ t†, hence Ω is neither asymptotic nor has small derivation.

However, we show next that under certain assumptions on K with small derivation,
Ω has also a valuation which does make Ω a valued differential field extension of K
with small derivation. For this we rely on results from [ADH, 10.4]. Although
such a valuation is less canonical than vg, it is useful for harnessing the finiteness
statements about the set E e(A) of eventual exceptional values of A ∈ K[∂]̸= from
Section 1.5 to obtain similar facts about the set of ultimate exceptional values of A
introduced later in this section.

Spectral extensions. In this subsection K is d-valued of H-type with Γ ̸= {0}
and with small derivation.

Lemma 2.6.1. The valuation of K extends to a valuation on the field Ω that
makes Ω a d-valued extension of K of H-type with small derivation.

Proof. Applying [ADH, 10.4.7] to an algebraic closure of K gives a d-valued alge-
braically closed extension L of K of H-type with small derivation and CL = C
such that L† ⊇ K. Let E := {y ∈ L× : y† ∈ K}, so E is a subgroup of L×,
E† = K, and K[E] is an exponential extension of K with CK[E] = C. Then Corol-
lary 2.2.10 gives an embedding U → L of differential K-algebras with image K[E],
which extends to an embedding Ω → L of differential fields. Using this embedding
to transfer the valuation of L to Ω gives a valuation as required. □
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A spectral extension of the valuation of K to Ω is a valuation on the field Ω
with the properties stated in Lemma 2.6.1. If K is ω-free, then so is Ω equipped
with any spectral extension of the valuation of K, by [ADH, 13.6] (and then Ω
has rational asymptotic integration by [ADH, 11.7]). We do not know whether this
goes through with “λ-free” instead of “ω-free”. Here is something weaker:

Lemma 2.6.2. Suppose K is algebraically closed and λ-free. Then some spectral
extension of the valuation of K to Ω makes Ω a d-valued field with divisible value
group and asymptotic integration.

Proof. Take L, E and an embedding Ω → L as in the proof of Lemma 2.6.1.
Use this embedding to identify Ω with a differential subfield of L, so U = K[E]
and Ω = K(E), and equip Ω with the spectral extension of the valuation of K
obtained by restricting the valuation of L to Ω. Since L is algebraically closed, E
is divisible, and ΓL = Γ + v(E) by [ADH, 10.4.7(iv)]. So ΓΩ = ΓL is divisible.
Let a ∈ K×, y ∈ E. Then K(y) has asymptotic integration by Proposition 1.4.12,

hence v(ay) ∈ (Γ̸=
K(y))

′ ⊆ (Γ̸=
Ω)

′. Thus Ω has asymptotic integration. □

In the rest of this subsection Ω is equipped with a spectral extension v (with value
group ΓΩ) of the valuation of K. The proof of Lemma 2.6.1 and [ADH, 10.4.7]
show that we can choose v so that ΨΩ ⊆ Γ; but under suitable hypotheses on K,
this is automatic:

Lemma 2.6.3. Suppose K has asymptotic integration and I(K) ⊆ K†. Then
ΨΩ ⊆ Γ, the group morphism

(2.6.1) λ 7→ v
(
e(λ)

)
: Λ → ΓΩ

is injective, and ΓΩ is divisible with ΓΩ = Γ ⊕ v
(
e(Λ)

)
(internal direct sum of

Q-linear subspaces of ΓΩ). Moreover, ΨΩ = Ψ↓ in Γ.

Proof. For a ∈ K× we have
(
a e(λ)

)† = a† + λ ∈ K, and if a e(λ) ≍ 1, then

a† + λ =
(
a e(λ)

)† ∈ (O×
Ω )

† ∩K ⊆ I(Ω) ∩K = I(K),

so λ ∈ Λ ∩
(
I(K) + K†) = Λ ∩ K† = {0} and a ≍ 1. Thus for a1, a2 ∈ K× and

distinct λ1, λ2 ∈ Λ we have a1 e(λ1) ̸≍ a2 e(λ2), and so for f ∈ U with spectral
decomposition (fλ) we have vf = minλ v

(
fλ e(λ)

)
. Hence

ΨΩ ⊆
{
v(a† + λ) : a ∈ K×, λ ∈ Λ

}
= v(K) = Γ∞,

the map (2.6.1) is injective and Γ∩v
(
e(Λ)

)
= {0}, and so ΓΩ = Γ⊕v

(
e(Λ)

)
(internal

direct sum of subgroups of ΓΩ). Since Γ and Λ are divisible, so is ΓΩ. Now ΨΩ = Ψ↓

follows from K = (U×)† ⊆ Ω† and K having asymptotic integration. □

We can now improve on Lemma 2.5.1:

Corollary 2.6.4. Suppose K has asymptotic integration and I(K) ⊆ K†, and
let A ∈ K[∂]̸=. Then the C-linear space kerUA has a basis B ⊆ U× such that v is

injective on B and v(B) = v(ker ̸=U A), and thus |v(ker ̸=U A)| = dimC kerUA.

Proof. By [ADH, 5.6.6] we have a basis Bλ of the C-linear space kerK Aλ such

that v is injective on Bλ and v(Bλ) = v(ker ̸=K Aλ). Then B :=
⋃
λ Bλ e(λ) is a basis

of kerUA. It has the desired properties by Lemma 2.6.3. □
131



Corollary 2.6.5. Suppose K is λ-free and I(K) ⊆ K†. Then Ω has asymptotic
integration, and so its H-asymptotic couple is closed by Lemma 2.6.3.

Proof. By Lemma 2.6.3, ΓΩ = Γ+v
(
e(Λ)

)
. Using Proposition 1.4.12 as in the proof

of Lemma 2.6.2, with e(Λ) in place of E, shows Ω has asymptotic integration. □

An application (∗). We use spectral extensions to prove an analogue of [ADH,
16.0.3]:

Theorem 2.6.6. If K is an ω-free newtonian d-valued field, then K has no proper
d-algebraic d-valued field extension L of H-type with CL = C and L† ∩K = K†.

We retain of course our assumption that C is algebraically closed andK† is divisible.
In the same way that [ADH, 16.0.3] follows from [ADH, 16.1.1], Theorem 2.6.6
follows from an analogue of [ADH, 16.1.1]:

Lemma 2.6.7. Let K be an ω-free newtonian d-valued field, L a d-valued field
extension of K of H-type with CL = C and L† ∩ K = K†, and let f ∈ L \ K.
Suppose there is no y ∈ K⟨f⟩ \K such that K⟨y⟩ is an immediate extension of K.
Then the Q-linear space QΓK⟨f⟩/Γ is infinite-dimensional.

The proof of Lemma 2.6.7 is much like that of [ADH, 16.1.1], except where the
latter uses that any b in a Liouville closed H-field equals a† for some nonzero a
in that field. This might not work with elements of K, and the remedy is to take
instead for every b ∈ K an element a in U× with b = a†. The relevant computation
should then take place in the differential fraction field ΩL of UL instead of in L
where ΩL is equipped with a spectral extension of the valuation of L. For all this
to make sense, we first take an active ϕ in K and replace K and L by Kϕ and Lϕ,
arranging in this way that the derivation of L (and ofK) is small. Next we replace L
by its algebraic closure, so that L† is divisible, while preserving L† ∩K = K† by
Lemma 1.2.1, and also preserving the other conditions on L in Lemma 2.6.7, as well
as the derivation of L being small. This allows us to identify U with a differential
subring of UL as in Lemma 2.2.12, and accordingly Ω with a differential subfield
of ΩL. We equip ΩL with a spectral extension of the valuation of L (possible by
Lemma 2.6.1), and make Ω a valued subfield of L. Then the valuation of Ω is a
spectral extension of the valuation of K to Ω, so we have the following inclusions
of d-valued fields:

L // ΩL

K

OO

// Ω

OO

With these preparations we can now give the proof of Lemma 2.6.7:

Proof. As we just indicated we arrange that L is algebraically closed with small
derivation, and with an inclusion diagram of d-valued fields involving Ω and ΩL, as
above. (This will not be used until we arrive at the Claim below.)

By [ADH, 14.0.2], K is asymptotically d-algebraically maximal. Using this and
the assumption about K⟨f⟩ it follows as in the proof of [ADH, 16.1.1] that there is
no divergent pc-sequence inK with a pseudolimit inK⟨f⟩. Thus every y inK⟨f⟩\K
has a a best approximation in K, that is, an element b ∈ K such that v(y − b) =
max v(y −K). For such b we have v(y − b) /∈ Γ, since CL = C.
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Now pick a best approximation b0 in K to f0 := f , and set f1 := (f0 − b0)
†.

Then f1 ∈ K⟨f⟩ \K, since L† ∩K = K† and C = CL. Thus f1 has a best approx-
imation b1 in K, and continuing this way, we obtain a sequence (fn) in K⟨f⟩ \K
and a sequence (bn) in K, such that bn is a best approximation in K to fn
and fn+1 = (fn − bn)

† for all n. Thus v(fn − bn) ∈ ΓK⟨f⟩ \ Γ for all n.

Claim: v(f0 − b0), v(f1 − b1), v(f2 − b2), . . . are Q-linearly independent over Γ.

To prove this claim, take an ∈ U× with a†n = bn for n ⩾ 1. Then in ΩL,

fn − bn = (fn−1 − bn−1)
† − a†n =

(
fn−1 − bn−1

an

)†

(n ⩾ 1).

With ψ := ψΩL
and αn = v(an) ∈ ΓΩ ⊆ ΓΩL

for n ⩾ 1, we get

v(fn − bn) = ψ
(
v(fn−1 − bn−1)− αn

)
, so by an easy induction on n,

v(fn − bn) = ψα1,...,αn

(
v(f0 − b0)

)
, (n ⩾ 1).

Suppose towards a contradiction that v(f0 − b0), . . . , v(fn − bn) are Q-linearly de-
pendent over Γ. Then we have m < n and q1, . . . , qn−m ∈ Q such that

v(fm − bm) + q1v(fm+1 − bm+1) + · · ·+ qn−mv(fn − bn) ∈ Γ.

For γ := v(fm − bm) ∈ ΓL \ Γ this gives

γ + q1ψαm+1
(γ) + · · ·+ qn−mψαm+1,...,αn

(γ) ∈ Γ.

By Lemma 1.2.9 we have I(K) ⊆ K†, so the H-asymptotic couple of Ω is closed
with ΨΩ ⊆ Γ, by Lemma 2.6.3 and Corollary 2.6.5. Hence γ ∈ ΓΩ by [ADH, 9.9.2].
Together with ΨΩ ⊆ Γ and αm+1, . . . , αn ∈ ΓΩ this gives

ψαm+1(γ), . . . , ψαm+1,...,αn(γ) ∈ Γ

and thus γ ∈ Γ, a contradiction. □

Ultimate exceptional values. In this subsection K is H-asymptotic with small
derivation and asymptotic integration. Also A ∈ K[∂]̸= and r := order(A), and γ

ranges over Γ = v(K×). We have v(ker ̸=Aλ) ⊆ E e(Aλ), so if λ is an eigenvalue
of A with respect to λ, then E e(Aλ) ̸= ∅. We call the elements of the set

E u(A) = E u
K(A) :=

⋃
λ

E e(Aλ) =
{
γ : nwtAλ

(γ) ⩾ 1 for some λ
}

the ultimate exceptional values of A with respect to Λ. The definition of E u
K(A)

involves our choice of Λ, but we are leaving this implicit to avoid complicated
notation. In Section 4.4 we shall restrict K and Λ so that E u(A) does not depend
any longer on the choice of Λ. There we shall use the following observation:

Lemma 2.6.8. Let a, b ∈ K be such that a − b ∈ (O×)†. Then for all γ we
have nwtAa(γ) = nwtAb

(γ); in particular, E e(Aa) = E e(Ab).

Proof. Use that if u ∈ O× and a− b = u†, then Aa = (Ab)⋉u. □

Corollary 2.6.9. Let Λ∗ be a complement of the Q-linear subspace K† of K and
let λ 7→ λ∗ : Λ → Λ∗ be the group isomorphism with λ−λ∗ ∈ K† for all λ. If λ−λ∗ ∈
(O×)† for all λ, then nwtAλ

(γ) = nwtAλ∗ (γ) for all γ, so E u(A) =
⋃
λ E e(Aλ∗).
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Remark 2.6.10. For a ∈ K× we have E u(aA) = E u(A) and E u(Aa) = E u(A)− va.
Note also that E e(A) = E e(A0) ⊆ E u(A). Let ϕ ∈ K× be active inK, and set λϕ :=
ϕ−1λ. Then Λϕ := ϕ−1Λ is a complement of the Q-linear subspace (Kϕ)† = ϕ−1K†

of Kϕ, and (Aϕ)λϕ = (Aλ)
ϕ. Hence E u

K(A) agrees with the set E u
Kϕ(A

ϕ) of ultimate

exceptional values of Aϕ with respect to Λϕ.

Remark 2.6.11. Suppose L is an H-asymptotic extension of K with asymptotic
integration and algebraically closed constant field CL such that L† is divisible,
and Ψ is cofinal in ΨL or K is λ-free. Then E e(Aλ) = E e

L(Aλ)∩Γ, by Lemma 1.5.1
and Corollary 1.8.10. Hence if ΛL ⊇ Λ is a complement of the subspace L† of the
Q-linear space L, and E u

L (A) is the set of ultimate exceptional values of A (viewed
as an element of L[∂]) with respect to ΛL, then E u(A) ⊆ E u

L (A). (Note that such a
complement ΛL exists iff L† ∩K = K†.)

In the rest of this subsection we equip U with the gaussian extension vg of the
valuation of K. Recall that we have a decomposition kerUA =

⊕
λ(kerAλ) e(λ) of

the C-linear space kerUA as an internal direct sum of subspaces, and hence

(2.6.2) vg(ker
̸=
U A) =

⋃
λ

v(ker ̸=Aλ) ⊆
⋃
λ

E e(Aλ) = E u(A).

Here are some consequences:

Lemma 2.6.12. Suppose K is r-linearly newtonian. Then vg(ker
̸=
U A) = E u(A).

Proof. By Proposition 1.5.2 we have v(ker ̸=Aλ) = E e(Aλ) for each λ. There-

fore vg(ker
̸=
U A) = E u(A) by (2.6.2). □

Lemma 2.6.13. Suppose K is d-valued. Then |vg(ker ̸=U A)| ⩽ dimC kerUA ⩽ r.

Proof. By [ADH, 5.6.6(i)] applied to Aλ in place of A we have

|v(ker ̸=Aλ)| = dimC kerAλ = multλ(A) for all λ

and thus by (2.6.2),

|vg(ker ̸=U A)| ⩽
∑
λ

|v(ker ̸=Aλ)| =
∑
λ

multλ(A) = dimC kerUA ⩽ r

as claimed. □

Lemma 2.6.14. Suppose I(K) ⊆ K† and r = 1. Then

vg(ker
̸=
U A) = E u(A), |E u(A)| = 1.

Proof. Arrange A = ∂ − g, g ∈ K, and take f ∈ K× and λ such that g =

f† + λ. Then u := f e(λ) ∈ U× satisfies A(u) = 0, hence ker ̸=U A = Cu and

thus vg(ker
̸=
U A) = {vf}. By Lemma 1.5.9 we have v(ker ̸=Aλ) = E e(Aλ) for all λ

and hence vg(ker
̸=
U A) = E u(A) by (2.6.2). □

Corollary 2.6.15. If I(K) ⊆ K† and a ∈ K×, then E e(∂−a†) = E u(∂−a†) = {va}.

Proposition 2.6.17 below partly extends Lemma 2.6.14.
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Spectral extensions and ultimate exceptional values. In this subsection K is
d-valued of H-type with small derivation, asymptotic integration, and I(K) ⊆ K†.
Also A ∈ K[∂]̸= has order r and γ ranges over Γ.

Suppose Ω is equipped with a spectral extension v of the valuation of K. Let
g ∈ K× with vg = γ. The Newton weight of Aλg ∈ K[∂] does not change in passing
from K to Ω, since Ψ is cofinal in ΨΩ by Lemma 2.6.3; see [ADH, 11.1]. Thus

nwtAλ
(γ) = nwt(Aλg) = nwt

(
Ag e(λ)

)
= nwtA

(
v(g e(λ)

)
= nwtA

(
γ+v(e(λ)

))
.

In particular, using ΓΩ = Γ⊕ v
(
e(Λ)

)
,

(2.6.3) E e
Ω(A) =

⋃
λ

E e(Aλ) + v
(
e(λ)

)
(a disjoint union).

Thus E u(A) = π
(
E e
Ω(A)

)
where π : ΓΩ → Γ is given by π

(
γ + v

(
e(λ)

))
= γ.

Lemma 2.6.16. We have dimC kerUA ⩽
∑
λ|E e(Aλ)|, and

dimC kerUA =
∑
λ

|E e(Aλ)| ⇐⇒ v(ker ̸=Aλ) = E e(Aλ) for all λ.

Moreover, if dimC kerUA =
∑
λ |E e(Aλ)|, then vg(ker ̸=U A) = E u(A).

Proof. Clearly, dimC kerUA ⩽ dimC kerΩA. Equip Ω with a spectral extension

of the valuation of K. Then dimC kerΩA = |v(ker ̸=Ω A)| and v(ker ̸=Ω A) ⊆ E e
Ω(A)

by [ADH, 5.6.6(i)] and [ADH, p. 481], respectively, applied to Ω in the role of K.
Also |E e

Ω(A)| =
∑
λ |E e(Aλ)| (a sum of cardinals) by the remarks preceding the

lemma. This yields the first claim of the lemma.
Next, note that v(ker ̸=Aλ) ⊆ E e(Aλ) for all λ. Hence from (2.6.3) and

v(ker ̸=U A) =
⋃
λ

v(ker ̸=Aλ) + v
(
e(λ)

)
(a disjoint union)

we obtain:

v(ker ̸=U A) = E e
Ω(A) ⇐⇒ v(ker ̸=Aλ) = E e(Aλ) for all λ.

Also |v(ker ̸=U A)| = dimC kerUA by [ADH, 2.3.13], and

v(ker ̸=U A) ⊆ v(ker ̸=Ω A) ⊆ E e
Ω(A), |E e

Ω(A)| =
∑
λ

|E e(Aλ)|.

This yields the displayed equivalence.

Suppose dimC kerUA =
∑
λ|E e(Aλ)|; we need to show vg(ker

̸=
U A) = E u(A).

We have π
(
E e
Ω(A)

)
= E u(A) for the above projection map π : ΓΩ → Γ, so it is

enough to show π
(
v(ker ̸=U A)

)
= vg(ker

̸=
U A). For that, note that for B ⊆ K× e(Λ)

in Corollary 2.6.4 we have

π
(
v(ker ̸=U A)

)
= π(vB) = vg(B) = vg(ker

̸=
U A),

using for the last equality the details in the proof of Corollary 2.6.4. □

Proposition 2.6.17. Suppose K is ω-free. Then nwtAλ
(γ) = 0 for all but finitely

many pairs (γ, λ) and

|E u(A)| ⩽
∑
λ

|E e(Aλ)| =
∑
γ,λ

nwtAλ
(γ) ⩽ r.

If dimC kerUA = r, then
∑
λ |E e(Aλ)| = r and vg(ker

̸=
U A) = E u(A).
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Proof. Equip Ω with a spectral extension v of the valuation of K. Then Ω is ω-
free, so

∑
λ |E e(Aλ)| = |E e

Ω(A)| ⩽ r by the remarks preceding Lemma 2.6.16 and
Corollary 1.5.5 applied to Ω in place of K. These remarks also give nwtAλ

(γ) = 0
for all but finitely many pairs (γ, λ), and so∑

γ,λ

nwtAλ
(γ) =

∑
γ,λ

nwtA
(
γ + v(e(λ)

)
= |E e

Ω(A)| ⩽ r.

Corollary 1.5.5 applied to Aλ in place of A yields |E e(Aλ)| =
∑
γ nwtAλ

(γ) and

so
∑
λ |E e(Aλ)| =

∑
γ,λ nwtAλ

(γ). This proves the first part (including the display).
The rest follows from this and Lemma 2.6.16. □

In the next lemma (to be used in the proof of Proposition 3.1.26), as well as in
Corollary 2.6.23, L is a d-valued H-asymptotic extension of K with algebraically
closed constant field and asymptotic integration (so L has small derivation), such
that L† is divisible, L† ∩ K = K†, and I(L) ⊆ L† . We also fix there a comple-
ment ΛL of the Q-linear subspace L† of L with Λ ⊆ ΛL. Let UL = L

[
e(ΛL)

]
be

the corresponding universal exponential extension of L containing U = K
[
e(Λ)

]
as

a differential subring, as described in the remarks following Corollary 2.2.13, with
differential fraction field ΩL.

Lemma 2.6.18. Assume CL = C. Let ΩL be equipped with a spectral extension
of the valuation of L, and take Ω as a valued subfield of ΩL; so the valuation of Ω
is a spectral extension of the valuation of K. Suppose Ψ is cofinal in ΨL or K is
λ-free. Then E e

ΩL
(A) ∩ ΓΩ = E e

Ω(A).

Proof. Let µ range over ΛL. We have

ΓΩL
= ΓL ⊕ v

(
e(ΛL)

)
, ΓΩ = Γ⊕ v

(
e(Λ)

)
by Lemma 2.6.3 and

E e
ΩL

=
⋃
µ

E e
L(Aµ) + v

(
e(µ)

)
, E e

Ω =
⋃
λ

E e(Aλ) + v
(
e(λ)

)
by (2.6.3). Hence

E e
ΩL

(A) ∩ ΓΩ =
⋃
λ

(
E e
L(Aλ) ∩ Γ

)
+ v
(
e(λ)

)
=
⋃
λ

E e(Aλ) + v
(
e(λ)

)
= E e

Ω(A),

where we used the injectivity of µ 7→ v
(
e(µ)

)
for the first equality and Remark 2.6.11

for the second. □

Call A terminal with respect to Λ if
∑
λ|E e(Aλ)| = r. We omit “with respect

to Λ” if it is clear from the context what Λ is. In Section 4.4 we shall restrict K, Λ
anyway so that this dependence on Λ disappears. Recall also that for a given
spectral extension of the valuation of K to Ω we have |EΩ(A)| =

∑
λ|E e(Aλ)|. If A

is terminal and ϕ ∈ K× is active in K, then Aϕ ∈ Kϕ[δ] is terminal with respect
to Λϕ (cf. remarks after Corollary 2.6.9). If A is terminal and a ∈ K×, then aA is
terminal. If r = 0, then A is terminal.

Lemma 2.6.19. If r = 1, then A is terminal.

Proof. Assume r = 1. Then dimC kerUA = 1, so
∑
λ|E e(Aλ)| ⩾ 1 by Lemma 2.6.16.

Equip Ω with a spectral extension of the valuation of K. Then Ω is ungrounded by
Lemma 2.6.3, and r = 1 gives |EΩ(A)| ⩽ 1. Now use |EΩ(A)| =

∑
λ|E e(Aλ)|. □
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Lemma 2.6.20. Suppose A and B ∈ K[∂]̸= are terminal, and each operator Bλ is
asymptotically surjective. Then AB is terminal.

Proof. Use that (AB)λ = AλBλ, and that |E e(AλBλ)| = |E e(Aλ)| + |E e(Bλ)| by
Corollary 1.5.19. □

Thus if A is terminal and a ∈ K×, then aA,Aa, and A⋉a are terminal. From
Lemmas 2.6.19, 2.6.20, and Corollary 1.5.25 we conclude:

Corollary 2.6.21. If K is λ-free and A splits over K, then A is terminal.

Corollary 2.6.22. Suppose K is ω-free and B ∈ K[∂] ̸=. Then A and B are
terminal iff AB is terminal.

Proof. The “only if” part follows from Lemma 2.6.20 and Corollary 1.5.26. For the
“if” part, use Corollary 1.5.19 and Proposition 2.6.17. □

Corollary 2.6.23. Suppose A is terminal, Ψ is cofinal in ΨL or K is λ-free, and L
is ω-free. Then, with respect to the complement ΛL of L† in L, we have:

(i) as an element of L[∂], A is terminal;
(ii) E e(Aµ) = ∅ for all µ ∈ ΛL \ Λ;
(iii) E e(Aλ) = E e

L(Aλ) for all λ; and
(iv) E u(A) = E u

L (A).

Proof. By the remarks after Corollary 2.6.9 we have E e(Aλ) ⊆ E e
L(Aλ) for each λ,

and so with µ ranging over ΛL, by Proposition 2.6.17 applied to L in place of K,
we have r =

∑
λ|E e(Aλ)| ⩽

∑
µ|E e

L(Aµ)| ⩽ r. This yields (i)–(iv). □

In [15] we shall study other situations where A is terminal.

The real case. In this subsection H is a real closed H-field with small derivation,
asymptotic integration, and H† = H; also K = H[i], i2 = −1, for our valued
differential field K. We also assume I(H)i ⊆ K†. Then K is d-valued of H-type
with small derivation, asymptotic integration, K† = H + I(H)i, and I(K) ⊆ K†.
Note that H and thus K is λ-free by [ADH, remark after 11.6.2, and 11.6.8]. Let A
in K[∂] ̸= have order r and let γ range over Γ.

Lemma 2.6.24. If the real closed H-asymptotic extension F of H has asymptotic
integration and convex valuation ring, then L†∩K = K† for the algebraically closed
H-asymptotic field extension L := F [i] of K.

Proof. Use Corollary 1.2.18 and earlier remarks in the same subsection. □

Corollary 2.6.25. The H-field H has an H-closed extension F with CF = CH ,
and for any such F , the algebraically closed d-valued field extension L := F [i] of
H-type of K is ω-free with CL = C, I(L) ⊆ L†, and L† ∩K = K†.

Proof. Use [ADH, 16.4.1, 9.1.2] to extend H to an ω-free H-field with the same
constant field as H, next use [ADH, 11.7.23] to pass to its real closure, and then
use [ADH, 14.5.9] to extend further to an H-closed F , still with the same con-
stant field as H. For any such F , the d-valued field L := F [i] of H-type is
ω-free by [ADH, 11.7.23] and newtonian by [ADH, 14.5.7]. Hence I(L) ⊆ L† by
Lemma 1.2.9, and L† ∩K = K† by Lemma 2.6.24. □

This leads to a variant of Proposition 2.6.17:
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Proposition 2.6.26. The conclusion of Proposition 2.6.17 holds. In particular:

dimC kerUA = r =⇒ A is terminal.

Proof. Corollary 2.6.25 gives an H-closed extension F of H with CF = CH , so L :=
F [i] is ω-free, CL = C, I(L) ⊆ L†, and L† ∩K = K†. Take a complement ΛL ⊇ Λ
of the subspace L† of the Q-linear space L. By Remark 2.6.11 we have E e(Aλ) =
E e
L(Aλ) ∩ Γ. Hence Proposition 2.6.17 applied to K, Λ replaced by L, ΛL, respec-

tively, and A viewed as element of L[∂], yields
∑
λ |E e(Aλ)| ⩽ r. Corollary 1.8.10

applied to Aλ in place of A gives |E e(Aλ)| =
∑
γ nwtAλ

(γ). This yields the conclu-
sion of Proposition 2.6.17 as in the proof of that proposition. □

Let now F be a Liouville closed H-field extension of H and suppose I(L) ⊆ L†

where L := F [i]. Lemma 2.6.24 yields L† ∩ K = K†, so L is as described just
before Lemma 2.6.18, and we have a complement ΛL ⊇ Λ of the subspace L†

of the Q-linear space L. Note that if A splits over K, then A is terminal by
Corollary 2.6.21.

Corollary 2.6.27. Suppose A is terminal. Then, with respect to the comple-
ment ΛL of L† in L, the conclusions (i)–(iv) of Corollary 2.6.23 hold.

Proof. By the remarks after Corollary 2.6.9 we have E e(Aλ) ⊆ E e
L(Aλ) for all λ,

and so with µ ranging over ΛL, Proposition 2.6.26 applied to L in place of K, we
have r =

∑
λ|E e(Aλ)| ⩽

∑
µ|E e

L(Aµ)| ⩽ r. This yields (i)–(iv). □
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Part 3. Normalizing Holes and Slots

In this introduction K is an H-asymptotic field with small derivation and rational
asymptotic integration. In Section 3.2 we introduce holes in K: A hole in K is a

triple (P,m, â) with P ∈ K{Y } \K, m ∈ K×, and â ∈ K̂ \K for some immediate

asymptotic extension K̂ of K, such that â ≺ m and P (â) = 0. The main goal
of Part 3 is a Normalization Theorem, namely Theorem 3.3.33, that allows us to
transform under reasonable conditions a hole (P,m, â) in K into a “normal” hole;
this helps to pin down the location of â relative to K. The notion of (P,m, â) being
normal involves the linear part of the differential polynomial P×m, in particular the
span of this linear part. We introduce the span in the preliminary Section 3.1. In
Section 3.4 we study isolated holes (P,m, â) inK, which under reasonable conditions
ensure the uniqueness of the isomorphism type of K⟨â⟩ as a valued differential field
over K; see Proposition 3.4.9. In Section 3.5 we focus on holes (P,m, â) in K
where orderP = degP = 1. For technical reasons we actually work in Part 3 also
with slots in K, which are a bit more general than holes in K.

First some notational conventions. Let Γ be an ordered abelian group. For γ, δ ∈ Γ
with γ ̸= 0 the expression “δ = o(γ)” means “n|δ| < |γ| for all n ⩾ 1” according
to [ADH, 2.4], but here we find it convenient to extend this to γ = 0, in which
case “δ = o(γ)” means “δ = 0”. Suppose Γ = v(E×) is the value group of a valued
field E and m ∈ E×. Then we denote the archimedean class [vm] ⊆ Γ of vm ∈ Γ
by just [m]. Suppose m ̸≍ 1. Then we have a proper convex subgroup

∆(m) :=
{
γ ∈ Γ : γ = o(vm)

}
=
{
γ ∈ Γ : [γ] < [m]

}
,

of Γ. If m ≍∆(m) n ∈ E, then 0 ̸= n ̸≍ 1 and ∆(m) = ∆(n). In particular,
if m ≍ n ∈ E, then 0 ̸= n ̸≍ 1 and ∆(m) = ∆(n). Note that for f, g ∈ E
the meaning of “f ≼∆(m) g” does not change in passing to a valued field extension
of E, although ∆(m) can increase as a subgroup of the value group of the extension.

3.1. The Span of a Linear Differential Operator

In this section K is a valued differential field with small derivation and Γ := v(K×).
We let a, b, sometimes subscripted, range over K, and m, n over K×. Consider a
linear differential operator

A = a0 + a1∂ + · · ·+ ar∂
r ∈ K[∂], ar ̸= 0.

We shall use below the quantities dwm(A) and dwt(A) defined in [ADH, 5.6]. We
also introduce a measure v(A) for the “lopsidedness” of A as follows:

v(A) := ar/am ∈ K× where m := dwt(A).

So ar ≍ v(A)A and v(A) ≼ 1, with

v(A) ≍ 1 ⇐⇒ dwt(A) = r ⇐⇒ v(A) = 1.

Also note that v(aA) = v(A) for a ̸= 0. Moreover,

v(A⋉n)A⋉n ≍ ar ≍ v(A)A

since A⋉n = ar∂
r + lower order terms in ∂.

Example. v(a+ ∂) = 1 if a ≼ 1, and v(a+ ∂) = 1/a if a ≻ 1.
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We call v(A) the span of A. We are mainly interested in the valuation of v(A). This
is related to the gaussian valuation v(A) of A: if A is monic, then v

(
v(A)

)
= −v(A).

An important property of the span of A is that its valuation is not affected by small
additive perturbations of A:

Lemma 3.1.1. Suppose B ∈ K[∂], order(B) ⩽ r and B ≺ v(A)A. Then:

(i) A+B ∼ A, dwm(A+B) = dwm(A), and dwt(A+B) = dwt(A);
(ii) order(A+B) = r and v(A+B) ∼ v(A).

Proof. From B ≺ v(A)A and v(A) ≼ 1 we obtain B ≺ A, and thus (i). Set m :=
dwt(A), let i range over {0, . . . , r}, and let B = b0+ b1∂+ · · ·+ br∂

r. Then ai ≼ am
and bi ≺ v(A)A ≍ ar ≼ am. Therefore, if ai ≍ am, then ai+bi ∼ ai, and if ai ≺ am,
then ai + bi ≺ am. Hence v(A+B) = (ar + br)/(am + bm) ∼ ar/am = v(A). □

For b ̸= 0, the valuation of v(Ab) only depends on vb; it is enough to check this
for b ≍ 1. More generally:

Lemma 3.1.2. Let B ∈ K[∂]̸= and b ≍ B. Then v(AB) ≍ v(Ab)v(B).

Proof. Let B = b0 + b1∂ + · · ·+ bs∂
s, bs ̸= 0. Then

AB = arbs∂
r+s + lower order terms in ∂,

so by [ADH, 5.6.1(ii)] for γ = 0:

v
(
v(AB)

)
= v(arbs)− v(AB) = v(arbs)− v(Ab)

= v(arb)− v(Ab) + v(bs)− v(B)

= v
(
v(Ab)v(B)

)
. □

Corollary 3.1.3. Let B ∈ K[∂]̸=. If v(AB) = 1, then v(A) = v(B) = 1. The
converse holds if B is monic.

This is clear from from Lemma 3.1.2, and in turn gives:

Corollary 3.1.4. Suppose A = a(∂ − b1) · · · (∂ − br). Then

v(A) = 1 ⇐⇒ b1, . . . , br ≼ 1.

Remark. Suppose K = C((t)) with the t-adic valuation and derivation ∂ = t ddt .
In the literature, A is called regular singular if v(A) = 1, and irregular singular
if v(A) ≺ 1; see [158, Definition 3.14].

Lemma 3.1.5. Let B ∈ K[∂]̸=. Then v(AB) ≼ v(B), and if B is monic, then
v(AB) ≼ v(A).

Proof. Lemma 3.1.2 and v(Ab) ≼ 1 for b ̸= 0 yields v(AB) ≼ v(B). Suppose B
is monic, so v(B) ⩽ 0. To show v(AB) ≼ v(A) we arrange that A is also monic.
Then AB is monic, and v(AB) ≼ v(A) is equivalent to v(AB) ⩽ v(A). Now

v(AB) = vAB(0) = vA
(
vB(0)

)
= vA

(
v(B)

)
⩽ vA(0) = v(A)

by [ADH, 4.5.1(iii), 5.6.1(ii)]. □

Corollary 3.1.6. If A = a(∂ − b1) · · · (∂ − br), then b1, . . . , br ≼ v(A)−1.
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Let ∆ be a convex subgroup of Γ, let Ȯ be the valuation ring of the coarsening v∆
of the valuation v of K by ∆, with maximal ideal Ȯ, and K̇ = Ȯ/Ȯ be the valued

differential residue field of v∆. The residue morphism Ȯ → K̇ extends to the ring
morphism Ȯ[∂] → K̇[∂] with ∂ 7→ ∂. If A ∈ Ȯ[∂] and Ȧ ̸= 0, then dwm(Ȧ) =

dwm(A) and dwt(Ȧ) = dwt(A). We set v := v(A).

Lemma 3.1.7. If A ∈ Ȯ[∂] and order(Ȧ) = r, then v(Ȧ) = v̇.

Behavior of the span under twisting. Recall that o(γ) := 0 ∈ Γ for γ = 0 ∈ Γ.
With this convention, here is a consequence of [ADH, 6.1.3]:

Lemma 3.1.8. Let B ∈ K[∂] ̸=. Then v(AB) = v(A) + v(B) + o
(
v(B)

)
.

Proof. Take b with b ≍ B. Then

v(AB) = vAB(0) = vA
(
vB(0)

)
= vA(vb) = v(Ab)

by [ADH, 5.6.1(ii)]. Moreover, v(Ab) = v(A) + vb+ o(vb), by [ADH, 6.1.3]. □

We have v(A⋉n) = v(An), so v(A⋉n) = v(A) + o(vn) by Lemma 3.1.8. Moreover:

Lemma 3.1.9. v
(
v(An)

)
= v
(
v(A)

)
+ o(vn).

Proof. Replacing A by a−1
r A we arrange A is monic, so A⋉n is monic, and thus

v
(
v(An)

)
= v

(
v(A⋉n)

)
= −v(A⋉n) = −v(A) + o(vn) = v

(
v(A)

)
+ o(vn)

by remarks preceding the lemma. □

Recall: we denote the archimedean class [vn] ⊆ Γ by [n]. Lemma 3.1.9 yields:

Corollary 3.1.10.
[
v(A)

]
< [n] ⇐⇒

[
v(An)

]
< [n].

Under suitable conditions on K we can say more about the valuation of v(A⋉n):
Lemma 3.1.12 below.

Lemma 3.1.11. Let n† ≽ 1 and m0, . . . ,mr ∈ K× be such that

v(mi) + v(A) = min
i⩽j⩽r

v(aj) + (j − i)v(n†).

Then with m := dwt(A) we have

m0 ≽ · · · ≽ mr and (n†)m ≼ m0 ≼ (n†)r.

(In particular, [m0] ⩽ [n†], with equality if m > 0.)

Proof. From v(n†) ⩽ 0 we obtain v(m0) ⩽ · · · ⩽ v(mr). We have 0 ⩽ v(aj/am)
for j = 0, . . . , r and so

rv(n†) ⩽ min
0⩽j⩽r

v(aj/am) + jv(n†) = v(m0) ⩽ mv(n†)

as required. □

Lemma 3.1.12. Suppose ∂O ⊆ O. Then

n† ≼ 1 =⇒ v(A⋉n) = v(A), n† ≻ 1 =⇒ |v(A⋉n)− v(A)| ⩽ −rv(n†).
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Proof. Let R := RiA. Then v(A⋉n) = v(R+n†) by [ADH, 5.8.11]. If n† ≼ 1,
then v(R+n†) = v(R) by [ADH, 4.5.1(i)], hence v(A⋉n) = v(R) = v(A) by [ADH,
5.8.10]. Now suppose n† ≻ 1. Claim: v(A⋉n) − v(A) ⩾ rv(n†). To prove this
claim we replace A by a−1A, where a ≍ A, to arrange A ≍ 1. Let i, j range
over {0, . . . , r}. We have R+n† =

∑
i biRi where

bi =
∑
j⩾i

(
j

i

)
ajRj−i(n

†).

Take mi ∈ K× as in Lemma 3.1.11. By Lemma 1.1.20 we have Rn(n
†) ∼ (n†)n for

all n; hence v(bi) ⩾ v(mi) for all i. Thus

v(A⋉n)− v(A) = v(A⋉n) = v(R+n†) ⩾ min
i
v(bi) ⩾ v(m0) ⩾ rv(n†)

by Lemma 3.1.11, proving our claim. Applying this claim with A⋉n, n
−1 in place

of A, n also yields v(A⋉n)− v(A) ⩽ −rv(n†), thus |v(A⋉n)− v(A)| ⩽ −rv(n†). □

Remark. Suppose that ∂O ⊆ O and n† ≻ 1. Then Lemma 3.1.12 improves on
Lemma 3.1.9, since v(n†) = o(vn) by [ADH, 6.4.1(iii)].

Lemma 3.1.13. Suppose ∂O ⊆ O and n† ≼ v(A)−1. Let B ∈ K[∂] and s ∈ N be
such that order(B) ⩽ s and B ≺ v(A)s+1A. Then B⋉n ≺ v(A⋉n)A⋉n.

Proof. We may assume B ̸= 0 and s = order(B). It suffices to show B⋉n ≺ v(A)A.
If n† ≼ 1, then Lemma 3.1.12 applied to B in place of A yields B⋉n ≍ B ≺ v(A)A.
Suppose n† ≻ 1. Then Lemma 3.1.12 gives |v(B⋉n)− v(B)| ⩽ −sv(n†) ⩽ sv(v(A))
and hence B⋉n ≼ v(A)−sB ≺ v(A)A. □

If ∂O ⊆ O, then we have functions dwmA,dwtA : Γ → N as defined in [ADH, 5.6].
Combining Lemmas 3.1.1 and 3.1.13 yields a variant of [ADH, 6.1.7]:

Corollary 3.1.14. Suppose ∂O ⊆ O and n† ≼ v(A)−1. Let B ∈ K[∂] be such
that order(B) ⩽ r and B ≺ v(A)r+1A. Then dwmA+B(vn) = dwmA(vn) and
dwtA+B(vn) = dwtA(vn). In particular,

vn ∈ E (A+B) ⇐⇒ vn ∈ E (A).

About A(nq) and Anq. Suppose ml = ±nk where k, l ∈ Z, l ̸= 0. Then m† = qn†

with q = k/l ∈ Q. In particular, if K is real closed or algebraically closed, then for
any n and q ∈ Q we have m† = qn† for some m.

Below in this subsection K is d-valued and n is such that for all q ∈ Q> we are
given an element of K×, denoted by nq for suggestiveness, with (nq)† = qn†.

Let q ∈ Q>; then v(nq) = qv(n): to see this we may arrange that K is algebraically
closed by [ADH, 10.1.23], and hence contains an m such that vm = q vn and m† =
qn† = (nq)†, and thus v(nq) = vm = q vn.

Lemma 3.1.15. Suppose n† ≽ 1. Then for all but finitely many q ∈ Q>,
v
(
A(nq)

)
= v(nq) + min

j
v(aj) + jv(n†).

Proof. Let q ∈ Q> and take b0, . . . , br ∈ K with Anq = b0 + b1∂ + · · ·+ br∂
r. Then

b0 = A(nq) = nq
(
a0R0(qn

†) + a1R1(qn
†) + · · ·+ arRr(qn

†)
)
.

Let i, j range over {0, . . . , r}. By Lemma 1.1.20, Ri(qn
†) ∼ qi(n†)i for all i. Take m

(independent of q) such that v(m) = minj v(aj)+jv(n
†), and let I be the nonempty
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set of i with m ≍ ai(n
†)i. For i ∈ I we take ci ∈ C× such that ai(n

†)i ∼ cim, and
set R :=

∑
i∈I ciY

i ∈ C[Y ] ̸=. Therefore, if R(q) ̸= 0, then∑
i∈I

aiRi(qn
†) ∼ mR(q).

Assume R(q) ̸= 0 in what follows. Then

r∑
i=0

aiRi(qn
†) ∼

∑
i∈I

aiRi(qn
†) ∼ mR(q) ≍ m,

hence b0 ≍ mnq, in particular, b0 ̸= 0. □

Lemma 3.1.16. Assume n† ≽ 1 and [v] < [n] for v := v(A). Then
[
v(Anq)

]
< [n]

for all q ∈ Q>, and for all but finitely many q ∈ Q> we have v(Anq) ≼ v, and
thus [v] ⩽

[
v(Anq)

]
.

Proof. Let q ∈ Q>. Then [v] < [n] = [nq], so [v(Anq)] < [nq] = [n] by Corol-
lary 3.1.10. To show the second part, let m = dwt(A). Replacing A by a−1

m A we
arrange am = 1, so ar = v, A ≍ 1. Take b0, . . . , br with An

q = b0 + b1∂+ · · ·+ br∂
r.

As in the proof of Lemma 3.1.15 we obtain an m and a polynomial R(Y ) ∈ C[Y ]̸=

(both independent of q) such that v(m) = minj v(aj) + jv(n†), and b0 ≍ mnq

if R(q) ̸= 0. Assume R(q) ̸= 0 in what follows; we show that then v(Anq) ≼ v.
For n := dwt(Anq),

b0v(An
q) ≼ bnv(An

q) = br = nqv,

hence v(Anq) ≼ v/m. It remains to note that m ≽ am(n†)m = (n†)m ≽ 1. □

Lemma 3.1.17. Assume n† ≽ 1 and m satisfies

vm+ v(A) = min
0⩽j⩽r

v(aj) + jv(n†).

Then [m] ⩽ [n†], with equality if dwt(A) > 0, and for all but finitely many q ∈ Q>,

Anq ≍ mnq A, v(A)/v(Anq) ≍ m.

Proof. Replacing A by a−1
m A where m = dwt(A) we arrange am = 1, so ar = v :=

v(A) and A ≍ 1. Let i, j range over {0, . . . , r}. Let q ∈ Q>, and take bi ∈ K such
that Anq =

∑
i bi∂

i. By [ADH, (5.1.3)] we have

bi =
1

i!
A(i)(nq) = nq

1

i!
Ri(A(i))(qn†) = nq

∑
j⩾i

(
j

i

)
ajRj−i(qn

†).

Take mi ∈ K× as in Lemma 3.1.11. Then m0 ≍ m (so [m] ⩽ [n†], with equality
if m > 0), and mr ≍ v. Lemma 3.1.15 applied to A(i)/i! instead of A gives that for
all but finitely q ∈ Q> we have bi ≍ min

q for all i. Assume that q ∈ Q> has this
property. From v(m) = v(m0) ⩽ · · · ⩽ v(mr) = v(v) we obtain

v(m) + qv(n) = v(b0) ⩽ · · · ⩽ v(br) = v(v) + q v(n).

With n = dwt(Anq) this gives v(b0) = · · · = v(bn) = v(Anq). Thus

v(Anq) = br/bn ≍ br/b0 ≍ (nqv)/(nqm) = v/m

as claimed. □
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Let v ∈ K× with v ̸≍ 1; so we have the proper convex subgroup of Γ given by

∆(v) =
{
γ ∈ Γ : γ = o(vv)

}
=
{
γ ∈ Γ : [γ] < [v]

}
.

If K is asymptotic of H-type, then we also have the convex subgroup

∆ =
{
γ ∈ Γ : γ† > v(v†)

}
of Γ with ∆ ⊆ ∆(v), and ∆ = ∆(v) if K is of Hardy type (cf. Section 1.2).

Corollary 3.1.18. Suppose n† ≽ 1 and [n†] < [v] where v := v(A) (so 0 ̸= v ≺ 1).
Let A∗ ∈ K[∂] and w ⩾ r be such that A∗ ≺∆(v) vwA. Then for all but finitely
many q ∈ Q> we have w := v(Anq) ≍∆(v) v and A∗n

q ≺∆(w) w
wAnq.

Proof. The case A∗ = 0 is trivial, so assume A∗ ̸= 0. Take m as in Lemma 3.1.17,
and take m∗ likewise with A∗ in place of A. By this lemma, [m], [m∗] ⩽ [n†] < [v],
hence m,m∗ ≍∆(v) 1. Moreover, for all but finitely many q ∈ Q> we have Anq ≍
mnqA, A∗n

q ≍ m∗n
qA∗, and v/w ≍ m where w := v(Anq); assume that q ∈ Q> has

these properties. Then A∗ ≺∆(v) v
wA yields

A∗n
q ≍ m∗n

qA∗ ≺∆(v) mnqvwA ≍ vwAnq.

Now m ≍∆(v) 1 gives v ≍∆(v) w, hence A∗n
q ≺∆(w) w

wAnq. □

The behavior of the span under compositional conjugation. If K is H-
asymptotic with asymptotic integration, then Ψ ∩ Γ> ̸= ∅, but it is convenient
not to require “asymptotic integration” in some lemmas below. Instead: In this
subsection K is H-asymptotic and ungrounded with Ψ∩ Γ> ̸= ∅. We let ϕ, v range
overK×. We say that ϕ is active if ϕ is active inK. Recall from [ADH, pp. 290–292]
that δ denotes the derivation ϕ−1

∂ of Kϕ, and that

(3.1.1) Aϕ = arϕ
r
δ
r + lower order terms in δ.

Lemma 3.1.19. Suppose v := v(A) ≺♭ 1 and ϕ ≼ 1 is active. Then

A ≍∆(v) Aϕ, v ≍∆(v) v(Aϕ) ≺♭ 1, v, v(Aϕ) ≺♭ϕ 1.

Proof. From ϕ† ≺ 1 ≼ v† we get [ϕ] < [v], so ϕ ≍∆(v) 1. Hence Aϕ ≍∆(v) A

by [ADH, 11.1.4]. For the rest we can arrange A ≍ 1, so Aϕ ≍∆(v) 1 and v ≍ ar.

In view of (3.1.1) this yields v(Aϕ) ≍∆(v) arϕ
r ≍∆(v) v. So v(Aϕ)† ≍ v† ≽ 1, which

gives v(Aϕ) ≺♭ 1, and also v, v(Aϕ) ≺♭ϕ 1. □

Lemma 3.1.20. If nwt(A) = r, then v(Aϕ) = 1 eventually, and if nwt(A) < r,
then v(Aϕ) ≺♭ϕ 1 eventually.

Proof. Clearly, if nwt(A) = r, then dwt(Aϕ) = r and so v(Aϕ) = 1 eventually.
Suppose nwt(A) < r. To show that v(Aϕ) ≺♭ϕ 1 eventually, we may replace A

by Aϕ0 for suitable active ϕ0 and assume that n := nwt(A) = dwt(Aϕ) = dwm(Aϕ)
for all active ϕ ≼ 1. Thus v(Aϕ) = v(A) + nvϕ for all active ϕ ≼ 1 by [ADH,
11.1.11(i)]. Using (3.1.1) we therefore obtain for active ϕ ≼ 1:

v(Aϕ) ≍ arϕ
r/anϕ

n = v(A)ϕr−n ≼ ϕr−n ≼ ϕ.

Take x ∈ K× with x ̸≍ 1 and x′ ≍ 1; then x ≻ 1, so x−1 ≍ x† ≺ 1 is active. Hence
for active ϕ ≼ x−1 we have ϕ ≺♭ϕ 1 and thus v(Aϕ) ≺♭ϕ 1. □

Corollary 3.1.21. The following conditions on K are equivalent:

(i) K is λ-free;
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(ii) nwt(B) ⩽ 1 for all B ∈ K[∂] (so v(Bϕ) ≺♭ϕ 1 eventually);

(iii) nwt(B) ⩽ 1 for all B ∈ K[∂] of order 2.

Proof. The implication (i) ⇒ (ii) follows from [ADH, 13.7.10] and Lemma 3.1.20,
and (ii) ⇒ (iii) is clear. Suppose K is not λ-free. Take λ ∈ K such that ϕ† + λ ≺ ϕ
for all active ϕ ([ADH, 11.6.1]); set B := (∂ + λ)∂ = ∂

2 + λ∂. Then for active ϕ we
have Bϕ = ϕ2

(
δ
2 + (ϕ† + λ)ϕ−1

δ
)
, so dwt(Bϕ) = 2. Thus (iii) ⇒ (i). □

Lemma 3.1.19 leads to an “eventual” version of Corollary 3.1.14:

Lemma 3.1.22. Suppose K is λ-free and B ∈ K[∂] is such that order(B) ⩽ r
and B ≺∆(v) v

r+1A, where v := v(A) ≺♭ 1. Then E e(A+B) = E e(A).

Proof. By [ADH, 10.1.3, 11.7.18] and Corollary 1.8.10 we can pass to an extension
to arrange that K is ω-free. Next, by [ADH, 11.7.23, remark following 14.0.1] we
extend further to arrange that K is algebraically closed and newtonian, and thus d-
valued by Lemma 1.2.9. Then E e(A) = v(ker ̸=A) by Proposition 1.5.2, and A splits
over K by [ADH, 14.5.3, 5.8.9]. It remains to show that E e(A) ⊆ E e(A+ B): the
reverse inclusion then follows by interchanging A and A+B, using v(A) ∼ v(A+B).

Let γ ∈ E e(A). Take n ∈ ker ̸=A with vn = γ. Then A ∈ K[∂](∂ − n†) by [ADH,
5.1.21] and so n† ≼ v−1, by [ADH, 5.1.22] and Corollary 3.1.6. Now E e(A) ⊆ E (A),
so γ = vn ∈ E (A+B) by Corollary 3.1.14. Let ϕ ≼ 1 be active; it remains to show
that then γ ∈ E

(
(A+B)ϕ

)
. By Lemma 3.1.19, Aϕ ≍∆(v) A; also B

ϕ ≼ B by [ADH,

11.1.4]. Lemma 3.1.19 gives v ≍∆(v) v(Aϕ), hence Bϕ ≺∆(v) v(Aϕ)r+1Aϕ. Thus

withKϕ, Aϕ, Bϕ in the role ofK, A, B, the above argument leading to γ ∈ E (A+B)
gives γ ∈ E (Aϕ +Bϕ) = E

(
(A+B)ϕ

)
. □

For r = 1 we can weaken the hypothesis of λ-freeness:

Corollary 3.1.23. Suppose K has asymptotic integration, r = 1, and B ∈ K[∂] of
order ⩽ 1 satisfies B ≺∆(v) v

2A, where v := v(A) ≺♭ 1. Then E e(A+B) = E e(A).

Proof. Using Lemma 1.2.10 we replace K by an immediate extension to arrange
I(K) ⊆ K†. Then E e(A) = v(ker ̸=A) by Lemma 1.5.9. Now argue as in the proof
of Lemma 3.1.22. □

In the next proposition and its corollary K is d-valued with algebraically closed
constant field C and divisible group K† of logarithmic derivatives. We choose a
complement Λ of the Q-linear subspace K† of K. Then we have the set E u(A) of
ultimate exceptional values of A with respect to Λ. The following stability result
will be crucial in Section 4.4:

Proposition 3.1.24. Suppose K is ω-free, I(K) ⊆ K†, and B ∈ K[∂] of order ⩽ r
satisfies B ≺∆(v) v

r+1A, where v := v(A) ≺♭ 1. Then E u(A+B) = E u(A).

Proof. Let Ω be the differential fraction field of the universal exponential exten-
sion U = K

[
e(Λ)

]
of K from Section 2.2. Equip Ω with a spectral extension of

the valuation of K; see Section 2.6. Apply Lemma 3.1.22 to Ω in place of K to
get E e

Ω(A+B) = E e
Ω(A). Hence E u(A+B) = E u(A) by (2.6.3). □

In a similar manner we obtain an analogue of Corollary 3.1.23:

Corollary 3.1.25. Suppose K has asymptotic integration, I(K) ⊆ K†, r = 1,
and B ∈ K[∂] satisfies order(B) ⩽ 1 and B ≺∆(v) v2A, where v := v(A) ≺♭ 1.
Then E u(A+B) = E u(A).
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Proof. Let Ω be as in the proof of Proposition 3.1.24. Then Ω is ungrounded

by Lemma 2.6.3, hence |E e
Ω(A)| ⩽ 1 and v(ker ̸=Ω A) ⊆ E e

Ω(A) by [ADH, p. 481].

But dimC kerΩA = 1, so v(ker ̸=Ω A) = E e
Ω(A). The proof of Lemma 3.1.22 with Ω in

place of K now gives E e
Ω(A+B) = E e

Ω(A), so E u(A+B) = E u(A) by (2.6.3). □

In the “real” case we have the following variant of Proposition 3.1.24:

Proposition 3.1.26. Suppose K = H[i], i2 = −1, where H is a real closed H-field
with asymptotic integration such that H† = H and I(H)i ⊆ K†. Let B ∈ K[∂] of
order ⩽ r be such that B ≺∆(v) v

r+1A with v := v(A) ≺♭ 1. Let Λ be a complement

of the subspace K† of the Q-linear space K. Then E u(A+B) = E u(A), where the
ultimate exceptional values are with respect to Λ.

Proof. Take an H-closed extension F of H with CF = CH as in Corollary 2.6.25.
Then the algebraically closed d-valued H-asymptotic extension L := F [i] of K is
ω-free, CL = C, I(L) ⊆ L†, and L† ∩ K = K†. Take a complement ΛL ⊇ Λ of
the subspace L† of the Q-linear space L. Let UL = L

[
e(ΛL)

]
be the universal

exponential extension of L from Section 2.2; it has the universal exponential ex-
tension U := K

[
e(Λ)

]
of K as a differential subring. Let Ω, ΩL be the differential

fraction fields of U, UL, respectively, and equip ΩL with a spectral extension of the
valuation of L; then the restriction of this valuation to Ω is a spectral extension of
the valuation of K (see remarks preceding Lemma 2.6.18). Lemma 3.1.22 applied
to ΩL in place of K yields E e

ΩL
(A + B) = E e

ΩL
(A), hence E e

Ω(A + B) = E e
Ω(A) by

Lemma 2.6.18 and thus E u(A+B) = E u(A). □

The span of the linear part of a differential polynomial. In this subsec-
tion P ∈ K{Y }̸= has order r. Recall from [ADH, 5.1] that the linear part of P is
the differential operator

LP :=
∑
n

∂P

∂Y (n)
(0) ∂

n ∈ K[∂]

of order ⩽ r. We have LP×m
= LPm [ADH, p. 242]; hence items 3.1.9, 3.1.10 and

3.1.12 above yield information about the span of LP×m
(provided LP ̸= 0). We now

want to similarly investigate the span of the linear part

LP+a =
∑
n

∂P

∂Y (n)
(a) ∂

n

of the additive conjugate P+a of P by some a ≺ 1. In the next two lemmas we
assume order(LP ) = r (in particular, LP ̸= 0), v(LP ) ≺ 1, and a ≺ 1, we set

L := LP , L+ := LP+a
, v := v(L),

and set Ln := ∂P
∂Y (n) (0) and L+

n := ∂P
∂Y (n) (a), so L =

∑
n Ln∂

n, L+ =
∑
n L

+
n ∂

n.
Recall from [ADH, 4.2] the decomposition of P into homogeneous parts: P =

∑
d Pd

where Pd =
∑

|i|=d PiY
i; we set P>1 :=

∑
d>1 Pd.

Lemma 3.1.27. Suppose P>1 ≺∆(v) vP1 and n ⩽ r. Then

(i) L+
r ∼∆(v) Lr, and thus order(L+) = order(L) = r;

(ii) if Ln ≍∆(v) L, then L
+
n ∼∆(v) Ln, and so v(L+

n ) = v(Ln);

(iii) if Ln ≺∆(v) L, then L
+
n ≺∆(v) L, and so v(L+

n ) > v(L).

In particular, L+ ∼∆(v) L, dwtL
+ = dwtL, and v(L+) ∼∆(v) v.
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Proof. Take Q,R ∈ K{Y } with degY (n) Q ⩽ 0 and R ∈ Y (n)K{Y }, such that

P = Q+ (Ln +R)Y (n), so
∂P

∂Y (n)
=

∂R

∂Y (n)
Y (n) + Ln +R.

Now R ≺∆(v) vP1, so
∂P

∂Y (n) − Ln ≺∆(v) vP1. In K[∂] we thus have

L+
n − Ln =

∂P

∂Y (n)
(a)− Ln ≺∆(v) vL ≍ Lr.

So L+
n −Ln ≺∆(v) L and (taking r = n) L+

r −Lr ≺∆(v) Lr. This yields (i)–(iii). □

Lemma 3.1.28. Suppose P>1 ≺∆(v) v
m+1P1, and let A,B ∈ K[∂] be such that L =

A+B, B ≺∆(v) v
m+1L. Then

L+ = A+B+ where B+ ∈ K[∂], B+ ≺∆(v) vm+1L+.

In particular, L− L+ ≺∆(v) v
m+1L.

Proof. Let An, Bn ∈ K be such that A =
∑
nAn∂

n and B =
∑
nBn∂

n, so Ln =
An+Bn. Let any n (possibly > r) be given and take Q,R ∈ K{Y } as in the proof
of Lemma 3.1.27. Then R ≺∆(v) v

m+1P1. Since B ≺∆(v) v
m+1L, this yields

∂P

∂Y (n)
−An =

∂R

∂Y (n)
Y (n) +Bn +R ≺∆(v) vm+1P1.

We have L+
n = ∂P

∂Y (n) (a), so

L+
n −An =

∂P

∂Y (n)
(a)−An ≺∆(v) vm+1L.

By Lemma 3.1.27 we have L+ ∼∆(v) L, hence B
+ = L+ −A ≺∆(v) v

m+1L+. □

3.2. Holes and Slots

Throughout this section K is an H-asymptotic field with small derivation and with
rational asymptotic integration. We set Γ := v(K×). So K is pre-d-valued, Γ ̸= {0}
has no least positive element, and Ψ ∩ Γ> ̸= ∅. We let a, b, f , g range over K,
and ϕ, m, n, v, w (possibly decorated) over K×. As at the end of the previous
section we shorten “active in K” to “active”.

Holes. A hole in K is a triple (P,m, â) where P ∈ K{Y } \K and â is an element

of K̂ \ K, for some immediate asymptotic extension K̂ of K, such that â ≺ m

and P (â) = 0. (The extension K̂ may vary with â.) The order, degree, and
complexity of a hole (P,m, â) in K are defined as the order, (total) degree, and
complexity, respectively, of the differential polynomial P . A hole (P,m, â) in K
is called minimal if no hole in K has smaller complexity; then P is a minimal
annihilator of â over K.

If (P,m, â) is a hole inK, then â is aK-external zero of P , in the sense of Section 1.8.
Conversely, every K-external zero â of a differential polynomial P ∈ K{Y } ̸= gives
for every m ≻ â a hole (P,m, â) in K. By Proposition 1.8.35 and Corollary 1.8.41:

Lemma 3.2.1. Let r ∈ N⩾1, and suppose K is λ-free. Then

K is ω-free and r-newtonian ⇐⇒ K has no hole of order ⩽ r.
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Thus for ω-free K, being newtonian is equivalent to having no holes. Recall that K
being henselian is equivalent to K having no proper immediate algebraic valued
field extension, and hence to K having no hole of order 0.

Minimal holes are like the “minimal counterexamples” in certain combinatorial
settings, and we need to understand such holes in a rather detailed way for later
use in inductive arguments. Below we also consider the more general notion of Z-
minimal hole, which has an important role to play as well. We recall that Z(K, â)
is the set of all Q ∈ K{Y }̸= that vanish at (K, â) as defined in [ADH, 11.4]

Lemma 3.2.2. Let (P,m, â) be a hole in K. Then P ∈ Z(K, â). If (P,m, â) is
minimal, then P is an element of minimal complexity of Z(K, â).

Proof. Let a, v with â − a ≺ v. Since â /∈ K lies in an immediate extension of K
we can take n with n ≍ â − a. By [ADH, 11.2.1] we then have ndeg≺v P+a ⩾
ndegP+a,×n ⩾ 1. Hence P ∈ Z(K, â). Suppose P is not of minimal complexity
in Z(K, â). Take Q ∈ Z(K, â) of minimal complexity. Then [ADH, 11.4.8] yields

a K-external zero b̂ of Q, and any n ≻ b̂ gives a hole (Q, n, b̂) in K of smaller
complexity than (P,m, â). □

In connection with the next result, note that K being 0-newtonian just means
that K is henselian as a valued field.

Corollary 3.2.3. Suppose K is λ-free and has a minimal hole of order r ⩾ 1.
Then K is (r − 1)-newtonian, and ω-free if r ⩾ 2.

Proof. This is clear for r = 1 (and doesn’t need λ-freeness), and for r ⩾ 2 follows
from Lemma 3.2.1. □

Corollary 3.2.4. Suppose K is ω-free and has a minimal hole of order r ⩾ 2.
Assume also that C is algebraically closed and Γ is divisible. Then K is d-valued,
r-linearly closed, and r-linearly newtonian.

Proof. This follows from Lemma 1.2.9, Corollary 1.8.42, and Corollary 3.2.3. □

Here is a linear version of Lemma 3.2.1:

Lemma 3.2.5. If K is λ-free, then

K is 1-linearly newtonian ⇐⇒ K has no hole of degree 1 and order 1.

If r ∈ N⩾1 and K is ω-free, then

K is r-linearly newtonian ⇐⇒ K has no hole of degree 1 and order ⩽ r.

Proof. The first statement follows from Lemma 1.8.33, and the second statement
from Lemma 1.8.34. □

Corollary 3.2.6. If K is ω-free and has a minimal hole in K of order r and
degree > 1, then K is r-linearly newtonian.

Lemma 3.2.7. Suppose K has a hole (P,m, â) of degree 1, and LP ∈ K[∂]̸= splits
over K. Then K has a hole of complexity (1, 1, 1).

Proof. Let (P,m, â) as in the hypothesis have minimal order. Then orderP ⩾ 1,
so orderP = orderLP . Take A,B ∈ K[∂] such that orderA = 1 and LP = AB.
If orderB = 0, then (P,m, â) has complexity (1, 1, 1). Assume orderB ⩾ 1.
Then B(â) /∈ K: otherwise, taking Q ∈ K{Y } of degree 1 with LQ = B and Q(0) =
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−B(â) yields a hole (Q,m, â) in K where degQ = 1 and LQ splits over K,

and (Q,m, â) has smaller order than (P,m, â). Set b̂ := B(â) and take R ∈ K{Y }
of degree 1 with LR = A and R(0) = P (0). Then

R(̂b) = R(0) + LR(̂b) = P (0) + LP (â) = P (â) = 0,

hence for any n ≻ b̂, (R, n, b̂) is a hole in K of complexity (1, 1, 1). □

Corollary 3.2.8. Suppose K is ω-free, C is algebraically closed, and Γ is divisible.
Then every minimal hole in K of degree 1 has order 1. If in addition K is 1-linearly
newtonian, then every minimal hole in K has degree > 1.

Proof. The first statement follows from Corollary 3.2.4 and the preceding lemma.
For the second statement, use the first and Lemma 3.2.5. □

Let (P,m, â) be a hole in K. We say (P,m, â) is Z-minimal if P has minimal
complexity in Z(K, â). Thus if (P,m, â) is minimal, then it is Z-minimal by Lem-
ma 3.2.2. If (P,m, â) is Z-minimal, then by [ADH, remarks following 11.4.3],
the differential polynomial P is a minimal annihilator of â over K. Note also
that ndegP×m ⩾ 1 by [ADH, 11.2.1]. In more detail:

Lemma 3.2.9. Let (P,m, â) be a hole in K. Then for all n with â ≺ n ≼ m,

1 ⩽ dmulP×n ⩽ ddegP×n ⩽ ddegP×m.

In particular, ddeg≺m P ⩾ 1.

Proof. Assume â ≺ n ≼ m. Then â = nb̂ with b̂ ≺ 1; put Q := P×n ∈ K{Y }̸=.
Then Q(̂b) = 0, hence DQ(0) = 0 and so dmulQ = dmulP×n ⩾ 1. The rest follows
from [ADH, 6.6.5(ii), 6.6.7, 6.6.9] and Γ> having no least element. □

In the next lemma, (λρ), (ωρ) are pc-sequences in K as in [ADH, 11.5, 11.7].

Lemma 3.2.10. Suppose K is λ-free and ω ∈ K is such that ωρ ⇝ ω (so K is not
ω-free). Then we have a hole (P,m, λ) in K where P = 2Y ′ + Y 2 + ω and λρ ⇝ λ,
and each such hole in K is a Z-minimal hole in K.

Proof. From [ADH, 11.7.13] we obtain λ in an immediate asymptotic extension
of K such that λρ ⇝ λ and P (λ) = 0. Taking any m with λ ≺ m then yields a
hole (P,m, λ) in K with λρ ⇝ λ, and each such hole in K is a Z-minimal hole in K
by [ADH, 11.4.13, 11.7.12]. □

Corollary 3.2.11. If K is λ-free but not ω-free, then each minimal hole in K
of positive order has complexity (1, 1, 1) or complexity (1, 1, 2). If K is a Liouville
closed H-field and not ω-free, then (P,m, λ) is a minimal hole of complexity (1, 1, 2),
where ω, P , λ, m are as in Lemma 3.2.10.

Here the second part uses Corollary 1.8.29 and Lemma 3.2.5.

Slots. In some arguments the notion of a hole in K turns out to be too stringent.
Therefore we introduce a more flexible version of it:

Definition 3.2.12. A slot in K is a triple (P,m, â) where P ∈ K{Y } \K and â

is an element of K̂ \ K, for some immediate asymptotic extension K̂ of K, such
that â ≺ m and P ∈ Z(K, â). The order, degree, and complexity of such a
slot in K are defined to be the order, degree, and complexity of the differential
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polynomial P , respectively. A slot in K of degree 1 is also called a linear slot
in K. A slot (P,m, â) in K is Z-minimal if P is of minimal complexity among
elements of Z(K, â).

Thus by Lemma 3.2.2, holes in K are slots in K, and a hole in K is Z-minimal iff
it is Z-minimal as a slot in K. From [ADH, 11.4.13] we obtain:

Corollary 3.2.13. Let (P,m, â) be a Z-minimal slot in K and (aρ) be a divergent
pc-sequence in K such that aρ ⇝ â. Then P is a minimal differential polynomial
of (aρ) over K.

We say that slots (P,m, â) and (Q, n, b̂) in K are equivalent if P = Q, m = n,

and v(â− a) = v(̂b− a) for all a; note that then Z(K, â) = Z(K, b̂), so (P,m, â) is

Z-minimal iff (P,m, b̂) is Z-minimal. Clearly this is an equivalence relation on the
class of slots in K. The following lemma often allows us to pass from a Z-minimal
slot to a Z-minimal hole:

Lemma 3.2.14. Let (P,m, â) be a Z-minimal slot in K. Then (P,m, â) is equiva-
lent to a Z-minimal hole in K.

Proof. By [ADH, 11.4.8] we obtain b̂ in an immediate asymptotic extension of K

with P (̂b) = 0 and v(â − a) = v(̂b − a) for all a. In particular b̂ /∈ K, b̂ ≺ m,

so (P,m, b̂) is a hole in K equivalent to (P,m, â). □

By [ADH, 11.4.8] the extension below containing b̂ is not required to be immediate:

Corollary 3.2.15. If (P,m, â) is a Z-minimal hole in K and b̂ in an asymptotic

extension of K satisfies P (̂b) = 0 and v(â − a) = v(̂b − a) for all a, then there is

an isomorphism K⟨â⟩ → K ⟨̂b⟩ of valued differential fields over K sending â to b̂.

In particular, equivalent Z-minimal holes (P,m, â), (P,m, b̂) in K yield an isomor-

phism K⟨â⟩ → K ⟨̂b⟩ of valued differential fields over K sending â to b̂.

From Lemmas 3.2.1 and 3.2.14 we obtain:

Corollary 3.2.16. Let r ∈ N⩾1, and suppose K is ω-free. Then

K is r-newtonian ⇐⇒ K has no slot of order ⩽ r.

Let (P,m, â) be a slot in K. Then (bP,m, â) for b ̸= 0 is a slot in K of the same
complexity as (P,m, â), and if (P,m, â) is Z-minimal, then so is (bP,m, â); likewise
with “hole in K” in place of “slot in K”. For active ϕ we have the compositional
conjugate (Pϕ,m, â) by ϕ of (P,m, â): it is a slot in Kϕ of the same complexity
as (P,m, â), it is Z-minimal if (P,m, â) is, and it is a hole (minimal hole) in Kϕ

if (P,m, â) is a hole (minimal hole, respectively) in K. If the slots (P,m, â), (Q, n, b̂)

in K are equivalent, then so are (bP,m, â), (bQ, n, b̂) for b ̸= 0, as well as the

slots (Pϕ,m, â), (Qϕ, n, b̂) in Kϕ for active ϕ.

The following conventions are in force in the rest of this section:

We let r range over natural numbers ⩾ 1 and let (P,m, â) denote a slot in K of
order r, so P /∈ K[Y ] has order r. We set w := wt(P ), so w ⩾ r ⩾ 1.

Thus wt(P+a) = wt(P×n) = wt(Pϕ) = w.
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Refinements and multiplicative conjugates. For a, n such that â−a ≺ n ≼ m
we obtain a slot (P+a, n, â− a) in K of the same complexity as (P,m, â) [ADH,
4.3, 11.4]. Slots of this form are said to refine (P,m, â) and are called refine-
ments of (P,m, â). A refinement of a refinement of (P,m, â) is itself a refine-
ment of (P,m, â). If (P,m, â) is Z-minimal, then so is any refinement of (P,m, â).
If (P,m, â) is a hole in K, then so is each of its refinements, and likewise with
“minimal hole” in place of “hole”. For active ϕ, (P+a, n, â − a) refines (P,m, â)

iff (Pϕ+a, n, â− a) refines (Pϕ,m, â). If (P,m, â), (P,m, b̂) are equivalent slots in K

and (P+a, n, â− a) refines (P,m, â), then (P+a, n, b̂− a) refines (P,m, b̂), and the

slots (P+a, n, â− a), (P+a, n, b̂− a) in K are equivalent. Conversely, if (P,m, â)

and (P,m, b̂) are slots in K with equivalent refinements, then (P,m, â) and (P,m, b̂)
are equivalent.

Lemma 3.2.17. Let (P+a, n, â − a) be a slot in K. Then (P+a, n, â − a) re-
fines (P,m, â), or (P,m, â) refines (P+a, n, â− a).

Proof. If n ≼ m, then â − a ≺ n ≼ m, so (P+a, n, â − a) refines (P,m, â), whereas
if m ≺ n, then (â− a)− (−a) = â ≺ m ≼ n, so

(P,m, â) =
(
(P+a)+(−a),m, (â− a)− (−a)

)
refines (P+a, n, â− a). □

Lemma 3.2.18. Let Q ∈ K{Y }̸= be such that Q /∈ Z(K, â). Then there is a re-
finement (P+a, n, â− a) of (P,m, â) such that ndegQ+a,×n = 0 and â− a ≺ n ≺ â.

Proof. Take b, v such that â− b ≺ v and ndeg≺vQ+b = 0. We shall find an a such
that ndeg≺vQ+a = 0, â − a ≼ â, and â − a ≺ v: if â − b ≼ â, we take a := b;
if â− b ≻ â, then −b ∼ â− b and so ndeg≺vQ = ndeg≺vQ+b = 0 by [ADH, 11.2.7],
hence a := 0 works. We next arrange â−a ≺ â: if â−a ≍ â, take a1 with â−a1 ≺ â,
so a − a1 ≺ v, hence ndeg≺vQ+a1 = ndeg≺vQ+a = 0, and thus a can be replaced
by a1. Since Γ> has no least element, we can choose n with â− a ≺ n ≺ â, v, and
then (P+a, n, â− a) refines (P,m, â) as desired. □

If (P+a,m, â− a) refines (P,m, â), then DP+a,×m
= DP×m,+(a/m)

= DP×m
by [ADH,

6.6.5(iii)], and thus

ddegP+a,×m = ddegP×m, dmulP+a,×m = dmulP×m.

In combination with Lemma 3.2.9 this has some useful consequences:

Corollary 3.2.19. Suppose (P,m, â) is a hole in K and ddegP×m = 1. Then
ddeg≺m P = 1, and for all n with â ≺ n ≼ m, (P, n, â) refines (P,m, â) with
ddegP×n = dmulP×n = 1.

Corollary 3.2.20. Suppose (P+a, n, â− a) refines the hole (P,m, â) in K. Then

ddegP×m = 1 =⇒ ddegP+a,×n = dmulP+a,×n = 1.

Proof. Use

1 ⩽ dmulP+a,×n ⩽ ddegP+a,×n ⩽ ddegP+a,×m = ddegP×m,

where the first inequality follows from Lemma 3.2.9 applied to (P+a, n, â− a). □
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If (P+a,m, â− a) refines (P,m, â), then in analogy with ddeg and dmul,

ndegP+a,×m = ndegP×m, nmulP+a,×m = nmulP×m.

(Use compositional conjugation by active ϕ.) Lemma 3.2.9 goes through for slots,
provided we use ndeg and nmul instead of ddeg and dmul:

Lemma 3.2.21. Suppose â ≺ n ≼ m. Then

1 ⩽ nmulP×n ⩽ ndegP×n ⩽ ndegP×m.

Proof. By [ADH, 11.2.3(iii), 11.2.5] it is enough to show nmulP×n ⩾ 1. Replac-
ing (P,m, â) by its refinement (P, n, â) we arrange m = n. Now Γ> has no smallest
element, so by definition of Z(K, â) and [ADH, p. 483] we have

1 ⩽ ndeg≺m P = max
{
nmulP×v : v ≺ m

}
.

Thus by [ADH, 11.2.5] we can take v with â ≺ v ≺ m with nmulP×v ⩾ 1, and
hence nmulP×m ⩾ 1, again by [ADH, 11.2.5]. □

Lemma 3.2.21 yields results analogous to Corollaries 3.2.19 and 3.2.20 above:

Corollary 3.2.22. If ndegP×m = 1, then for all n with â ≺ n ≼ m, (P, n, â)
refines (P,m, â) and ndegP×n = nmulP×n = 1.

Corollary 3.2.23. If (P+a, n, â− a) refines (P,m, â), then

ndegP×m = 1 =⇒ ndegP+a,×n = nmulP+a,×n = 1.

Any triple (P×n,m/n, â/n) is also a slot in K, with the same complexity as (P,m, â);
it is called the multiplicative conjugate of (P,m, â) by n. If (P,m, â) is Z-mi-
nimal, then so is any multiplicative conjugate. If (P,m, â) is a hole in K, then so
is any multiplicative conjugate; likewise with “minimal hole” in place of “hole”. If
two slots in K are equivalent, then so are their multiplicative conjugates by n.

Refinements and multiplicative conjugates interact in the following way: Suppose
(P+a, n, â−a) refines (P,m, â). Multiplicative conjugation of the slot (P+a, n, â− a)
in K by v then results in the slot (P+a,×v, n/v, (â−a)/v) in K. On the other hand,
first taking the multiplicative conjugate (P×v,m/v, â/v) of (P,m, â) by v and then
refining to (P×v,+a/v, n/v, â/v − a/v) results in the same slot in K, thanks to the
identity P+a,×v = P×v,+a/v.

Quasilinear slots. Note that ndegP×m ⩾ 1 by Lemma 3.2.21. We call (P,m, â)
quasilinear if P×m is quasilinear, that is, ndegP×m = 1. If (P,m, â) is quasilin-
ear, then so is any slot in K equivalent to (P,m, â), any multiplicative conjugate
of (P,m, â), as well as any refinement of (P,m, â), by Corollary 3.2.23. If (P,m, â)
is linear, then it is quasilinear by Lemma 3.2.21.

Let (aρ) be a divergent pc-sequence in K with aρ ⇝ â and for each index ρ,
let mρ ∈ K× be such that mρ ≍ â− aρ. Take an index ρ0 such that mσ ≺ mρ ≺ m
for all σ > ρ ⩾ ρ0, cf. [ADH, 2.2].

Lemma 3.2.24. Let σ ⩾ ρ ⩾ ρ0. Then

(i) (P+aρ+1 ,mρ, â− aρ+1) is a refinement of (P,m, â);
(ii) if (P+a, n, â−a) is a refinement of (P,m, â), then mρ ≼ n for all sufficiently

large ρ, and for such ρ, (P+aρ+1
,mρ, â− aρ+1) refines (P+a, n, â− a);

(iii) (P+aσ+1
,mσ, â− aσ+1) refines (P+aρ+1

,mρ, â− aρ+1).
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Proof. Part (i) follows from â− aρ+1 ≍ mρ+1 ≺ mρ ≼ m. For (ii) let (P+a, n, â− a)
be a refinement of (P,m, â). Since â − a ≺ n, we have mρ ≼ n for all sufficiently
large ρ. For such ρ, with b := aρ+1 − a we have

(P+aρ+1
,mρ, â− aρ+1) =

(
(P+a)+b,mρ, (â− a)− b

)
and

(â− a)− b = â− aρ+1 ≍ mρ+1 ≺ mρ ≼ n.

Hence (P+aρ+1 ,mρ, â− aρ+1) refines (P+a, n, â − a). Part (iii) follows from (i)
and (ii). □

Let a = cK(aρ) be the cut defined by (aρ) in K and ndega P be the Newton
degree of P in a as introduced in [ADH, 11.2]. Then ndega P is the eventual value
of ndegP+aρ,×mρ . Increasing ρ0 we arrange that additionally for all ρ ⩾ ρ0 we
have ndegP+aρ,×mρ

= ndega P .

Corollary 3.2.25. (P,m, â) has a quasilinear refinement iff ndega P = 1.

Proof. By Lemma 3.2.21 and [ADH, 11.2.8] we have

(3.2.1) 1 ⩽ ndegP+aρ+1,×mρ = ndegP+aρ,×mρ .

Thus if ndega P = 1, then for ρ ⩾ ρ0, the refinement (P+aρ+1
,mρ, â − aρ+1)

of (P,m, â) is quasilinear. Conversely, if (P+a, n, â − a) is a quasilinear refine-
ment of (P,m, â), then Lemma 3.2.24(ii) yields a ρ ⩾ ρ0 such that mρ ≼ n, and
then (P+aρ+1

,mρ, â− aρ+1) in K refines (P+a, n, â−a) and hence is also quasilinear,
so ndega P = ndegP+aρ,×mρ

= 1 by (3.2.1). □

Lemma 3.2.26. Assume K is d-valued and ω-free, and Γ is divisible. Then every
Z-minimal slot in K of positive order has a quasilinear refinement.

Proof. Suppose (P,m, â) is Z-minimal. Take a divergent pc-sequence (aρ) in K
such that aρ ⇝ â. Then P is a minimal differential polynomial of (aρ) over K, by
Corollary 3.2.13. Hence ndega P = 1 by [ADH, 14.5.1], where a := cK(aρ). Now
Corollary 3.2.25 gives a quasilinear refinement of (P,m, â). □

Remark. Suppose K is a real closed H-field that is λ-free but not ω-free. (For
example, the real closure of the H-field R⟨ω⟩ from [ADH, 13.9.1] satisfies these
conditions, by [ADH, 11.6.8, 11.7.23, 13.9.1].) Take (P,m, λ) as in Lemma 3.2.10.
Then by Corollary 3.2.25 and [ADH, 11.7.9], (P,m, λ) has no quasilinear refinement.
Thus Lemma 3.2.26 fails if “ω-free” is replaced by “λ-free”.

Lemma 3.2.27. Let L be an r-newtonian H-asymptotic extension of K such

that Γ< is cofinal in Γ<L , and suppose (P,m, â) is quasilinear. Then P (̂b) = 0

and b̂ ≺ m for some b̂ ∈ L.

Proof. Lemma 3.2.21 and ndegP×m = 1 gives n ≺ m with ndeg×n P = 1. By [ADH,
p. 480], ndegP×n does not change in passing from K to L. As L is r-newtonian

this yields b̂ ≼ n in L with P (̂b) = 0. □

In the next two corollaries we assume that K is d-valued and ω-free, and that L is
a newtonian H-asymptotic extension of K.

Corollary 3.2.28. If (P,m, â) is quasilinear, then P (̂b) = 0, b̂ ≺ m for some b̂ ∈ L.
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Proof. By [159, Theorem B], K has a newtonization K∗ inside L. Such K∗ is
d-algebraic over K by [ADH, remarks after 14.0.1], so Γ< is cofinal in Γ<K∗ by
Theorem 1.4.1. Thus we can apply Lemma 3.2.27 to K∗ in the role of L. □

Here is a variant of Lemma 3.2.14:

Corollary 3.2.29. Suppose Γ is divisible and (P,m, â) is Z-minimal. Then there

exists b̂ ∈ L such that K ⟨̂b⟩ is an immediate extension of K and (P,m, b̂) is a hole
in K equivalent to (P,m, â). (Thus if (P,m, â) is also a hole in K, then there is an
embedding K⟨â⟩ → L of valued differential fields over K.)

Proof. By Lemma 3.2.26 we may refine (P,m, â) to arrange that (P,m, â) is quasi-

linear. Then [ADH, 11.4.8] gives b̂ in an immediate H-asymptotic extension of K

with P (̂b) = 0 and v(â − a) = v(̂b − a) for all a. So (P,m, b̂) is a hole in K

equivalent to (P,m, â). The immediate d-algebraic extension K ⟨̂b⟩ of K is ω-free
by Theorem 1.4.1. Then [ADH, remarks following 14.0.1] gives a newtonian d-

algebraic immediate extension M of K ⟨̂b⟩ and thus of K. Then M is a newtoniza-
tion of K by [ADH, 14.5.4] and thus embeds over K into L. The rest follows from
Corollary 3.2.15. □

Remark. Lemma 3.2.26 and Corollary 3.2.29 go through with the hypothesis “Γ is
divisible” replaced by “K is henselian”. The proofs are the same, using [159, 3.3]
in place of [ADH, 14.5.1] in the proof of Lemma 3.2.26, and [159, 3.5] in place
of [ADH, 14.5.4] in the proof of Corollary 3.2.29.

For r = 1 we can weaken the hypothesis of ω-freeness in Corollary 3.2.29:

Corollary 3.2.30. Suppose K is λ-free and Γ is divisible, and (P,m, â) is Z-
minimal of order r = 1 with a quasilinear refinement. Let L be a newtonian H-

asymptotic extension of K. Then there exists b̂ ∈ L such that K ⟨̂b⟩ is an immediate

extension of K and (P,m, b̂) is a hole in K equivalent to (P,m, â). (So if (P,m, â)
is also a hole in K, then we have an embedding K⟨â⟩ → L of valued differential
fields over K.)

Proof. Take a divergent pc-sequence (aρ) in K with aρ ⇝ â. Then ndega P = 1
for a := cK(aρ), by Corollary 3.2.25, and P is a minimal differential polynomial
of (aρ) over K, by [ADH, 11.4.13]. The equality ndega P = 1 remains valid when
passing fromK, a to L, cL(aρ), respectively, by Lemma 1.8.8. Hence [ADH, 14.1.10]

yields b̂ ∈ L such that P (̂b) = 0 and aρ ⇝ b̂, so v(â − a) = v(̂b − a) for all a.

Then K ⟨̂b⟩ is an immediate extension of K by [ADH, 9.7.6], so (P,m, b̂) is a hole
in K equivalent to (P,m, â). For the rest use Corollary 3.2.15. □

The linear part of a slot. We define the linear part of (P,m, â) to be the linear
part LP×m

∈ K[∂] of P×m. By [ADH, p. 242] and Lemma 1.1.10 we have

LP×m
= LP m =

r∑
n=0

∂P×m

∂Y (n)
(0) ∂

n = mSP (0)∂
r + lower order terms in ∂.
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The slot (P,m, â) has the same linear part as each of its multiplicative conjugates.
The linear part of a refinement (P+a, n, â− a) of (P,m, â) is given by

LP+a,×n
= LP+an =

r∑
m=0

(
r∑

n=m

(
n

m

)
n(n−m) ∂P

∂Y (n)
(a)

)
∂
m

= nSP (a) ∂
r + lower order terms in ∂.

(See [ADH, (5.1.1)].) By [ADH, 5.7.5] we have (Pϕ)d = (Pd)
ϕ for d ∈ N; in

particular LPϕ = (LP )
ϕ and so order(LPϕ) = order(LP ). A particularly favorable

situation occurs when LP splits over a given differential field extension E of K
(which includes requiring LP ̸= 0). Typically, E is an algebraic closure of K. In
any case, LP splits over E iff LP×n

splits over E, iff LPϕ splits over Eϕ. Thus:

Lemma 3.2.31. Suppose degP = 1 and LP splits over E. Then the linear part of
any refinement of (P,m, â) and any multiplicative conjugate of (P,m, â) also splits
over E, and any compositional conjugate of (P,m, â) by an active ϕ splits over Eϕ.

Let i = (i0, . . . , ir) range over N1+r. As in [ADH, 4.2] we set

P(i) :=
P (i)

i!
where P (i) :=

∂|i|P

∂i0Y · · · ∂irY (r)
.

If |i| = i0 + · · · + ir ⩾ 1, then c(P(i)) < c(P ). Note that for i = (0, . . . , 0, 1) we
have P(i) = SP ̸= 0, since orderP = r. We now aim for Corollary 3.2.34.

Lemma 3.2.32. Suppose that (P,m, â) is Z-minimal. Then (P,m, â) has a refine-
ment (P+a, n, â− a) such that for all i with |i| ⩾ 1 and P(i) ̸= 0,

ndeg (P(i))+a,×n = 0.

Proof. Let i range over the (finitely many) elements of N1+r satisfying |i| ⩾ 1
and P(i) ̸= 0. Each P(i) has smaller complexity than P , so P(i) /∈ Z(K, â).
Then Q :=

∏
i P(i) /∈ Z(K, â) by [ADH, 11.4.4], so Lemma 3.2.18 gives a refine-

ment (P+a, n, â− a) of (P,m, â) with ndegQ+a,×n = 0. Then ndeg (P(i))+a,×n = 0
for all i, by [ADH, remarks before 11.2.6]. □

From [ADH, (4.3.3)] we recall that (P(i))+a = (P+a)(i). Also recall that (P+a)i =
P(i)(a) by Taylor expansion. In particular, if P(i) = 0, then (P+a)i = 0.

Lemma 3.2.33. Suppose (P+a, n, â−a) refines (P,m, â) and i is such that |i| ⩾ 1,
P(i) ̸= 0, and ndeg (P(i))×m = 0. Then

ndeg (P(i))+a,×n = 0, (P+a)i ∼ Pi.

Proof. Using [ADH, 11.2.4, 11.2.3(iii), 11.2.5] we get

ndeg (P(i))+a,×n = ndeg (P(i))+â,×n ⩽ ndeg (P(i))+â,×m = ndeg (P(i))×m = 0,

so ndeg (P(i))+a,×n = 0. Thus P(i) /∈ Z(K, â), hence (P+a)i = P(i)(a) ∼ P(i)(â)
by [ADH, 11.4.3]; applying this to a = 0, n = m yields Pi = P(i)(0) ∼ P(i)(â). □

Combining Lemmas 3.2.32 and 3.2.33 gives:

Corollary 3.2.34. Every Z-minimal slot in K of order r has a refinement (P,m, â)
such that for all refinements (P+a, n, â − a) of (P,m, â) and all i with |i| ⩾ 1
and P(i) ̸= 0 we have (P+a)i ∼ Pi (and thus orderLP+a

= orderLP = r).

Here the condition “of order r” may seem irrelevant, but is forced on us because
refinements preserve order and by our convention that P has order r.
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Special slots. The slot (P,m, â) in K is said to be special if â/m is special over K
in the sense of [ADH, p. 167]: some nontrivial convex subgroup ∆ of Γ is cofinal
in v

(
â
m−K

)
. If (P,m, â) is special, then so are (bP,m, â) for b ̸= 0, any multiplicative

conjugate of (P,m, â), any compositional conjugate of (P,m, â), and any slot in K
equivalent to (P,m, â). Also, by Lemma 1.6.1:

Lemma 3.2.35. If (P,m, â) is special, then so is any refinement.

Here is our main source of special slots:

Lemma 3.2.36. Let K be r-linearly newtonian, and ω-free if r > 1. Suppose
(P,m, â) is quasilinear, and Z-minimal or a hole in K. Then (P,m, â) is special.

Proof. Use Lemma 3.2.14 to arrange (P,m, â) is a hole in K. Next arrange m = 1
by replacing (P,m, â) with (P×m, 1, â/m). So ndegP = 1, hence â is special over K
by Proposition 1.6.12 (if r > 1) and 1.6.18 (if r = 1). □

Next an approximation result used in the proof of Corollary 6.5.19 in Part 6:

Lemma 3.2.37. Suppose m = 1, (P, 1, â) is special and Z-minimal, and â − a ≼
n ≺ 1 for some a. Then â− b ≺ nr+1 for some b, and P (b) ≺ nP for any such b.

Proof. Using Lemma 3.2.14 we arrange P (â) = 0. The differential polynomial

Q(Y ) :=
∑

|i|⩾1 P(i)(â)Y
i ∈ K̂{Y } has order ⩽ r and mul(Q) ⩾ 1, and Taylor

expansion yields, for all a:

P (a) = P (â) +
∑
|i|⩾1

P(i)(â)(a− â)i = Q(a− â).

Since â is special over K, we have b with â− b ≺ nr+1, and then by Lemma 1.1.13
we have Q(b− â) ≺ nQ ≼ nP . □

3.3. The Normalization Theorem

Throughout this section K is an H-asymptotic field with small derivation and with
rational asymptotic integration. We set Γ := v(K×). The notational conventions
introduced in the last section remain in force: a, b, f , g range over K; ϕ, m, n, v, w
over K×. As at the end of Section 3.1 we shall frequently use for v ≺ 1 the
coarsening of v by the convex subgroup ∆(v) =

{
γ ∈ Γ : γ = o(vv)

}
of Γ.

We fix a slot (P,m, â) in K of order r ⩾ 1, and set w := wt(P ) (so w ⩾ r ⩾ 1). In
the next subsections we introduce various conditions on (P,m, â). These conditions
will be shown to be related as follows:

strictly normal +3 normal +3

��

steep

quasilinear ks deep

KS

Thus “deep + strictly normal” yields the rest. The main results of this section are
Theorem 3.3.33 and its variants 3.3.34, 3.3.36, and 3.3.48.
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Steep and deep slots. In this subsection, if order(LP×m
) = r, then we set

v := v(LP×m
).

The slot (P,m, â) in K is said to be steep if order(LP×m
) = r and v ≺♭ 1. Thus

(P,m, â) is steep ⇐⇒ (P×n,m/n, â/n) is steep ⇐⇒ (bP,m, â) is steep

for b ̸= 0. If (P,m, â) is steep, then so is any slot in K equivalent to (P,m, â).
If (P,m, â) is steep, then so is any slot (Pϕ,m, â) in Kϕ for active ϕ ≼ 1, by
Lemma 3.1.19, and thus nwt(LP×m

) < r. Below we tacitly use that if (P,m, â) is
steep, then

n ≍∆(v) v =⇒ [n] = [v], n ≺ 1, [n] = [v] =⇒ n ≺♭ 1.

Note also that if (P,m, â) is steep, then v† ≍∆(v) 1 by [ADH, 9.2.10(iv)].

Lemma 3.3.1. Suppose (P,m, â) is steep, â ≺ n ≼ m and [n/m] ⩽ [v]. Then

order(LP×n
) = r, v(LP×n

) ≍∆(v) v,

so (P, n, â) is a steep refinement of (P,m, â).

Proof. Replace (P,m, â) and n by (P×m, 1, â/m) and n/m to arrangem = 1. Set L :=

LP and L̃ := LP×n
. Then L̃ = Ln ≍∆(v) nL by [ADH, 6.1.3]. Hence

L̃r = nLr ≍ nvL ≍∆(v) vL̃.

Since v(L̃)L̃ ≍ L̃r, this gives v(L̃)L̃ ≍∆(v) vL̃, and thus v(L̃) ≍∆(v) v. □

If (P,m, â) is steep and linear, then LP+a,×m
= LP×m,+(a/m)

= LP×m
, so any refine-

ment (P+a,m, â− a) of (P,m, â) is also steep and linear.

Lemma 3.3.2. Suppose orderLP×m
= r. Then (P,m, â) has a refinement (P, n, â)

such that nwtLP×n
= 0, and (Pϕ, n, â) is steep, eventually.

Proof. Replacing (P,m, â) by (P×m, 1, â/m) we arrange m = 1. Take n1 with â ≺
n1 ≺ 1. Then order (P1)×n1 = orderP1 = orderLP = r, and thus (P1)×n1 ̸= 0.
So [ADH, 11.3.6] applied to (P1)×n1

in place of P yields an n with n1 ≺ n ≺ 1
and nwt (P1)×n = 0, so nwtLP×n

= 0. Hence by Lemma 3.1.20, (Pϕ, n, â) is steep,
eventually. □

Recall that the separant SP = ∂P/∂Y (r) of P has lower complexity than P . Below
we sometimes use the identity SPϕ

×m
= ϕr(SP×m

)ϕ from Lemma 1.1.10.

The slot (P,m, â) in K is said to be deep if it is steep and for all active ϕ ≼ 1,

(D1) ddegSPϕ
×m

= 0 (hence ndegSP×m
= 0), and

(D2) ddegPϕ×m = 1 (hence ndegP×m = 1).

If degP = 1, then (D1) is automatic, for all active ϕ ≼ 1. If (P,m, â) is deep, then
so are (P×n,m/n, â/n) and (bP,m, â) for b ̸= 0, as well as every slot in K equivalent
to (P,m, â) and the slot (Pϕ,m, â) in Kϕ for active ϕ ≼ 1. Every deep slot in K is
quasilinear, by (D2). If degP = 1, then (P,m, â) is quasilinear iff (Pϕ,m, â) is deep

for some active ϕ ≼ 1. Moreover, if (P,m, â) is a deep hole inK, then dmulPϕ×m = 1
for all active ϕ ≼ 1, by (D2) and Lemma 3.2.9.
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Example 3.3.3. Suppose P = Y ′ + gY − u where g, u ∈ K and m = 1, r = 1.
Set L := LP = ∂ + g and v := v(L). Then v = 1 if g ≼ 1, and v = 1/g if g ≻ 1.
Thus

(P, 1, â) is steep ⇐⇒ g ≻♭ 1 ⇐⇒ g ≻ 1 and g† ≽ 1.

Note that (P, 1, â) is steep iff L is steep as defined in Section 1.5. Also,

(P, 1, â) is deep ⇐⇒ (P, 1, â) is steep and g ≽ u.

Hence if u = 0, then (P, 1, â) is deep iff it is steep.

Lemma 3.3.4. For steep (P,m, â), the following are equivalent:

(i) (Pϕ,m, â) is deep, eventually;
(ii) ndegSP×m

= 0 and ndegP×m = 1.

Note that if ddegSP×m
= 0 or ndegSP×m

= 0, then SP×m
(0) ̸= 0, so orderLP×m

= r.

Lemma 3.3.5. Suppose (P+a, n, â− a) refines the hole (P,m, â) in K. Then:

(i) ddegSP×m
= 0 =⇒ ddegSP+a,×n

= 0;
(ii) ddegP×m = 1 =⇒ ddegP+a,×n = 1;
(iii) ndegSP×m

= 0 =⇒ SP (a) ∼ SP (0).

Thus if (P,m, â) is deep and (P+a, n, â− a) is steep, then (P+a, n, â− a) is deep.

Proof. Suppose ddegSP×m
= 0. Then ddegSP+a,×n

= 0 follows from

ddegSP+a,×n
= ddeg (SP )+a,×n and ddeg(SP )×m = ddegSP×m

(consequences of Lemma 1.1.10), and

ddeg (SP )+a,×n = ddeg (SP )+â,×n ⩽ ddeg (SP )+â,×m = ddeg (SP )×m

which holds by [ADH, 6.6.7]. This proves (i). Corollary 3.2.20 yields (ii), and (iii)
is contained in Lemma 3.2.33. □

Lemmas 3.2.14 and 3.3.5 give:

Corollary 3.3.6. If (P,m, â) is Z-minimal and deep, then each steep refinement
of (P,m, â) is deep.

Here is another sufficient condition on refinements of deep holes to remain deep:

Lemma 3.3.7. Suppose (P,m, â) is a deep hole in K, and (P+a, n, â − a) re-
fines (P,m, â) with [n/m] ⩽ [v]. Then (P+a, n, â−a) is deep with v(LP+a,×n

) ≍∆(v) v.

Proof. From (P,m, â) we pass to the hole (P+a,m, â−a) and then to (P+a, n, â−a).
We first show that orderLP+a,×m

= r and v(LP+a,×m
) ∼ v, from which it follows

that (P+a,m, â− a) is steep, hence deep by Lemma 3.3.5. By Corollary 3.2.20,

ddegP+a,×m = dmulP+a,×m = 1,

so (P+a,×m)1 ∼ P+a,×m. Also

(P×m)1 ∼ P×m ∼ P×m,+(a/m) = P+a,×m,

by [ADH, 4.5.1(i)], and thus (P+a,×m)1 ∼ (P×m)1. By Lemmas 1.1.10 and 3.3.5(iii),

SP+a,×m
(0) = mSP (a) ∼ mSP (0) = SP×m

(0),

so SP+a,×m
(0) ∼ SP×m

(0). This gives v(LP+a,×m
) ∼ v as promised.

Next, Lemma 3.3.1 applied to (P+a,m, â − a) in the role of (P,m, â) gives
that (P+a, n, â − a) is steep with v(LP+a,×n

) ≍∆(v) v. Now Lemma 3.3.5 applied
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to (P+a,m, â− a) and (P+a, n, â− a) in the role of (P,m, â) and (P+a, n, â− a),
respectively, gives that (P+a, n, â− a) is deep. □

Lemmas 3.2.14 and 3.3.7 give a version for Z-minimal slots:

Corollary 3.3.8. Suppose (P,m, â) is Z-minimal and deep, and (P+a, n, â− a)
refines (P,m, â) with [n/m] ⩽ [v], where v := v(LP×m

). Then (P+a, n, â− a) is deep
with v(LP+a,×n

) ≍∆(v) v.

Next we turn to the task of turning Z-minimal slots into deep ones.

Lemma 3.3.9. Every quasilinear Z-minimal slot in K of order r has a refine-
ment (P,m, â) such that:

(i) ndeg (P(i))×m = 0 for all i with |i| ⩾ 1 and P(i) ̸= 0;
(ii) ndegP×m = nmulP×m = 1, and
(iii) nwtLP×m

= 0.

Proof. By Corollary 3.2.22, any quasilinear (P,m, â) satisfies (ii). Any refinement
of a quasilinear (P,m, â) remains quasilinear, by Corollary 3.2.23. By Lemma 3.2.32
and a subsequent remark any quasilinear Z-minimal slot in K of order r can be
refined to a quasilinear (P,m, â) that satisfies (i), and by Lemma 3.2.33, any further
refinement of such (P,m, â) continues to satisfy (i). Thus to prove the lemma,
assume we are given a quasilinear (P,m, â) satisfying (i); it is enough to show that
then (P,m, â) has a refinement (P, n, â) satisfying (iii) with n instead of m (and
thus also (i) and (ii) with n instead of m).

Take m̃ with â ≺ m̃ ≺ m. Then (P×m̃)1 ̸= 0 by (ii), so [ADH, 11.3.6] applied
to (P1)×m̃ in place of P yields an n with m̃ ≺ n ≺ m and nwt (P1)×n = 0. Hence
the refinement (P, n, â) of (P,m, â) satisfies (iii) with n instead of m. □

Corollary 3.3.10. Every quasilinear Z-minimal slot in K of order r has a refine-
ment (P,m, â) such that nwtLP×m

= 0, and (Pϕ,m, â) is deep, eventually.

Proof. Given a quasilinear Z-minimal slot in K of order r, we take a refine-
ment (P,m, â) as in Lemma 3.3.9. Then ndegSP×m

= 0 by (i) of that lemma,
so orderLP×m

= r by the remark that precedes Lemma 3.3.5. Then (iii) of

Lemma 3.3.9 and Lemma 3.1.20 give that (Pϕ,m, â) is steep, eventually. Us-
ing now ndegSP×m

= 0 and (ii) of Lemma 3.3.9 we obtain from Lemma 3.3.4

that (Pϕ,m, â) is deep, eventually. □

Lemma 3.2.26 and the previous lemma and its corollary now yield:

Lemma 3.3.11. Suppose K is d-valued and ω-free, and Γ is divisible. Then every
Z-minimal slot in K of order r has a refinement (P,m, â) satisfying (i)–(iii) in
Lemma 3.3.9.

Corollary 3.3.12. Suppose K is d-valued and ω-free, and Γ is divisible. Then
every Z-minimal slot in K of order r has a quasilinear refinement (P,m, â) such
that nwtLP×m

= 0, and (Pϕ,m, â) is deep, eventually.

Approximating Z-minimal slots. In this subsection we set, as before,

v := v(LP×m
),

provided LP×m
has order r. The next lemma is a key approximation result.
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Lemma 3.3.13. Suppose (P,m, â) is Z-minimal and steep, and

ddegP×m = ndegP×m = 1, ddegSP×m
= 0.

Then there exists an a such that â− a ≺∆(v) m.

Proof. We can arrange m = 1 and P ≍ 1. Then ddegP = 1 gives P1 ≍ 1,
so SP (0) ≍ v. Take Q,R1, . . . , Rn ∈ K{Y } (n ⩾ 1) of order < r such that

P = Q+R1Y
(r) + · · ·+Rn(Y

(r))n, SP = R1 + · · ·+ nRn(Y
(r))n−1.

Then R1(0) = SP (0) ≍ v. As ddegSP = 0, this gives SP ∼ R1(0), hence

R := P −Q ∼ R1(0)Y
(r) ≍ v ≺∆(v) 1 ≍ P,

so P ∼∆(v) Q. Thus Q ̸= 0, and Q /∈ Z(K, â) because orderQ < r. Now Lem-
ma 3.2.18 gives a refinement (P+a, n, â− a) of (P, 1, â) such that ndegQ+a,×n = 0
and n ≺ 1. We claim that then â − a ≺∆(v) 1. (Establishing this claim fin-
ishes the proof.) Suppose the claim is false. Then â − a ≍∆(v) 1, so n ≍∆(v) 1,
hence Q+a,×n ≍∆(v) Q+a ≍ Q by [ADH, 4.5.1]. Likewise, R+a,×n ≍∆(v) R. Us-

ing P+a,×n = Q+a,×n + R+a,×n gives Q+a,×n ∼∆(v) P+a,×n, so Q+a,×n ∼♭ P+a,×n.
Then ndegQ+a,×n = ndegP+a,×n = 1 by Lemma 1.8.2 and Corollary 3.2.23, a
contradiction. □

Lemmas 3.2.9 and 3.3.13, and a remark following the definition of deep give:

Corollary 3.3.14. If (P,m, â) is Z-minimal, steep, and linear, then there exists
an a such that â− a ≺∆(v) m.

Corollary 3.3.15. Suppose (P,m, â) is Z-minimal, deep, and special. Then for
all n ⩾ 1 there is an a with â− a ≺ vnm.

Proof. We arrange m = 1 in the usual way. Let ∆ be the convex subgroup of Γ that
is cofinal in v(â−K). Lemma 3.3.13 gives an element γ ∈ v(â−K) with γ ⩾ δ/m
for some m ⩾ 1. Hence v(â−K) contains for every n ⩾ 1 an element > nδ. □

Combining Lemma 3.2.36 with Corollary 3.3.15 yields:

Corollary 3.3.16. If K is r-linearly newtonian, ω-free if r > 1, and (P,m, â) is
Z-minimal and deep, then for all n ⩾ 1 there is an a such that â− a ≺ vnm.

Normal slots. We say that our slot (P,m, â) in K, with linear part L, is normal
if orderL = r and, with v := v(L) and w := wt(P ),

(N1) v ≺♭ 1;
(N2) (P×m)>1 ≺∆(v) v

w+1(P×m)1.

Note that then v ≺ 1, dwt(L) < r, (P,m, â) is steep, and

(3.3.1) P×m ∼∆(v) P (0) + (P×m)1 (so ddegP×m ⩽ 1).

If orderL = r, v := v(L), and L is monic, then (P×m)1 ≍ v−1, so that (N2) is
then equivalent to: (P×m)>1 ≺∆(v) vw. If degP = 1, then orderL = r and (N2)
automatically holds, hence (P,m, â) is normal iff it is steep. Thus by Lemma 3.1.20:

Lemma 3.3.17. If degP = 1 and nwt(L) < r, then (Pϕ,m, â) is normal, eventu-
ally.

If (P,m, â) is normal, then so are (P×n,m/n, â/n) and (bP,m, â) for b ̸= 0. In
particular, (P,m, â) is normal iff (P×m, 1, â/m) is normal. If (P,m, â) is normal,
then so is any equivalent slot. Hence by (3.3.1) and Lemmas 3.2.9 and 3.2.14:
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Lemma 3.3.18. If (P,m, â) is normal, and (P,m, â) is Z-minimal or is a hole
in K, then ddegP×m = dmulP×m = 1.

Example. Let K ⊇ R(ex) be an H-subfield of T, m = 1, r = 2. If P = D+R where

D = e−x Y ′′ − Y, R = f + e−4x Y 5 (f ∈ K),

then v = − e−x ≺♭ 1, P1 = D ∼ −Y , w = 2, and P>1 = e−4x Y 5 ≺∆(v) e−3x P1,

so (P, 1, â) is normal. However, if P = D+S with D as above and S = f +e−3x Y 5

(f ∈ K), then P>1 = e−3x Y 5 ≽∆(v) e
−3x P1, so (P, 1, â) is not normal.

Lemma 3.3.19. Suppose order(L) = r and v is such that (N1) and (N2) hold,
and v(L) ≍∆(v) v. Then (P,m, â) is normal.

Proof. Put w := v(L). Then [w] = [v], and so v ≺♭ 1 gives w ≺♭ 1. Also,

(P×m)>1 ≺∆(v) v
w+1(P×m)1 ≍∆(v) w

w+1(P×m)1.

Hence (N1), (N2) hold with w in place of v. □

Lemma 3.3.20. Suppose (P,m, â) is normal and ϕ ≼ 1 is active. Then the
slot (Pϕ,m, â) in Kϕ is normal.

Proof. We arrange m = 1 and put v := v(L), w := v(LPϕ). Now LPϕ = Lϕ,
so v ≍∆(v) w and v ≺♭ϕ 1 by Lemma 3.1.19. By [ADH, 11.1.1], [ϕ] < [v], and (N2)
we have

(Pϕ)>1 = (P>1)
ϕ ≍∆(v) P>1 ≺∆(v) vw+1P1 ≍∆(v) vw+1Pϕ1 ,

which by Lemma 3.3.19 applied to (Pϕ, 1, â) in the role of (P,m, â) gives that
(Pϕ, 1, â) is normal. □

Corollary 3.3.21. Suppose (P,m, â) is normal. Then (P,m, â) is quasilinear.

Proof. Lemma 3.2.21 gives ndegP×m ⩾ 1. The parenthetical remark after (3.3.1)
above and Lemma 3.3.20 gives ndegP×m ⩽ 1. □

Combining Lemmas 3.3.18 and 3.3.20 yields:

Corollary 3.3.22. If (P,m, â) is normal and linear, and (P,m, â) is Z-minimal or
a hole in K, then (P,m, â) is deep.

There are a few occasions later where we need to change the “monomial” m in
(P,m, â) while preserving key properties of this slot. Here is what we need:

Lemma 3.3.23. Let u ∈ K, u ≍ 1. Then (P, um, â) refines (P,m, â), and if
(P+a, n, â− a) refines (P,m, â), then so does (P+a, un, â− a). If (P,m, â) is quasi-
linear, respectively deep, respectively normal, then so is (P, um, â).

Proof. The refinement claims are clearly true, and quasilinearity is preserved since
ndegP×um = ndegP×m by [ADH, 11.2.3(iii)]. “Steep” is preserved by Lemma 3.3.1,
and hence “deep” is preserved using Lemma 1.1.10 and [ADH, 6.6.5(ii)]. Normality
is preserved because steepness is,

(P×um)d = (Pd)×um ≍ (Pd)×m = (P×m)d for all d ∈ N

by [ADH, 4.3, 4.5.1(ii)], and v(LP×um
) ≍ v(LP×m

) by Lemma 3.1.2. □

Here is a useful invariance property of normal slots:
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Lemma 3.3.24. Suppose (P,m, â) is normal and a ≺ m. Then LP and LP+a
have

order r. If in addition K is λ-free or r = 1, then E e(LP ) = E e(LP+a).

Proof. LP×m
= LPm (so LP has order r), and LP+a,×m

= LP×m,+a/m
= LP+am. The

slot (P×m, 1, â/m) inK is normal and a/m ≺ 1. Thus we can apply Lemma 3.1.27(i)

to K̂, P×m, a/m in place of K, P , a to give orderLP+a
= r. Next, applying likewise

Lemma 3.1.28 with L := LP×m
, v := v(LP×m

), m = r, B = 0, gives

LPm− LP+am = LP×m
− LP×m,+a/m

≺∆(v) vr+1LPm.

Hence, if K is λ-free, then E e(LPm) = E e(LP+am) by Lemma 3.1.22, so

E e(LP ) = E e(LPm) + v(m) = E e(LP+a
m) + v(m) = E e(LP+a

).

If r = 1 we obtain the same equality from Corollary 3.1.23. □

Normality under refinements. In this subsection we study how normality be-
haves under more general refinements. This is not needed to prove the main result
of this section, Theorem 3.3.33, but is included to obtain useful variants of it.

Proposition 3.3.25. Suppose (P,m, â) is normal. Let a refinement (P+a,m, â−a)
of (P,m, â) be given. Then this refinement is also normal.

Proof. By the remarks following the definition of “multiplicative conjugate” in
Section 3.2 and after replacing the slots (P,m, â) and (P+a,m, â − a) in K by
(P×m, 1, â/m) and

(
P×m,+a/m, 1, (â − a)/m

)
, respectively, we arrange that m = 1.

Let v := v(LP ). By Lemma 3.1.27 we have order(LP+a
) = r, v(LP+a

) ∼∆(v) v,
and (P+a)1 ∼∆(v) P1. Using [ADH, 4.5.1(i)] we have for d > 1 with Pd ̸= 0,

(P+a)d =
(
(P⩾d)+a

)
d ≼ (P⩾d)+a ∼ P⩾d ≼ P>1,

and using (N2), this yields

(P+a)>1 ≼ P>1 ≺∆(v) vw+1P1 ≍ vw+1(P+a)1.

Hence (N2) holds with m = 1 and with P replaced by P+a. Thus (P+a, 1, â− a) is
normal, by Lemma 3.3.19. □

Proposition 3.3.26. Suppose (P,m, â) is a normal hole in K, â ≺ n ≼ m,
and [n/m] ⩽

[
v(LP×m

)
]
. Then the refinement (P, n, â) of (P,m, â) is also normal.

Proof. As in the proof of Lemma 3.3.1 we arrangem = 1 and set L := LP , v := v(L),

and L̃ := LP×n
, to obtain [n] ⩽ [v] and v(L̃) ≍∆(v) v. Recall from [ADH, 4.3]

that (P×n)d = (Pd)×n for d ∈ N. For such d we have by [ADH, 6.1.3],

(Pd)×n ≍∆(v) ndPd ≼ ndP⩾d.

In particular, (P×n)1 ≍∆(v) nP1. By (N2) we also have, for d > 1:

P⩾d ≼ P>1 ≺∆(v) vw+1P1.

By Lemma 3.3.18 we have P ∼ P1. For d > 1 we have by [ADH, 6.1.3],

ndP ≍ ndP1 ≍∆(v) nd−1(P1)×n ≼ (P1)×n = (P×n)1 ≼ P×n

and thus

(P×n)d = (Pd)×n ≼∆(v) ndP⩾d ≺∆(v) vw+1ndP1 ≼∆(v) vw+1(P×n)1.

Hence (N2) holds with m replaced by n. Thus (P, n, â) is normal, using v(L̃) ≍∆(v) v
and Lemmas 3.3.1 and 3.3.19. □
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From Lemma 3.2.14 and Proposition 3.3.26 we obtain:

Corollary 3.3.27. Suppose (P,m, â) is normal and Z-minimal, â ≺ n ≼ m,
and [n/m] ⩽

[
v(LP×m

)
]
. Then the refinement (P, n, â) of (P,m, â) is also normal.

In the rest of this subsection m = 1, â ≺ n ≺ 1, order(LP ) = r, and [v] < [n]
where v := v(LP ). So (P, n, â) refines (P, 1, â), LP×n

= LPn, and orderLP×n
= r.

Lemma 3.3.28. Suppose (P, 1, â) is steep, v(LP×n
) ≼ v, and P>1 ≼ P1. Then

(P, n, â) is normal.

Proof. Put w := v(LP×n
). Then [w] < [n] by Corollary 3.1.10, and w ≼ v ≺♭ 1

gives w ≺♭ 1. It remains to show that (P×n)>1 ≺∆(w) w
w+1(P×n)1. Using [n] > [w]

it is enough that (P×n)>1 ≺∆ ww+1(P×n)1, where ∆ := ∆(n). Since w ≍∆ 1, it
is even enough that (P×n)>1 ≺∆ (P×n)1, to be derived below. Let d > 1. Then
by [ADH, 6.1.3] and Pd ≼ P>1 ≼ P1 we have

(P×n)d = (Pd)×n ≍∆ Pdn
d ≼ P1 n

d.

In view of n ≺∆ 1 and d > 1 we have

P1 n
d ≺∆ P1 n ≍∆ (P1)×n = (P×n)1,

using again [ADH, 6.1.3]. Thus (P×n)d ≺∆ (P×n)1, as promised. □

Corollary 3.3.29. If (P, 1, â) is normal and v(LP×n
) ≼ v, then (P, n, â) is normal.

In the next lemma and its corollary K is d-valued and for every q ∈ Q> there is
given an element nq of K× such that (nq)† = qn†; the remark before Lemma 3.1.15
gives v(nq) = qv(n) for q ∈ Q>. Hence for 0 < q ⩽ 1 in Q we have â ≺ n ≼ nq ≺ 1,
so (P, nq, â) refines (P, 1, â).

Lemma 3.3.30. Suppose (P, 1, â) is steep and P>1 ≼ P1. Then (P, nq, â) is normal,
for all but finitely many q ∈ Q with 0 < q ⩽ 1.

Proof. We have n† ≽ 1 by n ≺ v ≺ 1 and v† ≽ 1. Hence Lemma 3.1.16 gives
v(LP×nq ) ≼ v for all but finitely many q ∈ Q>. Suppose v(LP×nq ) ≼ v, 0 < q ⩽ 1
in Q. Then (P, nq, â) is normal by Lemma 3.3.28 applied with nq instead of n. □

Corollary 3.3.31. If (P, 1, â) is normal, then (P, nq, â) is normal for all but finitely
many q ∈ Q with 0 < q ⩽ 1.

Normalizing. If in this subsection order(LP×m
) = r, then v := v(LP×m

). Towards
proving that normality can always be achieved we first show:

Lemma 3.3.32. Suppose Γ is divisible, (P,m, â) is a deep hole in K, and â− a ≺
vw+2m for some a. Then (P,m, â) has a refinement that is deep and normal.

Proof. Replacing (P,m, â) by (P×m, 1, â/m) and renaming we arrange m = 1.
Take a such that â − a ≺ vw+2. For e := w + 3

2 , let ve be an element of K×

with v(ve) = e v(v). Claim: the refinement (P+a, v
e, â− a) of (P, 1, â) is deep and

normal. By Lemma 3.3.7, (P+a, v
e, â−a) is deep, so we do have order(LP+a,×ve ) = r

and v(LP+a,×ve ) ≺♭ 1. Lemma 3.3.7 also yields v(LP+a,×ve ) ≍∆(v) v. Since ddegP =
dmulP = 1, we can use Corollary 3.2.20 for n = ve and for n = 1 to obtain

ddegP+a,×ve = dmulP+a,×ve = ddegP+a = dmulP+a = 1
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and thus (P+a,×ve)1 ∼ P+a,×ve ; also P1 ∼ P ∼ P+a ∼ (P+a)1, where P ∼ P+a

follows from a ≺ 1 and [ADH, 4.5.1(i)]. Now let d > 1. Then

(P+a,×ve)d ≍∆(v) (ve)d(P+a)d ≼ (ve)dP+a ∼ (ve)d(P+a)1

≍∆(v) (ve)d−1(P+a,×ve)1 ≺∆(v) v
w+1(P+a,×ve)1,

using [ADH, 6.1.3] for ≍∆(v). So (P+a, v
e, â− a) is normal by Lemma 3.3.19. □

We can now finally show:

Theorem 3.3.33. Suppose K is ω-free and r-linearly newtonian, and Γ is divis-
ible. Then every Z-minimal slot in K of order r has a refinement (P,m, â) such
that (Pϕ,m, â) is deep and normal, eventually.

Proof. By Lemma 3.2.14 it is enough to show this for Z-minimal holes in K of
order r. Given such hole in K, use Corollary 3.3.12 to refine it to a hole (P,m, â)
such that (Pϕ,m, â) is deep, eventually. Replacing (P,m, â) by (Pϕ,m, â) for a
suitable active ϕ ≼ 1 we arrange that (P,m, â) itself is deep. Then an appeal
to Corollary 3.3.16 followed by an application of Lemma 3.3.32 yields a deep and
normal refinement of (P,m, â). Now apply Lemma 3.3.20 to this refinement. □

Next we indicate some variants of Theorem 3.3.33:

Corollary 3.3.34. Suppose K is d-valued and ω-free, and Γ is divisible. Then
every minimal hole in K of order r has a refinement (P,m, â) such that (Pϕ,m, â)
is deep and normal, eventually.

Proof. Given a minimal hole in K of order r, use Corollary 3.3.12 to refine it to
a hole (P,m, â) in K such that nwtLP×m

= 0 and (Pϕ,m, â) is deep, eventually.

If degP = 1, then (Pϕ,m, â) is normal, eventually, by Lemma 3.3.17. If degP > 1,
thenK is r-linearly newtonian by Corollary 3.2.6, so we can use Theorem 3.3.33. □

For r = 1 we can follow the proof of Theorem 3.3.33, using Corollary 3.3.10 in place
of Corollary 3.3.12, to obtain:

Corollary 3.3.35. If K is 1-linearly newtonian and Γ is divisible, then every quasi-
linear Z-minimal slot in K of order 1 has a refinement (P,m, â) such that (Pϕ,m, â)
is deep and normal, eventually.

Here is another variant of Theorem 3.3.33:

Proposition 3.3.36. If K is d-valued and ω-free, and Γ is divisible, then every Z-
minimal special slot in K of order r has a refinement (P,m, â) such that (Pϕ,m, â)
is deep and normal, eventually.

To establish this proposition we follow the proof of Theorem 3.3.33, using Lem-
ma 3.2.35 to preserve specialness in the initial refining. Corollary 3.3.15 takes over
the role of Corollary 3.3.16 in that proof.

For linear slots in K we can weaken the hypotheses of Theorem 3.3.33:

Corollary 3.3.37. Suppose degP = 1. Then (P,m, â) has a refinement (P, n, â)
such that (Pϕ, n, â) is deep and normal, eventually. Moreover, if K is λ-free
and r > 1, then (Pϕ,m, â) is deep and normal, eventually.
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Proof. By the remarks before Lemma 3.3.17, (P,m, â) is normal iff it is steep.
Moreover, if (P,m, â) is normal, then it is quasilinear by Corollary 3.3.21, and
hence (Pϕ,m, â) is deep and normal, eventually, by the remarks before Exam-
ple 3.3.3 and Lemma 3.3.20. By Lemma 3.3.2, (P,m, â) has a refinement (P, n, â)
such that (Pϕ, n, â) is steep, eventually. This yields the first part. The second part
follows from Corollary 3.1.21 and Lemma 3.3.17. □

Corollary 3.3.38. Suppose K is λ-free, Γ is divisible, and (P,m, â) is a quasilinear

minimal hole in K of order r = 1. Then (P,m, â) has a refinement (Q, n, b̂) such

that (Qϕ, n, b̂) is deep and normal, eventually.

Proof. The case degP = 1 is part of Corollary 3.3.37. If degP > 1, then K is
1-linearly newtonian by Lemma 3.2.5, so we can use Corollary 3.3.35. □

Improving normality. In this subsection L := LP×m
. Note that if (P,m, â) is a

normal hole in K, then P×m ∼ (P×m)1 by Lemma 3.3.18. We call our slot (P,m, â)
in K strictly normal if it is normal, but with the condition (N2) replaced by the
stronger condition

(N2s) (P×m)̸=1 ≺∆(v) v
w+1(P×m)1.

Thus for normal (P,m, â) and v = v(L) we have:

(P,m, â) is strictly normal ⇐⇒ P (0) ≺∆(v) v
w+1(P×m)1.

So if (P,m, â) is normal and P (0) = 0, then (P,m, â) is strictly normal. Note that
if (P,m, â) is strictly normal, then

P×m ∼∆(v) (P×m)1 (and hence ddegP×m = 1).

If (P,m, â) is strictly normal, then so are (P×n,m/n, â/n) and (bP,m, â) for b ̸= 0.
Thus (P,m, â) is strictly normal iff (P×m, 1, â/m) is strictly normal. If (P,m, â) is
strictly normal, then so is every equivalent slot in K. The proof of Lemma 3.3.23
shows that if (P,m, â) is strictly normal and u ∈ K, u ≍ 1, then (P, um, â) is also
strictly normal. The analogue of Lemma 3.3.19 goes through, with (P×m)̸=1 instead
of (P×m)>1 in the proof:

Lemma 3.3.39. Suppose order(L) = r and v are such that (N1) and (N2s) hold,
and v(L) ≍∆(v) v. Then (P,m, â) is strictly normal.

Lemma 3.3.20 goes likewise through with “strictly normal” instead of “normal”:

Lemma 3.3.40. If (P,m, â) is strictly normal and ϕ ≼ 1 is active, then the
slot (Pϕ,m, â) in Kϕ is strictly normal. (Hence if (P,m, â) is strictly normal,
then (P,m, â) is quasilinear, and if in addition (P,m, â) is linear, then it is deep.)

As to Proposition 3.3.25, here is a weak version for strict normality:

Lemma 3.3.41. Suppose (P,m, â) is a strictly normal hole in K and â− a ≺∆(v)

vr+w+1m where v := v(L). Then its refinement (P+a,m, â − a) is also strictly
normal.

Proof. As in the proof of Proposition 3.3.25 we arrange m = 1. We can also
assume P1 ≍ 1. From P = P (0) + P1 + P>1 we get

P (a) = P (0) + P1(a) + P>1(a),
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where P (0) ≺∆(v) vw+1 and P>1(a) ≼ P>1 ≺∆(v) vw+1 by (N2s) and a ≺ 1; we

show that also P1(a) ≺∆(v) v
w+1. To see this note that

0 = P (â) = P (0) + P1(â) + P>1(â),

where as before P (0), P>1(â) ≺∆(v) vw+1, so P1(â) ≺∆(v) vw+1. Lemma 1.1.13

applied to (K̂,≼∆(v), P1) in place of (K,≼, P ), with m = w + 1, y = a − â,

yields P1(a− â) ≺∆(v) v
w+1, hence

P1(a) = P1(a− â) + P1(â) ≺∆(v) vw+1

as claimed. It remains to use v(LP+a
) ≍∆(v) v and the normality of (P+a, 1, â− a)

obtained from Proposition 3.3.25 and its proof. □

We also have a version of Lemma 3.3.41 for Z-minimal slots, obtained from that
lemma via Lemma 3.2.14:

Lemma 3.3.42. Suppose (P,m, â) is Z-minimal and strictly normal. Set v :=
v(L), and suppose â − a ≺∆(v) vr+w+1m. Then the refinement (P+a,m, â − a)
of (P,m, â) is strictly normal.

Next two versions of Proposition 3.3.26:

Lemma 3.3.43. Suppose (P,m, â) is a strictly normal hole in K, â ≺ n ≼ m,
and [n/m] <

[
v(L)

]
. Then the refinement (P, n, â) of (P,m, â) is strictly normal.

Proof. As in the proof of Proposition 3.3.26 we arrange m = 1 and, setting v :=

v(L), L̃ := LP×n
, show that order(L̃) = r, v(L̃) ≍∆(v) v, and that (N2) holds with m

replaced by n. Now [n] < [v] yields n ≍∆(v) 1; together with (P×n)1 ≍∆(v) nP1 this

gives P (0) ≺∆(v) vw+1P1 ≍∆(v) vw+1(P×n)1. Hence (N2s) holds with m replaced
by n. Lemma 3.3.39 now yields that (P, n, â) is strictly normal. □

Lemma 3.3.44. Suppose (P,m, â) is a strictly normal hole in K and â ≺∆(v) m

where v := v(L). Assume also that for all q ∈ Q> there is given an element vq of K×

with v(vq) = q v(v). Then for all sufficiently small q ∈ Q> and n with n ≍ vqm we
have: â ≺ n and the refinement (P, n, â) of (P,m, â) is strictly normal.

Proof. We arrange m = 1 as usual, and take q0 ∈ Q> such that â ≺ vq0 and
P (0) ≺∆(v) v

w+1+q0P1. Let q ∈ Q, 0 < q ⩽ q0, and suppose n ≍ vq. Then (P, n, â)

is a refinement of (P, 1, â), and the proof of Proposition 3.3.26 gives: L̃ := LP×n

has order r with v(L̃) ≍∆(v) v, nP1 ≍∆(v) (P×n)1, and (N2) holds with m replaced
by n. Hence

P (0) ≺∆(v) v
w+1+q0P1 ≼ vw+1nP1 ≍∆(v) v

w+1(P×n)1.

Now as in the proof of the previous lemma we conclude that (P, n, â) is strictly
normal. □

Remark 3.3.45. In Lemmas 3.3.43 and 3.3.44 we assumed that (P,m, â) is a strictly
normal hole in K. By Lemma 3.2.14 these lemmas go through if this hypothesis is
replaced by “(P,m, â) is a strictly normal Z-minimal slot in K”.

We now turn to refining a given normal hole to a strictly normal hole. We only do
this under additional hypotheses, tailored so that we may employ Lemma 3.1.17.
Therefore we assume in the rest of this subsection: K is d-valued and for all v
and q ∈ Q> we are given an element vq of K× with (vq)† = qv†. Note that
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then v(vq) = q v(v) for such q. (In particular, Γ is divisible.) We also adopt the
convention that if orderL = r, then v := v(L).

Lemma 3.3.46. Suppose (P,m, â) is a normal hole in K and â − a ≼ vw+2m.
Then the refinement (P+a,m, â− a) of (P,m, â) is strictly normal.

Proof. As usual we arrange that m = 1. By Proposition 3.3.25, (P+a, 1, â − a)
is normal; the proof of this proposition gives order(LP+a

) = r, v(LP+a
) ∼∆(v) v,

(P+a)1 ∼∆(v) P1, and (N2) holds with m = 1 and P replaced by P+a. It remains

to show that P+a(0) ≺∆(v) v
w+1(P+a)1, equivalently, P (a) ≺∆(v) v

w+1P1.

Let L̂ := LP+â
∈ K̂[∂] and R := P>1 ∈ K{Y }; note that P(i) = R(i) for |i| > 1

and R ≺∆(v) v
w+1P1. Hence Taylor expansion and P (â) = 0 give

P (a) = P (â) + L̂(a− â) +
∑
|i|>1

P(i)(â) · (a− â)i

= L̂(a− â) +
∑
|i|>1

R(i)(â) · (a− â)i

where R(i)(â) · (a− â)i ≺∆(v) vw+1P1 for |i| > 1,

so it is enough to show L̂(a− â) ≺∆(v) v
w+1P1. Lemma 3.1.27 applied to (K̂, â) in

place of (K, a) gives order L̂ = r and L̂ ∼∆(v) L. Since K̂ is d-valued, Lemma 3.1.17

yields a q ∈ Q with w+1 < q ⩽ w+2 and a w such that L̂vq ≍ wvq L̂ where [w] ⩽
[v†] and hence w ≍∆(v) 1 (see the remark before Lemma 3.3.1). With n ≍ a− â we

have n ≼ vw+2 ≼ vq ≺∆(v) v
w+1 and therefore

L̂(a− â) ≼ L̂n ≼ L̂vq ≍ wvq L̂ ≍∆(v) vqL̂ ≺∆(v) vw+1L̂.

Hence L̂(a− â) ≺∆(v) v
w+1P1 as required. □

In particular, if (P,m, â) is a normal hole in K and â ≼ vw+2m, then (P,m, â) is
strictly normal.

Corollary 3.3.47. Suppose (P,m, â) is Z-minimal, deep, and normal. If (P,m, â)
is special, then (P,m, â) has a deep and strictly normal refinement (P+a,m, â− a)
where â− a ≺∆(v) m and v(LP+a,×m

) ≍∆(v) v. (Note that if K is r-linearly newto-
nian, and ω-free if r > 1, then (P,m, â) is special by Lemma 3.2.36.)

Proof. By Lemma 3.2.14 we arrange that (P,m, â) is a hole in K. If (P,m, â)
is special, Corollary 3.3.15 gives an a such that â − a ≼ vw+2m, and then the
refinement (P+a,m, â−a) of (P,m, â) is strictly normal by Lemma 3.3.46, and deep
with v(LP+a,×m

) ≍∆(v) v by Lemma 3.3.7. □

This leads to a useful variant of the Normalization Theorem 3.3.33:

Corollary 3.3.48. Suppose K is ω-free and r-linearly newtonian. Then every Z-
minimal slot in K of order r has a refinement (P,m, â) such that (Pϕ,m, â) is deep
and strictly normal, eventually.

Proof. Let a Z-minimal slot in K of order r be given. Use Theorem 3.3.33 to
refine it to a slot (P,m, â) in K with an active ϕ0 such that the slot (Pϕ0 ,m, â)
in Kϕ0 is deep and normal. Corollary 3.3.47 gives a deep and strictly normal

refinement (Pϕ0

+a,m, â− a) of (Pϕ0 ,m, â). By Lemma 3.3.40 the slot (Pϕ+a,m, â− a)
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in Kϕ is deep and strictly normal, for all active ϕ ≼ ϕ0 (in K). Thus (P+a,m, â−a)
refines the original Z-minimal slot in K and has the desired property. □

Corollaries 3.2.6 and 3.3.48 have the following consequence:

Corollary 3.3.49. Suppose K is ω-free. Then every minimal hole in K of order r
and degree > 1 has a refinement (P,m, â) such that (Pϕ,m, â) is deep and strictly
normal, eventually.

Corollary 3.3.47 also gives the following variant of Corollary 3.3.48, where the role
of Theorem 3.3.33 in its proof is taken over by Proposition 3.3.36:

Corollary 3.3.50. Suppose K is ω-free. Then every Z-minimal special slot in K of
order r has a refinement (P,m, â) such that (Pϕ,m, â) is deep and strictly normal,
eventually.

3.4. Isolated Slots

In this short section we study the concept of isolation, which plays well together with
normality. Throughout this section K is an H-asymptotic field with small derivation
and with rational asymptotic integration. We let a, b range over K and ϕ, m, n, w
over K×. We also let (P,m, â) be a slot in K of order r ⩾ 1. Recall that v(â−K)
is a cut in Γ without largest element. Note that v

(
(â − a) − K

)
= v(â − K)

and v(ân−K) = v(â−K) + vn.

Definition 3.4.1. We say that (P,m, â) is isolated if for all a ≺ m,

order(LP+a
) = r and E e(LP+a

) ∩ v(â−K) < v(â− a);

equivalently, for all a ≺ m: order(LP+a
) = r and whenever w ≼ â − a is such

that v(w) ∈ E e(LP+a), then w ≺ â− b for all b.

In particular, if (P,m, â) is isolated, then v(â) /∈ E e(LP ). If (P,m, â) is isolated, then
so is every equivalent slot in K, as well as (bP,m, â) for b ̸= 0 and the slot (Pϕ,m, â)
in Kϕ for active ϕ in K. Moreover:

Lemma 3.4.2. If (P,m, â) is isolated, then so is any refinement (P+a, n, â − a)
of it.

Proof. For the case n = m, use v
(
(â− a)−K

)
= v(â−K). The case a = 0 is clear.

The general case reduces to these two special cases. □

Lemma 3.4.3. Suppose (P,m, â) is isolated. Then the multiplicative conjugate
(P×n,m/n, â/n) of (P,m, â) by n is isolated.

Proof. Let a ≺ m/n. Then an ≺ m, so order(LP×n,+a
) = order(LP+an,×n

) =

order(LP+an
) = r. Suppose w ≼ (â/n)−a and v(w) ∈ E e

(
LP×n,+a

)
. Now LP×n,+a

=

LP+an,×n
= LP+an

n and thus wn ≼ â− an, v(wn) ∈ E e
(
P+an

)
. But (P,m, â) is iso-

lated, so v(wn) > v(â−K) and hence v(w) > v
(
(â/n)−K

)
. Thus (P×n,m/n, â/n)

is isolated. □

Lemma 3.4.4. Suppose K is λ-free or r = 1, and (P,m, â) is normal. Then

(P,m, â) is isolated ⇐⇒ E e(LP ) ∩ v(â−K) ⩽ vm.

Proof. Use Lemma 3.3.24; for the direction⇒, use also that â−a ≺ m iff a ≺ m. □
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Lemma 3.4.5. Suppose degP = 1. Then

(P,m, â) is isolated ⇐⇒ E e(LP ) ∩ v(â−K) ⩽ vm.

Proof. Use that orderLP = r and LP+a
= LP for all a. □

Proposition 3.4.6. Suppose K is λ-free or r = 1, and (P,m, â) is normal. Then
(P,m, â) has an isolated refinement.

Proof. Suppose (P,m, â) is not already isolated. Then Lemma 3.4.4 gives γ with

γ ∈ E e(LP ) ∩ v(â−K), γ > vm.

We have |E e(LP )| ⩽ r, by [ADH, p. 481] if r = 1, and Corollary 1.8.11 and λ-
freeness of K if r > 1. Hence we can take γ := maxE e(LP ) ∩ v(â − K), and
then γ > vm. Take a and n with v(â − a) > γ = v(n); then (P+a, n, â − a) is a
refinement of (P,m, â) and a ≺ m. Let b ≺ n; then a+ b ≺ m, so by Lemma 3.3.24,

order(L(P+a)+b
) = r, E e(L(P+a)+b

) = E e(LP ).

Also v
(
(â− a)− b

)
> γ, hence

E e
(
L(P+a)+b

)
∩ v
(
(â− a)−K

)
= E e(LP ) ∩ v(â−K) ⩽ γ < v

(
(â− a)− b

)
.

Thus (P+a, n, â− a) is isolated. □

Remark 3.4.7. Proposition 3.4.6 goes through if instead of assuming that (P,m, â)
is normal, we assume that (P,m, â) is linear. (Same argument, using Lemma 3.4.5
in place of Lemma 3.4.4 and L(P+a)+b

= LP in place of Lemma 3.3.24.)

Corollary 3.4.8. Suppose r = 1, and (P,m, â) is normal or linear. If E e(LP ) = ∅,
then (P,m, â) is isolated. If E e(LP ) ̸= ∅, so E e(LP ) = {vg} where g ∈ K×,
then (P,m, â) is isolated iff m ≼ g or â−K ≻ g.

This follows immediately from Lemmas 3.4.4 and 3.4.5. The results in the rest of
this subsection are the raison d’être of isolated holes:

Proposition 3.4.9. Suppose K is ω-free and (P,m, â) is an isolated hole in K

which is normal or linear. Let b̂ in an immediate asymptotic extension of K sat-

isfy P (̂b) = 0 and b̂ ≺ m. Then v(â− a) = v(̂b− a) for all a, so b̂ /∈ K.

Proof. Replacing (P,m, â), b̂ by (P×m, 1, â/m), b̂/m, we arrange m = 1. Let a be

given; we show v(â − a) = v(̂b − a). This is clear if a ≽ 1, so assume a ≺ 1.
Corollary 3.3.21 (if (P,m, â) is normal) and Lemma 3.2.21 (if (P,m, â) is lin-
ear) give ndegP = 1. Thus P is in newton position at a by Corollary 3.2.23.
Moreover v(â − a) /∈ E e(LP+a

), hence v(â − a) = ve(P, a) by Lemma 1.8.15.

Likewise, if v(̂b − a) /∈ E e(LP+a), then v(̂b − a) = ve(P, a) by Lemma 1.8.15,

so v(â− a) = v(̂b− a).

Thus to finish the proof it is enough to show that E e(LP+a
) ∩ v(̂b − K) ⩽ 0.

Now |E e(LP+a
)| ⩽ r by Corollary 1.5.5, so we have b ≺ 1 such that

E e(LP+a) ∩ v(̂b−K) < v(̂b− b),

in particular, v(̂b− b) /∈ E e(LP+a
). If (P,m, â) is normal, then Lemma 3.3.24 gives

E e(LP+a
) = E e(LP ) = E e(LP+b

),
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so by the above with b instead of a we have v(â−b) = v(̂b−b). If (P,m, â) is linear,
then LP+a = LP = LP+b

, and we obtain likewise v(â− b) = v(̂b− b). Hence

E e(LP+a
) ∩ v(̂b−K) ⊆ E e(LP+a

) ∩ Γ<v(â−b) ⊆ E e(LP ) ∩ v(â−K) ⩽ 0.

using Lemmas 3.4.4 and 3.4.5 for the last step. □

Combining Proposition 3.4.9 with Corollary 3.2.15 yields:

Corollary 3.4.10. Let K, (P,m, â), b̂ be as in Proposition 3.4.9, and assume also

that (P,m, â) is Z-minimal. Then there is an isomorphism K⟨â⟩ → K ⟨̂b⟩ of valued
differential fields over K sending â to b̂.

Using the Normalization Theorem, we now obtain:

Corollary 3.4.11. Suppose K is ω-free and Γ is divisible. Then every minimal

hole in K of order r has an isolated refinement (P,m, â) such that for any b̂ in

an immediate asymptotic extension of K with P (̂b) = 0 and b̂ ≺ m there is an

isomorphism K⟨â⟩ → K ⟨̂b⟩ of valued differential fields over K sending â to b̂.

Proof. Given a minimal linear hole in K of order r, use Remark 3.4.7 to refine it to
an isolated minimal linear hole (P,m, â) in K of order r, and use Corollary 3.4.10.
Suppose we are given a minimal non-linear hole inK of order r. ThenK is r-linearly

newtonian by Corollary 3.2.6. Then Theorem 3.3.33 yields a refinement (Q,w, d̂)

of it and an active θ in K such that the minimal hole (Qθ,w, d̂) in Kθ is nor-

mal. Proposition 3.4.6 gives an isolated refinement (Qθ+d, v, d̂ − d) of (Qθ,w, d̂).

Suitably refining (Qθ+d, v, d̂ − d) further followed by compositionally conjugating

with a suitable active element of Kθ yields by Theorem 3.3.33 and Lemma 3.4.2

a refinement (P,m, â) of (Q,w, d̂) (and thus of the originally given hole) and an
active ϕ in K such that (Pϕ,m, â) is both normal and isolated. Then (P,m, â) is
isolated, and we can apply Corollary 3.4.10 to Kϕ and (Pϕ,m, â) in the role of K
and (P,m, â). □

For r = 1 we can replace “ω-free” in Proposition 3.4.9 and Corollary 3.4.10 by the
weaker “λ-free” (same proofs, using Lemma 1.8.20 instead of Lemma 1.8.15):

Proposition 3.4.12. Suppose K is λ-free, (P,m, â) is an isolated hole in K of

order r = 1, and suppose (P,m, â) is normal or linear. Let b̂ in an immediate

asymptotic extension of K satisfy P (̂b) = 0 and b̂ ≺ m. Then v(â−a) = v(̂b−a) for
all a. (Hence if (P,m, â) is Z-minimal, then there is an isomorphism K⟨â⟩ → K ⟨̂b⟩
of valued differential fields over K sending â to b̂.)

This leads to an analogue of Corollary 3.4.11:

Corollary 3.4.13. Suppose K is λ-free and Γ is divisible. Then every quasilinear
minimal hole in K of order r = 1 has an isolated refinement (P,m, â) such that for

any b̂ in an immediate asymptotic extension of K with P (̂b) = 0 and b̂ ≺ m there

is an isomorphism K⟨â⟩ → K ⟨̂b⟩ of valued differential fields over K sending â to b̂.

Proof. Suppose we are given a quasilinear minimal hole in K of order r = 1. Then

Corollary 3.3.38 yields a refinement (Q,w, d̂) of it and an active θ in K such that

the quasilinear minimal hole (Qθ,w, d̂) inKθ of order 1 is normal. Proposition 3.4.6

gives an isolated refinement (Qθ+d, v, d̂− d) of (Qθ,w, d̂), and then Corollary 3.3.38
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yields a refinement (P,m, â) of (Q,w, d̂) and an active ϕ in K such that (Pϕ,m, â)
is normal and isolated. Now apply Proposition 3.4.12 with Kϕ and (Pϕ,m, â) in
the role of K and (P,m, â). □

Next a variant of Lemma 3.2.1 for r = 1 without assuming ω-freeness:

Corollary 3.4.14. Suppose K is 1-newtonian and Γ is divisible. Then K has no
quasilinear Z-minimal slot of order 1.

Proof. By Proposition 1.8.28, K is λ-free. Towards a contradiction, let (P,m, â)
be a quasilinear Z-minimal slot in K of order 1. By Lemma 3.2.14 we arrange
that (P,m, â) is a hole in H. Using Corollary 3.3.35, Lemma 3.4.2 and the remark
before it, and Proposition 3.4.6, we can refine further so that (Pϕ,m, â) is normal
and isolated for some active ϕ in K. Then there is no y ∈ K with P (y) = 0
and y ≺ m, by Proposition 3.4.12, contradicting Lemma 3.2.27 for L = K. □

Finally, for isolated linear holes, without additional hypotheses:

Lemma 3.4.15. Suppose (P,m, â) is an isolated linear hole in K, and â− a ≺ m.
Then P (a) ̸= 0, and γ = v(â − a) is the unique element of Γ \ E e(LP ) such
that veLP

(γ) = v
(
P (a)

)
.

Proof. By Lemma 3.4.5, γ := v(â− a) ∈ Γ \ E e(LP ). Since degP = 1,

LP (â− a) = LP (â)− LP (a) = −P (0)− LP (a) = −P (a),

so P (a) ̸= 0. By Lemma 1.5.6, veLP
(γ) = v

(
LP (â− a)

)
= v
(
P (a)

)
. □

In [15] we shall prove a version of Proposition 3.4.9 without the hypothesis that b̂
lies in an immediate extension of K. In Section 4.4 below we consider, in a more
restricted setting, a variant of isolated slots, with ultimate exceptional values taking
over the role played by exceptional values in Definition 3.4.1.

3.5. Holes of Order and Degree One

In this section K is a d-valued field of H-type with small derivation and rational
asymptotic integration. (Later on we will impose additional restrictions on K.) We

also let K̂ be an immediate asymptotic extension of K. We focus here on slots of
complexity (1, 1, 1) in K. As a byproduct we obtain in Corollary 3.5.18 a partial
generalization of Corollary 3.3.49 to minimal holes in K of arbitrary degree. First
we establish in the next subsection a useful formal identity. We let j, k range over N
(in addition to m, n, as usual).

An integration identity. Let R be a differential ring, and let f , g, h, range
over R. We use

∫
f = g +

∫
h as a suggestive way to express that f = g′ + h, and

likewise,
∫
f = g −

∫
h means that f = g′ − h. For example,∫

f ′g = fg −
∫
fg′ (integration by parts).

Let e, ξ ∈ R× satisfy e† = ξ. We wish to expand
∫
e by iterated integration by

parts. Now for g = e we have g′ ∈ R× with g
g′ =

1
ξ , so in view of e = g′ e

g′ :∫
e =

∫
g′

e

g′
=

e

ξ
−
∫
g

(
e

g′

)′

,
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and (
e

g′

)′

=

(
1

ξ

)′

=
−ξ′

ξ2
=

−ξ†

ξ
,

and thus ∫
e =

e

ξ
+

∫
ξ†

ξ
e .

More generally, using the above identities for g = e,∫
f e =

∫
g′f

e

g′
=

f

ξ
e−
∫
g

(
f
e

g′

)′

=
f

ξ
e−
∫
g

(
f ′

e

g′
+ f

(
e

g′

)′
)

=
f

ξ
e−
∫ (

f ′

ξ
e+fg

(−ξ†
ξ

))
=

f

ξ
e−
∫ (

f ′

ξ
e+

−fξ†

ξ
e

)
=

f

ξ
e+

∫ (
ξ†f − f ′

ξ

)
e .

Replacing f by f/ξk gives the following variant of this identity:∫
f

ξk
e =

f

ξk+1
e+

∫
(k + 1)ξ†f − f ′

ξk+1
e .

Induction on m using the last identity yields:

Lemma 3.5.1. Set ζ := ξ†. Then∫
f e =

m∑
j=0

Pj(ζ, f)
e

ξj+1
+

∫
Pm+1(ζ, f)

e

ξm+1
,

where the Pj ∈ Q{Z, V } = Q{Z}{V } are independent of R, e, ξ:

P0 := V, Pj+1 := (j + 1)ZPj − P ′
j .

Thus Pj = Pj0V + Pj1V
′ + · · ·+ PjjV

(j) with all Pjk ∈ Q{Z} and Pjj = (−1)j.

For example,

P0 = V, P1 = ZV − V ′, P2 = (2Z2 − Z ′)V − 3ZV ′ + V ′′.

An asymptotic expansion. In this subsection ξ ∈ K and ξ ≻♭ 1; equiva-
lently, ξ ∈ K satisfies ξ ≻ 1 and ζ := ξ† ≽ 1. We also assume that ξ /∈ I(K) +K†.

Since K̂ is d-valued of H-type with asymptotic integration, it has by [ADH, 10.2.7]

an immediate asymptotic extension K̂(ϕ) with ϕ′ = ξ. Then the algebraic closure

of K̂(ϕ) is still d-valued of H-type, by [ADH, 9.5], and so [ADH, 10.4.1] yields a
d-valued H-asymptotic extension L of this algebraic closure with an element e ̸= 0
such that e† = ξ. All we need about L below is that it is a d-valued H-asymptotic

extension of K̂ with elements ϕ and e such that ϕ′ = ξ and e ̸= 0, e† = ξ. Note
that then L has small derivation, and ξ ≻♭ 1 in L. (The element ϕ will only play
an auxiliary role later in this subsection.)

Lemma 3.5.2. v(e) /∈ Γ.

Proof. Suppose otherwise. Take a ∈ K× with a e ≍ 1. Then a† + ξ = (a e)† ∈
I(L) ∩K = I(K) and thus ξ ∈ I(K) +K†, a contradiction. □
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By Lemma 3.5.2 there is for each g ∈ L at most one f̂ ∈ K̂ with
(
f̂ e
ξ

)′
= g.

Let f ∈ K× be given with f ≼ 1, and suppose f̂ ∈ K̂ satisfies
(
f̂ e
ξ

)′
= f e. Our

aim is to show that with Pj as in Lemma 3.5.1, the series
∑∞
j=0 Pj(ζ, f)

1
ξj is a kind

of asymptotic expansion of f̂ . The partial sums

fm :=

m∑
j=0

Pj(ζ, f)
1

ξj

of this series lie in K, with f0 = f and fn−fm ≺ ξ−m for m < n, by Lemma 1.1.16.
More precisely, we show:

Proposition 3.5.3. We have f̂ − fm ≺ ξ−m for all m. (Thus: f ≍ 1 ⇒ f̂ ∼ f .)

Towards the proof, note that by Lemma 3.5.1 with R = L,

f̂
e

ξ
=

m∑
j=0

Pj(ζ, f)
e

ξj+1
+ Im, Im ∈ L, and thus

f̂ = fm +
ξ

e
Im(3.5.1)

where Im ∈ K̂ e satisfies I ′m = Pm+1(ζ, f)
e

ξm+1 , a condition that determines Im
uniquely up to an additive constant from CL. The proof of Proposition 3.5.3 now
rests on the following lemmas:

Lemma 3.5.4. In L we have (e ξl)(k) ∼ e ξl+k, for all l ∈ Z and all k.

This is Corollary 1.1.17 with our L in the role of K there, and taking eϕ there as
our e ∈ L; note that here our ϕ ∈ L with ϕ′ = ξ is needed.

Lemma 3.5.5. Suppose e ≻ ξm+1. Then ξ
e Im ≺ ξ−m.

Proof. This amounts to Im ≺ e
ξm+1 . Suppose Im ≽ e

ξm+1 ≻ 1. Then we have I ′m ≽(
e

ξm+1

)′ ∼ e
ξm by Lemma 3.5.4, so Pm+1(ζ, f)

e
ξm+1 ≽ e

ξm , and thus Pm+1(ζ, f) ≽ ξ,
contradicting Lemma 1.1.16. □

Lemma 3.5.6. Suppose e ≼ ξm. Then Im ≺ 1 and ξ
e Im ≺ ξ−m.

Proof. Lemma 1.1.16 gives

Pm+1(ζ, f)
e

ξm+1
≼ ζN

e

ξm+1
≼
ζN

ξ
for some N ∈ N,

so v(I ′m) > ΨL, and thus Im ≼ 1. If Im ≍ 1, then v( ξe Im) = v(ξ) − v(e) /∈ Γ,

contradicting ξ
e Im = f̂ − fm ∈ K̂, by (3.5.1). Thus Im ≺ 1. Now assume towards

a contradiction that ξ
e Im ≽ ξ−m. Then e

ξm+1 ≼ Im ≺ 1, so I ′m ≽
(

e
ξm+1

)′ ∼ e
ξm by

Lemma 3.5.4, and this yields a contradiction as in the proof of Lemma 3.5.5. □

Proof of Proposition 3.5.3. Letm be given. If e ≻ ξm+1, then f̂−fm = ξ
e Im ≺ ξ−m

by Lemma 3.5.5. Suppose e ≼ ξm+1. Then Lemma 3.5.6 (with m+1 instead of m)

gives f̂ − fm+1 ≺ ξ−(m+1), hence f̂ − fm = (f̂ − fm+1) + (fm+1 − fm) ≺ ξ−m. □
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Application to linear differential equations of order 1. Proposition 3.5.3

yields information about the asymptotics of solutions (in K̂) of certain linear dif-
ferential equations of order 1 over K:

Corollary 3.5.7. Let f, ξ ∈ K, f ≼ 1, ξ ≻♭ 1, ξ /∈ I(K) + K†, and sup-

pose y ∈ K̂ satisfies y′ + ξy = f . Then there is for every m an element ym ∈ K
with y − ym ≺ ξ−m. Also, f ≍ 1 ⇒ y ∼ fξ−1.

Proof. Take L and e ∈ L as at the beginning of the previous subsection, and

set f̂ := yξ ∈ K̂. Then for A := ∂ + ξ we have A(f̂/ξ) = f , so(
f̂
e

ξ

)′

= (f̂/ξ)′ e+(f̂/ξ)ξ e = A(f̂/ξ) e = f e,

hence f̂ is as in the previous subsection. Now apply Proposition 3.5.3. □

Corollary 3.5.8. Let g ∈ K, u ∈ K× be such that g /∈ I(K) + K† and ξ :=

g + u† ≻♭ 1. Suppose z ∈ K̂ satisfies z′ + gz = u. Then z ∼ u/ξ, and for every m
there is a zm ∈ K such that z − zm ≺ uξ−m.

Proof. Set A := ∂ + g. Then A⋉u = ∂ + ξ, so A(z) = u yields for y := z/u
that y′+ξy = 1. Now observe that ξ /∈ I(K)+K† and use the previous corollary. □

Slots of order and degree 1. In the rest of this section we use the material above

to analyze slots of order and degree 1 in K. Below K is henselian and (P,m, f̂) is

a slot in K with orderP = degP = 1 and f̂ ∈ K̂ \K. We let f range over K, n
over K×, and ϕ over active elements of K. Thus

P = a(Y ′ + gY − u) where a ∈ K×, g, u ∈ K,

P×n = an
(
Y ′ + (g + n†)Y − n−1u

)
.

Since K is henselian, (P,m, f̂) is Z-minimal and thus equivalent to a hole in K, by
Lemma 3.2.14. Also, nmulP×m = ndegP×m = 1 by Lemma 3.2.21. We have LP =
a(∂ + g), so

g ∈ K† ⇐⇒ kerLP ̸= {0}, g ∈ I(K) +K† ⇐⇒ E e(LP ) ̸= ∅,

using for the second equivalence the remark on E e(A) preceding Lemma 1.5.9.

If (P,m, f̂) is isolated, then P (f) ̸= 0 for f̂ − f ≺ m by Lemmas 3.2.14 and 3.4.15,
so, taking f = 0, we have u ̸= 0.

Lemma 3.5.9. Suppose ∂K = K and I(K) ⊆ K†. Then E e(LP ) = ∅, so (P,m, f̂)
is isolated by Lemma 3.4.5.

Proof. Passing to an equivalent hole in K, arrange that (P,m, f̂) is a hole in K.

Since ∂K = K and f̂ ∈ K̂ \K, the remark following Lemma 1.8.21 yields g /∈ K† =
I(K) +K†, therefore E e(LP ) = ∅. □

Set v := v(LP×m
); thus v = 1 if g + m† ≼ 1 and v = 1/(g + m†) otherwise. Hence

from Example 3.3.3 and the remarks before Lemma 3.3.17 we obtain:

(P,m, f̂) is normal ⇐⇒ (P,m, f̂) is steep ⇐⇒ v ≺♭ 1,

(P,m, f̂) is deep ⇐⇒ v ≺♭ 1 and u ≼ m/v.
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We have P (0) = −au, and if v ≺ 1, then (P×m)1 ∼ (am/v)Y . Thus

(P,m, f̂) is strictly normal ⇐⇒ v ≺♭ 1 and u ≺∆(v) mv.

We say that (P,m, f̂) is balanced if (P,m, f̂) is steep and P (0) ≼ SP×m
(0), equiv-

alently, (P,m, f̂) is steep and u ≼ m. Thus

(P,m, f̂) is strictly normal =⇒ (P,m, f̂) is balanced =⇒ (P,m, f̂) is deep,

and with b ∈ K×,

(P,m, f̂) is balanced ⇐⇒ (P×n,m/n, f̂/n) is balanced ⇐⇒ (bP,m, f̂) is balanced.

If (P,m, f̂) is balanced, then so is any slot in K equivalent to (P,m, f̂). Moreover,

if (P,m, f̂) is a hole inK, then P (0) = −LP (f̂), so (P,m, f̂) is balanced iff it is steep

and LP (f̂) ≼ SP×m
(0). By Corollary 3.3.14, if (P,m, f̂) is steep, then f̂−f ≺∆(v) m

for some f . For balanced (P,m, f̂) we have a variant of this fact:

Lemma 3.5.10. Suppose (P,m, f̂) is balanced and g /∈ I(K) +K†. Then there is

for all n an f such that f̂ − f ≺ vnm.

Proof. Replacing (P,m, f̂) by an equivalent hole in K, we arrange that (P,m, f̂) is a

hole in K, and replacing (P,m, f̂) by (P×m, 1, f̂/m), that m = 1. Then f̂ ′ + gf̂ = u
with g = 1/v ≻♭ 1, g /∈ I(K) + K†, and u ≼ 1. Hence the lemma follows from
Corollary 3.5.7. □

In the next corollary we assume that the subgroup K† of K is divisible. (Since K
is henselian and d-valued, this holds if the groups C× and Γ are divisible.)

Corollary 3.5.11. Suppose (P,m, f̂) is balanced and g /∈ I(K)+K†. Then (P,m, f̂)

has a strictly normal refinement (P+f ,m, f̂ − f).

Proof. First arrange that (P,m, f̂) is a hole in K. The previous lemma yields

an f such that f̂ − f ≼ v3m. Then (P+f ,m, f̂ − f) is a strictly normal refinement

of (P,m, f̂), by Lemma 3.3.46 (where the latter uses divisibility of K†). □

Lemma 3.5.12. Suppose (P,m, f̂) is balanced with vf̂ /∈ E e(LP ) and f̂ − f ≼ f̂ .

Then the refinement (P+f ,m, f̂ − f) of (P,m, f̂) is balanced.

Proof. By Lemma 3.2.14 we arrange (P,m, f̂) is a hole. Replacing (P,m, f̂) and f

by (P×m, 1, f̂/m) and f/m we arrange next that m = 1. By the remark preceding

Lemma 3.3.2, (P+f , 1, f̂ − f) is steep. Take ϕ such that vf̂ /∈ E
(
(LP )

ϕ
)
, and

set ĝ := f̂ − f , so 0 ̸= ĝ ≼ f̂ . Recall from [ADH, 5.7.5] that LPϕ = (LP )
ϕ and

hence LPϕ(f̂) = LP (f̂) and LP (ĝ) = LPϕ(ĝ). Thus

LP+f
(ĝ) = LP (ĝ) ≼ LPϕ ĝ ≼ LPϕ f̂ ≍ LPϕ(f̂) = LP (f̂) ≼ SP (0) = SP+f

(0),

using [ADH, 4.5.1(iii)] to get the second ≼ and vf̂ /∈ E (LPϕ) to get ≍; the last ≼
uses (P, 1, f̂) being a hole. Therefore (P+f , 1, ĝ) is balanced. □

Combining Lemmas 3.4.2 and 3.5.12 yields:

Corollary 3.5.13. If (P,m, f̂) is balanced and isolated, and f̂ − f ≼ f̂ , then the

refinement (P+f ,m, f̂ − f) of (P,m, f̂) is also balanced and isolated.
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We call (P,m, f̂) proper if the differential polynomial P is proper as defined in

Section 1.8 (that is, u ̸= 0 and g + u† ≻♭ 1). If (P,m, f̂) is proper, then so

are (bP,m, f̂) for b ̸= 0 and (P×n,m/n, f̂/n), as well as each refinement (P, n, f̂)

of (P,m, f̂) and each slot in K equivalent to (P,m, f̂). By Lemma 1.8.23, if (P,m, f̂)

is proper, then so is (Pϕ,m, f̂) for ϕ ≼ 1.

Lemma 3.5.14. Suppose (P,m, f̂) is proper and m ≍ u; then (P,m, f̂) is balanced.

Proof. Replacing (P,m, f̂) by (P×m, 1, f̂/m), we arrange m = 1. Then u ≍ 1 and

thus (P, 1, f̂) is balanced. □

Proposition 3.5.15. Suppose (P,m, f̂) is proper and vf̂ /∈ E e(LP ). Then (P,m, f̂)
has a balanced refinement.

Proof. We arrange m = 1 as usual. By Lemmas 1.8.26 and 3.2.14 we have

f̂ ∼ u/(g + u†) ≺♭ u.

Hence if u ≼ 1, then (P, u, f̂) refines (P, 1, f̂), and so (P, u, f̂) is balanced by
Lemma 3.5.14. Assume now that u ≻ 1. Then 1 ≺ u ≺ g by Lemma 1.8.25

and nmulP = 1, and hence u† ≼ g† ≺ g. So g ∼ g + u† ≻♭ 1, hence (P, 1, f̂) is

steep, and f̂ ∼ u/g. Set f := u/g ≺ 1; then (P+f , 1, f̂ − f) is a steep refinement

of (P, 1, f̂). Moreover

P+f (0) = P (f) = af ′ ≺ a = SP+f
(0),

hence (P+f , 1, f̂ − f) is balanced. □

Corollary 3.5.16. Suppose K is λ-free. Then there exists ϕ ≼ 1 and a refine-

ment (P+f , n, f̂ − f) of (P,m, f̂) such that (Pϕ+f , n, f̂ − f) is balanced.

Proof. Using Remark 3.4.7 we can replace (P,m, f̂) by a refinement to arrange

that (P,m, f̂) is isolated. Then u ̸= 0 by the remark before Lemma 3.5.9, so by
Lemma 1.8.24 , Pϕ is proper, eventually. Now apply Proposition 3.5.15 to a proper

(and isolated) (Pϕ,m, f̂) with ϕ ≼ 1. □

Corollary 3.5.17. Suppose K is λ-free, ∂K = K, I(K) ⊆ K†, and K† is divisible.

Then (P,m, f̂) has a refinement (P+f , n, f̂ − f) such that (Pϕ+f , n, f̂ − f) is strictly
normal for some ϕ ≼ 1.

Proof. Corollary 3.5.16 yields a refinement (P+f1 , n1, f̂−f1) of (P,m, f̂) and a ϕ ≼ 1

such that (Pϕ+f1 , n1, f̂ − f1) is balanced. By Lemma 3.5.9 with Kϕ in the role

of K and (Pϕ+f1 , n1, f̂ − f1) in the role of (P,m, f̂) we can apply Corollary 3.5.11

to (Pϕ+f1 , n1, f̂ − f1) to give a strictly normal refinement (Pϕf1+f2 , n, f̂ − f1 − f2) of

it. Thus for f := f1+f2 the refinement (P+f , n, f̂−f) of (P,m, f̂) has the property
that (Pϕ+f , n, f̂ − f) is strictly normal. □

Combining this corollary with Corollaries 3.2.8, 3.3.49, and Lemma 3.3.40 yields:

Corollary 3.5.18. If K is ω-free and algebraically closed with ∂K = K and
I(K) ⊆ K†, then every minimal hole in K of order ⩾ 1 has a refinement (Q, n, ĝ)
such that (Qϕ, n, ĝ) is deep and strictly normal, eventually.
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Remark. Suppose K is λ-free, with ∂K = K, I(K) ⊆ K†, and K† is divisible. By
Corollary 3.3.37 every linear slot in K of order r ⩾ 1 has a refinement (Q, n, ĝ) such
that (Qϕ, n, ĝ) is deep and normal, eventually. We don’t know whether every linear
minimal hole in K of order r ⩾ 1 has a refinement (Q, n, ĝ) such that (Qϕ, n, ĝ) is
deep and strictly normal, eventually. (For r = 1 this holds by Corollary 3.5.17.)
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Part 4. Slots in H-Fields

Here we specialize to the case that K is the algebraic closure of a Liouville closed
H-fieldH with small derivation. After the preliminary Sections 4.1 and 4.2 we come
in Sections 4.3–4.5 to the technical heart of Part 4. Section 4.3 shows that every

minimal hole in K gives rise to a split-normal slot (Q, n, b̂) in H: a normal slot in H
whose linear part LQ×n

∈ H[∂] “asymptotically” splits over K; see Definition 4.3.3
for the precise definition, and Theorem 4.3.9 for the detailed statement of the
main result of this section. In the intended setting where H is a Hardy field, this
asymptotic splitting will allow us to define in Part 6 a contractive operator on a
space of real-valued functions; this operator then has a fixed point whose germ y
satisfies Q(y) = 0, y ≺ n. A main difficulty in that part will lie in guaranteeing that

such germs y have similar asymptotic properties as b̂. Sections 4.4 and 4.5 prepare
the ground for dealing with this: In Section 4.4 we strengthen the concept of isolated
slot to ultimate slot (in H, or in K). This relies on the ultimate exceptional values
of linear differential operators over K introduced in Part 2. In Section 4.5 we single
out among split-normal slots in H those that are repulsive-normal, culminating in
the proof of Theorem 4.5.28: an analogue of Theorem 4.3.9 producing repulsive-
normal ultimate slots in H from minimal holes in K.

4.1. Some Valuation-Theoretic Lemmas

The present section contains preliminaries for the next section on approximating
splittings of linear differential operators; these facts in turn will be used in Sec-
tion 4.3 on split-normality. We shall often deal with real closed fields with extra
structure, denoted usually by H, since the results in this section about such H
will later be applied to H-fields and Hardy fields. We begin by summarizing some
purely valuation-theoretic facts.

Completion and specialization of real closed valued fields. Let H be a real
closed valued field whose valuation ring O is convex in H (with respect to the
unique ordering on H making H an ordered field). Using [ADH, 3.5.15] we equip
the algebraic closure K = H[i] (i2 = −1) of H with its unique valuation ring lying
over O, which is O +Oi. We set Γ := v(H×), so ΓK = Γ.

Lemma 4.1.1. The completion Hc of the valued field H is real closed, its valuation
ring is convex in Hc, and there is a unique valued field embedding Hc → Kc over H.
Identifying Hc with its image under this embedding we have Hc[i] = Kc.

Proof. For the first two claims, see [ADH, 3.5.20]. By [ADH, 3.2.20] we have a
unique valued field embedding Hc → Kc over H, and viewing Hc as a valued
subfield ofKc via this embedding we haveKc = HcK = Hc[i] by [ADH, 3.2.29]. □

We identify Hc with its image in Kc as in the previous lemma. Fix a convex
subgroup ∆ of Γ. Let Ȯ be the valuation ring of the coarsening of H by ∆, with
maximal ideal Ȯ. Then by [ADH, 3.5.11 and subsequent remarks] Ȯ and Ȯ are

convex in H, the specialization Ḣ = Ȯ/Ȯ of H by ∆ is naturally an ordered and

valued field, and the valuation ring of Ḣ is convex in Ḣ. Moreover, Ḣ is even
real closed by [ADH, 3.5.16]. Likewise, the coarsening of K by ∆ has valuation

ring ȮK with maximal ideal ȮK and valued residue field K̇. Thus ȮK lies over Ȯ
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by [ADH, 3.4, subsection Coarsening and valued field extensions], so (K, ȮK) is a

valued field extension of (H, Ȯ). In addition:

Lemma 4.1.2. K̇ is a valued field extension of Ḣ and an algebraic closure of Ḣ.

Proof. The second part follows by general valuation theory from K being an alge-
braic closure of H. In fact, with the image of i ∈ OK ⊆ ȮK in K̇ denoted by the
same symbol, we have K̇ = Ḣ[i]. □

Next, let Ĥ be an immediate valued field extension of H. We equip Ĥ with the
unique field ordering making it an ordered field extension of H in which OĤ is con-

vex; see [ADH, 3.5.12]. Choose i in a field extension of Ĥ with i2 = −1. Equip Ĥ[i]

with the unique valuation ring of Ĥ[i] that lies over OĤ , namely OĤ +OĤ i [ADH,

3.5.15]. Let â = b̂+ ĉ i ∈ Ĥ[i] \H[i] with b̂, ĉ ∈ Ĥ, and let b, c range over H. Then

v
(
â− (b+ ci)

)
= min

{
v(̂b− b), v(ĉ− c)

}
and thus v

(
â−H[i]

)
⊆ v(̂b−H) and v

(
â−H[i]

)
⊆ v(ĉ−H).

Lemma 4.1.3. We have v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆ v(̂b−H). Moreover,
the following are equivalent:

(i) v(̂b−H) ⊆ v(ĉ−H);

(ii) for all b there is a c with v
(
â− (b+ ci)

)
= v(̂b− b);

(iii) v
(
â−H[i]

)
= v(̂b−H).

Proof. For the first assertion, use that v(̂b − H), v(ĉ − H) ⊆ Γ∞ are downward

closed. Suppose v(̂b−H) ⊆ v(ĉ−H), and let b be given. If ĉ ∈ H, then for c := ĉ

we have v
(
â − (b + ci)

)
= v(̂b − b). Suppose ĉ /∈ H. Then v(ĉ −H) ⊆ Γ does not

have a largest element and v(̂b−b) ∈ v(ĉ−H), so we have c with v(̂b−b) < v(ĉ−c);
thus

v
(
â− (b+ ci)

)
= min

{
v(̂b− b), v(ĉ− c)

}
= v(̂b− b).

This shows (i) ⇒ (ii). Moreover, (ii) ⇒ (iii) follows from v
(
â−H[i]

)
⊆ v(̂b−H),

and (iii) ⇒ (i) from v
(
â−H[i]

)
⊆ v(ĉ−H). □

So if v(̂b−H) ⊆ v(ĉ−H), then: â is special over H[i] ⇐⇒ b̂ is special over H.

To apply Lemma 4.1.3 to H-fields we assume in the next lemma more generally

that H is equipped with a derivation making it a d-valued field and that Ĥ is

equipped with a derivation ∂ making it an asymptotic field extension of H; then Ĥ
is also d-valued with the same constant field as H [ADH, 9.1.2].

Lemma 4.1.4. Suppose H is closed under integration. Then we have:

v(̂b−H) ⊆ v(ĉ−H) =⇒ v(∂b̂−H) ⊆ v(∂ĉ−H).

Proof. Assume v(̂b−H) ⊆ v(ĉ−H). Let b ∈ H, and take g ∈ H with g′ = b; adding

a suitable constant to g we arrange b̂− g ̸≍ 1. Next, take h ∈ H with b̂− g ≍ ĉ−h.
Then

∂b̂− b = ∂(̂b− g) ≍ ∂(ĉ− h) = ∂ĉ− h′,

so v(∂b̂− b) ∈ v(∂ĉ−H). □
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Embedding into the completion. In this subsection K is an asymptotic field,
Γ := v(K×) ̸= {0}, and L is an asymptotic field extension of K such that Γ is
cofinal in ΓL.

Lemma 4.1.5. Let a ∈ L and let (aρ) be a c-sequence in K with aρ → a in L.

Then for each n, (a
(n)
ρ ) is a c-sequence in K with a

(n)
ρ → a(n) in L.

Proof. By induction on n it suffices to treat the case n = 1. Let γ ∈ ΓL; we need to
show the existence of an index σ such that v(a′ − a′ρ) > γ for all ρ > σ. By [ADH,

9.2.6] we have f ∈ L× with f ≺ 1 and v(f ′) ⩾ γ. Take σ such that v(a− aρ) > vf
for all ρ > σ. Then v(a′ − a′ρ) > v(f ′) ⩾ γ for ρ > σ. □

Let Kc be the completion of the valued differential field K; then Kc is asymptotic
by [ADH, 9.1.6]. Lemma 4.1.5 and [ADH, 3.2.13 and 3.2.15] give:

Corollary 4.1.6. Let (ai)i∈I be a family of elements of L such that ai is the
limit in L of a c-sequence in K, for each i ∈ I. Then there is a unique embed-
ding K

〈
(ai)i∈I

〉
→ Kc of valued differential fields over K.

Next suppose that H is a real closed asymptotic field whose valuation ring O is

convex in H with O ≠ H, the asymptotic extension Ĥ of H is immediate, and i is

an element of an asymptotic extension of Ĥ with i2 = −1. Then i /∈ Ĥ, and we
identify Hc with a valued subfield of H[i]c as in Lemma 4.1.1, so that Hc[i] = H[i]c

as in that lemma. Using also Lemma 4.1.5 we see that Hc is actually a valued
differential subfield of the asymptotic field H[i]c, and so Hc[i] = H[i]c also as

asymptotic fields. Thus by Corollary 4.1.6 applied to K := H and L := Ĥ:

Corollary 4.1.7. Let a ∈ Ĥ[i] be the limit in Ĥ[i] of a c-sequence in H[i].

Then Re a, Im a are limits in Ĥ of c-sequences in H, hence there is a unique
embedding H[i]

〈
Re a, Im a

〉
→ Hc[i] of valued differential fields over H[i].

4.2. Approximating Linear Differential Operators

In this section K is a valued differential field with small derivation, Γ := v(K×).
For later use we prove here Corollaries 4.2.6 and 4.2.9 and consider strong splitting .
Much of this section rests on the following basic estimate for linear differential
operators which split over K:

Lemma 4.2.1. Let b1, . . . , br ∈ K and n be given. Then there exists γ0 ∈ Γ⩾

such that for all b•
1, . . . , b

•
r ∈ K and γ ∈ Γ with γ > γ0 and v(bi − b•

i) ⩾ (n + r)γ
for i = 1, . . . , r, we have v(B −B•) ⩾ vB + nγ, where

B := (∂ − b1) · · · (∂ − br) ∈ K[∂], B• := (∂ − b•

1) · · · (∂ − b•

r) ∈ K[∂].

Proof. By induction on r ∈ N. The case r = 0 is clear (any γ0 ∈ Γ⩾ works).
Suppose the lemma holds for a certain r. Let b1, . . . , br+1 ∈ K and n be given.
Set βi := vbi (i = 1, . . . , r + 1). Take γ0 as in the lemma applied to b1, . . . , br
and n + 1 in place of n, and let γ1 := γ0 if br+1 = 0, γ1 := max

{
γ0, |βr+1|

}
otherwise. Let b•

1, . . . , b
•
r+1 ∈ K and γ ∈ Γ with γ > γ1 and v(bi−b•

i) ⩾ (n+r+1)γ
for i = 1, . . . , r + 1. Set

B := (∂ − b1) · · · (∂ − br), B• := (∂ − b•

1) · · · (∂ − b•

r), E := B −B•.

Then
B(∂ − br+1) = B•(∂ − b•

r+1) +B•(b•

r+1 − br+1) + E(∂ − br+1).
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Inductively we have vE ⩾ vB + (n+ 1)γ. Suppose E ̸= 0 and 0 ̸= br+1 ̸≍ 1. Then
by [ADH, 6.1.5],

vE(βr+1)− vB(βr+1) = vE − vB + o(βr+1)

⩾ (n+ 1)γ + o(βr+1)

⩾ nγ + |βr+1|+ o(βr+1) > nγ.

Hence, using E(∂ − br+1) = E∂ − Ebr+1 and v(E∂) = v(E) ̸= vE(βr+1),

v
(
E(∂ − br+1)

)
= min

{
vE, vE(βr+1)

}
> min

{
vB, vB(βr+1)

}
+ nγ

= v
(
B(∂ − br+1)

)
+ nγ,

where for the last equality we use vB ̸= vB(βr+1). Also,

v
(
B•(b•

r+1 − br+1)
)
= vB•

(
v(b•

r+1 − br+1)
)
⩾ vB•

(
(n+ r + 1)γ

)
= vB

(
(n+ r + 1)γ

)
where we use [ADH, 6.1.7] for the last equality. Moreover, by [ADH, 6.1.4],

vB
(
(n+ r + 1)γ

)
− nγ ⩾ vB + (r + 1)γ + o(γ) > vB ⩾ v

(
B(∂ − br+1)

)
.

This yields the desired result for E ̸= 0, 0 ̸= br+1 ̸≍ 1. The cases E ̸= 0, br+1 = 0
and E = 0, 0 ̸= br+1 ̸≍ 1 are simpler versions of the above, and so is the case E ̸= 0,
br+1 ≍ 1 using [ADH, 5.6.1(i)]. The remaining cases, E = 0, br+1 = 0 and E = 0,
br+1 ≍ 1, are even simpler to handle. □

Corollary 4.2.2. Let a, b1, . . . , br ∈ K, a ̸= 0. Then there exists γ0 ∈ Γ⩾ such that
for all a•, b•

1, . . . , b
•
r ∈ K and γ ∈ Γ with γ > γ0, v(a−a•) ⩾ va+γ, and v(bi−b•

i) ⩾
(r + 1)γ for i = 1, . . . , r, we have v(A−A•) ⩾ vA+ γ, where

A := a(∂ − b1) · · · (∂ − br) ∈ K[∂], A• := a•(∂ − b•

1) · · · (∂ − b•

r) ∈ K[∂].

Proof. Take γ0 as in the previous lemma applied to b1, . . . , br and n = 1, and
let B = (∂ − b1) · · · (∂ − br), A = aB. Let a•, b•

1, . . . , b
•
r ∈ K and γ ∈ Γ be such

that γ > γ0, v(a − a•) ⩾ va + γ, and v(bi − b•
i) ⩾ (r + 1)γ for i = 1, . . . , r.

Set B• := (∂ − b•
1) · · · (∂ − b•

r), A
• := a•B•. Then

E := A−A• = a(B −B•) + (a− a•)B•.

Lemma 4.2.1 gives vB• = vB, and so

v
(
a(B−B•)

)
⩾ va+vB+γ = vA+γ, v

(
(a−a•)B•

)
= v(a−a•)+vB ⩾ vA+γ,

so vE ⩾ vA+ γ. □

In the rest of this subsection we assume P ∈ K{Y } \ K, set r := orderP , and
let i, j range over N1+r.

Lemma 4.2.3. For δ := v
(
P −P (0)

)
and all h ∈ O we have v

(
P+h−P

)
⩾ δ+ 1

2vh.

Proof. Note that δ ∈ Γ and v(Pj) ⩾ δ for all j with |j| ⩾ 1. Let h ∈ O ̸= and i be
given; we claim that v

(
(P+h)i − Pi

)
⩾ δ + 1

2vh. By [ADH, (4.3.1)] we have

(P+h)i = Pi +Q(h) where Q(Y ) :=
∑
|j|⩾1

(
i+ j

i

)
Pi+j Y

j ∈ K{Y }.

From Q(0) = 0 and [ADH, 6.1.4] we obtain

v(Q×h) ⩾ v(Q) + vh+ o(vh) ⩾ δ + 1
2vh.

Together with v
(
Q(h)

)
⩾ v(Q×h) this yields the lemma. □
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Corollary 4.2.4. Let f ∈ K. Then there exists δ ∈ Γ such that for all f • ∈ K
with f − f • ≺ 1 we have v

(
P+f • − P+f

)
⩾ δ + 1

2v(f
• − f).

Proof. Take δ as in the preceding lemma with P+f in place of P and h = f •−f . □

Corollary 4.2.5. Let a, b1, . . . , br, f ∈ K be such that

A := LP+f
= a(∂ − b1) · · · (∂ − br), a ̸= 0.

Then there exists γ1 ∈ Γ⩾ such that for all a•, b•
1, . . . , b

•
r, f

• ∈ K and γ ∈ Γ, if

γ > γ1, v(a−a•) ⩾ va+γ, v(bi− b•

i) ⩾ (r+1)γ (i = 1, . . . , r), and v(f −f •) ⩾ 4γ,

then

(i) v
(
P+f • − P+f

)
⩾ vA+ γ; and

(ii) LP+f• = a•(∂ − b•
1) · · · (∂ − b•

r) + E where vE ⩾ vA+ γ.

Proof. Take γ0 as in Corollary 4.2.2 applied to a, b1, . . . , br, and take δ as in Corol-
lary 4.2.4. Then γ1 := max{γ0, vA− δ} has the required property. □

In the next result L is a valued differential field extension ofK with small derivation
such that Γ is cofinal in ΓL. Then the natural inclusion K → L extends uniquely
to an embedding Kc → Lc of valued fields by [ADH, 3.2.20]. It is easy to check
that this is even an embedding of valued differential fields; we identify Kc with a
valued differential subfield of Lc via this embedding.

Corollary 4.2.6. Let a, b1, . . . , br ∈ Lc and f ∈ Kc be such that in Lc[∂],

A := LP+f
= a(∂ − b1) · · · (∂ − br), a, f ̸= 0, v := v(A) ≺ 1,

and let w ∈ N. Then there are a•, b•
1, . . . , b

•
r ∈ L and f • ∈ K such that

a• ∼ a, f • ∼ f, A• := LP+f• ∼ A, orderA• = r, v(A•) ∼ v,

and such that for ∆ :=
{
α ∈ ΓL : α = o

(
v(v)

)}
we have in L[∂],

A• = a•(∂ − b•

1) · · · (∂ − b•

r) + E, E ≺∆ vw+1A.

Proof. Let γ1 ∈ Γ⩾
L be as in Corollary 4.2.5 applied to Lc in place of K, and

take γ2 ∈ Γ such that γ2 ⩾ max{γ1, 14vf} + vA and γ2 ⩾ v
(
(P+f )i

)
for all i

with (P+f )i ̸= 0. Let γ ∈ Γ and γ > γ2. Then γ−vA > γ1. By the density of K, L
in Kc, Lc, respectively, we can take a•, b•

1, . . . , b
•
r ∈ L and f • ∈ K such that

v(a− a•) ⩾ va+ (γ − vA), v(bi − b•

i) ⩾ (r + 1)(γ − vA) for i = 1, . . . , r,

and v(f − f •) ⩾ 4(γ − vA) > vf . Then a• ∼ a, f • ∼ f , and by Corollary 4.2.5,

v
(
P+f • − P+f

)
⩾ γ, A• := LP+f• = a•(∂ − b•

1) · · · (∂ − b•

r) + E, vE ⩾ γ.

Hence (P+f •)i ∼ (P+f )i if (P+f )i ̸= 0, and v
(
(P+f •)i

)
> γ2 ⩾ vA if (P+f )i = 0,

so A• ∼ A, orderA• = r, and v(A•) ∼ v. Choosing γ so that also γ > v(vw+1A)+∆
we achieve in addition that E ≺∆ vw+1A. □
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Keeping it real. In this subsection H is a real closed H-asymptotic field with small
derivation whose valuation ring is convex, with Γ := v(H×) ̸= {0}, and K is the
asymptotic extension H[i] of H with i2 = −1. Then Hc is real closed and Hc[i] =
Kc as valued field extension of H according to Lemma 4.1.1, and as asymptotic
field extension of H by the discussion after Corollary 4.1.6. Using the real splittings
from Definition 1.1.5 we show here that we can “preserve the reality of A” in
Corollary 4.2.6.

Lemma 4.2.7. Let A ∈ Hc[∂] be of order r ⩾ 1 and let (g1, . . . , gr) ∈ Hc[i]r be
a real splitting of A over Hc[i]. Then for every γ ∈ Γ there are g•

1, . . . , g
•
r in H[i]

such that v(gi − g•
i) > γ for i = 1, . . . , r,

A• := (∂ − g•

1) · · · (∂ − g•

r) ∈ H[∂],

and (g•
1, . . . , g

•
r) is a real splitting of A• over H[i].

Proof. We can reduce to the case where r = 1 or r = 2. If r = 1, then the
lemma holds trivially, so suppose r = 2. Then again the lemma holds trivially
if g1, g2 ∈ Hc, so we can assume instead that

g1 = a− bi + b†, g2 = a+ bi, a ∈ Hc, b ∈ (Hc)×.

Let γ ∈ Γ be given. The density of H in Hc gives a• ∈ H with v(a− a•) ⩾ γ. Next,
choose γ• ∈ Γ such that γ• ⩾ max{γ, vb} and α′ > γ for all nonzero α > γ• − vb
in Γ, and take b• ∈ H with v(b − b•) > γ•. Then v(b − b•) > γ and b ∼ b•. In
fact, b = b•(1 + ε) where vε + vb = v(b − b•) > γ• and so v

(
(b/b•)†

)
= v(ε′) > γ.

Set g•
1 := a• − b•i + b•† and g•

2 := a• + b•i. Then

v(g1 − g•

1) = v
(
a− a• + (b/b•)† + (b• − b)i

)
> γ, v(g2 − g•

2) > γ,

(∂ − g•

1) · (∂ − g•

2) = ∂
2 −

(
2a• + b•†)

∂ +
(
(−a•)′ + a•2 + a•b•† + b•2

)
∈ H[∂].

Hence (g•
1, g

•
2) is a real splitting of A• := (∂ − g•

1)(∂ − g•
2) ∈ H[∂]. □

In the next two corollaries a ∈ (Hc)× and b1, . . . , br ∈ Kc are such that

A := a(∂ − b1) · · · (∂ − br) ∈ Hc[∂],

(b1, . . . , br) is a real splitting of A over Kc, and v := v(A) ≺ 1. We set ∆ := ∆(v).

Corollary 4.2.8. Suppose A = LP+f
with P ∈ H{Y } of order r ⩾ 1 and f

in (Hc)×. Let γ ∈ Γ and w ∈ N. Then there is f • ∈ H× such that v(f • − f) ⩾ γ,

(4.2.1) f • ∼ f, A• := LP+f• ∼ A, orderA• = r, v(A•) ∼ v,

and we have a• ∈ H×, b•
1, . . . , b

•
r ∈ K, and B•, E• ∈ H[∂] with A• = B• + E•,

E• ≺∆ vw+1A, such that

B• = a•(∂ − b•

1) · · · (∂ − b•

r), v(a− a•), v(b1 − b•

1), . . . , v(br − b•

r) ⩾ γ,

and (b•
1, . . . , b

•
r) is a real splitting of B• over K.

Proof. We apply Corollary 4.2.6 with H, K in the role of K, L, and take γ1, γ2 as in
the proof of that corollary. We can assume γ > γ2, so that γ−vA > 0. The density
of H in Hc gives a• ∈ H such that v(a− a•) ⩾ max

{
va+ (γ − vA), γ

}
(so a• ∼ a),

and Lemma 4.2.7 gives b•
1, . . . , b

•
r ∈ K such that v(bi−b•

i) ⩾ max
{
(r+1)(γ−vA), γ

}
for i = 1, . . . , r, and (b•

1, . . . , b
•
r) is a real splitting of

B• := a•(∂ − b•

1) · · · (∂ − b•

r) ∈ H[∂]
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over K. Take f • ∈ H with v(f − f •) ⩾ max
{
4(γ − vA), γ

}
. Then (4.2.1) follows

from the proof of Corollary 4.2.6. We can increase γ so that γ > v(vw+1A) + ∆,
and then we have A• −B• ≺∆ vw+1A. □

This result persists after multiplicative conjugation:

Corollary 4.2.9. Suppose A = LP+f,×m
with P ∈ H{Y } of order r ⩾ 1, and f

in (Hc)×, m ∈ H×. Let γ ∈ Γ, w ∈ N. Then there is f • ∈ H× such that

v(f • − f) ⩾ γ, f • ∼ f, A• := LP+f•,×m
∼ A, orderA• = r, v(A•) ∼ v,

and we have a• ∈ H×, b•
1, . . . , b

•
r ∈ K, and B•, E• ∈ H[∂] with the properties stated

in the previous corollary.

Proof. Put Q := P×m ∈ H{Y }, g := f/m ∈ Hc; then Q+g = P+f,×m. Apply-
ing the previous corollary to Q, g in place of P , f yields g• ∈ H×, a• ∈ H×,
and b•

1, . . . , b
•
r ∈ K such that v(g• − g) ⩾ γ − vm,

g• ∼ g, A• := LQ+g• ∼ A, orderA• = r, v(A•) ∼ v

and A• = B• + E•, with B•, E• ∈ H[∂], E• ≺∆ vw+1A, and

B• = a•(∂ − b•

1) · · · (∂ − b•

r), v(a− a•), v(b1 − b•

1), . . . , v(br − b•

r) ⩾ γ,

and (b•
1, . . . , b

•
r) is a real splitting of B• over K. Therefore f • := g•m ∈ H×

and a•, b•
1, . . . , b

•
r have the required properties. □

Strong splitting. In this subsection H is a real closed H-field with small deriva-
tion and asymptotic integration. Thus K := H[i] is a d-valued extension of H.
Let A ∈ K[∂]̸= have order r ⩾ 1 and set v := v(A), and let f , g, h (possibly
subscripted) range over K. Recall from Section 1.1 that a splitting of A over K is
an r-tuple (g1, . . . , gr) such that

A = f(∂ − g1) · · · (∂ − gr) where f ̸= 0.

We call such a splitting (g1, . . . , gr) of A overK strong if Re gj ≽ v† for j = 1, . . . , r,
and we say that A splits strongly over K if there is a strong splitting of A overK.
This notion is mainly of interest for v ≺ 1, since otherwise v = 1, and then any
splitting of A over K is a strong splitting of A over K.

Lemma 4.2.10. Let (g1, . . . , gr) be a strong splitting of A over K. If h ̸= 0, then
(g1, . . . , gr) is a strong splitting of hA over K. If h ≍ 1, then (g1 − h†, . . . , gr − h†)
is a strong splitting of Ah over K.

Proof. Suppose h ≍ 1. Now use Lemma 1.1.1, and the fact that if v ≺ 1, then
Reh† ≼ h† ≺ v†. If v = 1, then use that v(Ah) = 1 by Corollary 3.1.3. □

Lemma 4.2.11. Suppose g ≍ Re g. Then A = ∂ − g splits strongly over K.

Proof. Assuming v ≺ 1 gives v′ ≺ 1, so v† ≺ 1/v ≍ g ≍ Re g. □

In particular, every A ∈ H[∂]̸= of order 1 splits strongly over K.

Lemma 4.2.12. Suppose (g1, . . . , gr) is a strong splitting of A over K and v ≺♭ 1.
Let ϕ ≼ 1 be active in H and set hj := ϕ−1

(
gj − (r − j)ϕ†

)
for j = 1, . . . , r.

Then (h1, . . . , hr) is a strong splitting of Aϕ over Kϕ = Hϕ[i].
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Proof. By Lemma 1.1.2, (h1, . . . , hr) is a splitting of A
ϕ overKϕ. We have ϕ† ≺ 1 ≼

v†, so Rehj ∼ ϕ−1 Re gj ≽ ϕ−1v† for j = 1, . . . , r. Set w := v(Aϕ) and δ := ϕ−1
∂.

Lemma 3.1.19 gives v† ≍ w†, so ϕ−1v† ≍ δ(w)/w. □

In the next two results we assume that for all q ∈ Q> and n ∈ H× there is given
an element nq ∈ H× such that (nq)† = qn† (and thus v(nq) = q v(n)).

Lemma 4.2.13. Suppose (g1, . . . , gr) is a splitting of A over K, v ≺ 1, n ∈ H×,
and [v] ⩽ [n]. Then for all q ∈ Q> with at most r exceptions, (g1−qn†, . . . , gr−qn†)
is a strong splitting of Anq over K.

Proof. Let q ∈ Q>. Then (g1 − qn†, . . . , gr − qn†) is a splitting of Anq over K, by
Lemma 1.1.1. Moreover,

[
v(Anq)

]
⩽ [n], by Lemma 3.1.9, so v(Anq)† ≼ n†. Thus

if Re gj ̸∼ qn† for j = 1, . . . , r, then (g1 − qn†, . . . , gr − qn†) is a strong splitting
of Anq over K. □

Corollary 4.2.14. Let (P,m, â) be a steep slot in K of order r ⩾ 1 whose linear
part L := LP×m

splits over K and such that â ≺∆ m for ∆ := ∆
(
v(L)

)
. Then for all

sufficiently small q ∈ Q>, any n ≍ |v(L)|qm in K× gives a steep refinement
(
P, n, â

)
of (P,m, â) whose linear part LP×n

splits strongly over K.

Proof. Note that |f | ≍ f for all f . Lemma 3.3.1 gives q0 ∈ Q> such that for
all q ∈ Q> with q ⩽ q0 and any n ≍ |v(L)|qm, (P, n, â) is a steep refinement
of (P,m, â). Now apply Lemma 4.2.13 with L, v(L), |v(L)| in the respective roles
of A, v, n, and use Lemma 4.2.10 and the fact that for n ≍ |v(L)|qm we have LP×n

=
L · n/m = L|v(L)|qh with h ≍ 1. □

We finish this section with a useful fact on slots in K. Given such a slot (P,m, â),
the element â lies in an immediate asymptotic extension of K that might not be

of the form Ĥ[i] with Ĥ an immediate H-field extension of H. By the next lemma
we can nevertheless often reduce to this situation, and more:

Lemma 4.2.15. Suppose H is ω-free. Then every Z-minimal slot in K of positive

order is equivalent to a hole (P,m, b̂) in K with b̂ ∈ K̂ = Ĥ[i] for some immediate

ω-free newtonian H-field extension Ĥ of H.

Proof. Let (P,m, â) be a Z-minimal slot in K of order ⩾ 1. Take an immedi-

ate ω-free newtonian H-field extension Ĥ of H; such Ĥ exists by remarks follow-

ing [ADH, 14.0.1]. Then K̂ = Ĥ[i] is also newtonian by [ADH, 14.5.7]. Now apply

Corollary 3.2.29 with L := K̂ to obtain b̂ ∈ K̂ such that (P,m, b̂) is a hole in K
equivalent to (P,m, â). □

4.3. Split-Normal Slots

In this section H is a real closed H-field with small derivation and asymptotic
integration. We let O := OH be its valuation ring and C := CH its constant field.

We fix an immediate asymptotic extension Ĥ of H with valuation ring Ô and an

element i of an asymptotic extension of Ĥ with i2 = −1. Then Ĥ is also an H-field

by [ADH, 10.5.8], i /∈ Ĥ andK := H[i] is an algebraic closure ofH. With K̂ := Ĥ[i]
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we have the inclusion diagram

Ĥ K̂ = Ĥ[i]

H K = H[i]

By [ADH, 3.5.15, 10.5.7], K and K̂ are d-valued with valuation rings O + Oi

and Ô+Ôi and with the same constant field C[i], and K̂ is an immediate extension

of K. Thus H, K, Ĥ, K̂ have the same H-asymptotic couple (Γ, ψ).

Lemma 4.3.1. Let â ∈ Ĥ \H. Then Z(H, â) = Z
(
K, â

)
∩H{Y }.

Proof. The inclusion “⊇” is obvious since the Newton degree of a differential poly-
nomial Q ∈ H{Y }̸= does not change when H is replaced by its algebraic closure;
see [ADH, 11.1]. Conversely, let P ∈ Z(H, â). Then for all v ∈ H× and a ∈ H
such that a − â ≺ v we have ndeg≺vH+a ⩾ 1. Let v ∈ H× and z ∈ K be such
that z − â ≺ v. Take a, b ∈ H such that z = a + bi. Then a − â, bi ≺ v and
hence ndeg≺v P+z = ndeg≺v P+a ⩾ 1, using [ADH, 11.2.7]. Thus P ∈ Z

(
K, â

)
. □

Corollary 4.3.2. Let (P,m, â) be a slot in H with â ∈ Ĥ. Then (P,m, â) is also a
slot in K, and if (P,m, â) is Z-minimal as a slot in K, then (P,m, â) is Z-minimal
as a slot in H. Moreover, (P,m, â) is a hole in H iff (P,m, â) is a hole in K, and
if (P,m, â) is a minimal hole in K, then (P,m, â) is a minimal hole in H.

Proof. The first three claims are obvious from K̂ being an immediate extension ofK

and the previous lemma. Suppose (P,m, â) is minimal as a hole in K. Let (Q, n, b̃)

be a hole in H; thus b̃ ∈ H̃ where H̃ is an immediate asymptotic extension of H.

By the first part of the corollary applied to (Q, n, b̃) and H̃ in place of (P,m, â)

and Ĥ, respectively, (Q, n, b̃) is also a hole in K. Hence c(P ) ⩽ c(Q), proving the
last claim. □

In the next subsection we define the notion of a split-normal slot in H. Later in this
section we employ the results of Sections 3.3–4.2 to show, under suitable hypotheses
on H, that minimal holes in K of order ⩾ 1 give rise to a split-normal Z-minimal
slots in H. (Theorem 4.3.9.) We then investigate which kinds of refinements pre-
serve split-normality, and also consider a strengthening of split-normality.

Defining split-normality. In this subsection b ranges over H and m, n over H×.

Also, (P,m, â) is a slot in H of order r ⩾ 1 with â ∈ Ĥ \H and linear part L :=
LP×m

. Set w := wt(P ), so w ⩾ r; if orderL = r, we set v := v(L).

Definition 4.3.3. We say that (P,m, â) is split-normal if orderL = r, and

(SN1) v ≺♭ 1;
(SN2) (P×m)⩾1 = Q+R where Q,R ∈ H{Y }, Q is homogeneous of degree 1 and

order r, LQ splits over K, and R ≺∆(v) v
w+1(P×m)1.

Note that in (SN2) we do not require that Q = (P×m)1.

Lemma 4.3.4. Suppose (P,m, â) is split-normal. Then (P,m, â) is normal, and
with Q, R as in (SN2) we have (P×m)1 −Q ≺∆(v) v

w+1(P×m)1, so (P×m)1 ∼ Q.
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Proof. We have (P×m)1 = Q + R1 and R1 ≼ R ≺∆(v) vw+1(P×m)1, and thus

(P×m)1 − Q ≺∆(v) vw+1(P×m)1. Now (P,m, â) is normal because (P×m)>1 =

R>1 ≺∆(v) v
w+1(P×m)1. □

If (P,m, â) is normal and (P×m)1 = Q+R where Q,R ∈ H{Y }, Q is homogeneous of
degree 1 and order r, LQ splits over K, and R ≺∆(v) v

w+1(P×m)1, then (P,m, â) is
split-normal. Thus if (P,m, â) is normal and L splits over K, then (P,m, â) is split-
normal; in particular, if (P,m, â) is normal of order r = 1, then it is split-normal.
If (P,m, â) is split-normal, then so are (bP,m, â) for b ̸= 0 and (P×n,m/n, â/n). Note
also that if (P,m, â) is split-normal, then with Q as in (SN2) we have v(L) ∼ v(LQ),
by Lemma 3.1.1. If (P,m, â) is split-normal and H is λ-free, then E e(L) = E e(LQ)
with Q as in (SN2), by Lemmas 4.3.4 and 3.1.22.

Lemma 4.3.5. Suppose (P,m, â) is split-normal and ϕ ≼ 1 is active in H and ϕ > 0
(so Hϕ is still an H-field). Then the slot (Pϕ,m, â) in Hϕ is split-normal.

Proof. We first arrange m = 1. Note that LPϕ = Lϕ has order r. Put w := v(LPϕ),
and take Q, R as in (SN2). Then v ≍∆(v) w ≺♭ϕ 1 by Lemma 3.1.19. Moreover,

LQϕ = LϕQ splits over Kϕ; see [ADH, p. 291] or Lemma 1.1.2. By [ADH, 11.1.4],

Rϕ ≍∆(v) R ≺∆(v) vw+1P1 ≍∆(v) ww+1Pϕ1 ,

so (Pϕ,m, â) is split-normal. □

Since we need to preserve H being an H-field when compositionally conjugating,
we say: (Pϕ,m, â) is eventually split-normal if there exists an active ϕ0 in H such
that (Pϕ,m, â) is split-normal for all active ϕ ≼ ϕ0 in H with ϕ > 0. We use this
terminology in a similar way with “split-normal” replaced by other properties of
slots of order r ⩾ 1 in real closed H-fields with small derivation and asymptotic
integration, such as “deep” and “deep and split-normal”.

Achieving split-normality. Assume H is ω-free and (P,m, â) is a minimal hole

in K = H[i] of order r ⩾ 1, with m ∈ H× and â ∈ K̂ \ K. Note that then K
is ω-free by [ADH, 11.7.23], K is (r − 1)-newtonian by Corollary 3.2.3, and K is
r-linearly closed by Corollary 3.2.4. In particular, the linear part of (P,m, â) is 0
or splits over K. If degP = 1, then r = 1 by Corollary 3.2.8. If degP > 1, then K
and H are r-linearly newtonian by Corollary 3.2.6 and Lemma 1.8.30. In particular,
if H is 1-linearly newtonian, then H is r-linearly newtonian. In this subsection we
let a range over K, b, c over H, and n over H×.

Lemma 4.3.6. Let (Q, n, b̂) be a hole in H with c(Q) ⩽ c(P ) and b̂ ∈ Ĥ. Then

c(Q) = c(P ), (Q, n, b̂) is minimal and remains a minimal hole in K. The linear

part of (Q, n, b̂) is 0 or splits over K, and (Q, n, b̂) has a refinement (Q+b, p, b̂− b)

(in H) such that (Qϕ+b, p, b̂− b) is eventually deep and split-normal.

Proof. By Corollary 4.3.2, (Q, n, b̂) is a hole in K, and this hole in K is minimal

with c(Q) = c(P ), since (P,m, â) is minimal. By Corollary 4.3.2 again, (Q, n, b̂) as

a hole in H is also minimal. Since K is r-linearly closed, the linear part of (Q, n, b̂)

is 0 or splits over K. Corollary 3.3.34 gives a refinement (Q+b, p, b̂ − b) of the

minimal hole (Q, n, b̂) in H such that (Qϕ+b, p, b̂− b) is deep and normal, eventually.

Thus the linear part of (Q+b, p, b̂ − b) is not 0, and as c(Q+b) = c(P ), this linear
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part splits over K. Hence for active ϕ in H the linear part of (Qϕ+b, p, b̂− b) splits

over Kϕ = Hϕ[i]. Thus (Qϕ+b, p, b̂− b) is eventually split-normal. □

Now â = b̂ + ĉ i with b̂, ĉ ∈ Ĥ, and b̂, ĉ ≺ m. Moreover, b̂ /∈ H or ĉ /∈ H. Since â

is differentially algebraic over H, so is its conjugate b̂ − ĉ i, and therefore its real

and imaginary parts b̂ and ĉ are differentially algebraic over H; thus Z (̂b,H) ̸= ∅
for b̂ /∈ H, and Z(ĉ, H) ̸= ∅ for ĉ /∈ H. More precisely:

Lemma 4.3.7. We have trdeg
(
H ⟨̂b⟩|H

)
⩽ 2r. If b̂ /∈ H, then Z(H, b̂)∩H[Y ] = ∅,

so 1 ⩽ orderQ ⩽ 2r for all Q ∈ Z(H, b̂) of minimal complexity. These statements

also hold for ĉ instead of b̂.

Proof. The first statement follows from b̂ ∈ H ⟨̂b + ĉ i, b̂ − ĉ i⟩. Suppose b̂ /∈ H.

If Q ∈ Z(H, b̂) has minimal complexity, then [ADH, 11.4.8] yields an element f in
a proper immediate asymptotic extension of H with Q(f) = 0, so Q /∈ H[Y ]. □

Lemma 4.3.8. Suppose degP = 1 and b̂ /∈ H. Let Q ∈ Z(H, b̂) be of minimal

complexity; then either orderQ = 1, or orderQ = 2, degQ = 1. Let Q̂ ∈ H{Y }
be a minimal annihilator of b̂ over H; then either order Q̂ = 1, or order Q̂ = 2,

deg Q̂ = 1, and LQ̂ ∈ H[∂] splits over K.

Proof. Recall that r = 1 by Corollary 3.2.8. Example 1.1.7 and Lemma 1.1.8 give

a Q̃ ∈ H{Y } of degree 1 and order 1 or 2 such that Q̃(̂b) = 0 and LQ̃ splits over K.

Then c(Q̃) = (1, 1, 1) or c(Q̃) = (2, 1, 1), which proves the claim about Q, using also

Lemma 4.3.7. Also, Q̃, Q̂ ∈ Z(H, b̂), hence c(Q) ⩽ c(Q̂) ⩽ c(Q̃). If c(Q̂) = c(Q̃),

then Q̂ = aQ̃ for some a ∈ H×. The claim about Q̂ now follows easily. □

By Corollary 3.3.34 and Lemma 3.3.23, our minimal hole (P,m, â) in K has a

refinement (P+a, n, â− a) such that eventually (Pϕ+a, n, â− a) is deep and normal.

Moreover, as K is r-linearly closed, the linear part of (Pϕ+a, n, â − a) (for active ϕ

inK) splits overKϕ = Hϕ[i]. Our main goal in this subsection is to prove analogues

of these facts for suitable Z-minimal slots (Q,m, b̂) or (R,m, ĉ) in H:

Theorem 4.3.9. If H is 1-linearly newtonian, then one of the following holds:

(i) b̂ /∈ H and there exists a Z-minimal slot (Q,m, b̂) in H with a refine-

ment (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂ − b) is eventually deep and split-
normal;

(ii) ĉ /∈ H and there exists a Z-minimal slot (R,m, ĉ) in H with a refine-

ment (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ − c) is eventually deep and split-
normal.

Lemmas 4.3.10, 4.3.11 and Corollaries 4.3.13–4.3.16 below are more precise (only
Corollary 4.3.15 has H being 1-linearly newtonian as a hypothesis) and together

give Theorem 4.3.9. We first deal with the case where b̂ or ĉ is in H:

Lemma 4.3.10. Suppose ĉ ∈ H. Then some hole (Q,m, b̂) in H has the same

complexity as (P,m, â). Any such hole (Q,m, b̂) in H is minimal and has a refine-

ment (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is eventually deep and split-normal.
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Proof. Let A,B ∈ H{Y } be such that P+ĉ i(Y ) = A(Y ) + B(Y ) i. Then A(̂b) =

B(̂b) = 0. If A ̸= 0, then c(A) ⩽ c(P ) gives that Q := A has the desired property
by Lemma 4.3.6. If B ̸= 0, then likewise Q := B has the desired property. The rest
also follows from that lemma. □

Thus if ĉ ∈ H, we obtain a strong version of (i) in Theorem 4.3.9. Likewise, the

next lemma gives a strong version of (ii) in Theorem 4.3.9 if b̂ ∈ H.

Lemma 4.3.11. Suppose b̂ ∈ H. Then there is a hole (R,m, ĉ) in H with the
same complexity as (P,m, â). Every such hole in H is minimal and has a refine-

ment (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is eventually deep and split-normal.

This follows by applying Lemma 4.3.10 with (P,m, â) replaced by the minimal
hole

(
P×i,m,−iâ

)
in K, which has the same complexity as (P,m, â).

We assume in the rest of this subsection that b̂, ĉ /∈ H and that Q ∈ Z(H, b̂) has

minimal complexity. Hence (Q,m, b̂) is a Z-minimal slot in H, and so is every

refinement of (Q,m, b̂). If (P+a, n, â − a) is a refinement of (P,m, â) and b = Re a,

then (Q+b, n, b̂ − b) is a refinement of (Q,m, b̂). Conversely, if (Q+b, n, b̂ − b) is

a refinement of (Q,m, b̂) and v
(
b̂−H

)
⊆ v(ĉ−H), then Lemma 4.1.3 yields a

refinement (P+a, n, â − a) of (P,m, â) with Re a = b. Recall from that lemma

that v(̂b−H) ⊆ v(ĉ−H) is equivalent to v(â−K) = v(̂b−H); in this case,

(P,m, â) is special iff (Q,m, b̂) is special. Recall also that if (Q,m, b̂) is deep, then

so is each of its refinements (Q+b,m, b̂− b), by Corollary 3.3.8.

Here is a key technical fact underlying Theorem 4.3.9:

Proposition 4.3.12. Suppose the hole (P,m, â) in K is special, the slot (Q,m, b̂)

in H is normal, and v
(
b̂−H

)
⊆ v(ĉ−H). Then some refinement (Q+b,m, b̂− b)

of (Q,m, b̂) has the property that (Qϕ+b,m, b̂− b) is eventually split-normal.

Proof. Replacing (P,m, â), (Q,m, b̂) by (P×m, 1, â/m), (Q×m, 1, b̂/m), respectively,

we reduce to the case m = 1; then â, b̂ ≺ 1. Since â is special over K = H[i],

∆ :=
{
δ ∈ Γ : |δ| ∈ v(â−K)

}
is a convex subgroup of Γ which is cofinal in v(â−K) and hence in v(̂b−H), so b̂ is

special over H. Compositionally conjugate H, Ĥ, K, K̂ by a suitable active ϕ ≼ 1

in H>, and replace P , Q by Pϕ, Qϕ, to arrange Γ♭ ⊆ ∆; in particular, Ψ ⊆ v(̂b−H)
and ψ(∆̸=) ⊆ ∆. Multiplying P , Q by suitable elements of H× we also arrange

that P,Q ≍ 1. By Lemma 4.3.5 it suffices to show that then (Q, 1, b̂) has a split-

normal refinement (Q+b, 1, b̂− b), and this is what we shall do.

Note that H, Ĥ, K, K̂ have small derivation, so the specializations Ḣ,
˙̂
H,

K̇,
˙̂
K of H, Ĥ, K, K̂, respectively, by ∆, are valued differential fields with small

derivation. These specializations are asymptotic with asymptotic couple (∆, ψ|∆ ̸=),
and ofH-type with asymptotic integration, by [ADH, 9.4.12]; in addition they are d-

valued, by [ADH, 10.1.8]. The natural inclusions Ȯ → ȮK , Ȯ → ȮĤ , ȮĤ → ȮK̂ ,

and ȮK → ȮK̂ induce valued differential field embeddings Ḣ → K̇, Ḣ → ˙̂
H,

˙̂
H → ˙̂

K and K̇ → ˙̂
K, which we make into inclusions by the usual identifications;

see [ADH, pp. 405–406]. By Lemma 4.1.2 and the remarks preceding it, Ḣ is real
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closed with convex valuation ring and K̇ is an algebraic closure of Ḣ. Moreover,
˙̂
H

is an immediate extension of Ḣ and
˙̂
K is an immediate extension of K̇. Denoting

the image of i under the residue morphism ȮK̂ → ˙̂
K by the same symbol, we then

have K̇ = Ḣ[i],
˙̂
K =

˙̂
H[i], and i /∈ ˙̂

H. This gives the following inclusion diagram:

˙̂
H

˙̂
K =

˙̂
H[i]

Ḣ K̇ = Ḣ[i]

Now â ∈ OK̂ ⊆ ȮK̂ and b̂, ĉ ∈ OĤ ⊆ ȮĤ , and ˙̂a =
˙̂
b+ ˙̂c i, Re ˙̂a =

˙̂
b, Im ˙̂a = ˙̂c. For

all a ∈ ȮK we have v( ˙̂a− ȧ) = v(â−a) ∈ ∆, hence ˙̂a /∈ K̇; likewise v(̂b− b) ∈ ∆ for

all b ∈ Ȯ, so
˙̂
b /∈ Ḣ. Moreover, for all δ ∈ ∆ there is an a ∈ ȮK with v( ˙̂a− ȧ) = δ;

hence ˙̂a is the limit of a c-sequence in K̇. This leads us to consider the comple-
tions Ḣc and K̇c of Ḣ and K̇. By [ADH, 4.4.11] and Lemma 4.1.1, these yield an
inclusion diagram of valued differential field extensions:

Ḣc K̇c = Ḣc[i]

Ḣ K̇ = Ḣ[i]

where Ḣc is real closed with algebraic closure K̇c = Ḣc[i]. These completions are

d-valued by [ADH, 9.1.6]. By Corollary 1.8.5, K̇ and K̇c are ω-free and (r − 1)-

newtonian; thus K̇c is r-linearly closed by Corollary 1.8.42. We identify the valued

differential subfield K̇
〈
Re ˙̂a, Im ˙̂a

〉
of

˙̂
K with its image under the embedding into K̇c

over K̇ from Corollary 4.1.7; then ˙̂a ∈ K̇c and
˙̂
b = Re ˙̂a ∈ Ḣc. This leads to the

next inclusion diagram:

Ḣc K̇c

Ḣ⟨ ˙̂b⟩ K̇⟨ ˙̂a⟩

Ḣ // K̇

By Corollary 1.6.21, Ṗ ∈ K̇{Y } is a minimal annihilator of ˙̂a over K̇ and has the

same complexity as P . Likewise, Q̇ ∈ Ḣ{Y } is a minimal annihilator of
˙̂
b over Ḣ

and has the same complexity as Q. Let s := orderQ = order Q̇, so 1 ⩽ s ⩽ 2r by
Lemma 4.3.7, and the linear part A ∈ Ḣc[∂] of Q̇

+
˙̂
b
has order s as well. By [ADH,

5.1.37] applied to Ḣc, Ḣ, Ṗ , Q̇, ˙̂a in the role of K, F , P , S, f , respectively, A splits

over K̇c = Ḣc[i], so Lemma 1.1.4 gives a real splitting (g1, . . . , gs) of A over K̇c:

A = f(∂ − g1) · · · (∂ − gs), f, g1, . . . , gs ∈ K̇c, f ̸= 0.
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The slot (Q, 1, b̂) in H is normal, so v(LQ
+b̂
) ∼ v(LQ) ≺♭ 1 by Lemma 3.1.27,

hence v(A) ≺♭ 1 in K̇c by Lemma 3.1.7. Then Corollary 4.2.8 gives a, b ∈ Ȯ
and b1, . . . , bs ∈ ȮK with ȧ, ḃ ̸= 0 in Ḣ such that for the linear part Ã ∈ Ḣ[∂]

of Q̇+ḃ,

ḃ ∼ ˙̂
b, Ã ∼ A, order Ã = s, w := v(Ã) ∼ v(A),

and such that for w := wt(Q) and with ∆(w) ⊆ ∆:

Ã = B̃ + Ẽ, B̃ = ȧ(∂ − ḃ1) · · · (∂ − ḃs) ∈ Ḣ[∂], Ẽ ∈ Ḣ[∂], Ẽ ≺∆(w) w
w+1Ã,

and (ḃ1, . . . , ḃs) is a real splitting of B̃ over K̇. Lemma 1.1.6 shows that we can

change b1, . . . , bs if necessary, without changing ḃ1, . . . , ḃs, to arrange that B :=
a(∂−b1) · · · (∂−bs) lies in Ȯ[∂] ⊆ H[∂] and (b1, . . . , bs) is a real splitting of B over K.

Now b̂ − b ≺ b̂ ≺ 1, so (Q+b, 1, b̂ − b) is a refinement of the normal slot (Q, 1, b̂).

Hence (Q+b, 1, b̂ − b) is normal by Proposition 3.3.25, so v := v(LQ+b
) ≺♭ 1. By

Lemma 3.1.7 we have v̇ = w, so ∆(v) = ∆(w) ⊆ ∆. Hence in H[∂]:

LQ+b
= B + E, E ∈ Ȯ[∂], E ≺∆(v) v

w+1LQ+b
.

Thus (Q+b, 1, b̂− b) is split-normal. □

Recall from the beginning of this subsection that if degP > 1, then K = H[i] is
r-linearly newtonian; this allows us to remove the assumptions that (P,m, â) is

special and (Q,m, b̂) is normal in Proposition 4.3.12, by reducing to that case:

Corollary 4.3.13. Suppose degP > 1 and v(̂b −H) ⊆ v(ĉ −H). Then (Q,m, b̂)

has a special refinement (Q+b, n, b̂ − b) such that (Qϕ+b, n, b̂− b) is eventually deep
and split-normal.

Proof. By Lemmas 3.2.26 and 3.3.23, the hole (P,m, â) in K has a quasilinear re-
finement (P+a, n, â− a). (The use of Lemma 3.3.23 is because we require n ∈ H×.)
Let b = Re a. Then, using Lemma 4.1.3 for the second equality,

v
(
(â− a)−K

)
= v(â−K) = v(̂b−H) = v

(
(̂b− b)−H

)
,

and (Q+b, n, b̂− b) is a Z-minimal refinement of (Q,m, b̂). We replace (P,m, â)

and (Q,m, b̂) by (P+a, n, â − a) and (Q+b, n, b̂ − b), respectively, to arrange that
the hole (P,m, â) in K is quasilinear. Then by Proposition 1.6.12 and K being

r-linearly newtonian, (P,m, â) is special. Hence (Q,m, b̂) is also special, so Proposi-

tion 3.3.36 gives a refinement (Q+b, n, b̂ − b) of (Q,m, b̂) and an active ϕ0 ∈ H>

such that (Qϕ0

+b, n, b̂− b) is deep and normal. Refinements of (P,m, â) remain

quasilinear, by Corollary 3.2.23. Since v(̂b − H) ⊆ v(ĉ − H) we have a refine-
ment (P+a, n, â−a) of (P,m, â) with Re a = b. Then by Lemma 3.2.35 the minimal

hole (Pϕ0

+a, n, â− a) in Hϕ0 [i] is special. Now apply Proposition 4.3.12 with Hϕ0 ,

(Pϕ0

+a, n, â − a), (Qϕ0

+b, n, b̂− b) in place of H, (P,m, â), (Q,m, b̂), respectively: it
gives b0 ∈ H and a refinement(

(Qϕ0

+b)+b0 , n, (̂b− b)− b0
)

=
(
Qϕ0

+(b+b0)
, n, b̂− (b+ b0)

)
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of (Qϕ0

+b, n, b̂− b), and thus a refinement
(
Q+(b+b0), n, b̂− (b+ b0)

)
of (Q+b, n, b̂− b),

such that
(
Qϕ+(b+b0)

, n, b̂− (b+ b0)
)
is eventually split-normal. By the remark be-

fore Proposition 4.3.12,
(
Qϕ+(b+b0)

, n, b̂− (b+ b0)
)
is also eventually deep. □

Recall that v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆ v(̂b−H). The following corollary
concerns the second case:

Corollary 4.3.14. If degP > 1, v(ĉ − H) ⊆ v(̂b − H), and R ∈ Z(H, ĉ) has
minimal complexity, then the Z-minimal slot (R,m, ĉ) in H has a special refine-

ment (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is eventually deep and split-normal.

Proof. Apply Corollary 4.3.13 to the minimal hole (P×i,m,−iâ) in H[i]. □

In the next two corollaries we handle the case degP = 1. Recall from Lemma 4.3.8
that then orderQ = 1 or orderQ = 2, degQ = 1. Theorem 3.3.33 gives:

Corollary 4.3.15. Suppose H is 1-linearly newtonian and orderQ = 1. Then

the slot (Q,m, b̂) in H has a refinement (Q+b, n, b̂ − b) such that (Qϕ+b, n, b̂− b) is
eventually deep and split-normal.

Corollary 4.3.16. Suppose degP = 1 and orderQ = 2, degQ = 1. Let Q̂ ∈ H{Y }
be a minimal annihilator of b̂ over H. Then

(
Q̂,m, b̂

)
is a Z-minimal hole in H

and has a refinement
(
Q̂+b, n, b̂− b

)
such that

(
Q̂ϕ+b, n, b̂− b

)
is eventually deep and

split-normal.

Proof. By the proof of Lemma 4.3.8 we have c(Q) = c(Q̂) (hence
(
Q̂,m, b̂

)
is a

Z-minimal hole in H) and LQ̂ splits over H[i]. Corollary 3.3.12 gives a refine-

ment
(
Q̂+b, n, b̂− b

)
of
(
Q̂,m, b̂

)
whose linear part has Newton weight 0 and such

that the slot
(
Q̂ϕ+b, n, b̂− b

)
in Hϕ is deep, eventually. Moreover, by Lemmas 3.3.17

and 3.2.31,
(
Q̂ϕ+b, n, b̂− b

)
is normal and its linear part splits over Hϕ[i], eventually.

Thus
(
Q̂ϕ+b, n, b̂− b

)
is eventually deep and split-normal. □

This concludes the proof of Theorem 4.3.9.

Split-normality and refinements. We now study the behavior of split-normality
under refinements. In this subsection a ranges over H and m, n, v range over H×.

Let (P,m, â) be a slot in H of order r ⩾ 1 with â ∈ Ĥ \ H, and L := LP×m
,

w := wt(P ). Here is the split-normal analogue of Lemma 3.3.19:

Lemma 4.3.17. Suppose order(L) = r and v is such that (SN1) and (SN2) hold,
and v(L) ≍∆(v) v. Then (P,m, â) is split-normal.

Proof. Same as that of 3.3.19, but with R as in (SN2) instead of (P×m)>1. □

Now split-normal analogues of Propositions 3.3.25 and 3.3.26:

Lemma 4.3.18. Suppose (P,m, â) is split-normal. Let a refinement (P+a,m, â− a)
of (P,m, â) be given. Then (P+a,m, â− a) is also split-normal.

Proof. As in the proof of Proposition 3.3.25 we arrange m = 1 and show for v :=
v(LP ), using Lemmas 3.1.27 and 4.3.4, that order(LP+a

) = r and

(P+a)1 ∼∆(v) P1, v(LP+a
) ∼∆(v) v, (P+a)>1 ≺∆(v) v

w+1(P+a)1.
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Now take Q, R as in (SN2) for m = 1. Then P1 = Q+R1, and so by Lemma 3.1.28
for A = LQ we obtain (P+a)1 −Q ≺∆(v) v

w+1(P+a)1, and thus (P+a)⩾1 −Q ≺∆(v)

vw+1(P+a)1. Hence (SN2) holds with m = 1 and P+a instead of P . Thus the
slot (P+a,m, â− a) in H is split-normal by Lemma 4.3.17. □

Lemma 4.3.19. Suppose (P,m, â) is split-normal, â ≺ n ≼ m, and [n/m] ⩽ [v],
v := v(L). Then the refinement (P, n, â) of (P,m, â) is split-normal: if m, P , Q,
v are as in (SN2), then (SN2) holds with n, Q×n/m, R×n/m, v(LP×n

) in place
of m, Q, R, v.

Proof. Set L̃ := LP×n
. Lemma 3.3.1 gives order(L̃) = r and v(L̃) ≍∆(v) v.

Thus (P×n)>1 ≺∆(v) vw+1(P×n)1 by Proposition 3.3.26. Now arrange m = 1 in
the usual way, and take Q, R as in (SN2) for m = 1. Then

(P×n)1 = (P1)×n = Q×n + (R1)×n, (P×n)>1 = (R×n)>1 = (R>1)×n

by [ADH, 4.3], where Q×n is homogeneous of degree 1 and order r, and LQ×n
= LQn

splits over K. Using [ADH, 4.3, 6.1.3] and [n] ⩽ [v] we obtain

(R1)×n ≍∆(v) nR1 ≼ nR ≺∆(v) nvw+1P1 ≍∆(v) v
w+1(P1)×n = vw+1(P×n)1.

Hence (SN2) holds for n, Q×n, R×n, v(L̃) in place of m, Q,R, v. □

Recall our standing assumption in this section that H is a real closed H-field.
Thus H is d-valued, and for all n and q ∈ Q> we have nq ∈ H× such that (nq)† =
qn†. In the rest of this section we fix such an nq for all n and q ∈ Q>. Now we
upgrade Corollary 3.3.31 with “split-normal” instead of “normal”:

Lemma 4.3.20. Suppose m = 1, (P, 1, â) is split-normal, â ≺ n ≺ 1, and for v :=
v(LP ) we have [n†] < [v] < [n]. Then (P, nq, â) is a split-normal refinement
of (P, 1, â) for all but finitely many q ∈ Q with 0 < q < 1.

Proof. Corollary 3.3.31 gives that (P, nq, â) is a normal refinement of (P, 1, â) for
all but finitely many q ∈ Q with 0 < q < 1. Take Q, R as in (SN2) for m = 1.
Then L = LQ +LR where LQ splits over H[i] and LR ≺∆(v) v

w+1L, for v := v(L).

Applying Corollary 3.1.18 to A := L, A∗ := LR we obtain: LRn
q ≺∆(w) w

w+1Lnq,
w := v(Lnq), for all but finitely many q ∈ Q>.

Let q ∈ Q be such that 0 < q < 1, (P, nq, â) is a normal refinement of (P, 1, â),
and LRn

q ≺∆(w) ww+1Lnq, with w as above. Then (P×nq )1 = Q×nq + (R1)×nq

where Q×nq is homogeneous of degree 1 and order r, LQ×nq = LQn
q splits over H[i],

and (R1)×nq ≺∆(w) w
w+1(P×nq )1 for w := v(LP×nq ). Since (P, nq, â) is normal, we

also have (P×nq )>1 ≺∆(w) w
w+1(P×nq )1. Thus (P, n

q, â) is split-normal. □

Remark. We do not know if in this last lemma we can drop the assumption [n†] < [v].

Strengthening split-normality. In this subsection a, b range over H and m, n
over H×, and (P,m, â) is a slot in H of order r ⩾ 1 and weight w := wt(P ),
so w ⩾ 1, and L := LP×m

. If orderL = r, we set v := v(L).
With an eye towards later use in connection with fixed point theorems over Hardy

fields we strengthen here the concept of split-normality; in the next subsection
we show how to improve Theorem 4.3.9 accordingly. See the last subsection of
Section 4.2 for the notion of strong splitting.
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Definition 4.3.21. Call (P,m, â) almost strongly split-normal if orderL = r,
v ≺♭ 1, and the following strengthening of (SN2) holds:

(SN2as) (P×m)⩾1 = Q+R where Q,R ∈ H{Y }, Q is homogeneous of degree 1 and
order r, LQ splits strongly over K, and R ≺∆(v) v

w+1(P×m)1.

We say that (P,m, â) is strongly split-normal if orderL = r, v ≺♭ 1, and the
following condition is satisfied:

(SN2s) P×m = Q + R where Q,R ∈ H{Y }, Q is homogeneous of degree 1 and
order r, LQ splits strongly over K, and R ≺∆(v) v

w+1(P×m)1.

To facilitate use of (SN2s) we observe:

Lemma 4.3.22. Suppose (P,m, â) is strongly split-normal and P×m = Q + R as
in (SN2s). Then Q ∼ (P×m)1, vQ := v(LQ) ∼ v, so R ≺∆(v) v

w+1
Q Q.

Proof. We have (P×m)1 = Q+R1, so Q = (P×m)1−R1 with R1 ≺∆(v) v
w+1(P×m)1.

Now apply Lemma 3.1.1 to A := L and B := −LR1
. □

If (P,m, â) is almost strongly split-normal, then (P,m, â) is split-normal and hence
normal by Lemma 4.3.4. If (P,m, â) is normal and L splits strongly over K,
then (P,m, â) is almost strongly split-normal; in particular, if (P,m, â) is normal
of order r = 1, then (P,m, â) is almost strongly split-normal, by Lemma 4.2.11.
Moreover:

Lemma 4.3.23. The following are equivalent:

(i) (P,m, â) is strongly split-normal;
(ii) (P,m, â) is almost strongly split-normal and strictly normal;
(iii) (P,m, â) is almost strongly split-normal and P (0) ≺∆(v) v

w+1(P1)×m.

Proof. Suppose (P,m, â) is strongly split-normal, and let Q, R be as in (SN2s).
Then (P×m)⩾1 = Q+R⩾1, LQ splits strongly over K, and R⩾1 ≺∆(v) v

w+1(P×m)1.
Hence (P,m, â) is almost strongly split-normal, and thus normal. Also P (0) =
R(0) ≺∆(v) vw+1(P×m)1, so (P,m, â) is strictly normal. This shows (i) ⇒ (ii),
and (ii) ⇒ (iii) is clear. For (iii) ⇒ (i) suppose (P,m, â) is almost strongly split-
normal and P (0) ≺∆(v) vw+1(P1)×m. Take Q, R as in (SN2as). Then P×m =

Q + R̃ where R̃ := P (0) + R ≺∆(v) vw+1(P1)×m. Thus (P,m, â) is strongly split-
normal. □

Corollary 4.3.24. If L splits strongly over K, then

(P,m, â) is strongly split-normal ⇐⇒ (P,m, â) is strictly normal.

The following diagram summarizes some implications between these variants of
normality, for slots (P,m, â) in H of order r ⩾ 1:

strongly split-normal +3

��

almost strongly split-normal +3 split-normal

��
strictly normal +3 normal

If (P,m, â) is almost strongly split-normal, then so are (bP,m, â) for b ̸= 0 and
(P×n,m/n, â/n), and likewise with “strongly” in place of “almost strongly”.

Here is a version of Lemma 4.3.18 for (almost) strong split-normality:
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Lemma 4.3.25. Suppose (P+a,m, â − a) refines (P,m, â). If (P,m, â) is almost
strongly split-normal, then so is (P+a,m, â−a). If (P,m, â) is strongly split-normal,
Z-minimal, and â−a ≺∆(v) v

r+w+1m, then (P+a,m, â−a) is strongly split-normal.

Proof. The first part follows from Lemma 4.3.18 and its proof. In combination with
Lemmas 3.3.42 and 4.3.23, this also yields the second part. □

Lemma 4.3.26. Suppose that (P,m, â) is split-normal and â ≺∆(v) m. Then for
all sufficiently small q ∈ Q>, any n ≍ vqm yields an almost strongly split-normal
refinement (P, n, â) of (P,m, â).

Proof. We arrange m = 1, so â ≺∆(v) 1. Take Q, R as in (SN2) with m = 1, and
take q0 ∈ Q> such that â ≺ vq0 ≺ 1. By Lemma 4.2.13 we can decrease q0 so that
for all q ∈ Q with 0 < q ⩽ q0 and any n ≍ vq, LQ×n

= LQn splits strongly over K.
Suppose q ∈ Q, 0 < q ⩽ q0, and n ≍ vq. Then (P, n, â) is an almost strongly
split-normal refinement of (P, 1, â), by Lemma 4.3.19. □

Corollary 4.3.27. Suppose that (P,m, â) is Z-minimal, deep, and split-normal.
Then (P,m, â) has a refinement which is deep and almost strongly split-normal.

Proof. Lemma 3.3.13 gives a such that â − a ≺∆(v) m. By Corollary 3.3.8, the
refinement (P+a,m, â − a) of (P,m, â) is deep with v(LP+a,×m

) ≍∆(v) v, and by
Lemma 4.3.18 it is also split-normal. Now apply Lemma 4.3.26 to (P+a,m, â − a)
in place of (P,m, â) and again use Corollary 3.3.8. □

We now turn to the behavior of these properties under compositional conjugation.

Lemma 4.3.28. Let ϕ be active in H with 0 < ϕ ≼ 1. If (P,m, â) is almost strongly
split-normal, then so is the slot (Pϕ,m, â) in Hϕ. Likewise with “strongly” in place
of “almost strongly”.

Proof. We arrange m = 1, assume (P,m, â) is almost strongly split-normal, and
take Q, R as in (SN2as). The proof of Lemma 4.3.5 shows that with w := v(LPϕ) we
have w ≺♭ϕ 1 and (Pϕ)⩾1 = Qϕ+Rϕ where Qϕ ∈ Hϕ{Y } is homogeneous of degree 1

and order r, LQϕ splits over Hϕ[i], and Rϕ ≺∆(w) w
w+1(Pϕ)1. By Lemma 4.2.12,

LQϕ = LϕQ even splits strongly over H[i]. Hence (Pϕ,m, â) is almost strongly split-

normal. The rest follows from Lemma 4.3.23 and the fact that if (P,m, â) is strictly
normal, then so is (Pϕ,m, â). □

If H is ω-free and r-linearly newtonian, then by Corollary 3.3.48, every Z-minimal
slot in H of order r has a refinement (P,m, â) such that the slot (Pϕ,m, â) in Hϕ is
eventually deep and strictly normal. Corollary 4.3.30 of the next lemma is a variant
of this fact for strong split-normality.

Lemma 4.3.29. Assume H is ω-free and r-linearly newtonian, and every A ∈
H[∂] of order r splits over K. Suppose (P,m, â) is Z-minimal. Then there is a
refinement (P+a, n, â − a) of (P,m, â) and an active ϕ in H with 0 < ϕ ≼ 1 such

that (Pϕ+a, n, â − a) is deep and strictly normal, and its linear part splits strongly

over Kϕ (so (Pϕ+a, n, â− a) is strongly split-normal by Corollary 4.3.24).

Proof. For any active ϕ in H with 0 < ϕ ≼ 1 we may replace H, (P,m, â)
by Hϕ, (Pϕ,m, â), respectively. We may also replace (P,m, â) by any of its re-
finements. Now Theorem 3.3.33 gives a refinement (P+a, n, â − a) of (P,m, â) and
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an active ϕ inH such that 0 < ϕ ≼ 1 and (Pϕ+a, n, â−a) is deep and normal. Replac-

ing H, (P,m, â) by Hϕ, (Pϕ+a, n, â− a), respectively, we thus arrange that (P,m, â)
itself is deep and normal. We show that then the lemma holds with ϕ = 1. For
this we first replace (P,m, â) by a suitable refinement (P+a,m, â− a) to arrange
by Corollary 3.3.47 that (P,m, â) is strictly normal and â ≺∆(v) m. Now L splits
over K, so by Corollary 4.2.14, for sufficiently small q ∈ Q>, any n ≍ |v|qm gives
a refinement (P, n, â) of (P,m, â) whose linear part LP×n

has order r and splits
strongly over K. For each such n, (P, n, â) is deep by Corollary 3.3.8, and for some
such n, (P, n, â) is also strictly normal, by Remark 3.3.45. □

The previous lemma in combination with Lemma 4.3.28 yields:

Corollary 4.3.30. With the same assumptions on H, K as in Lemma 4.3.29, every
Z-minimal slot in H of order r has a refinement (P,m, â) such that (Pϕ,m, â) is
eventually deep and strongly split-normal.

For r = 1 the splitting assumption is automatically satisfied (and this is the case
most relevant later). We do not know whether “every A ∈ H[∂] ̸= of order ⩽ r splits
over K” is strictly weaker than “K is r-linearly closed”.

Achieving strong split-normality. We make the same assumptions as in the
subsection Achieving split-normality : H is ω-free and (P,m, â) is a minimal hole

in K = H[i] of order r ⩾ 1, with m ∈ H× and â ∈ K̂ \K. Recall that K is also
ω-free [ADH, 11.7.23]. We have

â = b̂+ ĉ i, b̂, ĉ ∈ Ĥ.

We let a range over K, b, c over H, and n over H×. In connection with the
next two lemmas we note that given an active ϕ in H with 0 < ϕ ≼ 1, if (P,m, â)
is normal (strictly normal, respectively), then so is (Pϕ,m, â), by Lemma 3.3.20
(Lemma 3.3.40, respectively); moreover, if the linear part of (P,m, â) splits strongly
over K, then the linear part of (Pϕ,m, â) splits strongly over Kϕ = Hϕ[i], by Lem-
ma 4.2.12. Here is a “complex” version of Lemma 4.3.29, with a similar proof:

Lemma 4.3.31. For some refinement (P+a, n, â−a) of (P,m, â) and active ϕ in H

with 0 < ϕ ≼ 1, the hole (Pϕ+a, n, â − a) in Kϕ is deep and normal, its linear part

splits strongly over Kϕ, and it is moreover strictly normal if degP > 1.

Proof. For any active ϕ in H with 0 < ϕ ≼ 1 we may replace H and (P,m, â) by Hϕ

and the minimal hole (Pϕ,m, â) in Kϕ. We may also replace (P,m, â) by any of its
refinements (P+a, n, â − a). As noted before Theorem 4.3.9, Corollary 3.3.34 and
Lemma 3.3.23 give a refinement (P+a, n, â − a) of (P,m, â) and an active ϕ in H

with 0 < ϕ ≼ 1 such that (Pϕ+a, n, â−a) is deep and normal. Replacing H, (P,m, â)

by Hϕ, (Pϕ+a, n, â− a), respectively, we thus arrange that (P,m, â) itself is deep and
normal. We show that then the lemma holds with ϕ = 1.

Set L := LP×m
and v := v(L). Lemma 3.3.13 gives a with â− a ≺∆(v) m.

If degP > 1, then K is r-linearly newtonian and we use Corollary 3.3.16 to take a
such that even â − a ≼ vw+2m. Replacing (P,m, â) by (P+a,m, â − a), we thus
arrange by Lemma 3.3.7 and Proposition 3.3.25 that â ≺∆(v) m, and also by
Lemma 3.3.46 that (P,m, â) is strictly normal if degP > 1. Now L splits over K,
since K is r-linearly closed by Corollary 3.2.4. Then by Corollary 4.2.14, for suffi-
ciently small q ∈ Q>, any n ≍ |v|qm gives a refinement (P, n, â) of (P,m, â) whose
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linear part LP×n
splits strongly over K. For such n, (P, n, â) is deep by Lemma 3.3.7

and normal by Proposition 3.3.26. If (P,m, â) is strictly normal, then for some
such n, (P, n, â) is also strictly normal, thanks to Lemma 3.3.44. □

The following version of Lemma 4.3.31 also encompasses linear (P,m, â):

Lemma 4.3.32. Suppose ∂K = K and I(K) ⊆ K†. Then there is a refine-
ment (P+a, n, â − a) of (P,m, â) and an active ϕ in H with 0 < ϕ ≼ 1 such that

the hole (Pϕ+a, n, â− a) in Kϕ is deep and strictly normal, and its linear part splits

strongly over Kϕ.

Proof. Thanks to Lemma 4.3.31 we need only consider the case degP = 1. Then we
have r = 1 by Corollary 3.2.8. (See now the remark following this proof.) As in the
proof of Lemma 4.3.31 we may replace H and (P,m, â) for any active ϕ ≼ 1 in H>

by Hϕ and (Pϕ,m, â), and also (P,m, â) by any of its refinements (P+a, n, â − a).
Recall here that n ∈ H×. Hence using a remark preceding Lemma 3.3.39 and
Corollary 3.5.17 we arrange that (P,m, â) is strictly normal, and thus balanced and
deep. We show that then the lemma holds with ϕ = 1.

Set L := LP×m
, v := v(L). Lemmas 3.5.9 and 3.5.10 yield an a with â−a ≼ v4m.

Replacing (P,m, â) by (P+a,m, â − a) arranges that â ≺∆(v) m, by Lemmas 3.3.7
and 3.3.41. As in the proof of Lemma 4.3.31, for sufficiently small q ∈ Q>, any n ≍
|v|qm now gives a strictly normal and deep refinement (P, n, â) of (P,m, â) whose
linear part splits strongly over K. □

Remark. Suppose we replace our standing assumption thatH is ω-free and (P,m, â)
is a minimal hole in K by the assumption that H is λ-free and (P,m, â) is a slot
in K of order and degree 1 (so K is λ-free by [ADH, 11.6.8] and (P,m, â) is Z-
minimal). Then Lemma 4.3.32 goes through with “hole” replaced by “slot”. Its
proof also goes through with the references to Lemmas 3.3.7 and 3.3.41 replaced by
references to Corollary 3.3.8 and Lemma 3.3.42. The end of that proof refers to the
end of the proof of Lemma 4.3.31, and there one should replace Proposition 3.3.26
by Corollary 3.3.27, and Lemma 3.3.44 by Remark 3.3.45.

In the remainder of this subsection we prove the following variant of Theorem 4.3.9:

Theorem 4.3.33. If H is 1-linearly newtonian, then one of the following holds:

(i) b̂ /∈ H and there exists a Z-minimal slot (Q,m, b̂) in H with a refine-

ment (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is eventually deep and almost
strongly split-normal;

(ii) ĉ /∈ H and there exists a Z-minimal slot (R,m, ĉ) in H with a refine-

ment (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is eventually deep and almost
strongly split-normal.

Moreover, if H is 1-linearly newtonian and either degP > 1, or b̂ /∈ H and Z(H, b̂)
contains an element of order 1, or ĉ /∈ H and Z(H, ĉ) contains an element of
order 1, then (i) holds with “almost” omitted, or (ii) holds with “almost” omitted.

Towards the proof of this theorem we first show:

Lemma 4.3.34. Suppose b̂ /∈ H and (Q,m, b̂) is a Z-minimal slot in H with

a refinement (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂ − b) is eventually deep and split-

normal. Then (Q,m, b̂) has a refinement (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is
eventually deep and almost strongly split-normal.
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Proof. Let (Q+b, n, b̂− b) be a refinement of (Q,m, b̂) and let ϕ0 be active in H such

that 0 < ϕ0 ≼ 1 and (Qϕ0

+b, n, b̂− b) is deep and split-normal. Then Corollary 4.3.27

yields a refinement
(
(Qϕ0

+b)+b0 , n0, (̂b− b)− b0
)
of (Qϕ0

+b, n, b̂− b) which is deep and
almost strongly split-normal. Hence(

(Q+b)+b0 , n0, (̂b− b)− b0
)

=
(
Q+(b+b0), n0, b̂− (b+ b0)

)
is a refinement of (Q,m, b̂), and

(
Qϕ+(b+b0)

, n0, b̂ − (b + b0)
)
is eventually deep and

almost strongly split-normal by Lemma 4.3.28. □

Likewise:

Lemma 4.3.35. Suppose ĉ /∈ H, and (R,m, ĉ) is a Z-minimal slot in H with

a refinement (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ − c) is eventually deep and split-

normal. Then (R,m, ĉ) has a refinement (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is
eventually deep and almost strongly split-normal.

Theorem 4.3.9 and the two lemmas above give the first part of Theorem 4.3.33. We
break up the proof of the “moreover” part into several cases, along the lines of the

proof of Theorem 4.3.9. We begin with the case where b̂ ∈ H or ĉ ∈ H.

Lemma 4.3.36. Suppose H is 1-linearly newtonian, b̂ /∈ H, (Q,m, b̂) is a Z-

minimal slot in H of order r, and some refinement (Q+b, n, b̂− b) of (Q,m, b̂) is

such that (Qϕ+b, n, b̂ − b) is eventually deep and split-normal. Then (Q,m, b̂) has

a refinement (Q+b, n, b̂− b) with (Qϕ+b, n, b̂ − b) eventually deep and strongly split-
normal.

Proof. Lemma 4.3.34 gives a refinement (Q+b, n, b̂−b) of (Q,m, b̂) with (Qϕ+b, n, b̂−b)
eventually deep and almost strongly split-normal. We upgrade this to “strongly
split-normal” as follows: Take active ϕ0 in H with 0 < ϕ0 ≼ 1 such that the

slot (Qϕ0

+b, n, b̂ − b) in Hϕ0 is deep and almost strongly split-normal. Now H is 1-
linearly newtonian, hence r-linearly newtonian. Therefore Corollary 3.3.47 yields a

deep and strictly normal refinement
(
(Qϕ0

+b)+b0 , n, (̂b−b)−b0
)
of
(
Qϕ0

+b, n, b̂−b
)
. By

Lemma 4.3.25, this refinement is still almost strongly split-normal, thus strongly

split-normal by Lemma 4.3.23. Then by Lemma 4.3.28,
(
Q+(b+b0), n, b̂− (b+ b0)

)
is a refinement of (Q,m, b̂) such that

(
Qϕ+(b+b0)

, n, b̂ − (b + b0)
)
is eventually deep

and strongly split-normal. □

Lemmas 4.3.10 and 4.3.36 give the following:

Corollary 4.3.37. Suppose H is 1-linearly newtonian and ĉ ∈ H. Then there is a

hole (Q,m, b̂) in H of the same complexity as (P,m, â). Every such hole (Q,m, b̂)

in H is minimal and has a refinement (Q+b, n, b̂ − b) such that (Qϕ+b, n, b̂ − b) is
eventually deep and strongly split-normal.

Just as Lemma 4.3.10 gave rise to Lemma 4.3.11, Corollary 4.3.37 leads to:

Corollary 4.3.38. Suppose H is 1-linearly newtonian and b̂ ∈ H. Then there is
a hole (R,m, ĉ) in H of the same complexity as (P,m, â). Every such hole in H is

minimal and has a refinement (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is eventually
deep and strongly split-normal.
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In the following two lemmas we assume that b̂, ĉ /∈ H. Let Q ∈ Z(H, b̂) be of mini-

mal complexity, so (Q,m, b̂) is a Z-minimal slot in H, as is each of its refinements.
The next lemma strengthens Corollary 4.3.13:

Lemma 4.3.39. Suppose degP > 1 and v(̂b−H) ⊆ v(ĉ−H). Then (Q,m, b̂) has

a refinement (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is eventually deep and strongly
split-normal.

Proof. Corollary 4.3.13 and Lemma 4.3.34 give a refinement (Q+b, n, b̂ − b) of

(Q,m, b̂) and an active ϕ0 in H with 0 < ϕ0 ≼ 1 such that the slot (Qϕ0

+b, n, b̂− b) in

Hϕ0 is deep and almost strongly split-normal. From degP > 1 we obtain that H
is r-linearly newtonian. Now argue as in the proof of Lemma 4.3.36. □

Similarly we obtain a strengthening of Corollary 4.3.14, using that corollary and
Lemma 4.3.35 in place of Corollary 4.3.13 and Lemma 4.3.34 in the proof:

Lemma 4.3.40. If degP > 1, v(ĉ−H) ⊆ v(̂b−H), and R ∈ Z(H, ĉ) has minimal
complexity, then the Z-minimal slot (R,m, ĉ) in H has a refinement (R+c, n, ĉ− c)

such that (Rϕ+c, n, ĉ− c) is eventually deep and strongly split-normal.

We now prove the “moreover” part of Theorem 4.3.33. Thus, supposeH is 1-linearly

newtonian. If b̂ ∈ H, then ĉ /∈ H and Corollary 4.3.38 yields a strong version of (ii)

with “almost” omitted. Likewise, if ĉ ∈ H, then b̂ /∈ H and Corollary 4.3.37
yields a strong version of (i), with “almost” omitted. In the rest of the proof we

assume b̂, ĉ /∈ H. By Lemma 4.1.3 we have v(̂b−H) ⊆ v(ĉ−H) or v(ĉ − H) ⊆
v(̂b−H), and thus Lemmas 4.3.39 and 4.3.40 take care of the case degP > 1.

If Z(H, b̂) contains an element of order 1, and Q ∈ Z(H, b̂) has minimal complexity,
then orderQ = 1 by Lemma 4.3.7, so Corollary 4.3.30 and the remark following it
yield (i) with “almost” omitted. Likewise, if Z(H, ĉ) contains an element of order 1,
then (ii) holds with “almost” omitted. □

4.4. Ultimate Slots and Firm Slots

In this section H is a Liouville closed H-field with small derivation, Ĥ is an imme-
diate asymptotic extension of H, and i be an element of an asymptotic extension

of Ĥ with i2 = −1. Then Ĥ is an H-field, i /∈ Ĥ, K := H[i] is an algebraic closure

of H, and K̂ := Ĥ[i] is an immediate d-valued extension of K. (See the beginning
of Section 4.3.) Let C be the constant field of H, let O denote the valuation ring
of H and Γ its value group. Accordingly, the constant field of K is CK = C[i] and
the valuation ring of K is OK = O + Oi. Let m, n, w range over H× and ϕ over
the elements of H> which are active in H (and hence in K).

In Section 1.2 we introduced

W :=
{
wr(a, b) : a, b ∈ H, a2 + b2 = 1

}
.

Note that W is a subspace of the Q-linear space H, because W i = S† where

S := {a+ bi : a, b ∈ H, a2 + b2 = 1}
is a divisible subgroup of K×. We have K† = H+W i by Lemma 1.2.4. Thus there
exists a complement Λ of the subspace K† of K such that Λ ⊆ Hi, and in this
section we fix such Λ and let λ range over Λ. Let U = K

[
e(Λ)

]
be the universal

exponential extension of K defined in Section 2.2.
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For A ∈ K[∂] ̸= we have its set E u(A) ⊆ Γ of ultimate exceptional values, which
a-priori might depend on our choice of Λ. We now make good on a promise from
Section 2.6 by showing under the mild assumption I(K) ⊆ K† and with our restric-
tion Λ ⊆ Hi there is no such dependence:

Corollary 4.4.1. Suppose I(K) ⊆ K†. Then for A ∈ K[∂]̸=, the status of A
being terminal does not depend on the choice of Λ, and the set E u(A) of ultimate
exceptional values of A also does not depend on this choice.

Proof. Let Λ∗ ⊆ Hi also be a complement of K†. Let λ 7→ λ∗ be the Q-linear
bijection Λ → Λ∗ with λ− λ∗ ∈W i for all λ. Then by Lemmas 1.2.8 and 1.2.16,

λ− λ∗ ∈ I(H)i ⊆ I(K) ⊆ (O×
K)†

for all λ. Now use Lemma 2.6.8 and Corollary 2.6.9. □

Corollary 4.4.2. Suppose I(K) ⊆ K†. Let A = ∂ − g ∈ K[∂] where g ∈ K and
let g ∈ H× be such that g† = Re g. Then

E u(A) = vg(ker
̸=
U A) = {vg}.

In particular, if Re g ∈ I(H), then E u(A) = {0}.

Proof. Let f ∈ K× and λ be such that g = f† + λ. Then

E u(A) = vg(ker
̸=
U A) = {vf}

by Lemma 2.6.14 and its proof. Recall that K† = H + I(H)i by Lemma 1.2.16 and
remarks preceding it, so g ∈ K† iff Im g ∈ I(H). Consider first the case g /∈ K†.
Then by Corollary 4.4.1 we can change Λ if necessary to arrange λ := (Im g)i ∈ Λ
so that we can take f := g in the above. Now suppose g ∈ K†. Then g = (gh)†

where h ∈ K×, h† = (Im g)i. Then we can take f := gh, λ := 0, and we have h ≍ 1
since h† ∈ I(H)i ⊆ I(K). □

Corollary 4.4.3. Suppose I(K) ⊆ K†, and let F be a Liouville closed H-field
extension of H, and L := F [i]. Then the subspace L† of the Q-linear space L
has a complement ΛL with Λ ⊆ ΛL ⊆ F i. For any such ΛL and A ∈ K[∂]̸= we
have E e(Aλ) = E e

L(Aλ)∩Γ for all λ, and thus E u(A) ⊆ E u
L (A), where E u

L (A) is the
set of ultimate exceptional values of A ∈ L[∂] ̸= with respect to ΛL.

Proof. By the remarks at the beginning of this subsection applied to F , L in place
of H, K we have L† = F +WF i where WF is a subspace of the Q-linear space F .
Also K† = H + I(H)i by Lemma 1.2.16, and L† ∩ K = K† by Lemma 2.6.24.
This yields a complement ΛL of L† in L with Λ ⊆ ΛL ⊆ F i. Since H is Liouville
closed and hence λ-free by [ADH, 11.6.2], its algebraic closure K is λ-free by [ADH,
11.6.8]. Now the rest follows from remarks preceding Lemma 2.6.12. □

Given A ∈ K[∂]̸=, let E u(Aϕ) be the set of ultimate exceptional values of the linear
differential operator Aϕ ∈ Kϕ[δ], δ = ϕ−1

∂, with respect to Λϕ = ϕ−1Λ. We
summarize some properties of ultimate exceptional values used later in this section:

Lemma 4.4.4. Let A ∈ K[∂]̸= have order r. Then for all b ∈ K× and all ϕ,

E u(bA) = E u(A), E u(Ab) = E u(A)− vb, E u(Aϕ) = E u(A).

Moreover, if I(K) ⊆ K†, then:

(i) |E u(A)| ⩽ r;
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(ii) dimC[i] kerUA = r =⇒ E u(A) = vg(ker
̸=
U A);

(iii) under the assumption that v := v(A) ≺♭ 1 and B ≺∆(v) v
r+1A where B ∈

K[∂] has order ⩽ r, we have E u(A+B) = E u(A);

(iv) for r = 1 we have |E u(A)| = 1 and E u(A) = vg(ker
̸=
U A).

Proof. For the displayed equalities, see Remark 2.6.10. Now assume I(K) ⊆ K†.
Then K† = H + I(H)i, so (i) and (ii) follow from Proposition 2.6.26 and (iii) from
Proposition 3.1.26. Corollary 4.4.2 yields (iv). □

Recall from Lemma 1.2.9 that if K is 1-linearly newtonian, then I(K) ⊆ K†.
Suppose I(K) ⊆ K†. Then K† = H+I(H)i, so our Λ has the form ΛH i with ΛH

a complement of I(H) in H. Conversely, any complement ΛH of I(H) in H yields
a complement Λ = ΛH i of K† in K with Λ ⊆ Hi. Now I(H) is a C-linear subspace
of H, so I(H) has a complement ΛH in H that is a C-linear subspace of H, and
then Λ := ΛH i is also a C-linear subspace of K.

Lemma 4.4.5. Suppose I(K) ⊆ K† and g ∈ K, g − λ ∈ K†. Then

Im g ∈ I(H) ⇐⇒ λ = 0, Im g /∈ I(H) =⇒ λ ∼ (Im g)i.

Proof. Recall that Λ = ΛH i where ΛH is a complement of I(H) in H, so λ = λH i
where λH ∈ ΛH . Also, K† = H ⊕ I(H)i, hence Im(g)− λH ∈ I(H); this proves the
displayed equivalence. Suppose Im g /∈ I(H); since I(H) is an OH -submodule of H
and λH /∈ I(H), we then have Im(g)− λH ≺ λH , so λ = λH i ∼ Im(g)i. □

Corollary 4.4.6. Suppose I(K) ⊆ K†, A ∈ K[∂]̸= has order r, dimC[i] kerUA = r,

and λ is an eigenvalue of A with respect to Λ. Then λ ≼ v(A)−1.

Proof. Take f ̸= 0 and g1, . . . , gr in K with A = f(∂ − g1) · · · (∂ − gr). By Corol-
lary 3.1.6 we have g1, . . . , gr ≼ v(A)−1, and so Corollary 2.5.6 gives j ∈ {1, . . . , r}
with gj − λ ∈ K†. Now use Lemma 4.4.5. □

Ultimate slots in H. In this subsection a, b range over H. Also, (P,m, â) is a

slot in H of order r ⩾ 1, where â ∈ Ĥ \H. Recall that LP×m
= LPm, so if (P,m, â)

is normal, then LP has order r.

Corollary 4.4.7. Suppose I(K) ⊆ K† and the slot (P,m, â) is split-normal with
linear part L := LP×m

. Then with Q and R as in (SN2) we have E u(L) = E u(LQ).

This follows from Lemmas 4.3.4 and 4.4.4(iii). In a similar vein we have an analogue
of Lemma 3.3.24:

Lemma 4.4.8. Suppose (P,m, â) is normal and a ≺ m. Then LP and LP+a
have

order r, and if I(K) ⊆ K†, then E u(LP ) = E u(LP+a
).

Proof. We have LP×m
= LPm and LP+a,×m

= LP×m,+a/m
= LP+a

m. The slot

(P×m, 1, â/m) in H is normal and a/m ≺ 1. Lemma 3.1.28 applied to Ĥ, P×m, â/m
in place of K, P , a, respectively, gives: LP and LP+a

have order r, and

LPm− LP+am = LP×m
− LP×m,+a/m

≺∆(v) vr+1LPm

where v := v(LPm) ≺♭ 1 by (N1). Suppose now that I(K) ⊆ K†. Then

E u(LP ) = E u(LPm) + v(m) = E u(LP+a
m) + v(m) = E u(LP+a

)

by Lemma 4.4.4(iii). □
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The notion introduced below is modeled on that of “isolated slot” (Definition 3.4.1):

Definition 4.4.9. Call (P,m, â) ultimate if for all a ≺ m,

order(LP+a) = r and E u(LP+a) ∩ v(â−H) < v(â− a);

equivalently, for all a ≺ m: order(LP+a) = r and whenever w ≼ â − a is such
that v(w) ∈ E u(LP+a), then w ≺ â− b for all b. (Thus if (P,m, â) is ultimate, then
it is isolated.)

If (P,m, â) is ultimate, then so is every equivalent slot in H and (bP,m, â) for b ̸= 0,
as well as the slot (Pϕ,m, â) in Hϕ (by Lemma 4.4.4). The proofs of the next two
lemma are like those of their “isolated” versions, Lemmas 3.4.2 and 3.4.3:

Lemma 4.4.10. If (P,m, â) is ultimate, then so is any of its refinements.

Lemma 4.4.11. If (P,m, â) is ultimate, then so is any of its multiplicative conju-
gates.

The ultimate condition is most useful in combination with other properties:

Lemma 4.4.12. If I(K) ⊆ K† and (P,m, â) is normal, then

(P,m, â) is ultimate ⇐⇒ E u(LP ) ∩ v(â−H) ⩽ vm.

Proof. Use Lemma 4.4.8 and the equivalence â− a ≺ m ⇔ a ≺ m. □

The “ultimate” version of Lemma 3.4.5 has the same proof:

Lemma 4.4.13. If degP = 1, then

(P,m, â) is ultimate ⇐⇒ E u(LP ) ∩ v(â−H) ⩽ vm.

The next proposition is the “ultimate” version of Proposition 3.4.6:

Proposition 4.4.14. Suppose I(K) ⊆ K†, and (P,m, â) is normal. Then (P,m, â)
has an ultimate refinement.

Proof. Suppose (P,m, â) is not already ultimate. Then Lemma 4.4.12 gives γ with

γ ∈ E u(LP ) ∩ v(â−H), γ > vm.

Lemma 4.4.4(i) gives |E u(LP )| ⩽ r, so we can take

γ := maxE u(LP ) ∩ v(â−H),

and then γ > vm. Take a and n with v(â− a) > γ = v(n); then (P+a, n, â− a) is a
refinement of (P,m, â) and a ≺ m. Let b ≺ n; then a+ b ≺ m, so by Lemma 4.4.8,

order(L(P+a)+b
) = r, E u(L(P+a)+b

) = E u(LP ).

Also v
(
(â− a)− b

)
> γ, hence

E u
(
L(P+a)+b

)
∩ v
(
(â− a)−H

)
= E u(LP ) ∩ v(â−H) ⩽ γ < v

(
(â− a)− b

)
.

Thus (P+a, n, â− a) is ultimate. □

Remark 4.4.15. Proposition 4.4.14 goes through if instead of assuming that (P,m, â)
is normal, we assume that (P,m, â) is linear. (Same argument, using Lemma 4.4.13
in place of Lemma 4.4.12.)

Finally, here is a consequence of Corollaries 2.6.15, 4.4.2, and Lemma 4.4.12, where
we recall that order(LP×m

) = order(LPm) = order(LP ):
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Corollary 4.4.16. Suppose I(K) ⊆ K† and (P,m, â) is normal of order r = 1.
Then LP = f(∂ − g) with f ∈ H×, g ∈ H, and for g ∈ H× with g† = g we have:

(P,m, â) is ultimate ⇐⇒ (P,m, â) is isolated ⇐⇒ .g ≽ m or g ≺ â−H.

(In particular, if g ∈ I(H) and m ≼ 1, then (P,m, â) is ultimate.)

Ultimate slots in K. In this subsection, a, b range over K = H[i]. Also (P,m, â)

is a slot in K of order r ⩾ 1, where â ∈ K̂ \K. Lemma 4.4.8 goes through in this
setting, with H in the proof replaced by K:

Lemma 4.4.17. Suppose (P,m, â) is normal, and a ≺ m. Then LP and LP+a
have

order r, and if I(K) ⊆ K†, then E u(LP ) = E u(LP+a).

We adapt Definition 4.4.9 to slots in K: call (P,m, â) ultimate if for all a ≺ m we
have order(LP+a

) = r and E u(LP+a
)∩ v(â−K) < v(â− a). If (P,m, â) is ultimate,

then it is isolated. Moreover, if (P,m, â) is ultimate, then so is (bP,m, â) for b ̸= 0
as well as the slot (Pϕ,m, â) in Kϕ. Lemmas 4.4.10 and 4.4.11 go through in the
present context, and so do Lemmas 4.4.12 and 4.4.13 with H replaced by K. The
analogue of Proposition 4.4.14 follows likewise:

Proposition 4.4.18. If I(K) ⊆ K† and (P,m, â) is normal, then (P,m, â) has an
ultimate refinement.

Remark 4.4.19. Proposition 4.4.18 also holds if instead of assuming that (P,m, â)
is normal, we assume that (P,m, â) is linear.

Corollary 4.4.2 and the K-versions of Lemmas 4.4.12 and 4.4.13 yield:

Corollary 4.4.20. Suppose I(K) ⊆ K†, r = 1, and (P,m, â) is normal or linear.
Then LP = f(∂ − g) with f ∈ K×, g ∈ K, and for g ∈ H× with g† = Re g we have:

(P,m, â) is ultimate ⇐⇒ g ≽ m or g ≺ â−K.

(In particular, if Re g ∈ I(H) and m ≼ 1, then (P,m, â) is ultimate.)

Using the norm to characterize being ultimate. We use here the “norm” ∥ · ∥
on U and the gaussian extension vg of the valuation of K from Section 2.1.

Lemma 4.4.21. For u ∈ U× we have ∥u∥† = Reu†.

Proof. For u = f e(λ), f ∈ K× we have ∥u∥ = |f | and u† = f† + λ, so

∥u∥† = |f |† = Re f† = Reu†,

using Corollary 1.2.5 for the second equality. □

Using Corollary 2.1.10, Lemma 4.4.21, and [ADH, 10.5.2(i)] we obtain:

Lemma 4.4.22. Let W ⊆ H× be ≼-closed. Then for all u ∈ U×,

∥u∥ ∈ W ⇐⇒ vgu ∈ v(W) ⇐⇒ Reu† < n† for all n /∈ W.
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Let (P,m, â) be a slot in H of order r ⩾ 1. Applying Lemma 4.4.22 to the set W =
{w : w ≺ â − H}— so v(W) = Γ \ v(â − H)—we obtain a reformulation of the
condition “(P,m, â) is ultimate” in terms of the “norm” ∥ · ∥ on U:

Corollary 4.4.23. The following are equivalent (with a ranging over H):

(i) (P,m, â) is ultimate;
(ii) for all a ≺ m: order(LP+a

) = r and whenever u ∈ U×, vgu ∈ E u(LP+a
),

and ∥u∥ ≼ â− a, then ∥u∥ ≺ â−H;
(iii) for all a ≺ m: order(LP+a

) = r and whenever u ∈ U×, vgu ∈ E u(LP+a
),

and ∥u∥ ≼ â− a, then Reu† < n† for all n with v(n) ∈ v(â−H).

Firm slots and flabby slots in H (∗). Let (P,m, â) be a slot in H of order r ⩾ 1,

where â ∈ Ĥ \H. We let a, b range over H.

Definition 4.4.24. We call (P,m, â) firm if for all a ≺ m,

order(LP+a
) = r and E u(LP+a

) ⊆ v(â−H).

We call (P,m, â) flabby if it is not firm, that is, if there is an a ≺ m such that
order(LP+a

) < r, or order(LP+a
) = r and γ > v(â−H) for some γ ∈ E u(LP+a

).

If (P,m, â) is firm, then so are (bP,m, â) for b ̸= 0 and any slot (P,m, b̂) in H
that is equivalent to (P,m, â). For any ϕ, the slot (P,m, â) in H is firm iff the
slot (Pϕ,m, â) in Hϕ is firm.

Lemma 4.4.25. If (P,m, â) is firm, then so is any of its refinements. If (P,m, â)
is flabby, then so is any refinement (P+a,m, â− a) of it.

The proof is like that of Lemma 4.4.10.

Lemma 4.4.26. Suppose (P,m, â) is firm. Then (P×n,m/n, â/n) is firm.

Proof. Let a ≺ m/n, so an ≺ m with LP×n,+a = LP+an
n. Since (P,m, â) is firm, this

yields order(LP×n,+a) = order(LP+an
) = r and

E u(LP×n,+a) = E u(LP+an
)− vn ⊆ v(â−H)− vn = v

(
(â/n)−H

)
,

using Lemma 4.4.4 for the first equality. □

The proofs of the next two lemmas are clear, using Lemma 4.4.8 for the first one:

Lemma 4.4.27. If I(K) ⊆ K† and (P,m, â) is normal, then

(P,m, â) is firm ⇐⇒ E u(LP ) ⊆ v(â−H).

Lemma 4.4.28. If degP = 1, then

(P,m, â) is firm ⇐⇒ E u(LP ) ⊆ v(â−H).

Remark 4.4.29. If the hypothesis of Lemma 4.4.27 or Lemma 4.4.28 holds, then

(P,m, â) is firm and ultimate ⇐⇒ E u(LP ) ⩽ vm,

as a consequence of Lemmas 4.4.12 and 4.4.13.

Lemma 4.4.8 yields:

Corollary 4.4.30. If the hypothesis of Lemma 4.4.27 or Lemma 4.4.28 holds
and (P,m, â) is flabby, then so is each refinement of (P,m, â).
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Firm slots and flabby slots in K (∗). Let now (P,m, â) be a slot in K of or-

der r ⩾ 1 with â ∈ K̂ \ K, and let a, b range over K. We define (P,m, â) to be
firm if for all a ≺ m we have order(LP+a

) = r and E u(LP+a
) ⊆ v(â −H), and we

say that (P,m, â) is flabby if it is not firm. The results in the subsection above

about a slot (P,m, â) in H go through for the slot (P,m, â) in K, replacing H, Ĥ

by K, K̂ throughout.

Corollary 4.4.31. Suppose I(K) ⊆ K†, r = 1, and (P,m, â) is normal or linear.
Then LP = f(∂ − g) with f ∈ K×, g ∈ K. For g ∈ H× with g† = Re g we have:

(i) (P,m, â) is flabby ⇐⇒ g ≺ â−K =⇒ (P,m, â) is ultimate;
(ii) (P,m, â) is firm and ultimate ⇐⇒ g ≽ m;
(iii) g ≽ 1 ⇐⇒ Re g ∈ I(H) or Re g > 0.

Proof. The equivalence in (i) follows from Corollary 4.4.2 and the K-versions of
Lemmas 4.4.27 and 4.4.28. Corollary 4.4.20 yields the last part of (i). For (ii), use
Corollary 4.4.2 and the K-version of the equivalence in Remark 4.4.29. As to (iii),
this is an elementary fact about the relation between g ∈ H× and g†. □

For the significance of firm slots in the Hardy field setting, see Section 7.7 below.

Counterexamples (∗). Suppose I(K) ⊆ K† and H is not ω-free. (In Exam-
ple 7.5.40 we provide an H with these properties.) Let (λρ) and (ωρ) be as in
Lemma 3.2.10 with H in the role of K there. That lemma yields a minimal hole
(P,m, λ) in H with P = 2Y ′+Y 2+ω (ω ∈ H). This is a good source of counterex-
amples:

Lemma 4.4.32. The minimal hole (P,m, λ) in H is ultimate, and none of its
refinements is quasilinear, normal, or firm.

Proof. Let a ∈ H. Then P+a = 2Y ′ + 2aY + Y 2 + P (a) and thus LP+a
= 2(∂ + a),

so for b ∈ H× with b† = −a we have E u(LP+a) = {vb}, by Corollary 4.4.2.

Thus (P,m, λ) is ultimate iff λ−a ≺ b for all a ≺ m in H and b ∈ H× with b† = −a
and vb ∈ v(λ − H); the latter holds by [ADH, 11.5.6] since v(λ − H) = Ψ.
Hence (P,m, λ) is ultimate. No refinement of (P,m, λ) is quasilinear by Corol-
lary 3.2.25 and [ADH, 11.7.9], and so by Corollary 3.3.21, no refinement of (P,m, λ)
is normal.

It remains to show that no refinement of (P,m, λ) is firm. Let (ℓρ), (γρ), be
the sequences from [ADH, 11.5] that give rise to λρ = −γ†ρ with H in place of K.
If (P,m, λ) has a firm refinement, then it has a firm refinement (P+λρ

, γρ, λ − λρ),
by Lemmas 3.2.24 and 4.4.25, so it suffices that (P+λρ

, γρ, λ−λρ) is flabby for all ρ.

For a ∈ H we have LP+(λρ+a)
= 2(∂+λρ+a), so E u(LP+(λρ+a)

) = {vb} with b ∈ H×,

b† = −(λρ + a). Also v
(
(λ − λρ)−H

)
= v(λ −H) = Ψ. Hence (P+λρ

, γρ, λ − λρ) is

flabby if there is a ≺ γρ in H and b ∈ H×, not active in H, such that b† = −(λρ+a).

We take a := 2γρ+1, b := γρ/ℓ
2
ρ+1. Then b† = γ†ρ − 2ℓ†ρ+1 = −(λρ + a) as required.

Also, b is not active in H. To see this let σ > ρ+1. Then γρ/γρ+1, γρ+1/γσ ≻ 1 and

(γρ/γρ+1)
† = λρ+1 − λρ ∼ γρ+1 ≻ γρ+2 ∼ λσ − λρ+1 = (γρ+1/γσ)

†

by [ADH, 11.5.2], hence γρ/γρ+1 ≻ γρ+1/γσ. Also ℓρ+1 ≍ γρ/γρ+1 by [ADH, proof
of 11.5.2] and thus b = γρ/ℓ

2
ρ+1 ≍ γ2ρ+1/γρ ≺ γσ. □
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4.5. Repulsive-Normal Slots

In this section H is a real closed H-field with small derivation and asymptotic
integration, with Γ := v(H×). Also K := H[i] with i2 = −1 is an algebraic closure
of H. We study here the concept of a repulsive-normal slot in H, which strengthens
that of a split-normal slot inH. Despite their name, repulsive-normal slots will turn
out to have attractive analytic properties in the realm of Hardy fields.

Attraction and repulsion. In this subsection a, b range over H, m, n over H×,
f , g, h (possibly with subscripts) over K, and γ, δ over Γ. We say that f is
attractive if Re f ≽ 1 and Re f < 0, and repulsive if Re f ≽ 1 and Re f > 0.
If Re f ∼ Re g, then f is attractive iff g is attractive, and likewise with “repulsive”
in place of “attractive”. Moreover, if a > 0, a ≽ 1, and f is attractive (repulsive),
then af is attractive (repulsive, respectively).

Definition 4.5.1. Let γ > 0; we say f is γ-repulsive if v(Re f) < γ† or Re f > 0.
Given S ⊆ Γ, we say f is S-repulsive if f is γ-repulsive for all γ ∈ S ∩ Γ>,
equivalently, Re f > 0, or v(Re f) < γ† for all γ ∈ S ∩ Γ>.

Note the following implications for γ > 0:

f is γ-repulsive =⇒ Re f ̸= 0,

f is γ-repulsive, Re g ∼ Re f =⇒ g is γ-repulsive.

The following is easy to show:

Lemma 4.5.2. Suppose γ > 0 and Re f ≽ 1. Then f is γ-repulsive iff v(Re f) < γ†

or f is repulsive. Hence, if f is repulsive, then f is Γ-repulsive; the converse of
this implication holds if Ψ is not bounded from below in Γ.

Let γ, δ > 0. If f is γ-repulsive and a > 0, a ≽ 1, then af is γ-repulsive. If f is
γ-repulsive and δ-repulsive, then f is (γ+δ)-repulsive. If f is γ-repulsive and γ > δ,
then f is (γ − δ)-repulsive. Moreover:

Lemma 4.5.3. Suppose γ ⩾ δ = vn > 0. Set g := f − n†. Then:

f is γ-repulsive ⇐⇒ f is δ-repulsive and g is γ-repulsive.

Proof. Note that γ ⩾ δ > 0 gives γ† ⩽ δ†. Suppose f is γ-repulsive; by our remark,
f is δ-repulsive. Now if v(Re f) < γ†, then Re g ∼ Re f , whereas if Re f > 0,
then Re(g) = Re(f)− n† > Re(f) > 0; in both cases, g is γ-repulsive. Conversely,
suppose f is δ-repulsive and g is γ-repulsive. If Re f > 0, then clearly f is γ-
repulsive. Otherwise, v(Re f) < δ†, hence Re g ∼ Re f , so f is also γ-repulsive. □

In a similar way we deduce a useful characterization of repulsiveness:

Lemma 4.5.4. Suppose γ = vm > 0. Set g := f −m†. Then:

f is repulsive ⇐⇒ Re f ≽ 1, f is γ-repulsive, and g is repulsive.

Proof. Suppose f is repulsive; then by Lemma 4.5.2, f is γ-repulsive. Moreover,
Re g = Re(f)−m† > Re f > 0, hence Re g ≽ 1 and Re g > 0, that is, g is repulsive.
Conversely, suppose Re f ≽ 1, f is γ-repulsive, and g is repulsive. If v(Re f) < γ†,
then Re f ∼ Re g; otherwise Re f > 0. In both cases, f is repulsive. □

Corollary 4.5.5. Suppose f is γ-repulsive where γ = vm > 0, and Re f ≽ 1.
Then f is repulsive iff f−m† is repulsive, and f is attractive iff f−m† is attractive.
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Proof. The first equivalence is immediate from Lemma 4.5.4; this equivalence yields

f is attractive ⇐⇒ f is not repulsive ⇐⇒ f −m† is not repulsive

⇐⇒ Re(f)−m† ≺ 1 or f −m† is attractive.

Thus if f − m† is attractive, so is f . Now assume towards a contradiction that f
is attractive and f − m† is not. Then Re f < 0 and Re(f) − m† ≺ 1 by the above
equivalence, so Re f ∼ m† thanks to Re f ≽ 1. But f is γ-repulsive, that is,
Re f ≻ m† or Re f > 0, a contradiction. □

Lemma 4.5.6. Suppose γ = vm > 0 and v(Re g) ⩾ γ†. Then for all sufficiently
large c ∈ C> we have Re(g)− cm† > 0 (and hence g − cm† is Γ-repulsive).

Proof. If v(Re g) > γ†, then Re(g) − cm† ∼ −cm† > 0 for all c ∈ C>. Sup-
pose v(Re g) = γ†. Take c0 ∈ C× with Re g ∼ c0m

†; then Re(g) − cm† > 0
for c > c0. □

In the rest of this subsection we assume that S ⊆ Γ. If f is S-repulsive, then so
is af for a > 0, a ≽ 1. If S > 0, δ > 0, and f is S-repulsive and δ-repulsive, then f
is (S + δ)-repulsive.

Lemma 4.5.7. Suppose f is S-repulsive and 0 < δ = vn ∈ S. Then

(i) f is (S − δ)-repulsive;
(ii) g := f − n† is S-repulsive.

Proof. Let γ ∈ (S − δ), γ > 0. Then γ + δ ∈ S, so f is (γ + δ)-repulsive, hence
γ-repulsive. This shows (i). For (ii), suppose γ ∈ S, γ > 0; we need to show that g
is γ-repulsive. If γ ⩾ δ, then g is γ-repulsive by Lemma 4.5.3. Taking γ = δ we see
that g is δ-repulsive, hence if γ < δ, then g is also γ-repulsive. □

Let A ∈ K[∂] ̸= have order r ⩾ 1. An S-repulsive splitting of A over K is a
splitting (g1, . . . , gr) of A over K where g1, . . . , gr are S-repulsive. An S-repulsive
splitting of A over K remains an S-repulsive splitting of hA over K for h ̸= 0. We
say that A splits S-repulsively over K if there is an S-repulsive splitting of A
over K. From Lemmas 1.1.1 and 4.5.7 we obtain:

Lemma 4.5.8. Suppose (g1, . . . , gr) is an S-repulsive splitting of A over K and
0 < δ = vn ∈ S. Then (g1, . . . , gr) is an (S − δ)-repulsive splitting of A over K,
and (h1, . . . , hr) := (g1 − n†, . . . , gr − n†) is an S-repulsive splitting of An over K.
(Hence (h1, . . . , hr) is also an (S − δ)-repulsive splitting of An over K.)

Note that if ϕ is active in H with 0 < ϕ ≼ 1, and f is γ-repulsive (in K), then ϕ−1f
is γ-repulsive in Kϕ = Hϕ[i].

Lemma 4.5.9. Suppose (g1, . . . , gr) is an S-repulsive splitting of A over K and
S ∩ Γ> ̸⊆ Γ♭. Let ϕ be active in H with 0 < ϕ ≺ 1, and set hj := gj − (r − j)ϕ†

for j = 1, . . . , r. Then (ϕ−1h1, . . . , ϕ
−1hr) is an S-repulsive splitting of A

ϕ over Kϕ.

Proof. By Lemma 1.1.2, (ϕ−1h1, . . . , ϕ
−1hr) is splitting of Aϕ over Kϕ. Let j ∈

{1, . . . , r}. If Re gj > 0, then ϕ† < 0 yields Rehj ⩾ Re gj > 0. Otherwise,
v(Re gj) < γ† whenever 0 < γ ∈ S; in particular, Re gj ≻ 1 ≻ ϕ†, so Rehj ∼ Re gj .
In both cases hj is S-repulsive, so ϕ

−1hj is S-repulsive in Kϕ. □
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Proposition 4.5.10. Suppose S ∩ Γ> ̸= ∅, nS ⊆ S for all n ⩾ 1, the ordered con-
stant field C of H is archimedean, and (g1, . . . , gr) is a splitting of A over K. Then
there exists γ ∈ S ∩Γ> such that for any m with γ = vm: (g1 − nm†, . . . , gr − nm†)
is an S-repulsive splitting of Amn over K, for all big enough n.

Proof. Let J be the set of j ∈ {1, . . . , r} such that gj is not S-repulsive. If γ > 0
and g is not γ-repulsive, then g is not δ-repulsive, for all δ ⩾ γ. Hence we can
take γ ∈ S ∩ Γ> such that gj is not γ-repulsive, for all j ∈ J . Suppose γ = vm.
Lemma 4.5.6 yields m ⩾ 1 such that for all n ⩾ m, setting n := mn, gj − n† is
Γ-repulsive for all j ∈ J . For such n we have vn ∈ S, so by Lemma 4.5.7(ii), gj −n†

is also S-repulsive for j /∈ J . □

Corollary 4.5.11. If C is archimedean and (g1, . . . , gr) is a splitting of A over K,
then there exists γ > 0 such that for all m with γ = vm: (g1 − nm†, . . . , gr − nm†)
is a Γ-repulsive splitting of Amn over K, for all big enough n. If Γ ̸= Γ♭ then we
can choose such γ > Γ♭.

Proof. Taking S = Γ this follows from Proposition 4.5.10 and its proof. □

In logical jargon, the condition that C is archimedean is not first-order. But it
is satisfied when H is a Hardy field, the case where the results of this section
will be applied. For other possible uses we indicate here a first-order variant of
Proposition 4.5.10 with essentially the same proof:

Corollary 4.5.12. Suppose (g1, . . . , gr) is a splitting of A over K. Then there
exists m ≺ 1 such that for all sufficiently large c ∈ C> and all n, if n† = cm†,
then (g1 − n†, . . . , gr − n†) is a Γ-repulsive splitting of An over K.

In connection with this corollary we recall from [7, p. 105] that H is said to be
closed under powers if for all c ∈ C and m there is an n with cm† = n†.

In the rest of this section Ĥ is an immediate asymptotic extension of H and i

with i2 = −1 lies in an asymptotic extension of Ĥ. Also K := H[i] and K̂ := Ĥ[i].

Let â ∈ Ĥ \H, so v(â−H) is a downward closed subset of Γ. We say that f is â-
repulsive if f is v(â−H)-repulsive; that is, Re f > 0, or Re f ≻ m† for all a, m
with m ≍ â−a ≺ 1. (Of course, this notion is only interesting if v(â−H)∩Γ> ̸= ∅,
since otherwise every f is â-repulsive.) Various earlier results give:

Lemma 4.5.13. Suppose f is â-repulsive. Then

(i) b > 0, b ≽ 1 =⇒ bf is â-repulsive;
(ii) f is (â− a)-repulsive;
(iii) m ≍ 1 =⇒ f is âm-repulsive;
(iv) n ≍ â− a ≺ 1 =⇒ f is â/n repulsive and f − n† is â-repulsive.

For (iv), use Lemma 4.5.7. An â-repulsive splitting of A over K is a v(â−H)-
repulsive splitting (g1, . . . , gr) of A over K:

A = f(∂ − g1) · · · (∂ − gr) where f ̸= 0 and g1, . . . , gr are â-repulsive.

We say that A splits â-repulsively over K if it splits v(â−H)-repulsively over K.
Thus if A splits â-repulsively over K, then so does hA (h ̸= 0), and A splits (â−a)-
repulsively over K, and splits âm-repulsively over K for m ≍ 1. Moreover, from
Lemma 4.5.8 we obtain:
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Corollary 4.5.14. Suppose (g1, . . . , gr) is an â-repulsive splitting of A over K
and n ≍ â − a ≺ 1. Then (g1, . . . , gr) is an â/n-repulsive splitting of A over K
and (g1 − n†, . . . , gr − n†) is an â-repulsive splitting of An over K.

Proposition 4.5.10 yields:

Corollary 4.5.15. If â ≼ 1 is special over H, C is archimedean, and A splits
over K, then An splits â-repulsively over K for some a and n ≍ â− a ≺ 1.

Recall that in Section 4.2 we defined a splitting (g1, . . . , gr) of A over K to be strong
if Re gj ≽ v(A)† for j = 1, . . . , r.

Lemma 4.5.16. Suppose â− a ≺♭ 1 for some a. Let (g1, . . . , gr) be an â-repulsive
splitting of A over K, let ϕ be active in H with 0 < ϕ ≺ 1, and set

hj := ϕ−1
(
gj − (r − j)ϕ†

)
(j = 1, . . . , r).

Then (h1, . . . , hr) is an â-repulsive splitting of Aϕ over Kϕ = Hϕ[i]. If v(A) ≺♭ 1
and (g1, . . . , gr) is strong, then (h1, . . . , hr) is strong.

This follows from Lemmas 4.2.12 and 4.5.9.

Lemma 4.5.17. Suppose v := v(A) ≺ 1 and â ≺∆(v) 1. Let (g1, . . . , gr) be an
â-repulsive splitting of A over K. Then for all sufficiently small q ∈ Q> and
any n ≍ |v|q, (g1− n†, . . . , gr− n†) is a strong â/n-repulsive splitting of An over K.

Proof. Take q0 ∈ Q> with â ≺ |v|q0 ≺ 1. Then for any q ∈ Q with 0 < q ⩽ q0 and
any n ≍ |v|q, (g1 − n†, . . . , gr − n†) is an â/n-repulsive splitting of An over K, by
Corollary 4.5.14. Using Lemmas 4.2.13 and 4.2.10 (in that order) we can decrease q0
so that for all q ∈ Q with 0 < q ⩽ q0 and n ≍ |v|q, (g1 − n†, . . . , gr − n†) is also a
strong splitting of An over K. □

In the rest of this subsection we assume that H is Liouville closed with I(K) ⊆ K†.
We choose a complement Λ ⊆ Hi ofK† inK as in Section 4.4 and set U := K

[
e(Λ)

]
.

We then have the set E u(A) ⊆ Γ of ultimate exceptional values of A (which doesn’t
depend on Λ by Corollary 4.4.1). Recall from Corollary 1.2.31 that H is of Hardy
type iff C is archimedean. We now assume r = 1 and â ≺ 1 is special over H, and
let ∆ be the nontrivial convex subgroup of Γ that is cofinal in v(â−H).

Lemma 4.5.18. Suppose C is archimedean and E u(A) ∩ v(â − H) < 0. Then A
splits â-repulsively over K.

Proof. We may arrange A = ∂ − f . Take u ∈ U× with u† = f , and set b := ∥u∥ ∈
H>. Then E u(A) = {vb} by Lemma 2.6.14 and its proof, hence

E u(A) ∩ v(â−H) < 0 ⇐⇒ b ≻ 1 or vb > ∆,

and Re f = b† by Lemma 4.4.21. If b ≻ 1, then Re f > 0, and if vb > ∆, then
for all δ ∈ ∆ ̸= we have ψ(vb) < ψ(δ) by Lemma 1.2.27, so Re f ≻ m† for all a, m
with â− a ≍ m ≺ 1. In both cases A splits â-repulsively over K. □

Lemma 4.5.19. Suppose A ∈ H[∂] and v(A) ≺ 1. Then 0 /∈ E u(A), and if A splits
â-repulsively over K, then E u(A) ∩ v(â−H) < 0.

Proof. We again arrange A = ∂ − f and take u, b as in the proof of Lemma 4.5.18.
Then f ∈ H and b† = f = −1/v(A) ≻ 1, so b ̸≍ 1, and thus 0 /∈ {vb} = E u(A).
Now suppose A splits â-repulsively over K, that is, f > 0 or f ≻ m† for all a, m
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with â − a ≍ m ≺ 1. In the first case f = b† and b ̸≍ 1 yield b ≻ 1. In the second
case ψ(vb) = vf < ψ(δ) for all δ ∈ ∆ ̸=, hence vb /∈ ∆. □

Combining Lemma 4.2.11 with the previous two lemmas yields:

Corollary 4.5.20. Suppose A ∈ H[∂] and v(A) ≺ 1, and H is of Hardy type.
Then A splits strongly over K, and we have the equivalence

A splits â-repulsively over K ⇐⇒ E u(A) ∩ v(â−H) ⩽ 0.

Defining repulsive-normality. In this subsection (P,m, â) is a slot in H of or-

der r ⩾ 1 with â ∈ Ĥ\H and linear part L := LP×m
. Set w := wt(P ); if orderL = r,

set v := v(L). We let a, b range over H and n over H×.

Definition 4.5.21. Call (P,m, â) repulsive-normal if orderL = r, and

(RN1) v ≺♭ 1;
(RN2) (P×m)⩾1 = Q+R where Q,R ∈ H{Y }, Q is homogeneous of degree 1 and

order r, LQ splits â/m-repulsively over K, and R ≺∆(v) v
w+1(P×m)1.

Compare this with “split-normality” from Definition 4.3.3: clearly repulsive-normal
implies split-normal, and hence normal. If (P,m, â) is normal and L splits â/m-
repulsively over K, then (P,m, â) is repulsive-normal. If (P,m, â) is repulsive-
normal, then so are (bP,m, â) for b ̸= 0 and (P×n,m/n, â/n).

Lemma 4.5.22. Suppose (P,m, â) is repulsive-normal and ϕ is active in H such
that 0 < ϕ ≺ 1, and â − a ≺♭ m for some a. Then the slot (Pϕ,m, â) in Hϕ is
repulsive-normal.

Proof. First arrange m = 1, and let Q, R be as in (RN2) for m = 1. Now (Pϕ, 1, â)

is split-normal by Lemma 4.3.5. In fact, Pϕ⩾1 = Qϕ + Rϕ, and the proof of this

lemma shows that Rϕ ≺∆(w) ww+1Pϕ1 where w := v(LPϕ). By Lemma 4.5.16,

LQϕ = LϕQ splits â-repulsively over Kϕ. So (Pϕ, 1, â) is repulsive-normal. □

If orderL = r, v ≺♭ 1, and â − a ≺∆(v) m, then â − a ≺♭ m. Thus we obtain from
Lemmas 3.3.13 and 4.5.22 the following result:

Corollary 4.5.23. Suppose (P,m, â) is Z-minimal, deep, and repulsive-normal.
Let ϕ be active in H with 0 < ϕ ≺ 1. Then the slot (Pϕ,m, â) in Hϕ is repulsive-
normal.

Before we turn to the task of obtaining repulsive-normal slots, we deal with the
preservation of repulsive-normality under refinements.

Lemma 4.5.24. Suppose (P,m, â) is repulsive-normal, and let Q, R be as in (RN2).
Let (P+a, n, â−a) be a steep refinement of (P,m, â) where n ≺ m or n = m. Suppose

(P+a,×n)⩾1 −Q×n/m ≺∆(w) w
w+1(P+a,×n)1 where w := v(LP+a,×n

).

Then (P+a, n, â− a) is repulsive-normal.

Proof. By (RN2), LQ splits â/m-repulsively over K, so LQ also splits (â − a)/m-
repulsively over K. We have (â − a)/m ≺ n/m ≺ 1 or (â − a)/m ≺ 1 = n/m,
so LQ splits (â− a)/n-repulsively over K by the first part of Corollary 4.5.14, and
hence LQ×n/m

= LQ · (n/m) splits (â− a)/n-repulsively over K by the second part

of that Corollary 4.5.14. Thus (P+a, n, â− a) is repulsive-normal. □
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The proofs of Lemmas 4.3.18, 4.3.19, 4.3.20 give the following repulsive-normal
analogues of these lemmas, using also Lemma 4.5.24; for Lemma 4.5.27 below we
adopt the notational conventions about nq (q ∈ Q>) stated before Lemma 4.3.20.

Lemma 4.5.25. If (P,m, â) is repulsive-normal and (P+a,m, â−a) is a refinement
of (P,m, â), then (P+a,m, â− a) is also repulsive-normal.

Lemma 4.5.26. Suppose (P,m, â) is repulsive-normal, â ≺ n ≺ m, and [n/m] ⩽
[
v].

Then the refinement (P, n, â) of (P,m, â) is repulsive-normal: if m, P , Q, v are as
in (RN2), then (RN2) holds with n, Q×n/m, R×n/m, v(LP×n

) in place of m, Q, R, v.

Lemma 4.5.27. Suppose m = 1, (P, 1, â) is repulsive-normal, â ≺ n ≺ 1, and
for v := v(LP ) we have [n†] < [v] < [n]; then (P, nq, â) is a repulsive-normal
refinement of (P, 1, â) for all but finitely many q ∈ Q with 0 < q < 1.

Achieving repulsive-normality. In this subsection we adopt the setting of the
subsection Achieving split-normality of Section 4.3: H is ω-free and (P,m, â) is a

minimal hole in K of order r ⩾ 1, m ∈ H×, and â ∈ K̂ \ K, with â = b̂ + ĉi,

b̂, ĉ ∈ Ĥ. We let a range over K, b, c over H, and n over H×. We prove here the
following variant of Theorem 4.3.9:

Theorem 4.5.28. Suppose the constant field C of H is archimedean and degP > 1.
Then one of the following conditions is satisfied:

(i) b̂ /∈ H and some Z-minimal slot (Q,m, b̂) in H has a special refinement

(Q+b, n, b̂− b) such that (Qϕ+b, n, b̂ − b) is eventually deep and repulsive-
normal;

(ii) ĉ /∈ H and some Z-minimal slot (R,m, ĉ) in H has a special refinement

(R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ − c) is eventually deep and repulsive-
normal.

To establish this theorem we need to take up the approximation arguments in the

proof of Theorem 4.3.9 once again. While in that proof we treated the cases b̂ ∈ H
and ĉ ∈ H separately to obtain stronger results in those cases (Lemmas 4.3.10,
4.3.11), here we proceed differently and first show a repulsive-normal version of
Proposition 4.3.12 which also applies to those cases. In the rest of this subsection
we assume that C is archimedean.

Proposition 4.5.29. Suppose the hole (P,m, â) in K is special and v(̂b−H) ⊆
v(ĉ−H) (so b̂ /∈ H). Let (Q,m, b̂) be a Z-minimal deep normal slot in H. Then

(Q,m, b̂) has a repulsive-normal refinement.

Proof. As in the proof of Proposition 4.3.12 we first arrange m = 1, and set

∆ :=
{
δ ∈ Γ : |δ| ∈ v

(
â−K

)}
,

a convex subgroup of Γ which is cofinal in v(â − K) = v(̂b−H), so b̂ is spe-

cial over H. Lemma 3.3.13 applied to (Q, 1, b̂) and v(LQ) ≺♭ 1 gives that Γ♭

is strictly contained in ∆. To show that (Q, 1, b̂) has a repulsive-normal refine-
ment, we follow the proof of Proposition 4.3.12, skipping the initial composi-
tional conjugation, and arranging first that P,Q ≍ 1. Recall from that proof

that ˙̂a ∈ K̇c = Ḣc[i] and Re ˙̂a =
˙̂
b ∈ Ḣc \ Ḣ, with

˙̂
b ≺ 1, Q̇ ∈ Ḣ{Y }, and

so Q̇
+
˙̂
b
∈ Ḣc{Y }. Let A ∈ Ḣc[∂] be the linear part of Q̇

+
˙̂
b
. Recall from that proof
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that 1 ⩽ s := orderQ = orderA ⩽ 2r and that A splits over K̇c. Then Lemma 1.1.4
gives a real splitting (g1, . . . , gs) of A over K̇c:

A = f(∂ − g1) · · · (∂ − gs), 0 ̸= f ∈ Ḣc, g1, . . . , gs ∈ K̇c.

It follows easily from [ADH, 10.1.8] that the real closed d-valued field Ḣ is an H-

field, and so its completion Ḣc is also a real closed H-field by [ADH, 10.5.9]. Recall

also that ∆ = v(Ḣ×) is the value group of Ḣc and properly contains Γ♭. Thus we

can apply Corollary 4.5.11 with Ḣc in the role of H to get n ∈ Ȯ with 0 ̸= ṅ ≺♭ 1
and m such that for all n > m, (h1, . . . , hs) := (g1 − nṅ†, . . . , gs − nṅ†) is a ∆-

repulsive splitting of Aṅn over K̇c, so Reh1, . . . ,Rehs ̸= 0. For any n, Aṅn is the
linear part of Q̇

+
˙̂
b,×ṅn

∈ Ḣc{Y }, and (h1, . . . , hs) is also a real splitting of Aṅn

over K̇c:

Aṅn = ṅnf(∂ − h1) · · · (∂ − hs).

By increasing m we arrange that for all n > m we have gj ̸∼ nṅ† (j = 1, . . . , s), and
also v(Aṅn) ≼ v(A) provided

[
v(A)

]
< [ṅ]; for the latter part use Lemma 3.1.16.

Below we assume n > m. Then v(Aṅn) ≺ 1: to see this use Corollary 3.1.4,
v(A) ≺ 1, and gj ≼ hj (j = 1, . . . , s). Note that h1, . . . , hs ≽ 1. We now apply

Corollary 4.2.9 to Ḣ, K̇, Q̇, s, ṅn,
˙̂
b, ṅnf , h1, . . . , hs in place of H, K, P , r, m, f ,

a, b1, . . . , br, respectively, and any γ ∈ ∆ with γ > v(ṅn), v(Reh1), . . . , v(Rehs).

This gives a, b ∈ Ȯ and b1, . . . , bs ∈ ȮK such that ȧ, ḃ ̸= 0 in Ḣ and such that for

the linear part Ã ∈ Ḣ[∂] of Q̇+ḃ,×ṅn we have

ḃ − ˙̂
b ≺ ṅn, Ã ∼ Aṅn, order Ã = s, w := v(Ã) ∼ v(Aṅn),

and such that for w := wt(Q) and with ∆(w) ⊆ ∆:

Ã = B̃ + Ẽ, B̃ = ȧ(∂ − ḃ1) · · · (∂ − ḃs) ∈ Ḣ[∂], Ẽ ∈ Ḣ[∂],

v(ḃ1 − h1), . . . , v(ḃs − hs) > γ, Ẽ ≺∆(w) ww+1Ã,

and (ḃ1, . . . , ḃs) is a real splitting of B̃ over K̇. This real splitting over K̇ has a
consequence that will be crucial at the end of the proof: by changing b1, . . . , bs if
necessary, without changing ḃ1, . . . , ḃs we arrange that B := a(∂−b1) · · · (∂−bs) lies
in Ȯ[∂] ⊆ H[∂] and that (b1, . . . , bs) is a real splitting of B over K. (Lemma 1.1.6.)

Since Re ḃ1 ∼ Reh1, . . . ,Re ḃs ∼ Rehs, the implication just before Lemma 4.5.2

gives that (ḃ1, . . . , ḃs) is a ∆-repulsive splitting of B̃ over K̇. Now b̂− b ≺ nn ≺ 1,

so (Q+b, 1, b̂−b) is a refinement of the normal slot (Q, 1, b̂) inH, hence (Q+b, 1, b̂−b)
is normal by Proposition 3.3.25. We claim that the refinement (Q+b, n

n, b̂ − b)

of (Q+b, 1, b̂ − b) is also normal. If [n] ⩽
[
v(LQ+b

)
]
, this claim holds by Corol-

lary 3.3.27. From Lemma 3.1.27 and 3.1.7 we obtain:

orderLQ+b
= orderLQ = orderLQ

+b̂
= s,

v(LQ+b
) ∼ v(LQ) ∼ v(LQ

+b̂
), v

(
v(LQ

+b̂
)
)

= v
(
v(A)

)
,

so v
(
v(LQ+b

)
)
= v
(
v(A)

)
. Moreover, by Lemma 3.1.7 and the facts about Ã,

v
(
v(LQ+b,×nn )

)
= v

(
v(Ã)

)
= v

(
v(Aṅn)

)
= v(w).
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Suppose
[
v(LQ+b

)
]
< [n]. Then [v(A)] < [ṅ], so v(Aṅn) ≼ v(A) using n > m. Now

the asymptotic relations among the various v(. . . ) above give

v(LQ+b,×nn ) ≼ v(LQ+b
),

hence (Q+b, n
n, b̂ − b) is normal by Corollary 3.3.29 applied to H and the normal

slot (Q+b, 1, b̂ − b) in H in the role of K and (P, 1, â), respectively. Put v :=

v(LQ+b,×nn ), so v ≍ w. Note thatQ+b,×nn ∈ Ȯ{Y }, so the image of LQ+b,×nn ∈ Ȯ[∂]

in Ḣ[∂] is Ã. Thus in H[∂] we have:

LQ+b,×nn = B + E where E ∈ Ȯ[∂], E ≺∆(v) v
w+1LQ+b,×nn .

Now ḃ1, . . . , ḃs are ∆-repulsive, so b1, . . . , bs are ∆-repulsive, hence

B = a(∂ − b1) · · · (∂ − bs)

splits ∆-repulsively, and thus (̂b − b)/nn-repulsively. Therefore (Q+b, n
n, b̂ − b) is

repulsive-normal. □

Instead of assuming in the above proposition that (P,m, â) is special and (Q,m, b̂)
is deep and normal, we can assume, as with Corollary 4.3.13, that degP > 1:

Corollary 4.5.30. Suppose degP > 1 and v(̂b−H) ⊆ v(ĉ−H). Let Q ∈ Z(H, b̂)

have minimal complexity. Then the Z-minimal slot (Q,m, b̂) in H has a special

refinement (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is eventually deep and repulsive-
normal.

Proof. The beginning of the subsection Achieving split-normality of Section 4.3
and degP > 1 give that K is r-linearly newtonian. Lemmas 3.2.26 and 3.3.23 yield
a quasilinear refinement (P+a, n, â− a) of our hole (P,m, â) in K. Set b := Re a.
By Lemma 4.1.3 we have

v
(
(â− a)−K

)
= v(â−K) = v

(
b̂−H

)
= v

(
(̂b− b)−H

)
.

Replacing (P,m, â) and (Q,m, b̂) by (P+a, n, â − a) and (Q+b, n, b̂ − b), respec-
tively, we arrange that (P,m, â) is quasilinear. Then by Proposition 1.6.12 and K

being r-linearly newtonian, (P,m, â) is special; hence so is (Q,m, b̂). Proposi-

tion 3.3.36 gives a refinement (Q+b, n, b̂ − b) of (Q,m, b̂) and an active ϕ0 ∈ H>

such that (Qϕ0

+b, n, b̂− b) is deep and normal. Refinements of (P,m, â) remain

quasilinear by Corollary 3.2.23. Since v(̂b − H) ⊆ v(ĉ − H), Lemma 4.1.3(ii)
gives a refinement (P+a, n, â − a) of (P,m, â) with Re a = b. By Lemma 3.2.35

the minimal hole (Pϕ0

+a, n, â − a) in Kϕ0 is special. Proposition 4.5.29 applied

to (Pϕ0

+a, n, â− a), (Qϕ0

+b, n, b̂ − b) in place of (P,m, â), (Q,m, b̂), respectively, gives

us b0 ∈ H, n0 ∈ H× and a repulsive-normal refinement
(
Qϕ0

+(b+b0)
, n0, b̂− (b+ b0)

)
of (Qϕ0

+b, n, b̂− b). This refinement is steep and hence deep by Corollary 3.3.6,

since (Qϕ0

+b, n, b̂− b) is deep. Thus by Corollary 4.5.23,
(
Q+(b+b0), n0, b̂− (b+ b0)

)
is a refinement of (Q,m, b̂) such that that

(
Qϕ+(b+b0)

, n0, b̂− (b+ b0)
)
is eventually

deep and repulsive-normal. As a refinement of (Q,m, b̂), it is special. □

In the same way that Corollary 4.3.13 gave rise to Corollary 4.3.14, Corollary 4.5.30
gives rise to the following:

213



Corollary 4.5.31. If degP > 1, v(ĉ − H) ⊆ v(̂b − H), and R ∈ Z(H, ĉ) has
minimal complexity, then the Z-minimal slot (R,m, ĉ) in H has a special refine-

ment (R+c, n, ĉ−c) such that (Rϕ+c, n, ĉ− c) is eventually deep and repulsive-normal.

By Lemma 4.1.3 we have v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆ v(̂b−H), hence the
two corollaries above yield Theorem 4.5.28, completing its proof. □

Strengthening repulsive-normality. In this subsection we adopt the setting of
the subsection Strengthening split-normality of Section 4.3. Thus (P,m, â) is a slot
in H of order r ⩾ 1 and weight w := wt(P ), and L := LP×m

. If orderL = r, we
set v := v(L). We let a, b range over H and m, n over H×.

Definition 4.5.32. We say that (P,m, â) is almost strongly repulsive-normal
if orderL = r, v ≺♭ 1, and there are Q,R ∈ H{Y } such that

(RN2as) (P×m)⩾1 = Q + R, Q is homogeneous of degree 1 and order r, LQ has a
strong â/m-repulsive splitting over K, and R ≺∆(v) v

w+1(P×m)1.

We say that (P,m, â) is strongly repulsive-normal if orderL = r, v ≺♭ 1, and
there are Q,R ∈ H{Y } such that:

(RN2s) P×m = Q+R, Q is homogeneous of degree 1 and order r, LQ has a strong
â/m-repulsive splitting over K, and R ≺∆(v) v

w+1(P×m)1.

If (P,m, â) is almost strongly repulsive-normal, then (P,m, â) is almost strongly
split-normal; likewise without “almost”. Thus we can augment our diagram from
Section 4.3 as follows, the implications holding for slots of order ⩾ 1 in real closed
H-fields with small derivation and asymptotic integration:

strongly
repulsive-
normal

+3

��

almost
strongly
repulsive-
normal

+3

��

repulsive-
normal

��strongly
split-
normal

+3

��

almost
strongly
split-
normal

+3 split-
normal

��strictly
normal

+3 normal

Adapting the proof of Lemma 4.3.23 gives:

Lemma 4.5.33. The following are equivalent:

(i) (P,m, â) is strongly repulsive-normal;
(ii) (P,m, â) is almost strongly repulsive-normal and strictly normal;
(iii) (P,m, â) is almost strongly repulsive-normal and P (0) ≺∆(v) v

w+1(P1)×m.

Corollary 4.5.34. If L has a strong â/m-repulsive splitting over K, then:

(P,m, â) is almost strongly repulsive-normal ⇐⇒ (P,m, â) is normal,

(P,m, â) is strongly repulsive-normal ⇐⇒ (P,m, â) is strictly normal.
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If (P,m, â) is almost strongly repulsive-normal, then so are (bP,m, â) for b ̸= 0
and (P×n,m/n, â/n), and likewise with “strongly” in place of “almost strongly”.
The proof of the next lemma is like that of Lemma 4.3.25, using Lemmas 4.5.25
and 4.5.33 in place of Lemmas 4.3.18 and 4.3.23, respectively.

Lemma 4.5.35. Suppose (P+a,m, â − a) refines (P,m, â). If (P,m, â) is almost
strongly repulsive-normal, then so is (P+a,m, â−a). If (P,m, â) is strongly repulsive-
normal, Z-minimal, and â − a ≺∆(v) vr+w+1m, then (P+a,m, â − a) is strongly
repulsive-normal.

Here is the key to achieving almost strong repulsive-normality; its proof is similar
to that of Lemma 4.3.26:

Lemma 4.5.36. Suppose that (P,m, â) is repulsive-normal and â ≺∆(v) m. Then
for all sufficiently small q ∈ Q>, any n ≍ vqm yields an almost strongly repulsive-
normal refinement (P, n, â) of (P,m, â).

Proof. First arrange m = 1. Take Q, R as in (RN2) for m = 1. Then Lemma 4.5.17
gives q0 ∈ Q> such that â ≺ vq0 and for all q ∈ Q with 0 < q ⩽ q0 and n ≍ vq,
LQ×n

= LQn has a strong â/n-repulsive splitting over K. Now Lemma 4.5.26 yields
that (P, n, â) is almost strongly repulsive-normal for such n. □

Using this lemma we now adapt the proof of Corollary 4.3.27 to obtain:

Corollary 4.5.37. Suppose (P,m, â) is Z-minimal, deep, and repulsive-normal.
Then (P,m, â) has a deep and almost strongly repulsive-normal refinement.

Proof. Lemma 3.3.13 gives a such that â − a ≺∆(v) m. By Corollary 3.3.8, the
refinement (P+a,m, â− a) of (P,m, â) is deep with v(LP+a,×m

) ≍∆(v) v, and by Lem-
ma 4.5.25 it is also repulsive-normal. Now apply Lemma 4.5.36 to (P+a,m, â− a)
in place of (P,m, â) and again use Corollary 3.3.8 to preserve being deep. □

Next we adapt the proof of Lemma 4.3.28 to obtain a result about the behavior of
(almost) repulsive-normality under compositional conjugation:

Lemma 4.5.38. Suppose ϕ is active in H with 0 < ϕ ≺ 1, and there exists a
with â − a ≺♭ m. If (P,m, â) is almost strongly repulsive-normal, then so is the
slot (Pϕ,m, â) in Hϕ. Likewise with “strongly” in place of “almost strongly”.

Proof. We arrange m = 1, assume (P,m, â) is almost strongly repulsive-normal, and
takeQ, R as in (RN2as). The proof of Lemma 4.3.5 shows that withw := v(LPϕ) we
have w ≺♭ϕ 1 and (Pϕ)⩾1 = Qϕ+Rϕ where Qϕ ∈ Hϕ{Y } is homogeneous of degree 1

and order r, LQϕ splits over Kϕ, and Rϕ ≺∆(w) ww+1(Pϕ)1. By Lemma 4.5.16,

LQϕ = LϕQ has even a strong â-repulsive splitting over K. Hence (Pϕ,m, â) is
almost strongly repulsive-normal. For the rest we use Lemma 4.5.33 and the fact
that if (P,m, â) is strictly normal, then so is (Pϕ,m, â). □

Lemma 3.3.13, the remark preceding Corollary 4.5.23, and Lemma 4.5.38 yield:

Corollary 4.5.39. Suppose (P,m, â) is Z-minimal and deep, and ϕ is active in H
with 0 < ϕ ≺ 1. If (P,m, â) is almost strongly repulsive-normal, then so is the
slot (Pϕ,m, â) in Hϕ. Likewise with “strongly” in place of “almost strongly”.

In the case r = 1, ultimateness yields almost strong repulsive-normality, under
suitable assumptions; more precisely:
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Lemma 4.5.40. Suppose H is Liouville closed and of Hardy type, and I(K) ⊆ K†.
Assume also that (P,m, â) is normal and special, of order r = 1. Then

(P,m, â) is ultimate ⇐⇒ L has a strong â/m-repulsive splitting over K,

in which case (P,m, â) is almost strongly repulsive-normal.

Proof. By Lemma 4.4.12, (P,m, â) is ultimate iff E u(L) ∩ v
(
(â/m) −H

)
⩽ 0, and

the latter is equivalent to L having a strong â/m-repulsive splitting over K, by
Corollary 4.5.20. For the rest use Corollary 4.5.34. □

Liouville closed H-fields are 1-linearly newtonian by Corollary 1.8.29, so in view
of Lemma 3.2.36 and Corollary 3.3.21 we may replace the hypothesis “(P,m, â) is
special” in the previous lemma by “(P,m, â) is Z-minimal or a hole in H”. This
leads to repulsive-normal analogues of Lemma 4.3.29 and Corollary 4.3.30 for r = 1:

Lemma 4.5.41. Assume H is Liouville closed and of Hardy type, and I(K) ⊆ K†.
Suppose (P,m, â) is Z-minimal and quasilinear of order r = 1. Then there is a
refinement (P+a, n, â − a) of (P,m, â) and an active ϕ in H with 0 < ϕ ≼ 1 such

that (Pϕ+a, n, â− a) is deep, strictly normal, and ultimate (so (Pϕ+a, n, â − a) is
strongly repulsive-normal by Lemmas 4.5.40 and 4.5.33).

Proof. For any active ϕ in H with 0 < ϕ ≼ 1 we may replace H, (P,m, â)
by Hϕ, (Pϕ,m, â). We may also replace (P,m, â) by any of its refinements. Since H
is 1-linearly newtonian, Corollary 3.3.35 gives a refinement (P+a, n, â−a) of (P,m, â)
and an active ϕ in H such that 0 < ϕ ≼ 1 and (Pϕ+a, n, â − a) is normal. Replac-

ing H, (P,m, â) by Hϕ, (Pϕ+a, n, â− a), we arrange that (P,m, â) itself is normal.
Then (P,m, â) has an ultimate refinement by Proposition 4.4.14, and applying
Corollary 3.3.35 to this refinement and using Lemma 4.4.10, we obtain an ultimate
refinement (P+a, n, â − a) of (P,m, â) and an active ϕ in H with 0 < ϕ ≼ 1 such

that the Z-minimal slot (Pϕ+a, n, â− a) in Hϕ is deep, normal, and ultimate. Again

replacing H, (P,m, â) by Hϕ, (Pϕ+a, n, â− a), we arrange that (P,m, â) is deep,
normal, and ultimate. Corollary 3.3.47 yields a deep and strictly normal refine-
ment (P+a,m, â− a) of (P,m, â); this refinement is still ultimate by Lemma 4.4.10.
Hence (P+a,m, â− a) is a refinement of (P,m, â) as required, with ϕ = 1. □

Combining Lemmas 3.2.26 and 4.5.41 with Corollary 4.5.39 yields:

Corollary 4.5.42. Assume H is Liouville closed, ω-free, and of Hardy type, and
I(K) ⊆ K†. Then every Z-minimal slot in H of order r = 1 has a refine-
ment (P,m, â) such that (Pϕ,m, â) is eventually deep, ultimate, and strongly re-
pulsive-normal.

In the next subsection we show how minimal holes of degree > 1 in K give rise to
deep, ultimate, strongly repulsive-normal, Z-minimal slots in H.

Achieving strong repulsive-normality. Let H be an ω-free Liouville closed
H-field with small derivation and constant field C, and (P,m, â) a minimal hole
of order r ⩾ 1 in K := H[i]. Other conventions are as in the subsection Achiev-
ing repulsive-normality. Our goal is to prove a version of Theorem 4.5.28 with
“repulsive-normal” improved to “strongly repulsive-normal + ultimate”:
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Theorem 4.5.43. Suppose C is archimedean, I(K) ⊆ K†, and degP > 1. Then
one of the following conditions is satisfied:

(i) b̂ /∈ H and some Z-minimal slot (Q,m, b̂) in H has a special refinement

(Q+b, n, b̂− b) such that (Qϕ+b, n, b̂ − b) is eventually deep, strongly repul-
sive-normal, and ultimate;

(ii) ĉ /∈ H and some Z-minimal slot (R,m, ĉ) in H has a special refinement

(R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ − c) is eventually deep, strongly repul-
sive-normal, and ultimate.

The proof of this theorem rests on the following two lemmas, where the standing
assumption that H is Liouville closed can be dropped.

Lemma 4.5.44. Suppose b̂ /∈ H and (Q,m, b̂) is a Z-minimal slot in H with a

refinement (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is eventually deep and repulsive-

normal. Then (Q,m, b̂) has a refinement (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is
eventually deep and almost strongly repulsive-normal.

Proof. We adapt the proof of Lemma 4.3.34. Let (Q+b, n, b̂− b) be a refinement

of (Q,m, b̂) and let ϕ0 be active in H such that 0 < ϕ0 ≼ 1 and (Qϕ0

+b, n, b̂ − b) is
deep and repulsive-normal. Then Corollary 4.5.37 yields a refinement(

(Qϕ0

+b)+b0 , n0, (̂b− b)− b0
)

of (Qϕ0

+b, n, b̂− b) which is deep and almost strongly repulsive-normal. Hence(
(Q+b)+b0 , n0, (̂b− b)− b0

)
=
(
Q+(b+b0), n0, b̂− (b+ b0)

)
is a refinement of (Q,m, b̂), and

(
Qϕ+(b+b0)

, n0, b̂ − (b + b0)
)
is eventually deep and

almost strongly repulsive-normal by Corollary 4.5.39. □

In the same way we obtain:

Lemma 4.5.45. Suppose ĉ /∈ H and (R,m, ĉ) is a Z-minimal slot in H with a

refinement (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is eventually deep and repulsive-

normal. Then (R,m, ĉ) has a refinement (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is
eventually deep and almost strongly repulsive-normal.

Theorem 4.5.28 and the two lemmas above give Theorem 4.5.28 with “repulsive-
normal” improved to “almost strongly repulsive-normal”. We now upgrade this
further to “strongly repulsive-normal + ultimate” (under an extra assumption).

Recall from Lemma 4.1.3 that v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆ v(̂b−H). Thus
the next two lemmas finish the proof of Theorem 4.5.43.

Lemma 4.5.46. Suppose C is archimedean, I(K) ⊆ K†, degP > 1, and

v(̂b−H) ⊆ v(ĉ−H).

Let Q ∈ Z(H, b̂) have minimal complexity. Then the Z-minimal slot (Q,m, b̂) in H

has a special refinement (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is eventually deep,
strongly repulsive-normal, and ultimate.
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Proof. Here are two ways of modifying (Q,m, b̂). First, let (Q+b, n, b̂ − b) be a

refinement of (Q,m, b̂). Lemma 4.1.3 gives c ∈ H with v(â−a) = v(̂b− b) with a :=
b+ ci, and so the minimal hole (P+a, n, â− a) in K is a refinement of (P,m, â) that

relates to (Q+b, n, b̂− b) as (P,m, â) relates to (Q,m, b̂). So we can replace (P,m, â)

and (Q,m, b̂) by (P+a, n, â − a) and (Q+b, n, b̂ − b), whenever convenient. Second,
let ϕ be active in H with 0 < ϕ ≼ 1. Then we can likewise replace H, K, (P,m, â),

(Q,m, b̂) by Hϕ, Kϕ, (Pϕ,m, â), (Qϕ,m, b̂).

In this way we first arrange as in the proof of Corollary 4.5.30 that (Q,m, b̂) is

special. Next, we use Proposition 3.3.36 likewise to arrange that (Q,m, b̂) is also
normal. By Propositions 4.4.14 (where the assumption I(K) ⊆ K† comes into play)

and 3.3.25 we arrange that (Q,m, b̂) is ultimate as well. The properties “special”
and “ultimate” persist under further refinements and compositional conjugations.

Now Corollary 4.5.30 and Lemma 4.5.44 give a refinement (Q+b, n, b̂− b) of

the slot (Q,m, b̂) in H and an active ϕ0 in H with 0 < ϕ0 ≼ 1 such that the

slot (Qϕ0

+b, n, b̂− b) in Hϕ0 is deep and almost strongly repulsive-normal. Corol-
lary 3.3.47 then yields a deep and strictly normal refinement(

(Qϕ0

+b)+b0 , n, (̂b− b)− b0
)

of
(
Qϕ0

+b, n, b̂− b
)
. This refinement is still almost strongly repulsive-normal by

Lemma 4.5.35, and therefore strongly repulsive-normal by Lemma 4.5.33. Corol-

lary 4.5.39 then gives that
(
Q+(b+b0), n, b̂− (b+ b0)

)
is a special refinement of our

slot (Q,m, b̂) such that
(
Qϕ+(b+b0)

, n, b̂− (b+ b0)
)
is eventually deep and strongly

repulsive-normal. □

Likewise:

Lemma 4.5.47. Suppose C is archimedean, I(K) ⊆ K†, degP > 1, and

v(ĉ−H) ⊆ v(̂b−H).

Let R ∈ Z(H, ĉ) have minimal complexity. Then the Z-minimal slot (R,m, ĉ) in H

has a special refinement (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is eventually deep,
strongly repulsive-normal, and ultimate.
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Part 5. Hardy Fields and their Universal Exponential Extensions

In this part we turn to Hardy fields. Section 5.1 contains basic definitions and
facts about germs of one-variable (real- or complex-valued) functions, and in Sec-
tion 5.2 we collect the main facts we need about linear differential equations. In
Section 5.3 we introduce Hardy fields and review some extension results due to
Boshernitzan [32, 33, 34] and Rosenlicht [171]. In Section 5.4 we discuss upper
and lower bounds on the growth of germs in Hardy fields from [34, 33, 170], and
Section 5.5 contains a first study of second-order linear differential equations over
Hardy fields (to be be completed in Section 7.5, with our main theorem available).
Section 5.6 contains the proof of a significant result about maximal Hardy fields,
Theorem 5.6.2: every such Hardy field is ω-free. (See the beginning of that section
for a review of this important property of H-asymptotic fields, introduced in [ADH,
11.7].) The rest of Section 5.6 contains refinements and applications of this fact. In
Section 5.7 we then prove a general fact about bounding the derivatives of solutions
to linear differential equations, based on [67, 88, 121]. In Section 5.10 we give an
analytic description of the universal exponential extension U = UK , introduced in
Part 2, of the algebraic closure K of a Liouville closed Hardy field extending R.
The elements of U are exponential sums with coefficients and exponents in K. To
extract asymptotic information about the summands in such a sum we use re-
sults of Boshernitzan [36] about uniform distribution mod 1 over Hardy fields. We
include proofs of these results in Section 5.9, preceded by a development of the
required classical facts concerning almost periodic functions in Section 5.8. (None
of the material in Sections 5.8 and 5.9 is original, we only aim for an efficient and
self-contained exposition.)

5.1. Germs of Continuous Functions

Hardy fields consist of germs of one-variable differentiable real-valued functions. In
this section we first consider the ring C of germs of continuous real-valued functions,
and its complex counterpart C[i]. With an eye towards applications to Hardy fields,
we pay particular attention to extending subfields of C.

Germs. As in [ADH, 9.1] we let G be the ring of germs at +∞ of real-valued
functions whose domain is a subset of R containing an interval (a,+∞), a ∈ R; the
domain may vary and the ring operations are defined as usual. If g ∈ G is the germ
of a real-valued function on a subset of R containing an interval (a,+∞), a ∈ R,
then we simplify notation by letting g also denote this function if the resulting
ambiguity is harmless. With this convention, given a property P of real numbers
and g ∈ G we say that P

(
g(t)

)
holds eventually if P

(
g(t)

)
holds for all sufficiently

large real t. Thus for g ∈ G we have g = 0 iff g(t) = 0 eventually (and so g ̸= 0
iff g(t) ̸= 0 for arbitrarily large t). Note that the multiplicative group G× of units
of G consists of the f ∈ G such that f(t) ̸= 0, eventually. We identify each real
number r with the germ at +∞ of the function R → R that takes the constant
value r. This makes the field R into a subring of G. Given g, h ∈ G, we set

(5.1.1) g ⩽ h :⇐⇒ g(t) ⩽ h(t), eventually.

This defines a partial ordering ⩽ on G which restricts to the usual ordering of R.
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Let g, h ∈ G. Then g, h ⩾ 0 ⇒ g + h, g · h, g2 ⩾ 0, and g ⩾ r ∈ R> ⇒ g ∈ G×.
We define g < h :⇔ g ⩽ h and g ̸= h. Thus if g(t) < h(t), eventually, then g < h;
the converse is not generally valid.

Continuous germs. We call a germ g ∈ G continuous if it is the germ of a
continuous function (a,+∞) → R for some a ∈ R, and we let C ⊇ R be the
subring of G consisting of the continuous germs g ∈ G. We have C× = G× ∩ C;
thus for f ∈ C×, we have f(t) ̸= 0, eventually, hence either f(t) > 0, eventually,
or f(t) < 0, eventually, and so f > 0 or f < 0. More generally, if g, h ∈ C
and g(t) ̸= h(t), eventually, then g(t) < h(t), eventually, or h(t) < g(t), eventually.
We let x denote the germ at +∞ of the identity function on R, so x ∈ C×.

The ring C[i]. In analogy with C we define its complexification C[i] as the ring
of germs at +∞ of C-valued continuous functions whose domain is a subset of R
containing an interval (a,+∞), a ∈ R. It has C as a subring. Identifying each
complex number c with the germ at +∞ of the function R → C that takes the
constant value c makes C also a subring of C[i] with C[i] = C + Ci, justifying
the notation C[i]. The “eventual” terminology for germs f ∈ C (like “f(t) ̸= 0,
eventually”) is extended in the obvious way to germs f ∈ C[i]. Thus for f ∈ C[i] we
have: f(t) ̸= 0, eventually, if and only if f ∈ C[i]×. In particular C× = C[i]× ∩ C.
Let Φ: U → C be a continuous function where U ⊆ C, and let f ∈ C[i] be such
that f(t) ∈ U , eventually; then Φ(f) denotes the germ in C[i] with Φ(f)(t) =
Φ
(
f(t)

)
, eventually. For example, taking U = C, Φ(z) = ez, we obtain for f ∈ C[i]

the germ exp f = ef ∈ C[i] with (ef )(t) = ef(t), eventually. Likewise, for f ∈ C
with f(t) > 0, eventually, we have the germ log f ∈ C. For f ∈ C[i] we have f ∈ C[i]
with f(t) = f(t), eventually; the map f 7→ f is an automorphism of the ring C[i]
with f = f and f ∈ C ⇔ f = f . For f ∈ C[i] we also have Re f, Im f, |f | ∈ C
with f(t) = (Re f)(t) + (Im f)(t)i and |f |(t) = |f(t)|, eventually.

Asymptotic relations on C[i]. Although C[i] is not a valued field, it will be
convenient to equip C[i] with the asymptotic relations ≼, ≺, ∼ (which are defined
on any valued field [ADH, 3.1]) as follows: for f, g ∈ C[i],

f ≼ g :⇐⇒ there exists c ∈ R> such that |f | ⩽ c|g|,
f ≺ g :⇐⇒ g ∈ C[i]× and lim

t→∞
f(t)/g(t) = 0

⇐⇒ g ∈ C[i]× and |f | ⩽ c|g| for all c ∈ R>,
f ∼ g :⇐⇒ g ∈ C[i]× and lim

t→∞
f(t)/g(t) = 1

⇐⇒ f − g ≺ g.

We also use these notations for continuous functions [a,+∞) → C, a ∈ R; for
example, for continuous f : [a,+∞) → C and g : [b,+∞) → C (a, b ∈ R), f ≼ g
means: (germ of f) ≼ (germ of g). If h ∈ C[i] and 1 ≼ h, then h ∈ C[i]×. Also,
for f, g ∈ C[i] and h ∈ C[i]× we have

f ≼ g ⇔ fh ≼ gh, f ≺ g ⇔ fh ≺ gh, f ∼ g ⇔ fh ∼ gh.

The binary relation ≼ on C[i] is reflexive and transitive, and ∼ is an equivalence
relation on C[i]×. Moreover, for f, g, h ∈ C[i] we have

f ≺ g ⇒ f ≼ g, f ≼ g ≺ h ⇒ f ≺ h, f ≺ g ≼ h ⇒ f ≺ h.
220



Note that ≺ is a transitive binary relation on C[i]. For f, g ∈ C[i] we also set

f ≍ g : ⇔ f ≼ g & g ≼ f, f ≽ g : ⇔ g ≼ f, f ≻ g : ⇔ g ≺ f,

so ≍ is an equivalence relation on C[i], and f ∼ g ⇒ f ≍ g. Thus for f, g, h ∈ C[i],

f ≼ g ⇒ fh ≼ gh, f ≼ h & g ≼ h ⇒ f + g ≼ h, f ≼ 1 & g ≺ 1 ⇒ fg ≺ 1,

hence

C[i]≼ :=
{
f ∈ C[i] : f ≼ 1

}
=
{
f ∈ C[i] : |f | ⩽ n for some n

}
is a subalgebra of the C-algebra C[i] and

C[i]≺ :=
{
f ∈ C[i] : f ≺ 1

}
=
{
f ∈ C[i] : lim

t→∞
f(t) = 0

}
is an ideal of C[i]≼. The group of units of C[i]≼ is

C[i]≍ :=
{
f ∈ C[i] : f ≍ 1

}
=
{
f ∈ C[i] : 1/n ⩽ |f | ⩽ n for some n ⩾ 1

}
and has the subgroup

C×(1 + C[i]≺
)

=
{
f ∈ C[i] : lim

t→∞
f(t) ∈ C×

}
.

We set C≼ := C[i]≼ ∩ C, and similarly with ≺, ≍ in place of ≼.

Lemma 5.1.1. Let f, g, f∗, g∗ ∈ C[i]× with f ∼ f∗ and g ∼ g∗. Then 1/f ∼ 1/f∗

and fg ∼ f∗g∗. Moreover, f ≼ g ⇔ f∗ ≼ g∗, and similarly with ≺, ≍, or ∼ in
place of ≼.

This follows easily from the observations above. For later reference we also note:

Lemma 5.1.2. Let f, g ∈ C× be such that 1 ≺ f ≼ g; then log |f | ≼ log |g|.

Proof. Clearly log |g| ≻ 1. Take c ∈ R> such that |f | ⩽ c|g|. Then log |f | ⩽
log c+ log |g| where log c+ log |g| ∼ log |g|; hence log |f | ≼ log |g|. □

Lemma 5.1.3. Let f, g, h ∈ C× be such that f − g ≺ h and (f − h)(g − h) = 0.
Then f ∼ g.

Proof. Take a ∈ R and representatives (a,+∞) → R of f , g, h, denoted by the
same symbols, such that for each t > a we have f(t), g(t), h(t) ̸= 0, and f(t) =
h(t) or g(t) = h(t). Let ε ∈ R with 0 < ε ⩽ 1 be given, and choose b ⩾ a
such that |f(t) − g(t)| ⩽ 1

2ε|h(t)| for all t > b. Set q := f/g and let t > b; we
claim that then |q(t) − 1| ⩽ ε. This is clear if g(t) = h(t), so suppose otherwise;
then f(t) = h(t), and |1 − 1/q(t)| ⩽ 1

2ε ⩽
1
2 . In particular, 0 < q(t) ⩽ 2 and

so |1− q(t)| = |1− 1/q(t)| · q(t) ⩽ ε as claimed. □

Subfields of C. Let H be a Hausdorff field, that is, a subring of C that happens
to be a field; see [12]. Then H has the subfield H ∩ R. If f ∈ H×, then f(t) ̸= 0
eventually, hence either f(t) < 0 eventually or f(t) > 0 eventually. The partial
ordering of G from (5.1.1) thus restricts to a total ordering on H making H an
ordered field in the usual sense of that term. By [32, Propositions 3.4 and 3.6]:

Proposition 5.1.4. Let Hrc consist of the y ∈ C with P (y) = 0 for some P (Y ) in
H[Y ]̸=. Then Hrc is the unique real closed Hausdorff field that extends H and is
algebraic over H. In particular, Hrc is a real closure of the ordered field H.
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Boshernitzan [32] assumes H ⊇ R for this result, but this is not really needed in the
proof, much of which already occurs in Hausdorff [94]. For the reader’s convenience
we include a proof of Proposition 5.1.4, after some lemmas. Let

P (Y ) = P0Y
n + P1Y

n−1 + · · ·+ Pn ∈ H[Y ] (P0, . . . , Pn ∈ H),

and take a ∈ R such that P0, . . . , Pn have representatives in Ca, also denoted
by P0, . . . , Pn. This yields for t ⩾ a the polynomial

P (t, Y ) := P0(t)Y
n + P1(t)Y

n−1 + · · ·+ Pn(t) ∈ R[Y ].

For any other choice of a and representatives of P0, . . . , Pn in Ca this gives for
large enough t the same polynomial P (t, Y ) ∈ R[Y ], so the “eventual” terminology
makes sense for properties mentioning P (t, Y ) with t ranging over R. For example,
for y ∈ C[i], we have: P (y) = 0 ⇔ y(t) ∈ C is a zero of P (t, Y ), eventually.

Lemma 5.1.5. Suppose P is irreducible (in H[Y ]) of degree n, so n ⩾ 1. Then
there are y1, . . . , ym ∈ C such that y1(t) < · · · < ym(t), eventually, and the distinct
real zeros of the polynomial P (t, Y ) ∈ R[Y ] are exactly y1(t), . . . , ym(t), eventually.
Thus P (y1) = · · · = P (ym) = 0, and if n is odd, then m ⩾ 1.

Proof. Take A,B ∈ H[Y ] with 1 = AP +BP ′. Then

1 = A(t, Y )P (t, Y ) +B(t, Y )P (t, Y )′, eventually.

Hence P (t, Y ) ∈ R[Y ] has exactly n distinct complex zeros, eventually. Now use
“continuity of roots” as used for example in [58, Chapter II, (2.4)]. □

Lemma 5.1.6. Let P,Q ∈ H[Y ] be monic and irreducible with P ̸= Q, and
let y, z ∈ C[i], P (y) = Q(z) = 0. Then y(t) ̸= z(t), eventually. In particular,
if y, z ∈ C, then either y(t) < z(t) eventually, or y(t) > z(t) eventually.

Proof. Take A,B ∈ H[Y ] such that 1 = AP +BQ. Then

1 = A(t, Y )P (t, Y ) +B(t, Y )Q(t, Y ), eventually.

Hence Q(t, y(t)) ̸= 0, eventually, and thus y(t) ̸= z(t), eventually. □

Corollary 5.1.7. Let y ∈ C and P (y) = 0, P ∈ H[Y ] ̸=. Then Q(y) = 0 for some
monic irreducible Q ∈ H[Y ].

Proof. We have P = hQe11 · · ·Qenn where h ∈ H ̸=, e1, . . . , en ∈ N⩾1, and Q1, . . . , Qn
in H[Y ] are distinct, and monic irreducible. Lemmas 5.1.5 and 5.1.6 now yield
germs y1, . . . , ym ∈ C such that, eventually, y1(t) < · · · < ym(t) are the real zeros
of the polynomials Q1(t, Y ), . . . , Qn(t, Y ) ∈ R[Y ], and thus of P (t, Y ), and such
that for each i ∈ {1, . . . ,m} there is a unique j ∈ {1, . . . , n} with Qj

(
t, yi(t)

)
= 0,

eventually. Continuity arguments and the connectedness of halflines [a,+∞) yields
a single i with yi(t) = y(t), eventually, and thus Qj(y) = 0 for some j. □

Proof of Proposition 5.1.4. Given y ∈ Hrc we have by Corollary 5.1.7 a monic
irreducible Q ∈ H[Y ] with Q(y) = 0, so H[y] ⊆ Hrc is a Hausdorff field and
algebraic over H. Since “algebraic over” is transitive, it follows that Hrc is a
Hausdorff field and algebraic over H. Such transitivity also gives (Hrc)rc = Hrc.
Obviously, any algebraic Hausdorff field extension of H is contained in Hrc. So it
only remains to show that the ordered field Hrc is real closed. First, if y ∈ Hrc

and y ⩾ 0, then clearly
√
y ∈ C is algebraic over Hrc, and thus in it. Next,

let P (Y ) ∈ Hrc[Y ] have odd degree. Then P has a zero in Hrc: this follows from
Lemma 5.1.5 by considering an irreducible factor of P in Hrc[Y ] of odd degree. □
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We record the following useful consequence of Corollary 5.1.7 and its proof:

Corollary 5.1.8. Let P ∈ H[Y ]̸= and let y1, . . . , ym be the distinct zeros of P
in Hrc. Then y1(t), . . . ym(t) are the distinct real zeros of P (t, Y ), eventually.

Note that H[i] is a subfield of C[i], and by Proposition 5.1.4 and [ADH, 3.5.4],
the subfield Hrc[i] of C[i] is an algebraic closure of the field H. If f ∈ C[i] is
integral over H, then so is f , and hence so are the elements Re f = 1

2 (f + f)

and Im f = 1
2i (f − f) of C [ADH, 1.3.2]. Thus Hrc[i] consists of the y ∈ C[i]

with P (y) = 0 for some P (Y ) ∈ H[Y ]̸=.

The ordered field H has a convex subring

O =
{
f ∈ H : |f | ⩽ n for some n

}
= C≼ ∩H,

which is a valuation ring of H, and we consider H accordingly as a valued ordered
field. The maximal ideal of O is O = C≺ ∩H. The residue morphism O → res(H)
restricts to an ordered field embedding H∩R → res(H), which is bijective if R ⊆ H.
Restricting the binary relations ≼, ≺, ∼ from the previous subsection to H gives
exactly the asymptotic relations ≼, ≺, ∼ on H that it comes equipped with as a
valued field. By [ADH, 3.5.15],

O +Oi =
{
f ∈ H[i] : |f | ⩽ n for some n

}
= C[i]≼ ∩H[i]

is the unique valuation ring of H[i] whose intersection with H is O. In this way
we consider H[i] as a valued field extension of H. The maximal ideal of O + Oi
is O+Oi = C[i]≺∩H[i]. The asymptotic relations ≼, ≺, ∼ on C[i] restricted to H[i]
are exactly the asymptotic relations ≼, ≺, ∼ on H[i] that H[i] has as a valued field.
Moreover, f ≍ |f | in C[i] for all f ∈ H[i].

Composition. Let g ∈ C, and suppose that lim
t→+∞

g(t) = +∞; equivalently, g ⩾ 0

and g ≻ 1. Then the composition operation

f 7→ f ◦ g : C[i] → C[i], (f ◦ g)(t) := f
(
g(t)

)
eventually,

is an injective endomorphism of the ring C[i] that is the identity on the subring C.
For f1, f2 ∈ C[i] we have: f1 ≼ f2 ⇔ f1 ◦ g ≼ f2 ◦ g, and likewise with ≺, ∼. This
endomorphism of C[i] commutes with the automorphism f 7→ f of C[i], and maps
each subfield K of C[i] isomorphically onto the subfield K ◦ g = {f ◦ g : f ∈ K}
of C[i]. Note that if the subfield K of C[i] contains x, then K ◦ g contains g.
Moreover, f 7→ f ◦g restricts to an endomorphism of the subring C of C[i] such that
if f1, f2 ∈ C and f1 ⩽ f2, then f1 ◦ g ⩽ f2 ◦ g. This endomorphism of C maps each
Hausdorff field H isomorphically (as an ordered field) onto the Hausdorff field H ◦g.

Occasionally it is convenient to extend the composition operation on C to the ring G
of all (not necessarily continuous) germs. Let g ∈ G with lim

t→+∞
g(t) = +∞. Then

for f ∈ G we have the germ f ◦ g ∈ G with

(f ◦ g)(t) := f
(
g(t)

)
eventually.

The map f 7→ f ◦ g is an endomorphism of the R-algebra G. Let f1, f2 ∈ G.
Then f1 ⩽ f2 ⇒ f1 ◦ g ⩽ f2 ◦ g, and likewise with ≼ and ≺ instead of ⩽, where we
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extend the binary relations ≼, ≺ from C to G in the natural way:

f1 ≼ f2 :⇐⇒ there exists c ∈ R> such that |f1(t)| ⩽ c|f2(t)|, eventually;
f1 ≺ f2 :⇐⇒ f2 ∈ G× and lim

t→∞
f1(t)/f2(t) = 0.

Compositional inversion. Suppose that g ∈ C is eventually strictly increas-
ing such that lim

t→+∞
g(t) = +∞. Then its compositional inverse ginv ∈ C is

given by ginv
(
g(t)

)
= t, eventually, and ginv is also eventually strictly increas-

ing with lim
t→+∞

ginv(t) = +∞. Then f 7→ f ◦ g is an automorphism of the ring C[i],

with inverse f 7→ f ◦ ginv. In particular, g ◦ ginv = ginv ◦ g = x. Moreover, f 7→ f ◦ g
restricts to an automorphism of C, and if h ∈ C is eventually strictly increasing
with g ⩽ h, then hinv ⩽ ginv.

Let now f, g ∈ C with f, g ⩾ 0, f, g ≻ 1. It is not true in general that if f , g
are eventually strictly increasing and f ∼ g, then f inv ∼ ginv. (Counterexample:
f = log x, g = log 2x.) Corollary 5.1.10 below gives a useful condition on f , g under
which this implication does hold. In addition, let h ∈ C× be eventually monotone
and continuously differentiable with h′/h ≼ 1/x.

Lemma 5.1.9 (Entringer [65]). Suppose f ∼ g. Then h ◦ f ∼ h ◦ g.

Proof. Replacing h by −h if necessary we arrange that h ⩾ 0, so h(t) > 0 eventually.
Set p := min(f, g) ∈ C and q := max(f, g) ∈ C. Then 0 ⩽ p ≻ 1 and f − g ≺ p. The
Mean Value Theorem gives ξ ∈ G such that p ⩽ ξ ⩽ q (so 0 ⩽ ξ ≻ 1) and

h ◦ f − h ◦ g = (h′ ◦ ξ) · (f − g).

From h′/h ≼ 1/x we obtain h′ ◦ ξ ≼ (h ◦ ξ)/ξ ≼ (h ◦ ξ)/p, hence h ◦ f − h ◦ g ≺
h ◦ ξ. Set u := max(h ◦ p, h ◦ q). Then 0 ⩽ h ◦ ξ ⩽ u, hence h ◦ f − h ◦ g ≺ u.
Also (u− h ◦ f)(u− h ◦ g) = 0, so Lemma 5.1.3 yields h ◦ f ∼ h ◦ g. □

Corollary 5.1.10. Suppose f , g are eventually strictly increasing with f ∼ g
and f inv ∼ h. Then ginv ∼ h.

Proof. By the lemma above we have h◦f ∼ h◦g, and from f inv ∼ h we obtain x =
f inv ◦ f ∼ h ◦ f . Therefore ginv ◦ g = x ∼ h ◦ g and thus ginv ∼ h. □

Corollary 5.1.11. If g, h are eventually strictly increasing, 0 ⩽ h ≻ 1, and
g ∼ hinv, then ginv ∼ h.

Proof. Take f = hinv in Corollary 5.1.10. □

Sometimes we prefer “big O” and “little o” notation instead of ≼ and ≺: for ϕ, ξ, θ ∈
C[i], ϕ = ξ+O(θ) :⇔ ϕ−ξ ≼ θ and ϕ = ξ+o(θ) :⇔ ϕ−ξ ≺ θ. For use in Section 7.5
we note:

Corollary 5.1.12. Suppose g = x + cx−1 + o(x−1), c ∈ R, and g is eventually
strictly increasing. Then ginv = x− cx−1 + o(x−1).

Proof. We have ginv ∼ x by Corollary 5.1.11 (for h = x), so ginv = x(1 + ε)
where ε ∈ C, ε ≺ 1. Now (1 + ε)−1 = 1 + δ with δ ∈ C, δ ≺ 1. Then

x = g ◦ ginv = x(1 + ε) + cx−1(1 + δ) + o(x−1)

and thus ε = −cx−2(1+δ)+o(x−2) = −cx−2+o(x−2). This yields ginv = x(1+ε) =
x− cx−1 + o(x−1), as claimed. □
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Extending ordered fields inside an ambient partially ordered ring. Let R
be a commutative ring with 1 ̸= 0, equipped with a translation-invariant partial
ordering ⩽ such that r2 ⩾ 0 for all r ∈ R, and rs ⩾ 0 for all r, s ∈ R with r, s ⩾ 0.
It follows that for a, b, r ∈ R we have:

(1) if a ⩽ b and r ⩾ 0, then ar ⩽ br;
(2) if a is a unit and a > 0, then a−1 = a · (a−1)2 > 0;
(3) if a, b are units and 0 < a ⩽ b, then 0 < b−1 ⩽ a−1.

Relevant cases: R = G and R = C, with partial ordering given by (5.1.1).

An ordered subring of R is a subring of R that is totally ordered by the partial
ordering of R. An ordered subfield of R is an ordered subring H of R which happens
to be a field; then H equipped with the induced ordering is indeed an ordered field,
in the usual sense of that term. (Thus any Hausdorff field is an ordered subfield
of the partially ordered ring C.) We identify Z with its image in R via the unique
ring embedding Z → R, and this makes Z with its usual ordering into an ordered
subring of R.

Lemma 5.1.13. Assume D is an ordered subring of R and every nonzero element
of D is a unit of R. Then D generates an ordered subfield FracD of R.

Proof. It is clear that D generates a subfield FracD of R. For a ∈ D, a > 0, we
have a−1 > 0. It follows that FracD is totally ordered. □

Thus if every n ⩾ 1 is a unit of R, then we may identify Q with its image in R via
the unique ring embedding Q → R, making Q into an ordered subfield of R.

Lemma 5.1.14. Suppose H is an ordered subfield of R, all g ∈ R with g > H are
units of R, and H < f ∈ R. Then we have an ordered subfield H(f) of R.

Proof. For P (Y ) ∈ H[Y ] of degree d ⩾ 1 with leading coefficient a > 0 we
have P (f) = afd(1+ε) with −1/n < ε < 1/n for all n ⩾ 1, in particular, P (f) > H
is a unit of R. It remains to appeal to Lemma 5.1.13. □

Lemma 5.1.15. Let H be a real closed ordered subfield of R. Let A be a nonempty
downward closed subset of H such that A has no largest element and B := H \ A
is nonempty and has no least element. Let f ∈ R be such that A < f < B. Then
the subring H[f ] of R has the following properties:

(i) H[f ] is a domain;
(ii) H[f ] is an ordered subring of R;
(iii) H is cofinal in H[f ];
(iv) for all g ∈ H[f ] \H and a ∈ H, if a < g, then a < b < g for some b ∈ H,

and if g < a, then g < b < a for some b ∈ H.

Proof. Let P ∈ H[Y ]̸=; to obtain (i) and (ii) it suffices to show that then P (f) < 0
or P (f) > 0. We have

P (Y ) = cQ(Y ) (Y − a1) · · · (Y − an)

where c ∈ H ̸=, Q(Y ) is a product of monic quadratic irreducibles in H[Y ], and
a1, . . . , an ∈ H. This gives δ ∈ H> such that Q(r) ⩾ δ for all r ∈ R. Assume c > 0.
(The case c < 0 is handled similarly.) We can arrange thatm ⩽ n is such that ai ∈ A
for 1 ⩽ i ⩽ m and aj ∈ B for m < j ⩽ n. Take ε > 0 in H such that ai + ε ⩽ f
for 1 ⩽ i ⩽ m and f ⩽ aj − ε for m < j ⩽ n. Then

P (f) = cQ(f) (f − a1) · · · (f − am)(f − am+1) · · · (f − an),
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and (f−a1) · · · (f−am) ⩾ εm. If n−m is even, then (f−am+1) · · · (f−an) ⩾ εn−m,
so P (f) ⩾ cδεn > 0. If n − m is odd, then (f − am+1) · · · (f − an) ⩽ −εn−m,
so P (f) ⩽ −cδεn < 0. These estimates also yield (iii) and (iv). □

Lemma 5.1.16. With H, A, f as in Lemma 5.1.15, suppose all g ∈ R with g ⩾ 1
are units of R. Then we have an ordered subfield H(f) of R such that (iii) and (iv)
of Lemma 5.1.15 go through for H(f) in place of H[f ].

Proof. Note that if g ∈ R and g ⩾ δ ∈ H>, then gδ−1 ⩾ 1, so g is a unit of R
and 0 < g−1 ⩽ δ−1. For Q ∈ H[Y ] ̸= with Q(f) > 0 we can take δ ∈ H> such
that Q(f) ⩾ δ, so Q(f) ∈ R× and 0 < Q(f)−1 ⩽ δ−1. Thus we have an ordered
subfield H(f) of R by Lemma 5.1.13, and the rest now follows easily. □

Adjoining pseudolimits and increasing the value group. Let H be a real
closed Hausdorff field and view H as an ordered valued field as before. Let (aρ) be
a strictly increasing divergent pc-sequence in H. Set

A := {a ∈ H : a < aρ for some ρ}, B := {b ∈ H : b > aρ for all ρ},
so A is nonempty and downward closed without a largest element. Moreover, B =
H \ A is nonempty and has no least element, since a least element of B would be
a limit and thus a pseudolimit of (aρ). Let f ∈ C satisfy A < f < B. Then by
Lemma 5.1.16 for R = C we have an ordered subfield H(f) of C, and:

Lemma 5.1.17. H(f) is an immediate valued field extension of H with aρ ⇝ f .

Proof. We can assume that v(aτ − aσ) > v(aσ − aρ) for all indices τ > σ > ρ.
Set dρ := as(ρ)−aρ (s(ρ) := successor of ρ). Then aρ+2dρ ∈ B for all indices ρ; see
the discussion preceding [ADH, 2.4.2]. It then follows from that lemma that aρ ⇝ f .
Now (aρ) is a divergent pc-sequence in the henselian valued field H, so it is of
transcendental type over H, and thus H(f) is an immediate extension of H. □

Lemma 5.1.18. Let H be a Hausdorff field with divisible value group Γ := v(H×).
Let P be a nonempty upward closed subset of Γ, and let f ∈ C be such that a < f
for all a ∈ H> with va ∈ P , and f < b for all b ∈ H> with vb < P . Then f
generates a Hausdorff field H(f) with P > vf > Q, Q := Γ \ P .

Proof. For any positive a ∈ Hrc there is b ∈ H> with a ≍ b and a < b, and also an
element b ∈ H> with a ≍ b and a > b. Thus by Proposition 5.1.4 we can replace H
by Hrc and arrange in this way that H is real closed. Set

A := {a ∈ H : a ⩽ 0 or va ∈ P}, B := H \A.
Then we are in the situation of Lemma 5.1.15 for R = C, so by that lemma and
Lemma 5.1.16 we have a Hausdorff field H(f). Clearly then P > vf > Q. □

Non-oscillation. A germ f ∈ C is said to oscillate if f(t) = 0 for arbitrarily
large t and f(t) ̸= 0 for arbitrarily large t. Thus for f, g ∈ C,

f − g is non-oscillating ⇐⇒
{

either f(t) < g(t) eventually, or f = g,
or f(t) > g(t) eventually.

In particular, f ∈ C does not oscillate iff f = 0 or f ∈ C×. If g ∈ C and g(t) → +∞
as t→ +∞, then f ∈ C oscillates iff f ◦ g oscillates.

Lemma 5.1.19. Let f ∈ C be such that for every q ∈ Q the germ f − q is non-
oscillating. Then lim

t→∞
f(t) exists in R ∪ {−∞,+∞}.
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Proof. Set A := {q ∈ Q : f(t) > q eventually}. If A = ∅, then lim
t→∞

f(t) = −∞,

whereas if A = Q, then lim
t→∞

f(t) = +∞. If A ̸= ∅,Q, then for ℓ := supA ∈ R we

have lim
t→∞

f(t) = ℓ. □

Lemma 5.1.20. Let H be a real closed Hausdorff field and f ∈ C. Then f lies in
a Hausdorff field extension of H iff f − h is non-oscillating for all h ∈ H.

Proof. The forward direction is clear. For the converse, suppose f − h is non-
oscillating for all h ∈ H. We assume f /∈ H, so h < f or h > f for all h ∈ H.
Set A := {h ∈ H : h < f}, a downward closed subset of H. If A = H, then we are
done by Lemma 5.1.14 applied to R = C; if A = ∅ then we apply the same lemma
to R = C and −f in place of f . Suppose A ̸= ∅, H. If A has a largest element a,
then we replace f by f − a to arrange 0 < f(t) < h(t) eventually, for all h ∈ H>,
and then Lemma 5.1.14 applied to R = C, f−1 in place of f yields that f−1, and
hence also f , lies in a Hausdorff field extension of H. The case that B := H \ A
has a least element is handled in the same way. If A has no largest element and B
has no least element, then we are done by Lemma 5.1.16. □

5.2. Linear Differential Equations

In this section we fix notations and conventions concerning differentiable functions
and summarize well-known results on linear differential equations as needed later,
focusing on the case of order 2. We also discuss disconjugate linear differential
equations, mainly following [52, Chapter 3], as well as work by Lyapunov and
Perron on “bounded” matrix differential equations; this material is only used in
Section 7.4 on applications and can be skipped upon first reading.

Differentiable functions. Let r range over N ∪ {∞}, and let U be a nonempty
open subset of R. Then Cr(U) denotes the R-algebra of r-times continuously differ-
entiable functions U → R, with the usual pointwise defined algebra operations. (We
use “C” instead of “C” since C will often denote the constant field of a differential
field.) For r = 0 this is the R-algebra C(U) of continuous real-valued functions
on U , so

C(U) = C0(U) ⊇ C1(U) ⊇ C2(U) ⊇ · · · ⊇ C∞(U).

For r ⩾ 1 we have the derivation f 7→ f ′ : Cr(U) → Cr−1(U) (with ∞− 1 := ∞).
This makes C∞(U) a differential ring, with its subalgebra Cω(U) of real-analytic
functions U → R as a differential subring. The algebra operations on the algebras
below are also defined pointwise. Note that

Cr(U)× =
{
f ∈ Cr(U) : f(t) ̸= 0 for all t ∈ U

}
,

also for ω in place of r [57, (9.2), ex. 4].

Let a range over R. Then Cra denotes the R-algebra of functions [a,+∞) → R that
extend to a function in Cr(U) for some open U ⊇ [a,+∞). Thus C0

a (also denoted
by Ca) is the R-algebra of real-valued continuous functions on [a,+∞), and

C0
a ⊇ C1

a ⊇ C2
a ⊇ · · · ⊇ C∞

a .

We have the subalgebra Cωa of C∞
a , consisting of the functions [a,+∞) → R that

extend to a real-analytic function U → R for some open U ⊇ [a,+∞). For
f ∈ C1

a and g ∈ C1(U) extending f with open U ⊆ R containing [a,+∞), the
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restriction of g′ to [a,+∞) → R depends only on f , not on g, so we may de-
fine f ′ := g′|[a,+∞) ∈ Ca. For r ⩾ 1 this gives the derivation f 7→ f ′ : Cra → Cr−1

a .
This makes C∞

a a differential ring with Cωa as a differential subring.

For each of the algebras A above we also consider its complexification A[i] which
consists by definition of the C-valued functions f = g+hi with g, h ∈ A, so g = Re f
and h = Im f for such f . We consider A[i] as a C-algebra with respect to the
natural pointwise defined algebra operations. We identify each complex number
with the corresponding constant function to make C a subfield of A[i] and R a
subfield of A. (This justifies the notation A[i].) We have Cra[i]× = Ca[i]× ∩ Cra[i]
and (Cra)× = C×

a ∩ Cra, and likewise with r replaced by ω.

For r ⩾ 1 we extend g 7→ g′ : Cra → Cr−1
a to the derivation

g + hi 7→ g′ + h′i : Cra[i] → Cr−1
a [i] (g, h ∈ Cra[i]),

which for r = ∞ makes C∞
a a differential subring of C∞

a [i]. We shall use the map

f 7→ f† := f ′/f : C1
a[i]

× =
(
C1
a[i]
)× → C0

a[i],

with

(fg)† = f† + g† for f, g ∈ C1
a[i]

×,

in particular the fact that f ∈ C1
a[i]

× and f† ∈ C0
a[i] are related by

f(t) = f(a) exp

[∫ t

a

f†(s) ds

]
(t ⩾ a).

For g ∈ C0
a[i], let exp

∫
g denote the function t 7→ exp

[∫ t
a
g(s) ds

]
in C1

a[i]
×. Then

(exp
∫
g)† = g and exp

∫
(g + h) = (exp

∫
g) · (exp

∫
h) for g, h ∈ C0

a[i].

Therefore f 7→ f† : C1
a[i]

× → C0
a[i] is surjective.

Notation. For b ⩾ a and f ∈ Ca[i] we set f |b := f |[b,+∞) ∈ Ca[i].

Differentiable germs. Let r ∈ N ∪ {∞} and let a range over R. Let Cr be
the partially ordered subring of C consisting of the germs at +∞ of the functions
in
⋃
a Cra; thus C0 = C consists of the germs at +∞ of the continuous real valued

functions on intervals [a,+∞), a ∈ R. Note that Cr with its partial ordering satisfies
the conditions on R from Section 5.1. Also, every g ⩾ 1 in Cr is a unit of Cr, so
Lemmas 5.1.14 and 5.1.16 apply to ordered subfields of Cr. We have

C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ C∞.

Each subring Cr of C yields the subring Cr[i] = Cr + Cri of C0[i] = C[i], with

C0[i] ⊇ C1[i] ⊇ C2[i] ⊇ · · · ⊇ C∞[i].

Suppose r ⩾ 1; then for f ∈ Cra[i] the germ of f ′ ∈ Cr−1
a [i] only depends on the germ

of f , and we thus obtain a derivation g 7→ g′ : Cr[i] → Cr−1[i] with (germ of f)
′
=

(germ of f ′) for f ∈
⋃
a Cra[i]. This derivation restricts to a derivation Cr → Cr−1.

Note that C[i]× ∩ Cr[i] = Cr[i]×, and hence C× ∩ Cr = (Cr)×.

For open U ⊆ C and Φ: U → C of class Cr (that is, its real and imaginary parts are
of class Cr), if f ∈ Cr[i] and f(t) ∈ U , eventually, then Φ(f) ∈ Cr[i]. For example,
if f ∈ Cr, then exp f ∈ Cr, and if in addition f(t) > 0, eventually, then log f ∈ Cr.
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We set

C<∞[i] :=
⋂
n

Cn[i].

Thus C<∞[i] is naturally a differential ring with C as its ring of constants. We also
have the differential subring

C<∞ :=
⋂
n

Cn

of C<∞[i], with R as its ring of constants and C<∞[i] = C<∞ + C<∞i. Note
that C<∞[i] has C∞[i] as a differential subring. Similarly, C<∞ has C∞ as a dif-
ferential subring, and the differential ring C∞ has in turn the differential sub-
ring Cω, whose elements are the germs at +∞ of the functions in

⋃
a Cωa . We

have C[i]×∩C<∞[i] = (C<∞[i])× and C×∩C<∞ = (C<∞)×, and likewise with Cω in
place of C<∞. If R is a subring of C1 such that f ′ ∈ R for all f ∈ R, then R ⊆ C<∞

is a differential subring of C<∞.

Basic facts about linear differential equations. In this subsection we review
the main analytic facts about linear differential equations used later. Let a ∈ R,
r ∈ N⩾1, and f1, . . . , fr ∈ Ca[i]. This gives the C-linear map

y 7→ A(y) := y(r) + f1y
(r−1) + · · ·+ fry : Cra[i] → Ca[i].

We now have the classical existence and uniqueness theorem (see, e.g., [57, (10.6.3)]
or [203, §19, I, II]):

Proposition 5.2.1. Let t ∈ R⩾a be given. Then for any b ∈ Ca[i] and c ∈ Cr there
is a unique y = y(b, c) ∈ Cra[i] such that

A(y) = b,
(
y(t), y′(t), . . . , y(r−1)(t)

)
= c.

The map c 7→ y(0, c) : Cr → kerA is an isomorphism of C-linear spaces, and so in
particular, dimC kerA = r.

Corollary 5.2.2. Let y ∈ kerA. If for some t ∈ R⩾a we have y(j)(t) = 0 for j =
0, . . . , r − 1, then y = 0.

Proposition 5.2.1 and ReA(y) = A(Re y) for f1, . . . , fr ∈ Ca and y ∈ Cra[i] give:

Corollary 5.2.3. Suppose f1, . . . , fr ∈ Ca and t ∈ R⩾a. Then for any b ∈ Ca
and c ∈ Rr we have y = y(b, c) ∈ Cra, and the map c 7→ y(0, c) : Rr → Cra ∩ kerA is
an isomorphism of R-linear spaces.

Let b ∈ Ca[i]. Using y(r) = b−
∑r
i=1 fiy

(r−i) for y ∈ A−1(b) ⊆ Cra[i] gives

b, f1, . . . , fr ∈ Cna [i] =⇒ A−1(b) ⊆ Cn+ra [i]

by induction on n. Hence b, f1, . . . , fr ∈ C∞
a [i] ⇒ A−1(b) ⊆ C∞

a [i], in particular,
f1, . . . , fr ∈ C∞

a [i] ⇒ kerA ⊆ C∞
a [i]. Also b, f1, . . . , fr ∈ Cωa [i] ⇒ A−1(b) ⊆ Cωa [i] by

Lemma 6.3.4 below (see also [57, (10.5.3)]), so f1, . . . , fr ∈ Cωa [i] ⇒ kerA ⊆ Cωa [i].
Let y1, . . . , yr ∈ Cra[i]. The Wronskian w = wr(y1, . . . , yr) of y1, . . . , yr is

wr(y1, . . . , yr) := det


y1 · · · yr
y′1 · · · y′r
...

...

y
(r−1)
1 · · · y

(r−1)
r

 ∈ C1
a[i].
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Hence if w ̸= 0 (that is, w(t) ̸= 0 for some t ⩾ a), then y1, . . . , yr are C-linearly
independent. The converse does not hold in general, even for r = 2 and y1, y2 ∈ C∞

a ,
see [23], but we do have:

Lemma 5.2.4. The following are equivalent:

(i) w ∈ Ca[i]× (that is, w(t) ̸= 0 for all t ⩾ a);
(ii) y1, . . . , yr is a basis of kerA for some choice of f1, . . . , fr ∈ Ca[i].

Proof. For (i) ⇒ (ii), assume w ∈ Ca[i]×, and use that y1, . . . , yr ∈ kerA, where A
is the C-linear differential operator given by

y 7→ A(y) := wr(y1, . . . , yr, y)/w : Cra[i] → Ca[i].
For (ii) ⇒ (i), assume (ii) and suppose towards a contradiction that t ⩾ a is such
that w(t) = 0. This gives c1, . . . , cr ∈ C, not all 0, such that for y =

∑r
k=1 ckyk we

have y(j)(t) = 0 for j = 0, . . . , r − 1. Hence y = 0 by Corollary 5.2.2. □

Let now y1, . . . , yr ∈ kerA. Then by the above

w ̸= 0 ⇐⇒ w ∈ C1
a[i]

× ⇐⇒ y1, . . . , yr are C-linearly independent.

Moreover, w′ = −f1w (Abel’s Identity , see [203, §19, p. 200]) and hence

w(t) = w(a) exp
(
−
∫ t
a
f1(s) ds

)
for t ⩾ a.

In particular, w = w(a) ∈ C if f1 = 0.

In the next corollary we let g1, . . . , gr ∈ Ca[i] and consider the C-linear map

y 7→ B(y) := y(r) + g1y
(r−1) + · · ·+ gry : Cra[i] → Ca[i].

Corollary 5.2.5. f1 = g1, . . . , fr−1 = gr−1 ⇐⇒ A = B ⇐⇒ kerA = kerB.

Proof. Suppose kerA = kerB. Let y1, . . . , yr be a basis of kerA, and set hj :=
fj − gj (j = 1, . . . , r − 1). Towards a contradiction suppose hj ̸= 0 for some j,
and take j minimal with this property. Take a nonempty open interval I ⊆ R⩾a

with hj ∈ C(I)[i]×. (Here and below we denote the restrictions of h1, . . . , hr−1

to functions I → C by the same symbols.) Then y1, . . . , yr restrict to C-linearly
independent functions in Cr(I)[i] each satisfying the equation

y(r−j) + (hj+1/hj)y
(r−j−1) + · · ·+ (hr/hj)y = 0,

contradicting [203, §19, II]. □

Next some basic properties of Wronskians:

Lemma 5.2.6. Let u ∈ Cra[i]. Then wr(uy1, . . . , uyr) = ur wr(y1, . . . , yr). In
particular, if y1 ∈ Cra[i]×, r ⩾ 2, and zj := (yj+1/y1)

′ ∈ Cr−1
a [i] (j = 1, . . . , r − 1),

then wr(y1, . . . , yr) = yr1 wr(z1, . . . , zr−1).

Proof. For the first identity, use that there are uij ∈ Ca[i] (0 ⩽ i ⩽ j < r)
with u0j = u such that for all y ∈ Cra[i] we have

(uy)(j) = u0jy
(j) + u1jy

(j−1) + · · ·+ ujjy.

The first identity yields the second by taking u := y−1
1 . □

Lemma 5.2.7. Suppose v := wr(y1, . . . , yr−1) and w := wr(y1, . . . , yr) lie in C1
a[i]

×,
with v := 1 if r = 1. Then we have for all y ∈ Cra[i],(

wr(y1, . . . , yr−1, y)/w
)′

= (v/w2) wr(y1, . . . , yr, y).
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Proof. Expand the determinants wr(y1, . . . , yr−1, y) and wr(y1, . . . , yr, y) according
to their last column to get functions g1, . . . , gr−1, h1, . . . , hr−1 ∈ Ca[i] such that(

wr(y1, . . . , yr−1, y)/w
)′

= (v/w)y(r) + g1y
(r−1) + · · ·+ gry,

(v/w2) wr(y1, . . . , yr, y) = (v/w)y(r) + h1y
(r−1) + · · ·+ hry

for all y ∈ Cra[i]. Both left hand sides have the R-linearly independent y1, . . . , yr
among their zeros. Now use Corollary 5.2.5. □

Let y ∈ Cra[i] and t ⩾ a. The multiplicity of y at t is the largest m ⩽ r such
that y(t) = y′(t) = · · · = y(m−1)(t) = 0; notation: multt(y), or multrt (y) if we
need to indicate the dependence on r. So for a ⩽ 0 we have mult20(x

3) = 2,
but multr0(x

3) = 3 for r ⩾ 3.) Thus t is a zero of y (that is, y(t) = 0) iff multt(y) ⩾ 1.
If y ∈ kerA has a zero of multiplicity r, then y = 0 by Corollary 5.2.2. Note
that multt(y) = min

{
multt(Re y)multt(Im y)

}
. For z ∈ Cra[i] we have

multt(y + z) ⩾ min
{
multt(y),multt(z)

}
,

and using the Product Rule:

multt(yz) = min
{
r,multt(y) + multt(z)

}
.

If r ⩾ 2 and y(t) = 0, then y′ ∈ Cr−1
a [i] and multr−1

t (y′) = multrt (y) − 1. The
following is obvious:

Lemma 5.2.8. Let y1, . . . , yr ∈ Cra[i], w := wr(y1, . . . , yr), and t ⩾ a. If w(t) = 0,
then multt(y) = r for some C-linear combination y = c1y1+ · · ·+cryr of y1, . . . , yr,
where c1, . . . , cr ∈ C are not all zero.

We also call the sum

mult(y) :=
∑
t⩾a

multt(y) ∈ N ∪ {∞}

of the multiplicities of all zeros of y the (total) multiplicity of y, and we denote
it by multr(y) if we need to exhibit the dependence on r. Note that mult(y) < ∞
iff y has finitely many zeros. If z ∈ Cra[i]×, then mult(yz) = mult(y).

Lemma 5.2.9. Suppose y ∈ Cra, r ⩾ 2. Then (with ∞− 1 := ∞):

multr−1(y′) ⩾ multr(y)− 1.

Proof. Let m ⩽ multr(y); it is enough to show that then m − 1 ⩽ multr−1(y′).
Let t1 < · · · < tn be zeros of y such that

∑
imultti(y) ⩾ m. For i = 1, . . . , n − 1,

Rolle’s Theorem yields si ∈ (ti, ti+1) such that y′(si) = 0. Hence

m ⩽
n∑
i=1

multrti(y) = n+

n∑
i=1

multr−1
ti (y′)

⩽ 1 +

n−1∑
i=1

multr−1
si (y′) +

n∑
i=1

multr−1
ti (y′) ⩽ 1 + multr−1(y′)

as required. □
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Oscillation. Let y ∈ Ca. We say that y oscillates if its germ in C oscillates. So y
does not oscillate iff sign y(t) is constant, eventually. If y oscillates, then so does cy
for c ∈ R×. If y ∈ C1

a oscillates, then so does y′ ∈ Ca, by Rolle’s Theorem.

Let now r ∈ N⩾1 and f1, . . . , fr ∈ Ca, and consider the R-linear map

y 7→ A(y) := y(r) + f1y
(r−1) + · · ·+ fry : Cra → Ca.

By Corollary 5.2.3, the R-linear subspace Cra ∩ kerA of Cra has dimension r.

Let y ∈ Cra∩kerA, y ̸= 0, and let Z := y−1(0) be the set of zeros of y, so Z ⊆ [a,+∞)
is closed in R. By a limit point of a set S ⊆ R we mean a point b ∈ R such that for
every real ε > 0 we have 0 < |s− b| < ε for some s ∈ S.

Lemma 5.2.10. Z has no limit points.

Proof. For j = 0, . . . , r let Zj := (y(j))−1(0) be the set of zeros of y(j), so Z = Z0.
Each Zj is closed and hence contains its limit points. If t0 < t1 are in Zj , 0 ⩽ j < r,
then Zj+1∩(t0, t1) ̸= ∅, by Rolle, hence each limit point of Zj is a limit point of Zj+1.

Thus if t is a limit point of Z, then t ⩾ a and y(t) = y′(t) = · · · = y(r−1)(t) = 0,
hence y = 0 by Corollary 5.2.2, a contradiction. □

By Lemma 5.2.10, Z ∩ [a, b] is finite for every b ⩾ a. Thus

y does not oscillate ⇐⇒ Z is finite ⇐⇒ Z is bounded.

If t0 ∈ Z is not the largest element of Z, then Z ∩ (t0, t1) = ∅ for some t1 > t0 in Z.
We say that a pair of zeros t0 < t1 of y is consecutive if Z ∩ (t0, t1) = ∅.

Next we consider the set Z1 := (y′)−1(0) of stationary points of y.

Lemma 5.2.11. Suppose fr ∈ C×
a . Then Z1 has no limit points.

Proof. The proof of Lemma 5.2.10 shows that if t is a limit point of Z1, then t ⩾ a
and y′(t) = y′′(t) = · · · = y(r)(t) = 0, and as y ∈ kerA, this gives 0 = A(y)(t) =
fr(t)y(t), so y(t) = 0, and thus y = 0, a contradiction. □

Thus if fr ∈ C×
a , then Z1 ∩ [a, b] is finite for all b ⩾ a.

Second-order differential equations. Let f ∈ Ca, that is, f : [a,∞) → R is
continuous. We consider the differential equation

(L) Y ′′ + fY = 0.

The solutions y ∈ C2
a of (L) form an R-linear subspace Sol(f) of C2

a. The solu-
tions y ∈ C2

a[i] of (L) are the y1 + y2i with y1, y2 ∈ Sol(f) and form a C-linear
subspace SolC(f) of C2

a[i]. For any complex numbers c, d there is a unique solu-
tion y ∈ C2

a[i] of (L) with y(a) = c and y′(a) = d, and the map that assigns to (c, d)
in C2 this unique solution is an isomorphism C2 → SolC(f) of C-linear spaces; it
restricts to an R-linear bijection R2 → Sol(f). We have f ∈ Cna ⇒ Sol(f) ⊆ Cn+2

a

(hence f ∈ C∞
a ⇒ Sol(f) ⊆ C∞

a ) and f ∈ Cωa ⇒ Sol(f) ⊆ Cωa . From [203, §27, XI]:

Lemma 5.2.12 (Sonin-Pólya). Suppose f ∈ (C1
a)

×, y ∈ Sol(f )̸=, and t0 < t1 are
stationary points of y. If f is increasing, then |y(t0)| ⩾ |y(t1)|. If f is decreasing,
then |y(t0)| ⩽ |y(t1)|. If f is strictly increasing, respectively strictly decreasing,
then these inequalities are strict.
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Proof. Put u := y2+
(
(y′)2/f

)
∈ C1

a. Then u
′ = −f ′(y′/f)2. Thus if f is increasing,

then u is decreasing, and as u(ti) = y(ti)
2 for i = 0, 1, we get |y(t0)| ⩾ |y(t1)|. The

other cases are similar, using also Lemma 5.2.11 for the strict inequalities. □

Lemma 5.2.13. Suppose f ∈ (C1
a)

×, y ∈ Sol(f), and t0 < t1 are consecutive zeros
of y. Then there is exactly one stationary point of y in the interval (t0, t1).

Proof. If s0 < s1 were stationary points of y in the interval (t0, t1), then by Rolle y′′

and thus y (in view of y′′ = −fy) would have a zero in the interval (s0, s1). □

Let y1, y2 ∈ Sol(f), with Wronskian w = y1y
′
2 − y′1y2. Then w ∈ R, and

w ̸= 0 ⇐⇒ y1, y2 are R-linearly independent.

By [18, Chapter 6, Lemmas 2 and 3] we have:

Lemma 5.2.14. Let y1, y2 ∈ Sol(f) be R-linearly independent and g ∈ Ca. Then

t 7→ y(t) := −y1(t)
∫ t

a

y2(s)

w
g(s) ds+ y2(t)

∫ t

a

y1(s)

w
g(s) ds : [a,+∞) → R

lies in C2
a and satisfies y′′ + fy = g, y(a) = y′(a) = 0.

Lemma 5.2.15. Let y1 ∈ Sol(f) with y1(t) ̸= 0 for t ⩾ a. Then the function

t 7→ y2(t) := y1(t)

∫ t

a

1

y1(s)2
ds : [a,+∞) → R

also lies in Sol(f), and y1, y2 are R-linearly independent.

From [18, Chapter 2, Lemma 1] we also recall:

Lemma 5.2.16 (Gronwall’s Lemma). Let C ∈ R⩾, v, y ∈ Ca satisfy v(t), y(t) ⩾ 0
for all t ⩾ a and

y(t) ⩽ C +

∫ t

a

v(s)y(s) ds for all t ⩾ a.

Then

y(t) ⩽ C exp

[∫ t

a

v(s) ds

]
for all t ⩾ a.

Here is a simpler differential version:

Lemma 5.2.17. Let u ∈ Ca and y ∈ C1
a satisfy y′(t) ⩽ u(t)y(t) for all t ⩾ a.

Then y(t) ⩽ y(a) exp
(∫ t

a
u(s) ds

)
for all t ⩾ a.

Proof. Put z(t) := y(t) exp
(
−
∫ t
a
u(s) ds

)
for t ⩾ a. Then z ∈ C1

a, and z
′(t) ⩽ 0 for

all t ⩾ a, so z(t) ⩽ z(a) = y(a) for all t ⩾ a. This yields the desired result. □

In the rest of this subsection we assume that a ⩾ 1 and that c ∈ R> is such
that |f(t)| ⩽ c/t2 for all t ⩾ a. Under this hypothesis, Lemma 5.2.16 yields the
following bound on the growth of the solutions y ∈ Sol(f); the proof we give is
similar to that of [18, Chapter 6, Theorem 5].

Proposition 5.2.18. Let y ∈ Sol(f). Then there is C ∈ R⩾ such that |y(t)| ⩽
Ctc+1 and |y′(t)| ⩽ Ctc for all t ⩾ a.
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Proof. Let t range over [a,+∞). Integrating y′′ = −fy twice between a and t, we
obtain constants c1, c2 such that for all t,

y(t) = c1 + c2t−
∫ t

a

∫ t1

a

f(t2)y(t2) dt2 dt1 = c1 + c2t−
∫ t

a

(t− s)f(s)y(s) ds

and hence, with C := |c1|+ |c2|,

|y(t)| ⩽ Ct+ t

∫ t

a

|f(s)| · |y(s)| ds, so
|y(t)|
t

⩽ C +

∫ t

a

s|f(s)| · |y(s)|
s

ds.

Then by the lemma above,

|y(t)|
t

⩽ C exp

[∫ t

a

s|f(s)| ds
]
⩽ C exp

[∫ t

1

c/s ds

]
= Ctc

and thus |y(t)| ⩽ Ctc+1. Now

y′(t) = c2 −
∫ t

a

f(s)y(s) ds, so

|y′(t)| ⩽ |c2|+
∫ t

a

|f(s)y(s)| ds ⩽ C + Cc

∫ t

1

sc−1 ds

= C + Cc

[
tc

c
− 1

c

]
= Ctc. □

Let y1, y2 ∈ Sol(f) be R-linearly independent. Recall that w = y1y
′
2 − y′1y2 ∈ R×.

It follows that y1 and y2 cannot be simultaneously very small:

Lemma 5.2.19. There is a positive constant d such that

max
(
|y1(t)|, |y2(t)|

)
⩾ dt−c for all t ⩾ a.

Proof. Proposition 5.2.18 yields C ∈ R> such that |y′i(t)| ⩽ Ctc for i = 1, 2 and
all t ⩾ a. Hence |w| ⩽ 2max

(
|y1(t)|, |y2(t)|

)
Ctc for t ⩾ a, so

max
(
|y1(t)|, |y2(t)|

)
⩾

|w|
2C

t−c (t ⩾ a). □

Corollary 5.2.20. Set y := y1 + y2i and z := y†. Then for some D ∈ R>,
|z(t)| ⩽ Dt2c for all t ⩾ a.

Proof. Take C as in the proof of Lemma 5.2.19, and d as in that lemma. Then

|z(t)| =
|y′1(t) + y′2(t)i|
|y1(t) + y2(t)i|

⩽
|y′1(t)|+ |y′2(t)|

max
(
|y1(t)|, |y2(t)|

) ⩽ (
2C

d

)
t2c

for t ⩾ a. □

More on oscillation. We continue with the study of (L). Sturm’s Separation
Theorem says that if y, z ∈ Sol(f) are R-linearly independent and t0 < t1 are
consecutive zeros of z, then (t0, t1) contains a unique zero of y [203, §27, VI]. Thus:

Lemma 5.2.21. Some y ∈ Sol(f) ̸= oscillates ⇐⇒ every y ∈ Sol(f )̸= oscillates.

We say that f generates oscillations if some element of Sol(f )̸= oscillates.

Lemma 5.2.22. Let b ∈ R⩾a. Then

f generates oscillations ⇐⇒ f |b ∈ Cb generates oscillations.
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Proof. The forward direction is obvious. For the backward direction, use that
every y ∈ C2

b with y′′+gy = 0 for g := f |b extends uniquely to a solution of (L). □

By this lemma, whether f generates oscillations depends only on its germ in C. So
this induces the notion of an element of C generating oscillations. Here is another
result of Sturm [203, loc. cit.] that we use below:

Theorem 5.2.23 (Sturm’s Comparison Theorem). Let g ∈ Ca with f(t) ⩾ g(t)
for all t ⩾ a. Let y ∈ Sol(f )̸= and z ∈ Sol(g) ̸=, and let t0 < t1 be consecutive
zeros of z. Then either (t0, t1) contains a zero of y, or on [t0, t1] we have f = g
and y = cz for some constant c ∈ R×.

Here is an immediate consequence:

Corollary 5.2.24. If g ∈ Ca generates oscillations and f(t) ⩾ g(t), eventually,
then f also generates oscillations.

Example. For k ∈ R× we have the differential equation of the harmonic oscillator,

y′′ + k2y = 0.

A function y ∈ C2
a is a solution iff for some real constants c, t0 and all t ⩾ a,

y(t) = c sin k(t− t0).

For c ̸= 0, any function y ∈ C2
a as displayed oscillates. Thus if f(t) ⩾ ε, eventually,

for some constant ε > 0, then f generates oscillations.

To (L) we associate the corresponding Riccati equation

(R) z′ + z2 + f = 0.

Let y ∈ Sol(f) ̸= be a non-oscillating solution to (L), and take b ⩾ a with y(t) ̸= 0
for t ⩾ b. Then the function

t 7→ z(t) := y′(t)/y(t) : [b,+∞) → R

in C1
b satisfies (R). Conversely, if z ∈ C1

b (b ⩾ a) is a solution to (R), then

t 7→ y(t) := exp

(∫ t

b

z(s) ds

)
: [b,+∞) → R

is a non-oscillating solution to (L) with y ∈ (C1
b )

× and z = y†.

Let g ∈ C1
a, h ∈ C0

a and consider the second-order linear differential equation

(L̃) y′′ + gy′ + hy = 0.

Corollary 5.2.25. Set f := − 1
2g

′− 1
4g

2+h ∈ Ca. Then the following are equivalent:

(i) some nonzero solution of (L̃) oscillates;

(ii) all nonzero solutions of (L̃) oscillate;
(iii) f generates oscillations.

Proof. Let G ∈ (C2
a)

× be given by G(t) := exp
(
− 1

2

∫ t
a
g(s) ds

)
. Then y ∈ C2

a is a

solution to (L) iff Gy is a solution to (L̃); cf. [ADH, 5.1.13]. □
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More on non-oscillation. We continue with (L). Let y1, y2 range over elements
of Sol(f), and recall that its Wronskian w = y1y

′
2 − y′1y2 lies in R.

Lemma 5.2.26. Suppose b ⩾ a is such that y2(t) ̸= 0 for t ⩾ b. Then for q :=
y1/y2 ∈ C2

b we have q′(t) = −w/y2(t)2 for t ⩾ b, so q is monotone and limt→∞ q(t)
exists in R ∪ {−∞,+∞}.

This leads to:

Corollary 5.2.27. Suppose b ⩾ a and y1(t), y2(t) ̸= 0 for t ⩾ b. For i = 1, 2, set

hi(t) :=

∫ t

b

1

yi(s)2
ds for t ⩾ b, so hi ∈ C3

b .

Then: y1 ≺ y2 ⇐⇒ h1 ≻ 1 ≽ h2.

Proof. Suppose y1 ≺ y2. Then y1, y2 are R-linearly independent, so w ̸= 0. More-
over, q ≺ 1 with q as in in Lemma 5.2.26, and q′ = −wh′2 by that lemma, so q+wh2
is constant, and thus h2 ≼ 1. Note that h1 is strictly increasing. If h1(t) → r ∈ R
as t → +∞, then z := (r − h1)y1 ∈ Sol(f) by Lemma 5.2.26 with y1 and y2
interchanged, and z ≺ y1, so z = 0, hence h1 = r, a contradiction. Thus h1 ≻ 1.

For the converse, suppose h1 ≻ 1 ≽ h2. Then y1, y2 are R-linearly independent,
so w ̸= 0. From h2 ≼ 1 and q+wh2 being constant we obtain q ≼ 1. If q(t) → r ̸= 0
as t → +∞, then y1 = qy2 ≍ y2, and thus h1 ≍ h2, a contradiction. Hence q ≺ 1,
and thus y1 ≺ y2. □

The pair (y1, y2) is said to be a principal system of solutions of (L) if

(1) y1(t), y2(t) > 0 eventually, and
(2) y1 ≺ y2.

Then y1, y2 form a basis of the R-linear space Sol(f), and f does not generate
oscillations, by Lemma 5.2.21. Moreover, for y = c1y1+c2y2 with c1, c2 ∈ R, c2 ̸= 0
we have y ∼ c2y2. Here are some facts about this notion:

Lemma 5.2.28. If (y1, y2), (z1, z2) are principal systems of solutions of (L), then
there are c1, d1, d2 ∈ R such that z1 = c1y1, z2 = d1y1 + d2y2, and c1, d2 > 0.

Lemma 5.2.29. Suppose f does not generate oscillations. Then (L) has a principal
system of solutions.

Proof. It suffices to find a basis y1, y2 of Sol(f) with y1 ≺ y2. Suppose y1, y2 is any
basis of Sol(f), and set c := limt→∞ y1(t)/y2(t) ∈ R∪{−∞,+∞}. If c = ±∞, then
interchange y1, y2, otherwise replace y1 by y1 − cy2. Then c = 0, so y1 ≺ y2. □

One calls y1 a principal solution of (L) if (y1, y2) is a principal system of solutions
of (L) for some y2. (See [91, Theorem XI.6.4] and [125, 127].) By the previous two
lemmas, (L) has a principal solution iff f does not generate oscillations, and any
two principal solutions differ by a multiplicative factor in R>. If y1 ∈ (Ca)× and y2
is given as in Lemma 5.2.15, then y2 is a non-principal solution of (L) and y1 /∈ Ry2.

Chebyshev systems and Markov systems (∗). Let r ∈ N⩾1 and y1, . . . , yr ∈
Cra, and let V be the R-linear subspace of Cra spanned by y1, . . . , yr. We call y1, . . . , yr
a Chebyshev system (on R⩾a) if for all y = c1y1 + · · ·+ cryr with c1, . . . , cr ∈ R
not all zero, we have multr(y) < r. Note that if y1, . . . , yr is a Chebyshev system,
then y1, . . . , yr are R-linearly independent, and every basis of V is a Chebyshev
system. Chebyshev systems can be used for interpolation:
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Lemma 5.2.30. Suppose y1, . . . , yr are R-linearly independent. Let t1, . . . , tn ∈
R⩾a be pairwise distinct and let r1, . . . , rn ∈ N satisfy r1+ · · ·+rn = r. (So n ⩾ 1).
Then the following are equivalent:

(i) the only y ∈ V with multrti(y) ⩾ ri for i = 1, . . . , n is y = 0;
(ii) for all bij ∈ R (i = 1, . . . , n, j = 1, . . . , ri), there exists y ∈ V with

y(j−1)(ti) = bij (i = 1, . . . , n, j = 1, . . . , ri).

Moreover, in this case, given any bij as in (ii), the element y ∈ V in (ii) is unique.

Proof. Each y ∈ V equals c1y1 + · · · + cryr for a unique (c1, . . . , cr) ∈ Rr. Let
the bij in R be as in (ii), and set

M :=



y1(t1) · · · yr(t1)
...

...

y
(r1−1)
1 (t1) · · · y

(r1−1)
r (t1)

y1(t2) · · · yr(t2)
...

...

y
(rn−1)
1 (tn) · · · y

(rn−1)
r (tn)


∈ Rr×r, b :=



b11
...

b1r1
b21
...

bnrn


∈ Rr.

Then given c = (c1, . . . , cr)
t ∈ Rr, the element y = c1y1 + · · · + cryr of V satisfies

the inequalities in (i) iff Mc = 0, and the displayed equations in (ii) iff Mc = b.
Thus (i) means injectivity of M : Rr → Rr, and (ii) its surjectivity. □

In particular, if y1, . . . , yr is a Chebyshev system, then for all ti, ri (i = 1, . . . , n)
as in the previous lemma and for all bij ∈ R (i = 1, . . . , n, j = 1, . . . , ri), there is a

unique y ∈ V with y(j−1)(ti) = bij (i = 1, . . . , n, j = 1, . . . , ri).

Remark. Suppose y1, . . . , yr are R-linearly independent. If y1, . . . , yr is a Cheby-
shev system, then each y ∈ V ̸= has < r zeros. Remarkably, the converse of this
implication also holds; this is due to Aramă [4] and (in greater generality) Hart-
man [89]; a simple proof, from [145], is in [52, Chapter 3, Proposition 3]. This links
the notion of Chebyshev system considered here with the concept of the same name
in approximation theory [46, Chapter 3, §4]. (These remarks are not used later.)

If y1, . . . , yr is a Chebyshev system, then wr(y1, . . . , yr) ∈ C×
a by Lemma 5.2.8.

If wr(y1, . . . , yj) ∈ C×
a for j = 1, . . . , r, then y1, . . . , yr is called a Markov system

(on R⩾a). Thus by Lemma 5.2.8, if y1, . . . , yj is a Chebyshev system for j = 1, . . . , r,
then y1, . . . , yr is a Markov system. Here is a partial converse:

Lemma 5.2.31. If y1, . . . , yr is a Markov system, then it is a Chebyshev system.

Proof. The case r = 1 is trivial, so let r ⩾ 2 and let y1, . . . , yr be a Markov
system; in particular, y1 ∈ C×

a . Set zj := (yj+1/y1)
′ ∈ Cr−1

a for j = 1, . . . , r − 1.
Then z1, . . . , zr−1 is a Markov system by Lemma 5.2.6. Assume inductively that
it is a Chebyshev system, and let y = c1y1 + · · · + cryr, c1, . . . , cr ∈ R not all
zero; we need to show mult(y) < r. Towards a contradiction, assume mult(y) ⩾ r.
Then z := (y/y1)

′ satisfies mult(z) ⩾ r−1, by Lemma 5.2.9 and the remarks before
it. Moreover, z = c2z1 + · · ·+ crzr−1, and so c2 = · · · = cr = 0 and hence y = c1y1,
and thus c1 = 0, a contradiction. □

If y1, . . . , yr is a Markov system and b ⩾ a, then y1|b, . . . , yr|b is a Markov system
on R⩾b, and likewise with “Chebyshev” in place of “Markov”.
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Disconjugacy (∗). Let r ∈ N⩾1 and f1, . . . , fr ∈ Ca, and consider the linear differ-
ential equation

(D) y(r) + f1y
(r−1) + · · ·+ fry = 0

on R⩾a. Let Sol (D) be its set of solutions in Cra, so Sol (D) is the kernel of the
R-linear map

y 7→ A(y) := y(r) + f1y
(r−1) + · · ·+ fry : Cra → Ca.

Recall that by Corollary 5.2.3 we have dimR Sol (D) = r. The linear differential
equation (D) is said to be disconjugate if Sol (D) contains a Chebyshev system;
that is, every nonzero y ∈ Sol(D) has multiplicity < r. If (D) is disconjugate, then
it has no oscillating solutions.

Example. The equation y(r) = 0 is disconjugate, since its solutions in Cra are the
polynomial functions c0 + c1x+ · · ·+ cr−1x

r−1 with c0, . . . , cr−1 ∈ R.

From Lemma 5.2.30 we obtain:

Corollary 5.2.32 (de la Vallée-Poussin [202]). Suppose (D) is disconjugate. Then
for all pairwise distinct t1, . . . , tn ⩾ a, all r1, . . . , rn ∈ N with r1+ · · ·+ rn = r, and
all bij ∈ R (i = 1, . . . , n, j = 1, . . . , ri), there is a unique y ∈ Sol (D) such that

y(j−1)(ti) = bij (i = 1, . . . , n, j = 1, . . . , ri).

Let b ⩾ a and set gj := fj |b ∈ Cb for j = 1, . . . , r. This yields the linear differential
equation

(Db) y(r) + g1y
(r−1) + · · ·+ gry = 0

on R⩾b with the R-linear isomorphism y 7→ y|b : Sol (D) → Sol (Db).

Corollary 5.2.33. If (D) is disconjugate, then some basis y1, . . . , yr of the R-linear
space Sol (D) yields for every b > a a Markov system y1|b, . . . , yr|b on R⩾b.

Proof. Let y1, . . . , yr ∈ Cra be solutions of (D) such that

yj(a) = y′j(a) = · · · = y
(r−j−1)
j (a) = 0, y

(r−j)
j (a) ̸= 0 for j = 1, . . . , r.

Then wr(y1, . . . , yr)(a) ̸= 0, so y1, . . . , yr are R-linearly independent. Suppose (D)
is disconjugate. Let j ∈ {1, . . . , r}, t ∈ R>a. Then wr(y1, . . . , yj)(t) ̸= 0: otherwise
Lemma 5.2.8 yields an R-linear combination y ̸= 0 of y1, . . . , yj with multt(y) ⩾ j,
but also multa(y) ⩾ r − j by choice of y1, . . . , yr, hence mult(y) ⩾ r, contradicting
disconjugacy of (D). Thus y1, . . . , yr has the desired property. □

With n ⩾ 1 understood from the context, let ∂ denote the R-linear map

y 7→ y′ : Cna → Cn−1
a ,

identify f ∈ Cn−1
a with the R-linear operator y 7→ fy : Cn−1

a → Cn−1
a , and for

maps α : Cna → Cn−1
a , β : Cn+1

a → Cna , denote α ◦ β : Cn+1
a → Cn−1

a simply by αβ.
With these conventions we can state an analytic version of Lemma 1.1.3:

Lemma 5.2.34. If gj ∈ (Cr−j+1
a )× for j = 1, . . . , r and we set

(5.2.1) A = g1 · · · gr(∂g−1
r ) · · · (∂g−1

2 )(∂g−1
1 ) : Cra → Ca,
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then A = (∂ − hr) · · · (∂ − h1) with hj := (g1 · · · gj)† ∈ Cr−ja for j = 1, . . . , r.
Conversely, if hj ∈ Cr−ja for j = 1, . . . , r and A := (∂ − hr) · · · (∂ − h1) : Cra → Ca
and h0 := 0, then (5.2.1) holds for gj ∈ (Cr−j+1

a )× given by

gj(t) := exp

∫ t

a

(
hj(s)− hj−1(s)

)
ds (j = 1, . . . , r),

and hj = (g1 · · · gj)† for those j.

We now link the notion of disconjugacy with factorization of the operator A =
∂
r + f1∂

r−1 + · · ·+ fr : Cra → Ca considered earlier in connection with (D).

Proposition 5.2.35 (Frobenius [74], Libri [129]). Suppose y1, . . . , yr ∈ Sol (D) is
a Markov system. Set w0 := 1, wj := wr(y1, . . . , yj) ∈ (Cr−j+1

a )× for j = 1, . . . , r,
and

g1 := w1, gj := wjwj−2/w
2
j−1 (j = 2, . . . , r).

Then gj ∈ (Cr−j+1
a )× for j = 1, . . . , r and A = g1 · · · gr(∂g−1

r ) · · · (∂g−1
2 )(∂g−1

1 ).

Proof. It is clear that gj ∈ (Cr−j+1
a )× and easy to check that wj/wj−1 = g1 · · · gj

for j = 1, . . . , r. We define for j = 0, . . . , r the R-linear map

y 7→ Aj(y) := wr(y1, . . . , yj , y)/wj : Cra → Cr−ja .

We claim that Aj = g1 · · · gj∂g−1
j ∂ · · · ∂g−1

1 . The case j = 0 is trivial. Suppose the
claim holds for a certain j < r. Then

g1 · · · gj+1∂g−1
j+1∂ · · · ∂g−1

2 ∂g−1
1 = g1 · · · gj+1∂(g1 · · · gj+1)

−1Aj ,

which sends y ∈ Cra to

wj+1

wj

(
wj
wj+1

wr(y1, . . . , yj , y)

wj

)′

=
wj+1

wj

(
wr(y1, . . . , yj , y)

wj+1

)′

,

and this in turn equals Aj+1(y) = wr(y1, . . . , yj , yj+1, y)/wj+1 by Lemma 5.2.7. □

Here is a converse, with A still the operator ∂
r + f1∂

r−1 + · · ·+ fr figuring in (D):

Theorem 5.2.36 (Pólya [156]). Suppose

A = g1 · · · gr(∂g−1
r ) · · · (∂g−1

2 )(∂g−1
1 ) with gj ∈ (Cr−j+1

a )× for j = 1, . . . , r.

Then Sol (D) contains a Markov system y1, . . . , yr.

Proof. Let t1, . . . , tr range over R⩾a and define y1, . . . , yr ∈ Cra by

y1(t1) := g1(t1),

y2(t1) := g1(t1)

∫ t1

a

g2(t2) dt2,

...

yr(t1) := g1(t1)

∫ t1

a

g2(t2)

∫ t2

a

· · ·
∫ tr−1

a

gr(tr) dtr · · · dt2.

For j = 1, . . . , r we have A(yj) = 0, and by an induction using Lemma 5.2.6,

wr(y1, . . . , yj) = gj1g
j−1
2 · · · gj . So y1, . . . , yr ∈ Sol (D) is a Markov system. □
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Remark. Suppose Sol (D) contains a Markov system y1, . . . , yr. If f1, . . . , fr ∈ Cna ,
then y1, . . . , yr ∈ Cn+ra , so gj ∈ (Cn+r−j+1

a )× for j = 1, . . . , r where g1, . . . , gr are
as in Proposition 5.2.35. Likewise, if f1, . . . , fr ∈ C∞

a , then those gj lie in (C∞
a )×,

and the same with ω in place of ∞.

Corollary 5.2.37. With A = ∂
r + f1∂

r−1 + · · ·+ fr : Cra → Ca, Sol (D) contains a
Markov system iff there are gj ∈ (Cr−j+1

a )× (j = 1, . . . , r) such that

A = g1 · · · gr(∂g−1
r ) · · · (∂g−1

2 )(∂g−1
1 ).

Moreover, Sol (Db) contains a Markov system for all b > a iff (Db) is disconjugate
for all b > a.

Proof. The first equivalence follows from Proposition 5.2.35 and Theorem 5.2.36,
and the second equivalence follows from Lemma 5.2.31 and Corollary 5.2.33, □

We say that (D) is eventually disconjugate if (Db) is disconjugate for some b ⩾ a.
If (D) is disconjugate, then so is (Db) for all b ⩾ a, and likewise with “eventually
disconjugate” in place of “disconjugate”. If (D) is eventually disconjugate, then no
solution of (D) in Cra oscillates. If r = 1, then (D) is always disconjugate, since its

solutions are the functions t 7→ c exp
(
−
∫ t
a
f1(s) ds

)
with c ∈ R. Returning to the

special case where r = 2 we have:

Corollary 5.2.38. Suppose (L) has a non-oscillating solution y ̸= 0. Then (L) is
eventually disconjugate.

Proof. Here f1 = 0, f2 = f , and f does not generate oscillations by Lemma 5.2.21.
Let y1, y2 ∈ Sol(f) be non-oscillating and R-linearly independent. Then wr(y1, y2) ∈
R×. Take b ⩾ a such that y1|b ∈ (Cb)×. Then y1|b, y2|b is a Markov system. □

Remark. By [81], there is for each r > 2 a linear differential equation (D) with only
non-oscillating solutions in Cra, but which is not eventually disconjugate. (This will
not be used later but motivates Corollary 7.4.58 below.)

Passing to germs instead of functions, we now consider a monic operator

A = ∂
r + ϕ1∂

r−1 + · · ·+ ϕr ∈ C<∞[∂] (ϕ1, . . . , ϕr ∈ C<∞).

It gives rise to the R-linear map

y 7→ A(y) = y(r) + ϕ1y
(r−1) + · · ·+ ϕry : C<∞ → C<∞,

whose kernel we denote by kerA.

Lemma 5.2.39. dimR kerA = r, and if θ1, . . . , θr ∈ C<∞ and kerA = kerB
for B = ∂

r+θ1∂
r−1+ · · ·+θr ∈ C<∞[∂], then A = B, that is ϕi = θi for i = 1, . . . , r.

Proof. Take a ∈ R and f1, . . . , fr ∈ Ca representing ϕ1, . . . , ϕr. This gives an
equation (D). Let y1, . . . , yr be a basis of the R-linear space Sol (D). Then the
germs of y1, . . . , yr lie in C<∞, and denoting these germs also by y1, . . . , yr one
verifies easily that then y1, . . . , yr is a basis of kerA. The second part of the lemma
follows in a similar way from Corollary 5.2.5. □

We call A as above disconjugate if for some a ∈ R the germs ϕ1, . . . , ϕr have
representatives f1, . . . , fr in Ca such that the linear differential equation (D) on R⩾a

is disconjugate.
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Lemma 5.2.40. For A as above, the following are equivalent:

(i) A is disconjugate;
(ii) A = g1 · · · gr(∂g−1

r ) · · · (∂g−1
2 )(∂g−1

1 ) for some g1, . . . , gr ∈ (C<∞)×;
(iii) A = (∂ − hr) · · · (∂ − h1) for some h1, . . . , hr ∈ C<∞.

Thus if monic A1, A2 ∈ C<∞[∂] of order ⩾ 1 are disconjugate, then so is A1A2.

Proof. Assume (i). Then Corollary 5.2.33 yields a ∈ R, representatives f1, . . . , fr ∈
Ca of ϕ1, . . . , ϕr, and a Markov system y1, . . . , yr ∈ Sol (D). Let g1, . . . , gr be as
in Proposition 5.2.35. Then for b ⩾ a with f1|b, . . . , fr|b ∈ Cna we have gj |b ∈
(Cn+r−j+1
b )× for j = 1, . . . , r. So the germs of g1, . . . , gr are in (C<∞)×, and de-

noting these germs also by g1, . . . , gr gives A = g1 · · · gr(∂g−1
r ) · · · (∂g−1

2 )(∂g−1
1 ) by

Proposition 5.2.35 and Lemma 5.2.39. We have now shown (i) ⇒ (ii). For the con-
verse, we reverse the argument using Theorem 5.2.36. The equivalence (ii) ⇔ (iii)
is shown just like Lemma 1.1.3, using also that f 7→ f† : (C<∞)× → C<∞ is surjec-
tive. □

Remark. Lemma 5.2.40 goes through for monic A ∈ C∞[∂] of order r, with C∞ in
place of C<∞ everywhere. Likewise for monic A ∈ Cω[∂] of order r, with Cω in place
of C<∞ everywhere.

A principal system of solutions of (D) is a tuple y1, . . . , yr in Sol (D) such that

(1) y1(t), . . . , yr(t) > 0 eventually, and
(2) y1 ≺ · · · ≺ yr (in C).

Note that then y1, . . . , yr are R-linearly independent, and z1, . . . , zr ∈ Cra is a prin-
cipal system of solutions of (D) iff there are cij ∈ R (1 ⩽ j ⩽ i ⩽ r) such that

zi = ciiyi + ci,i−1yi−1 + · · ·+ ci1y1 and cii > 0.

The next result generalizes Lemma 5.2.29. It seems slightly stronger than a similar
result by Hartman [92] and Levin [128]:

Proposition 5.2.41. Suppose (D) has no oscillating solutions. Then it has a
principal system of solutions.

Proof. Let y, z ∈ Sol (D), y(t), z(t) > 0 eventually. Claim: lim
t→+∞

y(t)/z(t) exists

in [0,+∞]. Suppose this limit doesn’t exist. Then we have c ∈ R> such that

lim inf
t→+∞

y(t)/z(t) < c < lim sup
t→+∞

y(t)/z(t),

so y(t)/z(t) = c for arbitrarily large t, but then y − cz = 0, a contradiction.
In particular, for such y, z we have either y ≺ z, or y ∼ cz for some c ∈ R>,
or y ≻ z. If y1, . . . , yn ∈ Sol (D)

̸=
and y1 ≺ · · · ≺ yn, then y1, . . . , yn are R-linearly

independent, so n ⩽ r, and for any nonzero z ∈ Ry1 + · · · + Ryn we have z ∼ cyj
for some j ∈ {1, . . . , n} and c ∈ R×. Now take such y1, . . . , yn with maximal n,

so n ⩾ 1. We claim that then Sol (D) = Ry1+· · ·+Ryn (so n = r). Let z ∈ Sol (D)
̸=
.

We cannot have z ≺ y1, nor yj ≺ z ≺ yj+1 with 1 ⩽ j ⩽ n − 1, nor z ≻ yn;
hence z ∼ cyj where 1 ⩽ j ⩽ n and c ∈ R×. Then z − cyj ≺ yj . If z ̸= cyj , we
take z−cyj as our new z and obtain likewise z−cyj ∼ dyi with 1 ⩽ i < j and d ∈ R×.
Continuing this way leads in a finite number of steps to z ∈ Ry1 + · · ·+ Ryn. □

The next result is due to Trench [200]. We do not give a proof, since we shall
establish in Section 7.4 a version of it in the Hardy field context; see also Proposi-
tion 2.5.39.
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Proposition 5.2.42. Suppose Sol (D) contains a Markov system. Then there are
gj ∈ (Cr−j+1

a )× (j = 1, . . . , r) such that for A = ∂
r + f1∂

r−1 + · · ·+ fr : Cra → Ca,

A = g1 · · · gr(∂g−1
r ) · · · (∂g−1

2 )(∂g−1
1 ) and

∫ ∞

a

|gj(s)| ds = ∞ for j = 2, . . . , r.

Moreover, such g1, . . . , gr are unique up to multiplication by nonzero constants.

An application of l’Hôpital’s Rule shows that for g1, . . . , gr as in Proposition 5.2.42
the tuple y1, . . . , yr in the proof of Theorem 5.2.36 is a principal system of solutions
of (D).

Lyapunov exponents (∗). In this subsection f , g, h range over C[i]. Consider the
downward closed subset

Λ = Λ(f) :=
{
λ ∈ R : f eλx ≼ 1

}
of R. If λ < µ ∈ Λ, then f eλx ≺ 1. Also

Λ(f) = Λ(f) = Λ(|f |), f ≼ g ⇒ Λ(f) ⊇ Λ(g).

Notation. Set R±∞ := R ∪ {−∞,+∞}. Then for S ⊆ R we have supS ∈ R±∞
with sup ∅ := −∞.

The Lyapunov exponent of f is λ(f) := supΛ(f) ∈ R±∞. (See [45, §3.12].)
Note:

λ(f) = +∞ ⇐⇒ Λ(f) = R ⇐⇒ f ≺ eλx for all λ ∈ R,
and

λ(f) = λ(f) = λ(|f |), f ≼ g ⇒ λ(f) ⩾ λ(g), f ≍ g ⇒ λ(f) = λ(g).

If λ = λ(f) ∈ R, then for each ε ∈ R> we have f e(λ−ε)x ≺ 1 and f e(λ+ε)x ̸≼ 1.
One also verifies easily that for f ∈ C[i]×,

(5.2.2) λ(f) = − lim sup
t→+∞

log|f(t)|
t

.

If f = eg, then λ(f) = − lim sup
t→+∞

Re g(t)/t. Thus λ(c eiϕ) = 0 for c ∈ C×, ϕ ∈ C.

Lemma 5.2.43. Assume λ(f), λ(g) > −∞. Then:

(i) λ(f + g) ⩾ min
{
λ(f), λ(g)

}
, with equality if λ(f) ̸= λ(g);

(ii) λ(fg) ⩾ λ(f) + λ(g);
(iii) λ(fm) = mλ(f) for all m.

Proof. For (i) suppose λ(f) ⩽ λ(g). Then for each λ ∈ Λ(f) and ε ∈ R> we
have (f + g) e(λ−ε)x ≼ 1 and so λ − ε ∈ Λ(f + g). This shows λ(f + g) ⩾ λ(f),
and λ(f + g) = λ(f) if λ(f) < λ(g) then follows using f = (f + g) − g. Parts (ii)
and (iii) follow in a similar way. □

By Lemma 5.2.43(ii), if f ∈ C[i]× and λ(f), λ(f−1) ∈ R, then λ(f−1) ⩽ −λ(f).

Example. If f = eg and Re g − cx ≺ x, c ∈ R, then λ(f) = c, λ(f−1) = −c.

Set
C[i]⪯⪯ :=

{
f : λ(f) > −∞

}
=
{
f : f ≼ enx for some n

}
.

Then C[i]⪯⪯ is a subalgebra of the C-algebra C[i] and
C[i]≺≺ :=

{
f : λ(f) = +∞

}
=
{
f : f ≼ e−nx for all n

}
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is an ideal of C[i]⪯⪯. The group of units of C[i]⪯⪯ is

C[i]−≍ :=
{
f ∈ C[i]× : λ(f), λ(f−1) ∈ R

}
=
{
f : e−nx ≼ f ≼ enx for some n

}
.

Lemma 5.2.44. Suppose f ∈ C1[i]. If λ(f ′) ⩽ 0, then λ(f ′) ⩽ λ(f). If λ(f ′) > 0,
then c := lim

s→∞
f(s) ∈ C exists and λ(f ′) ⩽ λ(f − c).

Proof. Let λ ∈ Λ(f ′). Take a ∈ R and a representative of f in C1
a[i], also denoted

by f , as well C ∈ R>, such that |f ′(t)| ⩽ C e−λt for t ⩾ a. If λ < 0, then for t ⩾ a:

|f(t)| − |f(a)| ⩽ |f(t)− f(a)| =

∣∣∣∣∫ t

a

f ′(s) ds

∣∣∣∣ ⩽ ∫ t

a

|f ′(s)| ds ⩽

C

∫ t

a

e−λs ds = −C
λ
(e−λt− e−λa),

hence f ≼ e−λx. This yields λ(f ′) ⩽ λ(f) if λ(f ′) ⩽ 0. Suppose λ > 0. Then
for a ⩽ s ⩽ t:

|f(t)− f(s)| =

∣∣∣∣∫ t

s

f ′(u) du

∣∣∣∣ ⩽ ∫ t

s

|f ′(u)| du ⩽ −C
λ
(e−λt− e−λs).

Therefore c := lim
s→∞

f(s) exists and |c − f(s)| ⩽ C
λ e−λs for s ⩾ a. Hence f − c ≼

e−λx, so λ ∈ Λ(f − c). This yields λ(f ′) ⩽ λ(f − c). □

Let y = (y1, . . . , yn) ∈ C[i]n, n ⩾ 1. Put λ(y) := min
{
λ(y1), . . . , λ(yn)

}
. Then

the function λ : C[i]n → R±∞ on the product ring C[i]n also satisfies (i)–(iii) in
Lemma 5.2.43 with f , g replaced by y, z ∈ C[i]n with λ(y), λ(z) > −∞. Thus:

Corollary 5.2.45. If m ⩾ 2, y1, . . . , ym ∈ C[i]n are C-linearly dependent, and
λ(y1), . . . , λ(ym) > −∞, then λ(yi) = λ(yj) for some i ̸= j.

We define y ≼ g :⇔ y1, . . . , yn ≼ g
(
⇒ λ(y) ⩾ λ(g)

)
. Note that λ(y) ∈ R iff y ≼ emx

and y ̸≼ e−mx for some m.
Let ∥ · ∥ be a norm on the C-linear space Cn, and accordingly, let ∥y∥ denote the

germ of t 7→ ∥
(
y1(t), . . . , yn(t)

)
∥, so ∥y∥ ∈ C.

Corollary 5.2.46. y ≼ ∥y∥, y ≼ g ⇔ ∥y∥ ≼ g, and λ(∥y∥) = λ(y).

Proof. Any two norms on Cn are equivalent, so we may arrange ∥ · ∥ = ∥ · ∥1.
Then y ≼ g ⇒ ∥y∥ = |y1| + · · · + |yn| ≼ g. From |yj | ⩽ ∥y∥ we get yj ≼ ∥y∥
for j = 1, . . . , n and thus y ≼ ∥y∥. Thus ∥y∥ ≼ g ⇒ y ≼ g; also λ(∥y∥) ⩽ λ(y).
Finally, Lemma 5.2.43(i) and λ(|f |) = λ(f) yield λ(∥y∥) ⩾ λ(y). □

In particular, λ(y) = λ(∥y∥) = λ(∥y∥2) = λ
(
(Re y1, . . . ,Re yn, Im y1, . . . , Im yn)

)
.

Remarks on matrix differential equations (∗). In this subsection N is an n×n
matrix with entries in C[i], n ⩾ 1. We consider tuples y ∈ C1[i]n as column
vectors y = (y1, . . . , yn)

t with entries yj in C1[i]. Later in this subsection and in
Section 7.4 we shall tacitly use the following:

(1) The C-linear space of y ∈ C1[i]n such that y′ = Ny has dimension n.
(2) If all entries of N are in C<∞[i] and y ∈ C1[i]n, y′ = Ny, then y ∈ C<∞[i]n.
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Classical existence and uniqueness results on matrix linear differential equations
give (1), and induction on the degree of smoothness of y yields (2).

Call a matrix (fij) over C[i] bounded if fij ≼ 1 for all i, j. Similarly with Ca[i]
(a ∈ R) in place of C[i]. In the proof of Corollary 7.4.28 we shall use the following
(cf. [45, §3.13], [111, §A.3.11]):

Lemma 5.2.47 (Lyapunov [135], Perron [152]). Suppose N is bounded. If y ∈
C1[i]n, y′ = Ny, and y ̸= 0, then λ(y) ∈ R.

Proof. We have N = A+ Bi where A, B are n× n matrices over C. Consider the
bounded 2n × 2n matrix M :=

(
A −B
B A

)
over C. For y = (y1, . . . , yn)

t ∈ C1[i]n,

set v := (Re y1, . . . ,Re yn, Im y1, . . . , Im yn)
t ∈ (C1)2n; then y′ = Ny iff v′ = Mv.

Now assume y′ = Ny and y ̸= 0. Then by the remark after Corollary 5.2.46 we may
replace N , n, y byM , 2n, v to arrange that the entries of N are in C and y ∈ (C1)n.

Let λ, µ ∈ R and consider z := e−λx y. Then z′ = (N − λIn)z where In is the
n× n identity matrix over C, and thus

⟨z, z⟩′ = 2⟨z, z′⟩ = 2
〈
z,
(
N − (λ− 1

2 )In
)
z
〉
− ⟨z, z⟩.

The lemma below gives λ such that
〈
z,
(
N − (λ − 1

2 )In
)
z
〉
⩽ 0, so ⟨z, z⟩ ∈ C1

and ⟨z, z⟩′ ⩽ 0, and thus ⟨z, z⟩ ≼ 1. Corollary 5.2.46 yields z ≼ 1, so y ≼ eλx.
Likewise, set w := eµx y; then w′ = (N + µIn)w, and apply Lemma 5.2.48 to
a representative F of −N to get µ with ⟨w,w⟩′ ⩾ ⟨w,w⟩, so ⟨w,w⟩ ≽ ex by
Lemma 5.2.17, hence w ̸≼ 1, and thus y ̸≼ e−µx. So λ(y) ∈ R. □

In the next lemma F = (fij) is an n × n matrix over Ca, a ∈ R. For t ∈ R⩾a this
yields the n × n matrix F (t) :=

(
fij(t)

)
over R. Let In also be the n × n identity

matrix over R.

Lemma 5.2.48. Suppose F is bounded. Then there exists µ ∈ R> such that for
all real λ ⩾ µ, t ⩾ a, and z ∈ Rn:

〈
z,
(
F (t)− λIn

)
z
〉
⩽ 0.

Proof. Put G := 1
2 (F + F t), a symmetric bounded n × n matrix over Ca such

that
〈
z, F (t)z

〉
=
〈
z,G(t)z

〉
for t ⩾ a and z ∈ Rn, and replace F by G to arrange

that F is symmetric. Let

P (Y ) := det(Y In−F ) = Y n+P1Y
n−1+ · · ·+Pn ∈ Ca[Y ] (P1, . . . , Pn ∈ Ca),

and for t ∈ R⩾a put

P (t, Y ) := Y n + P1(t)Y
n−1 + · · ·+ Pn(t) ∈ R[Y ],

so for each λ ∈ R, P (t, Y + λ) is the characteristic polynomial of the symmetric
n×n matrix F (t)−λIn over R. Now P1, . . . , Pn ≼ 1 since F is bounded, so [ADH,
3.5.2] yields µ ∈ R> such that for all t ∈ R⩾a, all zeros of P (t, Y ) in R are in [−µ, µ].
Let λ ⩾ µ. Then for t ⩾ a, no real zero of P (t, Y + λ), and thus no eigenvalue
of F (t)− λIn, is positive. Hence

〈
z, (F (t)− λIn)z

〉
⩽ 0 for all z ∈ Rn. □

Let V :=
{
y ∈ C1[i]n : y′ = Ny

}
, an n-dimensional C-linear subspace of C1[i].

Suppose N is bounded. Then S := λ(V ̸=) ⊆ R by Lemma 5.2.47, and S, called
the Lyapunov spectrum of y′ = Ny, has at most n elements by Corollary 5.2.45.
According to [ADH, 2.3] the surjective map

y 7→ λ(y) : V → S∞ := S ∪ {∞}
makes V a valued vector space over C. Thus by [ADH, remark before 2.3.10]:
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Corollary 5.2.49 (Lyapunov [135]). If N is bounded, then V has a basis y1, . . . , yn
such that for all c1, . . . , cn ∈ C, not all zero, and y = c1y1 + · · ·+ cnyn,

λ(y) = min
{
λ(yj) : cj ̸= 0

}
.

Whether or not N is bounded, a Lyapunov fundamental system of solutions
of y′ = Ny is a basis y1, . . . , yn of V as in the corollary above. (In [45, §3.14] this
is called a normal fundamental system of solutions of y′ = Ny.) A Lyapunov
fundamental matrix for y′ = Ny is an n× n matrix with entries in C1[i] whose
columns form a Lyapunov fundamental system of solutions of y′ = Ny.

Lemma 5.2.47 also gives:

Corollary 5.2.50. Let f1, . . . , fn ∈ C[i] be such that f1, . . . , fn ≼ 1. Then there
are λ1, . . . , λm ∈ R (1 ⩽ m ⩽ n) such that for all y ∈ Cn[i] ̸= such that

y(n) + f1y
(n−1) + · · ·+ fny = 0

we have λ(y, y′, . . . , y(n−1)) ∈ {λ1, . . . , λm}.

5.3. Hardy Fields

Here we introduce Hardy fields and review some classical extension theorems for
Hardy fields.

Hardy fields. A Hardy field is a subfield of C<∞ that is closed under the derivation
of C<∞; see also [ADH, 9.1]. Let H be a Hardy field. Then H is considered as an
ordered valued differential field in the obvious way; see Section 5.1 for the ordering
and valuation on H. The field of constants of H is R∩H. Hardy fields are pre-H-
fields, and H-fields if they contain R; see [ADH, 9.1.9(i), (iii)]. As in Section 5.1 we
equip the differential subfield H[i] of C<∞[i] with the unique valuation ring lying
over that of H. Then H[i] is a pre-d-valued field of H-type with small derivation
and constant field C ∩H[i]; if H ⊇ R, then H[i] is d-valued with constant field C.

We also consider variants: a C∞-Hardy field is a Hardy field H ⊆ C∞, and a Cω-
Hardy field (also called an analytic Hardy field) is a Hardy field H ⊆ Cω. Most
Hardy fields arising in practice are actually Cω-Hardy fields. Boshernitzan [32]
(with details worked out in [77]) first suggested a Hardy field H ̸⊆ C∞, and [79,
Theorem 1] shows that each Hardy field with a largest comparability class extends
to a Hardy field H ̸⊆ C∞. Rolin, Speissegger, Wilkie [166] construct o-minimal

expansions R̃ of the ordered field of real numbers such that H ⊆ C∞ and H ̸⊆ Cω
for the Hardy field H consisting of the germs of functions R → R that are definable

in R̃. Le Gal and Rolin [124] construct such expansions such that H ̸⊆ C∞ for the
corresponding Hardy field H.

Hardian germs. Let y ∈ G. Following [190] we call y hardian if it lies in a
Hardy field (and thus y ∈ C<∞). We also say that y is C∞-hardian if y lies in a
C∞-Hardy field, equivalently, y ∈ C∞ and y is hardian; likewise with Cω in place
of C∞. Let H be a Hardy field. Call y ∈ G H-hardian (or hardian over H) if y
lies in a Hardy field extension of H. (Thus y is hardian iff y is Q-hardian.) If H
is a C∞-Hardy field and y ∈ C∞ is hardian over H, then y generates a C∞-Hardy
field extension H⟨y⟩ of H; likewise with Cω in place of C∞.
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Maximal and perfect Hardy fields. Let H be a Hardy field. Call H maximal if
no Hardy field properly containsH. Following Boshernitzan [33] we denote by E(H)
the intersection of all maximal Hardy fields containing H; thus E(H) is a Hardy
field extension of H, and a maximal Hardy field contains H iff it contains E(H),
so E(E(H)) = E(H). If H∗ is a Hardy field extension of H, then E(H) ⊆ E(H∗);
hence if H∗ is a Hardy field with H ⊆ H∗ ⊆ E(H), then E(H∗) = E(H). Note
that E(H) consists of the f ∈ G that are hardian over each Hardy field E ⊇ H.
Hence E(Q) consists of the germs in G that are hardian over each Hardy field. As
in [33] we also say that H is perfect if E(H) = H. (This terminology is slightly
unfortunate, since Hardy fields, being of characteristic zero, are perfect as fields.)
Thus E(H) is the smallest perfect Hardy field extension of H. Maximal Hardy
fields are perfect.

Differentially maximal Hardy fields. Let H be a Hardy field. We now define
differentially-algebraic variants of the above: call H differentially maximal, or
d-maximal for short, if H has no proper d-algebraic Hardy field extension. Every
maximal Hardy field is d-maximal, so each Hardy field is contained in a d-maximal
one; in fact, by Zorn, each Hardy field H has a d-maximal Hardy field exten-
sion which is d-algebraic over H. Let D(H) be the intersection of all d-maximal
Hardy fields containing H. Then D(H) is a d-algebraic Hardy field extension of H
with D(H) ⊆ E(H). By the next lemma, D(H) = E(H) iff E(H) is d-algebraic
over H:

Lemma 5.3.1. D(H) =
{
f ∈ E(H) : f is d-algebraic over H

}
.

Proof. We only need to show the inclusion “⊇”. For this let f ∈ E(H) be d-
algebraic over H, and let E be a d-maximal Hardy field extension of H; we need
to show f ∈ E. To see this extend E to a maximal Hardy field M ; then f ∈ M ,
hence f generates a Hardy field extension E⟨f⟩ of E. Since f is d-algebraic over H
and thus over E, this yields f ∈ E by d-maximality of E, as required. □

A d-maximal Hardy field contains H iff it contains D(H), hence D(D(H)) = D(H).
If H∗ is a Hardy field extension of H, then D(H) ⊆ D(H∗); hence for each Hardy
field H∗ with H ⊆ H∗ ⊆ D(H) we have D(H∗) = D(H). We say that H is d-
perfect if D(H) = H. Thus D(H) is the smallest d-perfect Hardy field extension
of H. Every perfect Hardy field is d-perfect, as is every d-maximal Hardy field.
The following diagram summarizes the various implications among these properties
of Hardy fields:

maximal +3

��

perfect

��
d-maximal +3 d-perfect

We call D(H) the d-perfect hull of H, and E(H) the perfect hull of H. It seems
that the following question asked by Boshernitzan [33, p. 144] is still open:

Question. Is E(H) d-algebraic over H, in other words, is D(H) = E(H)?

Boshernitzan gave support for a positive answer: Lemma 5.4.1, Corollary 5.4.15,
and Theorem 5.4.20 below. Our Theorems 5.6.11 and 7.5.32 (in combination with
Theorem 1.4.1) can be seen as further support.
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Variants of the perfect hull. Let H be a Cr-Hardy field where r ∈ {∞, ω}. We
say thatH is Cr-maximal if no Cr-Hardy field properly contains it. By Zorn, H has
a Cr-maximal extension. In analogy with E(H), define the Cr-perfect hull Er(H)
of H to be the intersection of all Cr-maximal Hardy fields containing H. We say
that H is Cr-perfect if Er(H) = H. The penultimate subsection goes through with
Hardy field, maximal, hardian, E( · ), and perfect replaced by Cr-Hardy field, Cr-
maximal, Cr-hardian, Er( · ), and Cr-perfect, respectively. (Corollary 7.2.13 shows
that no analogue of D(H) is needed for the Cr-category.)

Some basic extension theorems. We summarize some well-known extension
results for Hardy fields:

Proposition 5.3.2. Any Hardy field H has the following Hardy field extensions:

(i) H(R), the subfield of C<∞ generated by H and R;
(ii) Hrc, the real closure of H as defined in Proposition 5.1.4;
(iii) H(ef ) for any f ∈ H;
(iv) H(f) for any f ∈ C1 with f ′ ∈ H;
(v) H(log f) for any f ∈ H>.

If H is contained in C∞, then so are the Hardy fields in (i), (ii), (iii), (iv), (v);
likewise with Cω instead of C∞.

Note that (v) is a special case of (iv), since (log f)′ = f† ∈ H for f ∈ H>. Another
special case of (iv) is that H(x) is a Hardy field. A consequence of the proposition is
that any Hardy fieldH has a smallest real closed Hardy field extension L with R ⊆ L
such that for all f ∈ L we have ef ∈ L and g′ = f for some g ∈ L. Note that
then L is a Liouville closed H-field as defined in [ADH, 10.6]. Let H be a Hardy
field with H ⊇ R. As in [6] and [ADH, p. 460] we then denote the above L by Li(H);
so Li(H) is the smallest Liouville closed Hardy field containing H, called the Hardy-
Liouville closure of H in [12]. We have Li(H) ⊆ D(H), hence if H is d-perfect,
then H is a Liouville closed H-field. Moreover, if H ⊆ C∞ then Li(H) ⊆ C∞, and
similarly with Cω in place of C∞.

The next more general result in Rosenlicht [171] is attributed there to M. Singer:

Proposition 5.3.3. Let H be a Hardy field and p(Y ), q(Y ) ∈ H[Y ], y ∈ C1, such
that y′q(y) = p(y) with q(y) ∈ C×. Then y generates a Hardy field H(y) over H.

Note that for H, p, q, y as in the proposition we have y ∈ D(H).

Compositional conjugation of differentiable germs. Let ℓ ∈ C1, ℓ′(t) > 0
eventually (so ℓ is eventually strictly increasing) and ℓ(t) → +∞ as t → +∞.
Then ϕ := ℓ′ ∈ C×, and the compositional inverse ℓinv ∈ C1 of ℓ satisfies

ℓinv > R, (ℓinv)′ = (1/ϕ) ◦ ℓinv ∈ C.
The C-algebra automorphism f 7→ f◦ := f ◦ ℓinv of C[i] (with inverse g 7→ g ◦ ℓ)
maps C1[i] onto itself and satisfies for f ∈ C1[i] a useful identity:

(f◦)′ = (f ◦ ℓinv)′ = (f ′ ◦ ℓinv) · (ℓinv)′ = (f ′/ℓ′) ◦ ℓinv = (ϕ−1f ′)◦.

Hence if n ⩾ 1 and ℓ ∈ Cn, then ℓinv ∈ Cn and f 7→ f◦ maps Cn[i] and Cn
onto themselves, for each n. Therefore, if ℓ ∈ C<∞, then ℓinv ∈ C<∞ and f 7→ f◦

maps C<∞[i] and C<∞ onto themselves; likewise with C∞ or Cω in place of C<∞. In
the rest of this subsection we assume ℓ ∈ C<∞. Denote the differential ring C<∞[i]
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by R, and as usual let Rϕ be R with its derivation f 7→ ∂(f) = f ′ replaced by the
derivation f 7→ δ(f) = ϕ−1f ′ [ADH, 5.7]. Then f 7→ f◦ : Rϕ → R is an isomorphism
of differential rings by the identity above. We extend it to the isomorphism

Q 7→ Q◦ : Rϕ{Y } → R{Y }
of differential rings given by Y ◦ = Y . Let y ∈ R. Then

Q(y)◦ = Q◦(y◦) for Q ∈ Rϕ{Y }
and thus

P (y)◦ = Pϕ(y)◦ = (Pϕ)◦(y◦) for P ∈ R{Y }.
This leads to a useful generalization of the identity for (f◦)′ above. For this,
let n ⩾ 1 and let Gnk ∈ Q{X} (1 ⩽ k ⩽ n) be the differential polynomial introduced
in [ADH, 5.7]; so Gnk is homogeneous of degree n and isobaric of weight n − k.
Viewing the Gnk as elements of R{X} and δ = ϕ−1

∂ as an element of R[∂] we have

δ
n = Gnn(ϕ

−1)∂n + · · ·+Gn1 (ϕ
−1)∂ in the ring R[∂].

Thus

δ
2 = ϕ−2

∂
2 − ϕ′ϕ−3

∂, δ
3 = ϕ−3

∂
3 − 3ϕ′ϕ−4

∂
2 +

(
3(ϕ′)2 − ϕϕ′′

)
ϕ−5

∂, . . .

Set λ := −ϕ†, and let

Rnk := Ri(Gnk ) ∈ Q{Z}, so Gnk (ϕ
−1) = ϕ−nRnk (λ) (0 ⩽ k ⩽ n).

Thus
δ
n = ϕ−n

(
Rnn(λ)∂

n + · · ·+Rn1 (λ)∂
)
.

For instance,

δ
3 = ϕ−3

(
R3

3(λ)∂
3 +R3

2(λ)∂
2 +R3

1(λ)∂
)

= ϕ−3
(

∂
3 + 3λ∂

2 +
(
2λ2 + λ′

)
∂
)
.

We now have:

Lemma 5.3.4. Let f ∈ R and n ⩾ 1. Then

(f◦)(n) =
(
ϕ−n

(
Rnn(λ)f

(n) + · · ·+Rn1 (λ)f
′))◦ .

Proof. Let Q = Y (n) ∈ Rϕ{Y }, so Q◦ = Y (n) ∈ R{Y }. Then (f◦)(n) = Q◦(f◦) =
Q(f)◦ = δ

n(f)◦. Now use the above identity for δ
n. □

Note also: (Q+f )
◦ = (Q◦)+f◦ and (Q×f )

◦ = (Q◦)×f◦ for Q ∈ Rϕ{Y }, f ∈ R.

Compositional conjugation in Hardy fields. Let now H be a Hardy field, and
let ℓ ∈ C1 be such that ℓ > R and ℓ′ ∈ H. Then ℓ ∈ C<∞, ϕ := ℓ′ is active in H,
ϕ > 0, and we have a Hardy field H(ℓ). The C-algebra automorphism f 7→ f◦ :=
f ◦ ℓinv of C[i] restricts to an ordered field isomorphism

h 7→ h◦ : H → H◦ := H ◦ ℓinv.
The identity (f◦)′ = (ϕ−1f ′)◦, valid for each f ∈ C1[i], shows that H◦ is again a
Hardy field. Conversely, if E is a subfield of C<∞ with ϕ ∈ E and E◦ := E ◦ ℓinv
is a Hardy field, then E is a Hardy field. If H ⊆ C∞ and ℓ ∈ C∞, then H◦ ⊆ C∞;
likewise with Cω instead of C∞. If E is a Hardy field extension of H, then E◦ is
a Hardy field extension of H◦, and E is d-algebraic over H iff E◦ is d-algebraic
over H◦. Hence H is maximal iff H◦ is maximal, and likewise with “d-maximal”
in place of “maximal”. So E(H◦) = E(H)◦ and D(H◦) = D(H)◦, and thus H is
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perfect iff H◦ is perfect, and likewise with “d-perfect” in place of “perfect”. The
next lemma is [32, Corollary 6.5]; see also [8, Theorem 1.7].

Lemma 5.3.5. The germ ℓinv is hardian. Moreover, if ℓ is C∞-hardian, then ℓinv

is also C∞-hardian, and likewise with Cω in place of C∞.

Proof. By Proposition 5.3.2(iv) we can arrange that our Hardy field H contains
both ℓ and x. Then ℓinv = x ◦ ℓinv is an element of the Hardy field H ◦ ℓinv. □

Next we consider the pre-d-valued field K := H[i] of H-type, which gives rise to

K◦ := K ◦ ℓinv = H◦[i],

also a pre-d-valued field of H-type, and we have the valued field isomorphism

h 7→ h◦ : K → K◦.

Note: h 7→ h◦ : Hϕ → H◦ is an isomorphism of pre-H-fields, and h 7→ h◦ : Kϕ → K◦

is an isomorphism of valued differential fields. Recall that K and Kϕ have the same
underlying field. For f, g ∈ K we have

f ≼♭ϕ g (in K) ⇐⇒ f ≼♭ g (in Kϕ) ⇐⇒ f◦ ≼♭ g◦ (in K◦),

and likewise with ≼♭ϕ, ≼
♭ replaced by ≺♭ϕ, ≺♭.

Lemma 5.3.6. From the isomorphisms Hϕ ∼= H◦ and Kϕ ∼= K◦ we obtain: If H
is Liouville closed, then so is H◦. If I(K) ⊆ K†, then I(K◦) ⊆ (K◦)†.

So far we focused on pre-composition with ℓinv. As to pre-composition with ℓ, it
seems not to be known whether H ◦ ℓ ⊆ H whenever H is maximal. However, we
have the following (cf. [33, Lemma 11.6(7)]):

Lemma 5.3.7. E(Q) ◦ ℓ ⊆ E(H).

Proof. E(H◦) = E(H)◦ gives E(H◦) ◦ ℓ = E(H). Now use E(Q) ⊆ E(H◦). □

Lemma 5.3.7 gives E(Q) ◦ E(Q)>R ⊆ E(Q); cf. [32, Theorem 6.8]. Boshernitzan’s
conjecture [32, §10, Conjecture 3] that E(Q)>R is also closed under compositional
inversion seems to be still open.

Differential algebraicity of compositional inverses (∗). In the next lemma we
let ℓ ∈ C<∞ be hardian with ℓ > R. The argument in the proof of Lemma 5.3.5
shows that ℓ and ℓinv are both R(x)-hardian; moreover (cf. [33, Lemma 14.10]):

Lemma 5.3.8. We have

(5.3.1) trdeg
(
R⟨x, ℓinv⟩|R

)
= trdeg

(
R⟨x, ℓ⟩|R

)
,

hence if ℓ is d-algebraic over R, then so is ℓinv, with

trdeg
(
R⟨ℓinv⟩|R

)
⩽ trdeg

(
R⟨ℓ⟩|R

)
+ 1.

Proof. Set H := R⟨x, ℓ⟩ = R(x)⟨ℓ⟩ and ϕ := ℓ′. With ∂ and δ = ϕ−1
∂ denoting the

derivations of H and Hϕ, we have ϕ = 1/δ(x) and for all f ∈ H and n ⩾ 1,

∂
n(f) ∈ Q

[
δ(f), δ

2(f), . . . , ϕ, δ(ϕ), δ
2(ϕ), . . .

]
by [ADH, remarks before 5.7.3]. The differential fields H and Hϕ have the same
underlying field, and the former is generated as a field over R by x and the ℓ(n), so
applying the above to f = ℓ shows that Hϕ is generated as a differential field over R
by x and ℓ. We also have a differential field isomorphism h 7→ h◦ : Hϕ → H◦ =
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H ◦ ℓinv. This yields H◦ = R⟨ℓinv, x⟩ and (5.3.1). Suppose now that ℓ is d-algebraic
over R; then by additivity of trdeg,

trdeg
(
R⟨x, ℓ⟩|R

)
= trdeg

(
R⟨ℓ, x⟩|R⟨ℓ⟩

)
+ trdeg

(
R⟨ℓ⟩|R

)
⩽ 1 + trdeg

(
R⟨ℓ⟩|R

)
,

and so by (5.3.1):

trdeg
(
R⟨ℓinv⟩|R

)
⩽ trdeg

(
R⟨x, ℓinv⟩|R

)
⩽ trdeg

(
R⟨ℓ⟩|R

)
+ 1,

hence ℓinv is d-algebraic over R. □

In Corollary 5.3.12 below we prove a uniform version of Lemma 5.3.8. To prepare
for this we prove the next two lemmas, where R is a differential ring and x ∈ R,
x′ = 1. Also, ϕ ∈ R×, and we take distinct differential indeterminates U , X, Y
and let Gnk ∈ Q{U} ⊆ Rϕ{U} (k = 1, . . . , n) be as in [ADH, p. 292], so with ∂

and δ = ϕ−1
∂ denoting the derivations of R and Rϕ, we have in Rϕ[δ] for ∂ = ϕδ:

∂
n = Gnn(ϕ) · δ

n +Gnn−1(ϕ) · δ
n−1 + · · ·+Gn1 (ϕ) · δ.

Recall that the Gnk do not depend on R, x, ϕ.

Lemma 5.3.9. There are Hn
k ∈ Q{X ′} ⊆ Q{X} ⊆ Rϕ{X} (k = 1, . . . , n), inde-

pendent of R, x, ϕ, such that Gnk (ϕ) = ϕ2n−1Hn
k (x).

Proof. By induction on n ⩾ 1. For n = 1 we have G1
1 = U , so H1

1 := 1 does the job.
Suppose for a certain n ⩾ 1 we have Hn

k (k = 1, . . . , n) with the desired properties,

and let k ∈ {1, . . . , n + 1}. Now Gn+1
k = U ·

(
δ(Gnk ) + Gnk−1

)
by [ADH, (5.7.2)]

(with Gn0 := 0), so using δ(ϕ) = −ϕ2δ
2(x) and setting Hn

0 := 0,

Gn+1
k (ϕ) = ϕ ·

(
(2n− 1)ϕ2n−2

δ(ϕ)Hn
k (x) + ϕ2n−1

δ(Hn
k (x)) + ϕ2n−1Hn

k−1(x)
)

= ϕ2n+1
(
(1− 2n)δ2(x)Hn

k (x) + δ(x)δ(Hn
k (x)) + δ(x)Hn

k−1(x)
)
.

Thus we can take

Hn+1
k := (1− 2n)X ′′Hn

k +X ′(Hn
k )

′ +X ′Hn
k−1. □

Lemma 5.3.10. Let C be a subfield of CR and P ∈ C{X,Y } ⊆ R{X,Y }. Then
there are N ∈ N and Q ∈ C{X,Y } ⊆ Rϕ{X,Y } such that P (x, Y )ϕ = ϕNQ(x, Y )
in Rϕ{Y }. Here we can take N , Q independent of x, ϕ.

Note that C{X,Y } as a differential subring of R{X,Y } is the same as C{X,Y }
as a differential subring of Rϕ{X,Y }, but “P ∈ C{X,Y } ⊆ R{X,Y }” indicates
that P is considered as an element of R{X,Y } when substituting in P , while
“Q ∈ C{X,Y } ⊆ Rϕ{X,Y }” indicates that Q is taken as an element of Rϕ{X,Y }
when substituting in Q.

Proof. For i = 1, 2, let Pi ∈ C{X,Y }, Ni ∈ N, and Qi ∈ C{X,Y } ⊆ Rϕ{X,Y } be
such that Pi(x, Y )ϕ = ϕNiQi(x, Y ). Then

(P1 · P2)(x, Y )ϕ = ϕN1+N2(Q1 ·Q2)(x, Y ).

Moreover, δ(x) = ϕ−1, hence if N1 ⩽ N2, then

(P1 + P2)(x, Y )ϕ = ϕN2Q(x, Y ) for Q := (X ′)N2−N1Q1 +Q2.

For P = X we have P (x, Y )ϕ = x = ϕ · xδ(x), so N = 1 and Q = XX ′ works.
For P = Y we can take N = 0 and Q = Y . It is enough to prove the lemma for P
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such that no monomial in P has any factor X(m) with m ⩾ 1. Thus it only remains
to do the case P = Y (n) (n ⩾ 1). With Hn

k as in Lemma 5.3.9 we have

(Y (n))ϕ = Gnn(ϕ)Y
(n) + · · ·+Gn1 (ϕ)Y

′ = ϕNQ(x, Y )

for N := 2n− 1 and Q := Hn
n (X)Y (n) + · · ·+Hn

1 (X)Y ′. □

In the next lemma x has its usual meaning as the germ in C<∞ of the identity
function on R, we takeR as the differential ring C<∞[i] and C{X,Y } as a differential
subring of R{X,Y } for any subfield C of C = CR.

Lemma 5.3.11. Let P ∈ C{X,Y } where C is a subfield of C. Then there
are N ∈ N and P • ∈ C{X,Y } such that for all y ∈ R and ℓ ∈ C<∞ with ℓ(t) → +∞
as t→ +∞ and ℓ′(t) > 0, eventually, we have for ϕ := ℓ′:

P (x, y) ◦ ℓinv =
(
ϕ ◦ ℓinv

)N · P •(ℓinv, y ◦ ℓinv) in R.

Proof. Let ℓ ∈ C<∞ be such that ℓ(t) → +∞ as t→ +∞ and ℓ′(t) > 0, eventually,
and set ϕ := ℓ′. For Px := P (x, Y ) ∈ R{Y } and y ∈ R we have P (x, y) = Px(y) =
Pϕx (y) = ϕNQ(x, y), with N ∈ N and Q ∈ Rϕ{X,Y } as in Lemma 5.3.10, so

P (x, y) ◦ ℓinv = ϕNQ(x, y) ◦ ℓinv =
(
ϕ ◦ ℓinv

)N ·Q(x, y) ◦ ℓinv.

Let P • be the element of C{X,Y } that is mapped to Q ∈ Rϕ{X,Y } under the
ring inclusion C{X,Y } → Rϕ{X,Y }. The latter is not in general a differential ring
morphism, but we have the differential ring isomorphism

y 7→ y ◦ ℓinv : Rϕ → R ◦ ℓinv = R,

which gives for y ∈ R that

Q(x, y) ◦ ℓinv = P •(x ◦ ℓinv, y ◦ ℓinv) = P •(ℓinv, y ◦ ℓinv). □

Corollary 5.3.12. For each P ∈ R{X,Y } there is a P • ∈ R{X,Y } such that for
all ℓ ∈ C<∞ with ℓ(t) → +∞ as t→ +∞ and ℓ′(t) > 0, eventually, we have

P (x, ℓ) = 0 ⇐⇒ P •(ℓinv, x) = 0.

We now indicate how Lemma 5.3.11 and Corollary 5.3.12 go through for transseries.
Recall from [ADH, A.7] that there is a unique operation

(f, g) 7→ f ◦ g : T× T>R → T

such that the following conditions hold for all g ∈ T>R:

(1) x ◦ g = g;
(2) f 7→ f ◦ g : T → T is an R-linear embedding of ordered exponential fields;
(3) f 7→ f ◦ g : T → T is strongly additive.

By [60, Proposition 6.3] the Chain Rule holds:

(f ◦ g)′ = (f ′ ◦ g) · g′ (f ∈ T, g ∈ T>R).

Moreover, (f, g) 7→ f ◦ g restricts to a binary operation on T>R which makes T>R

a group with identity element x. For f ∈ T>R we denote the unique g ∈ T>R

with f ◦ g = x by g = f inv. We extend ◦ in a unique way to an operation

(f, g) 7→ f ◦ g : T[i]× T>R → T[i]

by requiring that for all g ∈ T>R, the operation f 7→ f ◦ g : T[i] → T[i] is C-linear.
It follows that for all g ∈ T>R the operation f 7→ f ◦ g : T[i] → T[i] is a field
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embedding. For f ∈ T[i], g, h ∈ T>R we have (f ◦g)◦h = f ◦ (g ◦h) [ADH, A.7(vi)],
so T[i] ◦ h = T[i]. For ℓ ∈ T>R and ϕ := ℓ′ we have a differential field isomorphism

y 7→ y ◦ ℓinv : T[i]ϕ → T[i] ◦ ℓinv = T[i].

Let P ∈ C{X,Y } where C is a subfield of C. Let N ∈ N and P • ∈ C{X,Y } be
as obtained in the proof of Lemma 5.3.11. Then that proof gives for all y ∈ T[i],
ℓ ∈ T>R, and ϕ := ℓ′:

P (x, y) ◦ ℓinv =
(
ϕ ◦ ℓinv

)N · P •(ℓinv, y ◦ ℓinv) in T[i].

Hence for C = R we have P • ∈ R{X,Y } and for all ℓ ∈ T>R:

P (x, ℓ) = 0 ⇐⇒ P •(ℓinv, x) = 0.

5.4. Upper and Lower Bounds on the Growth of Hardian Germs (∗)

This section elaborates on [33, 34, 170]. It is not used for proving our main theorem,
but some of it is needed later, in the proofs of Corollary 5.5.40, Proposition 5.6.6,
and Theorem 5.6.11.

Generalizing logarithmic decomposition. In this subsection K is a differential
ring and y ∈ K. In [ADH, p. 213] we defined the nth iterated logarithmic derivative
of y⟨n⟩ whenK is a differential field. Generalizing this, set y⟨0⟩ := y, and recursively,
if y⟨n⟩ ∈ K is defined and a unit inK, then y⟨n+1⟩ := (y⟨n⟩)†, while otherwise y⟨n+1⟩

is not defined. (Thus if y⟨n⟩ is defined, then so are y⟨0⟩, . . . , y⟨n−1⟩.) With Ln
in Z[X1, . . . , Xn] as in [ADH, p. 213], if y⟨n⟩ is defined, then

y(n) = y⟨0⟩ · Ln(y⟨1⟩, . . . , y⟨n⟩).

If y⟨n⟩ is defined and i = (i0, . . . , in) ∈ N1+n, we set

y⟨i⟩ := (y⟨0⟩)i0(y⟨1⟩)i1 · · · (y⟨n⟩)in ∈ K.

Hence if H is a differential subfield of K, P ∈ H{Y } has order at most n and
logarithmic decomposition P =

∑
i P⟨i⟩Y

⟨i⟩ (i ranging over N1+n, all P⟨i⟩ ∈ H,

and P⟨i⟩ = 0 for all but finitely many i), and y⟨n⟩ is defined, then P (y) =∑
i P⟨i⟩y

⟨i⟩. Below we apply these remarks to K = C<∞, where for y ∈ K×

we have y† = (log |y|)′, hence y⟨n+1⟩ = (log |y⟨n⟩|)′ if y⟨n+1⟩ is defined.

Transexponential germs. For f ∈ C we recursively define the germs expn f
in C by exp0 f := f and expn+1 f := exp(expn f). Following [33] we say that
a germ y ∈ C is transexponential if y ⩾ expn x for all n. In the rest of this
subsection H is a Hardy field. By Corollary 1.3.9 and Proposition 5.3.2:

Lemma 5.4.1. If the H-hardian germ y is d-algebraic over H, then y ⩽ expn h
for some n and some h ∈ H(x).

Thus each transexponential hardian germ is d-transcendental (over R). In the rest
of this subsection: y ∈ C<∞ is transexponential and hardian, and z ∈ C<∞[i].
Then y⟨n⟩ is defined, and y⟨n⟩ is also transexponential and hardian, for all n. Next
some variants of results from Section 1.3. For this, let n be given and let f ∈ C<∞,
not necessarily hardian, be such that f ≻ 1, f ⩾ 0, and y ≽ expn+1 f .

Lemma 5.4.2. We have y† ≽ expn f and y⟨n⟩ ≽ exp f .
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Proof. Since y ≽ exp2 x, we have log y ≽ expx by Lemma 5.1.2, and thus y† =
(log y)′ ≽ log y. Since y ≽ expn+1 f , the same lemma gives log y ≽ expn f .

Thus y† ≽ expn f . Now the second statement follows by an easy induction. □

Corollary 5.4.3. Let i ∈ Z1+n and suppose i > 0 lexicographically. Then y⟨i⟩ ≻ f .

Proof. Let m ∈ {0, . . . , n} be minimal such that im ̸= 0; so im ⩾ 1. The remarks
after Corollary 1.3.2 then give y⟨i⟩ ≻ 1 and [v(y⟨i⟩)] = [v(y⟨m⟩)], so we have k ∈ N,
k ⩾ 1, such that y⟨i⟩ ≽ (y⟨m⟩)1/k. Then Lemma 5.4.2 gives y⟨i⟩ ≽ (y⟨m⟩)1/k ≽
(exp f)1/k ≻ f as required. □

In the next proposition and lemma P ∈ H{Y } ̸= has order at most n, and i, j, k
range over N1+n. Let j be lexicographically maximal such that P⟨j⟩ ̸= 0, and
choose k so that P⟨k⟩ has minimal valuation. If P⟨k⟩/P⟨j⟩ ≻ x, set f := |P⟨k⟩/P⟨j⟩|;
otherwise set f := x. Then f ∈ H(x), f > 0, f ≻ 1, and f ≽ P⟨i⟩/P⟨j⟩ for all i.

Proposition 5.4.4. We have P (y) ∼ P⟨j⟩y
⟨j⟩ and thus

P (y) ∈
(
C<∞)×, signP (y) = signP⟨j⟩ ̸= 0.

Proof. For i < j we have y⟨j−i⟩ ≻ f ≽ P⟨i⟩/P⟨j⟩ by Corollary 5.4.3, there-

fore P⟨j⟩y
⟨j⟩ ≻ P⟨i⟩y

⟨i⟩. Thus P (y) ∼ P⟨j⟩y
⟨j⟩. □

Lemma 5.4.5. Suppose that z⟨n⟩ is defined and y⟨i⟩ ∼ z⟨i⟩ for i = 0, . . . , n.
Then P (y) ∼ P (z).

Proof. For all i with P⟨i⟩ ̸= 0 we have P⟨i⟩y
⟨i⟩ ∼ P⟨i⟩z

⟨i⟩, by Lemma 5.1.1. Now

use that for i ̸= j we have P⟨i⟩y
⟨i⟩ ≺ P⟨j⟩y

⟨j⟩ by the proof of Proposition 5.4.4. □

From here on n is no longer fixed.

Corollary 5.4.6 (Boshernitzan [33, Theorem 12.23]). Suppose y ⩾ expn h for
all h ∈ H(x) and all n. Then y is H-hardian.

This is an immediate consequence of Proposition 5.4.4. (In [33], the proof of this
fact is only indicated.) From Lemma 5.4.5 we also obtain:

Corollary 5.4.7. Suppose that y is as in Corollary 5.4.6 and z ∈ C<∞, and z⟨n⟩

is defined and y⟨n⟩ ∼ z⟨n⟩, for all n. Then z is H-hardian, and there is a unique
ordered differential field isomorphism H⟨y⟩ → H⟨z⟩ over H which sends y to z.

Lemma 5.4.13 below contains another criterion for z to be H-hardian. This involves
a certain binary relation ∼∞ on germs defined in the next subsection. Lemma 5.4.5
also yields a complex version of Corollary 5.4.7:

Corollary 5.4.8. Suppose that y is as in Corollary 5.4.6 and that z⟨n⟩ is defined
and y⟨n⟩ ∼ z⟨n⟩, for all n. Then z generates a differential subfield H⟨z⟩ of C<∞[i],
and there is a unique differential field isomorphism H⟨y⟩ → H⟨z⟩ over H which
sends y to z. Moreover, the binary relation ≼ on C[i] restricts to a dominance
relation on H⟨z⟩ which makes this an isomorphism of valued differential fields.
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A useful equivalence relation. We set

C<∞[i]≼ :=
{
f ∈ C<∞[i] : f (n) ≼ 1 for all n

}
⊆ C[i]≼,

a differential C-subalgebra of C<∞[i], and

I :=
{
f ∈ C<∞[i] : f (n) ≺ 1 for all n

}
⊆ C<∞[i]≼,

a differential ideal of C<∞[i]≼ (thanks to the Product Rule). Recall from the
remarks preceding Lemma 5.1.1 that (C[i]≼)× = C[i]≍.

Lemma 5.4.9. The group of units of C<∞[i]≼ is

C<∞[i]≍ := C<∞[i]≼ ∩ C[i]≍ =
{
f ∈ C<∞[i] : f ≍ 1, f (n) ≼ 1 for all n

}
.

Moreover, 1 + I is a subgroup of C<∞[i]≍.

Proof. It is clear that

(C<∞[i]≼)× ⊆ C<∞[i]≼ ∩ (C[i]≼)× = C<∞[i]≼ ∩ C[i]≍ = C<∞[i]≍.

Conversely, suppose f ∈ C<∞[i] satisfies f ≍ 1 and f (n) ≼ 1 for all n. For each n we
have Qn ∈ Q{X} such that (1/f)(n) = Qn(f)/f

n+1, hence (1/f)(n) ≼ 1. Thus f ∈
(C<∞[i]≼)×. This shows the first statement. Clearly 1 + I ⊆ C<∞[i]≍, and 1+I is
closed under multiplication. If δ ∈ I, then 1+δ is a unit of C<∞[i]≼ and (1+δ)−1 =
1 + ε where ε = −δ(1 + δ)−1 ∈ I. □

For y, z ∈ C[i]× we define

y ∼∞ z :⇐⇒ y ∈ z · (1 + I);

hence y ∼∞ z ⇒ y ∼ z. Lemma 5.4.9 yields that ∼∞ is an equivalence relation
on C[i]×, and for yi, zi ∈ C[i]× (i = 1, 2) we have

y1 ∼∞ y2 & z1 ∼∞ z2 =⇒ y1z1 ∼∞ y2z2, y−1
1 ∼∞ y−1

2 .

Lemma 5.4.10. Let y, z ∈ C1[i]× with y ∼∞ z and z ∈ z′ C<∞[i]≼. Then

y′, z′ ∈ C[i]×, y′ ∼∞ z′.

Proof. Let δ ∈ I and f ∈ C<∞[i]≼ with y = z(1 + δ) and z = z′f . Then z′ ∈ C[i]×
and y′ = z′(1 + δ) + zδ′ = z′(1 + δ + fδ′) where δ + fδ′ ∈ I, so y′ ∼∞ z′. □

If ℓ ∈ Cn[i] and f ∈ Cn with f ⩾ 0, f ≻ 1, then ℓ ◦ f ∈ Cn[i]. In fact, for n ⩾ 1
and 1 ⩽ k ⩽ n we have a differential polynomial Qnk ∈ Q{X ′} ⊆ Q{X} of order ⩽ n,
isobaric of weight n, and homogeneous of degree k, such that for all such ℓ, f ,

(ℓ ◦ f)(n) = (ℓ(n) ◦ f)Qnn(f) + · · ·+ (ℓ′ ◦ f)Qn1 (f).

For example,

Q1
1 = X ′, Q2

2 = (X ′)2, Q2
1 = X ′′, Q3

3 = (X ′)3, Q3
2 = 3X ′X ′′, Q3

1 = X ′′′.

The following Lemma is only used in the proof of Theorem 5.6.11 below.

Lemma 5.4.11. Let f, g ∈ C<∞ be such that f, g ⩾ 0 and f, g ≻ 1, and set r :=
g − f . Suppose P (f) · Q(r) ≺ 1 for all P,Q ∈ Q{Y } with Q(0) = 0, and let ℓ ∈
C<∞[i] be such that ℓ′ ∈ I. Then ℓ ◦ g − ℓ ◦ f ∈ I.
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Proof. Treating real and imaginary parts separately we arrange ℓ ∈ C<∞. Note
that r ≺ 1. Taylor expansion [ADH, 4.2] for P ∈ Q{X} of order ⩽ n gives

P (g)− P (f) =
∑
|i|⩾1

1

i!
P (i)(f) · ri (i ∈ N1+n),

and thus P (g) − P (f) ≺ 1 and rP (g) ≺ 1. The Mean Value Theorem yields a
germ rn ∈ G such that

ℓ(n) ◦ g − ℓ(n) ◦ f =
(
ℓ(n+1) ◦ (f + rn)

)
· r and |rn| ⩽ |r|.

Now r0 ≺ 1, so ℓ′ ◦ (f + r0) ≺ 1, hence ℓ ◦ g − ℓ ◦ f ≺ 1. For 1 ⩽ k ⩽ n,

(ℓ(k) ◦ g)Qnk (g)− (ℓ(k) ◦ f)Qnk (f) =

(ℓ(k) ◦ f)
(
Qnk (g)−Qnk (f)

)
+
(
ℓ(k+1) ◦ (f + rk)

)
· rQnk (g),

so (ℓ(k) ◦ g)Qnk (g)− (ℓ(k) ◦ f)Qnk (f) ≺ 1, and thus
(
ℓ ◦ g − ℓ ◦ f

)(n) ≺ 1. □

We consider next the differential R-subalgebra

(C<∞)≼ := C<∞[i]≼ ∩ C<∞ ⊆ C≼

of C<∞. In the rest of this subsection H is a Hardy field and y, z ∈ C<∞, y, z ≻ 1.
Note that (C<∞)≼ ∩H = OH and I ∩H = OH . This yields:

Lemma 5.4.12. Suppose y − z ∈ (C<∞)≼ and z is hardian. Then y ∼∞ z.

Proof. From y = z+ f with f ∈ (C<∞)≼ we obtain y = z(1+ fz−1). Now z−1 ∈ I,
so fz−1 ∈ I, and thus y ∼∞ z. □

We now formulate a sufficient condition involving ∼∞ for y to be H-hardian.

Lemma 5.4.13. Suppose z is H-hardian with z ⩾ expn h for all h ∈ H(x) and
all n, and y ∼∞ z. Then y is H-hardian, and there is a unique ordered differential
field isomorphism H⟨y⟩ → H⟨z⟩ which is the identity on H and sends y to z.

Proof. By Lemma 5.4.1 we may replace H by the Hardy subfield Li
(
H(R)

)
of E(H)

to arrange that H ⊇ R is Liouville closed. By Corollary 5.4.7 (with the roles
of y, z reversed) it is enough to show that for each n, y⟨n⟩ is defined, y⟨n⟩ ≻ 1,
and y⟨n⟩ ∼∞ z⟨n⟩. This holds by hypothesis for n = 0. By Lemma 1.3.3, z > H
gives z† > H, so z = z′f with f ≺ 1 in the Hardy field H⟨z⟩, hence f (n) ≺ 1 for
all n. So by Lemma 5.4.10, y⟨1⟩ = y† is defined, y⟨1⟩ ∈ (C<∞)×, y⟨1⟩ ∼∞ z⟨1⟩,
and thus y⟨1⟩ ≻ 1. Assume for a certain n ⩾ 1 that y⟨n⟩ is defined, y⟨n⟩ ≻ 1,
and y⟨n⟩ ∼∞ z⟨n⟩. Then z⟨n⟩ is H-hardian and H < z⟨n⟩ by Lemma 1.3.5. Hence
by the case n = 1 applied to y⟨n⟩, z⟨n⟩ in place of y, z, respectively, y⟨n+1⟩ = (y⟨n⟩)†

is defined, y⟨n+1⟩ ≻ 1, and y⟨n+1⟩ ∼∞ z⟨n+1⟩. □

The next two corollaries are Theorems 13.6 and 13.10, respectively, in [33].

Corollary 5.4.14. Suppose z is transexponential and hardian, and y−z ∈ (C<∞)≼.
Then y is hardian, and there is a unique isomorphism R⟨y⟩ → R⟨z⟩ of ordered
differential fields that is the identity on R and sends y to z.

Proof. Take H := Li(R). Then z lies in a Hardy field extension of H, name-
ly Li

(
R⟨z⟩

)
, and H < z. So y ∼∞ z by Lemma 5.4.12. Now use Lemma 5.4.13. □
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Corollary 5.4.15. If z ∈ E(H)>R, then z ⩽ expn h for some h ∈ H(x) and
some n. (Thus if x ∈ H and expH ⊆ H, then H>R is cofinal in E(H)>R.)

Proof. Towards a contradiction, suppose z ∈ E(H)>R and z > expn h in E(H) for
all h ∈ H(x) and all n. Set y := z + sinx. Then y is H-hardian by Lemmas 5.4.12
and 5.4.13, so y, z lie in a common Hardy field extension of H, a contradiction. □

The same proof shows that Corollary 5.4.15 remains true if H is assumed to be a
C∞-Hardy field and E(H) is replaced by E∞(H); likewise for ω in place of ∞.

Remarks on differential subfields of C<∞[i]. Let K be a subfield of C[i]. Then
the following are equivalent:

(1) The binary relation ≼ on C[i] restricts to a dominance relation on K;
(2) for all f, g ∈ K: f ≼ g or g ≼ f ;
(3) for all f ∈ K: f ≼ 1 or 1 ≼ f .

If K ⊆ H[i] where H is a Hausdorff field, then ≼ restricts to a dominance relation
on K. (See Section 5.1.) Moreover, the following are equivalent:

(1) K = H[i] for some Hausdorff field H;
(2) i ∈ K and f ∈ K for each f ∈ K;
(3) i ∈ K and Re f, Im f ∈ K for each f ∈ K.

Next a lemma similar to Lemma 5.4.13, but obtained using Corollary 5.4.8 instead
of Corollary 5.4.7:

Lemma 5.4.16. Let H be a Hardy field, let z ∈ C<∞ be H-hardian with z ⩾ expn h
for all h ∈ H(x) and all n, and y ∈ C<∞[i] with y ∼∞ z. Then y generates a
differential subfield H⟨y⟩ of C<∞[i], and there is a unique differential field isomor-
phism H⟨y⟩ → H⟨z⟩ which is the identity on H and sends y to z. The binary
relation ≼ on C[i] restricts to a dominance relation on H⟨y⟩ which makes this an
isomorphism of valued differential fields.

We use the above at the end of the next subsection to produce a differential subfield
of C<∞[i] that is not contained in H[i] for any Hardy field H.

Boundedness. Let H ⊆ C. We say that b ∈ C bounds H if h ⩽ b for each h ∈ H.
We call H bounded if some b ∈ C bounds H, and we call H unbounded if H is
not bounded. If H1, H2 ⊆ C and for each h2 ∈ H2 there is an h1 ∈ H1 with h2 ⩽ h1,
then any b ∈ C bounding H1 also bounds H2. Every bounded subset of C is bounded
by a germ in Cω; this follows from [33, Lemma 14.3]:

Lemma 5.4.17. For every b ⩾ 0 in C× there is a ϕ ⩾ 0 in (Cω)× such that ϕ(n) ≺ b
for all n.

Every countable subset of C is bounded, by du Bois-Reymond [30]; see also [87,
Chapter II] or [39, Chapitre V, p. 53, ex. 8]. Thus H ⊆ C is bounded if it is
totally ordered by the partial ordering ⩽ of C and has countable cofinality. If H is
a Hausdorff field and b ∈ C bounds H, then b also bounds the real closure Hrc ⊆ C
of H [ADH, 5.3.2]. In the rest of this subsection H is a Hardy field.

Lemma 5.4.18. Let H∗ be a d-algebraic Hardy field extension of H and suppose H
is bounded. Then H∗ is also bounded.
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Proof. By [ADH, 3.1.11] we have f ∈ H(x)> such that for all g ∈ H(x)× there
are h ∈ H× and q ∈ Q with g ≍ hfq. Hence H(x) is bounded. Replacing H, H∗

by H(x)rc, Li
(
H∗(R)

)
, respectively, we arrange that H is real closed with x ∈ H,

and H∗ ⊇ R is Liouville closed. Let b ∈ C bound H. Then any b∗ ∈ C such
that expn b ⩽ b

∗ for all n bounds H∗, by Lemma 5.4.1. □

Lemma 5.4.19. Suppose that H is bounded and f ∈ C<∞ is hardian over H.
Then H⟨f⟩ is bounded.

Proof. Lemma 5.4.18 gives that Li
(
H(R)

)
is bounded; also, f remains hardian

over Li
(
H(R)

)
. Using this we arrange that H is Liouville closed. The case

that H⟨f⟩ has no element > H is trivial, so assume we have y ∈ H⟨f⟩ with y > H.
Then y is d-transcendental over H and the sequence y, y2, y3, . . . is cofinal in H⟨y⟩,
by Corollary 1.3.8, soH⟨y⟩ is bounded. Now use that f is d-algebraic overH⟨y⟩. □

Theorem 5.4.20 (Boshernitzan [33, Theorem 14.4]). Suppose H is bounded. Then
the perfect hull E(H) of H is d-algebraic over H and hence bounded. If H ⊆ C∞,
then E∞(H) is d-algebraic over H; likewise with ω in place of ∞.

Using the results above the proof is not difficult. It is omitted in [33], but we
include it here for the sake of completeness. First, a lemma:

Lemma 5.4.21. Let b ∈ C× bound H, let ϕ ⩾ 0 in C<∞ satisfy ϕ(n) ≺ b−1 for
all n, and let r ∈ ϕ · (C<∞)≼. Then Q(r) ≺ 1 for all Q ∈ H{Y } with Q(0) = 0.

Proof. From ϕ ∈ I we obtain r ∈ I, so it is enough that hr(n) ≺ 1 for all h ∈ H
and all n. Now use the Product Rule and hϕ(n) ≺ hb−1 ≼ 1 for h ∈ H×. □

Proof of Theorem 5.4.20. Using Lemma 5.4.18, replace H by Li
(
H(R)

)
to arrange

that H ⊇ R is Liouville closed. Let b ∈ C bound H. Then b also bounds E(H),
by Corollary 5.4.15. Lemma 5.4.17 yields ϕ ⩾ 0 in (Cω)× such that ϕ(n) ≺ b−1 for
all n; set r := ϕ · sinx ∈ Cω. Then Q(r) ≺ f for all f ∈ E(H)× and Q ∈ E(H){Z}
with Q(0) = 0, by Lemma 5.4.21.

Suppose towards a contradiction that f ∈ E(H) is d-transcendental over H, and
set g := f + r ∈ C<∞. Then f , g are not in a common Hardy field, so g is not
hardian over H. On the other hand, let P ∈ H{Y }̸=. Then P (f) ∈ E(H)×, and
by Taylor expansion,

P (f + Z) = P (f) +Q(Z) where Q ∈ E(H){Z} with Q(0) = 0,

so P (g) = P (f + r) ∼ P (f). Hence g is hardian over H, a contradiction.
The proof in the case where H ⊆ C∞ is similar, using the version of Corol-

lary 5.4.15 for E∞(H); similarly for ω in place of ∞. □

As to the existence of transexponential hardian germs, we have:

Theorem 5.4.22. For every b ∈ C there is a Cω-hardian germ y ⩾ b.

This is Boshernitzan [34, Theorem 1.2], and leads to [34, Theorem 1.1]:

Corollary 5.4.23. No maximal Hardy field is bounded.

Proof. Suppose x ∈ H, and b ∈ C bounds H. Take some b∗ ∈ C such that b∗ ⩾
expn b for each n. Now Theorem 5.4.22 yields a Cω-hardian germ y ⩾ b∗. By
Corollary 5.4.6, y is H-hardian, so H⟨y⟩ is a proper Hardy field extension of H. □
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The same proof shows also that no C∞-maximal Hardy field and no Cω-maximal
Hardy field is bounded. In particular (Boshernitzan [34, Theorem 1.3]):

Corollary 5.4.24. Every maximal Hardy field contains a transexponential germ.
Likewise with “C∞-maximal” or “Cω-maximal” in place of “maximal”.

Remark. For C∞-Hardy fields, some of the above is in Sjödin’s [190], predating [33,
34]: if H is a bounded C∞-Hardy field, then so is Li

(
H(R)

)
[190, Theorem 2];

no maximal C∞-Hardy field is bounded [190, Theorem 6]; and E := E∞(Q) is
bounded [190, Theorem 10] with E ◦ E>R ⊆ E [190, Theorem 11].

We can now produce a differential subfield K of Cω[i] containing i such that ≼
restricts to a dominance relation on K making K a d-valued field of H-type with
constant field C, yet K ̸⊆ H[i] for every Hardy field H:

Take a transexponential Cω-hardian germ z, and h ∈ R(x) with 0 ̸= h ≺ 1.
Then ε := h exi ∈ I, so y := z(1 + ε) ∈ Cω[i] with y ∼∞ z. Lemma 5.4.16 applied
with H = R shows that y generates a differential subfield K0 := R⟨y⟩ of Cω[i],
and ≼ restricts to a dominance relation on K0 making K0 a d-valued field of H-
type with constant field R. Then K := K0[i] is a differential subfield of Cω[i] with
constant field C. Moreover, ≼ also restricts to a dominance relation on K, and this
dominance relation makes K a d-valued field of H-type [ADH, 10.5.15]. We cannot
have K ⊆ H[i] where H is a Hardy field, since Im y = zh sinx /∈ H.

Lower bounds on d-algebraic hardian germs. In this subsection H is a Hardy
field. Let f ∈ C and f ≻ 1, f ⩾ 0. Then the germ log f ∈ C also satisfies log f ≻ 1,
log f ⩾ 0. So we may inductively define the germs logn f in C by log0 f := f ,
logn+1 f := log logn f . Lemma 5.4.1 gives exponential upper bounds on d-algebraic
H-hardian germs. The next result leads to logarithmic lower bounds on such germs
when H is grounded.

Theorem 5.4.25 (Rosenlicht [170, Theorem 3]). Suppose H is grounded, and let E
be a Hardy field extension of H such that |ΨE \ΨH | ⩽ n (so E is also grounded).
Then there are r, s ∈ N with r + s ⩽ n such that

(i) for any h ∈ H> with h ≻ 1 and maxΨH = v(h†), there exists g ∈ E> such
that g ≍ logr h and maxΨE = v(g†);

(ii) for any g ∈ E there exists h ∈ H such that g < exps h.

This theorem is most useful in combination with the following lemma, which is [170,
Proposition 5] (and also [7, Lemma 2.1] in the context of pre-H-fields).

Lemma 5.4.26. Let E be a Hardy field extension of H such that trdeg(E|H) ⩽ n.
Then |ΨE \ΨH | ⩽ n.

From [ADH, 9.1.11] we recall that for f, g ≻ 1 in a Hardy field we have f† ≼ g†

iff |f | ⩽ |g|n for some n ⩾ 1. (See also the discussion before Lemma 1.2.27.) Thus
by Lemma 5.4.26 and Theorem 5.4.25:

Corollary 5.4.27. Let E be a Hardy field extension of H with trdeg(E|H) ⩽ n,
and let h ∈ H> be such that h ≻ 1 and maxΨH = v(h†). Then E is grounded,
and for all g ∈ E with g ≻ 1 there is an m ⩾ 1 such that logn h ≼ gm (and
hence logn+1 h ≺ g for all g ∈ E with g ≻ 1).

Applying Corollary 5.4.27 to H = R(x), h = x yields:
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Corollary 5.4.28 (Boshernitzan [33, Proposition 14.11]). If y ∈ C is hardian and
d-algebraic over R, then the Hardy field E = R(x)⟨y⟩ is grounded, and there is an n
such that logn x ≺ g for all g ∈ E with g ≻ 1.

5.5. Second-Order Linear Differential Equations over Hardy Fields

In this section we review Boshernitzan’s work [33, §16] on adjoining non-oscillating
solutions of second-order linear differential equations to Hardy fields, deduce some
consequences about complex exponentials over Hardy fields used later, and prove
a conjecture from [33, §17]. Throughout this section H is a Hardy field.

Oscillation over Hardy fields. In this subsection we assume f ∈ H and consider
the linear differential equation

(4L) 4Y ′′ + fY = 0

over H. The factor 4 is to simplify certain expressions, in conformity with [ADH,
5.2]. In [ADH, 5.2] we defined for any differential field K functions ω : K → K
and σ : K× → K. We define likewise

ω : C1[i] → C0[i], σ : C2[i]× → C0[i]

by
ω(z) = −2z′ − z2 and σ(y) = ω(z) + y2 for z := −y†.

Note that ω(C1) ⊆ C0 and σ
(
(C2)×

)
⊆ C0, and σ(y) = ω(z + yi) for z := −y†.

To clarify the role of ω and σ in connection with second-order linear differen-
tial equations, suppose y ∈ C2 is a non-oscillating solution to (4L) with y ̸= 0.
Then z := 2y† ∈ C1 satisfies −2z′ − z2 = f , so z generates a Hardy field H(z)
with ω(z) = f , by Proposition 5.3.3, which in turn yields a Hardy field H(z, y)
with 2y† = z. Thus y1 := y lies in a Hardy field extension ofH. From Lemma 5.2.15
and Proposition 5.3.2(iv) we also obtain a solution y2 to (4L) in a Hardy field exten-
sion of H⟨y1⟩ = H(y, z) such that y1, y2 are R-linearly independent; see also [171,
Theorem 2, Corollary 2]. This shows:

Proposition 5.5.1. If f/4 does not generate oscillations, then D(H) contains R-
linearly independent solutions y1, y2 to (4L).

Indeed, if f/4 does not generate oscillations, then D(H) contains solutions y1, y2
to (4L) with y1, y2 > 0 and y1 ≺ y2. Here y1 is determined up to multiplication by a
factor in R>; we call such y1 a principal solution to (4L). (Lemmas 5.2.28, 5.2.29.)
See Section 1.4 for the subsets Γ(H), Λ(H) of H.

Lemma 5.5.2. Suppose H is d-perfect and f/4 does not generate oscillations, and
let y ∈ H be a principal solution to (4L). Then z := 2y† is the unique solution of
the equation ω(z) = f in Λ(H).

Proof. We already know ω(z) = f . The restriction of ω to Λ(H) is strictly increas-
ing [ADH, 11.8.20], so it remains to show that z ∈ Λ(H). Let h ∈ H, h′ = 1/y2.
Then h ≻ 1 by Corollary 5.2.27, hence 1/y2 ∈ Γ(H), so z = −(1/y2)† ∈ Λ(H). □

By [ADH, p. 259], with A = 4∂
2 + f ∈ H[∂] we have

4y′′ + fy = 0 for some y ∈ H× ⇒ A splits over H ⇐⇒ f ∈ ω(H).

To simplify the discussion we now also introduce the subset

ω(H) :=
{
f ∈ H : f/4 does not generate oscillations

}
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of H. If E is a Hardy field extension of H, then ω(E) ∩ H = ω(H). By Corol-
lary 5.2.24, ω(H) is downward closed, and ω(H) ⊆ ω(H) by the discussion follow-
ing (R) in Section 5.2.

Corollary 5.5.3. If H is d-perfect, then

ω(H) = ω(H) =
{
f ∈ H : 4y′′ + fy = 0 for some y ∈ H×},

and ω(H) is downward closed in H.

If H is d-perfect, then H† = H by Proposition 5.3.2. The remarks after (R) show
that a part of Corollary 5.5.3 holds under this weaker condition:

Corollary 5.5.4. If H† = H, then

ω(H) =
{
f ∈ H : 4y′′ + fy = 0 for some y ∈ H×}.

Lemma 5.2.14 and Proposition 5.5.1 also yield:

Corollary 5.5.5. If f ∈ ω(H), then each y ∈ C2 such that 4y′′+fy ∈ H is in D(H).

For use in the proof of Corollary 5.5.32 we record the following property of ω(H):

Lemma 5.5.6. Γ(H) ∩ ω(H) = ∅.

Proof. We arrange thatH is d-perfect. HenceH ⊇ R is Liouville closed and ω(H) =
ω(H) by Corollary 5.5.3. From x−1 = x† ∈ Γ(H) and σ(x−1) = 2x−2 ≍ (x−1)′ ≺ ℓ†

for all ℓ ≻ 1 in H we obtain Γ(H) ⊆ σ
(
Γ(H)

)↑, so Γ(H) ∩ ω(H) = ∅ by [ADH,
remark before 11.8.29]. □

Next some consequences of Proposition 5.5.1 for more general linear differential
equations of order 2: Let g, h ∈ H, and consider the linear differential equation

(L̃) Y ′′ + gY ′ + hY = 0

over H. An easy induction on n shows that for a solution y ∈ C2 of (L̃) we

have y ∈ Cn with y(n) ∈ Hy + Hy′ for all n, so y ∈ C<∞. To reduce (L̃) to an
equation (4L) we take f := ω(g) + 4h = −2g′ − g2 + 4h ∈ H, take a ∈ R, and take
a representative of g in C1

a, also denoted by g, and let G ∈ (C2)× be the germ of

t 7→ exp

(
−1

2

∫ t

a

g(s) ds

)
(t ⩾ a).

This gives an isomorphism y 7→ Gy from the R-linear space of solutions of (4L)

in C2 onto the R-linear space of solutions of (L̃) in C2, and y ∈ C2 oscillates iff Gy

oscillates. By Proposition 5.3.2, G ∈ D(H). Using f
4 = − 1

2g
′ − 1

4g
2 + h we now

obtain the following germ version of Corollary 5.2.25:

Corollary 5.5.7. The following are equivalent:

(i) some solution in C2 of (L̃) oscillates;

(ii) all nonzero solutions in C2 of (L̃) oscillate;
(iii) − 1

2g
′ − 1

4g
2 + h generates oscillations.

Moreover, if − 1
2g

′− 1
4g

2+h does not generate oscillations, then all solutions of (L̃)

in C2 belong to D(H).

Set A := ∂
2 + g∂ + h, and let f = ω(g) + 4h, G be as above. Then A⋉G = ∂

2 + f
4 .

Thus by combining Corollary 5.5.5 and Corollary 5.5.7 we obtain:
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Corollary 5.5.8. If (L̃) has no oscillating solution in C2, and y ∈ C2 is such
that y′′ + gy′ + hy ∈ H, then y ∈ D(H).

The next corollary follows from Proposition 5.5.1 and [ADH, 5.1.21]:

Corollary 5.5.9. The following are equivalent, for A ∈ H[∂] and f as above:

(i) f/4 does not generate oscillations;
(ii) A splits over some Hardy field extension of H;
(iii) A splits over D(H).

For A ∈ H[∂] and f as before we have A⋉G = ∂
2 + f

4 and G† = − 1
2g ∈ H, so:

Corollary 5.5.10. A splits over H[i] ⇐⇒ ∂
2 + f

4 splits over H[i].

Proposition 5.5.1 and its corollaries 5.5.5–5.5.8 are from [33, Theorems 16.17, 16.18,
16.19], and Corollary 5.5.3 is essentially [33, Lemma 17.1].

Proposition 5.5.1 applies only when (4L) has a solution in (C2)×. Such a solution
might not exist, but (4L) does have R-linearly independent solutions y1, y2 ∈ C2,
so w := y1y

′
2 − y′1y2 ∈ R×. Set y := y1 + y2i. Then 4y′′ + fy = 0 and y ∈ C2[i]×,

and for z = 2y† ∈ C1[i] we have −2z′ − z2 = f . Now

z =
2y′1 + 2iy′2
y1 + iy2

=
2y′1y1 + 2y′2y2 − 2i(y′1y2 − y1y

′
2)

y21 + y22
=

2(y′1y1 + y′2y2) + 2iw

y21 + y22
,

so Re z =
2(y′1y1 + y′2y2)

y21 + y22
∈ C1, Im z =

2w

y21 + y22
∈ C2.

Thus Im z ∈ (C2)× and (Im z)† = −Re z, and so

σ(Im z) = ω
(
−(Im z)† + (Im z)i

)
= ω(z) = f in C1.

Replacing y1 by −y1 changes w to −w; this way we can arrange w > 0, so Im z > 0.

Conversely, every u ∈ (C2)× such that u > 0 and σ(u) = f arises in this way. To
see this, suppose we are given such u, take ϕ ∈ C3 with ϕ′ = 1

2u, and set

y1 :=
1√
u
cosϕ, y2 :=

1√
u
sinϕ (elements of C2).

Then wr(y1, y2) = 1/2, and y1, y2 solve (4L). To see the latter, consider

y := y1 + y2i =
1√
u
eϕi ∈ C2[i]×

and note that z := 2y† satisfies

ω(z) = ω(−u† + ui) = σ(u) = f,

hence 4y′′ + fy = 0. The computation above shows Im z = 1/(y21 + y22) = u. We
have ϕ′ > 0, so either ϕ > R or ϕ − c ≺ 1 for some c ∈ R, with ϕ > R iff f/4
generates oscillations. As to uniqueness of the above pair (y1, y2), we have:

Lemma 5.5.11. Suppose f /∈ ω(H). Let ỹ1, ỹ2 ∈ C2 be R-linearly independent
solutions of (4L) with wr(ỹ1, ỹ2) = 1/2. Set ỹ := ỹ1 + ỹ2i, z̃ := 2ỹ†. Then

Im z̃ = u ⇐⇒ ỹ = eθi y for some θ ∈ R.
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Proof. If ỹ = eθi y (θ ∈ R), then clearly z̃ = 2ỹ† = 2y† = z, hence Im z = Im z̃.
For the converse, let A be the invertible 2× 2 matrix with real entries and Ay = ỹ;
here y = (y1, y2)

t and ỹ = (ỹ1, ỹ2)
t, column vectors with entries in C2. As in the

proof of [ADH, 4.1.18], wr(y1, y2) = wr(ỹ1, ỹ2) yields detA = 1.
Suppose Im z̃ = u, so y21 + y

2
2 = ỹ21 + ỹ

2
2 . Choose a ∈ R and representatives for u,

y1, y2, ỹ1, ỹ2 in Ca, denoted by the same symbols, such that in Ca we have Ay = ỹ
and y21 + y22 = ỹ21 + ỹ22 , and u(t) ·

(
y1(t)

2 + y2(t)
2
)
= 1 for all t ⩾ a. With ∥ · ∥ the

usual euclidean norm on R2, we then have ∥Ay(t)∥ = ∥y(t)∥ = 1/
√
u(t) for t ⩾ a.

Since f/4 generates oscillations, we have ϕ > R, and we conclude that ∥Av∥ = 1 for
all v ∈ R2 with ∥v∥ = 1. It is well-known that then A =

(
cos θ − sin θ
sin θ cos θ

)
with θ ∈ R

(see, e.g., [122, Chapter XV, Exercise 2]), so ỹ = eθi y. □

The observations above will be used in the proofs of Theorems 5.6.2 and 7.5.32
below. We finish with miscellaneous historical remarks (not used later):

Remarks. The connection between the second-order linear differential equation (4L)
and the third-order non-linear differential equation σ(y) = f was first investigated
by Kummer [119] in 1834. Appell [3] noted that the linear differential equation

Y ′′′ + fY ′ + (f ′/2)Y = 0

has R-linearly independent solutions y21 , y1y2, y
2
2 ∈ C<∞, though some cases were

known earlier [49, 131]; in particular, 1/u = y21 + y22 is a solution. See also
Lemma 2.4.23. Hartman [90, 93] investigates monotonicity properties of y21 + y22 .
Steen [197] in 1874, and independently Pinney [153], remarked that r := 1/

√
u =√

y21 + y22 ∈ C<∞ satisfies 4r′′ + fr = 1/r3. (See also [163].)

Complex exponentials over Hardy fields. We now use some of the above to
prove an extension theorem for Hardy fields (cf. [33, Lemma 11.6(6)]):

Proposition 5.5.12. If ϕ ∈ H and ϕ ≼ 1, then cosϕ, sinϕ ∈ D(H).

Proof. Replacing H by D(H) we arrange D(H) = H. Then by Proposition 5.3.2,
H ⊇ R is a Liouville closed H-field, and by Corollary 5.5.3, ω(H) is downward
closed. Hence by Lemma 1.2.20, H is trigonometrically closed. Let now ϕ ∈ H
and ϕ ≼ 1. Then (eϕi)† = ϕ′i ∈ K†, so cosϕ + i sinϕ = eϕi ∈ K using K ⊇ C.
Thus cosϕ, sinϕ ∈ H. □

Corollary 5.5.13. Let ϕ ∈ H and ϕ ≼ 1. Then cosϕ, sinϕ generate a d-algebraic
Hardy field extension E := H(cosϕ, sinϕ) of H. If H is a C∞-Hardy field, then so
is E, and likewise with Cω in place of C∞.

Recall that for ϕ, θ ∈ R we have

cos(ϕ+ θ) = cos(ϕ) cos(θ)− sin(ϕ) sin(θ),

cos(ϕ− θ) = cos(ϕ) cos(θ) + sin(ϕ) sin(θ).

Recall also the bijection arccos : [−1, 1] → [0, π], the inverse of the cosine function
on [0, π]. It follows that for any a, b ∈ R we have d ∈ R such that

a cos(ϕ) + b sin(ϕ) =
√
a2 + b2 · cos(ϕ+ d) for all ϕ ∈ R:

for a, b not both 0 this holds with d = arccos
(
a/

√
a2 + b2

)
when b ⩽ 0, and with d =

− arccos
(
a/

√
a2 + b2

)
when b ⩾ 0. For later use we record some consequences:
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Lemma 5.5.14 (Addition of sinusoids). Let y ∈ C. Then

y = a cosx+ b sinx for some a, b ∈ R ⇐⇒ y = c cos(x+ d) for some c, d ∈ R.

Corollary 5.5.15. Let ϕ ∈ C. Then R cosϕ+ R sinϕ =
{
c cos(ϕ+ d) : c, d ∈ R

}
.

Corollary 5.5.16. Suppose H ⊇ R is real closed and closed under integration, and
let g, h ∈ H. Then there is u ∈ H such that −π ⩽ u ⩽ π and g cosϕ + h sinϕ =√
g2 + h2 ·cos(ϕ+u) for all ϕ ∈ C: if h < 0 this holds for u = arccos

(
g/
√
g2 + h2

)
,

and if h > 0 it holds for u = − arccos
(
g/
√
g2 + h2

)
.

Proof. On the interval (−1, 1) the function arccos is real analytic with deriva-

tive t 7→ −1/
√
1− t2. Thus arccos

(
g/
√
g2 + h2

)
∈ H for h ̸= 0. □

Corollary 5.5.17. Let a ∈ R and let g, ϕ ∈ C1
a have germs in H such that g(t) ̸= 0

eventually, and ϕ(t) → +∞ as t→ +∞. Then there is a real b ⩾ a with the property
that if s0, s1 ∈ [b,+∞) with s0 < s1 are any successive zeros of y := g cosϕ, then y′

has exactly one zero in the interval (s0, s1).

Proof. By increasing a we arrange g(t) ̸= 0 and ϕ′(t) > 0 for all t ⩾ a. Replacing g
by −g if necessary we further arrange g(t) > 0 for all t ⩾ a. Let s0, s1 ∈ [a,+∞)
with s0 < s1 be successive zeros of y. Later we impose a suitable lower bound b ⩾ a
on s0. Then ϕ(s1) = ϕ(s0) + π, since s1 is the next zero of cosϕ after s0. Also

y′ = g′ cosϕ− gϕ′ sinϕ =
√
g′2 + (gϕ′)2 cos(ϕ+ u), where

u = arccos
(
g′/
√
g′2 + (gϕ′)2

)
, so 0 < u(t) < π for all t ⩾ a.

By Rolle, y′ has a zero in (s0, s1). Let t ∈ (s0, s1) be a zero of y′. Then

ϕ(s0) < ϕ(t) < ϕ(s0) + π, ϕ(t) + u(t) ∈ ϕ(s0) + Zπ,
so ϕ(t)+u(t) = ϕ(s0)+π. Take b ⩾ a in R so large that u is differentiable on [b,+∞)
and ϕ′(t) + u′(t) > 0 for all t ⩾ b; this is possible because u ≼ 1 is H-hardian by
Corollary 5.5.16, and ϕ(t) + u(t) → +∞ as t → +∞. Assuming now that b ⩽ s0,
we conclude that t ∈ (s0, s1) is uniquely determined by ϕ(t)+u(t) = ϕ(s0)+π. □

The H-asymptotic field extension K := H[i] of H is a differential subring of C<∞[i].
To handle ultimate dents in H in Section 4.4, we sometimes assumed I(K) ⊆ K†,
a condition that we consider more closely in the next proposition:

Proposition 5.5.18. Suppose H ⊇ R is closed under integration. Then the fol-
lowing conditions are equivalent:

(i) I(K) ⊆ K†;
(ii) ef ∈ K for all f ∈ K with f ≺ 1;
(iii) eϕ, cosϕ, sinϕ ∈ H for all ϕ ∈ H with ϕ ≺ 1.

Proof. Assume (i), and let f ∈ K, f ≺ 1. Then f ′ ∈ I(K), so we have g ∈ K×

with f ′ = g† and thus ef = cg for some c ∈ C×. Therefore ef ∈ K. This
shows (i) ⇒ (ii), and (ii) ⇒ (iii) is clear. Assume (iii), and let f ∈ I(K). Then f =
g + hi, g, h ∈ I(H). Taking ϕ, θ ≺ 1 in H with ϕ′ = g and θ′ = h,

exp(ϕ+ θi) = exp(ϕ)
(
cos(θ) + sin(θ)i

)
∈ H[i] = K

has the property that f =
(
exp(ϕ+ θi)

)† ∈ K†. This shows (iii) ⇒ (i). □

From Propositions 5.5.12 and 5.5.18 we obtain:
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Corollary 5.5.19. If H is d-perfect, then I(K) ⊆ K†.

Next we consider “polar coordinates” of nonzero elements of K:

Lemma 5.5.20. Let f ∈ C[i]×. Then |f | ∈ C×, and there exists ϕ ∈ C with f =
|f | eϕi; such ϕ is unique up to addition of an element of 2πZ. If also f ∈ Cr[i]×,
r ∈ N ∪ {∞, ω}, then |f | ∈ Cr and ϕ ∈ Cr for such ϕ.

Proof. The claims about |f | are clearly true. To show existence of ϕ we may
replace f by f/|f | to arrange |f | = 1. Take a ∈ R and a representative of f in Ca[i],
also denoted by f , such that |f(t)| = 1 for all t ⩾ a. The proof of [57, (9.8.1)] shows
that for b ∈ (a,+∞) and ϕa ∈ R with f(a) = eϕai there is a unique continuous
function ϕ : [a, b] → R such that ϕ(a) = ϕa and f(t) = eϕ(t)i for all t ∈ [a, b], and if
also f |[a,b] is of class C1, then so is this ϕ with iϕ′(t) = f ′(t)/f(t) for all t ∈ [a, b].
With b→ +∞ this yields the desired result. □

Lemma 5.5.21. Suppose H ⊇ R is Liouville closed and f ∈ C1[i]×. Then f† ∈ K
iff |f | ∈ H> and f = |f | eϕi for some ϕ ∈ H. If in addition f ∈ K×, then f = |f | eϕi
for some ϕ ≼ 1 in H.

Proof. Take ϕ ∈ C as in Lemma 5.5.20. Then ϕ ∈ C1 and Re f† = |f |†, Im f† = ϕ′.
If f ∈ K×, then the remarks preceding Lemma 1.2.16 give ϕ′ ∈ I(H), so ϕ ≼ 1. □

Corollary 5.5.22. Suppose H ⊇ R is Liouville closed with I(K) ⊆ K†. Let L be
a differential subfield of C<∞[i] containing K. Then L† ∩K = K†.

Proof. Let f ∈ L× satisfy f† ∈ K. Then f = |f | eϕi with |f | ∈ H> and ϕ ∈ H,
by Lemma 5.5.21. Hence eϕi, e−ϕi ∈ L and so cosϕ = 1

2 (e
ϕi +e−ϕi) ∈ L. In

particular, cosϕ does not oscillate, so ϕ ≼ 1 and thus f = |f |(cosϕ + i sinϕ) ∈ K
by Proposition 5.5.18. □

Corollary 5.5.23. Let ϕ ∈ H, and suppose eϕi ∼ f with f ∈ E[i]× for some Hardy
field extension E of H. Then ϕ ≼ 1.

Proof. We can assume that E = H is Liouville closed and contains R. Towards a
contradiction assume ϕ ≻ 1. Lemma 5.5.21 yields θ ≼ 1 in H such that f = |f | eθi.
Then e(ϕ−θ)i ∼ |f | and ϕ − θ ∼ ϕ. Thus replacing f , ϕ by |f |, ϕ − θ, respectively,
we arrange f ∈ H×. Then eϕi = cosϕ + i sinϕ ∼ f in C<∞[i] gives cosϕ ∼ f ,
contradicting that cosϕ has arbitrarily large zeros. □

Corollary 5.5.24. Let f ∈ K×, ϕ ∈ H, so y := f eϕi ∈ C<∞[i]×. Then the
following are equivalent:

(i) ϕ ≼ 1;
(ii) y ∈ D(H)[i];
(iii) y ∈ E[i] for some Hardy field extension E of H;
(iv) y ∼ g for some Hardy field extension E of H and g ∈ E[i]×.

Proof. Use Proposition 5.5.18 and Corollaries 5.5.19 and 5.5.23 to obtain the chain
of implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). □

Finally, some observations about solutions to linear differential equations involving
trigonometric functions.

Lemma 5.5.25. Let A ∈ K[∂]̸= and ϕ ∈ H. Then A(K eϕi) ⊆ K eϕi. Moreover,
if K is r-linearly surjective with r := orderA, or K is 1-linearly surjective and A
splits over K, then A(K eϕi) = K eϕi.
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Proof. The differential operator B := A⋉eϕi = e−ϕi A eϕi ∈ (C<∞[i])[∂] of order r
has coefficients in K. This follows from extending [ADH, 5.8.8] by allowing the
element h there (which is eϕi here) to be a unit in a differential ring extension of K
instead of a nonzero element in a differential field extension ofK; the proof of [ADH,
5.8.8] goes through, mutatis mutandis, to give this extension. Thus if y ∈ K,
then A(y eϕi) = B(y) eϕi. Also, if A splits over K, then so does B. Hence if K
is r-linearly surjective, or K is 1-linearly surjective and A splits over K, then for
each b ∈ K we obtain y ∈ K with B(y) = b, and so A(y eϕi) = b eϕi. □

Lemma 5.5.26. Let A ∈ H[∂] ̸=, and suppose K is r-linearly surjective with r :=
orderA, or K is 1-linearly surjective and A splits over K. Let also h, ϕ ∈ H. Then
there are f, g ∈ H such that A(f cosϕ+ g sinϕ) = h cosϕ.

Proof. Lemma 5.5.25 gives y ∈ K such that

A(y eϕi) = h eϕi = (h cosϕ) + (h sinϕ)i.

Take f, g ∈ H with y = f − gi. Then

y eϕi = (f cosϕ+ g sinϕ) + (−g cosϕ+ f sinϕ)i

and hence A(f cosϕ+ g sinϕ) = h cosϕ. □

Lemma 5.5.27. Let f, g ∈ K, ϕ ∈ H, ϕ ≻ 1, and f cosϕ + g sinϕ ∈ C ⊆ C[i].
Then f = g = 0.

Proof. Take c ∈ C such that f cosϕ + g sinϕ = c. Since ϕ ∈ H and ϕ ≻ 1, there
are arbitrarily large t with ϕ(t) ∈ 2Zπ, so f(t) = c, and thus f = c. There are
also arbitrarily large t with ϕ(t) ∈ (2Z + 1)π, and this gives likewise −f = c,
so f = c = 0. Hence g sinϕ = 0, which easily gives g = 0. □

Combining Lemmas 5.5.26 and 5.5.27 gives:

Corollary 5.5.28. If K is 1-linearly surjective, and h, ϕ ∈ H, ϕ ≻ 1, then there
are unique f, g ∈ H such that (f cosϕ+ g sinϕ)′ = h cosϕ.

Behavior of σ and ω under composition. In this subsection we fix ℓ ∈ C1

with ℓ > R and ϕ := ℓ′ ∈ H, so ϕ > 0. We use the superscript ◦ as in the subsection
on compositional conjugation in Hardy fields of Section 5.3. We refer to [ADH, 11.8]
(or Section 1.4) for the definition of the subsets Γ(H), Λ(H), and ∆(H) of H. The
bijection

y 7→ (y/ϕ)◦ : H → H◦

restricts to bijections I(H) → I(H◦) and Γ(H) → Γ(H◦), and the bijection

z 7→
(
(z + ϕ†)/ϕ

)◦ : H → H◦

restricts to bijections Λ(H) → Λ(H◦) and ∆(H) → ∆(H◦). (See the transformation
formulas in [ADH, p. 520].) Consider the bijection

f 7→ Φ(f) :=
((
f − ω(−ϕ†)

)
/ϕ2
)◦ : H → H◦.

Then for y ∈ H×, z ∈ H we have

σ
(
(y/ϕ)◦

)
= Φ

(
σ(y)

)
, ω

((
(z + ϕ†)/ϕ

)◦) = Φ
(
ω(z)

)
.

(See the formulas in [ADH, pp. 518–519].) Hence Φ restricts to bijections

σ(H×) → σ
(
(H◦)×

)
, σ

(
I(H )̸=

)
→ σ

(
I(H◦)̸=

)
, σ

(
Γ(H)

)
→ σ

(
Γ(H◦)

)
,
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and

ω(H) → ω(H◦), ω
(
Λ(H)

)
→ ω

(
Λ(H◦)

)
, ω

(
∆(H)

)
→ ω

(
∆(H◦)

)
.

An example of compositional conjugation. Which “changes of variable” pre-
serve the general form of the linear differential equation (4L)? The next lemma
and Corollary 5.5.30 below give an answer.

Lemma 5.5.29. Let K be a differential field, f ∈ K, and P (Y ) := 4Y ′′ + fY .
Then for g ∈ K× and ϕ := g−2 we have

g3Pϕ×g(Y ) = 4Y ′′ + g3P (g)Y.

Proof. Let g, ϕ ∈ K×. Then

P×g(Y ) = 4gY ′′ + 8g′Y ′ + (4g′′ + fg)Y = 4gY ′′ + 8g′Y ′ + P (g)Y, so

Pϕ×g(Y ) = 4g(ϕ2Y ′′ + ϕ′Y ′) + 8g′ϕY ′ + P (g)Y

= 4gϕ2Y ′′ + (4gϕ′ + 8g′ϕ)Y ′ + P (g)Y.

Now 4gϕ′+8g′ϕ = 0 is equivalent to ϕ† = −2g†, which holds for ϕ = g−2. For this ϕ

we get Pϕ×g(Y ) = g−3
(
4Y ′′ + g3P (g)Y

)
, that is, g3Pϕ×g(Y ) = 4Y ′′ + g3P (g)Y . □

Now let ℓ ∈ C1 be such that ℓ > R and ϕ := ℓ′ ∈ H, and let P := 4Y ′′ + fY
where f ∈ H. Note that if y ∈ C2[i] and 4y′′ + fy = 0, then y ∈ C<∞[i]. Towards
using Lemma 5.5.29, suppose ϕ = g−2, g ∈ H×. Using notation from the previous
subsection we set h := (g3P (g))◦ ∈ H◦ to obtain the following reduction of solving
the differential equation (4L) to solving a similar equation over H◦:

Corollary 5.5.30. Let y ∈ C2[i]. Then z := (y/g)◦ ∈ C2[i], and

4y′′ + fy = 0 ⇐⇒ 4z′′ + hz = 0.

In particular, f/4 generates oscillations iff h/4 does. In connection with the for-
mulas in the previous subsection, note that

g3P (g) = g3(4g′′ + fg) =
(
f − ω(−ϕ†)

)
/ϕ2,

so h = Φ(f).

Lemma 5.5.31. The increasing bijection

f 7→ Φ(f) =
((
f − ω(−ϕ†)

)
/ϕ2
)◦ : H → H◦

maps ω(H) onto ω(H◦).

Proof. First replace H by its real closure to arrange that H is real closed, then
take g ∈ H× with g−2 = ϕ, and use the remarks following Corollary 5.5.30. □

We use the above to prove the Fite-Leighton-Wintner oscillation criterion for self-
adjoint second-order linear differential equations overH [69, 126, 211]. (See also [99,
§2] and [198, p. 45].) Let A ∈ H[∂] be self-adjoint of order 2. Then A = f∂

2+f ′∂+g
where f, g ∈ H, f ̸= 0, by the example following Lemma 2.4.19. For h ∈ C, let

∫
h

denote a germ in C1 with (
∫
h)′ = h.

Corollary 5.5.32. Suppose
∫
f−1 > R and

∫
g > R. Then A(y) = 0 for some

oscillating y ∈ C<∞.
266



Proof. We arrange that H ⊇ R is Liouville closed. Then f−1, g ∈ Γ(H) by [ADH,
11.8.19]. Note that ϕ := f−1 is active in H. Put B := 4ϕA⋉ϕ1/2 , so B = 4∂

2 + h

with h := ω(−ϕ†) + 4gϕ. Then A(y) = 0 for some oscillating y ∈ C<∞ iff B(z) = 0
for some oscillating z ∈ C<∞ iff h /∈ ω(H), by Corollary 5.5.7. The latter is
equivalent to (4g/ϕ)◦ /∈ ω(H◦), by Lemma 5.5.31 applied to h in place of f .
Now Γ(H◦) ∩ ω(H◦) = ∅ by Lemma 5.5.6, so it remains to note that 4g ∈ Γ(H)
yields (4g/ϕ)◦ ∈ Γ(H◦), by remarks in the previous subsection. □

More about ω(H) (∗). For later use (in particular, in Section 7.5) we study here
the downward closed subset ω(H) of H in more detail. Recall that ω(H) ⊆ ω(H),
with equality for d-perfect H. (Corollary 5.5.3.) In [ADH, 16.3] we introduced the
concept of a ΛΩ-cut in a pre-H-field; every pre-H-field has exactly one or exactly
two ΛΩ-cuts [ADH, remark before 16.3.19]. By [ADH, 16.3.14, 16.3.16]:

Lemma 5.5.33. Suppose H is d-perfect. Then
(
I(H),Λ(H), ω(H)

)
is a ΛΩ-cut

in H, and this is the unique ΛΩ-cut in H iff H is ω-free.

Thus in general, (
I
(
D(H)

)
∩H, Λ

(
D(H)

)
∩H, ω(H)

)
is a ΛΩ-cut in H, and hence (see [ADH, p. 692]):

ω(H)↓ ⊆ ω(H) ⊆ H \ σ
(
Γ(H)

)↑.
The classification of ΛΩ-cuts in H from [ADH, 16.3] can be used to narrow down
the possibilities for ω(H):

Lemma 5.5.34. Let ϕ ∈ H> be such that vϕ /∈ (Γ̸=
H)′. Then

ω(H) = ω(−ϕ†) + ϕ2O↓
H or ω(H) = ω(−ϕ†) + ϕ2O↓

H .

The first alternative holds if H is grounded, and the second alternative holds if vϕ
is a gap in H with ϕ ≍ b′ for some b ≍ 1 in H.

Proof. Either vϕ = maxΨH or vϕ is a gap in H, by [ADH, 9.2]. The remark before
the lemma yields an ΛΩ-cut (I,Λ,Ω) in H where Ω = ω(H). Now use the proofs
of [ADH, 16.3.11, 16.3.12, 16.3.13] together with the transformation formulas [ADH,
(16.3.1)] for ΛΩ-cuts. □

By [ADH, 16.3.15] we have:

Lemma 5.5.35. If H has asymptotic integration and the set 2ΨH does not have a
supremum in ΓH , then

ω(H) = ω
(
Λ(H)

)↓ = ω(H)↓ or ω(H) = H \ σ
(
Γ(H)

)↑.
Corollary 5.5.36. Suppose H is ω-free. Then

ω(H) = ω
(
Λ(H)

)↓ = ω(H)↓ = H \ σ
(
Γ(H)

)↑.
Proof. By [ADH, 11.8.30] we have ω

(
Λ(H)

)↓ = ω(H)↓ = H \ σ
(
Γ(H)

)↑. It follows
from [ADH, 9.2.19] that 2ΨH has no supremum in ΓH . Now use Lemma 5.5.35. □

In the next lemma L ⊇ R is a Liouville closed d-algebraic Hardy field extension
of H such that ω(L) = ω(L). (By Corollary 5.5.3, this holds for L = D(H).) Note
that then ω(L) = ω

(
Λ(L)

)
by [ADH, 11.8.20].

Lemma 5.5.37. If H is not λ-free or ω(H) = H \ σ
(
Γ(H)

)↑, then L is ω-free.
267



Proof. If H is ω-free or not λ-free, then L is ω-free by Lemmas 1.4.18 and 1.4.20.
Suppose H is λ-free but not ω-free, and ω(H) = H \ σ

(
Γ(H)

)↑. So [ADH, 11.8.30]

gives ω ∈ H with ω
(
Λ(H)

)
< ω < σ

(
Γ(H)

)
. Then ω ∈ ω(H) ⊆ ω(L) ⊆ ω

(
Λ(L)

)
.

Thus L is ω-free by Corollary 1.4.21. □

Theorem 7.5.32, which depends on much of what follows, shows that for L = D(H)
the converse of Lemma 5.5.37 also holds.

Proof of a conjecture of Boshernitzan (∗). In this last subsection we estab-
lish [33, Conjecture 17.11]: Corollary 5.5.40. For this, with ℓn := logn x we
set γn := ℓ†n, λn := −γ†n, and ωn := ω(λn), as in [ADH, 11.5, 11.7], so

γn =
1

ℓ0ℓ1 · · · ℓn
, ωn =

1

ℓ20
+

1

ℓ20ℓ
2
1

+ · · ·+ 1

ℓ20ℓ
2
1 · · · ℓ2n

.

(See also the beginning of Section 5.6 below.) For c ∈ R, the germ

ωn + cγ2n
4

=
1

4

(
1

ℓ20
+

1

(ℓ0ℓ1)2
+ · · ·+ 1

(ℓ0 · · · ℓn−1)2
+

c+ 1

(ℓ0 · · · ℓn)2

)
generates oscillations iff c > 0. (A. Kneser [112], Riemann-Weber [206, p. 63];
cf. [97].) This follows from the next corollary applied to f = ωn + cγ2n and the
grounded Hardy subfield H := R⟨ℓn⟩ = R(ℓ0, . . . , ℓn) of Li(R):

Corollary 5.5.38. Let H be a grounded Hardy field such that for some m we
have h ≻ ℓm for all h ∈ H with h ≻ 1. Then for f ∈ H, the following are equivalent:

(i) f ∈ ω(H);
(ii) f < ωn for some n;
(iii) there exists c ∈ R> such that for all n we have f < ωn + cγ2n;
(iv) f < ωn + cγ2n for all n and all c ∈ R>.

Proof. By [ADH, 10.3.2, 10.5.15] we may replace H by H(R) to arrange H ⊇ R.
By Lemma 1.4.18, L := Li(H) is ω-free. With Hω as in the proof of that lemma,
one verifies easily that for each g ∈ Hω with g ≻ 1 there is an m such that g ≻ ℓm.
Hence (ℓn) is a logarithmic sequence in L, in the sense of [ADH, p. 499]. Now the im-
plication (i)⇒ (iv) follows from Corollary 5.5.36 and [ADH, 11.8.22], and (iv)⇒ (iii)
is obvious. Since 0 < γn+1 ≺ γn we obtain for c ∈ R>:

ωn+1 + cγ2n+1 = ωn + γ
2
n+1 + cγ2n+1 < ωn + γ

2
n = σ(γn).

In view of [ADH, 11.8.30, 11.8.21] and Corollary 5.5.36, this yields (iii) ⇒ (ii).
Downward closedness of ω(H) implies (ii) ⇒ (i). □

Using the above equivalence (i) ⇔ (ii) we recover [33, Theorem 17.7]:

Corollary 5.5.39. Suppose f ∈ C is hardian and d-algebraic over R. Then

f generates oscillations ⇐⇒ f > ωn/4 for all n.

Proof. By Corollary 5.4.28 the Hardy field H := R⟨f⟩ satisfies the hypotheses of
Corollary 5.5.38. Also, f generates oscillations iff 4f /∈ ω(H). □

Using the above implication (iii) ⇒ (i) we obtain in the same way:

Corollary 5.5.40. Let f ∈ C be hardian and d-algebraic over R, and suppose there
is a c ∈ R> with f < ωn + cγ2n for all n. Then f/4 does not generate oscillations.
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In the beginning of this subsection we introduced the germs ℓn, and so this may be
a good occasion to observe that the Hardy field H = R(ℓ0, ℓ1, ℓ2, . . . ) they generate
over R is ω-free: since H is ungrounded and H is the union of the grounded
Hardy subfields R(ℓ0, . . . , ℓn), this follows from [ADH, 11.7.15]. Thus the Hardy
field Li(R) = Li(H) is ω-free as well.

5.6. Maximal Hardy Fields are ω-Free

In this section we discuss the fundamental property of ω-freeness from [ADH] in
the context of Hardy fields. The main result is Theorem 5.6.2, from which it follows
that every maximal Hardy field is ω-free. As an application of this theorem, we
answer a question from [34].

The property of ω-freeness for Hardy fields. Let H ⊇ R be a Liouville closed
Hardy field. Note that then x ∈ H and log f ∈ H for all f ∈ H>. To work with ω-
freeness for H we introduce the “iterated logarithms” ℓρ; more precisely, transfinite
recursion yields a sequence (ℓρ) in H>R indexed by the ordinals ρ less than some
infinite limit ordinal κ as follows: ℓ0 = x, and ℓρ+1 := log ℓρ; if λ is an infinite limit
ordinal such that all ℓρ with ρ < λ have already been chosen, then we pick ℓλ to be
any element in H>R such that ℓλ ≺ ℓρ for all ρ < λ, if there is such an ℓλ, while if
there is no such ℓλ, we put κ := λ. From (ℓρ) we obtain the sequences (γρ) in H

>

and (λρ) in H as follows:

γρ := ℓ†ρ, λρ := −γ
†
ρ = −ℓ†ρ† := −(ℓ†ρ

†).

Then λρ+1 = λρ + γρ+1 and we have

γ0 = ℓ−1
0 , γ1 = (ℓ0ℓ1)

−1, γ2 = (ℓ0ℓ1ℓ2)
−1,

λ0 = ℓ−1
0 , λ1 = ℓ−1

0 + (ℓ0ℓ1)
−1, λ2 = ℓ−1

0 + (ℓ0ℓ1)
−1 + (ℓ0ℓ1ℓ2)

−1,

and so on. Indeed, v(γρ) is strictly increasing as a function of ρ and is cofinal
in ΨH =

{
v(f†) : f ∈ H, 0 ̸= f ̸≍ 1

}
; we refer to [ADH, 11.5, 11.8] for this and

some of what follows. Also, (λρ) is a strictly increasing pc-sequence which is cofinal
in Λ(H) ⊆ H. We recall here the relevant descriptions from [ADH, 11.8]:

Γ(H) =
{
a† : a ∈ H, a ≻ 1

}
= {b ∈ H : b > γρ for some ρ},

Λ(H) = −Γ(H)† =
{
−a†† : a ∈ H, a ≻ 1

}
.

Here, Γ(H) ⊆ H> is upward closed and Λ(H) is downward closed, since H is
Liouville closed. The latter also gives that H is λ-free, that is, (λρ) has no pseu-
dolimit in H. The function ω : H → H is strictly increasing on Λ(H) and set-
ting ωρ := ω(λρ) we obtain a strictly increasing pc-sequence (ωρ) which is cofinal
in ω

(
Λ(H)

)
= ω(H):

ω0 = ℓ−2
0 , ω1 = ℓ−2

0 + (ℓ0ℓ1)
−2, ω2 = ℓ−2

0 + (ℓ0ℓ1)
−2 + (ℓ0ℓ1ℓ2)

−2,

and so on; see [ADH, 11.7, 11.8] for this and some of what follows. Now H being
ω-free is equivalent to (ωρ) having no pseudolimit in H. By [ADH, 11.8.30] the
pseudolimits of (ωρ) in H are exactly the ω ∈ H such that ω(H) < ω < σ

(
Γ(H)

)
.

Also, σ is strictly increasing on Γ(H). Thus H is not ω-free if and only if there
exists an ω ∈ H such that ω(H) < ω < σ

(
Γ(H)

)
.

Lemma 5.6.1. Let γ ∈ (C1)×, γ > 0, and λ := −γ† with λρ < λ < λρ + γρ in C,
for all ρ. Then γρ > γ > γρ/ℓρ = (−1/ℓρ)

′ in C, for all ρ.
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Proof. Pick a ∈ R (independent of ρ) and functions in Ca whose germs at +∞ are
the elements ℓρ, γρ, λρ of H; denote these functions also by ℓρ, λρ, γρ. From ℓ†ρ = γρ

and γ†ρ = −λρ in H we obtain cρ, dρ > 0 such that for all sufficiently large t ⩾ a,

ℓρ(t) = cρ exp

[∫ t

a

γρ(s) ds

]
, γρ(t) = dρ exp

[
−
∫ t

a

λρ(s) ds

]
.

(How large is “sufficiently large” depends on ρ.) Likewise we pick functions in Ca
whose germ at +∞ are γ, λ, and also denote these functions by γ, λ. From γ† = −λ

in H we obtain a real constant d > 0 such that for all sufficiently large t ⩾ a,

γ(t) = d exp

[
−
∫ t

a

λ(s) ds

]
.

Also, λρ < λ < λρ + γρ yields constants aρ, bρ ∈ R such that for all t ⩾ a∫ t

a

λρ(s) ds < aρ +

∫ t

a

λ(s) ds < bρ +

∫ t

a

λρ(s) ds+

∫ t

a

γρ(s) ds,

which by applying exp(−∗) yields that for all sufficiently large t ⩾ a,

1

dρ
γρ(t) >

1

eaρ d
γ(t) >

cρ
ebρ dρ

γρ(t)/ℓρ(t).

Here the positive constant factors don’t matter, since the valuation of γρ is strictly
increasing and that of γρ/ℓρ = (−1/ℓρ)

′ is strictly decreasing with ρ. Thus for all ρ
we have γρ > γ > γρ/ℓρ = (−1/ℓρ)

′, in C. □

We are now ready to prove a key result:

Theorem 5.6.2. Every Hardy field has a d-algebraic ω-free Hardy field extension.

Proof. It is enough to show that every d-maximal Hardy field is ω-free. That
reduces to showing that every non-ω-free Liouville closed Hardy field containing R
has a proper d-algebraic Hardy field extension. So assume H ⊇ R is a Liouville
closed Hardy field and H is not ω-free. We shall construct a proper d-algebraic
Hardy field extension of H. We have ω ∈ H such that

ω(H) < ω < σ
(
Γ(H)

)
.

With ω in the role of f in the discussion following Corollary 5.5.10, we have R-
linearly independent solutions y1, y2 ∈ C2 of the differential equation 4Y ′′ + ωY = 0;
in fact, y1, y2 ∈ C<∞. Then the complex solution y = y1 + y2i is a unit of C<∞[i],
and so we have z := 2y† ∈ C<∞[i]. We shall prove that the elements λ := Re z
and γ := Im z of C<∞ generate a Hardy field extension K = H(λ, γ) of H with ω =
σ(γ) ∈ σ(K×). We can assume that w := y1y

′
2 − y′1y2 ∈ R>, so γ = 2w/|y|2 ∈

(C<∞)× and γ > 0.
We have ωρ ⇝ ω, with ω − ωρ ∼ γ2ρ+1 by [ADH, 11.7.1]. Till further notice we

fix ρ and set gρ := γ
−1/2
ρ , so 2g†ρ = λρ = −γ†ρ. For h ∈ H× we also have ω(2h†) =

−4h′′/h, hence P := 4Y ′′ + ωY ∈ H{Y } gives

P (gρ) = gρ(ω − ωρ) ∼ gργ
2
ρ+1,

and so with an eye towards using Lemma 5.5.29:

g3ρP (gρ) ∼ g4ργ
2
ρ+1 ∼ γ

2
ρ+1/γ

2
ρ ≍ 1/ℓ2ρ+1.
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Thus with g := gρ = γ
−1/2
ρ , ϕ = g−2 = γρ we have Aρ ∈ R> such that

(5.6.1) g3Pϕ×g(Y ) = 4Y ′′ + g3P (g)Y, |g3P (g)| ⩽ Aρ/ℓ
2
ρ+1.

From P (y) = 0 we get Pϕ×g(y/g) = 0, that is, y/g ∈ C<∞[i]ϕ is a solution

of 4Y ′′ + g3P (g)Y = 0, with g3P (g) ∈ H ⊆ C<∞. Set ℓ := ℓρ+1, so ℓ
′ = ℓ†ρ = ϕ.

The subsection on compositional conjugation in Section 5.3 yields the isomor-
phism h 7→ h◦ = h ◦ ℓinv : Hϕ → H◦ of H-fields, where ℓinv is the compositional
inverse of ℓ. Under this isomorphism the equation 4Y ′′+ g3P (g)Y = 0 corresponds
to the equation

4Y ′′ + fρY = 0, fρ := (g3P (g))◦ ∈ H◦ ⊆ C<∞.

By Corollary 5.5.30, the equation 4Y ′′ + fρY = 0 has the “real” solutions

yj,ρ := (yj/g)
◦ ∈ (C<∞)◦ = C<∞ (j = 1, 2),

and the “complex” solution

yρ := y1,ρ + y2,ρi = (y/g)◦,

which is a unit of the ring C<∞[i]. Set zρ := 2y†ρ ∈ C<∞[i]. The bound in (5.6.1)

gives |fρ| ⩽ Aρ/x
2, which by Corollary 5.2.20 yields positive constants Bρ, cρ

such that |zρ| ⩽ Bρx
cρ . Using (f◦)′ = (ϕ−1f ′)◦ for f ∈ C<∞[i] we obtain

zρ = 2
(
(y/g)◦

)† = 2
(
ϕ−1(y/g)†

)◦
=
(
(z − 2g†)/ϕ

)◦
In combination with the bound on |zρ| this yields∣∣∣∣z − 2g†

ϕ

∣∣∣∣ ⩽ Bρ ℓ
cρ
ρ+1, hence

|z − λρ| ⩽ Bρ ℓ
cρ
ρ+1 ϕ = Bρ ℓ

cρ
ρ+1 γρ, and so

z = λρ +Rρ where |Rρ| ⩽ Bρ ℓ
cρ
ρ+1 γρ.

We now use this last estimate with ρ+ 1 instead of ρ, together with

λρ+1 = λρ + γρ+1, ℓρ+1γρ+1 = γρ.

This yields

z = λρ + γρ+1 +Rρ+1

with |Rρ+1| ⩽ Bρ+1 ℓ
cρ+1

ρ+2 γρ+1 = Bρ+1

(
ℓ
cρ+1

ρ+2 /ℓρ+1

)
γρ,

so z = λρ + o(γρ) that is, z − λρ ≺ γρ,

and thus λ = Re z = λρ + o(γρ), γ = Im z ≺ γρ.

Now varying ρ again, (λρ) is a strictly increasing divergent pc-sequence in H which
is cofinal in Λ(H). By the above, λ = Re z satisfies Λ(H) < λ < ∆(H). This
yields an ordered subfield H(λ) of C<∞, which by Lemma 5.1.17 is an immediate
valued field extension of H with λρ ⇝ λ. Now λ = −γ† (see discussion before
Lemma 5.5.11), so Lemma 5.6.1 gives γρ > γ > (−1/ℓρ)

′ in C<∞, for all ρ. In
view of Lemma 5.1.18 applied to H(λ), γ in the role of K, f this yields an ordered
subfield H(λ, γ) of C<∞. Moreover, γ is transcendental over H(λ) and γ satisfies
the second-order differential equation 2yy′′−3(y′)2+y4−ωy2 = 0 over H (obtained
from the relation σ(γ) = ω by multiplication with γ2). It follows that H(λ, γ) is
closed under the derivation of C<∞, and hence H(λ, γ) = H⟨γ⟩ is a Hardy field that
is d-algebraic over H. □
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The proof also shows that every C∞-Hardy field has an ω-free d-algebraic C∞-Hardy
field extension, and the same with Cω instead of C<∞. In Section 7.5 below we show
that the perfect hull of an ω-free Hardy field remains ω-free (Lemma 7.5.39), but
that not every perfect Hardy field is ω-free (Example 7.5.40).

Improving Theorem 5.6.2 (∗). In this subsection H ⊇ R is a Liouville closed
Hardy field and ω ∈ H, γ ∈ (C2)× satisfy ω(H) < ω < σ

(
Γ(H)

)
and σ(γ) = ω.

Lemma 1.4.18 leads to a more explicit version of Theorem 5.6.2:

Corollary 5.6.3. The germ γ generates a Hardy field extension H⟨γ⟩ of H with a
gap vγ, and so Li

(
H⟨γ⟩

)
is an ω-free Hardy field extension of H.

Proof. Since σ(−γ) = σ(γ), we may arrange γ > 0. The discussion before Lem-
ma 5.5.11 with ω, γ in the roles of f , g, respectively, yields R-linearly independent
solutions y1, y2 ∈ C<∞ of the differential equation 4Y ′′ + ωY = 0 with Wron-
skian 1/2 such that γ = 1/(y21 + y22). The proof of Theorem 5.6.2 shows that γ

generates a Hardy field extension H⟨γ⟩ = H(λ, γ) of H. Recall that v(γρ) is
strictly increasing as a function of ρ and cofinal in ΨH ; as γ ≺ γρ for all ρ, this
gives ΨH < vγ. Also γ > (−1/ℓρ)

′ > 0 for all ρ and v(1/ℓρ)
′ is strictly decreasing

as a function of ρ and coinitial in (Γ>H)′, and so vγ < (Γ>H)′. Then by [ADH, 13.7.1
and subsequent remark (2) on p. 626], vγ is a gap in H⟨γ⟩, so Li

(
H⟨γ⟩

)
is ω-free

by Lemma 1.4.18. □

Corollary 5.6.4. Suppose γ > 0. Then with L := Li
(
H⟨γ⟩

)
,

ω /∈ ω(H) ⇐⇒ γ ∈ Γ(L), ω ∈ ω(H) ⇐⇒ γ ∈ I(L).

Proof. If γ /∈ Γ(L), then ω ∈ ω(L)↓ by [ADH, 11.8.31], hence ω ∈ ω(H). If γ ∈ Γ(L),
then we can use Corollary 5.5.36 for L to conclude ω /∈ ω(H). The equivalence on
the right now follows from that on the left and [ADH, 11.8.19]. □

We also note that if ω/4 generates oscillations, then we have many choices for γ:

Corollary 5.6.5. Suppose ω/4 generates oscillations. Then there are continuum
many γ̃ ∈ (C<∞)× with γ̃ > 0 and σ(γ̃) = ω, and no Hardy field extension of H con-
tains more than one such germ γ̃. (In particular, H has continuum many maximal
Hardy field extensions.)

Proof. As before we arrange γ > 0 and set L := Li
(
H⟨γ⟩

)
. Take ϕ ∈ L with ϕ′ = 1

2γ

and consider the germs

y1 :=
1
√

γ
cosϕ, y2 :=

1
√

γ
sinϕ in C<∞.

The remarks preceding Lemma 5.5.11 show: y1, y2 solve the differential equa-
tion 4Y ′′ + ωY = 0, their Wronskian equals 1/2, and ϕ ≻ 1 (since ω/4 generates
oscillations). We now dilate y1, y2: let r ∈ R> be arbitrary and set

y1r := ry1, y2r := r−1y2.

Then y1r, y2r still solve the equation 4Y ′′ + ωY = 0, and their Wronskian is 1/2.
Put γr := 1/(y21r + y22r) ∈ C<∞. Then σ(γr) = ω. Let r, s ∈ R>. Then

γr = γs ⇐⇒ y21r+y
2
2r = y21s+y

2
2s ⇐⇒ (r2−s2) cos2 ϕ+

(
1
r2 −

1
s2

)
sin2 ϕ = 0,

and hence γr = γs iff r = s. Next, suppose M is a d-perfect Hardy field extension
of H containing both γ and γ̃ ∈ (C<∞)× with γ̃ > 0 and σ(γ̃) = ω. Corollary 5.5.3
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gives ω /∈ ω(M), hence γ, γ̃ ∈ Γ(M) by [ADH, 11.8.31], and thus γ = γ̃ by [ADH,
11.8.29]. □

Answering a question of Boshernitzan (∗). Following [34] we say that a germ y
in C is translogarithmic if r ⩽ y ⩽ ℓn for all n and all r ∈ R. Thus for eventually
strictly increasing y ≻ 1 in C, y is translogarithmic iff its compositional inverse yinv

is transexponential. By Lemma 5.3.5 and Corollary 5.4.24 there exist Cω-hardian
translogarithmic germs; see also [ADH, 13.9]. Translogarithmic hardian germs are
d-transcendental, by Corollary 5.4.28. In this subsection we use Theorem 5.6.2 to
prove the following analogue of Corollary 5.4.24 for translogarithmic germs, thus
giving a positive answer to Question 4 in [34, §7]:

Proposition 5.6.6. Every maximal Hardy field contains a translogarithmic germ.

LetH ⊇ R be a Liouville closed Hardy field; thenH has no translogarithmic element
iff (ℓn) is a logarithmic sequence for H in the sense of [ADH, 11.5]. In this case, if H
is also ω-free, then for each translogarithmic H-hardian germ y the isomorphism
type of the ordered differential field H⟨y⟩ over H is uniquely determined; more
generally, by [ADH, 13.6.7, 13.6.8]:

Lemma 5.6.7. Let H be an ω-free H-field, with asymptotic couple (Γ, ψ), and
let L = H⟨y⟩ be a pre-H-field extension of H with Γ< < vy < 0. Then for
all P ∈ H{Y } ̸= we have

v
(
P (y)

)
= γ + ndeg(P )vy + nwt(P )ψL(vy) where γ = ve(P ) ∈ Γ,

and thus

ΓL = Γ⊕ Zvy ⊕ ZψL(vy) (internal direct sum).

Moreover, if L∗ = H⟨y∗⟩ is a pre-H-field extension of H with Γ< < vy∗ < 0
and sign y = sign y∗, then there is a unique pre-H-field isomorphism L→ L∗ which
is the identity on H and sends y to y∗.

This lemma suggests how to obtain Proposition 5.6.6: follow the arguments in the
proof of [ADH, 13.6.7]. In the rest of this subsection we carry out this plan. For
this, let H ⊇ R be a Liouville closed Hardy field and y ∈ C<∞.

Lemma 5.6.8. Suppose H is ω-free and for all ℓ ∈ H>R we have, in C:
(i) 1 ≺ y ≺ ℓ;
(ii) δ

n(y) ≼ 1 for all n ⩾ 1, where δ := ϕ−1
∂, ϕ := ℓ′;

(iii) y′ ∈ C× and (1/ℓ)′ ≼ y†.

Let P ∈ H{Y }̸=. Then in C we have

P (y) ∼ a yd (y†)w where a ∈ H×, d = ndeg(P ), w = nwt(P ).

(Hence y is hardian over H and d-transcendental over H.)

Proof. Since H is real closed, it has a monomial group, so the material of [ADH,
13.3] applies. Then [ADH, 13.3.3] gives a monic D ∈ R[Y ] ̸=, b ∈ H×, w ∈ N, and
an active element ϕ of H with 0 < ϕ ≺ 1 such that:

Pϕ = b ·D · (Y ′)w +R, R ∈ Hϕ{Y }, R ≺♭ϕ b.
Set d := ndegP , and note that by [ADH, 13.1.9] we have d = degD + w and w =
nwtP . Replace P , b, R by b−1P , 1, b−1R, respectively, to arrange b = 1. Take ℓ ∈ H
with ℓ′ = ϕ, so ℓ > R; we use the superscript ◦ as in the subsection on compositional
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conjugation of Section 5.3; in particular, y◦ = y ◦ ℓinv with (y◦)′ = (ϕ−1y′)◦,
so (y◦)† ≽ 1/x2 by hypothesis (iii) of our lemma. In H◦{Y } we now have

(Pϕ)◦ = D · (Y ′)w +R◦ where R◦ ≺♭ 1.
Evaluating at y◦ we have D(y◦)

(
(y◦)′

)
w ∼ (y◦)d

(
(y◦)†

)
w and so D(y◦)

(
(y◦)′

)
w ≽

x−2w ≍♭ 1. By (i) we have (y◦)m ≺ x for m ⩾ 1, and by (ii) we have (y◦)(n) ≼ 1
for n ⩾ 1. Hence R◦(y◦) ≼ h◦ for some h ∈ H with h◦ ≺♭ 1. Thus in C we have

(Pϕ)◦(y◦) ∼ (y◦)d
(
(y◦)†

)
w.

Since P (y)◦ = (Pϕ)◦(y◦), this yields P (y) ∼ a · yd · (y†)w for a = ϕ−w. □

Corollary 5.6.9. Suppose H is ω-free and 1 ≺ y ≺ ℓ for all ℓ ∈ H>R. Then the
following are equivalent:

(i) y is hardian over H;
(ii) for all h ∈ H>R there is an ℓ ∈ H>R such that ℓ ≼ h and y, ℓ lie in a

common Hardy field;
(iii) for all h ∈ H>R there is an ℓ ∈ H>R such that ℓ ≼ h and y ◦ℓinv is hardian.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are obvious. Let ℓ ∈ H>R be such
that y◦ := y ◦ ℓinv lies in a Hardy field H0; we arrange x ∈ H0. For ϕ := ℓ′

we have (ϕ−1y†)◦ = (y◦)† ≻ (1/x)′ = −1/x2 and thus y† ≻ −ϕ/ℓ2 = (1/ℓ)′.
Also y◦ ≺ x, hence z := (y◦)′ ≺ x′ = 1 and so z(n) ≺ 1 for all n. With δ := ϕ−1

∂

and n ⩾ 1 we have δ
n(y)◦ = z(n−1) and thus δ

n(y) ≺ 1. Moreover, for h ∈ H>R

with ℓ ≼ h and θ := h′ we have θ−1
∂ = fδ where f := ϕ/θ ∈ H, f ≼ 1. Let n ⩾ 1.

Then

(θ−1
∂)n = (fδ)n = Gnn(f)δ

n + · · ·+Gn1 (f)δ on C<∞

where Gnj ∈ Q{X} ⊆ Hϕ{X} for j = 1, . . . , n.

As δ is small as a derivation on H, we have Gnj (f) ≼ 1 for j = 1, . . . , n, and

so (θ−1
∂)n(y) ≺ 1. Thus (iii) ⇒ (i) by Lemma 5.6.8. □

Proof of Proposition 5.6.6. Let H ⊇ R be any ω-free Liouville closed Hardy field
not containing any translogarithmic element; in view of Theorem 5.6.2 it suffices
to show that then some Hardy field extension of H contains a translogarithmic
element. The remark before Proposition 5.6.6 yields a translogarithmic germ y
in a Cω-Hardy field H0 ⊇ R. Then for each n, the germs y, ℓn are contained in
a common Hardy field, namely Li(H0). Hence y generates a proper Hardy field
extension of H by (ii) ⇒ (i) in Corollary 5.6.9. □

Proposition 5.6.6 goes through when “maximal” is replaced by “C∞-maximal” or
“Cω-maximal”. This follows from its proof, using also remarks after the proof of
Theorem 5.6.2. Here is a conjecture that is much stronger than Proposition 5.6.6;
it postulates an analogue of Corollary 5.4.23 for infinite “lower bounds”:

Conjecture. If H is maximal, then there is no y ∈ C1 such that 1 ≺ y ≺ h for
all h ∈ H>R, and y′ ∈ C×.

We observe that in this conjecture we may restrict attention to Cω-hardian germs y:

Lemma 5.6.10. Suppose there exists y ∈ C1 such that 1 ≺ y ≺ h for all h ∈ H>R

and y′ ∈ C×. Then there exists such a germ y which is Cω-hardian.
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Proof. Take y as in the hypothesis. Replace y by −y if necessary to arrange y > R.
Now Theorem 5.4.22 yields a Cω-hardian germ z ⩾ yinv. By Lemma 5.3.5, the
germ zinv is also Cω-hardian, and R < zinv ⩽ y ≺ h for all h ∈ H>R. □

Generalizing a theorem of Boshernitzan (∗). In this subsection H is a Hardy
field. Recall from Corollary 5.4.15 that for all f ∈ E(H) there are h ∈ H(x) and n
such that f ⩽ expn h. In particular, the sequence (expn x) is cofinal in E(Q).
By Theorem 5.4.20 and Corollary 5.4.27, (ℓn) is coinitial in E(Q)>R; see also [33,
Theorem 13.2]. In particular, for the Hardy field H = Li(R), the subset H>R

is coinitial in E(Q)>R = E(H)>R, equivalently, Γ<H is cofinal in Γ<E(H). We now

generalize this fact, recalling from the end of Section 5.5 that Li(R) is ω-free:

Theorem 5.6.11. Suppose H is ω-free. Then Γ<H is cofinal in Γ<E(H).

Proof. Replacing H by Li
(
H(R)

)
and using Theorem 1.4.1 we arrange that H

is Liouville closed and H ⊇ R. Let y ∈ E(H) and suppose towards a contra-
diction that R < y < H>R. Then f := yinv is transexponential and hardian
(Lemma 5.3.5). Lemma 5.4.19 gives a bound b ∈ C for R⟨f⟩. Lemma 5.4.17
gives ϕ ∈ (Cω)× such that ϕ(n) ≺ 1/b for all n; set r := ϕ · sinx ∈ Cω. Then by
Lemma 5.4.21 (with R⟨f⟩ in place of H) we have Q(r) ≺ 1 for all Q ∈ R⟨f⟩{Y }
with Q(0) = 0. Hence g := f + r is eventually strictly increasing with g ≻ 1,
and y = f inv and z := ginv ∈ C<∞ do not lie in a common Hardy field. Thus in or-
der to achieve the desired contradiction it suffices to show that z is H-hardian.
For this we use Corollary 5.6.9. It is clear that f ∼ g, so y ∼ z by Corol-
lary 5.1.10, and thus 1 ≺ z ≺ ℓ for all ℓ ∈ H>R. Let ℓ ∈ H>R and ℓ ≺ x; we
claim that z ◦ ℓinv is hardian, equivalently, by Lemma 5.3.5, that ℓ ◦ g = (z ◦ ℓinv)inv
is hardian. Now ℓ ◦ f = (y ◦ ℓinv)inv is hardian and ℓ ◦ f ≻ 1, and Lemma 5.4.11
gives ℓ ◦ f − ℓ ◦ g ∈ (C<∞)≼. Hence ℓ ◦ f ∼∞ ℓ ◦ g by Lemma 5.4.12. For all n we
have ℓn ◦ ℓ = logn ℓ ∈ H>R, so y ⩽ ℓn ◦ ℓ, hence y ◦ ℓinv ⩽ ℓn, which by composi-
tional inversion gives ℓ ◦ f ⩾ expn x. So ℓ◦g is hardian by Corollary 5.4.14. Thus z
is H-hardian by (iii) ⇒ (i) of Corollary 5.6.9. □

If H ⊆ C∞ is ω-free, then Γ<H is also cofinal in Γ<E∞(H), and similarly with ω in

place of ∞. (Same proof as that of the previous theorem.) We also note that
if D(H) = E(H) (e.g., if H is bounded; cf. Theorem 5.4.20), then Theorem 5.6.11
already follows from Theorem 1.4.1.

5.7. Bounding Solutions of Linear Differential Equations

Let r ∈ N⩾1, and with i ranging over Nr, let

P = P (Y, Y ′, . . . , Y (r−1)) =
∑

∥i∥<r

PiY
i ∈ C[i]

[
Y, Y ′, . . . , Y (r−1)

]
with Pi ∈ C[i] for all i with ∥i∥ < r, and Pi ̸= 0 for only finitely many such i.
Then P gives rise to an evaluation map

y 7→ P
(
y, y′, . . . , y(r−1)

)
: Cr−1[i] → C[i].

Let y ∈ Cr[i] satisfy the differential equation

(5.7.1) y(r) = P
(
y, y′, . . . , y(r−1)

)
.

In addition, m with 0 < m ≼ 1 is a hardian germ, and η ∈ C is eventually increasing
with η(t) > 0 eventually, and n ⩾ r.
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Proposition 5.7.1. Suppose Pi ≼ η for all i, P (0) ≼ ηmn, and y ≼ mn. Then

y(j) ≼ ηjmn−j(1+ε) for j = 0, . . . , r and all ε ∈ R>,

with ≺ in place of ≼ if y ≺ mn and P (0) ≺ ηmn.

The following immediate consequence is used in Section 5.10:

Corollary 5.7.2. Suppose f1, . . . , fr ∈ C[i] and y ∈ Cr[i] satisfy

y(r) + f1y
(r−1) + · · ·+ fry = 0, f1, . . . , fr ≼ η, y ≼ mn.

Then y(j) ≼ ηjmn−j(1+ε) for j = 0, . . . , r and all ε ∈ R>, with ≺ in place of ≼
if y ≺ mn.

We obtain Proposition 5.7.1 from estimates due to Esclangon and Landau. To
prepare for this we review an argument of Hardy-Littlewood which bounds the
derivative f ′ of a twice continuously differentiable function f in terms of f , f ′′.
(For another statement in the same spirit see Lemma 5.9.10.)

Bounding f ′ in terms of f , f ′′. Let a ∈ R, let ϕ, ψ : [a,+∞) → (0,+∞) be
continuous and increasing, and f ∈ C2

a[i]. If f and f ′′ are bounded, then so is f ′

by the next lemma:

Lemma 5.7.3 (Hardy-Littlewood [88]). Suppose |f | ⩽ ϕ, |f ′′| ⩽ ψ, and let ε ∈ R>.
Then |f ′(t)| ⩽ (2 + ε)

√
ϕ(t)ψ(t), eventually.

Proof (Mordell [140]). First arrange a = 0 by translating the domain. Let 0 < s <
t. Taylor expansion at t yields θ = θ(s, t) ∈ [0, 1] such that

f(t− s) = f(t)− sf ′(t) + 1
2s

2f ′′(t− θs),

hence

|f(t− s)− f(t) + sf ′(t)| ⩽ 1
2s

2ψ(t− θs) ⩽ 1
2s

2ψ(t).

Since |f(t)| ⩽ ϕ(t) and |f(t− s)| ⩽ ϕ(t− s) ⩽ ϕ(t), this yields

|f ′(t)| ⩽ (2/s)ϕ(t) + (s/2)ψ(t).

Put ρ(t) :=
√
ϕ(t)/ψ(t) for t > 0. If t > 2ρ(t), then s := 2ρ(t) in the above

gives |f ′(t)| ⩽ 2ρ(t). Hence if eventually t > 2ρ(t), then we are done. Sup-
pose otherwise; then ρ is unbounded, hence so is ψρ =

√
ϕψ. Take b > 0 such

that
√
ϕ(t)ψ(t) ⩾ |f ′(0)|/ε for all t ⩾ b. We claim that |f ′(t)| ⩽ (2 + ε)

√
ϕ(t)ψ(t)

for t ⩾ b. If t > 2ρ(t), then |f ′(t)| ⩽ 2
√
ϕ(t)ψ(t) < (2 + ε)

√
ϕ(t)ψ(t), so sup-

pose t ⩽ 2ρ(t). Then

|f ′(t)− f ′(0)| =

∣∣∣∣∫ t

0

f ′′(s) ds

∣∣∣∣ ⩽ ∫ t

0

|f ′′(s)| ds ⩽
∫ t

0

ψ(s) ds ⩽ tψ(t)

and hence

|f ′(t)| ⩽ |f ′(0)|+ tψ(t) ⩽ |f ′(0)|+ 2
√
ϕ(t)ψ(t) ⩽ (2 + ε)

√
ϕ(t)ψ(t). □

Corollary 5.7.4. If f ≼ ϕ, f ′′ ≼ ψ, then f ′ ≼
√
ϕψ, with f ′ ≺

√
ϕψ if also f ≺ ϕ

or f ′′ ≺ ψ.
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In Corollary 5.7.4 we cannot drop the assumption that ϕ, ψ are increasing. (Take
a > 1, f(t) = t log t for t ⩾ a, ϕ = f , ψ = f ′′.) However, Mordell [140] also
shows that if instead of assuming that ϕ, ψ are increasing, we assume that they
are decreasing, then Lemma 5.7.3 holds in a stronger form: |f | ⩽ ϕ & |f ′′| ⩽ ψ ⇒
|f ′| ⩽ 2(ϕψ)1/2. The next lemma (not used later) yields a variant of Corollary 5.7.4
where the germ of f lies in a complexified Hardy field; see also [88, §7].

Lemma 5.7.5. Let H be a Hardy field, K = H[i], and g ∈ K× such that g ≺ 1

or g ≻ 1, g† ̸≍ x−1. Then g′ ≼ |gg′′|1/2.

Proof. Arranging that H is real closed and x ∈ H and using |h| ≍ h for h ∈ K (see
the remarks before Corollary 1.2.6), the lemma now follows from parts (1), (2), (4)
of [7, Lemma 5.2] applied to the asymptotic couple of K. □

We now generalize Corollary 5.7.4:

Lemma 5.7.6 (Hardy-Littlewood [88]). Suppose f ∈ Cna [i], n ⩾ 1, such that f ≼ ϕ,
f (n) ≼ ψ. Then for j = 0, . . . , n we have f (j) ≼ ϕ1−j/nψj/n. If additionally f ≺ ϕ
or f (n) ≺ ψ, then f (j) ≺ ϕ1−j/nψj/n for j = 1, . . . , n− 1.

Proof. The case n = 1 is trivial, so let n ⩾ 2. We may also assume f ̸= 0, and
by increasing a we arrange f(a) ̸= 0. Let j range over {0, . . . , n}. Consider the
continuous increasing functions

χj : [a,+∞) → (0,+∞), χj(t) := max
a⩽s⩽t

|f (j)(s)|
/ (
ϕ(s)1−j/nψ(s)j/n

)
,

and set χ := max{χ0, . . . , χn}. Then χ(t) ⩾ χ0(t) > 0 for all t ⩾ a. We have

|f (j)|/
(
ϕ1−j/nψj/n

)
⩽ χj ⩽ χ,

therefore
f (j) ≼ ϕ1−j/nψj/nχ.

By induction on j = 0, . . . , n− 2 we now show

(5.7.2) f (j) ≼ ϕ1−j/nψj/nχ1−1/2j .

The case j = 0 follows from f ≼ ϕ. Suppose (5.7.2) holds for a certain j < n − 2.

Then Corollary 5.7.4 with f (j), ϕ1−j/nψj/nχ1−1/2j , ϕ1−(j+2)/nψ(j+2)/nχ in the role
of f , ϕ, ψ, respectively, yields:

f (j+1) ≼
(
ϕ1−j/nψj/nχ1−1/2j · ϕ1−(j+2)/nψ(j+2)/nχ

)1/2
= ϕ1−(j+1)/nψ(j+1)/nχ1−1/2j+1

.

This proves (5.7.2). We claim χ ≼ 1. Suppose otherwise; so χ(t) → +∞ as t→ +∞,
since χ is increasing, hence f (n) ≼ ψ ≼ ψχ1−1/2n ≼ ψχ. Corollary 5.7.4 with f (n−2),

ϕ2/nψ1−2/nχ1−1/2n−2

, ψχ in the role of f , ϕ, ψ, respectively, yields

f (n−1) ≼
(
ϕ2/nψ1−2/nχ1−1/2n−2

· ψχ
)1/2

= ϕ1/nψ1−1/nχ1−1/2n−1

.

So (5.7.2) then also holds for j = n − 1, and it clearly holds for j = n. But
then χj ≼ χ1−1/2n for all j and so χ ≼ χ1−1/2n , contradicting χ ≻ 1.

Now suppose f ≺ ϕ. By induction on j = 0, . . . , n−1 we show f (j) ≺ ϕ1−j/nψj/n.
The case j = 0 holds by assumption; suppose it holds for a certain j ⩽ n − 2.
Then f (j+2) ≼ ϕ1−(j+2)/nψ(j+2)/n, so Corollary 5.7.4 with

f (j), ϕ1−j/nψj/n, ϕ1−(j+2)/nψ(j+2)/n
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in the role of f , ϕ, ψ, respectively, yields

f (j+1) ≺
(
ϕ1−j/nψj/n · ϕ1−(j+2)/nψ(j+2)/n

)1/2
= ϕ1−(j+1)/nψ(j+1)/n.

If f (n) ≺ ψ, then likewise f (n−j) ≺ ϕj/nψ1−j/n for j = 0, . . . , n− 1. □

Corollary 5.7.7. Suppose f ∈ Cna [i] and f ≼ ϕ, f (n) ≼ ϕ. Then f ′, . . . , f (n−1) ≼ ϕ,
and if in addition f ≺ ϕ or f (n) ≺ ϕ, then f ′, . . . , f (n−1) ≺ ϕ.

The theorem of Esclangon-Landau. In this subsection n ⩾ r ⩾ 1 and P is
as at the beginning of this section, and y ∈ Cr[i] satisfies (5.7.1). Also, η ∈ C
is eventually increasing and positive, so η ≽ 1. The next theorem covers the
case m ≍ 1 of Proposition 5.7.1:

Theorem 5.7.8 (Landau [121]). Suppose y ≼ 1 and Pi ≼ η for all i. Then
y(j) ≼ ηj for j = 0, . . . , r. Moreover, if y ≺ 1, then y(j) ≺ ηj for j = 0, . . . , r − 1,
and if in addition P (0) ≺ η, then also y(r) ≺ ηr.

Proof. Take a ∈ R such that η is represented by an increasing continuous func-
tion η : [a,+∞) → (0,+∞), and y by a function y ∈ Cra[i]. Then

t 7→ ψ(t) := max

(
1, max
a⩽s⩽t

|y(r)(s)|
)

: [a,+∞) → [1,+∞)

is continuous and increasing with |y(r)| ⩽ ψ. By Lemma 5.7.6 we have y(j) ≼ ψj/r

for j = 0, . . . , r − 1 and thus Piy
i ≼ ηψ∥i∥/r ≼ ηψ1−1/r if ∥i∥ < r. So y(r) =

P
(
y, . . . , y(r−1)

)
≼ ηψ1−1/r. Take C ∈ R> such that

|y(r)(t)| ⩽ Cη(t)ψ(t)1−1/r for all t ⩾ a.

Increasing C we arrange Cη(a)ψ(a)1−1/r ⩾ 1. As ηψ1−1/r is increasing,

ψ(t) ⩽ max

(
1, max
a⩽s⩽t

Cη(s)ψ(s)1−1/r

)
⩽ Cη(t)ψ(t)1−1/r for t ⩾ a.

Hence |y(r)(t)| ⩽ ψ(t) ⩽ Crηr(t) for t ⩾ a, so y(r) ≼ ηr. By Lemma 5.7.6 again
this yields y(j) ≼ ηj for j = 0, . . . , r. Assume now that y ≺ 1. Then by that same
lemma, y(j) ≺ ηj for j < r. We have η ≽ 1, so if 0 < ∥i∥ < r, then yi ≺ η∥i∥ ≼ ηr−1.
Hence if additionally P (0) ≺ η, then y(r) = P

(
y, . . . , y(r−1)

)
≺ ηr. □

Corollary 5.7.9 (Esclangon [67]). Suppose f1, . . . , fr, g ∈ C[i] and y ∈ Cr[i] satisfy

y(r) + f1y
(r−1) + · · ·+ fry = g, f1, . . . , fr, g, y ≼ 1.

Then y′, . . . , y(r) ≼ 1. If in addition y ≺ 1 and g ≺ 1, then y′, . . . , y(r) ≺ 1.

Below H is a Hardy field and m ∈ H, 0 < m ≺ 1. Recall also that n ⩾ r ⩾ 1.

Lemma 5.7.10. Let z ∈ Cr[i]. If z(j) ≼ ηj for j = 0, . . . , r, then (zmn)(j) ≼
ηjmn−j for j = 0, . . . , r, and likewise with ≺ instead of ≼.

Proof. Corollary 1.1.15 yields (mn)(m) ≼ mn−m for m ⩽ n. Thus if z(j) ≼ ηj

for j = 0, . . . , r, then

z(k)(mn)(j−k) ≼ ηkmn−(j−k) ≼ ηjmn−j (0 ⩽ k ⩽ j ⩽ r),

so (zmn)(j) ≼ ηjmn−j for j = 0, . . . , r, by the Product Rule. The argument with ≺
instead of ≼ is similar. □
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We now return to the assumptions on P, y in the beginning of this section, so y ∈
Cr[i] satisfies (5.7.1). Suppose also that Pi ≼ η for all i, P (0) ≼ ηmn, and y ≼ mn.
Let ε ∈ R> and set for i = 0, . . . , r,

Yi :=

i∑
j=0

(
i

j

)
Y (i−j)(mn)(j) ∈ H

[
Y, Y ′, . . . , Y (i)

]
⊆ C[i]

[
Y, Y ′, . . . , Y (r)

]
.

Then for z := ym−n ≼ 1 in Cr[i] the product rule gives

Yi(z, z
′, . . . , z(i)) = (zmn)(i) = y(i) (i = 0, . . . , r),

so with

Q := Y (r) −m−n(Yr − P (Y0, . . . , Yr−1)
)
∈ C[i]

[
Y, Y ′, . . . , Y (r−1)

]
we have by substitution of z, . . . , z(r) for Y, Y ′, . . . , Y (r),

z(r) = Q
(
z, z′, . . . , z(r−1)

)
+m−n(y(r) − P (y, y′, . . . , y(r−1))

)
= Q

(
z, z′, . . . , z(r−1)

)
.

For Y0, . . . , Yr ∈ H{Y } we have (Y i)×mn = Y i00 · · ·Y irr for i = (i0, . . . , ir) ∈ N1+r.
Now m−ε ∈ Li

(
H(R)

)
. We equip Li

(
H(R)

)
{Y } with the gaussian extension of the

valuation of Li
(
H(R)

)
. Then by [ADH, 6.1.4],

m−n(Y i)×mn ≼ m−ε for i ∈ N1+r \ {0}.

Let i range over Nr and take Qi ∈ C[i] for ∥i∥ < r such that

Q =
∑

∥i∥<r

QiY
i, (Qi ̸= 0 for only finitely many i).

Together with Pi ≼ η for all i and P (0) ≼ ηmn, the remarks above yield Qi ≼ ηm−ε

for all i. By Theorem 5.7.8 applied to P , y, η replaced by Q, z, ηm−ε, respectively,
we now obtain z(j) ≼ (ηm−ε)j (j = 0, . . . , r), with ≺ in place of ≼ if y ≺ mn

and P (0) ≺ ηmn. Using Lemma 5.7.10 with ηm−ε and Li
(
H(R)

)
in place of η

and H finishes the proof of Proposition 5.7.1. □

5.8. Almost Periodic Functions

For later use we now discuss trigonometric polynomials, almost periodic functions,
and their mean values; see [27, 53] for this material in the case n = 1. In this
section we assume n ⩾ 1, and for vectors r = (r1, . . . , rn) and s = (s1, . . . , sn)
in Rn we let r · s := r1s1 + · · ·+ rnsn ∈ R be the usual dot product of r and s. We
also set rs := (r1s1, . . . , rnsn) ∈ Rn, not to be confused with r · s ∈ R. Moreover,
we let v, w : Rn → C be complex-valued functions on Rn, and let s range over Rn,
and T over R>; integrals are with respect to the usual Lebesgue measure of Rn. Set

∥w∥ := sup
s

|w(s)| ∈ [0,+∞].

We shall also have occasion to consider various functions Rn → C obtained from w:
w, |w|, as well as w+r and w×r (for r ∈ Rn), defined by

w(s) := w(s), |w|(s) := |w(s)|, w+r(s) := w(r + s), w×r(s) := w(rs).

We say that w is 1-periodic if w+k = w for all k ∈ Zn.
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Trigonometric polynomials. Let α range over Rn. Call w a trigonometric
polynomial if there are wα ∈ C, with wα = 0 for all but finitely many α, such
that for all s,

(5.8.1) w(s) =
∑
α

wα e
(α·s)i .

The trigonometric polynomials form a subalgebra of the C-algebra of uniformly
continuous bounded functions Rn → C. Let w be a trigonometric polynomial.
Then w is a trigonometric polynomial, and for r ∈ Rn, so are the functions w+r

and w×r. Note that w extends to a complex-analytic function Cn → C, that Rew
and Imw are real analytic, and that ∂w/∂xj := (∂ Rew/∂xj) + (∂ Imw/∂xj)i for
j = 1, . . . , n is also a trigonometric polynomial. The functions s 7→ sin(α · s) and
s 7→ cos(α ·s) on Rn are real valued trigonometric polynomials. By Corollary 5.8.18
below the coefficients wα in (5.8.1) are uniquely determined by w.

If w(s) = e(α·s)i for all s, then w+r = w for all r ∈ Rn with α · r ∈ 2πZ. So if w
is a trigonometric polynomial as in (5.8.1) with wα = 0 for all α /∈ 2πZn, then w
is 1-periodic. Next we state a well-known consequence of the Stone-Weierstrass
Theorem; see [57, (7.4.2)] for the case n = 1.

Proposition 5.8.1. If v is continuous and 1-periodic, then for every ε in R> there
is a 1-periodic trigonometric polynomial w with ∥v − w∥ < ε.

Almost periodic functions. We call w almost periodic (in the sense of Bohr)
if for every ε in R> there is a trigonometric polynomial v such that ||v − w|| ⩽ ε.
If w is almost periodic, then w is uniformly continuous and bounded (as the uniform
limit of a sequence of uniformly continuous bounded functions Rn → C). If w is
almost periodic, then so are w, and w+r, w×r for r ∈ Rn.

Note that the C-algebra of uniformly continuous bounded functions Rn → C is a
Banach algebra with respect to ∥ · ∥: it is complete with respect to this norm. The
closure of its subalgebra of trigonometric polynomials with respect to this norm
is {w : w is almost perodic}, which is therefore a Banach subalgebra. In particular,
if v, w : Rn → C are almost periodic, so are v + w and vw. Moreover:

Corollary 5.8.2. Let v1, . . . , vm : Rn → C be almost periodic, let X ⊆ Cm be
closed, and suppose F : X → C is continuous with

(
v1(s), . . . , vm(s)

)
∈ X for all s.

Then the function F (v1, . . . , vm) : Rn → C is almost periodic.

Proof. Since v1, . . . , vm are bounded we can arrange thatX is compact. Let ε ∈ R>.
Then Weierstrass Approximation [57, (7.4.1)] gives a polynomial

P (x1, y1, . . . , xm, ym) ∈ C[x1, y1, . . . , xm, ym]

such that |F (z1, . . . , zm) − P (z1, z1, . . . , zm, zm)| ⩽ ε for all (z1, . . . , zm) ∈ X.
Hence ∥F (v1, . . . , vm) − P (v1, v1, . . . , vmvm)∥ ⩽ ε. It remains to note that the
function P (v1, v1, . . . , vm, vm) is almost periodic. □

Call w normal if w is bounded and for every sequence (rm) in Rn the sequence
(w+rm) of functions Rn → C has a uniformly converging subsequence. One verifies
easily that if v, w are normal, then so are the functions v+w and cv (c ∈ C); hence
by the next lemma, each trigonometric polynomial is normal:

Lemma 5.8.3. Suppose w(s) = e(α·s)i for all s. Then w is normal.
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Proof. Let (rm) be a sequence in Rn. Passing to a subsequence of (rm) we arrange
that the sequence

(
w(rm)

)
of complex numbers of modulus 1 converges. Now use

that for all l, m and all s we have |w+rl(s) − w+rm(s)| = |w(rl) − w(rm)|, and
thus ∥w+rl − w+rm∥ ⩽ |w(rl)− w(rm)|. □

Lemma 5.8.4. Let (wm) be a sequence of normal functions with ∥wm − w∥ → 0
as m→ ∞. Then w is normal.

Proof. Let (rk)k∈N be a sequence in Rn. Using normality of the wm we obtain
inductively subsequences (rk0), (rk1), . . . of (rk) such that for all m,

(
(wm)+rkm

)
converges uniformly and (rk,m+1) is a subsequence of (rkm). Then for every m,
(rm+l,m+l)l⩾0 is a subsequence of (rkm); so

(
(wm)+rkk

)
converges uniformly. Now

let ε ∈ R> be given. Take m so that ∥wm − w∥ ⩽ ε, and then take k0 so
that ∥(wm)+rkk

− (wm)+rll∥ ⩽ ε for all k, l ⩾ k0. For such k, l we have

∥w+rkk
− w+rll∥ ⩽

∥w+rkk
− (wm)+rkk

∥+ ∥(wm)+rkk
− (wm)+rll∥+ ∥(wm)+rll − w+rll∥ ⩽ 3ε.

Thus (w+rkk
) converges uniformly. □

Corollary 5.8.5 (Bochner). Every almost periodic function Rn → C is normal.

For ε ∈ R>, we say that r ∈ Rn is an ε-translation vector for w if ∥w+r−w∥ < ε.
We define an n-cube of side length ℓ ∈ R> to be a subset of Rn of the form I =
I1 × · · · × In where each I1, . . . , In is an open interval of length ℓ.

Proposition 5.8.6. If w is normal, then for all ε ∈ R> there is an ℓ = ℓ(w, ε) ∈ R>
such that every n-cube of side length ℓ contains an ε-translation vector for w.

Proof. We assume that w is bounded and show the contrapositive. Let ε ∈ R>
be such that there are n-cubes of arbitrarily large sidelength that contain no ε-
translation vector for w; to conclude that w is not normal it suffices to have a
sequence (ri)i∈N in Rn such that rj − ri is not an ε-translation vector for w, for
all i < j, since then ∥w+rj − w+ri∥ = ∥w+(rj−ri) − w∥ ⩾ ε for all i < j. Now
suppose r0, . . . , rm ∈ Rn are such that rj − ri is not an ε-translation vector for w,
for all i < j ⩽ m. Then for k = 1, . . . , n we take intervals Ik = (ak, bk) (ak < bk
in R) of equal length bk−ak > 2max

{
|r0|∞, . . . , |rm|∞

}
such that I := I1×· · ·×In

does not contain an ε-translation vector for w. Set rm+1 := 1
2 (a1+ b1, . . . , an+ bn);

then for i ⩽ m we have rm+1−ri ∈ I, hence rm+1−ri is not an ε-translation vector
for w. □

By Corollary 5.8.5, Proposition 5.8.6 applies to almost periodic w. Bohr [27] showed
conversely that if w is continuous and satisfies the conclusion of Proposition 5.8.6,
then w is almost periodic, but we do not use this elegant characterization of almost
periodicity below. We now improve Proposition 5.8.6 for almost periodic w. In the
rest of this subsection we assume that w is almost periodic.

Lemma 5.8.7. Let ε ∈ R>; then there are δ, ℓ ∈ R> such that every n-cube of
side length ℓ contains an n-cube of side length δ consisting entirely of ε-translation
vectors for w.

Proof. Uniform continuity of w yields δ1 ∈ R> such that all d ∈ Rn with |d|∞ < δ1
are (ε/3)-translation vectors for w. Take ℓ1 := ℓ(w, ε/3) as in Proposition 5.8.6,
and set δ := 2δ1, ℓ := ℓ1 + δ. Let J = a + (0, ℓ)n be a cube of side length ℓ,
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where a ∈ Rn. Take an (ε/3)-translation vector r ∈ a + (δ1, ℓ1 + δ1)
n for w. The

cube I := r+(−δ1, δ1)n of side length δ is entirely contained in J . Let p ∈ I. Then
for d := p− r we have |d|∞ < δ1, so for all s,

|w(s+ p)−w(s)| ⩽ |w(s+ d+ r)−w(s+ d)|+ |w(s+ d)−w(s)| < ε

3
+
ε

3
< ε,

hence p is an ε-translation vector for w. □

Corollary 5.8.8. Suppose w(Rn) ⊆ R, s0 ∈ Rn, and w(s0) > 0. Then there
are δ1, ℓ1 ∈ R> such that every n-cube of side length ℓ1 contains an n-cube I of side
length δ1 with w(s) ⩾ w(s0)/3 for all s ∈ I.

Proof. Let δ, ℓ be as in Lemma 5.8.7 for ε := w(s0)/3. By decreasing δ we obtain
from the uniform continuity of w that all d ∈ Rn with |d|∞ < δ/2 are ε-translation
vectors for w. Set δ1 := δ, ℓ1 := ℓ + δ/2. Let J = a − (0, ℓ1)

n with a ∈ Rn be
an n-cube of side length ℓ1; we claim that J contains an n-cube I of side length δ
with w(s) ⩾ ε for all s ∈ I. To prove this claim, consider the n-cube J0 :=
(s0 − a) + (δ/2, ℓ+ δ/2)n of side length ℓ. Our choice of δ, ℓ gives an ε-translation
vector r ∈ J0 for w such that r + (−δ/2, δ/2)n ⊆ J0. Then

I := (s0 − r) + (−δ/2, δ/2)n ⊆ s0 − J0 = a− (δ/2, ℓ+ δ/2)n ⊆ J,

and for every s ∈ I, setting d = s− s0 + r, we have |d|∞ < δ/2, so

w(s) = w(s0) +
(
w(s0 + d)− w(s0)

)
−
(
w(s+ r)− w(s)

)
⩾ w(s0)− ε− ε = ε

as required. □

Lemma 5.8.9. Suppose w(Rn) ⊆ R. Then with |s| := |s|∞,

lim inf
|s|→∞

w(s) = inf
s
w(s), lim sup

|s|→∞
w(s) = sup

s
w(s).

Proof. It suffices to prove the second equality: applying it to −w in place of w gives
the first one. Set σ := sups w(s). Let ε ∈ R>, and take s0 ∈ Rn with w(s0) >
σ − ε. By Corollary 5.8.8 applied to s 7→ v(s) := w(s) + ε − σ instead of w
there are s with arbitrarily large |s| and v(s) ⩾ v(s0)/3 > 0, hence w(s) > σ − ε.
Thus lim sup

|s|→∞
w(s) ⩾ σ; the reverse inequality holds trivially. □

The mean value. In this subsection v and w are bounded and measurable. If

(5.8.2) lim
T→∞

1

Tn

∫
[0,T ]n

w(s) ds

exists (in C), then we say that w has a mean value, and we call the quantity (5.8.2)
the mean value of w and denote it by M(w). One verifies easily that if v and w
have a mean value, then so do the functions v + w, cw (c ∈ C), and w, with

M(v + w) = M(v) +M(w), M(cw) = cM(w), and M(w) = M(w).

If w has a mean value, then |M(w)| ⩽ ∥w∥. If w and |w| have a mean value,
then |M(w)| ⩽ M(|w|). If w has a mean value and w(Rn) ⊆ R, then M(w) ∈ R,
with M(w) ⩾ 0 if w

(
(R⩾)n

)
⊆ R⩾.

Lemma 5.8.10. Let d ∈ Rn. Then w has a mean value iff w+d has a mean value,
in which case M(w) =M(w+d).
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Proof. It suffices to treat the case d = (d1, 0, . . . , 0), d1 ∈ R>. For T > d1 we have∣∣∣∣∣
∫
[0,T ]n

w+d(s) ds−
∫
[0,T ]n

w(s) ds

∣∣∣∣∣ =∣∣∣∣∣
∫
[T,d1+T ]×[0,T ]n−1

w(s) ds−
∫
[0,d1]×[0,T ]n−1

w(s) ds

∣∣∣∣∣ ⩽ 2d1∥w∥Tn−1,

and this yields the claim. □

Corollary 5.8.11. Suppose w has a mean value, and let T0 ∈ R>. If w(s) = 0
for all s ∈ (R⩾)n with |s| ⩾ T0, then M(w) = 0. If w(Rn) ⊆ R and w(s) ⩾ 0 for
all s ∈ (R⩾)n with |s| ⩾ T0, then M(w) ⩾ 0. (As before, |s| := |s|∞.)

Lemma 5.8.12. Suppose w has a mean value and w(Rn) ⊆ R; then

inf
s
w(s) ⩽ lim inf

|s|→∞
w(s) ⩽ M(w) ⩽ lim sup

|s|→∞
w(s) ⩽ sup

s
w(s).

Proof. The first and last inequalities are clear. Towards a contradiction assume L :=
lim sup|s|→∞ w(s) < M(w), and let ε = 1

2

(
M(w) − L

)
. Take T0 ∈ R> such

that w(s) ⩽ M(w) − ε for all s with |s| ⩾ T0. The previous corollary applied
to s 7→ M(w)− ε− w(s) instead of w implies M(w) ⩽ M(w)− ε, a contradiction.
This shows the third inequality; the second inequality is proved in a similar way. □

Note that if w has a mean value, then so does every v having the same restriction
to (R⩾)n as w, with M(v) =M(w).

Lemma 5.8.13. Let (vm) be a sequence of bounded measurable functions Rn → C
with a mean value, such that limm→∞∥vm − w∥ = 0. Then w has a mean value,
and lim

m→∞
M(vm) =M(w).

Proof. Let ε ∈ R> be given, and take m with ||vm − w|| ⩽ ε. Since v := vm has a
mean value, we have T0 ∈ R> such that for all T1, T2 ⩾ T0,∣∣∣∣∣ 1

Tn1

∫
[0,T1]n

v(s) ds− 1

Tn2

∫
[0,T2]n

v(s) ds

∣∣∣∣∣ ⩽ ε.

Then for such T1, T2 we have∣∣∣∣∣ 1

Tn1

∫
[0,T1]n

w(s) ds− 1

Tn2

∫
[0,T2]n

w(s) ds

∣∣∣∣∣ ⩽ 1

Tn1

∫
[0,T1]n

∣∣w(s)− v(s)
∣∣ ds+∣∣∣∣∣ 1

Tn1

∫
[0,T1]n

v(s) ds− 1

Tn2

∫
[0,T2]n

v(s) ds

∣∣∣∣∣+ 1

Tn2

∫
[0,T2]n

∣∣w(s)− v(s)
∣∣ ds

where each term on the right of ⩽ is ⩽ ε. Hence the limit (5.8.2) exists. To
show lim

m→∞
M(vm) =M(w), use |M(vm)−M(w)| = |M(vm−w)| ⩽ ∥vm−w∥. □

The mean value of an almost periodic function. In this subsection v and w
are almost periodic. As before, α ranges over Rn.

Lemma 5.8.14. Suppose w(s) = ei(α·s) for all s. Then w has a mean value,
with M(w) = 1 if α = 0 and M(w) = 0 otherwise.
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Proof. This is obvious for α = 0. Assume α ̸= 0. Then∫
[0,T ]n

ei(α·s) ds = T |{j:αj=0}| ·
∏

j,αj ̸=0

eiαjT −1

iαj
, so

∣∣∣∣∣ 1

Tn

∫
[0,T ]n

ei(α·s) ds

∣∣∣∣∣ ⩽ 1

T |{j: αj ̸=0}| ·
∏

j,αj ̸=0

2

|αj |
,

and thus 1
Tn

∫
[0,T ]n

ei(α·s) ds→ 0 as T → ∞. □

It follows that every trigonometric polynomial w has a mean value. Using also
Lemma 5.8.13, every almost periodic function Rn → C has a mean value.

Lemma 5.8.15. Suppose u : Rn → C is continuous and 1-periodic. Then u is
almost periodic with mean value M(u) =

∫
[0,1]n

u(s) ds.

Proof. By Proposition 5.8.1, u is almost periodic. Now use that for T ∈ N⩾1,∫
[0,T ]n

u(s) ds = Tn
∫
[0,1]n

u(s) ds. □

Lemma 5.8.16. Let r ∈ (R×)n. Then the almost periodic function w×r has the
same mean value as w.

Proof. Choose a sequence (wm) of trigonometric polynomials with ∥wm − w∥ → 0
as m→ ∞. Then (wm)×r is a trigonometric polynomial and ∥(wm)×r −w×r∥ → 0
asm→ ∞. Lemma 5.8.14 givesM

(
(wm)×r

)
=M(wm); now use Lemma 5.8.13. □

Proposition 5.8.17 (Bohr). Suppose w(Rn) ⊆ R⩾. If M(w) = 0, then w = 0.

Proof. Suppose s0 ∈ Rn and w(s0) > 0. We claim that thenM(w) > 0. Take δ1, ℓ1
as in Corollary 5.8.8. Let k range over Nn. Then

∫
ℓ1k+[0,ℓ1]n

w(s) ds ⩾ δn1w(s0)/3

for all k, and hence for m ⩾ 1 and T = ℓ1m:

1

Tn

∫
[0,T ]n

w(s) ds =
1

Tn

∑
|k|<m

∫
ℓ1k+[0,ℓ1]n

w(s) ds ⩾ (δ1/ℓ1)
nw(s0)/3.

Thus M(w) ⩾ (δ1/ℓ1)
nw(s0)/3 > 0. □

By Proposition 5.8.17, the map (v, w) 7→ ⟨v, w⟩ := M(vw) is a positive defi-
nite hermitian form on the C-linear space of almost periodic functions Rn → C.
Lemma 5.8.10 yields ⟨v+d, w+d⟩ = ⟨v, w⟩ for d ∈ Rn. By Lemma 5.8.14, the
family

(
s 7→ e(α·s)i

)
α

of trigonometric polynomials is orthonormal with respect

to ⟨ , ⟩. In particular, for a trigonometric polynomial w as in (5.8.1) we have wα =
⟨w, e(α·s)i⟩, and thus:

Corollary 5.8.18. If w = 0, then wα = 0 for all α.

Corollary 5.8.19. Suppose w is a trigonometric polynomial as in (5.8.1). Then

w is 1-periodic ⇐⇒ wα = 0 for all α /∈ 2πZn.

Proof. If w is 1-periodic, then for k ∈ Zn we have

wα = ⟨w, e(α·s)i⟩ = ⟨w+k, (e
(α·s)i)+k⟩ = e−(α·k)i⟨w, e(α·s)i⟩ = e−(α·k)i wα,

which for wα ̸= 0 gives α · k ∈ 2πZ for all k ∈ Zn, and thus α ∈ 2πZn. This yields
the forward implication, and the backward direction is obvious. □
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In the next corollary we equip Rn with the lexicographic ordering.

Corollary 5.8.20. Suppose w is a trigonometric polynomial. Then w(Rn) ⊆ R iff
there are c ∈ R and uα, vα ∈ R for α > 0, with uα = vα = 0 for all but finitely
many α > 0, such that for all s ∈ Rn,

(5.8.3) w(s) = c+
∑
α>0

(
uα cos(α · s) + vα sin(α · s)

)
.

Moreover, in this case c and the coefficients uα, vα are unique, and w is 1-periodic
iff uα = vα = 0 for all α > 0 with α /∈ 2πZn.

Proof. Clearly if w has stated form, then w(Rn) ⊆ R. For the converse, sup-
pose w(Rn) ⊆ R, and w is given as in (5.8.1). Then for s ∈ Rn,∑

α

wα e
−(α·s)i = w(s) = w(s) =

∑
α

wα e
(α·s)i,

and hence w0 ∈ R and wα = w−α for α > 0, by Corollary 5.8.18, so

w(s) = w0 +
∑
α>0

(
wα e

(α·s)i +wα e
−(α·s)i ) (s ∈ Rn).

Put c := w0 and uα = Re(2wα), vα := Im(2wα) for α > 0. Then (5.8.3) holds
for s ∈ Rn. The rest follows from Corollaries 5.8.18 and 5.8.19. □

5.9. Uniform Distribution Modulo One

In this section we collect some basic facts about uniform distribution modulo 1 of
functions as needed later. Our main references are [118, Chapter 1, §9] and [36].

Natural density. Below R is given its usual Lebesgue measure, measurable means
Lebesgue-measurable, and µ denotes the Lebesgue measure on R. By an “interval”
we mean here a set I = [a, b) where a, b ∈ R, a < b, so µ(I) = b− a. In the rest of
this subsection I is an interval and X, Y are measurable subsets of R. We let

ρ(I,X) :=
µ(I ∩X)

µ(I)
∈ [0, 1]

be the density of X in I. So ρ(I,X) = 0 if I ∩X = ∅ and ρ(I,X) = 1 if I ⊆ X,
and ρ(I + d,X + d) = ρ(I,X) for d ∈ R. Clearly ρ(I,X) ⩽ ρ(I, Y ) if X ⊆ Y , and
if (Xn) is a family of pairwise disjoint measurable subsets of R and X =

⋃
nXn,

then ρ(I,X) =
∑
n ρ(I,Xn).

Let X△Y := (X \Y )∪ (Y \X) be the symmetric difference of X, Y . If µ(X) <∞
and µ(Y ) <∞, then µ(X)− µ(Y ) ⩽ µ(X \ Y ) and |µ(X)− µ(Y )| ⩽ µ(X△Y ), so

Lemma 5.9.1. |ρ(I,X)− ρ(I, Y )| ⩽ ρ(I,X△Y ).

Moreover:

Lemma 5.9.2. Let d ∈ R; then
∣∣ρ(I,X)− ρ(I + d,X)

∣∣ ⩽ |d|/µ(I).

Proof. We need to show
∣∣µ(I ∩ X) − µ

(
(I + d) ∩ X

)∣∣ ⩽ |d|. Replacing I and d
by I + d and −d, if necessary, we arrange d ⩾ 0. Then

−µ(I) = −µ(I + d) ⩽ µ(I ∩X)− µ
(
(I + d) ∩X

)
⩽ µ(I),
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hence we are done if µ(I) ⩽ d. Suppose µ(I) > d and let I = [a, b), a, b ∈ R;
so µ(I) = b− a. Then I \ (I + d) = [a, a+ d) and (I + d) \ I = [b, b+ d), hence

−d = −µ
(
(I + d) \ I

)
⩽ µ(I ∩X)− µ

(
(I + d) ∩X

)
⩽ µ

(
I \ (I + d)

)
= d

as required. □

Let ρ range over [0, 1] and T over R>. Lemma 5.9.2 gives:

Corollary 5.9.3. The following conditions on X are equivalent:

(i) limT→∞ ρ
(
[0, T ), X

)
= ρ;

(ii) for all a ∈ R, limT→∞ ρ
(
[a, a+ T ), X

)
= ρ;

(iii) for some a ∈ R, limT→∞ ρ
(
[a, a+ T ), X

)
= ρ.

We say that X has natural density ρ at +∞ (short: X has density ρ) if one of the
equivalent conditions in the corollary above holds, and in this case we set ρ(X) := ρ.
If X has an upper bound in R, then ρ(X) = 0, whereas if X contains a half-
line R⩾a (a ∈ R), then ρ(X) = 1. By Lemma 5.9.1 we have:

Corollary 5.9.4. If X has density ρ and X△Y has density 0, then Y has density ρ.

In particular, the density of X only depends on the germ of X at +∞, in the
following sense: if X ∩R>a = Y ∩R>a for some a ∈ R, then X has density ρ iff Y
has density ρ. The collection of measurable subsets of R that have a density is a
boolean algebra of subsets of R, and X 7→ ρ(X) is a finitely additive measure on
this boolean algebra taking values in [0, 1]. If X has a density and d ∈ R, then X+d
has the same density.

Uniform distribution mod 1. Let f : R⩾a → R (a ∈ R) be measurable. For t ∈ R
we let {t} be the fractional part of t: the element of [0, 1) such that t ∈ Z + {t}.
Let Y ⊆ [0, 1) be measurable; then Y + Z is measurable and hence so is

f−1(Y + Z) =
{
t ∈ R⩾a : {f(t)} ∈ Y

}
.

For a ⩽ b < c we have

µ
(
[b, c) ∩ f−1(Y + Z)

)
=

∫ c

b

χY
(
{f(t)}

)
dt.

Let ρ ∈ R; then f−1(Y + Z) has density ρ iff for some b ⩾ a we have

lim
T→∞

1

T

∫ b+T

b

χY
(
{f(t)}

)
dt = ρ,

and in this case the displayed identity holds for all b ⩾ a. Hence if f−1(Y +Z) has
density ρ and g : R⩾b → R (b ∈ R) is measurable with the same germ at +∞ as f ,
then g−1(Y + Z) also has density ρ.

Definition 5.9.5. We say that f is uniformly distributed mod 1 (abbreviated:
u.d. mod 1) if for every interval I ⊆ [0, 1) the set f−1(I + Z) has density µ(I).

The function f : R⩾ → R with f(t) = t for all t ⩾ 0 has f−1(I + Z) = I + N for I
as above, so f is u.d mod 1. By the remarks above, if f is u.d. mod 1, then so is
any measurable function R⩾b → R (b ∈ R) with the same germ at +∞ as f . If f is
u.d. mod 1 and eventually increasing or eventually decreasing, then |f(t)| → +∞
as t → +∞. If f is u.d. mod 1, then so are the functions t 7→ k · f(t) : R⩾a → R
for k ∈ Z̸=, and t 7→ f(d+ t) : R⩾(a−d) → R with d ∈ R.
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The Weyl Criterion. In this subsection we fix a measurable function f : R⩾ → R.
For a bounded measurable function w : [0, 1] → R we consider the relation

(W) lim
T→∞

1

T

∫ T

0

w
(
{f(t)}

)
dt =

∫ 1

0

w(s) ds.

Then f is u.d. mod 1 iff (W) holds whenever w = χI is the characteristic function
of some interval I ⊆ [0, 1]. It follows that if f is u.d. mod 1 and w : [0, 1] → R is
a step function (that is, an R-linear combination of characteristic functions χI of
intervals I ⊆ [0, 1]), then (W) holds.

Lemma 5.9.6. Let w : [0, 1] → R be bounded and measurable, and suppose that for
every ε ∈ R> there are bounded measurable functions w1, w2 : [0, 1] → R such that

(i) w1 ⩽ w ⩽ w2 on [0, 1),

(ii)
∫ 1

0

(
w2(s)− w1(s)

)
ds ⩽ ε, and

(iii) for i = 1, 2, (W) holds for wi instead of w.

Then (W) holds.

Proof. Given ε ∈ R> and w1, w2 : [0, 1] → R satisfying (i), (ii), (iii), we have∫ 1

0

w(s) ds− ε ⩽
∫ 1

0

w1(s) ds = lim
T→∞

1

T

∫ T

0

w1

(
{f(t)}

)
dt

⩽ lim inf
T→∞

1

T

∫ T

0

w
(
{f(t)}

)
dt ⩽ lim sup

T→∞

1

T

∫ T

0

w
(
{f(t)}

)
dt

⩽ lim
T→∞

1

T

∫ T

0

w2

(
{f(t)}

)
dt =

∫ 1

0

w2(s) ds

⩽
∫ 1

0

w(s) ds+ ε. □

Proposition 5.9.7. f is u.d. mod 1 iff (W) holds for all continuous w : [0, 1] → R.

Proof. If w : [0, 1] → R is continuous, then partitioning [0, 1) into intervals as in Rie-
mann integration we obtain for any ε ∈ R> step functions w1, w2 : [0, 1] → R such

that w1 ⩽ w ⩽ w2 on [0, 1) and
∫ 1

0

(
w2(s)−w1(s)

)
ds ⩽ ε. Moreover, if I ⊆ [0, 1) is

an interval, then for any ε ∈ R> there are continuous functions w1, w2 : [0, 1] → R
with w1 ⩽ χI ⩽ w2 and

∫ 1

0

(
w2(s) − w1(s)

)
ds ⩽ ε. The proposition follows from

these facts and Lemma 5.9.6. □

It is convenient to extend the notion of mean value to bounded measurable func-
tions g : R⩾ → C: for such g, if lim

T→∞
1
T

∫ T
0
g(t) dt exists in C, then we say that g

has mean value M(g) := lim
T→∞

1
T

∫ T
0
g(t) dt.

Corollary 5.9.8. The following conditions on f are equivalent:

(i) f is u.d. mod 1;

(ii) lim
T→∞

1

T

∫ T

0

(w◦f)(t) dt =
∫ 1

0

w(s) ds for all continuous 1-periodic functions

w : R → C;
(iii) for every continuous 1-periodic w : R → C, the function w ◦ f : R⩾ → C

has mean value M(w ◦ f) =M(w).
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Proof. We first show (i)⇔ (ii). For the forward direction, apply Proposition 5.9.7 to
the real and imaginary parts of w, using w({t}) = w(t) for t ∈ R and 1-periodic w.
The converse follows from Lemma 5.9.6 and the observation that if I ⊆ [0, 1) is an
interval, then for any ε ∈ R> we can take continuous functions w1, w2 : [0, 1] → R
with w1 ⩽ χI ⩽ w2 and

∫ 1

0

(
w2(s)−w1(s)

)
ds ⩽ ε as in the proof of the proposition

above, such that in addition wi(0) = wi(1) for i = 1, 2, and then vi : R → R given
by vi(t) = wi({t}) for t ∈ R (i = 1, 2) is continuous and 1-periodic. The equivalence
of (ii) and (iii) is immediate from Lemma 5.8.15. □

Theorem 5.9.9 (Weyl [207]). The function f is u.d. mod 1 iff for all n ⩾ 1 we
have

(5.9.1) lim
T→∞

1

T

∫ T

0

e2πinf(t) dt = 0.

Proof. The forward direction follows from Corollary 5.9.8. Conversely, suppose
that (5.9.1) holds for all n ⩾ 1. Note that then for all k ∈ Z̸=,

lim
T→∞

1

T

∫ T

0

e2πikf(t) dt = 0.

Thus by Corollary 5.8.19, every 1-periodic trigonometric polynomial v : R → C gives
a function v◦f with mean valueM(v◦f) =M(v). Now let w : R → C be continuous
and 1-periodic. Proposition 5.8.1 yields a sequence (vm) of 1-periodic trigonometric
polynomials R → C with ∥vm−w∥ → 0 asm→ ∞. SoM(vm) →M(w) asm→ ∞,
by Lemma 5.8.13. Extend f to a measurable function R → R, also denoted by f .
Then ∥(vm ◦ f) − (w ◦ f)∥ → 0 as m → ∞. Hence by Lemma 5.8.13 again,
w ◦ f has a mean value and M(vm) = M(vm ◦ f) → M(w ◦ f) as m → ∞.
Therefore M(w ◦ f) =M(w). Hence f is u.d. mod 1 by Corollary 5.9.8. □

Remark. Let w(s) = e2πis (s ∈ R) and let g : R → R be a continuous function
whose restriction to R⩾ is u.d. mod 1. By Corollary 5.9.8, w ◦ g has a mean value.
When is w ◦ g almost periodic? This happens only for very special g: if w ◦ g
is almost periodic, then there are r ∈ R and an almost periodic h : R → R such
that g(t) = rt + h(t) for all t ∈ R, by a theorem of Bohr [26]. Moreover, [143,
Theorem 1] says that if h : R → R is almost periodic, then for all but countably
many r ∈ R the function t 7→ rt+h(t) : R⩾ → R is u.d. mod 1. These facts are not
used later.

Uniform distribution mod 1 of differentiable functions. Let f : R⩾a → R
(a ∈ R) be continuously differentiable. We give here sufficient conditions for f
to be u.d. mod 1 and for f not to be u.d. mod 1. First a lemma in the spirit of
Corollary 5.7.4:

Lemma 5.9.10. Let F : R> → R be twice continuously differentiable such that
F (t)/t→ 0 as t→ +∞. Assume t 7→ tF ′′(t) : R> → R is bounded. Then F ′(t) → 0
as t→ +∞.

Proof. Let t, η > 0. Taylor’s Theorem [16, Theorem 19.9] yields θ ∈ [0, 1] such that

F (t+ η)− F (t) = ηF ′(t) + 1
2η

2F ′′(t+ θη),

and thus

F ′(t) =
F (t+ η)− F (t)

η
− 1

2ηF
′′(t+ θη).
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TakeM ∈ R> such that |tF ′′(t)| ⩽M for all t ∈ R>. Let ε ∈ R>, and set δ := ε/M .
Then for all t > 0, η = δt yields θ = θt ∈ [0, 1] with

F ′(t) =

(
F (t+ δt)

t+ δt
· 1 + δ

δ
− F (t)

t
· 1
δ

)
− δ

2(1 + θδ)
(t+ θδt)F ′′(t+ θδt).

The difference in the parentheses tends to zero as t → ∞ whereas the remaining
term is ⩽ ε/2 in absolute value for all t ∈ R>. □

Proposition 5.9.11 (Kuipers-Meulenbeld [117]). Suppose the function

t 7→ f ′(t)t : R⩾a → R

is bounded. Then f is not u.d. mod 1.

Proof. Replacing f by t 7→ f(a + t) : R⩾ → R we arrange a = 0. Assume towards
a contradiction that (5.9.1) holds for n = 1, and consider F : R> → R given by

F (t) := Re

(∫ t

0

e2πif(s) ds

)
=

∫ t

0

cos
(
2πf(s)

)
ds.

Then F is twice continuously differentiable with

F ′(t) = cos
(
2πf(t)

)
, F ′′(t) = −2πf ′(t) sin

(
2πf(t)

)
,

and F (t)/t → 0 as t → ∞ and t 7→ tF ′′(t) : R> → R is bounded. Hence by Lem-
ma 5.9.10 we have cos

(
2πf(t)

)
→ 0 as t → ∞; likewise we show sin

(
2πf(t)

)
→ 0

as t→ ∞. Hence e2πif(t) → 0 as t→ ∞, a contradiction. □

In the next proposition we assume a = 0 and consider the continuously differentiable
function t 7→ g(t) := f(et) : R → R (so f(t) = g(log t) for t ∈ R>).

Proposition 5.9.12 (Tsuji [201]). Suppose g and g′ are eventually strictly increas-
ing with g(t)/t→ +∞ as t→ +∞. Then f is u.d. mod 1.

Proof. Let n ⩾ 1; we claim that (5.9.1) holds. The continuous functions

t 7→ φ(t) := 2πnf(t) : R⩾ → R,
t 7→ γ(t) := φ′(t)t = 2πn g′(log t) : R> → R

are eventually strictly increasing. We have φ(t)/ log t → +∞ as t → +∞. There-
fore γ(t) → +∞ as t→ +∞: otherwise φ′(t) ⩽M/t for all t ⩾ b, and some b,M > 0,
and then integration gives φ(t) = O(log t) as t→ +∞, a contradiction.

Take a0 ∈ R> such that φ and γ are strictly increasing on R⩾a0 and γ(a0) > 0.
Set ρ0 = φ(a0), and take η : R⩾ρ0 → R⩾a0 so that (η ◦ φ)(t) = t for t ∈ R⩾a0 .
Then η′

(
φ(t)

)
> 0 and γ(t) = η

(
φ(t)

)
/η′
(
φ(t)

)
for t > a0. Hence the function

u 7→ η†(u) := η′(u)/η(u) : R>ρ0 → R>

is strictly decreasing with lim
u→+∞

η†(u) = 0. Let now T > a0 and consider

I(T ) :=

∫ T

a0

sinφ(t) dt.

Set ρT = φ(T ), and let τ ∈ (ρ0, ρT ). Substituting u = φ(t) gives

I(T ) =

∫ ρT

ρ0

η′(u) sinu du =

∫ τ

ρ0

η′(u) sinu du+

∫ ρT

τ

η(u)η†(u) sinu du.

289



Two applications of the Second Mean Value Theorem for Integrals [16, Theo-
rem 23.7] yield first τ2 and then τ1 such that τ ⩽ τ1 ⩽ τ2 ⩽ ρT and∫ ρT

τ

η(u)η†(u) sinu du = η†(τ)

∫ τ2

τ

η(u) sinu du = η†(τ)η(τ2)

∫ τ2

τ1

sinu du,

hence ∫ ρT

τ

η(u)η†(u) sinu du = η†(τ)C where |C| ⩽ 2η(ρT ) = 2T .

Let now ε ∈ R> be given. Take τ > ρ0 so large that η†(τ) ⩽ ε/4. Then for T > a0
so large that φ(T ) > τ , and∣∣∣∣∫ τ

ρ0

η′(u) sinu du

∣∣∣∣ ⩽ εT/2

we have |I(T )| ⩽ εT . Thus as T → ∞ we have

1

T

∫ T

0

sinφ(t) dt =
1

T

∫ a0

0

sinφ(t) dt+
I(T )

T
→ 0.

Likewise, 1
T

∫ T
0
cosφ(t) dt→ 0 as T → ∞. Thus (5.9.1) is satisfied. □

Theorem 5.9.13 (Boshernitzan [36]). Suppose the germ of f , also denoted by f ,
lies in a Hardy field H. Then: f is u.d. mod 1 ⇐⇒ f ≻ log x.

Proof. By increasing H we arrange log x ∈ H. The claim is obvious if f ≼ 1, since
then f is neither ≻ log x nor u.d. mod 1. So suppose f ≻ 1; then f ≻ log x iff f ′ ≻
1/x. If f ′ ≼ 1/x, then f is not u.d. mod 1 by Proposition 5.9.11. Suppose f ′ ≻ 1/x;
to show that f is u.d. mod 1 we replace f by t 7→ f(a + t) : R⩾ → R and H
byH◦(a+x) to arrange a = 0. Replacing f by −f if necessary we also arrange f > 0
in H. Then f(t) → +∞ as t→ +∞, hence the function t 7→ g(t) := f(et) : R → R
is eventually strictly increasing and its germ, also denoted by g, lies in some Hardy
field and satisfies g ≻ x; thus g′ ≻ 1, hence t 7→ g′(t) : R → R is also eventually
strictly increasing. Thus f is u.d. mod 1 by Proposition 5.9.12. □

In particular, if f is u.d. mod 1 and its germ lies in a Hardy field, then αf is
u.d. mod 1 for every α ∈ R×.

Uniform distribution mod 1 in higher dimensions. In this subsection n ⩾ 1,
Rn is equipped with its usual Lebesgue measure µn, and measurable for a subset
of Rn means measurable with respect to µn. Let a ∈ R and consider measurable
functions f1, . . . , fn : R⩾a → R, which we combine into a single map

f := (f1, . . . , fn) : R⩾a → Rn.
By a box (in Rn) we mean a set I = I1 × · · · × In where I1, . . . , In are intervals,
so µn(I) = µ(I1) · · ·µ(In) and f−1(I + Zn) =

⋂n
j=1 f

−1
j (Ij + Z) is measurable.

Definition 5.9.14. We say that f is uniformly distributed mod 1 (abbreviated:
u.d. mod 1) if for every box I ⊆ [0, 1)n the set f−1(I + Zn) has density µn(I).

For s = (s1, . . . , sn) ∈ Rn, set {s} :=
(
{s1}, . . . , {sn}

)
∈ [0, 1)n. With this notation,

f is u.d. mod 1 iff for every box I ⊆ [0, 1)n we have

lim
T→∞

1

T

∫ a+T

a

χI
(
{f(t)}

)
dt = µn(I).
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Let b ∈ R⩾a, d ∈ R. Then f is u.d. mod 1 iff the restriction of f to R⩾b is
u.d. mod 1, and if f is u.d. mod 1, then so is t 7→ f(d+ t) : R⩾(a−d) → Rn.

In the rest of this subsection we assume a = 0. Proposition 5.9.7 and its Corol-
lary 5.9.8 generalize to this setting:

Proposition 5.9.15. The map f is u.d. mod 1 if and only if

lim
T→∞

1

T

∫ T

0

w
(
{f(t)}

)
dt =

∫
[0,1]n

w(s) ds

for every continuous function w : [0, 1]n → R.

Proof. First we use the proof of Lemma 5.9.6 to obtain the analogue of that lemma
for bounded measurable functions w : [0, 1]n → R. Now, given a continuous func-
tion w : [0, 1]n → R and ε ∈ R>, there are R-linear combinations w1, w2 : [0, 1]

n → R
of characteristic functions of pairwise disjoint boxes contained in [0, 1]n such that
w1 ⩽ w ⩽ w2 on [0, 1)n and

∫
[0,1]n

(
w2(s)− w1(s)

)
ds ⩽ ε. This gives one direction.

Next, let I = I1 × · · · × In ⊆ [0, 1)n be a box and ε ∈ R>. For j = 1, . . . , n we
have continuous functions w1j , w2j : [0, 1] → R⩾ such that

0 ⩽ w1j ⩽ χIj ⩽ w2j ⩽ 1 and

∫ 1

0

(
w2j(t)− w1j(t)

)
dt ⩽ ε/2n.

For s = (s1, . . . , sn) ∈ [0, 1]n set wi(s) := wi1(s1) · · ·win(sn). Then the func-
tions w1, w2 : [0, 1]

n → R are continuous with

w1 ⩽ χI ⩽ w2 and

∫
[0,1]n

(
w2(s)− w1(s)

)
ds ⩽ ε.

The proposition follows from these facts just as in the proof of Proposition 5.9.7. □

As Proposition 5.9.7 led to Corollary 5.9.8, so does Proposition 5.9.15 give:

Corollary 5.9.16. The following conditions on f are equivalent:

(i) the map f is u.d. mod 1;

(ii) lim
T→∞

1

T

∫ T

0

(w ◦ f)(t) dt =

∫
[0,1]n

w(s) ds for every continuous 1-periodic

function w : Rn → C;
(iii) for every continuous 1-periodic w : Rn → C, the function w ◦ f : R⩾ → C

has mean value M(w ◦ f) =M(w).

Corollary 5.9.17. Let w : Rn → R⩾ be 1-periodic and continuous, and suppose f
is u.d. mod 1. Then

lim sup
t→∞

w
(
f(t)

)
= 0 ⇐⇒ lim sup

|s|→∞
w(s) = 0 ⇐⇒ w = 0.

Proof. Corollary 5.9.16 gives M(w ◦ f) = M(w), and ∥w∥ = lim sup|s|→∞ w(s)

by Lemma 5.8.9. One verifies easily that M(w ◦ f) ⩽ lim supt→∞ w
(
f(t)

)
. The

equivalences now follow from these facts and Proposition 5.8.17. □

Corollary 5.9.18. Let w : Rn → R be 1-periodic and continuous, and suppose f
is u.d. mod 1. Then lim sup

t→∞
w
(
f(t)

)
= sups w(s) and lim inf

t→∞
w
(
f(t)

)
= infs w(s).
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Proof. Let a ∈ R, a < sups w(s). Then w = u + v where u, v : Rn → R are given
by u(s) := min

(
a,w(s)

)
for all s. Then u, and thus v, is 1-periodic and continuous.

Now v ⩾ 0, but v ̸= 0, so lim supt→∞ v
(
f(t)

)
> 0 by Corollary 5.9.17. This

gives ε > 0 with v(f(t)) > ε for arbitrarily large t. For such t we have u
(
f(t)

)
= a:

u
(
f(t)

)
< a would give u

(
f(t)

)
= w

(
f(t)

)
, so v

(
f(t)

)
= 0. Hence w

(
f(t)

)
=

u
(
f(t)

)
+ v
(
f(t)

)
> a+ ε for such t. The other equality follows likewise. □

Weyl’s Theorem 5.9.9 also generalizes:

Theorem 5.9.19. The map f is u.d. mod 1 if and only if for all k ∈ (Zn)̸=,

lim
T→∞

1

T

∫ T

0

e2πi(k·f(t)) dt = 0.

Proof. Like that of Theorem 5.9.9, using 5.9.16 instead of 5.9.8. □

Theorems 5.9.9 and 5.9.19 yield:

Corollary 5.9.20. The map f is u.d. mod 1 if and only if for all k ∈ (Zn)̸=, the
function t 7→ k · f(t) : R⩾ → R is u.d. mod 1.

Strengthening uniform distribution. In this subsection n ⩾ 1, the functions
f1, . . . , fn : R⩾ → R are measurable, f = (f1, . . . , fn) : R⩾ → Rn is the resulting
map, and for α ∈ Rn we set αf := (α1f1, . . . , αnfn) : R⩾ → Rn.

Lemma 5.9.21. The following conditions on f are equivalent:

(i) αf is u.d. mod 1 for all α ∈ (R×)n;

(ii) lim
T→∞

1

T

∫ T

0

e2πi(β·f(t)) dt = 0 for all β ∈ (Rn)̸=;

(iii) for every almost periodic w : Rn → C, the function w ◦ f : R⩾ → C has
mean value M(w ◦ f) =M(w).

Proof. Assume (i); let β ∈ (Rn)̸=. For i = 1, . . . , n set αi := 1, ki := 0 if βi = 0
and αi := βi, ki := 1 if βi ̸= 0. Then k = (k1, . . . , kn) ∈ (Zn) ̸=, α = (α1, . . . , αn)
is in (R×)n, and β · f(t) = k · (αf)(t) for all t ∈ R. Now (ii) follows from The-
orem 5.9.19 applied to αf in place of f . The implication (ii) ⇒ (iii) follows as
in the proof of Theorem 5.9.9, using the definition of almost periodicity instead
of Proposition 5.8.1. Finally, assume (iii), and let α ∈ (R×)n; to show that αf is
u.d. mod 1 we verify that condition (iii) in Corollary 5.9.16 holds for αf in place
of f . Thus let w : Rn → C be continuous and 1-periodic. By (iii) applied to the
almost periodic function

s 7→ w×α(s) = w(αs) : Rn → C

in place of w, the function w×α ◦ f = w ◦ (αf) : R⩾ → C has a mean value
andM(w×α ◦f) =M(w×α); now use thatM(w×α) =M(w) by Lemma 5.8.16. □

We say that f is uniformly distributed (abbreviated: u.d.) if it satisfies one of
the equivalent conditions in Lemma 5.9.21. This lemma also yields:

Corollary 5.9.22. The map f is u.d. if and only if for all β ∈ (Rn)̸=, the func-
tion t 7→ β · f(t) : R⩾ → R is u.d. mod 1.

The proof of the next result is like that of Corollary 5.9.17, using Lemma 5.9.21
instead of Corollary 5.9.16:
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Corollary 5.9.23. Suppose w : Rn → R⩾ is almost periodic and f is u.d. Then

lim sup
t→∞

w
(
f(t)

)
= 0 ⇐⇒ lim sup

|s|→∞
w(s) = 0 ⇐⇒ w = 0.

Application to Hardy fields. In this subsection f1, . . . , fn : R⩾ → R with n ⩾ 1
are continuous, their germs, denoted also by f1, . . . , fn, lie in a common Hardy
field, and f := (f1, . . . , fn) : R⩾ → Rn. Theorem 5.9.13 with Corollary 5.9.20 gives:

Corollary 5.9.24 (Boshernitzan). We have the following equivalence:

f is u.d. mod 1 ⇐⇒ k1f1 + · · ·+ knfn ≻ log x for all (k1, . . . , kn) ∈ (Zn)̸=.

Combining Theorem 5.9.13 with Corollary 5.9.22 yields likewise:

Corollary 5.9.25. We have the following equivalence:

f is u.d. ⇐⇒ α1f1 + · · ·+ αnfn ≻ log x for all (α1, . . . , αn) ∈ (Rn)̸=.

In particular, if log x ≺ f1 ≺ · · · ≺ fn, then f is u.d.

Here is an immediate application of Corollary 5.9.24:

Corollary 5.9.26 (Weyl). Let λ1, . . . , λn ∈ R. Define g : R⩾ → Rn by g(t) =
(λ1t, . . . , λnt). Then g is u.d. mod 1 iff λ1, . . . , λn are Q-linearly independent.

We now get to the result that we actually need in Section 5.10:

Proposition 5.9.27. Suppose w : Rn → R⩾ is almost periodic, 1 ≺ f1 ≺ · · · ≺ fn,
and lim sup

t→+∞
w
(
f(t)

)
= 0. Then w = 0.

Proof. We first arrange f1 > R, replacing f1, . . . , fn and w by −f1, . . . ,−fn and
the function s 7→ w(−s) : Rn → R⩾, if f1 < R. Pick a ⩾ 0 such that the restriction
of f1 to R⩾a is strictly increasing, set b := f1(a), and let f inv1 : R⩾b → R be
the compositional inverse of this restriction. Set gj(t) := (fj ◦ f inv1 )(t) for t ⩾ b
and j = 1, . . . , n and consider the map

g = (g1, . . . , gn) = f ◦ f inv1 : R⩾b → Rn.

The germs of g1, . . . , gn, denoted by the same symbols, lie in a common Hardy
field and satisfy x = g1 ≺ g2 ≺ · · · ≺ gn. Now f inv1 is strictly increasing and
moreover f inv1 (t) → +∞ as t→ +∞, so

lim sup
t→∞

w
(
f(t)

)
= lim sup

t→∞
w
(
f
(
f inv1 (t)

))
= lim sup

t→∞
w
(
g(t)

)
= 0.

Thus replacing f1, . . . , fn by continuous functions R⩾ → R with the same germs
as g1, . . . , gn, we arrange x = f1 ≺ f2 ≺ · · · ≺ fn. Then f is u.d. by Corollary 5.9.25.
Now use Corollary 5.9.23. □

The next three results are not used later but included for their independent interest.

Corollary 5.9.28. Assume w : Rn → R is almost periodic and 1 ≺ f1 ≺ · · · ≺ fn.
Then lim sup

t→∞
w
(
f(t)

)
= sups w(s) and lim inf

t→∞
w
(
f(t)

)
= infs w(s).

Proof. Let a ∈ R, a < sups w(s). Then w = u + v where u, v : Rn → R are given
by u(s) := min

(
a,w(s)

)
for all s. Then u, and thus v, is almost periodic by Corol-

lary 5.8.2. Now argue as in the proof of Corollary 5.9.18, using Proposition 5.9.27
instead of Corollary 5.9.17. □
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Corollary 5.9.29. If w : Rn → C is almost periodic and 1 ≺ f1 ≺ · · · ≺ fn, then

lim
t→∞

w
(
f(t)

)
exists in C ⇐⇒ w is constant.

Proof. Apply the previous corollary to the real and imaginary part of w. □

Finally, we use these results to reprove [101, Theorem 8]. Given α = (α1, . . . , αn) ∈
Cn we put eα := (eα1 , . . . , eαn) ∈ Cn. Let m ⩾ 1 and set

S :=
{
(z1, . . . , zm) ∈ Cm : |z1| = · · · = |zm| = 1

}
.

Corollary 5.9.30. Suppose 1 ≺ f1 ≺ · · · ≺ fn. Let φ : S → R be continuous
and let k1, . . . , kn ∈ N⩾1 with k1 + · · · + kn = m and λj = (λj1, . . . , λjkj ) ∈ Rkj
for j = 1, . . . , n be such that λj1, . . . , λjkj are Q-linearly independent. Then

lim sup
t→∞

φ
(
eif1(t)λ1 , . . . , eifn(t)λn

)
= maxφ(S).

Proof. By Corollary 5.8.2, the function

s = (s1, . . . , sn) 7→ w(s) := φ
(
eis1λ1 , . . . , eisnλn

)
: Rn → R

is almost periodic. We have

w
(
f(t)

)
= φ

(
eif1(t)λ1 , . . . , eifn(t)λn

)
for t ⩾ 0,

so by Corollary 5.9.28,

lim sup
t→∞

φ
(
eif1(t)λ1 , . . . , eifn(t)λn

)
= lim sup

t→∞
w
(
f(t)

)
= sup

s
w(s).

For j = 1, . . . , n it follows from Corollary 5.9.26 that the image of the map

t 7→ eitλj : R⩾ →
{
(z1, . . . , zkj ) ∈ Ckj : |z1| = · · · = |zkj | = 1

}
is dense in its codomain, so the image of the map

(s1, . . . , sn) 7→
(
eis1λ1 , . . . , eisnλn

)
: Rn → S

is dense in S. Hence sups w(s) = maxφ(S). □

Examples involving real-valued trigonometric polynomials (∗). The mate-
rial in this subsection is only used later to justify a remark after Corollary 5.10.11.

Example 5.9.31. Let a, b ∈ R×, and consider the 1-periodic trigonometric polyno-
mial w : R2 → R given by

w(s) = a cos(2πs1) + b cos(2πs2) for s = (s1, s2) ∈ R2.

Let λ, µ ∈ R be Q-linearly independent. Then by Corollaries 5.9.18 and 5.9.26:

lim sup
t→−∞

w(λt, µt) = lim sup
t→+∞

w(λt, µt) = |a|+ |b|.

Note also that |a|+ |b| > w(λt, µt) for all t ∈ R ̸=.

Now let α ∈ R \Q and consider

v : R → R, v(t) := 2− cos(t)− cos(αt).

Then v(t) > 0 for all t ∈ R ̸=. Moreover, lim inf
t→+∞

v(t) = 0, that is, for each ε > 0

there are arbitrarily large t ∈ R with v(t) < ε. With a suitable choice of α we can
replace here ε by any prescribed function ε : R → R> with ε(t) → 0 as t→ +∞:
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Theorem 5.9.32 (Basu-Bose-Vijayaraghavan [17]). Let ϕ : R → R> be such that
ϕ(t) → +∞ as t→ +∞. Then there exists α ∈ R \Q such that

2− cos(t)− cos(αt) < 1/ϕ(t) for arbitrarily large t ∈ R.

Proof. We first arrange ϕ ⩾ 1. We then choose a sequence (dn)n⩾1 of positive
integers such that with qn := d1d2 · · · dn (so q0 = 1):

dn ⩾ (2π + 1)ϕ(2πqn−1) for n ⩾ 1,

and set

α :=

∞∑
n=1

1

qn
.

We have qm+1 = qmdm+1 ⩾ (2π+1)qm ϕ(2πqm), so if qm+n ⩾ (2π+1)nqm ϕ(2πqm),
then

qm+n+1 ⩾ (2π + 1)qm+n ϕ(2πqm+n) ⩾ (2π + 1)qm+n ⩾ (2π + 1)n+1qm ϕ(2πqm).

Thus by induction on n we obtain

qm+n ⩾ (2π + 1)nqm ϕ(2πqm) for n ⩾ 1.

This yields

(5.9.2)

∞∑
n=1

1

qm+n
⩽

1

2πqm ϕ(2πqm)
for all m ⩾ 1.

Take pm ∈ N (m ⩾ 1) such that

m∑
n=1

1

qn
=
pm
qm

.

Then

0 < α− pm
qm

=

∞∑
n=1

1

qm+n
⩽

1

2πqm ϕ(2πqm)
for all m ⩾ 1.

Suppose α = p/q where p, q ∈ N⩾1; then for all m ⩾ 1 we have

pqm − qpm
qqm

= α− pm
qm
⩽

1

2πqm ϕ(2πqm)

and so

1 ⩽ pqm − qpm ⩽
q

2π ϕ(2πqm)
,

contradicting ϕ(2πqm) → +∞ as m → +∞. Hence α /∈ Q. Next note that qm
and αqm − qm

∑
n⩾1

1
qm+n

are integers and so

2− cos(2πqm)− cos(2παqm) = 1− cos

(
2πqm

∞∑
n=1

1

qm+n

)
<

1

ϕ(2πqm)

using (5.9.2). This yields the theorem. □
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5.10. Universal Exponential Extensions of Hardy Fields

In this section H ⊇ R is a Liouville closed Hardy field. Then C<∞[i] is a differential
ring extension of the d-valued field K := H[i] with the same ring of constants as K,
namely C. Note that for any f ∈ C<∞[i] we have a g ∈ C<∞[i] with g′ = f , and
then u = eg ∈ C<∞[i]× satisfies u† = f .

Lemma 5.10.1. Suppose f ∈ C<∞[i] is purely imaginary, that is, f ∈ iC<∞. Then
there is a u ∈ C<∞[i]× such that u† = f and |u| = 1.

Proof. Taking g ∈ iC<∞ with g′ = f , the resulting u = eg works. □

We define the subgroup eHi of C<∞[i]× by

eHi :=
{
ehi : h ∈ H

}
=
{
u ∈ C<∞[i]× : |u| = 1, u† ∈ Hi

}
.

Then (eHi)† = Hi by Lemma 5.10.1, so (H× · eHi)† = K and thus K[eHi] is an
exponential extension of K (in the sense of Section 2.2) with the same ring of
constants C as K.

As in the beginning of Section 4.4 we fix a complement Λ of K† with Λ ⊆ Hi,
set U := K

[
e(Λ)

]
as usual, and let λ range over Λ. The differential K-algebras U

and K[eHi] are isomorphic by Corollary 2.2.10, but we need something better:

Lemma 5.10.2. There is an isomorphism U → K[eHi] of differential K-algebras
that maps e(Λ) into eHi.

Proof. We have a short exact sequence of commutative groups

1 → S
⊆−−→ eHi ℓ−−→ Hi → 0,

where S =
{
z ∈ C× : |z| = 1

}
and ℓ(u) := u† for u ∈ eHi. Since the subgroup S

of C× is divisible, this sequence splits: we have a group embedding e : Hi → eHi

such that e(b)† = b for all b ∈ Hi. Then the group embedding

e(λ) 7→ e(λ) : e(Λ) → eHi

extends uniquely to a K-algebra morphism U → K[eHi]. Since e(λ)† = λ = e(λ)†

for all λ, this is a differential K-algebra morphism, and even an isomorphism by
Lemma 2.2.9 applied to R = K[eHi]. □

Complex conjugation f + gi 7→ f + gi = f − gi (f, g ∈ C<∞) is an automor-
phism of the differential ring C<∞[i] over H and maps K[eHi] onto itself, sending
each u ∈ eHi to u−1. Thus any isomorphism ι : U → K[eHi] of differential K-
algebras with ι

(
e(Λ)

)
⊆ eHi—such ι exists by Lemma 5.10.2—also satisfies

ι(f) = ι(f) (f ∈ U).

(See Section 2.2 for the definition of f for f ∈ U. Given such an isomorphism ι, any
differential K-algebra isomorphism U → K[eHi] mapping e(Λ) into eHi equals ι◦σχ
for a unique character χ : Λ → C× with |χ(λ)| = 1 for all λ, by Lemma 2.2.17.) Fix
such an isomorphism ι and identify U with its image K[eHi] via ι. We have the
asymptotic relations ≼g and ≺g on U coming from the gaussian extension vg of the
valuation on K. But we also have the asymptotic relations induced on U = K[eHi]
by the relations ≼ and ≺ defined on C[i] in Section 5.1. It is clear that for f ∈ U:

f ≼g 1 =⇒ f ≼ 1 ⇐⇒ for some n we have |f(t)| ⩽ n eventually,

f ≺g 1 =⇒ f ≺ 1 ⇐⇒ lim
t→+∞

f(t) = 0.

296



As a tool for later use we derive a converse of the implication f ≺g 1 ⇒ f ≺ 1:
Lemma 5.10.8 below, where we assume in addition that I(K) ⊆ K† and Λ is an
R-linear subspace of K. This requires the material from Section 5.9 and some
considerations about exponential sums treated in the next subsection.

Exponential sums over Hardy fields. In this subsection n ⩾ 1. In the next
lemma, f = (f1, . . . , fm) ∈ Hm where m ⩾ 1 and 1 ≺ f1 ≺ · · · ≺ fm. (In that
lemma it doesn’t matter which functions we use to represent the germs f1, . . . , fm.)
For r = (r1, . . . , rm) ∈ Rm we set r · f := r1f1 + · · ·+ rmfm ∈ H.

Lemma 5.10.3. Let r1, . . . , rn ∈ Rm be distinct and c1, . . . , cn ∈ C×. Then

lim sup
t→∞

∣∣∣c1 e(r1·f)(t)i + · · ·+ cn e
(rn·f)(t)i

∣∣∣ > 0.

Proof. Consider the trigonometric polynomial w : Rm → R⩾ given by

w(s) :=
∣∣c1 e(r1·s)i + · · ·+ cn e

(rn·s)i ∣∣2.
By Corollary 5.8.18 we have w(s) > 0 for some s ∈ Rm. Taking continuous repre-
sentatives R⩾ → R of f1, . . . , fm, to be denoted also by f1, . . . , fm, the lemma now
follows from Proposition 5.9.27. □

Next, let h1, . . . , hn ∈ H be distinct such that (Rh1 + · · · + Rhn) ∩ I(H) = {0}.
Since H is Liouville closed we have ϕ1, . . . , ϕn ∈ H such that ϕ′1 = h1, . . . , ϕ

′
n = hn.

Lemma 5.10.4. Let c1, . . . , cn ∈ C×. Then for ϕ1, . . . , ϕn as above,

lim sup
t→∞

∣∣∣c1 eϕ1(t)i + · · ·+ cn e
ϕn(t)i

∣∣∣ > 0.

Proof. The case n = 1 is trivial, so let n ⩾ 2. Then ϕ1, . . . , ϕn are not all in R.
Set V := R + Rϕ1 + · · · + Rϕn ⊆ H, so ∂V = Rh1 + · · · + Rhn. We claim
that V ∩ OH = {0}. To see this, let ϕ ∈ V ∩ OH ; then ϕ′ ∈ ∂(V ) ∩ I(H) = {0}
and hence ϕ ∈ R ∩ OH = {0}, proving the claim. Now H is a Hahn space over R
by [ADH, p. 109], so by [ADH, 2.3.13] we have f1, . . . , fm ∈ V (1 ⩽ m ⩽ n) such
that V = R+Rf1+· · ·+Rfm and 1 ≺ f1 ≺ · · · ≺ fm. For j = 1, . . . , n, k = 1, . . . ,m,
take tj , rjk ∈ R such that ϕj = tj +

∑m
k=1 rjkfk and set rj := (rj1, . . . , rjm) ∈ Rm.

Since ϕj1 − ϕj2 /∈ R for j1 ̸= j2, we have rj1 ̸= rj2 for j1 ̸= j2. It remains to apply
Lemma 5.10.3 to c1 e

t1i, . . . , cn e
tni in place of c1, . . . , cn. □

Corollary 5.10.5. Let f1, . . . , fn ∈ K and set f := f1 e
ϕ1i + · · ·+fn eϕni ∈ C<∞[i],

and suppose f ≺ 1. Then f1, . . . , fn ≺ 1.

Proof. We may assume 0 ̸= f1 ≼ · · · ≼ fn. Towards a contradiction, suppose
that fn ≽ 1, and take m ⩽ n minimal such that fm ≍ fn. Then with gj := fj/fn ∈
K× and g := g1 e

ϕ1i + · · · + gn e
ϕni we have g ≺ 1 and g1, . . . , gn ≼ 1, with gj ≺ 1

iff j < m. Replacing f1, . . . , fn by gm, . . . , gn and ϕ1, . . . , ϕn by ϕm, . . . , ϕn we
arrange f1 ≍ · · · ≍ fn ≍ 1. So

f1 = c1 + ε1, . . . , fn = cn + εn with c1, . . . , cn ∈ C× and ε1, . . . , εn ∈ O.

Then ε1 e
ϕ1i + · · ·+ εn e

ϕni ≺ 1, hence

c1 e
ϕ1i + · · ·+ cn e

ϕni = f −
(
ε1 e

ϕ1i + · · ·+ eϕni
)

≺ 1.

Now Lemma 5.10.4 yields the desired contradiction. □

Here is an application of Corollary 5.10.5:
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Lemma 5.10.6. Let f1, . . . , fn, g1, . . . , gn ∈ K be such that in C[i] we have

f1 e
ϕ1i + · · ·+ fn e

ϕni ∼ g1 e
ϕ1i + · · ·+ gn e

ϕni .

Let j ∈ {1, . . . , n} be such that 0 ̸= fj ≽ fk for all k ∈ {1, . . . , n}. Then fj ∼ gj,
and fk − gk ≺ fj for all k ̸= j.

Proof. We arrange j = 1 and f1 = 1. Then

eϕ1i +f2 e
ϕ2i + · · ·+ fn e

ϕni ∼ g1 e
ϕ1i + · · ·+ gn e

ϕni, f2, . . . , fn ≼ 1.

Hence

(1− g1) e
ϕ1i +(f2 − g2) e

ϕ2i + · · ·+ (fn− gn) e
ϕni ≺ eϕ1i +f2 e

ϕ2i + · · ·+ fn e
ϕni ≼ 1,

so 1− g1 ≺ 1 and fk − gk ≺ 1 for all k ̸= j, by Corollary 5.10.5. □

This leads to a partial generalization of Corollary 5.5.23, included for use in [15]:

Corollary 5.10.7. Let f ∈ K×, g1, . . . , gn ∈ K, and j ∈ {1, . . . , n} such that
in C[i],

f eϕj i ∼ g1 e
ϕ1i + · · ·+ gn e

ϕni .

Then f ∼ gj, and gj ≻ gk for all k ̸= j.

Proof. Use Lemma 5.10.6 with fj := f and fk := 0 for k ̸= j. □

In the rest of this subsection we assume that I(K) ⊆ K†. As noted in Section 4.4
we can then take Λ = ΛH i where ΛH is an R-linear complement of I(H) in H. We
assume Λ has this form, giving rise to the valuation vg on U = K[eHi] as explained
in the beginning of this section.

Lemma 5.10.8. Let f ∈ U be such that f ≺ 1. Then f ≺g 1.

Proof. We have f = f1 e(h1i) + · · · + fn e(hni) with f1, . . . , fn ∈ K and dis-
tinct h1, . . . , hn ∈ ΛH , so (Rh1 + · · · + Rhn) ∩ I(H) = {0}. For h ∈ ΛH we
have e(hi) = eϕi with ϕ ∈ H and ϕ′ = h. Hence f = f1 e

ϕ1i + · · · + fn e
ϕni

with ϕ1, . . . , ϕn ∈ H such that ϕ′1 = h1, . . . , ϕ
′
n = hn. Now Corollary 5.10.5

yields f ≺g 1. □

Corollary 5.10.9. Let f ∈ U and m ∈ H×. Then f ≺ m iff f ≺g m.

Lemma 5.10.10. Let f ∈ U and m ∈ H×. Then f ≼ m iff f ≼g m.

Proof. Replace f , m by f/m, 1, respectively, to arrange m = 1. The backward direc-
tion was observed earlier in this section. For the forward direction suppose f ≼ 1.
Then f ≺ n for all n ∈ H× with 1 ≺ n, hence f ≺g n for all n ∈ H× with 1 ≺g n,
by two applications of Corollary 5.10.9, and thus f ≼g 1. □

Corollary 5.10.11. Let f, g ∈ U. Then

(5.10.1) f ≼ g =⇒ f ≼g g,

and likewise with (≼,≼g) replaced by (≍,≍g), (≺,≺g), or (∼,∼g). In particular,
eϕi ≍g 1 for all ϕ ∈ H.

Proof. The case g = 0 is trivial, so let g ̸= 0. Then g ≍g n with n ∈ H×, so g ≼g n
and n ≼g g, and thus g ≼ n by Lemma 5.10.10. If f ≼ g, then f ≼ n, hence f ≼g n
by Lemma 5.10.10, so f ≼g g. Likewise, if f ≺ g, then f ≺ n, so f ≺g n by
Corollary 5.10.9, hence f ≺g g. The rest is now clear. □
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Remark. The converse of (5.10.1) doesn’t hold in general, even when we restrict
to f = 1 and g ∈ U ∩ C×: let λ, µ ∈ R be Q-linearly independent and set

g := 2− cos(λx)− cos(µx) ∈ U;

then 1 ≍g g, and by Example 5.9.31 we have g ∈ C× and 1 ̸≼ g. Next, take ϕ ∈ H
with ϕ > R, choose α ∈ R \ Q as in Theorem 5.9.32 applied to a representative of
the germ ϕ, and set

h := ϕ ·
(
2− cos(x)− cos(αx)

)
∈ U.

Then h ∈ C× and h ≍g ϕ, so 1 ≺g h. By choice of α we also have 1 ̸≺ h. Hence the
converse of (5.10.1) for (≺,≺g) in place of (≼,≼g) fails for f := 1, g := h.

An application to slots in H. In this subsection we assume I(K) ⊆ K†. We
take Λ = ΛH i where ΛH is an R-linear complement of I(H) in H, and accordingly
identify U with K[eHi] as explained in the beginning of this section. Until further

notice we let (P, 1, ĥ) be a slot in H of order r ⩾ 1. We also let A ∈ K[∂] have

order r, and we let m range over the elements of H× such that vm ∈ v(ĥ−H). We
begin with an important consequence of the material in Section 5.7:

Lemma 5.10.12. Suppose (P, 1, ĥ) is Z-minimal, deep, and special, and v(LP ) ≍
v := v(A). Let y ∈ Cr[i] satisfy A(y) = 0 and y ≺ m for all m. Then y′, . . . , y(r) ≺ m
for all m.

Proof. Corollary 3.3.15 gives an m ≼ v, so it is enough to show y′, . . . , y(r) ≺ m

for all m ≼ v. Accordingly we assume 0 < m ≼ v below. As ĥ is special over H,

we have 2(r + 1)vm ∈ v(ĥ − H), so y ≺ m2(r+1). Then Corollary 5.7.2 with n =
2(r + 1), η = |v|−1, ε = 1/r gives for j = 0, . . . , r:

y(j) ≺ v−jmn−j(1+ε) ≼ mn−j(2+ε) ≼ mn−r(2+ε) = m. □

Note that by Proposition 5.2.1, if dimC kerUA = r and A(y) = 0, y ∈ Cr[i],
then y ∈ U = K[eHi] ⊆ C<∞[i]. Corollary 5.10.9 is typically used in combination
with the ultimate condition. Here is a first easy application:

Lemma 5.10.13. Suppose (P, 1, ĥ) is linear and ultimate, dimC kerU LP = r,
and y ∈ Cr[i] satisfies LP (y) = 0 and y ≺ 1. Then y ≺ m for all m.

Proof. We have y ∈ U, so y ≺g 1 by Lemma 5.10.8. If y = 0 we are done, so

assume y ̸= 0. Lemma 4.4.4(ii) gives 0 < vgy ∈ vg(ker
̸=
U LP ) = E u(LP ), hence vgy >

v(ĥ −H) by Lemma 4.4.13, so y ≺g m for all m. Now Corollary 5.10.9 yields the
desired conclusion. □

Corollary 5.10.14. Suppose that (P, 1, ĥ) is Z-minimal, deep, special, linear, and
ultimate, and that dimC kerU LP = r. Let f, g ∈ Cr[i] be such that P (f) = P (g) = 0
and f, g ≺ 1. Then (f − g)(j) ≺ m for j = 0, . . . , r and all m.

Proof. Use Lemmas 5.10.12 and 5.10.13 for A = LP and y = f − g. □

In the rest of this subsection we assume that (P, 1, ĥ) is ultimate and normal,
dimC kerUA = r, and LP = A+B where

B ≺∆(v) v
r+1A, v := v(A) ≺♭ 1.
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Then Lemma 3.1.1 gives v(LP ) ∼ v, and by Lemma 4.4.4,

vg(ker
̸=
U A) = E u(A) = E u(LP ).

This yields a variant of Lemma 5.10.13:

Proposition 5.10.15. If y ∈ Cr[i] and A(y) = 0, y ≺ 1, then y ≺ m for all m.

Proof. Like that of Lemma 5.10.13, using Lemma 4.4.12 instead of 4.4.13. □

The following result will be used in establishing a crucial non-linear version of
Corollary 5.10.14, namely Proposition 6.5.14.

Corollary 5.10.16. If (P, 1, ĥ) is Z-minimal, deep, and special, and y ∈ Cr[i] is
such that A(y) = 0 and y ≺ 1, then y, y′, . . . , y(r) ≺ m for all m.

Proof. Use first Proposition 5.10.15 and then Lemma 5.10.12. □

So far we didn’t have to name an immediate asymptotic extension of H where ĥ is
located, but for the “complex” version of the above we need to be more specific.

As in the beginning of Section 4.4, let Ĥ be an immediate asymptotic extension

of H and K̂ = Ĥ[i] ⊇ Ĥ a corresponding immediate d-valued extension of K. The

results in this subsection then go through if instead of (P, 1, ĥ) being a slot in H of

order r ⩾ 1 we assume that (P, 1, ĥ) is a slot in K of order r ⩾ 1 with ĥ ∈ K̂ \K,

with m now ranging over the elements of K× such that vm ∈ v(ĥ−K).

Solution spaces of linear differential operators. Recall that Λ ⊆ Hi, U =
K
[
e(Λ)

]
= K[eHi] where e(Λ) ⊆ eHi ⊆ C<∞[i]×. Hence for each λ we have an

element ϕ(λ) of H (unique up to addition of an element of 2πZ) such that e(λ) =
eϕ(λ)i; we take ϕ(0) := 0. Then e(λ)† = λ gives ϕ(λ)′i = λ, and

ϕ(λ1 + λ2) ≡ ϕ(λ1) + ϕ(λ2) mod 2πZ for λ1, λ2 ∈ Λ.

If I(K) ⊆ K†, then Λ ∩ I(H)i = {0} (see Lemma 1.2.16), so ϕ(λ) ≻ 1 for λ ̸= 0,
hence for µ ∈ Λ: λ = µ⇔ ϕ(λ) = ϕ(µ) ⇔ ϕ(λ)− ϕ(µ) ≼ 1.

Lemma 5.10.17. Let ϕ ∈ H. Then there exists λ such that ϕ−ϕ(λ) ≼ 1. If ϕ ≻ 1,
then for any such λ we have signϕ = sign Imλ.

Proof. From eϕi ∈ eHi ⊆ U× = K× e(Λ) we get f ∈ K× and λ with eϕi = f e(λ) =
f eϕ(λ)i. Note that |f | = 1, so f = eθi where θ ∈ H with θ ≼ 1, by Lemma 5.5.21.
This yields ϕ−ϕ(λ)−θ ∈ 2πZ and so ϕ−ϕ(λ) ≼ 1. This proves the first statement.
Now suppose we have any λ with ϕ−ϕ(λ) ≼ 1. Then ϕ ∼ ϕ(λ) if ϕ ≻ 1. So if ϕ > R,
then ϕ(λ) > R and thus Imλ = ϕ(λ)′ > 0; likewise, ϕ < R implies Imλ < 0. □

Corollary 5.10.18. Suppose I(K) ⊆ K†. Let f = f1 e
ϕ1i + · · · + fm eϕmi ∈ U

where f1, . . . , fm ∈ K and ϕ1, . . . , ϕm ∈ H are such that ϕj = ϕk or ϕj − ϕk ≻ 1
for j, k = 1, . . . ,m. Then

f = 0 ⇐⇒
∑

1⩽k⩽m, ϕk=ϕj

fk = 0 for j = 1, . . . ,m,

and for m ∈ H×:

f ≺ m ⇐⇒
∑

1⩽k⩽m, ϕk=ϕj

fk ≺ m for j = 1, . . . ,m,

and likewise with ≼ in place of ≺.
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Proof. We first arrange that ϕ1, . . . , ϕm are distinct, and we then need to show:
f = 0 ⇔ f1 = · · · = fm = 0, and f ≺ m ⇔ f1, . . . , fm ≺ m, and likewise with ≼ in
place of ≺. To make Corollary 5.10.9 applicable we also arrange that Λ = ΛH i
with ΛH an R-linear complement of I(H) in H. Lemma 5.10.17 yields λj ∈ Λ
with ϕj−ϕ(λj) ≼ 1 for j = 1, . . . ,m; then λ1, . . . , λm are distinct. For j = 1, . . . ,m,

put gj := fj e
(ϕj−ϕ(λj))i ∈ K, so fj e

ϕj i = gj e(λj) and gj ≍ |gj | = |fj | ≍ fj .
Now the claim follows from the K-linear independence of e(λ1), . . . , e(λm), Corol-
lary 5.10.9, and Lemma 5.10.10. □

Let A ∈ K[∂]̸=, r := orderA, and set V := kerUA, a C-linear subspace of U of
dimension at most r, with dimC V = r iff V = kerC<∞[i]A. We describe in our
present setting some consequences of the results obtained in Sections 2.3 and 2.5
about zeros of linear differential operators in the universal exponential extension.

Lemma 5.10.19. The C-linear space V has a basis

f1 e(λ1), . . . , fd e(λd) where fj ∈ K×, λj ∈ Λ (j = 1, . . . , d).

For any such basis the set of eigenvalues of A with respect to Λ is {λ1, . . . , λd}, and

multλ(A) = |{j ∈ {1, . . . , d} : λj = λ}| for every λ.

This follows from Lemma 2.5.1 and the considerations preceding it.
Call ϕ1, . . . , ϕm ∈ H apart if ϕj = 0 or ϕj ≻ 1 for j = 1, . . . ,m, and ϕj = ϕk

or ϕj − ϕk ≻ 1 for j, k = 1, . . . ,m. (This holds in particular if ϕ1 = · · · = ϕm = 0.)
If I(K) ⊆ K†, then ϕ(λ1), . . . , ϕ(λm) are apart for any λ1, . . . , λm ∈ Λ.

Corollary 5.10.20. The C-linear space V has a basis

f1 e
ϕ1i, . . . , fd e

ϕdi where fj ∈ K×, ϕj ∈ H (j = 1, . . . , d).

If I(K) ⊆ K†, then for any such basis the fj e
ϕj i with ϕj ≼ 1 form a basis of the

C-linear space V ∩K = kerK A, and we can choose the fj, ϕj such that addition-
ally ϕ1, . . . ϕd are apart and (ϕ1, vf1), . . . , (ϕd, vfd) are distinct.

Proof. The first claim holds by Lemma 5.10.19. Suppose I(K) ⊆ K†, and let a
basis of V as in the corollary be given. Then by Lemma 5.10.17 we obtain λj ∈ Λ

such that ϕj − ϕ(λj) ≼ 1, and so fj e
ϕj i = gj e(λj) where gj := fj e

(ϕj−ϕ(λj))i ∈
K× by Proposition 5.5.18. Now λj = 0 ⇔ ϕj ≼ 1, by the remarks preceding
Lemma 5.10.17, hence the fj e

ϕj i with ϕj ≼ 1 form a basis of V ∩ K = kerK A.

Moreover, g1 e
ϕ(λ1)i, . . . , gd e

ϕ(λd)i is a basis of V and ϕ(λ1), . . . , ϕ(λd) are apart.
We have V =

⊕
λ Vλ (internal direct sum of C-linear subspaces) where Vλ =

(kerK Aλ) e(λ), by the remarks before (2.5.1). For each λ, the subspace kerK Aλ of
the C-linear space K is generated by the gj with λj = λ. Applying [ADH, 5.6.6] to

each Aλ we obtain hj ∈ K× such that h1 e
ϕ(λ1)i, . . . , hd e

ϕ(λd)i is a basis of V where
for all j ̸= k with ϕ(λj) = ϕ(λk) we have hj ̸≍ hk. □

A Hahn basis of V is a basis of V as in Corollary 5.10.20 such that ϕ1, . . . , ϕd
are apart and (ϕ1, vf1), . . . , (ϕd, vfd) are distinct. (It should really be “Hahn basis
with respect to ϕ1, . . . , ϕd” but in the few cases we use this notion we shall rely on
the context as to what tuple (ϕ1, . . . , ϕd) ∈ Hd we are dealing with.) If I(K) ⊆ K†,
then for such a Hahn basis the fj with ϕj = 0 form a valuation basis of the
subspace V ∩K of the valued C-linear space K [ADH, 2.3].
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In the next lemma we assume I(K) ⊆ K†, and we recall that then

d ⩽
∑
λ

|E e(Aλ)| ⩽ r

by Lemma 2.6.16 and Proposition 2.6.26, and so by Lemma 2.6.16,∑
λ

|E e(Aλ)| = d =⇒ E e(Aλ) = v(ker ̸=Aλ) for all λ.

Lemma 5.10.21. Suppose I(K) ⊆ K†, and let f1 e
ϕ1i, . . . , fd e

ϕdi be a Hahn basis
of V as in Corollary 5.10.20. Then for all λ,

E e(Aλ) ⊇ v(ker ̸=Aλ) =
{
vfj : 1 ⩽ j ⩽ d, ϕj − ϕ(λ) ≼ 1

}
.

and so E u(A) ⊇ {vf1, . . . , vfd}, with E u(A) = {vf1, . . . , vfd} if
∑
λ|E e(Aλ)| = d.

Proof. Take gj , λj as in the proof of Corollary 5.10.20. Then gj ≍ |gj | = |fj | ≍ fj ,
and λj = λ ⇔ ϕj − ϕ(λ) ≼ 1, for all λ. So we can replace fj , ϕj by gj , ϕ(λj) to
arrange ϕj = ϕ(λj) for j = 1, . . . , d. Then for all λ the C-linear space kerAλ ⊆ K
is generated by the fj with λj = λ, so

E e(Aλ) ⊇ v(ker ̸=Aλ) = {vfj : 1 ⩽ j ⩽ d, λj = λ}.

For the rest use E u(A) =
⋃
λ E e(Aλ) and the remarks preceding the lemma. □

Corollaries 2.5.8 and 2.5.23 yield conditions on A, K that guarantee dimC V = r:

Lemma 5.10.22. Suppose A splits over K. If r ⩽ 1, or r = 2, A ∈ H[∂], or K is
1-linearly surjective, then

dimC V =
∑
λ

multλ(A) = r.

Next a complement to Lemma 5.5.25:

Corollary 5.10.23. Suppose K is r-linearly surjective, or K is 1-linearly surjective
and A splits over K. Let ϕ ∈ H be such that ϕ′i +K† is not an eigenvalue of A.
Then A maps K eϕi bijectively onto K eϕi.

Proof. Let y ∈ K, A(y eϕi) = 0. By Lemma 5.5.25 it is enough to show that y = 0.
Suppose towards a contradiction that y ̸= 0. Then y eϕi ∈ U× = K× e(Λ), so y eϕi =
z e(λ), z ∈ K×. Then ϕ′i − λ ∈ K†, so λ is not an eigenvalue of A with respect
to Λ. Since y ∈ V , this contradicts Lemma 5.10.19. □

Let N be an n × n matrix over K, n ⩾ 1. We end this subsection with a variant
of Lemma 5.10.19 for the matrix differential equation y′ = Ny. Set S := solU(N),
so S is a C-linear subspace of Un of dimension ⩽ n.

Lemma 5.10.24. Suppose S has a basis

eϕ1i f1, . . . , e
ϕdi fd where ϕ1, . . . , ϕd ∈ H and f1, . . . , fd ∈ Kn ⊆ Un.

Set αj := ϕ′ji +K† ∈ K/K† for j = 1, . . . , d. Then

multα(N) = |{j ∈ {1, . . . , d} : αj = α}| for all α ∈ K/K†.
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Proof. We have fj = (f1j , . . . , fnj)
t ∈ Un for j = 1, . . . , d. We first consider the

case that N is the companion matrix of a monic B ∈ K[∂] of order n. Then we
have the C-linear isomorphism z 7→ (z, z′, . . . , z(n−1))t : kerUB → S; its inverse
maps the given basis to a basis eϕ1i f11, . . . , e

ϕdi f1d of kerUB. For j = 1, . . . , d we
have ϕj−ϕ(λj) ≼ 1 with λj ∈ Λ, and so this basis has the form g1 e(λ1), . . . , gd e(λd)
with g1, . . . , gd ∈ K×. Now use Lemmas 2.4.35 and 5.10.19, and the fact that αj =
λj +K† for j = 1, . . . , d.

For the general case, [ADH, 5.5.9] gives the companion matrixM of a monic B ∈
K[∂] of order n such that y′ = Ny is equivalent to y′ = My. This yields P ∈
GLn(K) such that f 7→ Pf : S → solU(M) is a C-linear isomorphism, and so PS =
solU(M). Since P eϕj i fj = eϕj i gj with gj ∈ Kn for j = 1, . . . , d, we obtain a
basis eϕ1i g1, . . . , e

ϕdi gd of the C-linear subspace solU(M) of Un, so we are in the
special case treated earlier. □

A relative version of Corollary 5.10.20 (∗). In this subsection I(K) ⊆ K†. We
use an isomorphism as in Lemma 5.10.2 to identify U = K[e(λ)] with K[eHi].

Let F be a Liouville closed Hardy field extension of H; set L := F [i] ⊆ C<∞[i].
We show here how various results about H, K extend in a coherent way to F,L.
First, Corollary 4.4.3 yields a complement ΛL of the Q-linear subspace L† of L
with Λ ⊆ ΛL ⊆ F i. Let UL = L

[
e(ΛL)

]
be the universal exponential extension

of L containing U = K
[
e(Λ)

]
as a differential subring described in the remarks

following Corollary 2.2.13. We also have the differential subring L[eF i] of C<∞[i]
with U = K[eHi] ⊆ L[eF i].

Lemma 5.10.25. There is an isomorphism ι : UL → L[eF i] of differential L-
algebras with ι

(
e(ΛL)

)
⊆ eF i that is the identity on U. Thus the diagram below

commutes:

UL
ι
∼=

//______ L[eF i]

U

⊆

K[eHi]

⊆

Proof. Lemma 5.10.2 yields an isomorphism ιL : UL → L[eF i] of differential L-
algebras with ιL

(
e(ΛL)

)
⊆ eF i. By Lemma 2.2.12 we have ι−1

L

(
K[eHi]

)
= K[E]

where E = {u ∈ U×
L : u† ∈ K}. From U×

L = L× e(ΛL) we get E = K× e(Λ),

so K[E] = U. Hence ι−1
L restricts to an automorphism of the differential K-

algebra U. So this restriction equals σχ where χ ∈ Hom(Λ,C×). (Lemma 2.2.14.)
Extending χ to χL ∈ Hom(ΛL,C×) yields an isomorphism

ι := ιL ◦ σχL
: UL → L[eF i]

of differential L-algebras with the desired property. □

Fix an isomorphism ι : UL → L[eF i] as in the previous lemma and identify UL with
its image via ι; thus U = K[eHi] ⊆ L[eF i] = UL ⊆ C<∞[i]. For each µ ∈ ΛL
we have an element ϕ(µ) of F (unique up to addition of an element of 2πZ) such
that e(µ) = eϕ(µ)i; we take ϕ(0) := 0. The ϕ(λ) ∈ F are actually in H and agree
with the ϕ(λ) defined earlier, up to addition of elements of 2πZ. In the rest of this
subsection we assume I(L) ⊆ L†. So for µ1, µ2 ∈ ΛL: µ1 = µ2 ⇔ ϕ(µ1)−ϕ(µ2) ≼ 1.
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Lemma 5.10.26. Let µ ∈ ΛL. Then

ϕ(µ) ∈ H ⇐⇒ ϕ(µ) ∈ H +OF ⇐⇒ µ ∈ Λ.

Proof. We have µ = ϕ(µ)′i. So if ϕ(µ) ∈ H +OF , then µ ∈ Hi + I(L) ⊆ K +L† =
Λ+L†, and hence µ ∈ Λ. Conversely, if µ ∈ Λ, then ϕ(µ)′i ∈ Λ ⊆ Hi, so ϕ(µ)′ ∈ H,
and thus ϕ(µ) ∈ H. □

Lemma 5.10.17 with F , L, ΛL in place of H, K, Λ, and Lemma 5.10.26 yield:

Corollary 5.10.27. H +OF =
{
ϕ ∈ F : ϕ− ϕ(λ) ≼ 1 for some λ

}
.

Let A ∈ K[∂]̸=, r := orderA, V := kerUA, VL := kerUL
A, so V = VL ∩ U.

Corollary 5.10.20 applied to F , L in place of H, K then gives a Hahn basis

f1 e
ϕ1i, . . . , fd e

ϕdi (fj ∈ L×, ϕj ∈ F )

of VL. Recall from Corollary 4.4.3 that E e(Aλ) = E e
L(Aλ) ∩ Γ for all λ. Applying

Lemma 5.10.21 to such a Hahn basis of VL and F , L, ΛL, VL in place of H, K, Λ, V ,
and using Corollary 5.10.27 we obtain:

E u(A) ⊇ {vfj : j = 1, . . . , d, ϕj ∈ H +OF } ∩ Γ.

Recall from Corollary 2.6.27 that if A is terminal, then E e(Aλ) = E e
L(Aλ) for

all λ, and E u(A) = E u
L (A). We have d = dimC VL ⩽ r, and Lemma 5.10.22 gives

conditions on A, F , L which guarantee d = r. The next corollary shows that if A
is terminal and d = r, then the “frequencies” ϕj of the elements of our Hahn basis
of VL above can be taken in H:

Corollary 5.10.28. Suppose A is terminal and d = r. Then VL has a Hahn basis

f1 e
ϕ1i, . . . , fr e

ϕri (fj ∈ L×, ϕj ∈ H).

For any such basis and all λ we have

E e(Aλ) = E e
L(Aλ) = v(ker ̸=L Aλ) =

{
vfj : j = 1, . . . , r, ϕj − ϕ(λ) ≼ 1

}
and E u(A) = E u

L (A) = {vf1, . . . , vfr} ⊆ Γ, and the eigenvalues of A viewed as
element of L[∂] are ϕ′1i + L†, . . . , ϕ′ri + L†.

Proof. Lemma 2.6.16 and Corollary 2.6.27 give E e(Aλ) = E e
L(Aλ) = v(ker ̸=L Aλ) for

all λ, and ker̸=L Aµ = ∅ for µ ∈ ΛL \ Λ. Take any Hahn basis of VL as described
before the corollary. Lemma 5.10.17 yields λj ∈ ΛL with ϕj − ϕ(λj) ≼ 1. We

have gj := fj e
(ϕj−ϕ(λj))i ∈ L× by Proposition 5.5.18 and fj e

ϕj i = gj e(λj), so gj ∈
ker ̸=L Aλj . This yields λj ∈ Λ for j = 1, . . . , r. Replacing each pair fj , ϕj by gj , ϕ(λj)
we obtain a Hahn basis of VL as claimed. The rest follows from Lemmas 5.10.21
and 5.10.19. □

Duality considerations (∗). As before, A ∈ K[∂]̸= has order r, and V := kerUA.
Recall from Section 2.4 the bilinear form [ , ]A on the C-linear space Ω = Frac(U).
As in the previous subsection we take U = K[eHi] and fix values e(λ).

Corollary 5.10.29. Suppose A splits over K, I(K) ⊆ K†, and r ⩽ 1 or K is
1-linearly surjective. Let fj, ϕj be as in Corollary 5.10.20. Then the C-linear
space kerC<∞[i]A

∗ equals W := kerUA
∗ and has a basis

f∗1 e−ϕ1i, . . . , f∗r e
−ϕri where f∗k ∈ K× (k = 1, . . . , r)

such that
[
fj e

ϕj i, f∗k e
−ϕki

]
A
= δjk for j, k = 1, . . . , r.
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Proof. By Lemma 5.10.22 we have dimC V = dimCW = r. As in the proof of
Corollary 5.10.20 we obtain gj ∈ K×, λj ∈ Λ with ϕj − ϕ(λj) ≼ 1, and

yj := fj e
ϕj i = gj e(λj) ∈ U×, j = 1, . . . , r.

The basis y1, . . . , yr of V yields by Corollary 2.5.5 that A = a(∂ − ar) · · · (∂ − a1)
with a ∈ K× and (a1, . . . , ar) = split(y1, . . . , yr). It is easy to reduce to the
case a = 1. Then Corollary 2.5.16 provides a basis y∗1 , . . . , y

∗
r of W with [yj , y

∗
k]A =

δjk for all j, k, split(y∗r , . . . , y
∗
1) = (−ar, . . . ,−a1), and y∗k = hk e(−λk), hk ∈ K×,

so y∗k = f∗k e
−ϕki, where f∗k := hk e

(ϕk−ϕ(λk))i ∈ K×, for k = 1, . . . , r. □

Corollary 5.10.30. Suppose dimC V = r ⩾ 1 and I(K) ⊆ K†, and let fj, ϕj be as
in Corollary 5.10.20. Let A = ∂

r + ar−1∂
r−1 + · · ·+ a0 (a0, . . . , ar−1 ∈ K). Then

ϕ1 + · · ·+ ϕr ≡ b mod OH for any b ∈ H with b′ = − Im ar−1,

and hence ϕ1 + · · · + ϕr ≼ 1 ⇐⇒ ar−1 ∈ K†. In particular, if A∗ = (−1)rA⋉a
(a ∈ K×) or ar−1 ∈ H, then ϕ1 + · · ·+ ϕr ≼ 1.

Proof. Take gj , λj as in the proof of Corollary 5.10.20. Then

λ1 + · · ·+ λr ≡ −ar−1 mod K†

by Corollary 2.5.2 and Lemma 5.10.19. Now K† ∩ Hi = I(H)i by Lemma 1.2.16
and the remarks preceding it. Also ϕ(λj)

′i = λj for all j, and this yields the first
claim. For the rest note that if A∗ = (−1)rA⋉a (a ∈ K×), then ar−1 ∈ K† by the
remarks after the proof of Proposition 2.4.11. □

Corollary 5.10.31. Suppose A is self-dual and I(K) ⊆ K†. Also assume K is
1-linearly surjective and dimC V = r, or r ⩾ 1 and K is (r − 1)-linearly surjective.
Then with the fj, ϕj as in Corollary 5.10.20 we have ϕ1 + · · ·+ ϕd ≼ 1, and there
is for each i ∈ {1, . . . , d} a j ∈ {1, . . . , d} with ϕi + ϕj ≼ 1.

Proof. By Corollary 2.4.9 and (2.5.1) we have multλA = mult−λA for all λ.
With λ1, . . . , λd as in the proof of Corollary 5.10.20 this gives λ1 + · · ·+λd = 0, by
Lemma 5.10.19, and thus ϕ1 + · · · + ϕd ≼ 1. For i = 1, . . . , d we have multλi

A =
mult−λi

A > 0 by Lemma 5.10.19, so that same lemma gives j ∈ {1, . . . , d} such
that λi + λj = 0, hence ϕi + ϕj ≼ 1. □

Corollary 5.10.32. Let A, K be as in Corollary 5.10.31. Then V has a basis

f1 e
ϕ1i, g1 e

−ϕ1i, . . . , fm eϕmi, gm e−ϕmi, h1, . . . , hn (2m+ n = d)

where f1, . . . , fm, g1, . . . , gm, h1, . . . , hn ∈ K×, and ϕ1, . . . , ϕm ∈ H>R are apart.

Proof. By the proof of Corollary 5.10.31, if λ is an eigenvalue of A, then so is −λ,
with the same multiplicity. Hence Lemma 5.10.19 yields a basis

f1 e(λ1), g1 e(−λ1), . . . , fm e(λm), gm e(−λm), h1, . . . , hn (2m+ n = d)

of V where fj , gj , hk ∈ K for j = 1, . . . ,m, k = 1, . . . , n and λj ∈ Λ with Imλj > 0

for j = 1, . . . ,m. Note e(−λ) = e(λ)−1 = e−ϕ(λ)i. Setting ϕj := ϕ(λj) for j =
1, . . . ,m thus yields a basis of V as claimed. □

In Section 2.1 we defined a “positive definite hermitian form” on the K-linear
space U = K

[
e(Λ)

]
, which via our isomorphism ι : U → K[eHi] transfers to a

“positive definite hermitian form” ⟨ , ⟩ on the K-linear space K[eHi]. Note that ⟨ , ⟩
does not depend on the initial choice of isomorphism ι as in Lemma 5.10.2 at the

305



beginning of this section, by the remarks following that lemma and Corollary 2.2.18.
Suppose

y1 = f1 e
ϕ1i, . . . , yd = fd e

ϕdi

is a basis of the C-linear space V as in Corollary 5.10.20 such that for j, k = 1, . . . , d
we have ϕj = ϕk or ϕj − ϕk ≻ 1. Then by Lemma 2.1.4 and Corollary 5.5.23,

⟨yj , yk⟩ = 0 if ϕj ̸= ϕk, ⟨yj , yk⟩ = fjfk ̸= 0 if ϕj = ϕk.

The case that A ∈ H[∂]. In this subsection we assume A ∈ H[∂] ̸= has order r.
Then V := kerUA is closed under the complex conjugation automorphism of the
differential ring C<∞[i]. We have Ur = U ∩ C<∞ and by Corollary 2.2.20 a decom-
position of Ur as an internal direct sum of H-linear subspaces:

Ur = H ⊕
⊕

Imλ>0

(
H cosϕ(λ)⊕H sinϕ(λ)

)
.

Set Vr := V ∩ C<∞, an R-linear subspace of V with V = Vr ⊕ Vri (internal direct
sum of R-linear subspaces of V ). Each basis of the R-linear space Vr is a basis of
the C-linear space V ; in particular, dimC V = dimR Vr. If dimC V = r, then Vr =
kerC<∞ A. If λ is an eigenvalue of A, then so is −λ, with multλ(A) = mult−λ(A).

Lemma 5.10.33. The C-linear space V = kerUA has a basis

g1 e
ϕ1i, g1 e

−ϕ1i, . . . , gm eϕmi, gm e−ϕmi, h1, . . . , hn (2m+ n ⩽ r),

where g1, . . . , gm ∈ H>, ϕ1, . . . , ϕm ∈ H with ϕj − ϕ(λj) ≼ 1 and Imλj > 0 for
some λj ∈ Λ for j = 1, . . . ,m, and h1, . . . , hn ∈ H×. For any such basis of V ,

g1 cosϕ1, g1 sinϕ1, . . . , gm cosϕm, gm sinϕm, h1, . . . , hn

is a basis of the R-linear space Vr, and h1, . . . , hn is a basis of the R-linear sub-
space kerH A = V ∩H of H.

Proof. By Corollary 2.5.18 the C-linear space V has a basis

f1 e(λ1), f1 e(−λ1), . . . , fm e(λm), fm e(−λm), h1, . . . , hn

with f1, . . . , fm ∈ K×, λ1, . . . , λm ∈ Λ with Imλ1, . . . , Imλm > 0 and h1, . . . , hn
in H×. Moreover, for each such basis,

Re
(
f1 e(λ1)

)
, Im

(
f1 e(λ1)

)
, . . . , Re

(
fm e(λm)

)
, Im

(
fm e(λ1)

)
, h1, . . . , hn

is a basis of the R-linear space Vr, and h1, . . . , hn is a basis of its R-linear sub-
space kerH A = V ∩H. Set gj := |fj | = |fj | ∈ H> (j = 1, . . . ,m). Lemma 5.5.21

gives ϕj ∈ H such that ϕj −ϕ(λj) ≼ 1 and fj = gj e
(ϕj−ϕ(λj))i, and thus fj e(λj) =

gj e
ϕj i, for j = 1, . . . ,m. Then g1, . . . , gm, ϕ1, . . . , ϕm, h1, . . . , hn have the desired

properties. □

Corollary 5.10.34. Suppose K is 1-linearly surjective when r ⩾ 2, I(K) ⊆ K†,
and A splits over K. Then V = kerC<∞[i]A and the C-linear space V has a basis

g1 e
ϕ1i, g1 e

−ϕ1i, . . . , gm eϕmi, gm e−ϕmi, h1, . . . , hn (2m+ n = r),

where gj , ϕj ∈ H> with ϕj ≻ 1 (j = 1, . . . ,m) and hk ∈ H× (k = 1, . . . , n). For
any such basis of V , the R-linear space kerC<∞ A has basis

g1 cosϕ1, g1 sinϕ1, . . . , gm cosϕm, gm sinϕm, h1, . . . , hn,

and the R-linear subspace kerH A = H ∩ kerC<∞ A of H has basis h1, . . . , hn.
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Proof. By Corollary 2.5.8 we have dimC kerUA = r, hence V = kerC<∞[i]A and Vr =
kerC<∞ A. Now use Lemmas 5.10.17 and 5.10.33. □

From Lemma 5.10.33 we obtain likewise, using Lemma 2.5.22 and Corollary 5.5.15:

Corollary 5.10.35. Suppose r = 2 and A splits over K but not over H. Then
there are g, ϕ ∈ H> such that

kerC<∞ A = Rg cosϕ+ Rg sinϕ =
{
cg cos(ϕ+ d) : c, d ∈ R

}
.

Moreover, if I(K) ⊆ K†, then we can choose here in addition ϕ ≻ 1.

Remark. Let A, g, ϕ, r be as in Corollary 5.10.35. If ϕ ≻ 1, then all y ∈ ker ̸=C<∞ A
oscillate. If ϕ ≼ 1, then no y ∈ kerC<∞ A oscillates.

The following generalizes Corollary 5.5.28:

Corollary 5.10.36. Suppose K is 1-linearly surjective and A splits over K. Let ϕ
be an element of H with ϕ > R such that ϕ′i+K† is not an eigenvalue of A. Then
for every h ∈ H there are unique f, g ∈ H such that A(f cosϕ+ g sinϕ) = h cosϕ.

Proof. Let f, g ∈ H and A(f cosϕ + g sinϕ) = 0. By Lemma 5.5.26 it is enough
to show f = g = 0. Set y := 1

2 (f − gi) ∈ K, so y eϕi +y e−ϕi = f cosϕ + g sinϕ.
The hypothesis and Corollary 2.5.8 give V = kerC<∞[i]A, so f cosϕ + g sinϕ ∈ V .
Suppose towards a contradiction that y ̸= 0. As in the proof of Corollary 5.10.23
we obtain y eϕi = z e(λ), z ∈ K×, where λ is not an eigenvalue with respect to Λ.
Also λ ̸= 0 in view of K† ⊆ H + I(H)i. Hence

0 = A(y eϕi +y e−ϕi) = A
(
z e(λ) + z e(−λ)

)
= Aλ(z) e(λ) +A−λ(z) e(−λ),

so Aλ(z) = 0, contradicting that λ is not an eigenvalue of A with respect to Λ. □

Next a version of Lemma 5.10.8 for Ur. In the rest of this subsection I(K) ⊆ K†

and Λ = ΛH i where ΛH is an R-linear complement of I(H) in H.

Lemma 5.10.37. Let λ1, . . . , λn ∈ Λ be distinct, Imλj > 0 for j = 1, . . . , n, and

y = f1 cosϕ1 + g1 sinϕ1 + · · ·+ fn cosϕn + gn sinϕn + h

where f1, . . . , fn, g1, . . . , gn, h ∈ H and ϕj ∈ ϕ(λj) +OH for j = 1, . . . , n. Then

y ≺ 1 =⇒ f1, . . . , fn, g1, . . . , fn, h ≺ 1.

Proof. Let j range over {1, . . . , n}. Setting aj := 1
2 (fj − gji) ∈ K we have

y = a1 e
ϕ1i +a1 e

−ϕ1i + · · ·+ an e
ϕni +an e

−ϕni +h,

and so with bj := aj e
ϕj−ϕ(λj) ∈ K we have aj ≍ bj and

y = b1 e
ϕ(λ1)i +b1 e

−ϕ(λ1)i + · · ·+ bn e
ϕ(λn)i +bn e

−ϕ(λn)i +h,

Set hj := ϕ(λj)
′ ∈ H. Then hji = λj , so the elements

h1, . . . , hn, −h1, . . . , −hn, 0

of H are distinct, and (Rh1 + · · · + Rhn) ∩ I(H) = {0} in view of Λ ∩ I(H)i =
{0}. Assuming y ≺ 1, Corollary 5.10.5 then yields b1, b1, . . . , bn, bn, h ≺ 1, and
thus f1, . . . , fn, g1, . . . , fn, h ≺ 1. □
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Lemma 5.10.38. Recalling that Ur = U ∩ C<∞ we have:

H =
{
y ∈ Ur : y − h is non-oscillating for all h ∈ H

}
=
{
y ∈ Ur : y lies in a Hausdorff field extension of H

}
.

Proof. Let j range over {1, . . . , n}. Suppose y ∈ Ur and y − h is non-oscillating
for all h ∈ H. Take distinct λ1, . . . , λn ∈ Λ with Imλ1, . . . , Imλn > 0, and
take f1, . . . , fn, g1, . . . , gn, h ∈ H such that

y = f1 cosϕ(λ1) + g1 sinϕ(λ1) + · · ·+ fn cosϕ(λn) + gn sinϕ(λn) + h.

We claim that y = h. To prove this claim, replace y by y − h to arrange h = 0.
Towards a contradiction, assume y ̸= 0. Then fj ̸= 0 or gj ̸= 0 for some j. Divide y
and f1, . . . , fn, g1, . . . , gn by a suitable element of H× to arrange fj , gj ≼ 1 for
all j and fj ≍ 1 or gj ≍ 1 for some j. Then y ≼ 1 and y − s is non-oscillating
for all s ∈ R, and so Lemma 5.1.19 yields ℓ ∈ R such that y − ℓ ≺ 1. Then
Lemma 5.10.37 gives fj , gj ≺ 1 for all j, a contradiction. This proves the first
equality. The second equality follows from Lemma 5.1.20. □

In combination with Corollary 5.10.34 this yields:

Corollary 5.10.39. Recalling that Vr = kerUA ∩ C<∞ we have:

kerH A =
{
y ∈ Vr : y − h is non-oscillating for all h ∈ H

}
=
{
y ∈ Vr : y lies in a Hausdorff field extension of H

}
.

Hence if K is 1-linearly surjective in case r ⩾ 2, and A splits over K, then every y
in kerC<∞ A such that y − h is non-oscillating for all h ∈ H lies in H.

Connection to Lyapunov exponents (∗). In this subsection I(K) ⊆ K†, and we
take Λ = ΛH i where ΛH is an R-linear complement of I(H) in H. Accordingly, U =
K[eHi]. Let also n ⩾ 1. In Section 5.2 we introduced the Lyapunov exponent λ(f) ∈
R±∞ of f ∈ C[i]n. For use in Section 7.4 we collect here some properties of these
exponents λ(f) for f ∈ Un ⊆ C[i]n. Recall: f, g ∈ C[i], f ≼ g ⇒ λ(f) ⩾ λ(g).

Lemma 5.10.40. Let f, g ∈ U. Then

f ≼g g ⇒ λ(f) ⩾ λ(g), f ≍g g ⇒ λ(f) = λ(g).

Proof. We first treat the special case g = m ∈ H×. Then the first statement follows
from the remark before the lemma and Lemma 5.10.10. Suppose f ≍g m; thanks
to the first statement it suffices to show Λ(f) ⊆ Λ(m). Towards a contradiction,
suppose Λ(f) ̸⊆ Λ(m). Then we have a ∈ R with f ≼ e−ax and m ̸≼ e−ax,
so e−ax ≺ m (since m, e−ax ∈ H), hence f ≺ m and thus f ≺g m by Corollary 5.10.9,
contradicting f ≍g m.

The case g = 0 being trivial, we now assume g ̸= 0 for the general case and
take m ∈ H× with g ≍g m; then λ(g) = λ(m) by the special case (with f = g), so
we may replace g by m to reduce the lemma to the special case. □

We turn Un into a valued C-linear space with valuation vg : U
n → Γ∞ given by

vg(f) := min
{
vg(f1), . . . , vg(fn)

}
for f = (f1, . . . , fn) ∈ Un,

and denote by ≼g the associated dominance relation on Un. In the next four
corollaries, f , g range over Un.

Corollary 5.10.41. f ≼g g ⇒ λ(f) ⩾ λ(g) and f ≍g g ⇒ λ(f) = λ(g).
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Proof. Suppose f = (f1, . . . , fn) ≼g g = (g1, . . . , gn). Take k with vgg = vggk.
Then fj ≼g gk and so λ(fj) ⩾ λ(gk) ⩾ λ(g), for all j, by Lemma 5.10.40, and
thus λ(f) ⩾ λ(g). □

Corollary 5.10.42. Let m ⩾ 1, g1, . . . , gm ∈ Un, and g = g1 + · · · + gm be such
that vg(g) = min

{
vg(g1), . . . , vg(gm)

}
. Then λ(g) = min

{
λ(g1), . . . , λ(gm)

}
.

Proof. We may arrange gi ≼g g1 for all i, so vgg = vgg1. Then λ(g1) ⩽ λ(gi) for
all i and λ(g) = λ(g1), by Corollary 5.10.41. □

Here is a special case of Corollary 5.10.42:

Corollary 5.10.43. Suppose m ⩾ 1, f = e(h1i)f1+ · · ·+e(hmi)fm with f1, . . . , fm
in Kn and distinct h1, . . . , hm ∈ ΛH . Then λ(f) = min

{
λ(f1), . . . , λ(fm)

}
.

For the notion of valuation-independence, see [ADH, p. 92].

Corollary 5.10.44. Suppose m ⩾ 1, f = eϕ1i f1 + · · ·+ eϕmi fm, f1, . . . , fm ∈ Kn

and ϕ1, . . . , ϕm ∈ H. Suppose also ϕj = ϕk or ϕj − ϕk ≻ 1 for j, k = 1, . . . ,m, and
for k = 1, . . . ,m the fj with 1 ⩽ j ⩽ m and ϕj = ϕk are valuation-independent.
Then vg(f) = min{v(f1), . . . , v(fm)}, and thus λ(f) = min

{
λ(f1), . . . , λ(fm)

}
.

Proof. First arrange that l ∈ {1, . . . ,m} is such that ϕ1, . . . , ϕl are distinct and
each ϕj with l < j ⩽ m equals one of ϕ1, . . . , ϕl. For k = 1, . . . , l, take λk ∈ Λ

with ϕk − ϕ(λk) ≼ 1 and put gk :=
∑

1⩽j⩽m, ϕj=ϕk
fj and hk := e(ϕk−ϕ(λk))i gk ∈

Kn. Then v(gk) = v(hk), e
ϕki gk = e(λk)hk, and

f = eϕ1i g1 + · · ·+ eϕli gl = e(λ1)h1 + · · ·+ e(λl)hl

with distinct λ1, . . . , λl. Hence

vg(f) = min{v(h1), . . . , v(hl)} = min{v(g1), . . . , v(gl)}.
Now use v(gk) = min{v(fj) : 1 ⩽ j ⩽ m, ϕj = ϕk} for k = 1, . . . , l. □

For what we say below about ∆ and Γ♭, see [ADH, 9.1.11]. Set

∆ :=
{
γ ∈ Γ : ψ(γ) ⩾ 0

}
=
{
γ ∈ Γ : γ = O

(
v(ex)

)}
,

the smallest convex subgroup of Γ = v(K×) containing v(ex) ∈ Γ<. Then ∆ has
the convex subgroup

Γ♭ =
{
γ ∈ Γ : ψ(γ) > 0

}
=
{
γ ∈ Γ : γ = o

(
v(ex)

)}
,

and we have an ordered group isomorphism r 7→ v(e−rx) + Γ♭ : R → ∆/Γ♭. Note
also that for f ∈ K we have: v(f) ∈ Γ♭ ⇔ λ(f) = 0.

Lemma 5.10.45. Let f ∈ U. Then

λ(f) = +∞ ⇔ vg(f) > ∆, λ(f) = −∞ ⇔ vg(f) < ∆,

and if λ(f) ∈ R, then vg(f) ∈ ∆ and vg(f) ≡ v(e−λ(f)x) mod Γ♭.

Proof. We assume f ̸= 0, and use Lemma 5.10.40 to replace f by m ∈ H with f ≍g

m so as to arrange f ∈ H×. The displayed claims then follow. Suppose λ(f) ∈ R,
and let a ∈ R>. Then f e(λ(f)−

1
2a)x ≼ 1, so f eλ(f)x ≺ e

1
2ax ≺ eax. Also f eλ(f)x ̸≼

e−ax, thus e−ax ≺ f eλ(f)x ≺ eax. This holds for all a ∈ R>, so v(f eλ(f)x) ∈ Γ♭. □

Lemma 5.10.45 yields λ(fg) = λ(f) + λ(g) for all f, g ∈ U ∩ C[i]⪯⪯.
309



Corollary 5.10.46. Assume f, g ∈ K, g ≼ f , and λ(f) ∈ R. Then g′+λ(f)g ≺ f .

Proof. Lemma 5.10.45 gives v(f eλ(f)x) ∈ Γ♭, so we can replace f , g by f eλ(f)x,
g eλ(f)x, to arrange f ′ ≺ f and λ(f) = 0. Now if f ≍ 1, then g ≼ f ≍ 1 and
so g′ ≺ 1 ≍ f , and if f ̸≍ 1, then g′ ≼ f ′ ≺ f using [ADH, 9.1.3(iii) and 9.1.4(i)]. □

From Corollary 5.10.46 we easily obtain:

Corollary 5.10.47. Suppose f ∈ Kn is such that λ(f) ∈ R. Then f ′+λ(f)f ≺ f .

Note that K ∩ C[i]⪯⪯ = O∆ is by Lemma 5.10.45 the valuation ring of the coarsen-
ing v∆ of the valuation of K by ∆, with maximal ideal K ∩ C[i]≺≺ = O∆, cf. [ADH,
3.4]. By Corollary 5.10.43, the C-subalgebra U ∩ C[i]⪯⪯ of U satisfies

U∩C[i]⪯⪯ =
⊕
h∈ΛH

O∆ e(hi) (internal direct sum of O∆-submodules of U ∩ C[i]⪯⪯).

We put

U⪯⪯ :=
⊕

h∈ΛH∩OH

O∆ e(hi),

a C-subalgebra of U ∩ C[i]⪯⪯. Then

(U⪯⪯)× =
{
g e(hi) : g ∈ K×, h ∈ ΛH , g

†, h ≼ 1
}

=
{
g e(hi) : g ∈ K×, h ∈ ΛH , λ(g) ∈ R, h ≼ 1

}
.

In the next lemma f = g eϕi ∈ U× where g ∈ K×, ϕ ∈ H. Then |f | = |g| ∈ H and
so −λ(f) = −λ(g) = lim

t→∞
1
t log|g(t)|.

Lemma 5.10.48. f ∈ (U⪯⪯)× ⇔ g†, ϕ′ ≼ 1 ⇔ f† ≼ 1. If f† ≼ 1, then

−λ(f) = lim
t→∞

Re f†(t) = lim
t→∞

Re g†(t), lim
t→∞

Im f†(t) = lim
t→∞

ϕ′(t)

and these limits are in R.

Proof. Take h ∈ ΛH with ϕ − ϕ(hi) ≼ 1 and put g1 := g e(ϕ−ϕ(hi))i ∈ K×, so f =
g1 e

ϕ(hi)i = g1 e(hi). Now g† − |g|† ≺ 1, since g ≍ |g|. Also e(hi) = eϕ(hi)i gives h =

ϕ(hi)′ by differentiation. Hence g†1 − g† = (ϕ′ − h)i = (ϕ− ϕ(hi))′i ≺ 1, so

|g|† ≼ 1 ⇔ g† ≼ 1 ⇔ g†1 ≼ 1, ϕ′ ≼ 1 ⇔ h ≼ 1.

This yields the equivalences of the Lemma, using for f† ≼ 1 ⇒ g†, ϕ′ ≼ 1 that f† =
g†+ϕ′i, and Im(g†) ∈ I(H)i ⊆ K≺1, the latter a consequence of Lemma 1.2.16 and
the remarks preceding it. Now assume f† ≼ 1. Then g†, ϕ′ ≼ 1, so vg ∈ ∆, hence
by Lemma 5.10.45, λ(f) = λ(g) ∈ R and v

(
g eλ(g)x

)
∈ Γ♭, that is, g† + λ(g) ≺ 1,

so Re(g†) + λ(f) ≺ 1, and thus −λ(f) = lim
t→∞

Re g†(t). Now use Re f† = Re g†

and Im f† = Im g† + ϕ′ and Im g† ≺ 1. □

Lemma 5.10.49. Let f ∈ U⪯⪯. Then f ′ ∈ U⪯⪯ and λ(f) ⩽ λ(f ′). Moreover,
if λ(f) ∈ R, then f ′ ≼g f , and if λ(f) ∈ R×, then f ′ ≍g f .

Proof. Suppose first that f = g e(hi) where g ∈ O ̸=
∆, h ∈ ΛH ∩OH , so λ(f) = λ(g)

and f ′ = (g′+ghi) e(hi). Then by [ADH, 9.2.24, 9.2.26] we have g′ ∈ O∆, with g
′ ∈

O∆ if g ∈ O∆. So f
′ ∈ O∆ e(hi), with f ′ ∈ O∆ e(hi) if g ∈ O∆. This yields f

′ ∈ U⪯⪯

as well as λ(f ′) = +∞ if λ(f) = +∞, by Lemma 5.10.45. Now suppose λ(f) ∈ R.
Then v(g eλ(g)x) ∈ Γ♭ by Lemma 5.10.45, hence g† + λ(g) ≺ 1, so g† ≼ 1, and
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thus f ′ = g(g† + hi) e(hi) ≼g f , and this yields λ(f ′) ⩾ λ(f) by Lemma 5.10.40.
If λ(f) ̸= 0, then g† ∼ −λ(g) and so g† + hi ∼ −λ(g) + hi ≍ 1, and thus f ′ ≍g f .

The case f = 0 is trivial, so we can assume next that f = f1 + · · · + fm,

fj = gj e(hji), gj ∈ O ̸=
∆, hj ∈ ΛH ∩ OH for j = 1, . . . ,m, m ⩾ 1, with dis-

tinct h1, . . . , hm. We arrange f1 ≽g · · · ≽g fm, so f ≍g f1 and λ(f1) ⩽ · · · ⩽ λ(fm),
and λ(f) = min

{
λ(f1), . . . , λ(fm)

}
= λ(f1) by Corollary 5.10.43. The special case

gives f ′j ∈ U⪯⪯ and λ(fj) ⩽ λ(f ′j) for j = 1, . . . ,m, so f ′ ∈ U⪯⪯ and λ(f) ⩽
λ(f ′). Suppose λ(f) ∈ R. Then vg(f1) ∈ ∆ by Lemma 5.10.45. If λ(fj) = +∞,
then λ(f ′j) = +∞ by the special case, so vg(f

′
j) > ∆ and thus f ′j ≺g f1 ≍g f .

If λ(fj) ∈ R, then f ′j ≼g fj ≼g f , again by the special case. This yields f ′ ≼g f .

Likewise, if λ(f) ∈ R×, then f ′1 ≍g f1 ≍g f and thus f ′ ≍g f . □

Corollary 5.10.50. If f ∈ U⪯⪯ and λ(f) ∈ R×, then for all n,

f (n) ≍g f, λ(f (n)) = λ(f).

For use in the next lemma and then in Section 7.4 we also define for f ∈ C1[i]×,

µ(f) := lim sup
t→∞

Im
(
f ′(t)/f(t)

)
∈ R±∞.

If f ∈ (U⪯⪯)×, then λ(f), µ(f) ∈ R by Lemma 5.10.48, and f† = Re(f†) + Im(f†)i
then yields f† −

(
−λ(f) + µ(f)i

)
≺ 1.

In the next lemma, suppose f1, . . . , fn ∈ (U⪯⪯)× are such that

c1 := −λ(f1) + µ(f1)i, . . . , cn := −λ(fn) + µ(fn)i ∈ C

are distinct. Also, let c ∈ C and suppose f := f1 + · · ·+ fn ∈ C[i]× and c− f† ≺ 1.

Lemma 5.10.51. Let i ∈ {1, . . . , n} be such that fi ≽ fk for all k ∈ {1, . . . , n}.
Then ci = c and Re ck ⩽ Re c for all k.

Proof. We let j, k, l range over {1, . . . , n}. Take gk ∈ O ̸=
∆ and hk ∈ ΛH ∩OH such

that fk = gk e(hki). Then f
†
k = g†k + hki ∈ O, ck − f†k ≺ 1, and

f ′ = f†1g1 e(h1i) + · · ·+ f†ngn e(hni).

Suppose hj = hk and gj ≍ gk; then f
†
j−f

†
k = (gj/gk)

† ∈ I(K) ⊆ O and so cj−ck ≺ 1,
hence j = k. We arrange l ⩾ i so that h1, . . . , hl are distinct and the hk with k > l

are in {h1, . . . , hl}. For j ⩽ l, set g∗j :=
∑
hk=hj

gk and g∂

j :=
∑
hk=hj

f†kgk, so

f =
∑
j⩽l

g∗j e(hji), f ′ =
∑
j⩽l

g∂

j e(hji).

For j ⩽ l we have a unique k = k(j) with g∗j ∼ gk. Now gi ≍ fi ≽ fk ≍ gk for all k,
so i = k(i), hence 0 ̸= g∗i ∼ gi ≽ gk(j) ≍ g∗j for j ⩽ l. In particular, f ≍g gi.

Suppose c ̸= 0. Then c − f† ≺ 1 gives cf ∼ f ′. Hence by Lemma 5.10.6 we

have cg∗i ∼ g∂

i and
∑
hk=hj

(c− f†k)gk = cg∗j − g∂

j ≺ cg∗i for j ̸= i, j ⩽ l. Then cgi ∼
g∂

i =
∑
hk=hi

f†kgk. But if k ̸= i and hk = hi, then f
†
kgk ≼ gk ≺ gi, hence cgi ∼ f†i gi,

so c ∼ f†i . This proves c = ci. Also, if k ̸= i and hk = hi, then gk ≺ gi, so Re(f†k) =

Re(g†k) < Re(g†i ) = Re(f†i ) by Corollary 1.2.6, hence Re ck ⩽ Re ci = Re c. If j ⩽ l,
j ̸= i and hk = hj , then c ̸= ck gives gk ≍ (c− f†k)gk ≼ cg

∗
j − g∂

j ≺ cg∗i ≍ gi, and as
before this yields Re ck ⩽ Re c. Hence Re ck ⩽ Re c for all k.
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Next suppose c = 0. Then f ′ ≺ f and so f ′ ≺g f ≍g gi by Corollary 5.10.11,

hence g∂

j ≺ gi for j ⩽ l, and this yields f†kgk ≺ gi for all k. Taking k = i now

gives f†i ≺ 1 and so ci = 0, and if k ̸= i, then ck ̸= 0 and thus f†k ≍ 1,

so gk ≍ f†kgk ≺ gi, and as in the case c ̸= 0 this gives Re ck ⩽ Re ci = 0. □
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Part 6. Filling Holes in Hardy Fields

This part contains in Section 6.7 the proof of our main theorem. Important tools
for this are the normalization and approximation theorems for holes and slots es-
tablished in Parts 3 and 4. On the analytic side we need a suitable fixed point
theorem proved in Section 6.2: Theorem 6.2.3. The definition of the operator used
there is based on the right-inverses for linear differential operators over Hardy fields
constructed in Section 6.1. Section 6.3 complements Section 6.2 by showing how to
recover suitable smoothness for the fixed points obtained this way.

Let (P,m, f̂) be a hole in a Liouville closed Hardy field H ⊇ R and recall that f̂

lies in an immediate H-field extension of H and satisfies P (f̂) = 0, f̂ ≺ m. (This
extension is not assumed to be a Hardy field.) Under suitable hypotheses on H

and (P,m, f̂), our fixed point theorem (or rather its “real” variant, Corollary 6.2.8)
produces a germ f of a one-variable real-valued function such that P (f) = 0, f ≺ m;
see Section 6.4. The challenge in the proof of our main result is to show that such

an f generates a Hardy field extension H⟨f⟩ of H isomorphic to H⟨f̂⟩ over H (as
ordered differential fields). In particular, we need to demonstrate that this zero f

of P has the same asymptotic properties (relative to H) as its formal counterpart f̂ ,
and the notion of asymptotic similarity established in Section 6.6 provides a suitable
general framework for doing so. In order to show that f is indeed asymptotically

similar to f̂ over H, we are naturally led to the following task: given another germ g
satisfying P (g) = 0, g ≺ m, bound the growth of h, h′, . . . , h(r) where h := (f−g)/m
and r := orderP . Assuming (among other things) that (P,m, f̂) is repulsive-normal
in the sense of Part 4, this is accomplished in Section 6.5, after revisiting parts of
the material from Sections 6.1, 6.2, and 6.4 for certain weighted function spaces.
(See Proposition 6.5.14.)

6.1. Inverting Linear Differential Operators over Hardy Fields

Given a Hardy field H and A ∈ H[∂] we shall construe A as a C-linear operator on
various spaces of functions. We wish to construct right-inverses to such operators.
A key assumption here is that A splits over H[i]. This reduces the construction of
such inverses mainly to the case of order 1, and this case is handled in the first two
subsections using suitable twisted integration operators. In the third subsection we
put things together and also show how to “preserve reality” by taking real parts. In
the fourth subsection we introduce damping factors. Throughout we pay attention
to the continuity of various operators with respect to various norms, for use in
Section 6.2.

We let a range over R and r over N ∪ {∞, ω}. If r ∈ N, then r − 1 and r + 1 have
the usual meaning, while for r ∈ {∞, ω} we set r−1 = r+1 := r. (This convention
is just to avoid case distinctions.) We have the usual absolute value on C given

by |a+ bi| =
√
a2 + b2 ∈ R⩾ for a, b ∈ R, so for f ∈ Ca[i] we have |f | ∈ Ca.

Integration and some useful norms. For f ∈ Ca[i] we define ∂
−1
a f ∈ C1

a[i] by

∂
−1
a f(t) :=

∫ t

a

f(s) ds :=

∫ t

a

Re f(s) ds+ i

∫ t

a

Im f(s) ds,

so ∂
−1
a f is the unique g ∈ C1

a[i] such that g′ = f and g(a) = 0. The integration
operator ∂

−1
a : Ca[i] → C1

a[i] is C-linear and maps Cra[i] into Cr+1
a [i]. For f ∈ Ca[i]
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we have ∣∣∂−1
a f(t)

∣∣ ⩽ (∂−1
a |f |

)
(t) for all t ⩾ a.

Let f ∈ Ca[i]. Call f integrable at ∞ if limt→∞
∫ t
a
f(s) ds exists in C. In that

case we denote this limit by
∫∞
a
f(s) ds and put∫ a

∞
f(s) ds := −

∫ ∞

a

f(s) ds,

and define ∂
−1
∞ f ∈ C1

a[i] by

∂
−1
∞ f(t) :=

∫ t

∞
f(s) ds =

∫ a

∞
f(s) ds+

∫ t

a

f(s) ds =

∫ a

∞
f(s) ds+ ∂

−1
a f(t),

so ∂
−1
∞ f is the unique g ∈ C1

a[i] such that g′ = f and limt→∞ g(t) = 0. Note that

(6.1.1) Ca[i]int :=
{
f ∈ Ca[i] : f is integrable at ∞

}
is a C-linear subspace of Ca[i] and that ∂

−1
∞ defines a C-linear operator from this

subspace into C1
a[i] which maps Cra[i] ∩ Ca[i]int into Cr+1

a [i]. If f ∈ Ca[i] and g ∈
Cint
a := Ca[i]int ∩ Ca with |f | ⩽ g as germs in C, then f ∈ Ca[i]int; in particular,

if f ∈ Ca[i] and |f | ∈ Cint
a , then f ∈ Ca[i]int. Moreover:

Lemma 6.1.1. Let f ∈ Ca[i] and g ∈ Cint
a be such that |f(t)| ⩽ g(t) for all t ⩾ a.

Then |∂−1
∞ f(t)| ⩽ |∂−1

∞ g(t)| for all t ⩾ a.

Proof. Let t ⩾ a. We have g ⩾ 0 on [a,∞), hence ∂
−1
∞ g(t) ⩽ 0. Also

∣∣∫∞
t
f(s) ds

∣∣ ⩽∫∞
t

|f(s)| ds ⩽
∫∞
t
g(s) ds. Thus

|∂−1
∞ f(t)| =

∣∣∣∣∫ ∞

t

f(s) ds

∣∣∣∣ ⩽ ∫ ∞

t

g(s) ds = −∂
−1
∞ g(t) = |∂−1

∞ g(t)|

as claimed. □

For f ∈ Ca[i] we set
∥f∥a := sup

t⩾a
|f(t)| ∈ [0,∞],

so (with b for “bounded”):

Ca[i]b :=
{
f ∈ Ca[i] : ∥f∥a <∞

}
is a C-linear subspace of Ca[i], and f 7→ ∥f∥a is a norm on Ca[i]b making it a Banach
space over C. It is also convenient to define for t ⩾ a the seminorm

∥f∥[a,t] := max
a⩽s⩽t

|f(s)|

on Ca[i]. More generally, let r ∈ N. Then for f ∈ Cra[i] we set

∥f∥a;r := max
{
∥f∥a, . . . , ∥f (r)∥a

}
∈ [0,∞],

so
Cra[i]b :=

{
f ∈ Cra[i] : ∥f∥a;r <∞

}
is a C-linear subspace of Cra[i], and f 7→ ∥f∥a;r makes Cra[i]b a normed vector space
over C. Note that by Corollary 5.7.7,

Cra[i]b =
{
f ∈ Cra[i] : ∥f∥a <∞ and ∥f (r)∥a <∞

}
,

although we do not use this later. Note that for f, g ∈ Cra[i] we have

∥fg∥a;r ⩽ 2r∥f∥a;r∥g∥a;r,
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so Cra[i]b is a subalgebra of the C-algebra Cra[i]. If f ∈ Cr+1
a [i], then f ′ ∈ Cra[i]

with ∥f ′∥a;r ⩽ ∥f∥a;r+1.

With i = (i0, . . . , ir) ranging over N1+r, let P =
∑

i PiY
i (all Pi ∈ Ca[i]) be a

polynomial in Ca[i]
[
Y, Y ′, . . . , Y (r)

]
. For f ∈ Cra[i] we set

P (f) :=
∑
i

Pif
i ∈ Ca[i] where f i := f i0(f ′)i1 · · · (f (r))ir ∈ Ca[i].

We also let

∥P∥a := max
i

∥Pi∥a ∈ [0,∞].

Then ∥P∥a < ∞ iff P ∈ Ca[i]b
[
Y, . . . , Y (r)

]
, and ∥ · ∥a is a norm on the C-linear

space Ca[i]b
[
Y, . . . , Y (r)

]
. In the following assume ∥P∥a <∞. Then for j = 0, . . . , r

such that ∂P/∂Y (j) ̸= 0 we have

∥∂P/∂Y (j)∥a ⩽ (degY (j) P ) · ∥P∥a.

Moreover:

Lemma 6.1.2. If P is homogeneous of degree d ∈ N and f ∈ Cra[i]b, then

∥P (f)∥a ⩽
(
d+ r

r

)
· ∥P∥a · ∥f∥da;r.

Corollary 6.1.3. Let d ⩽ e in N be such that Pi = 0 whenever |i| < d or |i| > e.
Then for f ∈ Cra[i]b we have

∥P (f)∥a ⩽ D · ∥P∥a ·
(
∥f∥da;r + · · ·+ ∥f∥ea;r

)
where D = D(d, e, r) :=

(
e+r+1
r+1

)
−
(
d+r
r+1

)
∈ N⩾1.

Let B : V → Cra[i]b be a C-linear map from a normed vector space V over C
into Cra[i]b. Then we set

∥B∥a;r := sup
{
∥B(f)∥a;r : f ∈ V, ∥f∥ ⩽ 1

}
∈ [0,∞],

the operator norm of B. Hence with the convention ∞ · b := b · ∞ := ∞
for b ∈ [0,∞] we have

∥B(f)∥a;r ⩽ ∥B∥a;r · ∥f∥ for f ∈ V .

Note that B is continuous iff ∥B∥a;r < ∞. If the map D : Cra[i]b → Csa[i]b (s ∈ N)
is also C-linear, then

∥D ◦B∥a;s ⩽ ∥D∥a;s · ∥B∥a;r.
For r = 0 we drop the subscript: ∥B∥a := ∥B∥a;0.

Lemma 6.1.4. Let r ∈ N⩾1 and ϕ ∈ Cr−1
a [i]b. Then the C-linear operator

∂ − ϕ : Cra[i] → Cr−1
a [i], f 7→ f ′ − ϕf

maps Cra[i]b into Cr−1
a [i]b, and its restriction ∂−ϕ : Cra[i]b → Cr−1

a [i]b is continuous
with operator norm ∥∂ − ϕ∥a;r−1 ⩽ 1 + 2r−1∥ϕ∥a;r−1.

Let r ∈ N, a0 ∈ R, and let a range over [a0,∞). The C-linear map

f 7→ f |[a,+∞) : Cra0 [i] → Cra[i]
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satisfies ∥f |[a,+∞)∥a;r ⩽ ∥f∥a0;r for f ∈ Cra0 [i], so it maps Cra0 [i]
b into Cra[i]b.

For f ∈ C0
a0 [i] also denoting its germ at +∞ and its restriction f |[a,+∞), we have:

f ≼ 1 ⇐⇒ ∥f∥a <∞ for some a ⇐⇒ ∥f∥a <∞ for all a,

f ≺ 1 ⇐⇒ ∥f∥a → 0 as a→ ∞.

Twisted integration. For f ∈ Ca[i] we have the C-linear operator

g 7→ fg : Ca[i] → Ca[i],
which we also denote by f . We now fix an element ϕ ∈ Ca[i], and set Φ := ∂

−1
a ϕ,

so Φ ∈ C1
a[i], Φ(t) =

∫ t
a
ϕ(s) ds for t ⩾ a, and Φ′ = ϕ. Thus eΦ, e−Φ ∈ C1

a[i]

with (eΦ)† = ϕ. Consider the C-linear operator

B := eΦ ◦ ∂
−1
a ◦ e−Φ : Ca[i] → C1

a[i],

so

Bf(t) = eΦ(t)

∫ t

a

e−Φ(s) f(s) ds for f ∈ Ca[i].

It is easy to check that B is a right inverse to ∂ − ϕ : C1
a[i] → Ca[i] in the sense

that (∂−ϕ) ◦B is the identity on Ca[i]. Note that for f ∈ Ca[i] we have Bf(a) = 0,
and thus (Bf)′(a) = f(a), using (Bf)′ = f+ϕB(f). Set R := ReΦ and S := ImΦ,
so R,S ∈ C1

a, R
′ = Reϕ, S′ = Imϕ, and R(a) = S(a) = 0. Note also that

if ϕ ∈ Cra[i], then eΦ ∈ Cr+1
a [i], so B maps Cra[i] into Cr+1

a [i].

Suppose ε > 0 and Reϕ(t) ⩽ −ε for all t ⩾ a. Then −R has derivative −R′(t) ⩾ ε
for all t ⩾ a, so −R is strictly increasing with image [−R(a),∞) = [0,∞) and
compositional inverse (−R)inv ∈ C1

0 . Making the change of variables −R(s) = u
for s ⩾ a, we obtain for t ⩾ a and f ∈ Ca[i], and with s := (−R)inv(u),∫ t

a

e−Φ(s) f(s) ds =

∫ −R(t)

0

e−Φ(s) f(s)
1

−R′(s)
du, and thus

|Bf(t)| ⩽ eR(t) ·

(∫ −R(t)

0

eu du · ∥f∥[a,t]

)
·
∥∥∥∥ 1

Reϕ

∥∥∥∥
[a,t]

=
[
1− eR(t)

]
· ∥f∥[a,t] ·

∥∥∥∥ 1

Reϕ

∥∥∥∥
[a,t]

⩽ ∥f∥[a,t] ·
∥∥∥∥ 1

Reϕ

∥∥∥∥
[a,t]

⩽ ∥f∥a ·
∥∥∥∥ 1

Reϕ

∥∥∥∥
a

.

Thus B maps Ca[i]b into Ca[i]b ∩ C1
a[i] and B : Ca[i]b → Ca[i]b is continuous with

operator norm ∥B∥a ⩽
∥∥ 1
Reϕ

∥∥
a
.

Next, suppose ε > 0 and Reϕ(t) ⩾ ε for all t ⩾ a. Then R′(t) ⩾ ε for all t ⩾ a,
so R(t) ⩾ ε · (t − a) for such t. Hence if f ∈ Ca[i]b, then e−Φ f is integrable
at ∞. Recall from (6.1.1) that Ca[i]int is the C-linear subspace of Ca[i] consisting
of the g ∈ Ca[i] that are integrable at ∞. We have the C-linear maps

f 7→ e−Φ f : Ca[i]b → Ca[i]int, ∂
−1
∞ : Ca[i]int → C1

a[i], f 7→ eΦ f : C1
a[i] → C1

a[i].

Composition yields the C-linear operator B : Ca[i]b → C1
a[i],

Bf(t) := eΦ(t)

∫ t

∞
e−Φ(s) f(s) ds (f ∈ Ca[i]b).
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It is a right inverse to ∂−ϕ in the sense that (∂−ϕ)◦B is the identity on Ca[i]b. Note
that R is strictly increasing with image [0,∞) and compositional inverse Rinv ∈ C1

0 .
Making the change of variablesR(s) = u for s ⩾ a, we obtain for t ⩾ a and f ∈ Ca[i]b
with s := Rinv(u),∫ t

∞
e−Φ(s) f(s) ds = −

∫ ∞

R(t)

e−Φ(s) f(s)
1

R′(s)
du, and thus

|Bf(t)| ⩽ eR(t) ·

(∫ ∞

R(t)

e−u du

)
· ∥f∥t ·

∥∥∥∥ 1

Reϕ

∥∥∥∥
t

⩽ ∥f∥t ·
∥∥∥∥ 1

Reϕ

∥∥∥∥
t

⩽ ∥f∥a ·
∥∥∥∥ 1

Reϕ

∥∥∥∥
a

Hence B maps Ca[i]b into Ca[i]b ∩ C1
a[i], and as a C-linear operator Ca[i]b → Ca[i]b,

B is continuous with operator norm ∥B∥a ⩽
∥∥ 1
Reϕ

∥∥
a
. If ϕ ∈ Cra[i], then B

maps Ca[i]b ∩ Cra[i] into Ca[i]b ∩ Cr+1
a [i].

The case that for some ε > 0 we have Reϕ(t) ⩽ −ε for all t ⩾ a is called the
attractive case, and the case that for some ε > 0 we have Reϕ(t) ⩾ ε for all t ⩾ a
is called the repulsive case. In both cases the above yields a continuous opera-
tor B : Ca[i]b → Ca[i]b with operator norm ⩽

∥∥ 1
Reϕ

∥∥
a
which is right-inverse to the

operator ∂ − ϕ : C1
a[i] → Ca[i]. We denote this operator B by Bϕ if we need to

indicate its dependence on ϕ. Note also its dependence on a. In both the attractive
and the repulsive case, B maps Ca[i]b into Ca[i]b ∩ C1

a[i], and if ϕ ∈ Cra[i] then B
maps Ca[i]b ∩ Cra[i] into Ca[i]b ∩ Cr+1

a [i].

Given a Hardy field H and f ∈ H[i] with Re f ≽ 1 we can choose a and a repre-
sentative of f in Ca[i], to be denoted also by f , such that Re f(t) ̸= 0 for all t ⩾ a,
and then f ∈ Ca[i] falls either under the attractive case or under the repulsive case.
The original germ f ∈ H[i] as well as the function f ∈ Ca[i] is accordingly said to
be attractive, respectively repulsive. (This agrees with the terminology introduced
at the beginning of Section 4.5.)

Twists and right-inverses of linear operators over Hardy fields. Let H be
a Hardy field, K := H[i], and let A ∈ K[∂] be a monic operator of order r ⩾ 1,

A = ∂
r + f1∂

r−1 + · · ·+ fr, f1, . . . , fr ∈ K.

Take a real number a0 and functions in Ca0 [i] that represent the germs f1, . . . , fr and
to be denoted also by f1, . . . , fr. Whenever we increase below the value of a0, it is
understood that we also update the functions f1, . . . , fr accordingly, by restriction;
the same holds for any function on [a0,∞) that gets named. Throughout, a ranges
over [a0,∞), and f1, . . . , fr denote also the restrictions of these functions to [a,∞),
and likewise for any function on [a0,∞) that we name. Thus for any a we have the
C-linear operator

Aa : Cra[i] → Ca[i], y 7→ y(r) + f1y
(r−1) + · · ·+ fry.

Next, let m ∈ H× be given. It gives rise to the twist A⋉m ∈ K[∂],

A⋉m := m−1Am = ∂
r + g1∂

r−1 + · · ·+ gr, g1, . . . , gr ∈ K.

Now [ADH, (5.1.1), (5.1.2), (5.1.3)] gives universal expressions for g1, . . . , gr in
terms of f1, . . . , fr,m,m

−1; for example, g1 = f1 + rm†. Suppose the germ m
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is represented by a function in Cra0 [i]
×, also denoted by m. Let m−1 likewise do

double duty as the multiplicative inverse of m in Cra0 [i]. The expressions above can
be used to show that the germs g1, . . . , gr are represented by functions in Ca0 [i], to
be denoted also by g1, . . . , gr, such that for all a and all y ∈ Cra[i] we have

m−1Aa(my) = (A⋉m)a(y), where (A⋉m)a(y) := y(r) + g1y
(r−1) + · · ·+ gry.

The operator Aa : Cra[i] → Ca[i] is surjective (Proposition 5.2.1); we aim to construct
a right-inverse of Aa on the subspace Ca[i]b of Ca[i]. For this, we assume given a
splitting of A over K,

A = (∂ − ϕ1) · · · (∂ − ϕr), ϕ1, . . . , ϕr ∈ K.

Take functions in Ca0 [i], to be denoted also by ϕ1, . . . , ϕr, that represent the
germs ϕ1, . . . , ϕr. We increase a0 to arrange ϕ1, . . . , ϕr ∈ Cr−1

a0 [i]. Note that

for j = 1, . . . , r the C-linear map ∂ − ϕj : C1
a[i] → Ca[i] restricts to a C-linear

map Aj : Cja[i] → Cj−1
a [i], so that we obtain a map A1 ◦ · · · ◦Ar : Cra[i] → Ca[i]. It is

routine to verify that for all sufficiently large a we have

Aa = A1 ◦ · · · ◦Ar : Cra[i] → Ca[i].
We increase a0 so that Aa = A1 ◦ · · · ◦ Ar for all a. Note that A1, . . . , Ar depend
on a, but we prefer not to indicate this dependence notationally.

Now m ∈ H× gives over K the splitting

A⋉m = (∂ − ϕ1 +m†) · · · (∂ − ϕr +m†).

Suppose as before that the germ m is represented by a function m ∈ Cra0 [i]
×. With

the usual notational conventions we have ϕj − m† ∈ Cr−1
a0 [i], giving the C-linear

map Ãj := ∂ − (ϕj −m†) : Cja[i] → Cj−1
a [i] for j = 1, . . . , r, which for all sufficiently

large a gives, just as for Aa, a factorization

(A⋉m)a = Ã1 ◦ · · · ◦ Ãr.
To construct a right-inverse of Aa we now assume Reϕ1, . . . ,Reϕr ≽ 1. Then we
increase a0 once more so that for all t ⩾ a0,

Reϕ1(t), . . . ,Reϕr(t) ̸= 0.

Recall that for j = 1, . . . , r we have the continuous C-linear operator

Bj := Bϕj
: Ca[i]b → Ca[i]b

from the previous subsection. The subsection on twisted integration now yields:

Lemma 6.1.5. The continuous C-linear operator

A−1
a := Br ◦ · · · ◦B1 : Ca[i]b → Ca[i]b

is a right-inverse of Aa: it maps Ca[i]b into Ca[i]b ∩ Cra[i], and Aa ◦ A−1
a is the

identity on Ca[i]b. For its operator norm we have ∥A−1
a ∥a ⩽

∏r
j=1

∥∥ 1
Reϕj

∥∥
a
.

Suppose A is real in the sense that A ∈ H[∂]. Then by increasing a0 we arrange
that f1, . . . , fr ∈ Ca0 . Next, set

Cb
a := Ca[i]b ∩ Ca =

{
f ∈ Ca : ∥f∥a <∞

}
,

an R-linear subspace of Ca. Then the real part

ReA−1
a : Cb

a → Cb
a , (ReA−1

a )(f) := Re
(
A−1
a (f)

)
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is R-linear and maps Cb
a into Cra. Moreover, it is right-inverse to Aa on Cb

a in the
sense that Aa ◦ ReA−1

a is the identity on Cb
a , and for f ∈ Cb

a ,

∥(ReA−1
a )(f)∥a ⩽ ∥A−1

a (f)∥a.

Damping factors. Here H, K, A, f1, . . . , fr, ϕ1, . . . , ϕr, a0 are as in Lemma 6.1.5.
In particular, r ∈ N⩾1, Reϕ1, . . . ,Reϕr ≽ 1, and a ranges over [a0,∞). For later
use we choose damping factors u to make the operator uA−1

a more manageable
than A−1

a . For j = 0, . . . , r we set

(6.1.2) A◦
j := A1 ◦ · · · ◦Aj : Cja[i] → Ca[i],

with A◦
0 the identity on Ca[i] and A◦

r = Aa, and

(6.1.3) B◦
j := Bj ◦ · · · ◦B1 : Ca[i]b → Ca[i]b,

where B◦
0 is the identity on Ca[i]b and B◦

r = A−1
a . Then B◦

j maps Ca[i]b in-

to Ca[i]b ∩ Cja[i] and A◦
j ◦B◦

j is the identity on Ca[i]b by Lemma 6.1.5.

Lemma 6.1.6. Let u ∈ Cra[i]×. Then for i = 0, . . . , r and f ∈ Ca[i]b,

(6.1.4)
[
u ·A−1

a (f)
](i)

=

r∑
j=r−i

ui,j · u ·B◦
j (f) in Cr−ia [i]

with coefficient functions ui,j ∈ Cr−ia [i] given by ui,r−i = 1, and for 0 ⩽ i < r,

ui+1,j =

{
u′i,r + ui,r(u

† + ϕr) if j = r,

u′i,j + ui,j(u
† + ϕj) + ui,j+1 if r − i ⩽ j < r.

Proof. Recall that for j = 1, . . . , r and f ∈ Ca[i]b we have Bj(f)
′ = f +ϕjBj(f). It

is obvious that (6.1.4) holds for i = 0. Assuming (6.1.4) for a certain i < r we get[
uA−1

a (f)
]
(i+1) =

r∑
j=r−i

u′i,j · uB◦
j (f) +

r∑
j=r−i

ui,j ·
[
uB◦

j (f)
]′
,

and for j = r − i, . . . , r,[
uB◦

j (f)
]′

= u′B◦
j (f) + u ·

[
B◦
j (f)

]′
= u† · uB◦

j (f) + uB◦
j−1(f) + ϕjuB

◦
j (f),

which gives the desired result. □

Let v ∈ Cra0 be such that v(t) > 0 for all t ⩾ a0, v ∈ H, v ≺ 1. Then we have the
convex subgroup

∆ :=
{
γ ∈ v(H×) : γ = o(vv)

}
of v(H×). We assume that ϕ1, . . . , ϕr ≼∆ v−1 in the asymptotic field K, where ϕj
and v also denote their germs. For real ν > 0 we have vν ∈ (Cra0)

×, so

u := vν |[a,∞) ∈ (Cra)×, ∥u∥a <∞.

In the next proposition u has this meaning, a meaning which accordingly varies
with a. Recall that A−1

a maps Ca[i]b into Ca[i]b ∩ Cra[i] with ∥A−1
a ∥a <∞.

Proposition 6.1.7. Assume H is real closed and ν ∈ Q, ν > r. Then:

(i) the C-linear operator uA−1
a : Ca[i]b → Ca[i]b maps Ca[i]b into Cra[i]b;

(ii) uA−1
a : Ca[i]b → Cra[i]b is continuous;

(iii) there is a real constant c ⩾ 0 such that ∥uA−1
a ∥a;r ⩽ c for all a;

(iv) for all f ∈ Ca[i]b we have uA−1
a (f) ≼ vν ≺ 1;

(v) ∥uA−1
a ∥a;r → 0 as a→ ∞.
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Proof. Note that v† ≼∆ 1 by [ADH, 9.2.10(iv)]. Denoting the germ of u also by u
we have u ∈ H and u† = νv† ≼∆ 1, in particular, u† ≼ v−1/2. Note that the ui,j
from Lemma 6.1.6—that is, their germs—lie in K. Induction on i gives ui,j ≼∆ v−i

for r− i ⩽ j ⩽ r. Hence uui,j ≺∆ vν−i ≺∆ 1 for r− i ⩽ j ⩽ r. Thus for i = 0, . . . , r
we have a real constant

ci,a :=

r∑
j=r−i

∥uui,j∥a · ∥Bj∥a · · · ∥B1∥a ∈ [0,∞)

with
∥∥[uA−1

a (f)
]
(i)
∥∥
a
⩽ ci,a∥f∥a for all f ∈ Ca[i]b. Therefore uA−1

a maps Ca[i]b

into Cra[i]b, and the operator uA−1
a : Ca[i]b → Cra[i]b is continuous with

∥uA−1
a ∥a;r ⩽ ca := max{c0,a, . . . , cr,a}.

As to (iii), this is because for all i, j, ∥uuij∥a is decreasing as a function of a,
and ∥Bj∥a ⩽

∥∥ 1
Reϕj

∥∥
a
for all j. For f ∈ Ca[i]b we have A−1

a (f) ∈ Ca[i]b, so (iv)

holds. As to (v), uui,j ≺ 1 gives ∥uuij∥a → 0 as a → ∞, for all i, j. In view
of ∥Bj∥a ⩽

∥∥ 1
Reϕj

∥∥
a
for all j, this gives ci,a → 0 as a → ∞ for i = 0, . . . , r,

so ca → 0 as a→ ∞. □

6.2. Solving Split-Normal Equations over Hardy Fields

We construct here solutions of suitable algebraic differential equations over Hardy
fields. These solutions lie in rings Cra[i]b (r ∈ N⩾1) and are obtained as fixed points
of certain contractive maps, as is common in solving differential equations. Here
we use that Cra[i]b is a Banach space with respect to the norm ∥ · ∥a;r. It will take
some effort to define the right contractions using the operators from Section 6.1.

In this section H, K, A, f1, . . . , fr, ϕ1, . . . , ϕr, a0 are as in Lemma 6.1.5. In
particular, H is a Hardy field, K = H[i], and

A = (∂ − ϕ1) · · · (∂ − ϕr) where r ∈ N⩾1, ϕ1, . . . , ϕr ∈ K, Reϕ1, . . . ,Reϕr ≽ 1.

Here a0 is chosen so that we have representatives for ϕ1, . . . , ϕr in Cr−1
a0 [i], denoted

also by ϕ1, . . . , ϕr. We let a range over [a0,∞). In addition we assume thatH is real
closed, and that we are given a germ v ∈ H> such that v ≺ 1 and ϕ1, . . . , ϕr ≼∆ v−1

for the convex subgroup

∆ :=
{
γ ∈ v(H×) : γ = o(vv)

}
of v(H×). We increase a0 so that v is represented by a function in Cra0 , also denoted
by v, with v(t) > 0 for all t ⩾ a0.

Constructing fixed points over H. Consider a differential equation

(∗) A(y) = R(y), y ≺ 1,

where R ∈ K{Y } has order ⩽ r, degree ⩽ d ∈ N⩾1 and weight ⩽ w ∈ N⩾r,
with R ≺∆ vw. Now R =

∑
j RjY

j with j ranging here and below over the

tuples (j0, . . . , jr) ∈ N1+r with |j| ⩽ d and ∥j∥ ⩽ w; likewise for i. For each j we
take a function in Ca0 [i] that represents the germ Rj ∈ K and let Rj denote this
function as well as its restriction to any [a,∞). Thus R is represented on [a,∞) by
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a polynomial
∑

j RjY
j ∈ Ca[i]

[
Y, . . . , Y (r)

]
, to be denoted also by R for simplicity.

This yields for each a an evaluation map

f 7→ R(f) :=
∑
j

Rjf
j : Cra[i] → Ca[i].

As in [ADH, 4.2] we also have for every i the formal partial derivative

R(i) :=
∂|i|R

∂i0Y · · · ∂irY (r)
∈ Ca[i]

[
Y, . . . , Y (r)

]
with R(i) =

∑
j R

(i)
j Y j , all R

(i)
j ∈ Ca[i] having their germs in K.

A solution of (∗) on [a,∞) is a function f ∈ Cra[i]b such that Aa(f) = R(f)
and f ≺ 1. One might try to obtain a solution as a fixed point of the opera-
tor f 7→ A−1

a

(
R(f)

)
, but this operator might fail to be contractive on a useful

space of functions. Therefore we twist A and arrange things so that we can use
Proposition 6.1.7. In the rest of this section we fix ν ∈ Q with ν > w (so ν > r)
such that R ≺∆ vν and νv† ̸∼ Reϕj in H for j = 1, . . . , r. (Note that such ν

exists.) Then the twist Ã := A⋉vν = v−νAvν ∈ K[∂] splits over K as follows:

Ã = (∂ − ϕ1 + νv†) · · · (∂ − ϕr + νv†), with

ϕj − νv† ≼∆ v−1, Reϕj − νv† ≽ 1 (j = 1, . . . , r).

We also increase a0 so that Reϕj(t) − νv†(t) ̸= 0 for all t ⩾ a0 and such that for

all a and u := vν |[a,∞) ∈ (Cra)× the operator Ãa : Cra[i] → Ca[i] satisfies

Ãa(y) = u−1Aa(uy) (y ∈ Cra[i]).

(See the explanations before Lemma 6.1.5 for definitions of Aa and Ãa.) We now
increase a0 once more, fixing it for the rest of the section except in the subsection

“Preserving reality”, so as to obtain as in Lemma 6.1.5, with Ã in the role of A, a

right-inverse Ã−1
a : Ca[i]b → Ca[i]b for such Ãa.

Lemma 6.2.1. We have a continuous operator (not necessarily C-linear)

Ξa : Cra[i]b → Cra[i]b, f 7→ uÃ−1
a

(
u−1R(f)

)
.

It has the property that Ξa(f) ≼ vν ≺ 1 and Aa
(
Ξa(f)

)
= R(f) for all f ∈ Cra[i]b.

Proof. We have ∥u−1Ri∥a < ∞ for all i, so u−1R(f) =
∑

i u
−1Rif

i ∈ Ca[i]b

for all f ∈ Cra[i]b, and thus uÃ−1
a

(
u−1R(f)

)
∈ Cra[i]b for such f , by Proposi-

tion 6.1.7(i). Continuity of Ξa follows from Proposition 6.1.7(ii) and continuity
of f 7→ u−1R(f) : Cra[i]b → Ca[i]b. For f ∈ Cra[i]b we have Ξa(f) ≼ vν ≺ 1 by
Proposition 6.1.7(iv), and

u−1Aa
(
Ξa(f)

)
= u−1Aa

[
uÃ−1

a

(
u−1R(f)

)]
= Ãa

[
Ã−1
a

(
u−1R(f)

)]
= u−1R(f),

so Aa
(
Ξa(f)

)
= R(f). □

By Lemma 6.2.1, each f ∈ Cra[i]b with Ξa(f) = f is a solution of (∗) on [a,∞).

Lemma 6.2.2. There is a constant Ca ∈ R⩾ such that for all f, g ∈ Cra[i]b,

∥Ξa(f + g)− Ξa(f)∥a;r ⩽ Ca ·max
{
1, ∥f∥da;r

}
·
(
∥g∥a;r + · · ·+ ∥g∥da;r

)
.

We can take these Ca such that Ca → 0 as a→ ∞, and we do so below.
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Proof. Let f, g ∈ Cra[i]b. We have the Taylor expansion

R(f + g) =
∑
i

1

i!
R(i)(f)gi =

∑
i

1

i!

[∑
j

R
(i)
j fj

]
gi.

Now for all i, j we have R
(i)
j ≺∆ vν in K, so u−1R

(i)
j ≺ 1. Hence

Da :=
∑
i,j

∥∥u−1R
(i)
j

∥∥
a

∈ [0,∞)

has the property that Da → 0 as a→ ∞, and∥∥u−1
(
R(f + g)−R(f)

)∥∥
a
⩽ Da ·max

{
1, ∥f∥da;r

}
·
(
∥g∥a;r + · · ·+ ∥g∥da;r

)
.

So h := u−1
(
R(f + g)−R(f)

)
∈ C0

a[i]
b gives Ξa(f + g)− Ξa(f) = uÃ−1

a (h), and

∥Ξa(f + g)− Ξa(f)∥a;r = ∥uÃ−1
a (h)∥a;r ⩽ ∥uÃ−1

a ∥a;r · ∥h∥a.

Thus the lemma holds for Ca := ∥uÃ−1
a ∥a;r ·Da. □

In the proof of the next theorem we use the well-known fact that the normed vector
space Cra[i]b over C is actually a Banach space. Hence if S ⊆ Cra[i]b is nonempty
and closed and Φ: S → S is contractive (that is, there is a real number λ ∈ [0, 1)
such that ∥Φ(f) − Φ(g)∥a;r ⩽ λ∥f − g∥a;r for all f, g ∈ S), then Φ has a unique
fixed point f0, and Φn(f) → f0 as n→ ∞, for every f ∈ S. (See for example [203,
Chapter II, §5, IX].)

Theorem 6.2.3. For all sufficiently large a the operator Ξa maps the closed ball{
f ∈ Cra[i] : ∥f∥a;r ⩽ 1/2

}
of the Banach space Cra[i]b into itself and has a unique fixed point on this ball.

Proof. We have Ξa(0) = uÃ−1
a (u−1R0), so ∥Ξa(0)∥a;r ⩽ ∥uÃ−1

a ∥a;r∥u−1R0∥a.
Now ∥u−1R0∥a → 0 as a → ∞, so by Proposition 6.1.7(iii) we can take a so

large that ∥uÃ−1
a ∥a;r∥u−1R0∥a ⩽ 1

4 . For f , g in the closed ball above we have by
Lemma 6.2.2,

∥Ξa(f)− Ξa(g)∥a;r = ∥Ξa(f + (g − f))− Ξa(f)∥a;r ⩽ Ca · d∥f − g∥a;r.

Take a so large that also Cad ⩽ 1
2 . Then ∥Ξa(f) − Ξa(g)∥a;r ⩽ 1

2∥f − g∥a;r.
Applying this to g = 0 we see that Ξa maps the closed ball above to itself. Thus Ξa
has a unique fixed point on this ball. □

Note that if degR ⩽ 0 (so R = R0), then Ξa(f) = uÃ−1
a (u−1R0) is indepen-

dent of f ∈ Cra[i]b, so for sufficiently large a, the fixed point f ∈ Cra[i]b of Ξa
with ∥f∥a;r ⩽ 1/2 is f = Ξa(0) = uÃ−1

a (u−1R0). Here is a variant of Theorem 6.2.3:

Lemma 6.2.4. Let h ∈ Cra0 [i] be such that ∥h∥a0;r ⩽ 1/8. Then for sufficiently

large a there is a unique f ∈ Cra[i]b such that ∥f∥a;r ⩽ 1/2 and Ξa(f) = f + h.

Proof. Consider the operator Θa = Ξa − h : Cra[i]b → Cra[i]b given by

Θa(y) := Ξa(y)− h.
322



Arguing as in the proof of Theorem 6.2.3 we take a so large that ∥Ξa(0)∥a;r ⩽ 1
8 .

Then ∥Θa(0)∥a;r ⩽ ∥Ξa(0)∥a;r + ∥h∥a;r ⩽ 1
4 . Also, take a so large that Cad ⩽ 1

2 .

Then for f, g ∈ Cra[i]b with ∥f∥a;r, ∥g∥a;r ⩽ 1/2 we have

∥Θa(f)−Θa(g)∥a;r = ∥Ξa(f)− Ξa(g)∥a;r ⩽ 1
2∥f − g∥a;r.

Now finish as in the proof of Theorem 6.2.3. □

Next we investigate the difference between solutions of (∗) on [a0,∞):

Lemma 6.2.5. Suppose f, g ∈ Cra0 [i]
b and Aa0(f) = R(f), Aa0(g) = R(g). Then

there are positive reals E, ε such that for all a there exists an ha ∈ Cra[i]b with the
property that for θa := (f − g)|[a,∞),

Aa(ha) = 0, θa− ha ≺ vw, ∥θa− ha∥a;r ⩽ E · ∥vε∥a ·
(
∥θa∥a;r + · · ·+ ∥θa∥da;r

)
,

and thus ha ≺ 1 in case f − g ≺ 1.

Proof. Set ηa := Aa(θa) = R(f)−R(g), where f and g stand for their restrictions
to [a,∞). From R ≺ vν we get u−1R(f) ∈ Ca[i]b and u−1R(g) ∈ Ca[i]b, so u−1ηa ∈
Ca[i]b. By Proposition 6.1.7(i),(iv) we have

ξa := uÃ−1
a (u−1ηa) ∈ Cra[i]b, ξa ≺ vw.

Now Ãa(u
−1ξa) = u−1ηa, that is, Aa(ξa) = ηa. Note that then ha := θa − ξa

satisfies Aa(ha) = 0. Now ξa = θa − ha and ξa = Ξa(g + θa) − Ξa(g), hence by
Lemma 6.2.2 and its proof,

∥θa − ha∥a;r = ∥ξa∥a;r ⩽ Ca ·max
{
1, ∥g∥da;r

}
·
(
∥θ∥a;r + · · ·+ ∥θ∥da;r

)
, with

Ca :=
∥∥uÃ−1

a

∥∥
a;r

·
∑
i,j

∥∥u−1R
(i)
j

∥∥
a
.

Take a real ε > 0 such that R ≺ vν+ε. This gives a real e > 0 such that∑
i,j

∥∥u−1R
(i)
j

∥∥
a
⩽ e∥vε∥a for all a. Now use Proposition 6.1.7(iii). □

The situation we have in mind in the lemma above is that f and g are close at
infinity, in the sense that ∥f − g∥a;r → 0 as a → ∞. Then the lemma yields
solutions of A(y) = 0 that are very close to f − g at infinity. However, being very
close at infinity as stated in Lemma 6.2.5, namely θa − ha ≺ vw and the rest,
is too weak for later use. We take up this issue again in Section 6.5 below. (In
Corollary 6.2.15 later in the present section we already show: if f ̸= g as germs,
then ha ̸= 0 for sufficiently large a.)

Preserving reality. We now assume in addition that A and R are real, that
is, A ∈ H[∂] and R ∈ H{Y }. It is not clear that the fixed points constructed in
the proof of Theorem 6.2.3 are then also real. Therefore we slightly modify this
construction using real parts. We first apply the discussion following Lemma 6.1.5

to Ã as well as to A, increasing a0 so that for all a the R-linear real part

Re Ã−1
a : Cb

a → Cb
a

maps Cb
a into Cra and is right-inverse to Ãa on (C0

a)
b, with∥∥(Re Ã−1

a )(f)
∥∥
a
⩽
∥∥Ã−1

a (f)
∥∥
a

for all f ∈ Cb
a .

Next we set
(Cra)b :=

{
f ∈ Cra : ∥f∥a;r <∞

}
= Cra[i]b ∩ Cra,
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which is a real Banach space with respect to ∥ · ∥a;r. Finally, this increasing of a0
is done so that the original Rj ∈ Ca0 [i] restrict to updated functions Rj ∈ Ca0 . For
all a, take u, Ξa as in Lemma 6.2.1. This lemma has the following real analogue as
a consequence:

Lemma 6.2.6. The operator

Re Ξa : (Cra)b → (Cra)b, f 7→ Re
(
Ξa(f)

)
satisfies (Re Ξa)(f) ≼ vν for f ∈ (Cra)b, and any fixed point of Re Ξa is a solution
of (∗) on [a,∞).

Below the constants Ca are as in Lemma 6.2.2.

Lemma 6.2.7. For f, g ∈ (Cra)b,∥∥(Re Ξa)(f + g)− (ReΞa)(f)
∥∥
a;r
⩽ Ca ·max

{
1, ∥f∥da;r

}
·
(
∥g∥a;r + · · ·+ ∥g∥da;r

)
.

The next corollary is derived from Lemma 6.2.7 in the same way as Theorem 6.2.3
from Lemma 6.2.2:

Corollary 6.2.8. For all sufficiently large a the operator Re Ξa maps the closed
ball {

f ∈ Cra : ∥f∥a;r ⩽ 1/2
}

of the Banach space (Cra)b into itself and has a unique fixed point on this ball.

Here is the real analogue of Lemma 6.2.4, with a similar proof:

Corollary 6.2.9. Let h ∈ Cra0 be such that ∥h∥a0;r ⩽ 1/8. Then for sufficiently
large a there is a unique f ∈ Cra such that ∥f∥a;r ⩽ 1/2 and (ReΞa)(f) = f + h.

We also have a real analogue of Lemma 6.2.5:

Corollary 6.2.10. Suppose f, g ∈ (Cra0)
b and Aa0(f) = R(f), Aa0(g) = R(g).

Then there are positive reals E, ε such that for all a there exists an ha ∈ (Cra)b with
the property that for θa := (f − g)|[a,∞),

Aa(ha) = 0, θa− ha ≺ vw, ∥θa− ha∥a;r ⩽ E · ∥vε∥a ·
(
∥θa∥a;r + · · ·+ ∥θa∥da;r

)
.

Proof. Take ha to be the real part of an ha as in Lemma 6.2.5. □

Some useful bounds. To prepare for Section 6.5 we derive in this subsection
some bounds from Lemmas 6.2.2 and 6.2.5. Throughout we assume d, r ∈ N⩾1. We
begin with an easy inequality:

Lemma 6.2.11. Let (V, ∥ · ∥) be a normed C-linear space, and f, g ∈ V . Then

∥f + g∥d ⩽ 2d ·max
{
1, ∥f∥d

}
·max

{
1, ∥g∥d

}
.

Proof. Use that ∥f + g∥ ⩽ ∥f∥+ ∥g∥ ⩽ 2max
{
1, ∥f∥

}
·max

{
1, ∥g∥

}
. □

Now let u, Ξa be as in Lemma 6.2.1. By that lemma, the operator

Φa : Cra[i]b × Cra[i]b → Cra[i]b, (f, y) 7→ Ξa(f + y)− Ξa(f)

is continuous. Furthermore Φa(f, 0) = 0 for f ∈ Cra[i]b and

(6.2.1) Φa(f, g + y)− Φa(f, g) = Φa(f + g, y) for f, g, y ∈ Cra[i]b.
324



Lemma 6.2.12. There are Ca, C
+
a ∈ R⩾ such that for all f, g, y ∈ Cra[i]b,

(6.2.2) ∥Φa(f, y)∥a;r ⩽ Ca ·max
{
1, ∥f∥da;r

}
·
(
∥y∥a;r + · · ·+ ∥y∥da;r

)
,

(6.2.3) ∥Φa(f, g + y)− Φa(f, g)∥a;r ⩽

C+
a ·max

{
1, ∥f∥da;r

}
·max

{
1, ∥g∥da;r

}
·
(
∥y∥a;r + · · ·+ ∥y∥da;r

)
.

We can take these Ca, C
+
a such that Ca, C

+
a → 0 as a→ ∞, and do so below.

Proof. The Ca as in Lemma 6.2.2 satisfy the requirements on the Ca here. Now
let f, g, y ∈ Cra[i]b. Then by (6.2.1) and (6.2.2) we have

∥Φa(f, g + y)− Φa(f, g)∥a;r ⩽ Ca ·max
{
1, ∥f + g∥da;r

}
·
(
∥y∥a;r + · · ·+ ∥y∥da;r

)
.

Thus by Lemma 6.2.11, C+
a := 2d · Ca has the required property. □

Next, let f , g be as in the hypothesis of Lemma 6.2.5 and take E, ε, and ha (for
each a) as in its conclusion. Thus for all a and θa := (f − g)|[a,∞),

∥θa − ha∥a;r ⩽ E · ∥vε∥a ·
(
∥θa∥a;r + · · ·+ ∥θa∥da;r

)
,

and if f − g ≺ 1, then ha ≺ 1. So

∥θa − ha∥a;r ⩽ E · ∥vε∥a ·
(
ρ+ · · ·+ ρd

)
, ρ := ∥f − g∥a0;r.

We let

Ba :=
{
y ∈ Cra[i]b : ∥y − ha∥a;r ⩽ 1/2

}
be the closed ball of radius 1/2 around ha in Cra[i]b. Using vε ≺ 1 we take a1 ⩾ a0
so that θa ∈ Ba for all a ⩾ a1. Then for a ⩾ a1 we have

∥ha∥a;r ⩽ ∥ha − θa∥a;r + ∥θa∥a;r ⩽ 1
2 + ρ,

and hence for y ∈ Ba,

(6.2.4) ∥y∥a;r ⩽ ∥y − ha∥a;r + ∥ha∥a;r ⩽ 1
2 +

(
1
2 + ρ

)
= 1 + ρ.

Consider now the continuous operators

Φa,Ψa : Cra[i]b → Cra[i]b, Φa(y) := Ξa(g + y)− Ξa(g), Ψa(y) := Φa(y) + ha.

In the notation introduced above, Φa(y) = Φa(g, y) for y ∈ Cra[i]b. With ξa as in
the proof of Lemma 6.2.5 we also have Φa(θa) = ξa and Ψa(θa) = ξa + ha = θa.
Below we reconstruct the fixed point θa of Ψa from ha, for sufficiently large a.

Lemma 6.2.13. There exists a2 ⩾ a1 such that for all a ⩾ a2 we have Ψa(Ba) ⊆
Ba, and ∥Ψa(y)−Ψa(z)∥a;r ⩽ 1

2∥y − z∥a;r for all y, z ∈ Ba.

Proof. Take Ca as in Lemma 6.2.12, and let y ∈ Ba. Then by (6.2.2),

∥Φa(y)∥a;r ⩽ Ca ·max
{
1, ∥g∥da;r

}
·
(
∥y∥a;r + · · ·+ ∥y∥da;r

)
, θa ∈ Ba, so

∥Ψa(y)− ha∥a;r ⩽ CaM, M := max
{
1, ∥g∥da0;r

}
·
(
(1 + ρ) + · · ·+ (1 + ρ)d

)
.

Recall that Ca → 0 as a → ∞. Suppose a ⩾ a1 is so large that CaM ⩽ 1/2.
Then Ψa(Ba) ⊆ Ba. With C+

a as in Lemma 6.2.12, (6.2.3) gives for y, z ∈ Cra[i]b,

∥Φa(y)− Φa(z)∥a;r ⩽

C+
a ·max

{
1, ∥g∥da;r

}
·max

{
1, ∥z∥da;r

}
·
(
∥y − z∥a;r + · · ·+ ∥y − z∥da;r

)
.
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Hence with N := max
{
1, ∥g∥da0;r

}
· (1 + ρ)d · d we obtain for y, z ∈ Ba that

∥Ψa(y)−Ψa(z)∥a;r ⩽ C+
a N∥y − z∥a;r,

so ∥Ψa(y)−Ψa(z)∥a;r ⩽ 1
2∥y − z∥a;r if C+

a N ⩽ 1/2. □

Below a2 is as in Lemma 6.2.13.

Corollary 6.2.14. If a ⩾ a2, then limn→∞ Ψna(ha) = θa in Cra[i]b.

Proof. Let a ⩾ a2. Then Ψa has a unique fixed point on Ba. As Ψa(θa) = θa ∈ Ba,
this fixed point is θa. □

Corollary 6.2.15. If f ̸= g as germs, then ha ̸= 0 for a ⩾ a2.

Proof. Let a ⩾ a2. Then limn→∞ Ψna(ha) = θa. If ha = 0, then Ψa = Φa, and
hence θa = 0, since Φa(0) = 0. □

6.3. Smoothness Considerations

We assume r ∈ N in this section. We prove here as much smoothness of solutions
of algebraic differential equations over Hardy fields as could be hoped for. In
particular, the solutions in Cra[i]b of the equation (∗) in Section 6.2 actually have
their germs in C<∞[i]. To make this precise, consider a “differential” polynomial

P = P (Y, . . . , Y (r)) ∈ Cn[i]
[
Y, . . . , Y (r)

]
.

We put differential in quotes since Cn[i] is not naturally a differential ring. Never-
theless, P defines an obvious evaluation map

f 7→ P
(
f, . . . , f (r)

)
: Cr[i] → C[i].

We also have the “separant”

SP :=
∂P

∂Y (r)
∈ Cn[i]

[
Y, . . . , Y (r)

]
of P .

Proposition 6.3.1. Assume n ⩾ 1. Let f ∈ Cr[i] be such that

P
(
f, . . . , f (r)

)
= 0 ∈ C[i] and SP

(
f, . . . , f (r)

)
∈ C[i]×.

Then f ∈ Cn+r[i]. Thus if P ∈ C<∞[i]
[
Y, . . . , Y (r)

]
, then f ∈ C<∞[i]. Moreover,

if P ∈ C∞[i]
[
Y, . . . , Y (r)

]
, then f ∈ C∞[i], and likewise with Cω[i] in place of C∞[i].

We deduce this from the lemma below, which has a complex-analytic hypothesis.
Let U ⊆ R× C1+r be open. Let t range over R and z0, . . . , zr over C, and set xj :=
Re zj , yj := Im zj for j = 0, . . . , r. We also set

U(t, z0, . . . , zr−1) :=
{
zr : (t, z0, . . . , zr−1, zr) ∈ U

}
,

an open subset of C, and we assume Φ: U → C and n ⩾ 1 are such that

ReΦ, ImΦ : U → R

are Cn-functions of (t, x0, y0, . . . , xr, yr), and for all t, z0, . . . , zr−1 the function

zr 7→ Φ(t, z0, . . . , zr−1, zr) : U(t, z0, . . . , zr−1) → C

is holomorphic (the complex-analytic hypothesis alluded to).
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Lemma 6.3.2. Let I ⊆ R be a nonempty open interval and suppose f ∈ Cr(I)[i]
is such that for all t ∈ I,

•
(
t, f(t), . . . , f (r)(t)

)
∈ U ;

• Φ
(
t, f(t), . . . , f (r)(t)

)
= 0; and

• (∂Φ/∂zr)
(
t, f(t), . . . , f (r)(t)

)
̸= 0.

Then f ∈ Cn+r(I)[i].

Proof. Set A := ReΦ, B := ImΦ and g := Re f, h := Im f . Then for all t ∈ I,

A
(
t, g(t), h(t), g′(t), h′(t) . . . , g(r)(t), h(r)(t)

)
= 0

B
(
t, g(t), h(t), g′(t), h′(t) . . . , g(r)(t), h(r)(t)

)
= 0.

Consider the Cn-map (A,B) : U → R2, with U identified in the usual way with an
open subset of R1+2(1+r). The Cauchy-Riemann equations give

∂Φ

∂zr
=

∂A

∂xr
+ i

∂B

∂xr
,

∂A

∂xr
=

∂B

∂yr
,

∂B

∂xr
= − ∂A

∂yr
.

Thus the Jacobian matrix of the map (A,B) with respect to its last two variables xr
and yr has determinant

D =

(
∂A

∂xr

)2

+

(
∂B

∂xr

)2

=

∣∣∣∣ ∂Φ∂zr
∣∣∣∣2 : U → R.

Let t0 ∈ I. Then

D
(
t0, g(t0), h(t0), . . . , g

(r)(t0), h
(r)(t0)

)
̸= 0,

so by the Implicit Mapping Theorem [57, (10.2.2), (10.2.3)] we have a connected
open neighborhood V of the point(

t0, g(t0), h(t0), . . . , g
(r−1)(t0), h

(r−1)(t0)
)
∈ R1+2r,

open intervals J,K ⊆ R containing g(r)(t0), h
(r)(t0), respectively, and a Cn-map

(G,H) : V → J ×K

such that V × J ×K ⊆ U and the zero set of Φ on V × J ×K equals the graph
of (G,H). Take an open subinterval I0 of I with t0 ∈ I0 such that for all t ∈ I0,(

t, g(t), h(t), g′(t), h′(t), . . . , g(r−1)(t), h(r−1)(t), g(r)(t), h(r)(t)
)
∈ V × J ×K.

Then the above gives that for all t ∈ I0 we have

g(r)(t) = G
(
t, g(t), h(t), g′(t), h′(t), . . . , g(r−1)(t), h(r−1)(t)

)
,

h(r)(t) = H
(
t, g(t), h(t), g′(t), h′(t), . . . , g(r−1)(t), h(r−1)(t)

)
.

It follows easily from these two equalities that g, h are of class Cn+r on I0. □

Let f continue to be as in Lemma 6.3.2. If ReΦ, ImΦ are C∞, then by taking n
arbitrarily high we conclude that f ∈ C∞(I)[i]. Moreover:

Corollary 6.3.3. If ReΦ, ImΦ are real-analytic, then f ∈ Cω(I)[i].

Proof. Same as that of Lemma 6.3.2, with the reference to [57, (10.2.3)] replaced
by [57, (10.2.4)] to obtain that G, H are real-analytic, and noting that then the last
displayed relations for t ∈ I0 force g, h to be real-analytic on I0 by [57, (10.5.3)]. □
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Lemma 6.3.4. Let I ⊆ R be a nonempty open interval, n ⩾ 1, and

P = P
(
Y, . . . , Y (r)

)
∈ Cn(I)[i]

[
Y, . . . , Y (r)

]
.

Let f ∈ Cr(I)[i] be such that

P
(
f, . . . , f (r)

)
= 0 ∈ C(I)[i] and (∂P/∂Y (r))

(
f, . . . , f (r)

)
∈ C(I)[i]×.

Then f ∈ Cn+r(I)[i]. Moreover, if P ∈ C∞(I)[i]
[
Y, . . . , Y (r)

]
, then f ∈ C∞(I)[i],

and likewise with Cω(I)[i] in place of C∞(I)[i].

Proof. Let P =
∑

i PiY
i where all Pi ∈ Cn(I)[i]. Set U := I × C1+r, and consider

the map Φ: U → C given by

Φ(t, z0, . . . , zr) :=
∑
i

Pi(t)z
i where zi := zi00 · · · zirr for i = (i0, . . . , ir) ∈ N1+r.

From Lemma 6.3.2 we obtain f ∈ Cn+r(I)[i]. In view of Corollary 6.3.3 and the
remark preceding it, and replacing n by ∞ respectively ω, this argument also gives
the second part of the lemma. □

Proposition 6.3.1 follows from Lemma 6.3.4 by taking suitable representatives of
the germs involved. Let now H be a Hardy field and P ∈ H[i]{Y } of order r.
Then P ∈ C<∞[i]

[
Y, . . . , Y (r)

]
, and so P (f) := P

(
f, . . . , f (r)

)
∈ C[i] for f ∈ Cr[i]

as explained in the beginning of this section.

For notational convenience we set

Cn[i]≼ :=
{
f ∈ Cn[i] : f, f ′, . . . , f (n) ≼ 1

}
, (Cn)≼ := Cn[i]≼ ∩ Cn,

and likewise with ≺ instead of ≼. Then Cn[i]≼ is a C-subalgebra of Cn[i] and (Cn)≼
is an R-subalgebra of Cn. Also, Cn[i]≺ is an ideal of Cn[i]≼, and likewise with Cn
instead of Cn[i]. We have Cn[i]≼ ⊇ Cn+1[i]≼ and (Cn)≼ ⊇ (Cn+1)≼, and likewise
with ≺ instead of ≼. Thus in the notation from Section 5.4:

C<∞[i]≼ =
⋂
n

Cn[i]≼, I =
⋂
n

Cn[i]≺, (C<∞)≼ =
⋂
n

(Cn)≼.

Corollary 6.3.5. Suppose

P = Y (r) + f1Y
(r−1) + · · ·+ frY −R with f1, . . . , fr in H[i] and R⩾1 ≺ 1.

Let f ∈ Cr[i]≼ be such that P (f) = 0. Then f ∈ C<∞[i]. Moreover, if H ⊆ C∞,
then f ∈ C∞[i], and if H ⊆ Cω, then f ∈ Cω[i].

Proof. We have SP = ∂P
∂Y (r) = 1− S with S :=

∂R⩾1

∂Y (r) ≺ 1 and thus

SP (f, . . . , f
(r)) = 1− S(f, . . . , f (r)), S(f, . . . , f (r)) ≺ 1,

so SP (f, . . . , f
(r)) ∈ C[i]×. Now appeal to Proposition 6.3.1. □

Thus the germ of any solution on [a,∞) of the asymptotic equation (∗) of Section 6.2
lies in C<∞[i], and even in C∞[i] (respectively Cω[i]) if H is in addition a C∞-Hardy
field (respectively, a Cω-Hardy field).

Corollary 6.3.6. Suppose (P, 1, â) is a normal slot in H[i] of order r ⩾ 1, and
f ∈ Cr[i]≼, P (f) = 0. Then f ∈ C<∞[i]. If H ⊆ C∞, then f ∈ C∞[i]. If H ⊆ Cω,
then f ∈ Cω[i].
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Proof. Multiplying P by an element of H[i]× we arrange

P1 = Y (r) + f1Y
(r−1) + · · ·+ frY, f1, . . . , fr ∈ H[i],

and then the hypothesis of Corollary 6.3.5 is satisfied. □

For the differential subfield K := H[i] of the differential ring C<∞[i] we have:

Corollary 6.3.7. Suppose f ∈ C<∞[i] is such that P (f) = 0 and f generates a
differential subfield K⟨f⟩ of C<∞[i] over K. If H is a C∞-Hardy field, then K⟨f⟩ ⊆
C∞[i], and likewise with Cω in place of C∞.

Proof. Suppose H is a C∞-Hardy field; it suffices to show f ∈ C∞[i]. We may
assume that P is a minimal annihilator of f over K; then SP (f) ̸= 0 in K⟨f⟩ and
so SP (f) ∈ C[i]×. Hence the claim follows from Proposition 6.3.1. □

With H replacing K in this proof we obtain the “real” version:

Corollary 6.3.8. Suppose f ∈ C<∞ is hardian over H and P (f) = 0 for some P ∈
H{Y }̸=. Then H ⊆ C∞ ⇒ f ∈ C∞, and H ⊆ Cω ⇒ f ∈ Cω.

This leads to:

Corollary 6.3.9. Suppose H is a C∞-Hardy field. Then every d-algebraic Hardy
field extension of H is a C∞-Hardy field; in particular, D(H) ⊆ C∞. Likewise
with C∞ replaced by Cω.

In particular, D(Q) ⊆ Cω [33, Theorems 14.3, 14.9].

Let H be a C∞-Hardy field. Then by Corollary 6.3.9, H is d-maximal iff H has no
proper d-algebraic C∞-Hardy field extension; thus every C∞-maximal Hardy field
is d-maximal (so D(H) ⊆ E∞(H)), and H has a d-maximal d-algebraic C∞-Hardy
field extension. The same remarks apply with ω in place of ∞.

Existence and uniqueness theorems (∗). We finish this section with some exis-
tence and uniqueness results for algebraic differential equations. From this subsec-
tion, only Corollary 6.3.13 is used later (in the proofs of Lemmas 7.7.42 and 7.7.51,
which are not needed for the proof of our main theorem). First, let U , Φ be as in
Lemma 6.3.2 for n = 1; the argument in the proof of that lemma combined with the
existence and uniqueness theorem for scalar differential equations [203, §11] yields:

Lemma 6.3.10. Let (t0, c0, . . . , cr) ∈ U be such that

Φ(t0, c0, . . . , cr) = 0 and (∂Φ/∂zr)(t0, c0, . . . , cr) ̸= 0.

Then for some open interval I ⊆ R containing t0 there is a unique f ∈ Cr(I)[i]
such that

(
f(t0), f

′(t0), . . . , f
(r)(t0)

)
= (c0, . . . , cr) and for all t ∈ I,

(6.3.1)
(
t, f(t), . . . , f (r)(t)

)
∈ U and Φ

(
t, f(t), . . . , f (r)(t)

)
= 0.

Proof. Set A := ReΦ, B := ImΦ, aj := Re cj , bj := Im cj (j = 0, . . . , r). As in the

proof of Lemma 6.3.2 we identify U with an open subset of R1+2(1+r) and consider
the C1-map (A,B) : U → R2. The Jacobian matrix of the map (A,B) with respect
to its last two variables xr and yr has determinant

D =

(
∂A

∂xr

)2

+

(
∂B

∂xr

)2

=

∣∣∣∣ ∂Φ∂zr
∣∣∣∣2 : U → R,
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with D(t0, a0, b0, . . . , ar, br) ̸= 0, hence the Implicit Mapping Theorem [57, (10.2.2)]
yields a connected open neighborhood V in R1+2r of the point

u0 := (t0, a0, b0, . . . , ar−1, br−1),

open intervals J,K ⊆ R containing ar, br, respectively, such that V × J ×K ⊆ U ,
as well as a C1-map F = (G,H) : V → J ×K whose graph is Φ−1(0)∩ (V ×J ×K).
Now by [203, §11, II] we have an open interval I ⊆ R containing t0 as well as a
Cr-map u : I → R2 such that

(
t0, u(t0), u

′(t0), . . . , u
(r−1)(t0)

)
= u0 and for all t ∈ I:(

t, u(t), . . . , u(r−1)(t)
)
∈ V and u(r)(t) = F

(
t, u(t), . . . , u(r−1)(t)

)
.

Then the function f : I → C with (Re f, Im f) = u is an element of Cr(I)[i] such
that

(
f(t0), f

′(t0), . . . , f
(r)(t0)

)
= (c0, . . . , cr) and (6.3.1) holds for all t ∈ I.

Let any f1 ∈ Cr(I)[i] be given with
(
f1(t0), f

′
1(t0), . . . , f

(r)
1 (t0)

)
= (c0, . . . , cr)

such that (6.3.1) holds for all t ∈ I with f1 in place of f . The closed subset

S :=
{
t ∈ I : f

(j)
1 (t) = f (j)(t) for j = 0, . . . , r

}
of I contains t0; it is enough to show that S is open. Towards this, let t1 ∈ S. The
map u1 := (Re f1, Im f1) : I → R2 is of class Cr and(

t1, u1(t1), . . . , u
(r)
1 (t1)

)
=
(
t1, u(t1), . . . , u

(r)(t1)
)
∈ V × J ×K,

which gives an open interval I1 ⊆ I containing t1 such that
(
t, u1(t), . . . , u

(r)
1 (t)

)
∈

V × J × K for all t ∈ I1. Since Φ
(
t, f1(t), . . . , f

(r)
1 (t)

)
= 0 for t ∈ I1, this yields

u
(r)
1 (t) = F

(
t, u1(t), . . . , u

(r−1)
1 (t)

)
for t ∈ I1. So u1 = u on I1 by the uniqueness

part of [203, §11, III], hence f1 = f on I1, and thus I1 ⊆ S. □

The second part of the proof gives a bit more: Suppose I, J ⊆ R are open intervals
with t0 ∈ I ∩ J and the functions f ∈ Cr(I)[i], g ∈ Cr(J)[i] are such that(

f(t0), f
′(t0), . . . , f

(r)(t0)
)

= (c0, . . . , cr) =
(
g(t0), g

′(t0), . . . , g
(r)(t0)

)
,

(6.3.1) holds for all t ∈ I, and (6.3.1) holds for all t ∈ J with g instead of f . Assume
also that (∂Φ/∂zr)

(
t, f(t), . . . , f (r)(t)

)
̸= 0 for all t ∈ I. Then

f(t) = g(t) for all t ∈ I ∩ J.
Next, let I ⊆ R be a nonempty open interval and

P = P
(
Y, . . . , Y (r)

)
∈ C1(I)[i]

[
Y, . . . , Y (r)

]
.

Applying Lemma 6.3.10 to the map Φ: U := I×C1+r → C introduced in the proof
of Lemma 6.3.4, we obtain:

Lemma 6.3.11. Let t0 ∈ I and c0, . . . , cr ∈ C be such that

Φ(t0, c0, . . . , cr) = 0 and (∂Φ/∂zr)(t0, c0, . . . , cr) ̸= 0.

Then there is an open interval J ⊆ I contaning t0 with a unique f ∈ Cr(J)[i] such
that

(
f(t0), f

′(t0), . . . , f
(r)(t0)

)
= (c0, . . . , cr) and P

(
f, . . . , f (r)

)
= 0 ∈ C(J)[i].

This lemma and the remark following the proof of Lemma 6.3.10 yield:

Corollary 6.3.12. Given t0 ∈ I and c0, . . . , cr ∈ C, there is at most one func-
tion f ∈ Cr(I)[i] such that

(
f(t0), f

′(t0), . . . , f
(r)(t0)

)
= (c0, . . . , cr) as well as

P
(
f, . . . , f (r)

)
= 0 ∈ C(I)[i] and (∂P/∂Y (r))

(
f, . . . , f (r)

)
∈ C(I)[i]×.

330



Now let a range over R, i over N1+r, and

P = P
(
Y, . . . , Y (r)

)
=
∑
i

PiY
i (all Pi ∈ C1

a[i])

over polynomials in C1
a[i]
[
Y, . . . , Y (r)

]
of degree at most d ∈ N⩾1, and set P⩾1 :=∑

|i|⩾1 PiY
i = P − P0. Recall that in Section 6.1 we defined

P (f) :=
∑
i

Pif
i ∈ Ca[i] (f ∈ Cra[i]).

Corollary 6.3.13. There is an E = E(d, r) ∈ N⩾1 with the following property: if

P = Y (r) + f1Y
(r−1) + · · ·+ frY −R, f1, . . . , fr ∈ C1

a[i], ∥R⩾1∥a ⩽ 1/E,

then for any t0 ∈ R>a and c0, . . . , cr ∈ C there is at most one f ∈ Cra[i] such that

P (f) = 0,
(
f(t0), f

′(t0), . . . , f
(r)(t0)

)
= (c0, . . . , cr), and ∥f∥a;r ⩽ 1.

Proof. Set E := 2d(d + 1)D with D = D(0, d, r) as in Corollary 6.1.3. Let P
be as in the hypothesis and f ∈ Cra[i], ∥f∥a;r ⩽ 1. Then ∂P/∂Y (r) = 1 − S

where S := ∂R⩾1/∂Y
(r) and therefore (∂P/∂Y (r))(f, . . . , f (r)) = 1−S(f, . . . , f (r)).

We have ∥S∥a ⩽ d/E = 1/
(
2(d+ 1)D

)
and hence by Corollary 6.1.3:

∥S(f, . . . , f (r))∥a ⩽ D · ∥S∥a ·
(
1 + ∥f∥1a;r + · · ·+ ∥f∥da;r

)
⩽ 1/2.

Thus (∂P/∂Y (r))(f, . . . , f (r)) ∈ Ca[i]×. Now use Corollary 6.3.12. □

Thus in the context of Section 6.2, if a is so large that the functions f1, . . . , fr
and the Rj there are C1 on [a,∞) with ∥Rj∥a ⩽ 1/E(d, r), then for all t0 ∈ R>a
and c0, . . . , cr ∈ C, there is at most one f ∈ Cra[i] with ∥f∥a;r ⩽ 1 such that Aa(f) =

R(f) and
(
f(t0), f

′(t0), . . . , f
(r)(t0)

)
= (c0, . . . , cr).

A theorem of Boshernitzan (∗). Here we supply a proof of the following result
stated in [33, Theorem 11.8], and to be used in Section 7.7. (The proof in loc. cit. is
only indicated there.) Below, Y and Z are distinct indeterminates.

Theorem 6.3.14. Let H be a Hardy field, P ∈ H[Y,Z ]̸=, and suppose P (y, y′) = 0
with y ∈ C1 lying in a Hausdorff field extension of H. Then y ∈ D(H).

In particular, if H is a d-perfect Hardy field and F is a Hardy field properly ex-
tending H, then trdeg(F |H) ⩾ 2.

For the proof of Theorem 6.3.14 we first observe:

Corollary 6.3.15. Let H be a Hausdorff field. Then H ⊆ Cn ⇒ Hrc ⊆ Cn, and
likewise with <∞, ∞, and ω in place of n.

Proof. If y ∈ Hrc has minimum polynomial P ∈ H[Y ] over H, then P (y) = 0 ∈ C
and SP (y) = P ′(y) ∈ C×. Now use Proposition 6.3.1. □

Lemma 6.3.16. Suppose f ∈ C1 oscillates. Then we are in case (i) or case (ii):

(i) there are arbitrarily large s with f ′(s) = 0 and f(s) > 0,
(ii) there are arbitrarily large s with f ′(s) = 0 and f(s) < 0.

In case (i) there are also arbitrarily large s with f ′(s) = 0 and f(s) ⩽ 0, and in
case (ii) there are also arbitrarily large s with f ′(s) = 0 and f(s) ⩾ 0.
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Proof. Let f be represented by a C1-function on an interval (a,+∞), also denoted
by f . Take b > a such that f(b) = 0, and then c > b with f(c) = 0 such that f(t) ̸= 0
for some t ∈ (b, c). Next, take s ∈ [b, c] such that |f(s)| = maxb⩽t⩽c |f(t)|.
Then f(s) ̸= 0 and f ′(s) = 0. Since b can be taken arbitrarily large, we are in
case (i) or in case (ii) above. (Of course, this is not an exclusive or.) For the
remaining part of the lemma, use that in case (i) there are arbitrarily large s > a
where f has a local minimum f(s) ⩽ 0, and that in case (ii) there are arbitrarily
large s > a where f has a local maximum f(s) ⩾ 0. □

In the next two lemmas H, P , y are as in Theorem 6.3.14.

Lemma 6.3.17. The germ y generates a Hardy field extension H⟨y⟩ of H. If H ⊆
C∞, then H⟨y⟩ ⊆ C∞, and likewise with ω in place of ∞.

Proof. We are done if y ∈ Hrc, sinceHrc is a Hardy field withH ⊆ C∞ ⇒ Hrc ⊆ C∞

and H ⊆ Cω ⇒ Hrc ⊆ Cω, by Proposition 5.3.2.
Suppose y /∈ Hrc. We have the Hausdorff field F := H(y) ⊆ C1, and its real

closure is by Proposition 5.1.4 the Hausdorff field

F rc =
{
z ∈ C : Q(z) = 0 for some Q ∈ F [Z ]̸=

}
.

By Corollary 6.3.15 we have F rc ⊆ C1. Set Q(Z) := P (y, Z) ∈ F [Z ]̸=. We
have Q(y′) = 0, so y′ ∈ F rc, and thus ∂F ⊆ F rc. Let now z ∈ F rc, and let A(Z)
be the minimum polynomial of z over F , say A = Zn + A1Z

n−1 + · · · + An
(A1, . . . , An ∈ F , n ⩾ 1). With A∂ := A′

1Z
n−1 + · · ·+A′

n ∈ F rc[Z] we have

0 = A(z)′ = A∂(z) +A′(z) · z′

with 0 ̸= A′(z) ∈ F rc and so z′ = −A∂(z)/A′(z) ∈ F rc. Hence F rc is a Hardy
field, and so y generates a Hardy field extension H⟨y⟩ ⊆ F rc of H. For the rest use
Corollary 6.3.9. □

In the proof of the next lemma we encounter an ordered field isomorphism

f 7→ f̃ : E → Ẽ

between Hausdorff fields E and Ẽ. It extends uniquely to an ordered field isomor-

phism Erc → Ẽrc, also denoted by f 7→ f̃ , and to a ring isomorphism

Q 7→ Q̃ : E[Y ] → Ẽ[Y ], with Ỹ = Y.

Let Q ∈ E[Y ] ̸=, and let y1 < · · · < ym be the distinct zeros of Q in Erc. Then by
Corollary 5.1.8, y1(t) < · · · < ym(t) are the distinct real zeros of Q(t, Y ), eventu-

ally. By the isomorphism, ỹ1 < · · · < ỹm are the distinct zeros of Q̃ in Ẽrc, and

so ỹ1(t) < · · · < ỹm(t) are the distinct real zeros of Q̃(t, Y ), eventually. This has the
trivial but useful consequence that, eventually, that is, for all sufficiently large t,

Q(t, Y ) = Q̃(t, Y ) in R[Y ] =⇒ y1(t) = ỹ1(t), . . . , ym(t) = ỹm(t).

Lemma 6.3.18. Let u be an H-hardian germ. Then y − u is non-oscillating.

Proof. By Lemma 6.3.17, y is H-hardian. Replacing H by Hrc we arrange that H is
real closed. Suppose towards a contradiction that w := y−u oscillates. Then w′ =
y′ − u′ oscillates. But y′ and u′ are H-hardian, so y′, u′ /∈ H and for all h ∈ H:
y′ > h⇔ u′ > h. This yields an ordered field isomorphism H(y′) → H(u′) over H
mapping y′ to u′, which extends uniquely to an ordered field isomorphism

f 7→ f̃ : H(y′)rc → H(u′)rc.
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Now P (y, y′) = 0 gives y ∈ H(y′)rc, so ỹ ∈ H(u′)rc ⊆ H⟨u⟩rc. The remarks

preceding the lemma applied to E = H(y′), Ẽ = H(u′) and Q(Y ) := P (Y, y′)
in E[Y ] give that for all sufficiently large t with y′(t) = u′(t) (that is, w′(t) = 0) we
have y(t) = ỹ(t). Now u, ỹ ∈ H⟨u⟩rc, so ỹ < u or ỹ = u or u < ỹ. Suppose ỹ < u.
(The other two cases lead to a contradiction in a similar way.) Then for all suffi-
ciently large t with w′(t) = 0 we have y(t) = ỹ(t) < u(t), so w(t) < 0, contradicting
Lemma 6.3.16 for f := w. □

With these lemmas in place, Theorem 6.3.14 now follows quickly:

Proof of Theorem 6.3.14. Let E be a d-maximal Hardy field extension of H; we
show that then y ∈ E. Now E is real closed by the remarks after Proposition 5.3.2,
and y− u is non-oscillating for all u ∈ E by Lemma 6.3.18, so y lies in a Hausdorff
field extension of E by Lemma 5.1.20, hence y is E-hardian by Lemma 6.3.17 with E
in place of H, and thus y ∈ E by d-maximality of E. □

As an application of Theorem 6.3.14 we record [32, Theorem 8.1]:

Corollary 6.3.19. Let ℓ ∈ D(Q) be such that ℓ > R and trdeg
(
R⟨x, ℓ⟩|R

)
⩽ 2.

Then ℓinv ∈ D(Q).

Proof. By Lemma 5.3.8 and the remark preceding it, ℓinv is R(x)-hardian with

trdeg
(
R⟨x, ℓinv⟩|R(x)

)
= trdeg

(
R⟨x, ℓinv⟩|R

)
− 1 = trdeg

(
R⟨x, ℓ⟩|R

)
− 1 ⩽ 1.

Now Theorem 6.3.14 with H := R(x) and y := ℓinv yields y ∈ D(H) = D(Q). □

6.4. Application to Filling Holes in Hardy Fields

This section combines the analytic material above with the normalization results
of Parts 3 and 4. Throughout H is a Hardy field with H ̸⊆ R, and r ∈ N⩾1.
Thus K := H[i] ⊆ C<∞[i] is an H-asymptotic extension of H. (Later we impose
extra assumptions on H like being real closed with asymptotic integration.) Note
that v(H×) ̸= {0}: take f ∈ H \ R; then f ′ ̸= 0, and if f ≍ 1, then f ′ ≺ 1.

Evaluating differential polynomials at germs. Any Q ∈ K{Y } of order ⩽ r
can be evaluated at any germ y ∈ Cr[i] to give a germ Q(y) ∈ C[i], with Q(y) ∈ C
for Q ∈ H{Y } of order ⩽ r and y ∈ Cr. (See the beginning of Section 6.3.) Here is
a variant that we shall need. Let ϕ ∈ H×; with ∂ denoting the derivation of K, the
derivation of the differential field Kϕ is then δ := ϕ−1

∂. We also let δ denote its
extension f 7→ ϕ−1f ′ : C1[i] → C[i], which maps Cn+1[i] into Cn[i] and Cn+1 into Cn,
for all n. Thus for j ⩽ r we have the maps

Cr[i] δ−−−→ Cr−1[i]
δ−−−→ · · · δ−−−→ Cr−j+1[i]

δ−−−→ Cr−j [i],
which by composition yield δ

j : Cr[i] → Cr−j [i], mapping Cr into Cr−j . This allows
us to define for Q ∈ Kϕ{Y } of order ⩽ r and y ∈ Cr[i] the germ Q(y) ∈ C[i] by

Q(y) := q
(
y, δ(y), . . . , δ

r(y)
)

where Q = q
(
Y, . . . , Y (r)) ∈ Kϕ

[
Y, . . . , Y (r)

]
.

Note that Hϕ is a differential subfield of Kϕ, and if Q ∈ Hϕ{Y } is of order ⩽ r
and y ∈ Cr, then Q(y) ∈ C.

Lemma 6.4.1. Let y ∈ Cr[i] and m ∈ K×. Each of the following conditions
implies y ∈ Cr[i]≼:

(i) ϕ ≼ 1 and δ
0(y), . . . , δ

r(y) ≼ 1;
333



(ii) m ≼ 1 and y ∈ m Cr[i]≼.
Moreover, if m ≼ 1 and (y/m)(0), . . . , (y/m)(r) ≺ 1, then y(0), . . . , y(r) ≺ 1.

Proof. For (i), use the smallness of the derivation of H and the transformation
formulas in [ADH, 5.7] expressing the iterates of ∂ in terms of iterates of δ. For (ii)
and the “moreover” part, set y = mz with z = y/m and use the Product Rule and
the smallness of the derivation of K. □

Equations over Hardy fields and over their complexifications. Let ϕ > 0
be active in H. We recall here from Section 5.3 how the the asymptotic field Kϕ =
H[i]ϕ (with derivation δ = ϕ−1

∂) is isomorphic to the asymptotic field K◦ :=
H◦[i] for a certain Hardy field H◦: Let ℓ ∈ C1 be such that ℓ′ = ϕ; then ℓ > R,
ℓ ∈ C<∞, and ℓinv ∈ C<∞ for the compositional inverse ℓinv of ℓ. The C-algebra
automorphism f 7→ f◦ := f ◦ ℓinv of C[i] (with inverse g 7→ g ◦ ℓ) maps Cn[i]
and Cn onto themselves, and hence restricts to a C-algebra automorphism of C<∞[i]
and C<∞ mapping C<∞ onto itself. Moreover,

(∂, ◦, δ) (f◦)′ = (ϕ◦)−1(f ′)◦ = δ(f)◦ for f ∈ C1[i].

Thus we have an isomorphism f 7→ f◦ : (C<∞[i])ϕ → C<∞[i] of differential rings,
and likewise with C<∞ in place of C<∞[i]. As already pointed out in Section 5.3,

H◦ := {h◦ : h ∈ H} ⊆ C<∞

is a Hardy field, and f 7→ f◦ restricts to an isomorphism Hϕ → H◦ of pre-H-fields,
and to an isomorphism Kϕ → K◦ of asymptotic fields. We extend the latter to the
isomorphism

Q 7→ Q◦ : Kϕ{Y } → K◦{Y }
of differential rings given by Y ◦ = Y , which restricts to a differential ring isomor-
phism Hϕ{Y } → H◦{Y }. Using the identity (∂, ◦, δ) it is routine to check that
for Q ∈ Kϕ{Y } of order ⩽ r and y ∈ Cr[i],

Q(y)◦ = (Q◦)(y◦).

This allows us to translate algebraic differential equations over K into algebraic
differential equations over K◦: Let P ∈ K{Y } have order ⩽ r and let y ∈ Cr[i].

Lemma 6.4.2. P (y)◦ = Pϕ(y)◦ = Pϕ◦(y◦) where Pϕ◦ := (Pϕ)◦ ∈ K◦{Y }, hence

P (y) = 0 ⇐⇒ Pϕ◦(y◦) = 0.

Moreover, y ≺ m ⇐⇒ y◦ ≺ m◦, for m ∈ K×, so asymptotic side conditions are
automatically taken care of under this “translation”. Also, if ϕ ≼ 1 and y◦ ∈ Cr[i]≼,
then y ∈ Cr[i]≼, by Lemma 6.4.1(i) and (∂, ◦, δ).

In the rest of this section H ⊇ R is real closed with asymptotic integration. Then H
is an H-field, and K = H[i] is the algebraic closure of H, a d-valued field with small
derivation extending H, constant field C, and value group Γ := v(K×) = v(H×).

Slots in Hardy fields and compositional conjugation. In this subsection we
let ϕ > 0 be active in H; as in the previous subsection we take ℓ ∈ C1 such that ℓ′ = ϕ
and use the superscript ◦ accordingly: f◦ := f ◦ ℓinv for f ∈ C[i].

Let (P,m, â) be a slot in K of order r, so â /∈ K is an element of an imme-

diate asymptotic extension K̂ of K with P ∈ Z(K, â) and â ≺ m. We associate

to (P,m, â) a slot in K◦ as follows: choose an immediate asymptotic extension K̂◦
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of K◦ and an isomorphism f̂ 7→ f̂◦ : K̂ϕ → K̂◦ of asymptotic fields extending the
isomorphism f 7→ f◦ : Kϕ → K◦. Then (Pϕ◦,m◦, â◦) is a slot in K◦ of the same
complexity as (P,m, â). The equivalence class of (Pϕ◦,m◦, â◦) does not depend

on the choice of K̂◦ and the isomorphism K̂ϕ → K̂◦. If (P,m, â) is a hole in K,
then (Pϕ◦,m◦, â◦) is a hole in K◦, and likewise with “minimal hole” in place of
“hole”. Moreover, by Lemmas 3.1.19, 3.3.20, and 3.3.40:

Lemma 6.4.3. If (P,m, â) is Z-minimal, then so is (Pϕ◦,m◦, â◦), and likewise
with “quasi-linear” and “special” in place of “Z-minimal”. If (P,m, â) is steep
and ϕ ≼ 1, then (Pϕ◦,m◦, â◦) is steep, and likewise with “deep”, “normal”, and
“strictly normal” in place of “steep”.

Next, let (P,m, â) be a slot in H of order r, so â /∈ H is an element of an imme-

diate asymptotic extension Ĥ of H with P ∈ Z(H, â) and â ≺ m. We associate

to (P,m, â) a slot in H◦ as follows: choose an immediate asymptotic extension Ĥ◦

of H◦ and an isomorphism f̂ 7→ f̂◦ : Ĥϕ → Ĥ◦ of asymptotic fields extending the
isomorphism f 7→ f◦ : Hϕ → H◦. Then (Pϕ◦,m◦, â◦) is a slot in H◦ of the same
complexity as (P,m, â). The equivalence class of (Pϕ◦,m◦, â◦) does not depend

on the choice of Ĥ◦ and the isomorphism Ĥϕ → Ĥ◦. If (P,m, â) is a hole in H,
then (Pϕ◦,m◦, â◦) is a hole in H◦, and likewise with “minimal hole” in place of
“hole”. Lemma 6.4.3 goes through in this setting. Also, recalling Lemma 5.3.6,
if H is Liouville closed and (P,m, â) is ultimate, then (Pϕ◦,m◦, â◦) is ultimate.

Moreover, by Lemmas 4.3.5 and 4.3.28, and Corollaries 4.5.23 and 4.5.39:

Lemma 6.4.4.

(i) If ϕ ≼ 1 and (P,m, â) is split-normal, then (Pϕ◦,m◦, â◦) is split-normal;
likewise with “split-normal” replaced by “ (almost) strongly split-normal”.

(ii) If ϕ ≺ 1 and (P,m, â) is Z-minimal, deep, and repulsive-normal, then
(Pϕ◦,m◦, â◦) is repulsive-normal; likewise with “repulsive-normal” replaced
by “ (almost) strongly repulsive-normal”.

Reformulations. We reformulate here some results of Sections 6.2 and 6.3 to
facilitate their use. As in Section 3.1 we set for v ∈ K×, v ≺ 1:

∆(v) :=
{
γ ∈ Γ : γ = o(vv)

}
,

a proper convex subgroup of Γ. In the next lemma, P ∈ K{Y } has order r and P =
Q − R, where Q,R ∈ K{Y } and Q is homogeneous of degree 1 and order r. We
set w := wt(P ), so w ⩾ r ⩾ 1.

Lemma 6.4.5. Suppose that LQ splits strongly over K, v(LQ) ≺♭ 1, and
R ≺∆ v(LQ)

w+1Q, ∆ := ∆
(
v(LQ)

)
.

Then P (y) = 0 and y′, . . . , y(r) ≼ 1 for some y ≺ v(LQ)
w in C<∞[i]. Moreover:

(i) if P,Q ∈ H{Y }, then there is such y in C<∞;
(ii) if H ⊆ C∞, then for any y ∈ Cr[i]≼ with P (y) = 0 we have y ∈ C∞[i];

likewise with Cω in place of C∞.

Proof. Set v := |v(LQ)| ∈ H>, so v ≍ v(LQ). Take f ∈ K× such that A := f−1LQ
is monic; then v(A) = v(LQ) ≍ v and f−1R ≺∆ f−1vw+1Q ≍ vw. We have A =
(∂−ϕ1) · · · (∂−ϕr) where ϕj ∈ K and Reϕj ≽ v† ≽ 1 for j = 1, . . . , r by the strong
splitting assumption. Also ϕ1, . . . , ϕr ≼ v−1 by Corollary 3.1.6. The claims now
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follow from various results in Section 6.2 applied to the equation A(y) = f−1R(y),
y ≺ 1 in the role of (∗), using also Corollary 6.3.5. □

Lemma 6.4.6. Let (P, n, ĥ) be a slot in H of order r and let ϕ be active in H,

0 < ϕ ≼ 1, such that (Pϕ, n, ĥ) is strongly split-normal. Then for some y in C<∞,

P (y) = 0, y ≺ n, y ∈ n (Cr)≼.
If H ⊆ C∞, then there exists such y in C∞, and likewise with Cω in place of C∞.

Proof. First we consider the case ϕ = 1. Replace (P, n, ĥ) by (P×n, 1, ĥ/n) to
arrange n = 1. Then LP has order r, v := v(LP ) ≺♭ 1, and P = Q−R where Q,R ∈
H{Y }, Q is homogeneous of degree 1 and order r, LQ ∈ H[∂] splits strongly over K,
and R ≺∆ vw+1P1, where ∆ := ∆(v) and w := wt(P ). Now P1 = Q − R1,
so v ∼ v(LQ) by Lemma 3.1.1(ii), and thus ∆ = ∆

(
v(LQ)

)
. Lemma 6.4.5 gives y

in C<∞ such that y ≺ vw ≺ 1, P (y) = 0, and y(j) ≼ 1 for j = 1, . . . , r. Then y has
for n = 1 the properties displayed in the lemma.

Now suppose ϕ is arbitrary. Employing ( )◦ as explained earlier in this sec-

tion, the slot (Pϕ◦, n◦, ĥ◦) in the Hardy field H◦ is strongly split-normal, hence
by the case ϕ = 1 we have z ∈ C<∞ with Pϕ◦(z) = 0, z ≺ n◦, and (z/n◦)(j) ≼ 1
for j = 1, . . . , r. Take y ∈ C<∞ with y◦ = z. Then P (y) = 0, y ≺ n, and y ∈ n (Cr)≼
by Lemma 6.4.2 and a subsequent remark. Moreover, if ϕ, z ∈ C∞, then y ∈ C∞,
and likewise with Cω in place of C∞. □

In the next “complex” version, (P,m, â) is a slot in K of order r with m ∈ H×.

Lemma 6.4.7. Let ϕ be active in H, 0 < ϕ ≼ 1, such that the slot (Pϕ,m, â) in Kϕ

is strictly normal, and its linear part splits strongly over Kϕ. Then for some y ∈
C<∞[i] we have

P (y) = 0, y ≺ m, y ∈ m Cr[i]≼.
If H ⊆ C∞, then there is such y in C∞[i]. If H ⊆ Cω, then there is such y in Cω[i].

Proof. Consider first the case ϕ = 1. Replacing (P,m, â) by (P×m, 1, â/m) we
arrange m = 1. Set L := LP ∈ K[∂], Q := P1, and R := P − Q. Since (P, 1, â)
is strictly normal, we have order(L) = r, v := v(L) ≺♭ 1, and R ≺∆ vw+1Q
where ∆ := ∆(v), w := wt(P ). As L splits strongly over K, Lemma 6.4.5 gives y
in C<∞[i] such that P (y) = 0, y ≺ vw ≺ 1, and y(j) ≼ 1 for j = 1, . . . , r. For the
last part of the lemma, use the last part of Lemma 6.4.5. The general case reduces
to this special case as in the proof of Lemma 6.4.6. □

Finding germs in holes. In this subsection Ĥ is an immediate asymptotic exten-
sion of H. This fits into the setting of Section 4.3 on split-normal slots: K = H[i]

and Ĥ haveH as a common asymptotic subfield and K̂ := Ĥ[i] as a common asymp-

totic extension, Ĥ is an H-field, and K̂ is d-valued. Assume also that H is ω-free.

Thus K is ω-free by [ADH, 11.7.23]. Let (P,m, â) with m ∈ H× and â ∈ K̂ \K be

a minimal hole in K of order r ⩾ 1. Take b̂, ĉ ∈ Ĥ so that â = b̂+ ĉ i.

Proposition 6.4.8. Suppose degP > 1. Then for some y ∈ C<∞[i] we have

P (y) = 0, y ≺ m, y ∈ m Cr[i]≼.
If m ≼ 1, then y ≺ m and y ∈ Cr[i]≼ for such y. Moreover, if H ⊆ C∞, then we
can take such y in C∞[i], and if H ⊆ Cω, then we can take such y in Cω[i].
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Proof. Lemma 4.3.31 gives a refinement (P+a, n, â − a) of (P,m, â) with n ∈ H×

and an active ϕ in H with 0 < ϕ ≼ 1 such that the hole (Pϕ+a, n, â − a) in Kϕ is

strictly normal and its linear part splits strongly over Kϕ. Lemma 6.4.7 applied
to (P+a, n, â − a) in place of (P,m, â) yields z ∈ C<∞[i] with P+a(z) = 0, z ≺ n
and (z/n)(j) ≼ 1 for j = 1, . . . , r. Lemma 6.4.1(ii) applied to z/m, n/m in place
of y, m, respectively, yields (z/m)(j) ≼ 1 for j = 0, . . . , r. Also, a ≺ m (in K),
hence (a/m)(j) ≺ 1 for j = 0, . . . , r. Set y := a + z; then P (y) = 0, y ≺ m,
and (y/m)(j) ≼ 1 for j = 1, . . . , r. For the rest use Lemma 6.4.1(ii) and the last
statement in Lemma 6.4.7. □

Next we treat the linear case:

Proposition 6.4.9. Suppose degP = 1. Then for some y ∈ C<∞[i] we have

P (y) = 0, y ≺ m, (y/m)′ ≼ 1.

If m ≼ 1, then y ≺ 1 and y′ ≼ 1 for each such y. Moreover, if H ⊆ C∞, then we
can take such y in C∞[i], and if H ⊆ Cω, then we can take such y in Cω[i].

Proof. We have r = 1 by Corollary 3.2.8. If ∂K = K and I(K) ⊆ K†, then
Lemma 4.3.32 applies, and we can argue as in the proof of Proposition 6.4.8, using
this lemma instead of Lemma 4.3.31. We reduce the general case to this special case
as follows: Set H1 := D(H); then H1 is an ω-free Hardy field by Theorem 1.4.1,

andK1 := H1[i] satisfies ∂K1 = K1 and I(K1) ⊆ K†
1 , by Corollary 5.5.19. Moreover,

by Corollary 6.3.9, if H ⊆ C∞, then H1 ⊆ C∞, and likewise with Cω in place of C∞.

The newtonization Ĥ1 ofH1 is an immediate asymptotic extension ofH1, and K̂1 :=

Ĥ1[i] is newtonian [ADH, 14.5.7]. Corollary 3.2.29 gives an embedding K⟨â⟩ → K̂1

over K; let â1 be the image of â under this embedding. If â1 ∈ K1, then we are done
by taking y := â1, so we may assume â1 /∈ K1. Then (P,m, â1) is a minimal hole
in K1, and the above applies with H, K, â replaced by H1, K1, â1, respectively. □

We can improve on these results in a useful way:

Corollary 6.4.10. Suppose â ∼ a ∈ K. Then for some y ∈ C<∞[i] we have

P (y) = 0, y ∼ a, (y/a)(j) ≺ 1 for j = 1, . . . , r.

If H ⊆ C∞, then there is such y in C∞[i]. If H ⊆ Cω, then there is such y in Cω[i].

Proof. Take a1 ∈ K and n ∈ H× with n ≍ â − a ∼ a1, and set b := a + a1.
Then (P+b, n, â − b) is a refinement of (P,m, â). Propositions 6.4.8 and 6.4.9
give z ∈ C<∞[i] with P (b + z) = 0, z ≺ n and (z/n)(j) ≼ 1 for j = 1, . . . , r.
We have (a1/a)

(j) ≺ 1 for j = 0, . . . , r, since K has small derivation. Like-
wise, (n/a)(j) ≺ 1 for j = 0, . . . , r, and hence (z/a)(j) ≺ 1 for j = 0, . . . , r,
by z/a = (z/n) · (n/a) and the Product Rule. So y := b + z has the desired
property. The rest follows from the “moreover” parts of these propositions. □

Remark 6.4.11. Suppose we replace our standing assumption that H is ω-free
and (P,m, â) is a minimal hole in K by the assumption that H is λ-free, ∂K = K,
I(K) ⊆ K†, and (P,m, â) is a slot inK of order and degree 1. Then Proposition 6.4.9
and Corollary 6.4.10 go through by the remark following Lemma 4.3.32.

Now also drawing upon Theorem 4.3.33, we arrive at the main result of this section:
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Corollary 6.4.12. Suppose H is 1-linearly newtonian. Then one of the following
two conditions is satisfied:

(i) b̂ /∈ H, and there are Q ∈ Z(H, b̂) of minimal complexity and y ∈ C<∞ such
that Q(y) = 0 and y ≺ m;

(ii) ĉ /∈ H, and there are R ∈ Z(H, ĉ) of minimal complexity and y ∈ C<∞ such
that R(y) = 0 and y ≺ m.

If H ⊆ C∞, then there is such y in C∞, and likewise with C∞ replaced by Cω.

Proof. Suppose degP > 1, or b̂ /∈ H and Z(H, b̂) has an element of order 1,
or ĉ /∈ H and Z(H, ĉ) has an element of order 1. Let ϕ range over active elements
of H with 0 < ϕ ≼ 1. By the “moreover” part of Theorem 4.3.33, one of the
following holds:

(1) b̂ /∈ H and there exist ϕ and a Z-minimal slot (Q,m, b̂) in H with a refine-

ment (Q+b, n, b̂− b) such that (Qϕ+b, n, b̂− b) is strongly split-normal;
(2) ĉ /∈ H and there exist ϕ and a Z-minimal slot (R,m, ĉ) in H with a refine-

ment (R+c, n, ĉ− c) such that (Rϕ+c, n, ĉ− c) is strongly split-normal.

Suppose b̂ /∈ H and ϕ,Q, b are as in (1); then Lemma 6.4.6 applied to (Q+b, n, b̂−b)
in place of (P, n, ĥ) yields z ∈ C<∞ with Q+b(z) = 0, z ≺ n; hence Q(y) = 0, y ≺ m
for y := b+ z, so (i) holds. Similarly, (2) implies (ii).

Suppose now that degP = 1, that if b̂ /∈ H, then Z(H, b̂) has no element of
order 1, and that if ĉ /∈ H, then Z(H, ĉ) has no element of order 1. Since degP = 1,
Proposition 6.4.9 gives z ∈ C<∞[i] such that P (z) = 0 and z ≺ m. Recall also that P

has order 1 by Corollary 3.2.8. Consider now the case b̂ /∈ H. In view of P (â) = 0
and P (z) = 0 we obtain from Example 1.1.7 and Remark 1.1.9 a Q ∈ H{Y } of

degree 1 and order 1 or 2 such that Q(̂b) = 0 and Q(y) = 0 for y := Re z ≺ m.

But Z(H, b̂) has no element of order 1, so orderQ = 2 and Q ∈ Z(H, b̂) has
minimal complexity. Thus (i) holds. If ĉ /∈ H, then the same reasoning shows
that (ii) holds. □

Is y as in (i) or (ii) of Corollary 6.4.12 hardian over H? At this stage we cannot
claim this. In the next section we introduce weights and their corresponding norms
as a more refined tool. This will allow us to obtain Corollary 6.5.20 as a key
approximation result for later use.

6.5. Weights

In this section we prove Proposition 6.5.14 to strengthen Lemma 6.2.5. This uses
the material on repulsive-normal slots from Section 4.5, but we also need more
refined norms for differentiable functions, to which we turn now.

Weighted spaces of differentiable functions. In this subsection we fix r ∈ N
and a weight function τ ∈ Ca[i]×. For f ∈ Cra[i] we set

∥f∥τ

a;r := max
{
∥τ

−1f∥a, ∥τ
−1f ′∥a, . . . , ∥τ

−1f (r)∥a
}

∈ [0,+∞],

and ∥f∥τ
a := ∥f∥τ

a;0 for f ∈ Ca[i]. Then

Cra[i]τ :=
{
f ∈ Cra[i] : ∥f∥τ

a;r < +∞
}

is a C-linear subspace of

Ca[i]τ := C0
a[i]

τ = τ Ca[i]b =
{
f ∈ Ca[i] : f ≼ τ

}
.
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Below we consider the C-linear space Cra[i]τ to be equipped with the norm

f 7→ ∥f∥τ

a;r.

Recall from Section 6.1 the convention b · ∞ = ∞ · b = ∞ for b ∈ [0,∞]. Note that

(6.5.1) ∥fg∥τ

a;r ⩽ 2r∥f∥a;r ∥g∥τ

a;r for f, g ∈ Cra[i],

so Cra[i]τ is a Cra[i]b-submodule of Cra[i]. Note also that ∥1∥τ
a;r = ∥τ−1∥a, hence

∥f∥τ

a;r ⩽ 2r∥f∥a;r ∥τ
−1∥a for f ∈ Cra[i]

and
τ
−1 ∈ Ca[i]b ⇐⇒ 1 ∈ Cra[i]τ ⇐⇒ Cra[i]b ⊆ Cra[i]τ.

We have

(6.5.2) ∥f∥a;r ⩽ ∥f∥τ

a;r ∥τ∥a for f ∈ Cra[i],
and thus

(6.5.3) τ ∈ Ca[i]b ⇐⇒ Cra[i]b ⊆ Cra[i]τ
−1

=⇒ Cra[i]τ ⊆ Cra[i]b.
Hence if τ, τ−1 ∈ Ca[i]b, then Cra[i]b = Cra[i]τ, and the norms ∥ · ∥τ

a;r and ∥ · ∥a;r
on this C-linear space are equivalent. (In later use, τ ∈ Ca[i]b, τ−1 /∈ Ca[i]b.)
If τ ∈ Ca[i]b, then Cra[i]τ is an ideal of the commutative ring Cra[i]b. From (6.5.1)
and (6.5.2) we obtain

∥fg∥τ

a;r ⩽ 2r ∥τ∥a ∥f∥τ

a;r ∥g∥τ

a;r for f, g ∈ Cra[i].

For f ∈ Cr+1
a [i]τ we have ∥f∥τ

a;r, ∥f ′∥τ
a;r ⩽ ∥f∥τ

a;r+1. From (6.5.2) and (6.5.3):

Lemma 6.5.1. Suppose τ ∈ Ca[i]b (so Cra[i]τ ⊆ Cra[i]b) and f ∈ Cra[i]τ. If (fn) is a
sequence in Cra[i]τ and fn → f in Cra[i]τ, then also fn → f in Cra[i]b.

This is used to show:

Lemma 6.5.2. Suppose τ ∈ Ca[i]b. Then the C-linear space Cra[i]τ equipped with
the norm ∥ · ∥τ

a;r is complete.

Proof. We proceed by induction on r. Let (fn) be a cauchy sequence in the normed
space Ca[i]τ. Then the sequence (τ−1fn) in the Banach space C0

a[i]
b is cauchy, hence

has a limit g ∈ Ca[i]b, so with f := τg ∈ Ca[i]τ we have τ−1fn → τ−1f in Ca[i]b and
hence fn → f in Ca[i]τ. Thus the lemma holds for r = 0. Suppose the lemma holds
for a certain value of r, and let (fn) be a cauchy sequence in Cr+1

a [i]τ. Then (f ′n) is a
cauchy sequence in Cra[i]τ and hence has a limit g ∈ Cra[i]τ, by inductive hypothesis.
By Lemma 6.5.1, f ′n → g in Ca[i]b. Now (fn) is also a cauchy sequence in Ca[i]τ,
hence has a limit f ∈ Ca[i]τ (by the case r = 0), and by Lemma 6.5.1 again, fn → f
in Ca[i]b. Thus f is differentiable and f ′ = g by [57, (8.6.4)]. This yields fn → f
in Cr+1

a [i]τ. □

Lemma 6.5.3. Suppose τ ∈ Cra[i]b. If f ∈ Cra[i] and f (k) ≼ τr−k+1 for k = 0, . . . , r,

then fτ−1 ∈ Cra[i]b. (Thus Cra[i]τ
r+1 ⊆ τ Cra[i]b.)

Proof. Let Qnk ∈ Q{X} (0 ⩽ k ⩽ n) be as in Lemma 1.1.11. Although Cra[i] is
not closed under taking derivatives, the proof of that lemma and the computation
leading to Corollary 1.1.12 does give for f ∈ Cra[i] and n ⩽ r:

(fτ
−1)(n) =

n∑
k=0

Qnk (τ)f
(k)

τ
k−n−1.
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Now use that Qnk (τ) ≼ 1 for n ⩽ r and k = 0, . . . , n. □

Next we generalize the inequality (6.5.1):

Lemma 6.5.4. Let f1, . . . , fm−1, g ∈ Cra[i], m ⩾ 1; then

∥f1 · · · fm−1g∥τ

a;r ⩽ mr ∥f1∥a;r · · · ∥fm−1∥a;r ∥g∥τ

a;r.

Proof. Use the generalized Product Rule [ADH, p. 199] and the well-known identity∑
n!

i1!···im! = mn with the sum over all (i1, . . . , im) ∈ Nm with i1+ · · ·+ im = n. □

With i ranging over N1+r, let P =
∑

i PiY
i (all Pi ∈ Ca[i]) be a polynomial

in Ca[i]
[
Y, Y ′, . . . , Y (r)

]
; for f ∈ Cra[i] we have P (f) =

∑
i Pif

i ∈ Ca[i]. (See also
the beginning of Section 6.2.) We set

∥P∥a := max
i

∥Pi∥a ∈ [0,∞].

In the rest of this subsection we assume ∥P∥a <∞, that is, P ∈ Ca[i]b
[
Y, . . . , Y (r)

]
.

Hence if τ ∈ Ca[i]b, P (0) ∈ Ca[i]τ, and f ∈ Cra[i]τ, then P (f) ∈ Ca[i]τ. Here are
weighted versions of Lemma 6.1.2 and 6.1.3:

Lemma 6.5.5. Suppose P is homogeneous of degree d ⩾ 1, and let τ ∈ Ca[i]b
and f ∈ Cra[i]τ. Then

∥P (f)∥τ

a ⩽

(
d+ r

r

)
· ∥P∥a · ∥f∥d−1

a;r · ∥f∥τ

a;r.

Proof. For j = 0, . . . , r we have ∥f (j)∥a ⩽ ∥f∥a;r and ∥f (j)∥τ
a ⩽ ∥f∥τ

a;r. Now f i,

where i = (i0, . . . , ir) ∈ Nr+1 and i0+· · ·+ir = d, is a product of d such factors f (j),
so Lemma 6.5.4 with m := d, r := 0, gives

∥f i∥τa ⩽ ∥f∥d−1
a;r · ∥f∥τ

a;r.

It remains to note that by (6.5.1) we have ∥Pif
i∥τa ⩽ ∥Pi∥a · ∥f i∥τa. □

Corollary 6.5.6. Let 1 ⩽ d ⩽ e in N be such that Pi = 0 if |i| < d or |i| > e.
Then for f ∈ Cra[i]τ and τ ∈ Ca[i]b we have

∥P (f)∥τ

a ⩽ D · ∥P∥a ·
(
∥f∥d−1

a;r + · · ·+ ∥f∥e−1
a;r

)
· ∥f∥τ

a;r

where D = D(d, e, r) :=
(
e+r+1
r+1

)
−
(
d+r
r+1

)
∈ N⩾1.

Doubly-twisted integration. In this subsection we adopt the setting in Twisted
integration of Section 6.1. Thus ϕ ∈ Ca[i] and Φ = ∂

−1
a ϕ. Let τ ∈ C1

a satisfy τ(s) > 0

for s ⩾ a, and set ϕ̃ := ϕ− τ† ∈ Ca[i] and Φ̃ := ∂
−1
a ϕ̃. Thus

Φ̃(t) =

∫ t

a

(ϕ− τ
†)(s) ds = Φ(t)− log τ(t) + log τ(a) for t ⩾ a.

Consider the right inverses B, B̃ : Ca[i] → C1
a[i] to, respectively, ∂ − ϕ : C1

a[i] → Ca[i]
and ∂ − ϕ̃ : C1

a[i] → Ca[i], given by

B := eΦ ◦ ∂
−1
a ◦ e−Φ, B̃ := eΦ̃ ◦ ∂

−1
a ◦ e−Φ̃ .
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For f ∈ Ca[i] and t ⩾ a we have

B̃f(t) = eΦ̃(t)

∫ t

a

e−Φ̃(s) f(s) ds

= τ(t)−1
τ(a) eΦ(t)

∫ t

a

e−Φ(s)
τ(s)τ(a)−1f(s) ds

= τ(t)−1 eΦ(t)

∫ t

a

e−Φ(s)
τ(s)f(s) ds = τ

−1(t)
(
B(τf)

)
(t)

and so B̃ = τ−1 ◦ B ◦ τ. Hence if ϕ̃ is attractive, then B⋉τ := τ−1 ◦ B ◦ τ

maps Ca[i]b into Ca[i]b ∩ C1
a[i], and the operator B⋉τ : Ca[i]b → Ca[i]b is contin-

uous with ∥B⋉τ∥a ⩽
∥∥ 1

Re ϕ̃

∥∥
a
; if in addition ϕ̃ ∈ Cra[i], then B⋉τ maps Ca[i]b ∩ Cra[i]

into Ca[i]b ∩ Cr+1
a [i]. Note that if ϕ ∈ Cra[i] and τ ∈ Cr+1

a , then ϕ̃ ∈ Cra[i].

Next, suppose ϕ, ϕ̃ are both repulsive. Then we have the C-linear operators

B, B̃ : Ca[i]b → C1
a[i] given, for f ∈ Ca[i]b and t ⩾ a, by

Bf(t) := eΦ(t)

∫ t

∞
e−Φ(s) f(s) ds, B̃f(t) := eΦ̃(t)

∫ t

∞
e−Φ̃(s) f(s) ds.

Now assume τ ∈ Ca[i]b. Then we have the C-linear operator

B⋉τ := τ
−1 ◦B ◦ τ : Ca[i]b → C1

a[i].

A computation as above shows B̃ = B⋉τ; thus B⋉τ maps Ca[i]b into Ca[i]b ∩ C1
a[i],

and the operator B⋉τ : Ca[i]b → Ca[i]b is continuous with ∥B⋉τ∥a ⩽
∥∥ 1

Re ϕ̃

∥∥
a
. If ϕ̃ ∈

Cra[i], then B⋉τ maps Ca[i]b ∩ Cra[i] into Ca[i]b ∩ Cr+1
a [i].

More on twists and right-inverses of linear operators over Hardy fields.
In this subsection we adopt the assumptions in force for Lemma 6.1.5, which we
repeat here. Thus H is a Hardy field, K = H[i], r ∈ N⩾1, and f1, . . . , fr ∈ K.
We fix a0 ∈ R and functions in Ca0 [i] representing the germs f1, . . . , fr, denoted
by the same symbols. We let a range over [a0,∞), and we denote the restriction
of each f ∈ Ca0 [i] to [a,∞) also by f . For each a we then have the C-linear
map Aa : Cra[i] → Ca[i] given by

Aa(y) = y(r) + f1y
(r−1) + · · ·+ fry.

We are in addition given a splitting (ϕ1, . . . , ϕr) of the linear differential opera-
tor A = ∂

r + f1∂
r−1 + · · · + fr ∈ K[∂] over K with Reϕ1, . . . ,Reϕr ≽ 1, as well

as functions in Cr−1
a0 [i] representing ϕ1, . . . , ϕr, denoted by the same symbols and

satisfying Reϕ1, . . . ,Reϕr ∈ (Ca0)×. This gives rise to the continuous C-linear
operators

Bj := Bϕj
: Ca[i]b → Ca[i]b (j = 1, . . . , r)

and the right-inverse

A−1
a := Br ◦ · · · ◦B1 : Ca[i]b → Ca[i]b

of Aa with the properties stated in Lemma 6.1.5.

Now let m ∈ H× with m ≺ 1, and set Ã := A⋉m ∈ K[∂]. Let τ ∈ (Cra0)
× be a

representative of m. Then τ ∈ (Cra0)
b and ϕ̃j := ϕj − τ† ∈ Cr−1

a0 [i] for j = 1, . . . , r.
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We have the C-linear maps

Ãj := ∂ − ϕ̃j : Cja[i] → Cj−1
a [i] (j = 1, . . . , r)

and for sufficiently large a a factorization

Ãa = Ã1 ◦ · · · ◦ Ãr : Cra[i] → Ca[i].

Below we assume this holds for all a, as can be arranged by increasing a0. We
call f, g ∈ Ca[i] alike if f , g are both attractive or both repulsive. In the same

way we define when germs f, g ∈ C[i] are alike. Suppose that ϕj , ϕ̃j are alike
for j = 1, . . . , r. Then we have continuous C-linear operators

B̃j := Bϕ̃j
: Ca[i]b → Ca[i]b (j = 1, . . . , r)

and the right-inverse

Ã−1
a := B̃r ◦ · · · ◦ B̃1 : Ca[i]b → Ca[i]b

of Ãa, and the arguments in the previous subsection show that B̃j = (Bj)⋉τ =

τ−1 ◦ Bj ◦ τ for j = 1, . . . , r, and hence Ã−1
a = τ−1 ◦ A−1

a ◦ τ. For j = 0, . . . , r we
set, in analogy with A◦

j and B◦
j from (6.1.2) and (6.1.3),

Ã◦
j := Ã1 ◦ · · · ◦ Ãj : Cja[i] → Ca[i], B̃◦

j := B̃j ◦ · · · ◦ B̃1 : Ca[i]b → Ca[i]b.

Then B̃j maps Ca[i]b into Ca[i]b ∩Cja[i], Ã◦
j ◦ B̃◦

j is the identity on Ca[i]b, and B̃◦
j =

τ−1 ◦B◦
j ◦ τ by the above.

A weighted version of Proposition 6.1.7. We adopt the setting of the sub-
section Damping factors of Section 6.1, and make the same assumptions as in the
paragraph before Proposition 6.1.7. Thus H, K, A, f1, . . . , fr, ϕ1, . . . , ϕr, a0 are as
in the previous subsection, v ∈ Cra0 satisfies v(t) > 0 for all t ⩾ a0, and its germ v

is in H with v ≺ 1. As part of those assumptions we also have ϕ1, . . . , ϕr ≼∆ v−1

in the asymptotic field K, for the convex subgroup

∆ :=
{
γ ∈ v(H×) : γ = o(vv)

}
of v(H×) = v(K×). Also ν ∈ R> and u := vν |[a,∞) ∈ (Cra)×.

To state a weighted version of Proposition 6.1.7, let m ∈ H×, m ≺ 1, and let m
also denote a representative in (Cra0)

× of the germ m. Set τ := m|[a,∞), so we

have τ ∈ (Cra)× ∩ (Cra)b and thus Cra[i]τ ⊆ Cra[i]b. (Note that τ, like u, depends on a,
but we do not indicate this dependence notationally.) With notations as in the
previous subsection we assume that for all a we have the factorization

Ãa = Ã1 ◦ · · · ◦ Ãr : Cra[i] → Ca[i],

as can be arranged by increasing a0 if necessary.

Proposition 6.5.7. Assume H is real closed, ν ∈ Q, ν > r, and the elements ϕj,
ϕj −m† of Ca0 [i] are alike for j = 1, . . . , r. Then:

(i) the C-linear operator uA−1
a : Ca[i]b → Ca[i]b maps Ca[i]τ into Cra[i]τ;

(ii) its restriction to a C-linear map Ca[i]τ → Cra[i]τ is continuous; and
(iii) denoting this restriction also by uA−1

a , we have ∥uA−1
a ∥τ

a;r → 0 as a→ ∞.
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Proof. Let f ∈ Ca[i]τ, so g := τ−1f ∈ Ca[i]b. Let i ∈ {0, . . . , r}; then with B̃◦
j as in

the previous subsection and ui,j as in Lemma 6.1.6, that lemma gives

τ
−1
(
uA−1

a (f)
)
(i) =

r∑
j=r−i

ui,ju · τ
−1B◦

j (τg) =

r∑
j=r−i

ui,juB̃
◦
j (g).

The proof of Proposition 6.1.7 shows ui,ju ∈ Ca[i]b with ∥ui,ju∥a → 0 as a → ∞.
Set

c̃i,a :=

r∑
j=r−i

∥uui,j∥a · ∥B̃j∥a · · · ∥B̃1∥a ∈ [0,∞) (i = 0, . . . , r).

Then
∥∥τ−1

[
uA−1

a (f)
]
(i)
∥∥
a
⩽ c̃i,a∥g∥a = c̃i,a∥f∥τ

a where c̃i,a → 0 as a → ∞. This

yields (i)–(iii). □

Weighted variants of results in Section 6.2. In this subsection we adopt the
hypotheses in force for Lemma 6.2.1. To summarize those, H, K, A, f1, . . . , fr,
ϕ1, . . . , ϕr, a0, v, ν, u, ∆ are as in the previous subsection, d, r ∈ N⩾1, H is
real closed, R ∈ K{Y } has order ⩽ d and weight ⩽ w ∈ N⩾r. Also ν ∈ Q,
ν > w, R ≺∆ vν , νv† ̸∼ Reϕj and Reϕj − νv† ∈ (Ca0)× for j = 1, . . . , r. Finally,

Ã := A⋉vν ∈ K[∂] and Ãa(y) = u−1Aa(uy) for y ∈ Cra[i]. Next, let m, τ be as in
the previous subsection. As in Lemma 6.2.12 we consider the continuous operator

Φa : Cra[i]b × Cra[i]b → Cra[i]b

given by

Φa(f, y) := Ξa(f + y)− Ξa(f) = uÃ−1
a

(
u−1

(
R(f + y)−R(f)

))
.

Here is our weighted version of Lemma 6.2.12:

Lemma 6.5.8. Suppose the elements ϕj − νv†, ϕj − νv† − m† of Ca0 [i] are alike,
for j = 1, . . . , r, and let f ∈ Cra[i]b. Then the operator y 7→ Φa(f, y) maps Cra[i]τ into
itself. Moreover, there are Ea, E

+
a ∈ R⩾ such that for all g ∈ Cra[i]b and y ∈ Cra[i]τ,

∥Φa(f, y)∥τ

a;r ⩽ Ea ·max
{
1, ∥f∥da;r

}
·
(
1 + ∥y∥a;r + · · ·+ ∥y∥d−1

a;r

)
· ∥y∥τ

a;r,

∥Φa(f, g + y)− Φa(f, g)∥τ

a;r ⩽

E+
a ·max

{
1, ∥f∥da;r

}
·max

{
1, ∥g∥da;r

}
·
(
1 + ∥y∥a;r + · · ·+ ∥y∥d−1

a;r

)
· ∥y∥τ

a;r.

We can take these Ea, E
+
a such that Ea, E

+
a → 0 as a→ ∞, and do so below.

Proof. Let y ∈ Cra[i]τ. By Taylor expansion we have

R(f+y)−R(f) =
∑
|i|>0

1

i!
R(i)(f)yi =

∑
|i|>0

Si(f)y
i where Si(f) :=

1

i!

∑
j

R
(i)
j fj ,

and u−1Si(f) ∈ Ca[i]b. So h := u−1
(
R(f + y) − R(f)

)
∈ Ca[i]τ, since Ca[i]τ is

an ideal of Ca[i]b. Applying Proposition 6.5.7(i) with ϕj − νv† in the role of ϕj
yields Φa(f, y) = uÃ−1

a (h) ∈ Cra[i]τ, establishing the first claim. Next, let g ∈ Cra[i]b.
Then Φa(f, g + y)− Φa(f, g) = Φa(f + g, y) by (6.2.1). Therefore,

Φa(f, g + y)− Φa(f, g) = uÃ−1
a (h), h := u−1

(
R(f + g + y)−R(f + g)

)
, so

∥Φa(f, g + y)− Φa(f, g)∥τ

a;r = ∥uÃ−1
a (h)∥τ

a;r ⩽ ∥uÃ−1
a ∥τ

a;r · ∥h∥τ

a.
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By Corollary 6.5.6 we have

∥h∥τ

a ⩽ D ·max
|i|>0

∥u−1Si(f + g)∥a ·
(
1 + ∥y∥a;r + · · ·+ ∥y∥d−1

a;r

)
· ∥y∥τ

a;r

where D = D(d, r) :=
((
d+r+1
r+1

)
− 1
)
. Let Da be as in the proof of Lemma 6.2.2.

Then Da → 0 as a→ ∞, and Lemma 6.2.11 gives for |i| > 0,

∥u−1Si(f)∥a ⩽ Da ·max
{
1, ∥f∥da;r

}
∥u−1Si(f + g)∥a ⩽ Da ·max

{
1, ∥f + g∥da;r

}
⩽ 2dDa ·max

{
1, ∥f∥da;r

}
·max

{
1, ∥g∥da;r

}
.

This gives the desired result for Ea := ∥uÃ−1
a ∥τ

a;r ·D ·Da and E+
a := 2dEa, using

also Proposition 6.5.7(iii) with ϕj − νv† in the role of ϕj . □

Lemma 6.5.8 allows us to refine Theorem 6.2.3 as follows:

Corollary 6.5.9. Suppose the elements ϕj − νv†, ϕj − νv†−m† of Ca0 [i] are alike,
for j = 1, . . . , r, and R(0) ≼ vνm. Then for sufficiently large a the operator Ξa
maps the closed ball Ba :=

{
f ∈ Cra[i] : ∥f∥a;r ⩽ 1/2

}
of the normed space Cra[i]b

into itself, has a unique fixed point in Ba, and this fixed point lies in Cra[i]τ.

Proof. Take a such that ∥τ∥a ⩽ 1. Then by (6.5.2), Ba contains the closed ball

Bτ

a :=
{
f ∈ Cra[i] : ∥f∥τ

a;r ⩽ 1/2
}

of the normed space Cra[i]τ. Let f, g ∈ Bτ
a. Then Ξa(g)− Ξa(f) = Φa(f, g − f) lies

in Cra[i]τ by Lemma 6.5.8, and with Ea as in that lemma,

∥Ξa(f)− Ξa(g)∥τ

a;r = ∥Φa(f, g − f)∥τ

a;r

⩽ Ea ·max
{
1, ∥f∥da;r

}
·
(
1 + · · ·+ ∥g − f∥d−1

a;r

)
· ∥g − f∥τ

a;r

⩽ Ea · d · ∥g − f∥τ

a;r.

Taking a so that moreover Ead ⩽ 1
2 we obtain

(6.5.4) ∥Ξa(f)− Ξa(g)∥τ

a;r ⩽
1
2∥f − g∥τ

a;r for all f, g ∈ Bτ
a.

Next we consider the case g = 0. Our hypothesis R(0) ≼ vνm gives u−1R(0) ∈
Ca[i]τ. Proposition 6.5.7(i),(ii) with ϕj − νv† in the role of ϕj gives Ξa(0) ∈ Cra[i]τ

and ∥Ξa(0)∥τ
a;r ⩽ ∥uÃ−1

a ∥τ
a;r∥u−1R(0)∥τ

a. Using Proposition 6.5.7(iii) we now take a

so large that ∥Ξa(0)∥τ
a;r ⩽

1
4 . Then (6.5.4) for g = 0 gives Ξa(B

τ
a) ⊆ Bτ

a. By
Lemma 6.5.2 the normed space Cra[i]τ is complete, hence Ξa has a unique fixed
point in Bτ

a. □

Now suppose in addition that A ∈ H[∂] and R ∈ H{Y }. Set

(Cra)τ :=
{
f ∈ Cra : ∥f∥τ

a;r <∞} = Cra[i]τ ∩ Cra,

a real Banach space with respect to ∥ · ∥τ
a;r. Increase a0 as at the beginning of the

subsection Preserving reality of Section 6.2. Then we have the map

ReΦa : (Cra)b × (Cra)b → (Cra)b, (f, y) 7→ Re
(
Φa(f, y)

)
.

Suppose the elements ϕj − νv†, ϕj − νv† − m† are alike for j = 1, . . . , r, and let a
and Ea, E

+
a be as in Lemma 6.5.8. Then this lemma yields:
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Lemma 6.5.10. Let f, g ∈ (Cra)b and y ∈ (Cra)τ. Then (ReΦa)(f, y) ∈ (Cra)τ and

∥Re(Φa)(f, y)∥τ

a;r ⩽ Ea ·max
{
1, ∥f∥da;r

}
·
(
1 + ∥y∥a;r + · · ·+ ∥y∥d−1

a;r

)
· ∥y∥τ

a;r,

∥(ReΦa)(f, g + y)− (ReΦa)(f, g)∥τ

a;r ⩽

E+
a ·max

{
1, ∥f∥da;r

}
·max

{
1, ∥g∥da;r

}
·
(
1 + ∥y∥a;r + · · ·+ ∥y∥d−1

a;r

)
· ∥y∥τ

a;r.

The same way we derived Corollary 6.5.9 from Lemma 6.5.8, this leads to:

Corollary 6.5.11. If R(0) ≼ vνm, then for sufficiently large a the operator ReΞa
maps the closed ball Ba :=

{
f ∈ Cra : ∥f∥a;r ⩽ 1/2

}
of the normed space (Cra)b into

itself, has a unique fixed point in Ba, and this fixed point lies in (Cra)τ.

Revisiting Lemma 6.2.13. Here we adopt the setting of the previous subsec-
tion. As usual, a ranges over [a0,∞). We continue our investigation of the differ-
ences f − g between solutions f , g of the equation (∗) on [a0,∞) from Section 6.2
which we began in Lemma 6.2.5, and so we take f , g, E, ε, ha, θa as in that
lemma. Recall that in the remarks preceding Lemma 6.2.13 we defined continuous
operators Φa,Ψa : Cra[i]b → Cra[i]b by

Φa(y) := Φa(g, y) = Ξa(g+ y)−Ξa(g), Ψa(y) := Φa(y)+ ha (y ∈ Cra[i]b).
As in those remarks, we set ρ := ∥f − g∥a0;r and

Ba :=
{
y ∈ Cra[i]b : ∥y − ha∥a;r ⩽ 1/2

}
,

and take a1 ⩾ a0 so that θa ∈ Ba for all a ⩾ a1. Then by (6.2.4) we have ∥y∥a;r ⩽
1+ρ for a ⩾ a1 and y ∈ Ba. Next, take a2 ⩾ a1 as in Lemma 6.2.13; thus for a ⩾ a2
and y, z ∈ Ba we have Ψa(y) ∈ Ba and ∥Ψa(y)−Ψa(z)∥a;r ⩽ 1

2∥y − z∥a;r. As in
the previous subsection, m ∈ H×, m ≺ 1, m denotes also a representative in (Cra0)

×

of the germ m, and τ := m|[a,∞) ∈ (Cra)× ∩ (Cra)b, so Cra[i]τ ⊆ Cra[i]b.

In the rest of this subsection ϕ1 − νv†, . . . , ϕr − νv† ∈ K are γ-repulsive for γ :=
vm ∈ v(H×)>, and ha ∈ Cra[i]τ for all a ⩾ a2. Then Corollary 4.5.5 gives a3 ⩾ a2
such that for all a ⩾ a3 and j = 1, . . . , r, the functions ϕj − u†, ϕj − (uτ)† ∈ Ca[i]
are alike and hence Ψa

(
Cra[i]τ

)
⊆ Cra[i]τ by Lemma 6.5.8. Thus Ψna(ha) ∈ Cra[i]τ for

all n and a ⩾ a3.
For a ⩾ a2 we have limn→∞ Ψna(ha) = θa in Cra[i]b by Corollary 6.2.14; we now

aim to strengthen this to “in Cra[i]τ” (possibly for a larger a2). Towards this:

Lemma 6.5.12. There exists a4 ⩾ a3 such that ∥Ψa(y)−Ψa(z)∥τ
a;r ⩽

1
2∥y− z∥τ

a;r

for all a ⩾ a4 and y, z ∈ Ba ∩ Cra[i]τ.

Proof. For a ⩾ a3 and y, z ∈ Cra[i]τ, and with E+
a as in Lemma 6.5.8 we have

∥Ψa(y)−Ψa(z)∥τ

a;r ⩽

E+
a ·max

{
1, ∥g∥da;r

}
·max

{
1, ∥z∥da;r

}
·
(
1+∥y−z∥a;r+ · · ·+∥y−z∥d−1

a;r

)
·∥y−z∥τ

a;r.

For each a ⩾ a1 and y, z ∈ Ba we then have

max
{
1, ∥z∥da;r

}
·
(
1 + ∥y − z∥a;r + · · ·+ ∥y − z∥d−1

a;r

)
⩽ (1 + ρ)d · d,

so taking a4 ⩾ a3 with

E+
a max

{
1, ∥g∥da0;r

}
(1 + ρ)dd ⩽ 1/2 for all a ⩾ a4,

we have ∥Ψa(y)−Ψa(z)∥τ
a;r ⩽

1
2∥y− z∥τ

a;r for all a ⩾ a4 and y, z ∈ Ba ∩Cra[i]τ. □
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Let a4 be as in the previous lemma.

Corollary 6.5.13. Suppose a ⩾ a4. Then θa ∈ Cra[i]τ and limn→∞ Ψna(ha) = θa in
the normed space Cra[i]τ. In particular, f − g, (f − g)′, . . . , (f − g)(r) ≼ m.

Proof. We have Φa(ha) = Ψa(ha) − ha ∈ Cra[i]τ, so M := ∥Φa(ha)∥τ
a;r < ∞.

Since Ψa(Ba) ⊆ Ba, induction on n using Lemma 6.5.12 gives

∥Ψn+1
a (ha)−Ψna(ha)∥τ

a;r ⩽M/2n for all n.

Thus
(
Ψna(ha)

)
is a cauchy sequence in the normed space Cra[i]τ, and so converges

in Cra[i]τ by Lemma 6.5.2. In the normed space Cra[i]b we have limn→∞ Ψna(ha) = θa,
by Corollary 6.2.14. Thus limn→∞ Ψna(ha) = θa in Cra[i]τ by Lemma 6.5.1. □

An application to slots in H. Here we adopt the setting of the subsection An
application to slots in H in Section 5.10. Thus H ⊇ R is a Liouville closed Hardy

field, K := H[i], I(K) ⊆ K†, and (P, 1, ĥ) is a slot in H of order r ⩾ 1; we
set w := wt(P ), d := degP . Assume also that K is 1-linearly surjective if r ⩾ 3.

Proposition 6.5.14. Suppose (P, 1, ĥ) is special, ultimate, Z-minimal, deep, and
strongly repulsive-normal. Let f, g ∈ Cr[i] and m ∈ H× be such that

P (f) = P (g) = 0, f, g ≺ 1, vm ∈ v(ĥ−H).

Then (f − g)(j) ≼ m for j = 0, . . . , r.

Proof. We arrange m ≺ 1. Let v := |v(LP )| ∈ H>, so v ≺♭ 1, and set ∆ := ∆(v).
Take Q,R ∈ H{Y } where Q is homogeneous of degree 1 and order r, A := LQ ∈
H[∂] has a strong ĥ-repulsive splitting over K, P = Q − R, and R ≺∆ vw+1P1,
so v(A) ∼ v(LP ) by Lemma 3.1.1. Multiplying P , Q, R by some b ∈ H× we arrange
that A is monic, so A = ∂

r + f1∂
r−1 + · · ·+ fr with f1, . . . , fr ∈ H and R ≺∆ vw.

Let (ϕ1, . . . , ϕr) ∈ Kr be a strong ĥ-repulsive splitting of A over K, so ϕ1, . . . , ϕr
are ĥ-repulsive and

A = (∂ − ϕ1) · · · (∂ − ϕr), Reϕ1, . . . ,Reϕr ≽ v† ≽ 1.

By Corollary 3.1.6 we have ϕ1, . . . , ϕr ≼ v−1. Thus we can take a0 ∈ R and
functions on [a0,∞) representing the germs ϕ1, . . . , ϕr, f1, . . . , fr, f , g and the Rj

with j ∈ N1+r, |j| ⩽ d, ∥j∥ ⩽ w (using the same symbols for the germs mentioned
as for their chosen representatives) so as to be in the situation described in the
beginning of Section 6.2, with f and g solutions on [a0,∞) of the differential equa-
tion (∗) there. As there, we take ν ∈ Q with ν > w so that R ≺∆ vν and νv† ̸∼ Reϕj
for j = 1, . . . , r, and then increase a0 to satisfy all assumptions for Lemma 6.2.1.

Corollary 3.3.15 gives v(vν) ∈ v(ĥ−H), so ϕj−νv† = ϕj− (vν)† (j = 1, . . . , r) is ĥ-
repulsive by Lemma 4.5.13(iv), so γ-repulsive for γ := vm > 0. Now A splits overK,
and K is 1-linearly surjective if r ⩾ 3, hence dimC kerUA = r by Lemma 5.10.22.
Thus by Corollary 5.10.16 we have y, y′, . . . , y(r) ≺ m for all y ∈ Cr[i] with A(y) = 0,

y ≺ 1. In particular, m−1ha,m
−1h′a, . . . ,m

−1h
(r)
a ≺ 1 for all a ⩾ a0. Thus the as-

sumptions on m and the ha made just before Lemma 6.5.12 are satisfied for a
suitable choice of a2, so we can appeal to Corollary 6.5.13. □

The assumption that K is 1-linearly surjective for r ⩾ 3 was only used in the proof
above to obtain dimC kerUA = r. So if A as in this proof satisfies dimC kerUA = r,
then we can drop this assumption about K, also in the next corollary.
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Corollary 6.5.15. Suppose (P, 1, ĥ), f , g, m are as in Proposition 6.5.14. Then

f − g ∈ m Cr[i]≼.

Proof. If m ≽ 1, then Lemma 6.4.1(ii) applied with y = (f − g)/m and 1/m in

place of m gives what we want. Now assume m ≺ 1. Since ĥ is special over H,
Proposition 6.5.14 applies tomr+1 in place ofm, so (f−g)(j) ≼ mr+1 for j = 0, . . . , r.
Now apply Lemma 6.5.3 to suitable representatives of f − g and m. □

Later in this section we use Proposition 6.5.14 and its Corollary 6.5.15 to strengthen
some results from Section 6.4. In Section 7.7 we give further refinements of that
proposition for the case of firm and flabby slots, but these are not needed for the
proof of our main result, given in Section 6.7.

Weighted refinements of results in Section 6.4. We now adopt the setting
of the subsection Reformulations of Section 6.4. Thus H ⊇ R is a real closed
Hardy field with asymptotic integration, and K := H[i] ⊆ C<∞[i] is its algebraic
closure, with value group Γ := v(H×) = v(K×). The next lemma and its corollary
refine Lemma 6.4.5. Let P , Q, R, LQ, w be as introduced before that lemma,
set v := |v(LQ)| ∈ H>, and, in case v ≺ 1, ∆ := ∆(v).

Lemma 6.5.16. Let f ∈ K× and ϕ1, . . . , ϕr ∈ K be such that

LQ = f(∂ − ϕ1) · · · (∂ − ϕr), Reϕ1, . . . ,Reϕr ≽ 1.

Assume v ≺ 1 and R ≺∆ vw+1Q. Let m ∈ H×, m ≺ 1, P (0) ≼ vw+2mQ. Suppose
that for j = 1, . . . , r and all ν ∈ Q with w < ν < w+1, ϕj − (vν)† and ϕj − (vνm)†

are alike. Then P (y) = 0 and y, y′, . . . , y(r) ≼ m for some y ≺ vw in C<∞[i].
If P,Q ∈ H{Y }, then there is such y in C<∞.

Proof. Note that ϕ1, . . . , ϕr ≼ v−1 by Corollary 3.1.6 and that R ≺∆ vw+1Q
gives f−1R ≺∆ vw. Take ν ∈ Q such that w < ν < w + 1, f−1R ≺∆ vν

and νv† ̸∼ Reϕj for j = 1, . . . , r. Set A := f−1LQ. From ν < w + 1 and

R(0) = −P (0) ≺∆ vw+2mQ

we obtain f−1R(0) ≺∆ vνm. Thus we can apply successively Corollary 6.5.9,
Lemma 6.2.1, and Corollary 6.3.5 to the equation A(y) = f−1R(y), y ≺ 1 in the
role of (∗) in Section 6.2 to obtain the first part. For the real variant, use instead
Corollary 6.5.11 and Lemma 6.2.6. □

Lemma 6.5.16 with mr+1 for m has the following consequence, using Lemma 6.5.3:

Corollary 6.5.17. Let f ∈ K× and ϕ1, . . . , ϕr ∈ K be such that

LQ = f(∂ − ϕ1) · · · (∂ − ϕr), Reϕ1, . . . ,Reϕr ≽ 1.

Assume v ≺ 1 and R ≺∆ vw+1Q. Let m ∈ H×, m ≺ 1, P (0) ≼ vw+2mr+1Q.
Suppose that for j = 1, . . . , r and all ν ∈ Q with w < ν < w + 1, ϕj − (vν)†

and ϕj − (vνmr+1)† are alike. Then for some y ≺ vw in C<∞[i] we have P (y) = 0
and y ∈ m Cr[i]≼. If P,Q ∈ H{Y }, then there is such y in C<∞.

Remark. If H is a C∞-Hardy field, then Lemma 6.5.16 and Corollary 6.5.17 go
through with C<∞[i], C<∞ replaced by C∞[i], C∞, respectively. Likewise with Cω
in place of C∞. (Use Corollary 6.3.5.)
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Next a variant of Lemma 6.4.6. In the rest of this subsection (P, n, ĥ) is a deep,
strongly repulsive-normal, Z-minimal slot in H of order r ⩾ 1 and weight w :=

wt(P ). We assume also that (P, n, ĥ) is special (as will be the case if H is r-linearly
newtonian, and ω-free if r > 1, by Lemma 3.2.36).

Lemma 6.5.18. Let m ∈ H× be such that vm ∈ v(ĥ − H), m ≺ n, and P (0) ≼
v(LP×n

)w+2 (m/n)r+1 P×n. Then for some y ∈ C<∞,

P (y) = 0, y ∈ m (Cr)≼.

If H ⊆ C∞, then there is such y in C∞; likewise with Cω in place of C∞.

Proof. Replace (P, n, ĥ), m by (P×n, 1, ĥ/n), m/n to arrange n = 1. Then LP has
order r, v(LP ) ≺♭ 1, and P = Q − R where Q,R ∈ H{Y }, Q is homogeneous of

degree 1 and order r, LQ ∈ H[∂] has a strong ĥ-repulsive splitting (ϕ1, . . . , ϕr) ∈ Kr

overK = H[i], and R ≺∆∗ v(LP )
w+1P1 with ∆∗ := ∆

(
v(LP )

)
. By Lemma 3.1.1(ii)

we have v(LP ) ∼ v(LQ) ≍ v, so Reϕj ≽ v† ≽ 1 for j = 1, . . . , r, and ∆ = ∆∗.
Moreover, P (0) ≼ vw+2mr+1Q. Let ν ∈ Q, ν > w, and j ∈ {1, . . . , r}. Then 0 <

v(vν) ∈ v(ĥ−H) by Corollary 3.3.15, so ϕj is γ-repulsive for γ = v(vν), hence ϕj
and ϕj − (vν)† are alike by Corollary 4.5.5. Likewise, 0 < v(vνmr+1) ∈ v(ĥ−H)

since ĥ is special over H, so ϕj and ϕj − (vνmr+1)† are alike. Thus ϕj − (vν)†

and ϕj − (vνmr+1)† are alike as well. Hence Corollary 6.5.17 gives y ≺ vw in C<∞

with P (y) = 0 and y ∈ m (Cr)≼. For the rest use the remark following that
corollary. □

Corollary 6.5.19. Suppose n = 1, and let m ∈ H× be such that vm ∈ v(ĥ −H).
Then there are h ∈ H and y ∈ C<∞ such that:

ĥ− h ≼ m, P (y) = 0, y ≺ 1, y ∈ (Cr)≼, y − h ∈ m (Cr)≼.

If H ⊆ C∞, then we have such y ∈ C∞; likewise with Cω in place of C∞.

Proof. Suppose first that m ≽ 1, and let h := 0 and y be as in Lemma 6.4.6
for ϕ = n = 1. Then y ≺ 1, y ∈ (Cr)≼, so ym ≺ 1, y/m ≺ 1, y/m ∈ (Cr)≼ by the
Product Rule. Next assume m ≺ 1 and set v := |v(LP )| ∈ H>. By Corollary 3.3.15

we can take h ∈ H such that ĥ − h ≺ (vm)(w+3)(r+1), and then by Lemma 3.2.37
we have

P+h(0) = P (h) ≺ (vm)w+3P ≼ vw+3mr+1P+h.

By Lemma 4.5.35, (P+h, 1, ĥ − h) is strongly repulsive-normal, and by Corol-
lary 3.3.8 it is deep with v(LP+h

) ≍∆(v) v. Hence Lemma 6.5.18 applies to the

slot (P+h, 1, ĥ− h) in place of (P, 1, ĥ) to yield a z ∈ C<∞ with P+h(z) = 0
and (z/m)(j) ≼ 1 for j = 0, . . . , r. Lemma 6.4.1 gives z(j) ≺ 1 for j = 0, . . . , r.
Set y := h+ z; then P (y) = 0, y(j) ≺ 1 and

(
(y− h)/m

)
(j) ≼ 1 for j = 0, . . . , r. □

We now use the results above to approximate zeros of P in C<∞ by elements of H:

Corollary 6.5.20. Suppose H is Liouville closed, I(K) ⊆ K†, n = 1, and our

slot (P, 1, ĥ) in H is ultimate. Assume also that K is 1-linearly surjective if r ⩾ 3.

Let y ∈ C<∞ and h ∈ H, m ∈ H× be such that P (y) = 0, y ≺ 1, and ĥ − h ≼ m.
Then

y − h ∈ m (Cr)≼.
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Proof. Corollary 6.5.19 gives h1 ∈ H, z ∈ C<∞ with ĥ− h1 ≼ m, P (z) = 0, z ≺ 1,
and

(
(z − h1)/m

)
(j) ≼ 1 for j = 0, . . . , r. Now

y − h

m
=

y − z

m
+
z − h1
m

+
h1 − h

m

with
(
(y − z)/m

)
(j) ≼ 1 for j = 0, . . . , r by Corollary 6.5.15. Also (h1 − h)/m ∈ H

and (h1 − h)/m ≼ 1, so
(
(h1 − h)/m

)
(j) ≼ 1 for all j ∈ N. □

The above corollary is the only part of this section used towards establishing our
main result, Theorem 6.7.22. But this use, in proving Theorem 6.7.13, is essential,
and obtaining Corollary 6.5.20 required much of the above section.

6.6. Asymptotic Similarity

Let H be a Hausdorff field and Ĥ an immediate valued field extension of H.
Equip Ĥ with the unique field ordering making it an ordered field extension of H

such that OĤ is convex [ADH, 3.5.12]. Let f ∈ C and f̂ ∈ Ĥ be given.

Definition 6.6.1. Call f asymptotically similar to f̂ overH (notation: f ∼H f̂)

if f ∼ ϕ in C and ϕ ∼ f̂ in Ĥ for some ϕ ∈ H. (Note that then f ∈ C× and f̂ ̸= 0.)

Recall that the binary relations ∼ on C× and ∼ on Ĥ× are equivalence relations

which restrict to the same equivalence relation onH×. As a consequence, if f ∼H f̂ ,

then f ∼ ϕ in C for any ϕ ∈ H with ϕ ∼ f̂ in Ĥ, and ϕ ∼ f̂ in Ĥ for any ϕ ∈ H

with f ∼ ϕ in C. Moreover, if f ∈ H, then f ∼H f̂ ⇔ f ∼ f̂ in Ĥ, and if f̂ ∈ H,

then f ∼H f̂ ⇔ f ∼ f̂ in C.

Lemma 6.6.2. Let f1 ∈ C, f1 ∼ f , let f̂1 ∈ Ĥ1 for an immediate valued field

extension Ĥ1 of H, and suppose f̂ ∼ θ in Ĥ and f̂1 ∼ θ in Ĥ1 for some θ ∈ H.

Then: f ∼H f̂ ⇔ f1 ∼H f̂1.

For n ∈ H× we have f ∼H f̂ ⇔ nf ∼H nf̂ . Moreover, by Lemma 5.1.1:

Lemma 6.6.3. Let g ∈ C, ĝ ∈ Ĥ, and suppose f ∼H f̂ and g ∼H ĝ. Then

1/f ∼H 1/f̂ and fg ∼H f̂ ĝ. Moreover,

f ≼ g in C ⇐⇒ f̂ ≼ ĝ in Ĥ,

and likewise with ≺, ≍, or ∼ in place of ≼.

Lemma 6.6.3 readily yields:

Corollary 6.6.4. Suppose f̂ is transcendental over H and Q(f) ∼H Q(f̂) for
all Q ∈ H[Y ] ̸=. Then we have:

(i) a subfield H(f) ⊇ H of C generated by f over H;

(ii) a field isomorphism ι : H(f) → H(f̂) over H with ι(f) = f̂ ;
(iii) with H(f) and ι as in (i) and (ii) we have g ∼H ι(g) for all g ∈ H(f)×,

hence for all g1, g2 ∈ H(f): g1 ≼ g2 in C ⇔ ι(g1) ≼ ι(g2) in Ĥ.

Also, ι in (ii) is unique and is an ordered field isomorphism, where the ordering
on H(f) is its ordering as a Hausdorff field.

Proof. To see that ι is order preserving, use that ι is a valued field isomorphism
by (iii), and apply [ADH, 3.5.12]. □
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Here is the analogue when f̂ algebraic over H:

Corollary 6.6.5. Suppose f̂ is algebraic over H with minimum polynomial P

over H of degree d, and P (f) = 0, Q(f) ∼H Q(f̂) for all Q ∈ H[Y ]̸= of degree < d.
Then we have:

(i) a subfield H[f ] ⊇ H of C generated by f over H;

(ii) a field isomorphism ι : H[f ] → H[f̂ ] over H with ι(f) = f̂ ;
(iii) with H[f ] and ι as in (i) and (ii) we have g ∼H ι(g) for all g ∈ H[f ]×,

hence for all g1, g2 ∈ H[f ]: g1 ≼ g2 in C ⇔ ι(g1) ≼ ι(g2) in Ĥ.

Also, H[f ] and ι in (i) and (ii) are unique and ι is an ordered field isomorphism,
where the ordering on H(f) is its ordering as a Hausdorff field.

If f̂ /∈ H, then to show that f − ϕ ∼H f̂ − ϕ for all ϕ ∈ H it is enough to do this

for ϕ arbitrarily close to f̂ :

Lemma 6.6.6. Let ϕ0 ∈ H be such that f − ϕ0 ∼H f̂ − ϕ0. Then f − ϕ ∼H f̂ − ϕ

for all ϕ ∈ H with f̂ − ϕ0 ≺ f̂ − ϕ.

Proof. Let ϕ ∈ H with f̂ − ϕ0 ≺ f̂ − ϕ. Then ϕ0 − ϕ ≻ f̂ − ϕ0, so f̂ − ϕ =

(f̂ − ϕ0) + (ϕ0 − ϕ) ∼ ϕ0 − ϕ. By Lemma 6.6.3 we also have ϕ0 − ϕ ≻ f − ϕ0, and
hence likewise f − ϕ ∼ ϕ0 − ϕ. □

We define: f ≈H f̂ :⇔ f − ϕ ∼H f̂ − ϕ for all ϕ ∈ H. If f ≈H f̂ , then f ∼H f̂ as

well as f, f̂ /∈ H, and nf ≈H nf̂ for all n ∈ H×. Hence f ≈H f̂ iff f, f̂ /∈ H and the

isomorphism ι : H + Hf → H + Hf̂ of H-linear spaces that is the identity on H

and sends f to f̂ satisfies g ∼H ι(g) for all nonzero g ∈ H +Hf .

Here is an easy consequence of Lemma 6.6.6:

Corollary 6.6.7. Suppose f̂ /∈ H and f − ϕ0 ∼H f̂ − ϕ0 for all ϕ0 ∈ H such

that ϕ0 ∼ f̂ . Then f ≈H f̂ .

Proof. Take ϕ0 ∈ H with ϕ0 ∼ f̂ , and let ϕ ∈ H be given. If f̂ − ϕ ≺ f̂ ,

then f − ϕ ∼H f̂ − ϕ by hypothesis; otherwise we have f̂ − ϕ ≽ f̂ ≻ f̂ − ϕ0, and

then f − ϕ ∼H f̂ − ϕ by Lemma 6.6.6. □

Lemma 6.6.2 yields an analogue for ≈H :

Lemma 6.6.8. Let f1 ∈ C be such that f1−ϕ ∼ f−ϕ for all ϕ ∈ H, and let f̂1 be an

element of an immediate valued field extension of H such that v(f̂ −ϕ) = v(f̂1−ϕ)
for all ϕ ∈ H. Then f ≈H f̂ iff f1 ≈H f̂1.

Let g ∈ C be eventually strictly increasing with g(t) → +∞ as t → +∞; we
then have the Hausdorff field H ◦ g = {h ◦ g : h ∈ H}, with ordered valued field
isomorphism h 7→ h ◦ g : H → H ◦ g. (See Section 5.1.) Suppose

ĥ 7→ ĥ ◦ g : Ĥ → Ĥ ◦ g

extends this isomorphism to a valued field isomorphism, where Ĥ◦g is an immediate
valued field extension of the Hausdorff field H ◦ g. Then

f ∼H f̂ ⇐⇒ f ◦ g ∼H◦g f̂ ◦ g, f ≈H f̂ ⇐⇒ f ◦ g ≈H◦g f̂ ◦ g.
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The complex version. We now assume in addition that H is real closed, with
algebraic closure K := H[i] ⊆ C[i]. We take i with i2 = −1 also as an element of a

field K̂ := Ĥ[i] extending both Ĥ and K, and equip K̂ with the unique valuation

ring of K̂ lying over OĤ ; see the remarks following Lemma 4.1.2. Then K̂ is an

immediate valued field extension of K. Let f ∈ C[i] and f̂ ∈ K̂ below.

Call f asymptotically similar to f̂ over K (notation: f ∼K f̂) if for some ϕ ∈ K

we have f ∼ ϕ in C[i] and ϕ ∼ f̂ in K̂. Then f ∈ C[i]× and f̂ ̸= 0. As before,

if f ∼K f̂ , then f ∼ ϕ in C[i] for any ϕ ∈ K for which ϕ ∼ f̂ in K̂, and ϕ ∼ f̂ in K̂

for any ϕ ∈ K for which f ∼ ϕ in C[i]. Moreover, if f ∈ K, then f ∼K f̂ reduces

to f ∼ f̂ in K̂×. Likewise, if f̂ ∈ K, then f ∼K f̂ reduces to f ∼ f̂ in C[i]×.

Lemma 6.6.9. Let f1 ∈ C[i] with f1 ∼ f . Let Ĥ1 be an immediate valued field ex-

tension of H, let K̂1 := Ĥ1[i] be the corresponding immediate valued field extension

of K obtained from Ĥ1 as K̂ was obtained from Ĥ. Let f̂1 ∈ K̂1, and θ ∈ K be

such that f̂ ∼ θ in K̂ and f̂1 ∼ θ in K̂1. Then f ∼K f̂ iff f1 ∼K f̂1.

For n ∈ K× we have f ∼K f̂ ⇔ nf ∼K nf̂ , and f ∼K f̂ ⇔ f ∼K f̂ (complex
conjugation). Here is a useful observation relating ∼K and ∼H :

Lemma 6.6.10. Suppose f ∼K f̂ and Re f̂ ≽ Im f̂ ; then

Re f ≽ Im f, Re f ∼H Re f̂ .

Proof. Let ϕ ∈ K be such that f ∼ ϕ in C[i] and ϕ ∼ f̂ in K̂. The latter

yields Reϕ ≽ Imϕ in H and Reϕ ∼ Re f̂ in Ĥ. Using that f = (1+ ε)ϕ with ε ≺ 1
in C[i] it follows easily that Re f ≽ Im f and Re f ∼ Reϕ in C. □

Corollary 6.6.11. Suppose f ∈ C and f̂ ∈ Ĥ. Then f ∼H f̂ iff f ∼K f̂ .

Lemmas 6.6.3 and 6.6.6 go through with C[i], K, K̂, and ∼K in place of C, H, Ĥ,

and ∼H . We define: f ≈K f̂ :⇔ f −ϕ ∼K f̂ −ϕ for all ϕ ∈ K. Now Corollary 6.6.7
goes through with K, ∼K , ≈K in place of H, ∼H , ≈H .

Lemma 6.6.12. Suppose f ∈ C, f̂ ∈ Ĥ, and f ∼H f̂ . Then f + gi ∼K f̂ + gi for
all g ∈ H.

Proof. Let g ∈ H, and take ϕ ∈ H with f ∼ ϕ in C and ϕ ∼ f̂ in Ĥ. Suppose first
that g ≺ ϕ. Then gi ≺ ϕ, and together with f −ϕ ≺ ϕ this yields (f + gi)− ϕ ≺ ϕ,
that is, f + gi ∼ ϕ in C[i] (cf. the basic properties of the relation ≺ on C[i] stated
before Lemma 5.1.1). Using likewise the analogous properties of ≺ on K̂ we ob-

tain ϕ ∼ f̂ + gi in K̂. If ϕ ≺ g, then f ≼ ϕ ≺ gi and thus f + gi ∼ gi

in C[i], and likewise f̂ + gi ∼ gi in K̂. Finally, suppose g ≍ ϕ. Take c ∈ R×

and ε ∈ H with g = cϕ(1 + ε) and ε ≺ 1. We have f = ϕ(1 + δ) where δ ∈ C,
δ ≺ 1, so f + gi = ϕ(1 + ci)(1 + ρ) where ρ = (1 + ci)−1(δ + ciε) ≺ 1 in C[i],
so f + gi ∼ ϕ(1 + ci) in C[i]. Likewise, f̂ + gi ∼ ϕ(1 + ci) in K̂. □

Corollary 6.6.13. Suppose f ∈ C and f̂ ∈ Ĥ. Then f ≈H f̂ iff f ≈K f̂ .

Proof. If f ≈K f̂ , then for all ϕ ∈ H we have f −ϕ ∼K f̂ −ϕ, so f −ϕ ∼H f̂ −ϕ by

Corollary 6.6.11, hence f ≈H f̂ . Conversely, suppose f ≈H f̂ . Then for all ϕ ∈ K

we have f − Reϕ ∼H f̂ − Reϕ, so f − ϕ ∼K f̂ − ϕ by Lemma 6.6.12. □
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Next we exploit that K is algebraically closed:

Lemma 6.6.14. f ≈K f̂ =⇒ Q(f) ∼K Q(f̂) for all Q ∈ K[Y ]̸=.

Proof. Factor Q ∈ K[Y ]̸= as

Q = a(Y − ϕ1) · · · (Y − ϕn), a ∈ K×, ϕ1, . . . , ϕn ∈ K

and use f−ϕj ∼K f̂−ϕj (j = 1, . . . , n) and the complex version of Lemma 6.6.3. □

This yields a more useful “complex” version of Corollary 6.6.4:

Corollary 6.6.15. Suppose f ≈K f̂ . Then f̂ is transcendental over K, and:

(i) f generates over K a subfield K(f) of C[i];
(ii) we have a field isomorphism ι : K(f) → K(f̂) over K with ι(f) = f̂ ;
(iii) g ∼K ι(g) for all g ∈ K(f)×, hence for all g1, g2 ∈ K(f):

g1 ≼ g2 in C[i] ⇐⇒ ι(g1) ≼ ι(g2) in K̂.

(Thus the restriction of the binary relation ≼ on C[i] to K(f) is a dominance
relation on the field K(f) in the sense of [ADH, 3.1.1].)

In the next lemma f = g + hi, g, h ∈ C, and f̂ = ĝ + ĥi, ĝ, ĥ ∈ Ĥ. Recall from

Lemma 4.1.3 that if f̂ /∈ K, then v(ĝ −H) ⊆ v(ĥ−H) or v(ĥ−H) ⊆ v(ĝ −H).

Lemma 6.6.16. Suppose f ≈K f̂ and v(ĝ −H) ⊆ v(ĥ−H). Then g ≈H ĝ.

Proof. Let ρ ∈ H be such that ρ ∼ ĝ; by Corollary 6.6.7 it is enough to show that

then g − ρ ∼H ĝ − ρ. Take σ ∈ H with ĝ − ρ ≽ ĥ − σ, and set ϕ := ρ + σi ∈ K.
Then

Re(f − ϕ) = g − ρ and Re(f̂ − ϕ) = ĝ − ρ ≽ ĥ− σ = Im(f̂ − ϕ),

and so by f − ϕ ∼H f̂ − ϕ and Lemma 6.6.10 we have g − ρ ∼H ĝ − ρ. □

Corollary 6.6.17. If f ≈K f̂ , then Re f ≈H Re f̂ or Im f ≈H Im f̂ .

Let g ∈ C be eventually strictly increasing with g(t) → +∞ as t → +∞; we then
have the subfield K ◦ g = (H ◦ g)[i] of C[i]. Suppose the valued field isomorphism

h 7→ h ◦ g : H → H ◦ g

is extended to a valued field isomorphism

ĥ 7→ ĥ ◦ g : Ĥ → Ĥ ◦ g,

where Ĥ ◦ g is an immediate valued field extension of the Hausdorff field H ◦ g. In
the same way we took a common valued field extension K̂ = Ĥ[i] of Ĥ and K =

H[i] we now take a common valued field extension K̂ ◦ g = (Ĥ ◦ g)[i] of Ĥ ◦ g
and K ◦ g = (H ◦ g)[i]. This makes K̂ ◦ g an immediate extension of K ◦ g, and we

have a unique valued field isomorphism y 7→ y ◦ g : K̂ → K̂ ◦ g extending the above

map ĥ 7→ ĥ ◦ g : Ĥ → Ĥ ◦ g and sending i ∈ K̂ to i ∈ K̂ ◦ g. This map K̂ → K̂ ◦ g
also extends f 7→ f ◦ g : K → K ◦ g and is the identity on C. See the commutative
diagram below, where the labeled arrows are valued field isomorphisms and all
unlabeled arrows are natural inclusions.
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Ĥ ◦ g //
==

ĥ7→ĥ◦g

{{
{{
{{
{{
{ OO

K̂ ◦ gOO==
y 7→y◦g

{{
{{
{{
{{
{

Ĥ //
OO K̂OO

H ◦ g //
<<

h7→h◦g
yy
yy
yy
yy

K ◦ g<<

f 7→f◦g
yy
yy
yy
yy

H // K

Now we have

f ∼K f̂ ⇐⇒ f ◦ g ∼K◦g f̂ ◦ g, f ≈K f̂ ⇐⇒ f ◦ g ≈K◦g f̂ ◦ g.

At various places in the next section we use this for a Hardy fieldH and active ϕ > 0

in H, with g = ℓinv, ℓ ∈ C1, ℓ′ = ϕ. In that situation, H◦ := H ◦ g, Ĥ◦ := Ĥ ◦ g,
and h◦ := h ◦ g, ĥ◦ := ĥ ◦ g for h ∈ H and ĥ ∈ Ĥ, and likewise with K and K̂ and

their elements instead of H and Ĥ.

6.7. Differentially Algebraic Hardy Field Extensions

In this section we are finally able to generate under reasonable conditions Hardy
field extensions by solutions in C<∞ of algebraic differential equations, culminating
in the proof of our main theorem. We begin with a generality about enlarging
differential fields within an ambient differential ring. Here, a differential subfield of
a differential ring E is a differential subring of E whose underlying ring is a field.

Lemma 6.7.1. Let K be a differential field with irreducible P ∈ K{Y } ̸= of or-
der r ⩾ 1, and E a differential ring extension of K with y ∈ E such that P (y) = 0
and Q(y) ∈ E× for all Q ∈ K{Y }̸= of order < r. Then y generates over K a
differential subfield K⟨y⟩ ⊇ K of E. Moreover, y has P as a minimal annihilator
over K and K⟨y⟩ equals{
A(y)

B(y)
: A,B ∈ K{Y }, orderA ⩽ r, degY (r) A < degY (r) P, B ̸= 0, orderB < r

}
.

Proof. Let p ∈ K[Y0, . . . , Yr] with distinct indeterminates Y0, . . . , Yr be such that
P (Y ) = p(Y, Y ′, . . . , Y (r)). The K-algebra morphism K[Y0, . . . , Yr] → E sending Yi
to y(i) for i = 0, . . . , r extends to a K-algebra morphism K(Y0, . . . , Yr−1)[Yr] → E
with p in its kernel, and so induces a K-algebra morphism

ι : K(Y0, . . . , Yr−1)[Yr]/(p) → E, (p) := pK(Y0, . . . , Yr−1)[Yr].

Now p as an element of K(Y0, . . . , Yr−1)[Yr] remains irreducible [122, Chapter IV,
§2]. Thus K(Y0, . . . , Yr−1)[Yr]/(p) is a field, so ι is injective, and it is routine to
check that the image of ι is K⟨y⟩ as described; see also [ADH, 4.1.6]. □

In passing we also note the obvious d-transcendental version of this lemma:

Lemma 6.7.2. Let K be a differential field and E be a differential ring extension
of K with y ∈ E such that Q(y) ∈ E× for all Q ∈ K{Y }̸=. Then y generates
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over K a differential subfield K⟨y⟩ of E. Moreover, y is d-transcendental over K
and

K⟨y⟩ =

{
P (y)

Q(y)
: P,Q ∈ K{Y }, Q ̸= 0

}
.

We now apply the material above to generate Hardy field extensions.

Application to Hardy fields. In the rest of this section H is a real closed Hardy

field, H ⊇ R, and Ĥ is an immediate H-field extension of H. Let f ∈ C<∞

and f̂ ∈ Ĥ. Note that if Q ∈ H{Y } and Q(f) ∼H Q(f̂), then Q(f) ∈ C×. Hence
by Lemma 6.7.1 with E = C<∞, K = H, we have:

Lemma 6.7.3. Suppose f̂ is d-algebraic over H with minimal annihilator P over H

of order r ⩾ 1, and P (f) = 0 and Q(f) ∼H Q(f̂) for all Q ∈ H{Y } \ H with
orderQ < r. Then f /∈ H and:

(i) f is hardian over H;

(ii) we have a (necessarily unique) isomorphism ι : H⟨f⟩ → H⟨f̂⟩ of differential
fields over H such that ι(f) = f̂ .

With an extra assumption ι in Lemma 6.7.3 is an isomorphism of H-fields:

Corollary 6.7.4. Let f̂ , f , P , r, ι be as in Lemma 6.7.3, and suppose also

that Q(f) ∼H Q(f̂) for all Q ∈ H{Y } with orderQ = r and degY (r) Q < degY (r) P .
Then g ∼H ι(g) for all g ∈ H⟨f⟩×, hence for g1, g2 ∈ H⟨f⟩ we have

g1 ≼ g2 in C ⇐⇒ ι(g1) ≼ ι(g2) in Ĥ.

Moreover, ι is an isomorphism of H-fields.

Proof. Most of this follows from Lemmas 6.6.3 and 6.7.3 and the description ofH⟨f⟩
in Lemma 6.7.1. For the last statement, use [ADH, 10.5.8]. □

Here is a d-transcendental version of Lemma 6.7.3:

Lemma 6.7.5. Suppose Q(f) ∼H Q(f̂) for all Q ∈ H{Y } \H. Then:

(i) f is hardian over H;

(ii) we have a (necessarily unique) isomorphism ι : H⟨f⟩ → H⟨f̂⟩ of differential
fields over H with ι(f) = f̂ ; and

(iii) g ∼H ι(g) for all g ∈ H⟨f⟩×, hence for all g1, g2 ∈ H⟨f⟩:

g1 ≼ g2 in C ⇐⇒ ι(g1) ≼ ι(g2) in Ĥ.

Moreover, ι is an isomorphism of H-fields.

This follows easily from Lemma 6.7.2.

Analogues for K = H[i]. We have the d-valued extension K := H[i] ⊆ C<∞[i]

of H. As before we arrange that K̂ = Ĥ[i] is a d-valued extension of Ĥ as well as

an an immediate extension of K. Let f ∈ C<∞[i] and f̂ ∈ K̂. We now have the
obvious “complex” analogues of Lemma 6.7.3 and Corollary 6.7.4:

Lemma 6.7.6. Suppose f̂ is d-algebraic over K with minimal annihilator P over K

of order r ⩾ 1, and P (f) = 0 and Q(f) ∼K Q(f̂) for all Q ∈ K{Y } \ K
with orderQ < r. Then

(i) f generates over K a differential subfield K⟨f⟩ of C<∞[i];
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(ii) we have a (necessarily unique) isomorphism ι : K⟨f⟩ → K⟨f̂⟩ of differential
fields over K such that ι(f) = f̂ .

Corollary 6.7.7. Let f̂ , f , P , r, ι be as in Lemma 6.7.6, and suppose also

that Q(f) ∼K Q(f̂) for all Q ∈ K{Y } with orderQ = r and degY (r) Q < degY (r) P .
Then g ∼K ι(g) for all g ∈ K⟨f⟩×, so for all g1, g2 ∈ K⟨f⟩ we have:

g1 ≼ g2 in C[i] ⇐⇒ ι(g1) ≼ ι(g2) in K̂.

Thus the relation ≼ on C[i] restricts to a dominance relation on the field K⟨f⟩.

From K being algebraically closed we obtain a useful variant of Corollary 6.7.7:

Corollary 6.7.8. Suppose f ≈K f̂ , and P ∈ K{Y } is irreducible with

orderP = degY ′ P = 1, P (f) = 0 in C<∞[i], P (f̂) = 0 in K̂.

Then P is a minimal annihilator of f̂ over K, f generates over K a differential

subfield K⟨f⟩ = K(f) of C<∞[i], and we have an isomorphism ι : K⟨f⟩ → K⟨f̂⟩
of differential fields over K such that ι(f) = f̂ and g ∼K ι(g) for all g ∈ K⟨f⟩×.
Thus for all g1, g2 ∈ K⟨f⟩: g1 ≼ g2 in C[i] ⇐⇒ ι(g1) ≼ ι(g2) in K̂.

Proof. By Corollary 6.6.15, f̂ is transcendental over K, so P is a minimal annihi-

lator of f̂ over K by [ADH, 4.1.6]. Now use Lemma 6.7.1 and Corollary 6.6.15. □

This corollary leaves open whether Re f or Im f is hardian over H. This issue is
critical for us and we treat a special case in Proposition 6.7.18 below. The example
following Corollary 5.4.24 shows that that there is a differential subfield of C<∞[i]
such that the binary relation ≼ on C[i] restricts to a dominance relation on it, but
which is not contained in F [i] for any Hardy field F .

Sufficient conditions for asymptotic similarity. Let ĥ be an element of our

immediate H-field extension Ĥ of H. Note that in the next variant of [ADH, 11.4.3]
we use ddeg instead of ndeg.

Lemma 6.7.9. Let Q ∈ H{Y } ̸=, r := orderQ, h ∈ H, and v ∈ H× be such

that ĥ− h ≺ v and ddeg≺vQ+h = 0, and assume y ∈ C<∞ and m ∈ H× satisfies

y − h ≼ m ≺ v,

(
y − h

m

)′

, . . . ,

(
y − h

m

)(r)

≼ 1.

Then Q(y) ∼ Q(h) in C<∞ and Q(h) ∼ Q(ĥ) in Ĥ; in particular, Q(y) ∼H Q(ĥ).

Proof. We have y = h+mu with u = y−h
m ∈ C<∞ and u, u′, . . . , u(r) ≼ 1. Now

Q+h,×m = Q(h) +R with R ∈ H{Y }, R(0) = 0,

which in view of ddegQ+h,×m = 0 gives R ≺ Q(h). Thus

Q(y) = Q+h,×m(u) = Q(h) +R(u), R(u) ≼ R ≺ Q(h),

so Q(y) ∼ Q(h) in C<∞. Increasing |m| if necessary we arrange ĥ − h ≼ m, and

then a similar computation with ĥ instead of y gives Q(h) ∼ Q(ĥ) in Ĥ. □

In the remainder of this subsection we assume that H is ungrounded and H ̸= R.
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Corollary 6.7.10. Suppose ĥ is d-algebraic over H with minimal annihilator P
over H of order r ⩾ 1, and let y ∈ C<∞ satisfy P (y) = 0. Suppose for all Q
in H{Y } \H of order < r there are h ∈ H, m, v ∈ H×, and an active ϕ > 0 in H

such that ĥ− h ≼ m ≺ v, ddeg≺vQ
ϕ
+h = 0, and

δ
j

(
y − h

m

)
≼ 1 for j = 0, . . . , r − 1 and δ := ϕ−1

∂.

Then y /∈ H and y is hardian over H.

Proof. Let Q ∈ H{Y } \H have order < r, and take h, m, v, ϕ as in the statement

of the corollary. By Lemma 6.7.3 it is enough to show that then Q(y) ∼H Q(ĥ).
We use ( )◦ as explained at the beginning of Section 6.4. Thus we have the Hardy
field H◦ and the H-field isomorphism h 7→ h◦ : Hϕ → H◦, extended to an H-field

isomorphism f̂ 7→ f̂◦ : Ĥϕ → Ĥ◦, for an immediate H-field extension Ĥ◦ of H◦.

Set u := (y − h)/m ∈ C<∞. We have ddeg≺v◦ Q
ϕ◦
+h◦ = 0 and (u◦)(j) ≼ 1 for j =

0, . . . , r − 1; hence Qϕ◦(y◦) ∼H◦ Qϕ◦(ĥ◦) by Lemma 6.7.9. Now Qϕ◦(y◦) = Q(y)◦

in C<∞ and Qϕ◦(ĥ◦) = Q(ĥ)◦ in Ĥ◦, hence Q(y) ∼H Q(ĥ). □

Using Corollary 6.7.4 instead of Lemma 6.7.3 we show likewise:

Corollary 6.7.11. Suppose ĥ is d-algebraic over H with minimal annihilator P
over H of order r ⩾ 1, and let y ∈ C<∞ satisfy P (y) = 0. Suppose for all Q
in H{Y } \H with orderQ ⩽ r and degY (r) Q < degY (r) P there are h ∈ H, m, v ∈
H×, and an active ϕ > 0 in H such that ĥ− h ≼ m ≺ v, ddeg≺vQ

ϕ
+h = 0, and

δ
j

(
y − h

m

)
≼ 1 for j = 0, . . . , r and δ := ϕ−1

∂.

Then y is hardian over H and there is an isomorphism H⟨y⟩ → H⟨ĥ⟩ of H-fields

over H sending y to ĥ.

In the next subsection we use Corollary 6.7.11 to fill in certain kinds of holes in

Hardy fields. Recall from [ADH, remark after 11.4.3] that if ĥ /∈ H and Z(H, ĥ) = ∅,
then ĥ is d-transcendental over H. The next result is a version of Corollary 6.7.11
for that situation. (This will not be used until Section 7.5 below.)

Corollary 6.7.12. Suppose ĥ /∈ H and Z(H, ĥ) = ∅. Let y ∈ C<∞ be such that for

all h ∈ H, m ∈ H× with ĥ− h ≼ m and all n there is an active ϕ0 in H such that
for all active ϕ > 0 in H with ϕ ≼ ϕ0 we have δ

n
(
y−h
m

)
≼ 1 for δ = ϕ−1

∂. Then y

is hardian over H, and there is an isomorphism H⟨y⟩ → H⟨ĥ⟩ of H-fields over H

sending y to ĥ.

Proof. Let Q ∈ H{Y }\H; by Lemma 6.7.5 it is enough to show that Q(y) ∼H Q(ĥ).

Since Q /∈ Z(H, ĥ), we obtain h ∈ H and m, v ∈ H× such that ĥ − h ≼ m ≺ v
and ndeg≺vQ+h = 0. Let r := orderQ and choose an active ϕ > 0 in H such

that ddeg≺vQ
ϕ
+h = 0 and δ

n
(
y−h
m

)
≼ 1 for δ = ϕ−1

∂ and n = 0, . . . , r. As in the

proof of Corollary 6.7.10 this yields Q(y) ∼H Q(ĥ). □
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Generating immediate d-algebraic Hardy field extensions. In this subsec-

tion H is Liouville closed, (P, n, ĥ) is a special Z-minimal slot in H of order r ⩾ 1,
K := H[i] ⊆ C<∞[i], I(K) ⊆ K†, and K is 1-linearly surjective if r ⩾ 3. We first

treat the case where (P, n, ĥ) is a hole in H (not just a slot):

Theorem 6.7.13. Assume (P, n, ĥ) is a deep, ultimate, and strongly repulsive-
normal hole in H, and y ∈ C<∞, P (y) = 0, y ≺ n. Then y is hardian over H, and

there is an isomorphism H⟨y⟩ → H⟨ĥ⟩ of H-fields over H sending y to ĥ.

Proof. Replacing (P, n, ĥ), y by (P×n, 1, ĥ/n), y/n we arrange n = 1. Let Q

in H{Y } \H, orderQ ⩽ r, and degY (r) Q < degY (r) P . Then Q /∈ Z(H, ĥ), so we

have h ∈ H and v ∈ H× such that h−ĥ ≺ v and ndeg≺vQ+h = 0. Take anym ∈ H×

with ĥ−h ≼ m ≺ v. Take w ∈ H× with m ≺ w ≺ v. Then ndegQ+h,×w = 0, so we

have active ϕ in H, 0 < ϕ ≺ 1, with ddegQϕ+h,×w = 0, and hence ddeg≺wQ
ϕ
+h = 0.

Thus renaming w as v we have arranged ddeg≺vQ
ϕ
+h = 0.

Set δ := ϕ−1
∂; by Corollary 6.7.11 it is enough to show that δ

j
(
y−h
m

)
≼ 1

for j = 0, . . . , r. Now using ( )◦ as before, the hole (Pϕ◦, 1, ĥ◦) in H◦ is special, Z-
minimal, deep, ultimate, and strongly repulsive-normal, by Lemmas 6.4.3 and 6.4.4.
It remains to apply Corollary 6.5.20 to this hole in H◦ with h◦, m◦, y◦ in place
of h, m, y. □

Corollary 6.7.14. Let ϕ be active in H, 0 < ϕ ≼ 1, and suppose the slot (Pϕ, n, ĥ)
in Hϕ is deep, ultimate, and strongly split-normal. Then P (y) = 0 and y ≺ n

for some y ∈ C<∞. If (Pϕ, n, ĥ) is strongly repulsive-normal, then any such y is
hardian over H with y /∈ H.

Proof. Lemma 6.4.6 gives y ∈ C<∞ with P (y) = 0, y ≺ n. Now suppose (Pϕ, n, ĥ)
is strongly repulsive-normal, and y ∈ C<∞, P (y) = 0, y ≺ n. Using Lemma 3.2.14

we arrange that (P, n, ĥ) is a hole in H. The hole (Pϕ◦, n◦, ĥ◦) in H◦ is special,
Z-minimal, deep, ultimate, and strongly repulsive-normal. Then Theorem 6.7.13

withH◦, (Pϕ◦, n◦, ĥ◦), y◦ in place ofH, (P, n, ĥ), y shows that y◦ is hardian overH◦

with y◦ /∈ H◦. Hence y is hardian over H and y /∈ H. □

Achieving 1-linear newtonianity. For the proof of our main theorem we need
to show first that for any d-maximal Hardy field H the corresponding K = H[i] is
1-linearly newtonian, the latter being a key hypothesis in Lemma 6.7.21 below. In
this subsection we take this vital step: Corollary 6.7.20.

Lemma 6.7.15. Every d-maximal Hardy field is 1-newtonian.

Proof. Let H be a d-maximal Hardy field. Then H satisfies the conditions at the
beginning of the previous subsection, by Corollary 5.5.19 and Theorem 5.6.2, for

any special Z-minimal slot (P, n, ĥ) in H of order 1. By Corollary 1.8.29, H is
1-linearly newtonian. Towards a contradiction assume that H is not 1-newtonian.

Then Lemma 3.2.1 yields a minimal hole (P, n, ĥ) in H of order r = 1. Using

Lemma 3.2.26 we replace (P, n, ĥ) by a refinement to arrange that (P, n, ĥ) is quasi-

linear. Then (P, n, ĥ) is special, by Lemma 3.2.36. Using Corollary 4.5.42 we

further refine (P, n, ĥ) to arrange that (Pϕ, n, ĥ) is eventually deep, ultimate, and
strongly repulsive-normal. Now Corollary 6.7.14 gives a proper d-algebraic Hardy
field extension of H, contradicting d-maximality of H. □
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In the rest of this subsection H has asymptotic integration. We have the d-valued

extension K := H[i] ⊆ C<∞[i] of H and as before we arrange that K̂ = Ĥ[i] is a

d-valued extension of Ĥ as well as an immediate d-valued extension of K.

Lemma 6.7.16. Suppose H is Liouville closed and I(K) ⊆ K†. Let (P, n, f̂)

be an ultimate linear minimal hole in K of order r ⩾ 1, where f̂ ∈ K̂, such
that dimC kerU LP = r. Assume also that K is ω-free if r ⩾ 2. Let f ∈ C<∞[i] be

such that P (f) = 0, f ≺ n. Then f ≈K f̂ .

Proof. Replacing (P, n, f̂), f by (P×n, 1, f̂/n), f/n we arrange n = 1. Let θ ∈ K×

be such that θ ∼ f̂ ; we claim that f ∼ θ in C[i] (and so f ∼K f̂). Applying

Proposition 6.4.9 and Remark 6.4.11 to the linear minimal hole (P+θ, θ, f̂ −θ) in K
gives g ∈ C<∞[i] such that P+θ(g) = 0 and g ≺ θ. Then P (θ + g) = 0 and θ + g ≺ 1,
thus LP (y) = 0 and y ≺ 1 for y := f − (θ + g) ∈ C<∞[i]. Hence y ≺ θ by the
version of Lemma 5.10.13 for slots in K; see the remark following Corollary 5.10.16.
Therefore f − θ = y + g ≺ θ and so f ∼ θ, as claimed.

The refinement (P+θ, 1, f̂ − θ) of (P, 1, f̂) is ultimate thanks to the K-version of

Lemma 4.4.10, and LP+θ
= LP , so we can apply the claim to (P+θ, 1, f̂ −θ) instead

of (P, 1, f̂) and f − θ instead of f to give f − θ ∼K f̂ − θ. Since this holds for

all θ ∈ K with θ ∼ f̂ , the K-version of Corollary 6.6.7 then yields f ≈K f̂ . □

Corollary 6.7.17. Let (P, n, f̂) be a linear hole of order 1 in K. (We do not assume

here that f̂ ∈ K̂.) Then there is an embedding ι : K⟨f̂⟩ → C<∞[i] of differential

K-algebras such that ι(g) ∼K g for all g ∈ K⟨f̂⟩×.

Proof. Note that (P, n, f̂) is minimal. We first show how to arrange that H is

Liouville closed and ω-free with I(K) ⊆ K† and f̂ ∈ K̂. Let H1 be a maximal

Hardy field extension ofH. ThenH1 is Liouville closed and ω-free, with I(K1) ⊆ K†
1

for K1 := H1[i] ⊆ C<∞[i]. Let Ĥ1 be the newtonization of H1; then K̂1 := Ĥ1[i]

is newtonian [ADH, 14.5.7]. Corollary 3.2.29 gives an embedding K⟨f̂⟩ → K̂1 of

valued differential fields over K; let f̂1 be the image of f̂ under this embedding.

If f̂1 ∈ K1 ⊆ C<∞[i], then we are done, so assume f̂1 /∈ K1. Then (P, n, f̂1) is a

hole in K1, and we replace H, K, (P, n, f̂) by H1, K1, (P, n, f̂1), and K̂ by K̂1, to

arrange that H is Liouville closed and ω-free with I(K) ⊆ K† and f̂ ∈ K̂.

Replacing (P, n, f̂) by a refinement we also arrange that (P, n, f̂) is ultimate
and n ∈ H×, by Proposition 4.4.18 and Remark 4.4.19. Then Proposition 6.4.9

yield an f ∈ C<∞[i] with P (f) = 0, f ≺ n. Now Lemma 6.7.16 gives f ≈K f̂ , and
it remains to appeal to Corollary 6.7.8. □

Proposition 6.7.18. Suppose H is ω-free and 1-newtonian. Let (P, n, f̂) be a

linear hole in K of order 1 with f̂ ∈ K̂, and f ∈ C<∞[i], P (f) = 0, and f ≈K f̂ .
Then Re f or Im f generates a proper d-algebraic Hardy field extension of H.

Proof. Let ĝ := Re f̂ and ĥ := Im f̂ . By Lemma 4.1.3 we have v(ĝ−H) ⊆ v(ĥ−H)

or v(ĥ−H) ⊆ v(ĝ−H). Below we assume v(ĝ−H) ⊆ v(ĥ−H) (so ĝ ∈ Ĥ \H) and
show that then g := Re f generates a proper d-algebraic Hardy field extension of H.

(If v(ĥ−H) ⊆ v(ĝ−H) one shows likewise that Im f generates a proper d-algebraic

Hardy field extension of H.) The hole (P, n, f̂) in K is minimal, and by arrang-
ing n ∈ H× we see that ĝ is d-algebraic overH, by a remark preceding Lemma 4.3.7.
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Every element of Z(H, ĝ) has order ⩾ 2, by Corollary 3.2.16 and 1-newtonianity
of H. We arrange that the linear part A of P is monic, so A = ∂ − a with a ∈ K,

A(f̂) = −P (0) and A(f) = −P (0). Then Example 1.1.7 and Remark 1.1.9 ap-
plied to F = C<∞ yields Q ∈ H{Y } with 1 ⩽ orderQ ⩽ 2 and degQ = 1 such
that Q(ĝ) = 0 and Q(g) = 0. Hence orderQ = 2 and Q is a minimal annihilator
of ĝ over H.

Towards applying Corollary 6.7.10 to Q, ĝ, g in the role of P , ĥ, y there, let R
in H{Y } \H have order < 2. Then R /∈ Z(H, ĝ), so we have h ∈ H and v ∈ H×

such that ĝ − h ≺ v and ndeg≺vR+h = 0. Take any m ∈ H× with ĝ − h ≼ m ≺ v.
By Lemma 6.6.16 we have g ≈H ĝ and thus g − h ≼ m. After changing v as
in the proof of Theorem 6.7.13 we obtain an active ϕ in H, 0 < ϕ ≼ 1, such

that ddeg≺vR
ϕ
+h = 0. Set δ := ϕ−1

∂; by Corollary 6.7.10 it is now enough to show

that δ
(
(g − h)/m

)
≼ 1.

Towards this and using ( )◦ as before, we have f◦ ≈K◦ f̂◦, and g◦ ≈H◦ ĝ◦ by
the facts about composition in Section 6.6. Moreover, (g − h)◦ ≼ m◦, and H◦ is
ω-free and 1-newtonian, hence closed under integration by [ADH, 14.2.2]. We now

apply Corollary 6.7.8 with H◦, K◦, Pϕ◦, f◦, f̂◦ in the role of H, K, P , f , f̂ to give(
f◦/m◦)′ ≈K◦

(
f̂◦/m◦)′,

hence (g◦/m◦)′ ≈H◦ (ĝ◦/m◦)′ by Lemmas 4.1.4 and 6.6.16. Therefore,(
(g−h)◦/m◦)′ = (g◦/m◦)′−(h◦/m◦)′ ∼H (ĝ◦/m◦)′−(h◦/m◦)′ =

(
(ĝ−h)◦/m◦)′.

Now (ĝ − h)◦/m◦ ≼ 1, so
(
(ĝ − h)◦/m◦)′ ≺ 1, hence

(
(g − h)◦/m◦)′ ≺ 1 by the last

display, and thus δ
(
(g − h)/m

)
≺ 1, which is more than enough. □

If K has a linear hole of order 1, then K has a proper d-algebraic differential field
extension inside C<∞[i], by Corollary 6.7.17. We can now prove a Hardy analogue:

Lemma 6.7.19. Suppose K has a linear hole of order 1. Then H has a proper
d-algebraic Hardy field extension.

Proof. If H is not d-maximal, then H has indeed a proper d-algebraic Hardy
field extension, and if H is d-maximal, then H is Liouville closed, ω-free, 1-
newtonian, and I(K) ⊆ K†, by Proposition 5.3.2, Corollary 5.5.19, Theorem 5.6.2,
and Lemma 6.7.15. So assume below thatH is Liouville closed, ω-free, 1-newtonian,

and I(K) ⊆ K†, and that (P, n, f̂) is a linear hole of order 1 in K. By Lemma 4.2.15

we arrange that f̂ ∈ K̂ := Ĥ[i] where Ĥ is an immediate ω-free newtonian

H-field extension of H. Then K̂ is also newtonian by [ADH, 14.5.7]. By Re-

mark 4.4.19 we can replace (P, n, f̂) by a refinement to arrange that (P, n, f̂) is
ultimate and n ∈ H×. Proposition 6.4.9 now yields f ∈ C<∞[i] with P (f) = 0

and f ≺ n. Then f ≈K f̂ by Lemma 6.7.16, and so Re f or Im f generates a proper
d-algebraic Hardy field extension of H, by Proposition 6.7.18. □

Corollary 6.7.20. If H is d-maximal, then K is 1-linearly newtonian.

Proof. Assume H is d-maximal. Then K is ω-free by Theorem 5.6.2 and [ADH,
11.7.23]. If K is not 1-linearly newtonian, then it has a linear hole of order 1,
by Lemma 3.2.5, and so H has a proper d-algebraic Hardy field extension, by
Lemma 6.7.19, contradicting d-maximality of H. □
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Finishing the story. With one more lemma we will be done.

Lemma 6.7.21. Suppose H is Liouville closed, ω-free, not newtonian, and K :=
H[i] is 1-linearly newtonian. Then H has a proper d-algebraic Hardy field extension.

Proof. By Proposition 1.8.28, K is 1-linearly surjective and I(K) ⊆ K†. Since H
is not newtonian, neither is K, by [ADH, 14.5.6], and so by Lemma 3.2.1 we have

a minimal hole (P,m, f̂) in K of order r ⩾ 1, with m ∈ H×. Then degP > 1 by

Corollary 3.2.8. As in the proof of Lemma 6.7.19 we take for Ĥ an immediate ω-free

newtonian H-field extension of H and arrange f̂ ∈ K̂ := Ĥ[i]. Now f̂ = ĝ + ĥi

with ĝ, ĥ ∈ Ĥ. By Theorem 4.5.43, there are two cases:

(1) ĝ /∈ H and some Z-minimal slot (Q,m, ĝ) in H has a special refinement

(Q+g, n, ĝ − g) such that (Qϕ+g, n, ĝ − g) is eventually deep, strongly repul-
sive-normal, and ultimate;

(2) ĥ /∈ H and some Z-minimal slot (R,m, ĥ) in H has a special refinement

(R+h, n, ĥ− h) such that (Rϕ+h, n, ĥ−h) is eventually deep, strongly repul-
sive-normal, and ultimate.

Suppose ĝ /∈ H and (Q,m, ĝ) is as in (1). Then 1 ⩽ orderQ ⩽ 2r by Lemma 4.3.7.
Claim: Q(y) = 0 for some y ∈ C<∞ \ H that is hardian over H. To prove this
claim, take a special refinement (Q+g, n, ĝ − g) of (Q,m, ĝ) and an active ϕ in H

with 0 < ϕ ≼ 1 such that the slot (Qϕ+g, n, ĝ − g) in Hϕ is deep, strongly repulsive-

normal, and ultimate. Corollary 6.7.14 applied to (Q+g, n, ĝ−g) in place of (P, n, ĥ)
gives a z ∈ C<∞\H that is hardian overH with Q+g(z) = 0. Thus y := g+z ∈ C<∞

is as in the Claim. Case (2) is handled likewise. □

Recall from the introduction that an H-closed field is an ω-free newtonian Liouville
closed H-field. Recall also that Hardy fields containing R are H-fields. The main
result of these notes can now be established in a few lines:

Theorem 6.7.22. A Hardy field is d-maximal iff it contains R and is H-closed.

Proof. The “if” part is a special case of [ADH, 16.0.3]. By Proposition 5.3.2 and
Theorem 5.6.2, every d-maximal Hardy field contains R and is Liouville closed
and ω-free. Suppose H is d-maximal. Then K := H[i] is 1-linearly newtonian by
Corollary 6.7.20, so H is newtonian by Lemma 6.7.21. □

Theorem 6.7.22 and Corollary 6.3.9 yield Theorem B from the introduction in a
refined form:

Corollary 6.7.23. Any Hardy field F has a d-algebraic H-closed Hardy field exten-
sion. If F is a C∞-Hardy field, then so is any such extension, and likewise with Cω
in place of C∞.
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Part 7. Applications

Here we apply the material in the previous parts. In Section 7.1 we show how
to transfer first-order logical properties of the differential field T of transseries to
maximal Hardy fields, proving in particular Theorem A and Corollaries 1–5 as
well as the first part of Corollary 6 from the introduction. In Section 7.2 we obtain
Corollary 7, elaborate on [ADH, Chapter 16], and relate Newton-Liouville closure to
relative differential closure. In Section 7.3 we investigate embeddings of Hardy fields
into T, and finish the proof of Corollary 6. There we also determine the universal
theory of Hardy fields. Section 7.4 contains applications of our main theorem to
linear differential equations over Hardy fields, including proofs of Corollaries 8–11
from the introduction. The final Corollary 12 from the introduction is established
in Section 7.5, where we focus on the structure of perfect and d-perfect Hardy fields.

7.1. Transfer Theorems

From [ADH, 16.3] we recall the notion of a pre-ΛΩ-field H = (H, I,Λ,Ω): this is
a pre-H-field H equipped with a ΛΩ-cut (I,Λ,Ω) of H. (See also Section 5.6.) A
ΛΩ-field is a pre-ΛΩ-field H = (H; . . . ) where H is an H-field. If M = (M ; . . . )
is a pre-ΛΩ-field and H is a pre-H-subfield of M , then H has a unique expansion
to a pre-ΛΩ-field H such that H ⊆ M . By [ADH, 16.3.19], a pre-H-field H has a
unique expansion to a pre-ΛΩ-field iff one of the following conditions holds:

(1) H is grounded;
(2) there exists b ≍ 1 in H such that v(b′) is a gap in H;
(3) H is ω-free.

In particular, each d-maximal Hardy fieldM (being ω-free) has a unique expansion
to a pre-ΛΩ-field M , namely M =

(
M ; I(M),Λ(M), ω(M)

)
, and then M is a ΛΩ-

field with constant field R. Below we always view any d-maximal Hardy field as an
ΛΩ-field in this way.

Lemma 7.1.1. Let H be a Hardy field. Then H has an expansion to a pre-ΛΩ-
field H such that H ⊆ M for every d-maximal Hardy field M ⊇ H.

Proof. Since every d-maximal Hardy field containing H also contains D(H), it
suffices to show this for D(H) in place of H. So we assume H is d-perfect, and
thus a Liouville closed H-field. For each d-maximal Hardy field M ⊇ H we now
have I(H) = I(M) ∩ H by [ADH, 11.8.2], Λ(H) = Λ(M) ∩ H by [ADH, 11.8.6],
and ω(H) = ω(H) = ω(M) ∩H = ω(M) ∩H by Corollary 5.5.3, as required. □

Given a Hardy field H, we call the unique expansion H of H to a pre-ΛΩ-field with
the property stated in the previous lemma the canonical ΛΩ-expansion of H.

Corollary 7.1.2. Let H, H∗ be Hardy fields, with their canonical ΛΩ-expan-
sions H, H∗, respectively, such that H ⊆ H∗. Then H ⊆ H∗.

Proof. Let M∗ be any d-maximal Hardy field extension of H∗. Then H ⊆ M∗ as
well as H∗ ⊆ M∗, hence H ⊆ H∗. □

In the rest of this section L = {0, 1,−,+, · , ∂,⩽,≼} is the language of ordered
valued differential rings [ADH, p. 678]. We view each ordered valued differential
field as an L-structure in the natural way. Given an ordered valued differential
field H and a subset A of H we let LA be L augmented by names for the elements
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of A, and expand the L-structure H to an LA-structure by interpreting the name
of any a ∈ A as the element a of H; cf. [ADH, B.3]. Let H be a Hardy field
and σ be an LH -sentence. We now have our Hardy field analogue of the “Tarski
principle” [ADH, B.12.14] in real algebraic geometry promised in the introduction:

Theorem 7.1.3. The following are equivalent:

(i) M |= σ for some d-maximal Hardy field M ⊇ H;
(ii) M |= σ for every d-maximal Hardy field M ⊇ H;
(iii) M |= σ for every maximal Hardy field M ⊇ H;
(iv) M |= σ for some maximal Hardy field M ⊇ H.

Proof. The implications (ii) ⇒ (iii) ⇒ (iv) ⇒ (i) are obvious, since “maximal ⇒ d-
maximal”; so it remains to show (i) ⇒ (ii). Let M , M∗ be d-maximal Hardy field
extensions ofH. By Lemma 7.1.1 and Corollary 7.1.2 expandM ,M∗, H to pre-ΛΩ-
fields M , M∗, H, respectively, such that H ⊆ M and H ⊆ M∗. In [ADH, intro-
duction to Chapter 16] we extended L to a language Lι

ΛΩ
, and explained in [ADH,

16.5] how each pre-ΛΩ-field K is construed as an Lι
ΛΩ

-structure in such a way that
every extension K ⊆ L of pre-ΛΩ-fields corresponds to an extension of the associ-

ated Lι
ΛΩ

-structures. By [ADH, 16.0.1], the Lι
ΛΩ

-theory T nl,ι
ΛΩ

of H-closed ΛΩ-fields
eliminates quantifiers, and by Theorem 6.7.22, the canonical ΛΩ-expansion of each

d-maximal Hardy field is a model of T nl,ι
ΛΩ

. Hence M ≡H M∗ [ADH, B.11.6], so
if M |= σ, then M∗ |= σ. □

Corollaries 1 and 2 from the introduction are special cases of Theorem 7.1.3. By
Corollary 6.3.8, C∞-maximal and Cω-maximal Hardy fields are d-maximal, so the
theorem above also yields Corollary 5 from the introduction in the following stronger
form:

Corollary 7.1.4. If H ⊆ C∞ and M |= σ for some d-maximal Hardy field exten-
sion M of H, then M |= σ for every C∞-maximal Hardy field M ⊇ H. Likewise
with Cω in place of C∞.

The structure induced on R. In the next corollary H is a Hardy field and φ(x)
is an LH -formula where x = (x1, . . . , xn) and x1, . . . , xn are distinct variables.
Also, LOR = {0, 1,−,+, · ,⩽} is the language of ordered rings, and the ordered
field R of real numbers is interpreted as an LOR-structure in the obvious way. By
Theorem 6.7.22, d-maximal Hardy fields are H-closed fields, so from [ADH, 16.6.7,
B.12.13] in combination with Theorem 7.1.3 we obtain:

Corollary 7.1.5. There is a quantifier-free LOR-formula φOR(x) such that for all
d-maximal Hardy fields M ⊇ H and c ∈ Rn we have

M |= φ(c) ⇐⇒ R |= φOR(c).

This yields Corollary 3 from the Introduction. We now justify what we claim about
the examples after that corollary. The first of these examples is already covered
by [ADH, 5.1.18, 11.8.25, 11.8.26], so we only deal with the second example here:

Proposition 7.1.6. Let g2, g3 ∈ R. Then the following are equivalent:

(i) there exists a hardian germ y /∈ R such that (y′)2 = 4y3 − g2y − g3;
(ii) g32 = 27g23 and g3 ⩽ 0;

For (i) ⇒ (ii) we take a more general setting, and recycle arguments used in the
proof of [ADH, 10.7.1]. Let K be a valued differential field such that ∂O ⊆ O
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and C ⊆ O. (This holds for any d-valued field with small derivation.) Consider
a polynomial P (Y ) = 4Y 3 − g2Y − g3 with g2, g3 ∈ C. Its discriminant is 16∆
where ∆ := g32 − 27g23 . Take e1, e2, e3 in an algebraic closure of C auch that

P (Y ) = 4(Y − e1)(Y − e2)(Y − e3).

Then

(7.1.1) e1 + e2 + e3 = 0, e1e2 + e2e3 + e3e1 = − 1
4g2, e1e2e3 = 1

4g3,

and ∆ ̸= 0 iff e1, e2, e3 are distinct. In the next two lemmas y ∈ K and (y′)2 = P (y).
Then y ≼ 1: otherwise (y′)2 ≺ 4y3 ∼ P (y) = (y′)2 by [ADH, 4.4.3], a contradiction.
Hence P (y) = (y′)2 ≺ 1. Moreover, if y ≍ 1, then ∆ ̸= 0 or g3 ̸= 0.

Lemma 7.1.7. Suppose P ′(y) ≍ 1. Then y ∈ {e1, e2, e3} (so y ∈ C).

Proof. The property ∂O ⊆ O means that the derivation of K is small with trivial
induced derivation on its residue field. By [ADH, 6.2.1, 3.1.9] this property is
inherited by any algebraic closure of K, and so is the property C ⊆ O by [ADH,
4.1.2]. Thus by passing to an algebraic closure we arrange that K is algebraically
closed. Then C is also algebraically closed, so e1, e2, e3 ∈ C and thus y− ej ≺ 1 for
some j ∈ {1, 2, 3}, say y = e1 + z where z ≺ 1. Since P ′(y) ≍ 1 we have y − e2 ≍
y − e3 ≍ 1 and thus

z ≍ 4z(e1 − e2 + z)(e1 − e3 + z) = P (y) = (y′)2 = (z′)2.

Now if z ̸= 0, then (z′)2 ≺ z, again by [ADH, 4.4.3], a contradiction. So y = e1. □

In the next lemma K is in addition equipped with an ordering making K a valued
ordered differential field whose valuation ring is convex. (Any H-field with small
derivation satisfies the conditions we imposed.) Suppose ∆ = 0. Then e1, e2, e3 lie
in the real closure of C, and after arranging e1 ⩾ e2 ⩾ e3, the first and the last of
the equations (7.1.1) yield e1 = e2 ⇐⇒ g3 ⩽ 0, and e2 = e3 ⇐⇒ g3 ⩾ 0.

Lemma 7.1.8. Suppose ∆ = 0 and g3 > 0. Then y ∈ C.

Proof. Passing to the real closure of K with convex valuation extending that of K,
cf. [ADH, 3.5.18], we arrange that K, and hence C, is real closed. Arranging
also e1 ⩾ e2 ⩾ e3, we set e := e2 = e3. Then e1 = −2e > 0 > e and P (Y ) =
4(Y + 2e)(Y − e)2. We have y ≼ 1 and P (y) ≺ 1. Suppose y /∈ C. Then P ′(y) ≺ 1
by Lemma 7.1.7, so y − e ≺ 1. Set z := y − e, so 0 ̸= z ≺ 1 and hence

12ez2 ∼ 4(z + 3e)z2 = P (y) = (y′)2 > 0,

contradicting e < 0. □

Proof of Proposition 7.1.6. Suppose y /∈ R is a hardian germ such that (y′)2 = P (y)
with P (Y ) = 4Y 3 − g2Y − g3 and g2, g3 ∈ R. Then y ≼ 1 and P (y) ≺ 1, but
also P ′(y) ≺ 1 by Lemma 7.1.7, hence ∆ ≺ 1. As ∆ ∈ R this gives ∆ = 0,
so g3 ⩽ 0 by Lemma 7.1.8. This proves (i) ⇒ (ii). For the converse, let K be the
Hardy field R in the considerations above and suppose ∆ = 0, so e1, e2, e3 ∈ R.
Arrange e1 ⩾ e2 ⩾ e3. If g3 = 0, then e1 = e2 = e3 = 0, and if g3 < 0,
then e1 = e2 > 0. In Corollaries 7.1.9 and 7.1.12 we deal exhaustively with these
two cases. In particular, we show there that in each case there is a hardian y /∈ R
such that (y′)2 = P (y), thus finishing the proof of Proposition 7.1.6.

Accordingly we assume below that g2, g3 ∈ R and ∆ = 0, so e1, e2, e3 ∈ R. Note
that the y ∈ R such that (y′)2 = P (y) are exactly e1, e2, e3.

363



Corollary 7.1.9. Suppose e1 = e2 = e3 = 0 and y ∈ C1. Then

y ∈ C× and (y′)2 = P (y) ⇐⇒ y =
1

(x− c)2
for some c ∈ R.

Proof. We have P (Y ) = 4Y 3. The direction ⇐ is routine. For ⇒, suppose y ∈ C×

and (y′)2 = 4y3. Then y′ ∈ C×, y > 0, z := y−1/2 > 0, and z′ = − 1
2y

−3/2y′. We

have y′ < 0: otherwise 0 < y′ = 2y3/2 and so z′ = −1, hence z < 0, a contradiction.
Therefore y′ = −2y3/2, so z′ = 1 and thus y = 1

z2 = 1
(x−c)2 for some c ∈ R. □

Lemma 7.1.12 below is an analogue of Lemma 7.1.9 for e1 = e2 > 0, but first we
make some observations about hyperbolic functions. Recall that for t ∈ R,

sinh t : =
1

2
(et− e−t), cosh t :=

1

2
(et+e−t), so

cosh2 t− sinh2 t = 1,
d

dt
sinh t = cosh t,

d

dt
cosh t = sinh t.

We also set for t ∈ R:

sech t :=
1

cosh t
(hyperbolic secant), tanh t :=

sinh t

cosh t
(hyperbolic tangent)

and for t ̸= 0:

csch t :=
1

sinh t
(hyperbolic cosecant), coth t :=

cosh t

sinh t
(hyperbolic cotangent).

Now sinh: R → R is an increasing bijection, so t 7→ csch t : R> → R> is a decreasing
bijection. We have sech2 t = 1 − tanh2 t, and for t ̸= 0, csch2 t = coth2 t − 1.
Moreover, d

dt sech t = − tanh t sech t and for t ̸= 0: d
dt csch t = − coth t csch t. Hence

both − sech2 : R → R and csch2 : R× → R satisfy the differential equation (u′)2 =
4u2(u+ 1). We use these facts to prove:

Lemma 7.1.10. Let w ∈ C1 and e ∈ R>. Then the following are equivalent:

(i) w(t) > 0, eventually, and (w′)2 = ew2(w + 1)

(ii) w = csch2 ◦(c+
√
e
2 x) for some c ∈ R.

Proof. Direct computation gives (ii) ⇐ (i). Assume (i). Consider the decreasing
bijection t 7→ u(t) := csch2(t) : R> → R>; let uinv : R> → R> be its (strictly
decreasing) compositional inverse, so uinv ∈ C1(R>). Then for v := uinv ◦ w ∈ C1

we have v(t) > 0, eventually, v′ = w′

u′◦v , and u ◦ v = w. Thus

(v′)2 =
(w′)2

(u′)2 ◦ v
=

e

4
.

Hence v′ =
√
e
2 , since v′ = −

√
e
2 contradicts v > 0. Now use w = u ◦ v. □

The increasing bijection t 7→ cosh t : (0,+∞) → (1,+∞) yields the increasing bi-
jection t 7→ − sech2 t : (0,+∞) → (−1, 0). We use this to prove likewise:

Lemma 7.1.11. Let w ∈ C1 and e ∈ R>. Then the following are equivalent:

(i) −1 < w(t) < 0, eventually, and (w′)2 = ew2(w + 1);

(ii) w = − sech2 ◦(c+
√
e
2 x) for some c ∈ R.
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Corollary 7.1.12. Suppose e1 = e2 > 0. Then the hardian germs y /∈ R such

that (y′)2 = P (y) are all in R(ex
√
3e1) and are given by

y = e1 + 3e1 · csch2 ◦(c+ x
√
3e1), y = e1 − 3e1 · sech2 ◦(c+ x

√
3e1),

where c ∈ R.

Proof. We have P (Y ) = 4(Y − e1)
2(Y + 2e1). Let y ∈ C1 and w := (y − e1)/3e1.

Then (y′)2 = P (y) iff (w′)2 = 12e1w
2(w + 1). There is no hardian y < −2e1

with (y′)2 = P (y), so we can use Lemmas 7.1.10 and 7.1.11 with e := 12e1. □

Uniform finiteness. We now let H be a Hardy field and φ(x, y) and θ(x) be
LH -formulas, where x = (x1, . . . , xm) and y = (y1, . . . , yn).

Lemma 7.1.13. There is a B = B(φ) ∈ N such that for all f ∈ Hm: if for some
d-maximal Hardy field extension M of H there are more than B tuples g ∈ Mn

with M |= φ(f, g), then for every d-maximal Hardy field extension M of H there
are infinitely many g ∈Mn with M |= φ(f, g).

Proof. Fix a d-maximal Hardy field extension M∗ of H. By [10, Proposition 6.4]
we have B = B(φ) ∈ N such that for all f ∈ (M∗)m: if M∗ |= φ(f, g) for more
than B many g ∈ (M∗)n, then M∗ |= φ(f, g) for infinitely many g ∈ (M∗)n. Now
use Theorem 7.1.3. □

In the proof of the next lemma we use that C has the cardinality c = 2ℵ0 of the
continuum, hence |H| = c if H ⊇ R.

Lemma 7.1.14. Suppose H is d-maximal and S :=
{
f ∈ Hm : H |= θ(f)

}
is

infinite. Then |S| = c.

Proof. Let d := dim(S) be the dimension of the definable set S ⊆ Hm as introduced
in [10]. If d = 0, then |S| = |R| = c by remarks following [10, Proposition 6.4].
Suppose d > 0, and for g = (g1, . . . , gm) ∈ Hm and i ∈ {1, . . . ,m}, let πi(g) := gi.
Then for some i ∈ {1, . . . ,m}, the subset πi(S) of H has nonempty interior, by [10,
Corollary 3.2], and hence |S| = |H| = c. □

The two lemmas above together now yield Corollary 4 from the introduction.

Transfer between maximal Hardy fields and transseries. Let T be the
unique expansion of T to a pre-ΛΩ-field, so T is an H-closed ΛΩ-field with small
derivation and constant field R.

Lemma 7.1.15. Let H be a pre-H-subfield of T with H ̸⊆ R. Then H has a unique
expansion to a pre-ΛΩ-field.

Proof. If H is grounded, this follows from [ADH, 16.3.19]. Suppose H is not
grounded. Then H has asymptotic integration by the proof of [ADH, 10.6.19]
applied to ∆ := v(H×). Starting with an h0 ≻ 1 in H with h′0 ≍ 1 we construct a
logarithmic sequence (hn) in H as in [ADH, 11.5], so hn ≍ ℓn for all n. Hence Γ<

is cofinal in Γ<T , so H is ω-free by [ADH, remark before 11.7.20]. Now use [ADH,
16.3.19] again. □

In the rest of this subsection H is a Hardy field with canonical ΛΩ-expansion H,
and ι : H → T is an embedding of ordered differential fields, and thus of pre-H-
fields.
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Corollary 7.1.16. The map ι is an embedding H → T of pre-ΛΩ-fields.

Proof. If H ̸⊆ R, then this follows from Lemma 7.1.15. Suppose H ⊆ R. Then ι is
the identity on H, so extends to the embedding R(x) → T that is the identity on R
and sends the germ x to x ∈ T. Now use that R(x) ̸⊆ R and Corollary 7.1.2. □

Recall from [ADH, B.4] that for any LH -sentence σ we obtain an LT-sentence ι(σ)
by replacing the name of each h ∈ H occurring in σ with the name of ι(h).

Corollary 7.1.17. Let σ be an LH-sentence. Then (i)–(iv) in Theorem 7.1.3 are
also equivalent to:

(v) T |= ι(σ).

Proof. Let M be a d-maximal Hardy field extension of H; it suffices to show
that M |= σ iff T |= ι(σ). For this, mimick the proof of (i) ⇒ (ii) in Theorem 7.1.3,
using Corollary 7.1.16. □

Corollary 7.1.17 yields the first part of Corollary 6 from the introduction, even in
a stronger form. After an intermezzo on differential closure in Section 7.2 we prove
the second part of that corollary in Section 7.3: Corollary 7.3.2. There we also use:

Lemma 7.1.18. ι extends uniquely to an embedding H(R) → T of pre-H-fields.

Proof. Let Ĥ be the H-field hull of H in H(R). Then ι extends uniquely to an

H-field embedding ι̂ : Ĥ → T by [ADH, 10.5.13]. By [ADH, remark before 4.6.21]
and [ADH, 10.5.16] ι̂ extends uniquely to an embedding H(R) → T of H-fields. □

We finish with indicating how Theorem A from the introduction (again, in strength-
ened form) follows from [103] and the results above:

Corollary 7.1.19. If P ∈ H{Y }, f < g in H, and P (f) < 0 < P (g), then each
d-maximal Hardy field extension of H contains a y with f < y < g and P (y) = 0.

Proof. By [103], the ordered differential field Tg of grid-based transseries isH-closed
with small derivation and has the differential intermediate value property (DIVP).
Hence T also has DIVP, by completeness of TH (see the introduction). Now use
Corollary 7.1.17. □

Corollary 7.1.20. Let P ∈ H{Y } have odd degree. Then there is an H-hardian
germ y with P (y) = 0.

Proof. This follows from Theorem 6.7.23 and [ADH, 14.5.3]. Alternatively, we can
use Corollary 7.1.19: Replace H by Li

(
H(R)

)
to arrange that H ⊇ R is Liouville

closed, and appeal to the example following Corollary 1.3.9. □

Note that if H ⊆ C∞, then in the previous two corollaries we have H⟨y⟩ ⊆ C∞, by
Corollary 6.3.9; likewise with Cω in place if C∞.

7.2. Relative Differential Closure

Let K ⊆ L be an extension of differential fields, and let r range over N. We say
that K is r-differentially closed in L for every P ∈ K{Y }̸= of order ⩽ r, each
zero of P in L lies in K. We also say that K is weakly r-differentially closed
in L if every P ∈ K{Y } ̸= of order ⩽ r with a zero in L has a zero in K. We
abbreviate “r-differentially closed” by “r-d-closed.” Thus

K is r-d-closed in L =⇒ K is weakly r-d-closed in L,
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and

K is 0-d-closed in L ⇐⇒ K is weakly 0-d-closed in L

⇐⇒ K is algebraically closed in L.

Hence

(7.2.1) K is weakly 0-d-closed in L =⇒ C is algebraically closed in CL.

Also, if K is weakly 0-d-closed in L and L is algebraically closed, then K is alge-
braically closed, and similarly with “real closed” in place of “algebraically closed”.
In [ADH, 5.8] we defined K to be weakly r-d-closed if every P ∈ K{Y } \ K of
order ⩽ r has a zero in K. Thus

K is weakly r-d-closed ⇐⇒
{

K is weakly r-d-closed in every differential field
extension of K.

If K is weakly r-d-closed in L, then P (K) = P (L) ∩ K for all P ∈ K{Y } of
order ⩽ r; in particular,

(7.2.2) K is weakly 1-d-closed in L =⇒ ∂K = ∂L ∩K.

Also,

(7.2.3) K is 1-d-closed in L =⇒ C = CL and K† = L† ∩K.

Moreover:

Lemma 7.2.1. Suppose K is weakly r-d-closed in L. If L is r-linearly surjective,
then so is K, and if L is (r + 1)-linearly closed, then so is K.

Proof. The first statement is clear from the remarks preceding the lemma, and the
second statement is shown similarly to [ADH, 5.8.9]. □

Sometimes we get more than we bargained for:

Lemma 7.2.2. Suppose K is not algebraically closed, C ̸= K, and K is weakly
r-d-closed in L. Let Q1, . . . , Qm ∈ K{Y }̸= of order ⩽ r have a common zero
in L, m ⩾ 1. Then they have a common zero in K.

Proof. Take a polynomial Φ ∈ K[X1, . . . , Xm] whose only zero in Km is the ori-
gin (0, . . . , 0) ∈ Km. Then the differential polynomial P := Φ(Q1, . . . , Qm) ∈
K{Y } is nonzero (use [ADH, 4.2.1]) and has order ⩽ r. For y ∈ L we have

Q1(y) = · · · = Qm(y) = 0 =⇒ P (y) = 0,

and for y ∈ K the converse of this implication also holds. □

We say that K is differentially closed in L if K is r-d-closed in L for each r, and
similarly we define when K is weakly differentially closed in L. We also use
“d-closed” to abbreviate “differentially closed”. If K, as a differential ring, is an
elementary substructure of L, then K is weakly d-closed in L. The elements of L
that are d-algebraic over K form the smallest differential subfield of L containing K
which is d-closed in L; we call it the differential closure (“d-closure” for short)
of K in L. Thus K is d-closed in L iff no d-subfield of L properly containing K is d-
algebraic over K. This notion of being differentially closed does not seen prominent
in the differential algebra literature, though the definition occurs (as “differentially
algebraic closure”) in [114, p. 102]. Here is a useful fact about it:

367



Lemma 7.2.3. Let F be a differential field extension of L and E be a subfield of F
containing K such that E is algebraic over K and F = L(E).

F = L(E)

E

uuuuuuuuuu
L

IIIIIIIIII

K

JJJJJJJJJJ

tttttttttt

Then K is d-closed in L iff E ∩ L = K and E is d-closed in F .

Proof. Suppose K is d-closed in L. Then K is algebraically closed in L, so L
is linearly disjoint from E over K. (See [122, Chapter VIII, §4].) In particu-
lar E ∩ L = K. Now let y ∈ F be d-algebraic over E; we claim that y ∈ E. Note
that y is d-algebraic over K. Take a field extension E0 ⊆ E of K with [E0 : K] <∞
(so E0 is a d-subfield of E) such that y ∈ L(E0); replacing E, F by E0, L(E0),
respectively, we arrange that n := [E : K] <∞. Let b1, . . . , bn be a basis of the K-
linear space E; then b1, . . . , bn is also a basis of the L-linear space F . Let σ1, . . . , σn
be the distinct field embeddings F → La over L. Then the vectors(

σ1(b1), . . . , σ1(bn)
)
, . . . ,

(
σn(b1), . . . , σn(bn)

)
∈ (La)n

are La-linearly independent [122, Chapter VI, Theorem 4.1]. Let a1, . . . , an ∈ L be
such that y = a1b1 + · · ·+ anbn. Then

σj(y) = a1σj(b1) + · · ·+ anσj(bn) for j = 1, . . . , n,

hence by Cramer’s Rule,

a1, . . . , an ∈ K
(
σj(y), σj(bi) : i, j = 1, . . . , n

)
.

Therefore a1, . . . , an are d-algebraic overK, since σj(y) and σj(bi) for i, j = 1, . . . , n
are. Hence a1, . . . , an ∈ K since K is d-closed in L, so y ∈ E as claimed. This
shows the forward implication. The backward direction is clear. □

Corollary 7.2.4. If −1 is not a square in L and i in a differential field extension
of L satisfies i2 = −1, then: K is d-closed in L ⇔ K[i] is d-closed in L[i].

In the next lemma extension refers to an extension of valued differential fields.

Lemma 7.2.5. Suppose K is an λ-free H-asymptotic field and is r-d-closed in an
r-newtonian ungrounded H-asymptotic extension L. Then K is also r-newtonian.

Proof. Let P ∈ K{Y }̸= be quasilinear of order ⩽ r. Then P remains quasilinear
when viewed as differential polynomial over L, by Lemma 1.8.9. Hence P has a
zero y ≼ 1 in L, which lies in K since K is r-d-closed in L. □

Relative differential closure in H-fields. We now return to the H-field setting.
Let L∂ = {0, 1,−,+, · , ∂} be the language of differential rings, a sublanguage of the
language L = L∂ ∪ {⩽,≼} of ordered valued differential rings from Section 7.1.

Let now M be an H-closed field, and let H a pre-H-subfield of M whose val-
uation ring and constant field we denote by O and C. Construing H and M as
L-structures in the usual way, H is an L-substructure of M . We also use the sub-
language L≼ := L∂∪{≼} of L, so L≼ is the language of valued differential rings. We
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expand the L∂-structureH[i] to an L≼-structure by interpreting≼ as the dominance
relation associated to the valuation ring O+Oi of H[i]; we expand likewiseM [i] to
an L≼-structure by interpreting ≼ as the dominance relation associated to the val-
uation ring OM [i] = OM +OM i of M [i]. Then H[i] is an L≼-substructure of M [i].
By H ≼L M we mean that H is an elementary L-substructure of M , and we use
expressions like “H[i] ≼L≼ M [i]” in the same way; of course, the two uses of the
symbol ≼ in the latter are unrelated.

By Corollary 7.2.4, H is d-closed in M iff H[i] is d-closed in M [i].

Lemma 7.2.6. Suppose M has small derivation. Then

H ≼L∂
M ⇐⇒ H[i] ≼L∂

M [i].

Also, if H ≼L∂
M , then H ≼L M and H[i] ≼L≼ M [i].

Proof. The forward direction in the equivalence is obvious. For the converse,
let H[i] ≼L∂

M [i]. We have M ≡L∂
T by [ADH, 16.6.3]. Then [ADH, 10.7.10]

yields an L∂-formula definingM inM [i], so the same formula definesM ∩H[i] = H
in H[i], and thus H ≼L∂

M . For the “also” part, use that the squares of M are the
nonnegative elements in its ordering, that OM is then definable as the convex hull
of CM in M with respect to this ordering, and if H ≼L∂

M , then each L∂-formula
defining OM in M also defines O = OM ∩H in H. □

The next proposition complements [ADH, 16.0.3, 16.2.5]:

Proposition 7.2.7. The following are equivalent:

(i) H is d-closed in M ;
(ii) C = CM and H ≼L M ;
(iii) C = CM and H is H-closed.

Proof. Assume (i). Then C = CM and H is a Liouville closed H-field, by (7.2.1),
(7.2.2), and (7.2.3). We have ω(M) ∩ H = ω(H) since H is weakly 1-d-closed
in M , and σ

(
Γ(M)

)
∩H = σ

(
Γ(M) ∩H

)
= σ

(
Γ(H)

)
since H is 2-d-closed in M

and Γ(M)∩H = Γ(H) by [ADH, p. 520]. NowM is Schwarz closed [ADH, 14.2.20],
soM = ω(M)∪σ

(
Γ(M)

)
, hence also H = ω(H)∪σ

(
Γ(H)

)
, thus H is also Schwarz

closed [ADH, 11.8.33]; in particular, H is ω-free. By Lemma 7.2.5, H is newtonian.
This shows (i) ⇒ (iii). The implication (iii) ⇒ (i) is [ADH, 16.0.3], and (iii) ⇔ (ii)
follows from [ADH, 16.2.5]. □

Next a consequence of [ADH, 16.2.1], but note first that H(CM ) is an H-subfield
of M and d-algebraic over H, and recall that each ω-free H-field has a Newton-
Liouville closure, as defined in [ADH, p. 669].

M

H(CM )

CM

vvvvvvvvv
H

FFFFFFFFF

Corollary 7.2.8. If H is ω-free, then the differential closure of H in M is a
Newton-Liouville closure of the ω-free H-subfield H(CM ) of M .
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Let M be the expansion of M to a ΛΩ-field, and let H, H(CM ) be the expansions
of H, H(CM ), respectively, to pre-ΛΩ-subfields of M ; then H(CM ) is a ΛΩ-field.
By Proposition 7.2.7, the d-closure Hda of H in M is H-closed and hence has a
unique expansion Hda to a ΛΩ-field. Then H ⊆ H(CM ) ⊆ Hda ⊆ M . For the
Newton-Liouville closure of a pre-ΛΩ-field, see [ADH, 16.4.8].

Corollary 7.2.9. The ΛΩ-field Hda is a Newton-Liouville closure of H(CM ).

Proof. Let H(CM )nl be a Newton-Liouville closure of H(CM ). Since Hda is H-

closed and extends H(CM ), there is an embedding H(CM )nl → Hda over H(CM ),
and any such embedding is an isomorphism, thanks to [ADH, 16.0.3]. □

Relative differential closure in Hardy fields. Specializing to Hardy fields,
assume below thatH is a Hardy field and setK := H[i] ⊆ C<∞[i], anH-asymptotic
extension of H. By definition, H is d-maximal iff H is d-closed in every Hardy field
extension of H. The following contains Corollary 7 from the introduction:

Corollary 7.2.10. Suppose H is d-maximal. Then K is weakly d-closed, hence lin-
early closed by [ADH, 5.8.9], and linearly surjective. If E is a Hardy field extension
of H, then K is d-closed in E[i].

Proof. By our main Theorem 6.7.22, H is newtonian, hence K is weakly d-closed
by [ADH, 14.5.7, 14.5.3], proving the first statement; the second statement follows
from Corollary 7.2.4. □

We now strengthen the second part of Corollary 7.2.10:

Corollary 7.2.11. Suppose H is d-maximal and L ⊇ K is a differential subfield
of C<∞[i] such that L is a d-valued H-asymptotic extension of K with respect to
some dominance relation on L. Then K is d-closed in L.

Proof. The d-valued field K is ω-free and newtonian by [ADH, 11.7.23, 14.5.7].
Also L† ∩K = K† by Corollary 5.5.22. Now apply Theorem 2.6.6. □

We do not require that the dominance relation on L in Corollary 7.2.11 is the
restriction to L of the relation ≼ on C[i].

Recall also that in Section 5.3 we defined the d-perfect hull D(H) of H as the
intersection of all d-maximal Hardy field extensions of H. By the next result we
only need to consider here d-algebraic Hardy field extensions of H:

Corollary 7.2.12. If H is d-closed in some d-maximal Hardy field extension of H,
then H is d-maximal. Hence

D(H) =
⋂{

M :M is a d-maximal d-algebraic Hardy field extension of H
}
.

Proof. The first part follows from Theorem 6.7.22 and (i) ⇒ (iii) in Proposi-
tion 7.2.7. To prove the displayed equality we only need to show the inclusion “⊇”.
So let f be an element of every d-maximal d-algebraic Hardy field extension of H,
and let M be any d-maximal Hardy field extension of H; we need to show f ∈M .
Let E be the d-closure of H in M . Then E is d-algebraic over H, and by the first
part, E is d-maximal; thus f ∈ E, hence f ∈M as required. □

We can now prove a variant of Lemma 5.3.1 for C∞- and Cω-Hardy fields:
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Corollary 7.2.13. Suppose H is a C∞-Hardy field. Then

D(H) =
⋂{

M :M ⊇ H d-maximal C∞-Hardy field
}

=
{
f ∈ E∞(H) : f is d-algebraic over H

}
.

Likewise with ω in place of ∞.

Proof. With both equalities replaced by “⊆”, this follows from the definitions and
the remarks following Corollary 6.3.9. Let f ∈ E∞(H) be d-algebraic over H; we
claim that f ∈ D(H). To prove this claim, let E be a d-maximal Hardy field
extension E of H; it is enough to show that then f ∈ E. Now F := E ∩ C∞

is a C∞-Hardy field extension of H which is d-closed in E, by Corollary 6.3.9,
and hence d-maximal by the previous corollary. Thus we may replace E by F to
arrange that E ⊆ C∞, and then take a C∞-maximal Hardy field extension M of E.
Now f ∈ E∞(H) gives f ∈ M , and E being d-maximal and f being d-algebraic
over E yields f ∈ E. The proof for ω in place of ∞ is similar. □

Combining Theorem 5.4.20 with Corollary 7.2.13 yields:

Corollary 7.2.14. If H ⊆ C∞ is bounded, then D(H) = E(H) = E∞(H). Likewise
with ω in place of ∞.

Question. Do the following implications hold for all H?

H ⊆ C∞ =⇒ E(H) ⊆ E∞(H), H ⊆ Cω =⇒ E(H) ⊆ E∞(H) ⊆ Eω(H).

Let E := E(Q) be the perfect hull of the Hardy field Q. Boshernitzan [33, (20.1)]
showed that E ⊆ E∞(Q) ⊆ Eω(Q). From Corollary 7.2.14 we obtain

E = E∞(Q) = Eω(Q) = D(Q),

thus establishing [32, §10, Conjecture 1].
Note that E is 1-d-closed in all its Hardy field extensions, by Theorem 6.3.14.

However, E is not 2-linearly surjective by [35, Proposition 3.7], so E is not weakly
2-d-closed in any d-maximal Hardy field extension of E (see Lemma 7.2.1) and E
is not 2-linearly newtonian (see [ADH, 14.2.2]).

More generally, by Theorem 6.3.14 each d-perfect Hardy field is 1-d-closed in all
its Hardy field extensions. Together with Lemma 6.7.15 and 7.2.5, this yields a
generalization of Lemma 6.7.15:

Corollary 7.2.15. Every d-perfect Hardy field is 1-newtonian.

Let M be a d-maximal Hardy field extension of H and Hda the d-closure of H
in M , so H(R) ⊆ Hda ⊆M . From Corollary 7.2.8 we obtain a description of Hda:

Corollary 7.2.16. If H is ω-free, then Hda is a Newton-Liouville closure of H(R).

Next, let H(R), Hda, M be the canonical ΛΩ-expansions of the Hardy fields H(R),
Hda, M , respectively, so H(R) ⊆ Hda ⊆ M . Corollary 7.2.9 yields:

Corollary 7.2.17. Hda is a Newton-Liouville closure of H(R).
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7.3. Embeddings into Transseries and Maximal Hardy Fields

We begin with a direct consequence of facts about “Newton-Liouville closure”
in [ADH, 14.5, 16.2]. Let H be a ΛΩ-field with underlying H-field H. By [ADH,
14.5.10, 16.4.1, 16.4.8], the constant field of the Newton-Liouville closure of H is
the real closure of C := CH . Let M be an H-closed ΛΩ-field extension of H, with
underlying H-field M , and let Hda be the d-closure of H in M .

Proposition 7.3.1. Let H∗ be a d-algebraic ΛΩ-field extension of H such that
the constant field of H∗ is algebraic over C. Then there is an embedding H∗ → M
over H, and the image of any such embedding is contained in Hda.

Proof. The image of any embedding H∗ → M over H is d-algebraic over H and
thus contained in Hda. For existence, take a Newton-Liouville closure M∗ of H∗.
Then M∗ is also a Newton-Liouville closure of H, by [ADH, 16.0.3], and thus
embeds into M over H. □

Let L be the language of ordered valued differential rings, as in Section 7.1. The
second part of Corollary 6 in the introduction now follows from the next result:

Corollary 7.3.2. Let H be a Hardy field, ι : H → T an ordered differential field
embedding, and H∗ a d-maximal d-algebraic Hardy field extension of H. Then ι
extends to an ordered valued differential field embedding H∗ → T, and so for any
LH-sentence σ, H∗ |= σ iff T |= ι(σ).

Proof. We have H(R) ⊆ H∗, and so by Lemma 7.1.18 we arrange that H ⊇ R.
Let H, H∗ be the canonical ΛΩ-expansions of H, H∗, respectively, and let T be
the expansion of T to a ΛΩ-field. Then H ⊆ H∗, and by Lemma 7.1.16, ι is an
embedding H → T . By Proposition 7.3.1, ι extends to an embedding H∗ → T . □

At the end of Section 5.5 we introduced the Hardy field H := R(ℓ0, ℓ1, ℓ2, . . . ), and
we now mimick this in T by setting ℓ0 := x and ℓn+1 := log ℓn in T. This yields the
unique ordered differential field embedding H → T over R sending ℓn ∈ H to ℓn ∈ T
for all n. Its image is the H-subfield R(ℓ0, ℓ1, . . . ) of T. Since the sequence (ℓn) in T
is coinitial in T>R, each ordered differential subfield of T containing R(ℓ0, ℓ1, . . . )
is an ω-free H-field, by the remark preceding [ADH, 11.7.20].

From Lemma 7.1.15 and Proposition 7.3.1 we obtain:

Corollary 7.3.3. If H ⊇ R is an ω-free H-subfield of T and H∗ is a d-algebraic
H-field extension of H with constant field R, then there exists an H-field embedding
H∗ → T over H.

Corollary 7.3.3 goes through with T replaced by its H-subfield

Tda :=
{
f ∈ T : f is d-algebraic (over Q)

}
,

a Newton-Liouville closure of R(ℓ0, ℓ1, . . . ); see [ADH, 16.6] and Section 7.2 above.
We now apply this observation to o-minimal structures. The Pfaffian closure of an
expansion of the ordered field of real numbers is its smallest expansion that is closed
under taking Rolle leaves of definable 1-forms of class C1. See Speissegger [192]
for complete definitions, and the proof that the Pfaffian closure of an o-minimal
expansion of the ordered field of reals remains o-minimal.

Corollary 7.3.4. The Hardy field H of the Pfaffian closure of the ordered field of
real numbers embeds as an H-field over R into Tda.
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Proof. Let f : R → R be definable in the Pfaffian closure of the ordered field of real
numbers. The proof of [130, Theorem 3] gives r ∈ N, semialgebraic g : Rr+2 → R,
and a ∈ R such that f |(a,∞) is Cr+1 and f (r+1)(t) = g

(
t, f(t), . . . , f (r)(t)

)
for

all t > a. Take P ∈ R[Y1, . . . , Yr+3 ]̸
= vanishing identically on the graph of g;

see [ADH, B.12.18]. Then P
(
t, f(t), . . . , f (r+1)(t)

)
= 0 for t > a. Hence the germ

of f is d-algebraic over R, and so H is d-algebraic over R. As H contains the ω-free
Hardy field R(ℓ0, ℓ1, . . . ), we can use the remark following Corollary 7.3.3. □

Question. Let H be the Hardy field of an o-minimal expansion of the ordered field
of reals, and let H∗ ⊇ H be the Hardy field of the Pfaffian closure of this expansion.
Does every embedding H → T extend to an embedding H∗ → T?

We mentioned in the introduction that an embedding H → T as in Corollaries 7.3.2
and 7.3.4 can be viewed as an expansion operator for the Hardy field H and its
inverse as a summation operator. The corollaries above concern the existence of
expansion operators; this relied on the H-closedness of T. Likewise, Theorem 6.7.22
and Proposition 7.3.1 also give rise to summation operators:

Corollary 7.3.5. Let H be an ω-free H-field and let H∗ be a d-algebraic H-field
extension of H with CH∗ algebraic over CH . Then any H-field embedding H →M
into a d-maximal Hardy field extends to an H-field embedding H∗ →M .

In particular, given any ordered differential subfield H ⊇ R(ℓ0, ℓ1, . . . ) of T with
d-closure H∗ in T, any L-isomorphism between H and a Hardy field F extends
to an L-isomorphism between H∗ and a Hardy field extension of F . For H =
R(ℓ0, ℓ1, . . . ) ⊆ T (so H∗ = Tda) we recover the main result of [104]:

Corollary 7.3.6. The H-field Tda is L-isomorphic to a Hardy field ⊇ R(ℓ0, ℓ1, . . . ).

Any Hardy field that is L-isomorphic to Tda is d-maximal, so contains the Hardy
field E = E(Q) = D(Q); see the remarks following Lemma 5.3.1. Thus we have
an L-embedding e : E → Tda, which we can view as an expansion operator for the
Hardy field E. We suspect that e(E) is independent of the choice of e.

In the remainder of this section we draw some consequences of Corollary 7.3.6 for
the universal theory of Hardy fields.

The universal theory of Hardy fields. Recall from Section 7.1 that L =
{0, 1,−,+, · , ∂,⩽,≼} is the language of ordered valued differential rings. Let Lι
be L augmented by a new unary function symbol ι. We view each pre-H-field H
as an Lι-structure by interpreting the symbols from L in the natural way and ι by
the function ι : H → H given by ι(a) := a−1 for a ∈ H× and ι(0) := 0.

Since every Hardy field extends to a maximal one, each universal Lι-sentence
which holds in every maximal Hardy field also holds in every Hardy field; likewise
with “d-maximal”, “perfect”, or “d-perfect” in place of “maximal”. We now use
Corollary 7.3.6 to show:

Proposition 7.3.7. Let Σ be the set of universal Lι-sentences true in all Hardy
fields. Then the models of Σ are the pre-H-fields with very small derivation.

For this we need a refinement of [ADH, 14.5.11]:

Lemma 7.3.8. Let H be a pre-H-field with very small derivation. Then H extends
to an H-closed field with small derivation.
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Proof. By Corollary 1.1.25, replacing H by its H-field hull, we first arrange that H
is an H-field. Let (Γ, ψ) be the asymptotic couple of H. Then Ψ⩾0 ̸= ∅ or (Γ, ψ)
has gap 0. Suppose (Γ, ψ) has gap 0. Let H(y) be the H-field extension from [ADH,
10.5.11] for K := H, s := 1. Then y ≻ 1 and y† = 1/y ≺ 1, so replacing H(y) by
H we can arrange that Ψ⩾0 ̸= ∅. Then every pre-H-field extension of H has small
derivation, and so we are done by [ADH, 14.5.11]. □

Proof of Proposition 7.3.7. The natural axioms for pre-H-fields with very small
derivation formulated in Lι are universal, so all models of Σ are pre-H-fields with
very small derivation. Conversely, given any pre-H-field H with very small deriva-
tion we show that H is a model of Σ: use Lemma 7.3.8 to extend H to an H-closed
field with small derivation, and note that the Lι-theory of H-closed fields with
small derivation is complete by [ADH, 16.6.3] and has a Hardy field model by
Corollary 7.3.6. □

Similar arguments allow us to settle a conjecture from [6], in slightly strengthened
form. For this, let Lιx be Lι augmented by a constant symbol x. We view each
Hardy field containing the germ of the identity function on R as an Lιx-structure by
interpreting the symbols from Lι as described at the beginning of this subsection
and the symbol x by the germ of the identity function on R, which we also denote
by x as usual. Each universal Lιx-sentence which holds in every maximal Hardy
field also holds in every Hardy field containing x.

Proposition 7.3.9. Let Σx be the set of universal Lιx-sentences true in all Hardy
fields that contain x. Then the models of Σx are the pre-H-fields with distinguished
element x satisfying x′ = 1 and x ≻ 1.

This follows from [ADH, 14.5.11] and the next lemma just like Proposition 7.3.7
followed from Lemma 7.3.8 and [ADH, 16.6.3].

Lemma 7.3.10. The Lιx-theory of H-closed fields with distinguished element x
satisfying x′ = 1 and x ≻ 1 is complete.

Proof. Let K1, K2 be models of this theory, and let x1, x2 be the interpretations
of x in K1, K2. Then [ADH, 10.2.2, 10.5.11] gives an isomorphism Q(x1) → Q(x2)
of valued ordered differential fields sending x1 to x2. To show that K1 ≡ K2 as
Lιx-structures we identify Q(x1) with Q(x2) via this isomorphism. View ΛΩ-fields
as Lι

ΛΩ
-structures where Lι

ΛΩ
extends Lι as specified in [ADH, Chapter 16]. (See

also the proof of Theorem 7.1.3.) By [ADH, 16.3.19] the ω-free H-fields K1, K2

uniquely expand to ΛΩ-fields K1, K2. The H-subfield Q(x1) of K1 is grounded, so
expands also uniquely to an ΛΩ-field, and this ΛΩ-field is a common substructure
of both K1 and K2. Hence K1 ≡Q(x1) K2 by [ADH, 16.0.1, B.11.6]. This yields
the claim. □

From the completeness of the Lι-theory of H-closed fields with small derivation
and Lemma 7.3.10 in combination with Theorem 6.7.22 we obtain:

Corollary 7.3.11. The set Σ of universal Lι-sentences true in all Hardy fields is
decidable, and so is the set Σx of universal Lιx-sentences true in all Hardy fields
containing x.

We finish with an example of a not-so-obvious property of asymptotic integrals,
expressible by universal Lι-sentences, which holds in all Hardy fields. For this,
let Y = (Y0, . . . , Yn) be a tuple of distinct indeterminates and P,Q ∈ Z[Y ]̸=.
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Example. For all hardian germs ℓ0, . . . , ℓn+1, y, and y⃗ := (y, y′, . . . , y(n)):{
if ℓ′0 = 1, ℓ′j+1ℓj = ℓ′j for j = 0, . . . , n, P (y⃗) = 0, and q := Q(y⃗) ̸= 0, then

(ℓ0 · · · ℓn+1q)
′ ̸= 0, (ℓ0 · · · ℓn+1q)

† ̸≍ q, and
(
q/(ℓ0 · · · ℓn+1q)

†)′ ≍ q.

To see this, let ℓ0, . . . , ℓn+1, y be as hypothesized. Induction on j shows ℓj ∈ Li(R)
and ℓj ≍ logj x for j = 0, . . . , n + 1. Put H := R(x) and E := H⟨y⟩. Then
trdeg(E|H) ⩽ n, so Theorem 5.4.25 and Lemma 5.4.26 yield an r ∈ {0, . . . , n}
and g ∈ E> with g ≍ ℓr such that E is grounded with maxΨE = v(g†). Iterating
Proposition 5.3.2 and [ADH, 10.2.3 and remark after it], starting with g† and log g
in the role of s and y in [ADH, 10.2.3], produces a grounded Hardy field F with E ⊆
F ⊆ Li(E) and maxΨF = v(f†) where f ∈ F×, f ≍ ℓn+1. Then

ΨE < v(f†) < (Γ>E)
′,

so f† ̸≍ q := Q(y⃗), and thus (f†/q)† ≍ (ℓ0 · · · ℓn+1q)
†. Now the conclusion follows

from [6, remarks after Lemma 2.7] applied to q, f†, F in the role of a, b0, K.

7.4. Linear Differential Equations over Hardy Fields

In this section we draw some consequences of our main Theorem 6.7.22 for linear
differential equations over Hardy fields. This also uses results from Section 5.10.
Throughout this section H is a Hardy field and K := H[i] ⊆ C<∞[i]. Recall from
Corollary 7.2.10 that if H is d-maximal, then K is linearly surjective and linearly
closed; we use this fact freely below. Let A ∈ K[∂]̸= be monic and r := orderA.

Solutions in the complexification of a d-maximal Hardy field.

Theorem 7.4.1. Suppose H is d-maximal. Then A splits over K and the C-linear
space of zeros of A in C<∞[i] has a basis

f1 e
ϕ1i, . . . , fr e

ϕri where f1, . . . , fr ∈ K×, ϕ1, . . . , ϕr ∈ H.

For any such basis, set αj := ϕ′ji+K
† ∈ K/K† for j = 1, . . . , r. Then the spectrum

of A is {α1, . . . , αr}, with

multα(A) = |{j ∈ {1, . . . , r} : αj = α}| for every α ∈ K/K†,

and for any a1, . . . , ar ∈ K with A = (∂ − ar) · · · (∂ − a1) we have

multα(A) = |{j ∈ {1, . . . , r} : aj +K† = α}| for every α ∈ K/K†.

(The spectrum of A is as defined in Section 2.3, and does not refer to eigenvalues
of the C-linear operator y 7→ A(y) on C<∞[i].)

Proof. The first part follows from Corollaries 2.5.6, 5.10.20, and Lemma 5.10.22.
For the rest, also use Lemma 5.10.19 and the proof of Corollary 5.10.20. □

Remarks. Suppose H is d-maximal; so I(K) ⊆ K† by Corollary 5.5.19. Hence by
Corollary 5.10.20 we can choose the germs fj , ϕj (j = 1, . . . , r) in Theorem 7.4.1
such that additionally f1 e

ϕ1i, . . . , fr e
ϕri is a Hahn basis of kerC<∞[i]A; then the fj

with ϕj = 0 form a valuation basis of the valued C-linear space kerK A. Fix
such fj , ϕj , and let ⟨ , ⟩ be the “positive definite hermitian form” on the K-linear
subspace K[eHi] of C<∞[i], as specified in the remarks after Corollary 5.10.32, with
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associated “norm” ∥ · ∥ on K[eHi] given by ∥f∥ :=
√

⟨f, f⟩ ∈ H⩾. Those remarks
give

⟨fj eϕj i, fk e
ϕki⟩ =

{
0 if ϕj ̸= ϕk,

fjfk if ϕj = ϕk,

and so ∥fj eϕj i∥ = |fj |.
Next, let H0 ⊇ R be a Liouville closed Hardy subfield of H, set K0 := H0[i]

and suppose I(K0) ⊆ K†
0 , A ∈ K0[∂], and A splits over K0. Then we can can

choose the ϕj , fj in Theorem 7.4.1 such that f1 e
ϕ1i, . . . , fr e

ϕri is a Hahn basis
of kerC<∞[i]A, ϕ1, . . . , ϕr ∈ H0, and vf1, . . . , vfr ∈ v(H×

0 ), by Corollaries 2.6.21
and 5.10.28.

For each ϕ ∈ H, the C-linear operator y 7→ A(y) on C<∞[i] maps the C-linear
subspace K eϕi of C<∞[i] into itself (Lemma 5.5.25); more precisely, by Corol-
lary 5.10.23:

Corollary 7.4.2. Suppose H is d-maximal, and let ϕ ∈ H. Then A(K eϕi) =
K eϕi. Moreover, if ϕ′i+K† ∈ K/K† is not an eigenvalue of A, then for each b ∈ K
there is a unique y ∈ K with A(y eϕi) = b eϕi.

Can the assumption “H is d-maximal” in Theorem 7.4.1 and Corollary 7.4.2 be
weakened to “H is perfect”? The case H = E := E(Q) is illuminating: E ⊇ R is

a Liouville closed H-field, so contains the germs x and ex
2

, but Boshernitzan [35,
Proposition 3.7] showed that E is not 2-linearly surjective, as there is no y ∈ E

with y′′ + y = ex
2

. In fact, the conclusion of Corollary 7.4.2 fails for H = E:

Lemma 7.4.3. Suppose H = E. Then K is not 1-linearly surjective: there is

no y ∈ K with y′ − yi = ex
2

.

Proof. Suppose y = a+ bi (a, b ∈ H) satisfies y′ − yi = ex
2

. Now

y′ − yi = (a′ + b′i)− (−b+ ai) = (a′ + b) + (b′ − a)i,

hence a′+b = ex
2

and b′ = a, so b′′+b = ex
2

, contradicting [35, Proposition 3.7]. □

It follows that the conclusion of Theorem 7.4.1 fails for H = E:

Corollary 7.4.4. Let H = E and A = (∂ − 2x)(∂ − i). Then kerK[eHi ]A = C exi.

Proof. In Section 5.10 we identified the universal exponential extension of K with
K[eHi]. We have exi ∈ kerK[eHi ]A. Suppose dimC kerK[eHi ]A = 2. Then by Corol-

lary 2.5.6, the eigenvalues of A are 2x + K† and i + K†. Now 2x ∈ K†, which
gives f ∈ K× with A(f) = 0, so kerK[eHi ]A has basis f, exi. Also i /∈ K† by a

remark preceding Lemma 1.2.16, so [ADH, 5.1.14(ii)] yields (∂ − i)(cf) = ex
2

for
some c ∈ C×, contradicting the lemma above. □

A vestige of linear surjectivity is retained by d-perfect Hardy fields:

Corollary 7.4.5. Suppose H ⊇ R is Liouville closed and I(K) ⊆ K†, and A splits
over K. Then there are m, n ∈ H× such that for each Hardy field extension F of H
and b ∈ F [i] with b ≺ n, there exists y ∈ D(F )[i] that is the unique y ∈ C<∞[i]
with A(y) = b and y ≺ m. (So if H is d-perfect, then for such m, n and all b ∈ K
with b ≺ n there is a unique y ∈ K with A(y) = b and y ≺ m.)

376



Proof. Let E be a d-maximal Hardy field extension of H. Theorem 7.4.1 and the
remark following it yields a Hahn basis

f1 e
ϕ1i, . . . , fr e

ϕri (f1, . . . , fr ∈ E[i]×, ϕ1, . . . , ϕr ∈ E)

of kerC<∞[i]A with ϕ1, . . . , ϕr ∈ H and vf1, . . . , vfr ∈ Γ = v(K×). It follows from
Corollaries 2.6.21 and 5.10.28 that E e(A) = E e

E[i](A) = {vfj : j = 1, . . . , r, ϕj = 0}.
By Corollary 1.8.10 the quantity veA(γ), for γ ∈ Γ, does not change when passing
from K to any ungrounded H-asymptotic extension of K.

Take m, n ∈ H× with m ≺ f1, . . . , fr and vn = veA(vm). Consider a Hardy
field extension F of H. Let b ∈ F [i]×, b ≺ n, and let M be a d-maximal Hardy
field extension of F . Then linear newtonianity of L := M [i] and Corollary 1.5.7
yields y ∈ L with A(y) = b, vy /∈ E e

L(A) = E e(A), and veA(vy) = vb. Then veA(vy) =
vb > vn = veA(vm). Since vm > E e

L(A), this yields y ≺ m by Lemma 1.5.6.
Suppose z ∈ C<∞[i], A(z) = b, and y ̸= z ≺ m. Then u := y − z ∈ kerC<∞[i]A
and 0 ̸= u ≺ m, so fj ≺ m for some j by Corollary 5.10.18 (applied to E, E[i] in
place ofH, K), a contradiction. This last argument also takes care of the case b = 0:
there is no nonzero u ≺ m in C<∞[i] such that A(u) = 0. □

In [15] we shall prove that if H is ω-free and d-perfect, then K is linearly closed.
(This applies to H = E.) In particular, if the d-perfect hull D(H) of H is ω-free,
then A splits over the algebraic closure D(H)[i] of D(H). (In Section 7.5 below
we characterize when D(H) is ω-free.) Now if A splits over D(H)[i], then there
are g, ϕ ∈ D(H), g ̸= 0, such that A(g eϕi) = 0. The next lemma helps to clarify
when for H ⊇ R we may take here g, ϕ in the Hardy subfield Li(H) of D(H).

Lemma 7.4.6. Suppose H ⊇ R. The following are equivalent:

(i) there exists y ̸= 0 in a Liouville extension of the differential field K such
that A(y) = 0;

(ii) there exists f ∈ Li(H)[i] such that f ′ is algebraic over K and A(ef ) = 0;
(iii) there exists f ∈ Li(H)[i] such that A(ef ) = 0.

Proof. Suppose (i) holds. Then Corollary 1.1.30 gives y ̸= 0 in a differential field
extension L of K such that A(y) = 0 and g := y† is algebraic over K. We arrange
that L contains the algebraic closureKa = Hrc[i] ofK, whereHrc ⊆ C<∞ is the real
closure of the Hardy fieldH. Thus g ∈ Ka, and hence A = B(∂−g) where B ∈ Ka[∂]
by [ADH, 5.1.21]. Take f ∈ Li(H)[i] with f ′ = g and set z := ef ∈ C<∞[i]×.
Then z† = g and thus A(z) = 0. This shows (i) ⇒ (ii), and (ii) ⇒ (iii) is trivial.
To prove (iii) ⇒ (i), let f be as in (iii) and y := ef ∈ C<∞[i]×. By [ADH, 10.6.6]
the differential field

L := Li(H)[i] ⊆ C<∞[i]

is a Liouville extension of K = H[i]. Now L[y] ⊆ UL := L
[
eLi(H)i

]
⊆ C<∞[i]

and y† = f ′ ∈ L, so the differential fraction field L(y) of L is a Liouville extension
of L, and hence of K. □

Corollary 7.4.7. If H ⊇ R is real closed and A(y) = 0 for some y ̸= 0 in a
Liouville extension of K, then A(ef ) = 0 for some f ∈ Li(H)[i] with f ′ ∈ K.

We assume H ⊇ R in the next three results. Let E be a d-maximal Hardy field
extension of H. By Theorem 7.4.1, A splits over E[i]. When does A already split
over the d-subfield Li(H)[i] of E[i]? Here is a necessary condition:
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Corollary 7.4.8. If A splits over Li(H)[i], then it splits over Hrc[i].

Proof. We arrange H = Hrc and proceed by induction on r. The case r = 0
being trivial, suppose r ⩾ 1 and A splits over L := Li(H)[i]. Then [ADH, 5.1.21]
yields y ̸= 0 in a differential field extension of L with constant field C and y† ∈ L
such that A(y) = 0. Now L⟨y⟩ is a Liouville extension of L and hence of K, so
Lemma 7.4.6 gives f ∈ L with f ′ ∈ K and A(ef ) = 0. Then A = B(∂ − f ′)
where B ∈ K[∂] by [ADH, 5.1.21], and B splits over Li(H)[i] by [ADH, 5.1.22]. We
can assume inductively that B splits over K, and then A does too. □

With a weaker hypothesis on A, we have:

Lemma 7.4.9. Suppose A(y) = 0 for some y ̸= 0 in a Liouville extension of K.
Then there is a monic B ∈ K[∂] of order n ⩾ 1 such that A ∈ K[∂]B and the
C-linear space of zeros of B in C<∞[i] has a basis

g1 e
ϕ1i, . . . , gn e

ϕni where g1, . . . , gn ∈ Li(H)×, ϕ1, . . . , ϕn ∈ Li(H)

and g†1, . . . , g
†
n, ϕ

′
1, . . . , ϕ

′
n ∈ Hrc. Any such B splits over Hrc[i].

Proof. Put L := Li(H)[i] and identify UL with the differential subring L
[
eLi(H)i

]
of C<∞[i] as explained at the beginning of Section 5.10. We consider also the
differential subfield Ka := Hrc[i] of L, and use Lemma 2.2.12 to identify U :=
UKa with a differential subring of UL, so for all u ∈ C<∞[i]× with u† ∈ Ka we
have u ∈ U×. Corollary 7.4.7 yields f ∈ L such that f ′ ∈ Ka and A(ef ) = 0.
Then g := eRe f ∈ Li(H)× and ϕ := Im f ∈ Li(H) with ef = g eϕi, so g† = Re f ′,
ϕ′ = Im f ′, and thus g†, ϕ′ ∈ Hrc. Now (ef )† = f ′ ∈ Ka, so y := ef ∈ U×.
Let V be the C-linear subspace of U spanned by the σ(y) with σ ∈ Aut∂(U|K).
Then y ∈ V ⊆ kerUA and so n := dimC V ∈ {1, . . . , r}. Corollary 2.5.9 yields
a unique monic B ∈ Ka[∂] of order n such that V = kerUB. From σ(V ) = V
for all σ ∈ Aut∂(U|K) we get B ∈ K[∂] by Corollary 2.2.16. Then A ∈ K[∂]B
by [ADH, 5.1.15(i), 5.1.11]. To show V has a basis as described in the lemma, let σ ∈
Aut∂(U|K). Then σ(y) ∈ U×, so σ(y)† ∈ Ka = Hrc+Hrc[i], hence σ(y)† = g†σ+ϕ

′
σi

with gσ, ϕσ ∈ Hrc, gσ ̸= 0. Also
(
gσ e

ϕσi
)†

= g†σ + ϕ′σi, and thus σ(y) = cσgσ e
ϕσi

with cσ ∈ C×. This yields a basis of V as claimed. The final splitting claim follows
from Corollary 2.5.9. □

Lemma 7.4.9 yields the following corollary inspired by [187, Corollary 3].

Corollary 7.4.10. If A is irreducible, then the following are equivalent:

(i) A(y) = 0 for some y ̸= 0 in a Liouville extension of K;
(ii) the C-linear space of zeros of A in C<∞[i] has a basis

g1 e
ϕ1i, . . . , gr e

ϕri where g1, . . . , gr ∈ Li(H)×, ϕ1, . . . , ϕr ∈ Li(H)

and g†1, . . . , g
†
r, ϕ

′
1, . . . , ϕ

′
r are algebraic over H.

Next we improve the bounds on the derivatives of solutions to linear differential
equations from Corollary 5.7.2 when the coefficients of the equation are in K:

Corollary 7.4.11. Let m ∈ H with 0 < m ≼ 1 and y ∈ Cr[i] be such that A(y) = 0
and y ≼ mn. Then y ∈ C<∞[i] and

y(j) ≼ mn−jv(A)−j for j = 0, . . . , n,

with ≺ in place of ≼ if y ≺ mn.
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Proof. First arrange that H is d-maximal. Choose a complement ΛH of the R-
linear subspace I(H) of H, set Λ := ΛH i, and identify the universal exponential
extension U = UK of K with the differential subring K[eHi] of C<∞[i] as described
at the beginning of Section 5.10. By Lemmas 5.10.19 and 5.10.22 we have y ∈
kerC<∞[i]A = kerUA and

y = f1 e
ϕ1i + · · ·+ fm eϕmi, f1, . . . , fm ∈ K, ϕ1, . . . , ϕm ∈ H,

where λ1 := ϕ′1i, . . . , λm := ϕ′mi ∈ Λ are the distinct eigenvalues of A with respect
to Λ and f1 e

ϕ1i, . . . , fm eϕmi ∈ kerUA. By Corollary 5.10.9 and Lemma 5.10.10,
we have for j = 1, . . . ,m: fj e

ϕj i ≼ mn, with fj e
ϕj i ≺ mn if y ≺ mn. Hence we may

arrange that y = f eϕi where f ∈ K, ϕ ∈ H, and λ := ϕ′i ∈ Λ is an eigenvalue of A
with respect to Λ, so λ ≼ v−1 by Corollary 4.4.6, where v := v(A) ≼ 1.

Now for each j ∈ N: (eϕi)(j) = Rj(λ) e
ϕi ≼ v−j , using Lemma 1.1.20 if λ ≽ 1,

and so by the Product Rule: if g ∈ Cj [i]≼, then (g eϕi)(j) ≼ v−j , and likewise
with ≺ in place of ≼. If m ≍ 1, then this observation with g := f already yields the
desired conclusion. Suppose m ≺ 1. Then with z := ym−n = fm−n eϕi this same
observation with g := fm−n gives for j = 0, . . . , n: z(j) ≼ v−j , with z(j) ≺ v−j

if y ≺ mn. Now z ∈ Cn[i], so we can use Lemma 5.7.10 for r = n and η = |v|−1. □

For m = 1 we obtain from Corollary 7.4.11:

Corollary 7.4.12. Let y ∈ Cr[i] be such that A(y) = 0 and y ≼ 1. Then y ∈ C<∞[i]
and y(n) ≼ v(A)−n for all n, with ≺ in place of ≼ if y ≺ 1.

Recall from (2.4.3) the concomitant PA ∈ K{Y,Z} of A. It yields a C-bilinear map

(y, z) 7→ [y, z]A := PA(y, z) : C<∞[i]× C<∞[i] → C<∞[i]

used in the next result, which is immediate from Corollaries 5.10.29 and 7.2.10.

Corollary 7.4.13. Suppose H is d-maximal, and let fj, ϕj be as in Theorem 7.4.1.
Then the C-linear space of zeros of the adjoint A∗ of A in C<∞[i] has a basis

f∗1 e−ϕ1i, . . . , f∗r e
−ϕri where f∗j ∈ K× (j = 1, . . . , r)

such that
[
fj e

ϕj i, f∗k e
−ϕki

]
A
= δjk for j, k = 1, . . . , r.

Recall that A is said to be self-adjoint if A∗ = A, and skew-adjoint if A∗ = −A.
(See Definition 2.4.12.) Self-adjoint operators play an important role in boundary
value problems; see, e.g., [61, Chapter XIII]. The next result follows from Corollar-
ies 2.4.30, 5.10.31 and 7.2.10 and applies to such operators:

Corollary 7.4.14. Suppose H is d-maximal, and A∗ = (−1)rA⋉a, a ∈ K×. Then
there are a1, . . . , ar ∈ K such that

A = (∂ − ar) · · · (∂ − a1) and aj + ar−j+1 = a† for j = 1, . . . , r.

For fj, ϕj as in Theorem 7.4.1 we have: ϕ1+· · ·+ϕr ≼ 1, and for each i ∈ {1, . . . , r}
there is a j ∈ {1, . . . , r} such that ϕi + ϕj ≼ 1.

Operators satisfying the hypothesis of Corollary 7.4.14 are self-dual in the sense of
Section 2.4. For sources of such operators in physics, see [38]. The next result is
immediate from Corollary 2.4.9 and Theorem 7.4.1 and gives a sufficient condition
for such operators to have nontrivial zeros in complexified Hardy fields:
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Corollary 7.4.15. If A is self-dual (which is the case if A is skew-adjoint), r is
odd, and L is a d-maximal Hardy field extension of H, then there are y, z ∈ L, not
both zero, such that A(y + zi) = 0.

The space of zeros of a self-dual A has a special kind of basis, by Corollary 5.10.32:

Corollary 7.4.16. Suppose A is self-dual and H is d-maximal. Then the C-linear
space of zeros of A in C<∞[i] has a basis

f1 e
ϕ1i, g1 e

−ϕ1i, . . . , fm eϕmi, gm e−ϕmi, h1, . . . , hn (2m+ n = r)

where f1, . . . , fm, g1, . . . , gm, h1, . . . , hn ∈ K×, and ϕ1, . . . , ϕm ∈ H>R are apart.

Bounded operators. In this subsection H is d-maximal. (One can often re-
duce to this situation by extending a given Hardy field to a d-maximal Hardy
field.) We choose an R-linear complement ΛH of I(H) in H, set Λ := ΛH i,
and identify U := UK with K[eHi] as explained at the beginning of Section 5.10.
Also A ∈ O[∂] (so v(A) = 1). Thus U× = K× eHi and V := kerC<∞[i]A = kerUA.

See Sections 5.2 and 5.10 for definitions of Lyapunov exponents and of C[i]⪯⪯
and U⪯⪯.

Lemma 7.4.17. V ⊆ U⪯⪯, and λ(y) = λ(y, y′, . . . , y(r−1)) ∈ R for all y ∈ V ̸=.

Proof. Lemma 2.3.36 gives Σ(A) ⊆ [O], and Corollary 5.2.50 yields V ⊆ U∩C[i]⪯⪯.
Lemma 5.10.19 gives a basis f1 e(h1i), . . . , fr e(hri) of the C-linear space V with
f1, . . . , fr ∈ K× and h1, . . . , hr ∈ ΛH , and it says that then the eigenvalues of A
with respect to Λ are h1i, . . . , hri. So for j = 1, . . . , r we have hji− a ∈ K† = H +
I(H)i with a ∈ O. Then hj− Im a ∈ I(H) ⊆ OH and Im a ∈ OH , so hj ∈ ΛH ∩OH .

From fj e(hji) ∈ C[i]⪯⪯ we obtain fj ∈ K ∩ C[i]⪯⪯ = O∆, so V ⊆ U⪯⪯. The rest
follows from Corollary 5.2.50 and Lemma 5.10.49. □

For y ∈ C1[i]×, in Section 5.10 we also defined

µ(y) = lim sup
t→+∞

Im
y′(t)

y(t)
∈ R±∞.

The zeros of the characteristic polynomial χA ∈ C[Y ] of A (defined in Section 2.3)
contain information about elements of V ∩U×:

Lemma 7.4.18. Let f ∈ K× and ϕ ∈ H be such that y = f eϕi ∈ V . Then y ∈
(U⪯⪯)×, λ := λ(y) ∈ R, µ := µ(y) ∈ R, ϕ− µx ≺ x, and with α := ϕ′i +K†:

χA(−λ+ µi) = 0, multα(A) ⩽
∑

c∈C, Im c=µ

multc(χA).

Proof. Corollary 2.3.37 gives y† ≼ 1, so y ∈ (U⪯⪯)×, λ, µ ∈ R with y†−(−λ+µi) ≺ 1
and ϕ′ ≼ 1 by Lemma 5.10.48 and an observation following Corollary 5.10.50.
Then ϕ′ − µ ≺ 1, so ϕ − µx ≺ x. The rest follows from Corollary 2.3.37 and
Lemma 2.3.39. □

A Lyapunov basis of V is a basis y1, . . . , yr of the C-linear space V such that
for all c1, . . . , cr ∈ C, not all zero, and y = c1y1 + · · · + cryr we have λ(y) =
min

{
λ(yj) : cj ̸= 0

}
. There is a Lyapunov basis of V ; indeed, by the remarks after

Theorem 7.4.1 and Corollary 5.10.44:
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Corollary 7.4.19. The C-linear space V has a Hahn basis

f1 e
ϕ1i, . . . , fr e

ϕri (f1, . . . , fr ∈ K×, ϕ1, . . . , ϕr ∈ H),

and every such Hahn basis of V is a Lyapunov basis of V .

Question. By Perron [148, Satz 8] (see also [191, Satz VI]), V has a Lyapunov
basis y1, . . . , yr such that for each λ ∈ R, the number of j with λ(yj) = λ is equal
to
∑
µ∈R mult−λ+µi(χA). Can we choose here y1, . . . , yr to be a Hahn basis of V ?

Corollary 7.4.20. If χA has no real zeros, then K† is not an eigenvalue of A, and
so there is no y ∈ K× such that A(y) = 0.

Proof. Take a Hahn basis of V as in Corollary 7.4.19. Then the eigenvalues of A
are ϕ′1i +K†, . . . , ϕ′ri +K†, by Theorem 7.4.1. Suppose K† is an eigenvalue of A.
Then we have j with ϕ′ji ∈ K† = H + I(H)i, so ϕ′j ∈ I(H), hence ϕj ≼ 1, and
thus ϕj = 0. Then Lemma 7.4.18 yields a real zero of χA. For the rest, use that
the fj with ϕj = 0 form a basis of kerK A by remarks after Theorem 7.4.1. □

Example. The linear differential equation

y′′′ −
(
i +

1

ex

)
y′′ +

(
1− 1

log x

)
y′ −

(
i +

1

x2

)
y = 0

has no nonzero solution in F [i] for any Hardy field F .

We can now prove a strong version of a theorem of Perron [147, Satz 5] in the
setting of linear differential equations over complexified Hardy fields. (A precursor
of Perron’s theorem for A ∈ C(x)[∂] is due to Poincaré [154].) Perron assumes
additionally that the real parts of distinct zeros of χA are distinct.

Proposition 7.4.21. Suppose all (complex ) zeros of χA are simple. Let

y1 = f1 e
ϕ1i, . . . , yr = fr e

ϕri (f1, . . . , fr ∈ K×, ϕ1, . . . , ϕr ∈ H)

be a Hahn basis of V . Then the zeros of χA are

c1 := −λ(y1) + µ(y1)i, . . . , cr := −λ(yr) + µ(yr)i,

and
(
y
(n)
j /yj

)
− cnj ≺ 1 for j = 1, . . . , r and all n.

Proof. By Lemma 7.4.18 each cj is a zero of χA, and we claim that there are
no other. Let c = −λ + µi (λ, µ ∈ R) be a zero of χA. Then Corollary 1.8.47
and [ADH, 5.1.21, 5.8.7] yield A ∈ K[∂]

(
∂−(p+qi)

)
with p, q ∈ OH , p+λ, q−µ ≺ 1.

Taking f ∈ H× and ϕ ∈ H with f† = p and ϕ′ = q we have y := f eϕi ∈ V ̸= and
so λ(y) = λ and µ(y) = µ.

Take a1, . . . , ar ∈ C such that y = a1f1 e
ϕ1i + · · · + arfr e

ϕri. As in the proof
of Corollary 5.10.44 (but with r instead of m) we arrange, with l ∈ {1, . . . , r},
that ϕ1, . . . , ϕl are distinct and each ϕj with l < j ⩽ r equals one of ϕ1, . . . , ϕl.
For k = 1, . . . , l we take (as in that proof, but with other notation) hk ∈ ΛH such
that ϕk−ϕ(hki) ≼ 1 and put gk :=

∑
1⩽j⩽l, ϕj=ϕk

ajfj and uk := e(ϕk−ϕ(hki))i, and

likewise h ∈ ΛH with ϕ− ϕ(hi) ≼ 1, and set u := e(ϕ−ϕ(hi))i. Then

y = uf e(hi) = g1 e
ϕ1i + · · ·+ gl e

ϕli = u1g1 e(h1i) + · · ·+ ul gl e(hli).

Now u, u1, . . . , ul ∈ K, so h = hk for some k ∈ {1, . . . , l}, say h = h1, hence uf =
u1g1 and so y = g1 e

ϕ1i. Since the fj with ϕj = ϕ1 are valuation-independent
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and f ≍ g1, this yields j with ϕj = ϕ1 and aj ̸= 0 such that f ≍ fj . Then λ =
λ(y) = λ(f) = λ(fj) = λ(yj). The proof of Lemma 7.4.18 gives

µ = µ(y) = lim
t→∞

ϕ′(t), µ(yj) = lim
t→∞

ϕ′j(t) = lim
t→∞

ϕ′1(t).

But ϕ1 − ϕ(h1i) ≼ 1, ϕ− ϕ(hi) ≼ 1, and h = h1, so ϕ− ϕ1 ≼ 1, hence ϕ′ − ϕ′1 ≺ 1,
and thus µ = µ(yj). This yields c = cj . For the last claim, let j ∈ {1, . . . , r}.
Then for zj := y†j we have zj − cj ≺ 1 (see for example the proof of Lemma 7.4.18),

and y
(n)
j /yj = Rn(zj). Now use Lemma 1.1.20 if cj ̸= 0. If cj = 0, then zj ≺ 1, so

we can use that then Rn(zj) ≺ 1 for n ⩾ 1. □

Corollary 7.4.22. Suppose the real part of each complex zero of χA is negative.
Then for all y ∈ V and all n we have y(n) ≺ 1.

Proof. By Corollary 7.4.19 it is enough to consider the case y = f eϕi ∈ V where f ∈
K×, ϕ ∈ H. Then λ := λ(y) = λ(f) ∈ R> by Lemma 7.4.18, which for 0 < ε < λ
gives f ≺ e−(λ−ε)x ≺ 1. Now use Corollary 7.4.12. □

We use Corollary 7.4.22 to strengthen another theorem of Perron [149, 150] in the
Hardy field context:

Corollary 7.4.23. Suppose a0 := χA(0) ̸= 0. Let b ∈ K, b ≼ 1. Then there
exists y ∈ K such that

A(y) = b, y − (b/a0) ≺ 1, y(n) ≺ 1 for all n ⩾ 1.

Moreover, if the real part of each complex zero of χA is negative, then all y ∈ C<∞[i]
with A(y) = b satisfy y − (b/a0) ≺ 1 and y(n) ≺ 1 for all n ⩾ 1.

Proof. By Theorem 6.7.22 and [ADH, 14.5.7],K is r-linearly newtonian. As ∂O ⊆ O,
for the first part it is enough to find y ∈ K such that A(y) = b and y − (b/a0) ≺ 1.
Corollary 1.5.8 yields such y if b ≍ 1, so suppose 0 ̸= b ≺ 1 (since for b = 0 we

can take y = 0). From A(1) ≍ 1 and Proposition 1.5.2 we obtain 0 /∈ v(ker ̸=K A) =
E e(A). Corollary 1.5.7 then yields y ∈ K× with A(y) = b, vy /∈ E e(A), and
veA(vy) = vb. Now A(1) ≍ 1 gives veA(0) = 0, so y ≺ 1 by Lemma 1.5.6. The second
statement now follows from Corollary 7.4.22. □

Example. Each y ∈ C2[i] with

y′′ + (2− i)(1 + x−1 log x)y′ + (1− i)y = 2 + e−x
2

satisfies y ∼ i+1 and y(n) ≺ 1 for each n ⩾ 1, and there is such a y ∈ F [i] for some
Hardy field F .

Here is a version of Corollary 2.3.40 in the Hardy field setting:

Proposition 7.4.24. Let H0 be a d-perfect Hardy subfield of H such that A ∈ K0[∂]
for K0 := H0[i]. Suppose r := order(A) ⩾ 1 and χA has distinct zeros c1, . . . , cr ∈ C
with Re c1 ⩾ · · · ⩾ Re cr. Then there is a unique splitting (a1, . . . , ar) of A over K
such that a1 − c1, . . . , ar − cr ≺ 1. If in addition Re c1 > · · · > Re cr, then for this
splitting of A over K we have a1, . . . , ar ∈ OK0 .

Proof. The first claim holds by Corollary 2.3.40. Suppose Re c1 > · · · > Re cr; it
remains to show a1, . . . , ar ∈ OK0 . For this we proceed by induction on r. The
case r = 1 being obvious, suppose r > 1. Let y1, . . . , yr be a Hahn basis of V
with cj = −λ(yj) + µ(yj)i for j = 1, . . . , r as in Proposition 7.4.21. Lemma 5.5.21
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yields θj ∈ H with yj = |yj | eθj i and |yj | ∈ H>, for j = 1, . . . , r; these θj might be
different from the ϕj of Proposition 7.4.21. Let now F be any d-maximal Hardy
field extension of H0; we claim that |yr|, θr ∈ F . To see this, use Lemma 5.5.21 and
Proposition 7.4.21 applied to F in place of H to get f ∈ F>, θ ∈ F such that y :=
f eθi satisfies A(y) = 0 and cr − y† ≺ 1. Then y ∈ V ∩ C[i]×. Take d1, . . . , dr ∈ C
such that y = d1y1 + · · ·+ dryr. Lemma 5.10.51 applied to the djyj with dj ̸= 0 in
place of f1, . . . , fn, and with cr in the role of c, yields i ∈ {1, . . . , r} such that di ̸= 0,
ci = cr, and Re cj ⩽ Re cr for all j with dj ̸= 0. Hence i = r is the only one such j
and thus y = dryr. This yields |yr| ∈ R>f ⊆ F> and θr ∈ θ + R ⊆ F by the
uniqueness part of Lemma 5.5.20, as claimed. This claim and d-perfectness of H0

now give |yr|, ϕr ∈ H0, hence y
†
r = |yr|† + θ′ri ∈ K0. By [ADH, 5.1.21] we get A =

B(∂ − y†r) where B ∈ K0[∂] is monic, and by [ADH, 5.6.3] we have B ∈ OK0
[∂]

with χA = χB · (Y − cr), hence the zeros of B are c1, . . . , cr−1. Now apply the
inductive hypothesis to B. □

Example. The linear differential operator

∂
3 − (1− e− ex)i∂2 − (1 + i + x−2 log x2)∂ + (log log x)−1/2 ∈ O[∂]

splits over E(Q)[i]. In fact, there is a unique splitting (a1, a2, a3) of this linear
differential operator over K with a1 − (1 + i) ≺ 1, a2 ≺ 1, and a3 + 1 ≺ 1, and we
have a1, a2, a3 ∈ E(Q)[i].

Question. Can we drop the assumption Re c1 > · · · > Re cr in the last part of
Proposition 7.4.24?

Next we derive consequences of Theorem 7.4.1 for matrix differential equations.

Matrix differential equations. In this subsection H is d-maximal. We take
an R-linear complement ΛH of I(H) in H, set Λ := ΛH i, and identify U = UK
with K[eHi] as usual. Let N be an n× n matrix over K, where n ⩾ 1. Recall
from [ADH, 5.5] the definition of fundamental matrix for the matrix differential
equation y′ = Ny over any differential ring extension of K.

Corollary 7.4.25. There are M ∈ GLn(K) and ϕ1, . . . , ϕn ∈ H with ϕ1, . . . , ϕn
apart such that for D := diag(eϕ1i, . . . , eϕni), the n × n matrix MD over K[eHi]
is a fundamental matrix for y′ = Ny. Moreover, for any such M and ϕ1, . . . ϕn,
setting αj := ϕ′ji +K† for j = 1, . . . , n, the spectrum of y′ = Ny is {α1, . . . , αn},
and for all α ∈ K/K†,

multα(N) = |{j ∈ {1, . . . , n} : αj = α}|.

Proof. The hypothesis of [ADH, 5.5.14] is satisfied for R := U = K[eHi]. To see
why, let L ∈ K[∂] be monic of order n. Then Theorem 7.4.1 and a subsequent
remark provide f1, . . . , fn ∈ K× and ϕ1, . . . , ϕn ∈ H such that ϕ1, . . . , ϕn are
apart and f1 e

ϕ1i, . . . , fn e
ϕni is a basis of kerC<∞[i] L = kerΩ L, where Ω := FracU.

Hence W := Wr
(
f1 e

ϕ1i, . . . , fn e
ϕni
)
∈ GLn(Ω). Also detW ∈ eϕ1i+···+ϕniK× ⊆

U×, hence W ∈ GLn(U). Thus by the remarks preceding [ADH, 5.5.14]: W is a
fundamental matrix for y′ = ALy with U as the ambient differential ring. Note
that W = QD where D = diag(eϕ1i, . . . , eϕni) and Q ∈ GLn(K).

We now follow the proof of [ADH, 5.5.14]: take monic L ∈ K[∂] of order n
such that y′ = Ny is equivalent to y′ = ALy, and take P ∈ GLn(K) such
that P solR(AL) = solR(N). With W the above fundamental matrix for y′ = ALy,
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PW ∈ GLn
(
R) is then a fundamental matrix for y′ = Ny. SoM := PQ ∈ GLn(K)

gives MD = PW as a fundamental matrix for y′ = Ny.
Let now any M ∈ GLn(K), ϕ1, . . . , ϕn ∈ H, and D := diag(eϕ1i, . . . , eϕni) be

given such that MD is a fundamental matrix for y′ = Ny. Let f1, . . . , fn be
the successive columns of M . Then eϕ1i f1, . . . , e

ϕni fn is a basis of the C-linear
space solU(N). The “moreover” part now follows from Lemma 5.10.24. □

Recall from Corollary 5.2.46 that for f = (f1, . . . , fn) ∈ C[i]n,
λ(f) = min

{
λ(f1), . . . , λ(fn)

}
= λ

(
|f1|+ · · ·+ |fn|

)
∈ R±∞.

If f ∈ C1[i] and f /∈ C1[i]×, we set µ(f) := −∞. With this convention,

µ(f) : = max
{
µ(f1), . . . , µ(fn)

}
for f = (f1, . . . , fn) ∈ C1[i]n.

We also turn Kn into a valued C-linear space with valuation v : Kn → Γ∞ given
by v(f) := min

{
v(f1), . . . , v(fn)

}
for f = (f1, . . . , fn) ∈ Kn.

Corollary 7.4.26. We can choose M , D as in Corollary 7.4.25 such that the
successive columns f1, . . . , fn of M have the property that for k = 1, . . . , n the fj
with ϕj = ϕk are valuation-independent. For any such M,D, the matrix MD is a
Lyapunov fundamental matrix for y′ = Ny.

Proof. Take M , ϕ1, . . . , ϕn as in Corollary 7.4.25 such that ϕ1, . . . , ϕm are distinct,
m ⩽ n, and each ϕj with m < j ⩽ n is equal to some ϕk with 1 ⩽ k ⩽ m.
For V := solU(N) this yields an internal direct sum decomposition

V = eϕ1i V1 ⊕ · · · ⊕ eϕmi Vm

into C-linear subspaces of V . Now [ADH, remark before 2.3.10] yields for k =
1, . . . ,m a valuation basis of Vk. Modifying M accordingly, this yields M,D with
the desired property. The rest follows from Corollary 5.10.44. □

If the matrix N is bounded, then the solutions of y′ = Ny grow only moderately,
by Lemma 5.2.47; their oscillation is also moderate:

Lemma 7.4.27. Suppose N is bounded. Let M ∈ GLn(K) and ϕ1, . . . , ϕn ∈ H
be such that for D := diag(eϕ1i, . . . , eϕni) the n × n matrix MD over K[eHi] is a
fundamental matrix for y′ = Ny. Then ϕ1, . . . , ϕn ≼ x.

Proof. Corollary 7.4.25 yields Σ(N) = {ϕ′1i + K†, . . . , ϕ′ni + K†}. The differen-
tial module over K associated to N (cf. [ADH, p. 277]) is bounded, by Exam-
ple 2.3.32(1), hence each α ∈ Σ(N) has the form a + K† with a ∈ O, by Corol-
lary 2.3.48. Together with Lemma 2.3.38 this yields ϕ1, . . . , ϕn ≼ x. □

Corollary 7.4.28. Suppose N is bounded. Then solU(N) ⊆ (U⪯⪯)n.

Proof. Take M and D as in Lemma 7.4.27. It suffices to show that the entries
of MD are in U⪯⪯. Such an entry equals g eϕi where g is an entry of M and ϕ ∈
{ϕ1, . . . , ϕn}. Lemma 5.10.17 gives h ∈ ΛH such that ϕ − ϕ(hi) ≼ 1. Now ϕ ≼ x
by Lemma 7.4.27, so ϕ(hi) ≼ x, and thus h = ϕ(hi)′ ≼ 1. Also eϕi = u e(hi)
with u = e(h−ϕ(hi))i ∈ K×, so g eϕi = gu e(hi). Lemma 5.2.47 gives λ(g eϕi) > −∞.

Now λ(g eϕi) = λ(g) = λ(gu), so gu ∈ O∆. Then h ∈ ΛH∩OH gives g eϕi ∈ U⪯⪯. □

The next result shows how Lemma 7.4.27 also yields information for unbounded N .
For a ∈ H we let “N ≼ a” stand for “g ≼ a for every entry g of N”.
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Corollary 7.4.29. Suppose N ≼ ℓ′, ℓ ∈ H>R. Let M ∈ GLn(K), ϕ1, . . . , ϕn ∈ H,
and D := diag(eϕ1i, . . . , eϕni) be such thatMD is a fundamental matrix for y′ = Ny
over K[eHi]. Then ϕ1, . . . , ϕn ≼ ℓ, and there exists m ⩾ 1 such that f ≼ emℓ

and f ̸≼ e−mℓ, for each column f of M .

Proof. Put ϕ := ℓ′ and use the superscript ◦ as in (∂, ◦, δ), Section 6.4. Then
for R := C<∞[i] and any fundamental matrix F ∈ GLn(R) for y′ = Ny, the
matrix F ◦ ∈ GLn(R) is a fundamental matrix for z′ = (ϕ−1N)◦z. As H◦ is d-
maximal and (ϕ−1N)◦ is bounded, we can apply Lemmas 7.4.27 and 5.2.47 (and
a remark following Corollary 5.2.45) to M◦ and D◦ in the role of M and D, and
convert this back to information about M and D as claimed. □

In the next lemma and its corollary we assume N is bounded and M , D are as in
Lemma 7.4.27. Let st(N) (the standard part of N) be the n×n matrix over C such
that N − st(N) ≺ 1. For f ∈ Kn, put |f | := max

{
|f1|, . . . , |fn|

}
∈ H, so vf = v|f |.

Lemma 7.4.30. Let y = eϕi f where f = fk is the kth column of M and ϕ = ϕk,
k ∈ {1, . . . , n}. Set s := |f |−1f ∈ On. Then λ := λ(y) ∈ R, µ := µ(y) ∈ R,
and −λ+ µi ∈ C is an eigenvalue of st(N) with eigenvector st(s) ∈ Cn.

Proof. Note that y is the kth column of MD. From Lemma 5.2.47 we get λ ∈ R.
Let g be a nonzero entry of f . Then for the corresponding entry g eϕi of y we
have (g eϕi)† = g† + ϕ′i, so Im

(
(g eϕi)†

)
= Im(g†) + ϕ′ with Im(g†) ≺ 1 by a

remark preceding Lemma 1.2.16, and ϕ′ ≼ 1 by Lemma 7.4.27. Hence µ(g eϕi) =
limt→+∞ ϕ′(t) ∈ R. This gives µ = limt→+∞ ϕ′(t) ∈ R and so µ− ϕ′ ≺ 1.

Next, y′ = Ny gives ϕ′if + f ′ = Nf , and then using also Corollary 5.10.47,

Nf = (−λ+ µi)f + (ϕ′i − µi)f + λf + f ′ = (−λ+ µi)f + r, r ∈ Kn, r ≺ f.

Dividing by |f | ∈ H× then yields the claim about −λ+ µi and s. □

The proof of Lemma 7.4.30 also gives the next corollary, where In denotes the n×n
identity matrix over K, and multc

(
st(N)

)
:= dimC kerCn

(
st(N)− cIn

)
for c ∈ C:

Corollary 7.4.31. For k = 1, . . . , n, let fk be the kth column ofM , so yk := fk e
ϕki

is the kth column of MD, and put ck := −λ(yk) + µ(yk)i. If for a certain k the fj
with µj = µk are valuation-independent, then for this k we have

multck
(
st(N)

)
⩾ |{j : (λj , µj) = (λk, µk)}|.

Question. SupposeN is bounded and st(N) is the n×nmatrix over C such thatN−
st(N) ≺ 1. By Perron [151, Satz 13] there is a Lyapunov fundamental matrix F
for y′ = Ny such that for each λ ∈ R, the number of columns f of F with λ(f) =
λ equals

∑
µ∈R mult−λ+µi

(
st(N)

)
. Can one take here F of the form F = MD

where M ∈ GLn(K) and D = diag(eϕ1i, . . . , eϕni) with ϕ1, . . . , ϕn ∈ H?

Recall: a column vector (y1, . . . , yn)
t ∈ C[i]n is said to be bounded if y1, . . . , yn ≼ 1.

Lemma 7.4.32. Suppose y′ = Ny where y ∈ C1[i]n is bounded. Then

y = eϕ1i z1 + · · ·+ eϕm zm

where m ⩽ n, ϕ1, . . . , ϕm ∈ H are distinct and apart, z1, . . . , zm ∈ Kn are bounded,
and eϕ1i z1, . . . , e

ϕmi zm ∈ solU(N).
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Proof. Let M ∈ GLn(K) and ϕ1, . . . , ϕn ∈ H be as in Corollary 7.4.25, in par-
ticular, ϕ1, . . . , ϕn are apart. For j = 1, . . . , n, let fj ∈ Kn be the jth column
of M . Take c1, . . . , cn ∈ C such that y = c1 e

ϕ1i f1 + · · · + cn e
ϕni fn. We arrange

that ϕ1, . . . , ϕm are distinct, m ⩽ n, and each ϕj with m < j ⩽ n is equal to one of
the ϕk with 1 ⩽ k ⩽ m. This gives y = eϕ1i z1 + · · ·+eϕm zm with z1, . . . , zm ∈ Kn

and eϕ1i z1, . . . , e
ϕmi zm ∈ solU(N). The ≼-version of Corollary 5.10.18 with m = 1

then shows that z1, . . . , zm are bounded. □

See [18, Chapter 2] and [45, Chapter II, §3] for classical conditions on a matrix
differential equation to have only bounded solutions.

Despite Corollary 7.4.25, the differential fraction field of K[eHi] is not pv-closed,
since it is not even algebraically closed; see [ADH, 5.1.31] and Lemma 2.1.2. Com-
bining Corollary 7.2.10 and [ADH, 5.4.2] also yields:

Corollary 7.4.33. For every column b ∈ Kn the matrix differential equation y′ =
Ny + b has a solution in Kn.

We also have a version of Corollary 7.4.15 for matrix differential equations:

Corollary 7.4.34. Suppose y′ = Ny is self-dual. If α is an eigenvalue of y′ = Ny,
then so is −α, with the same multiplicity. If n is odd, then the matrix differential
equation y′ = Ny has a solution y ̸= 0 in Kn.

This follows from Corollaries 2.4.36 and 7.4.25. Note that the hypothesis on N in
Corollary 7.4.34 is satisfied if y′ = Ny is self-adjoint or hamiltonian.

If y′ = Ny is self-adjoint, and M ∈ GLn(K) and ϕ1, . . . , ϕn ∈ H (as in Corol-
lary 7.4.25) are such that MD is a fundamental matrix for y′ = Ny where D :=
diag(eϕ1i, . . . , eϕni), then there exists U ∈ GLn(C) such that the fundamental ma-
trix MDU ∈ GLn

(
K[eHi]

)
of y′ = Ny is orthogonal as an element of GLn(Ω),

where Ω is the differential fraction field of K[eH
i

]; likewise with “hamiltonian” and
“symplectic” instead of “self-adjoint” and “orthogonal”: Lemmas 2.4.39 and 2.4.40.

Example. Any matrix differential equation y′ = Ny with

N =

 0 a b
−a 0 c
−b −c 0

 (a, b, c ∈ K = H[i])

has a nonzero solution y = (y1, y2, y3)
t ∈ K3.

In the self-dual case we can improve on Corollary 7.4.25:

Corollary 7.4.35. Suppose y′ = Ny is self-dual. Then there are M ∈ GLn(K)
and ϕ1, . . . , ϕn ∈ H that are apart such that

(i) for each j ∈ {1, . . . , n} there is a k ∈ {1, . . . , n} with ϕj = −ϕk;
(ii) with D := diag(eϕ1i, . . . , eϕni), the n × n matrix MD over K[eHi] is a

fundamental matrix for y′ = Ny.

Proof. Corollary 2.4.34 yields a matrix differential equation y′ = ALy over K,
equivalent to y′ = Ny, where L ∈ K[∂] is monic self-dual of order n. Then we can
use Corollary 7.4.16 instead of Theorem 7.4.1 in the proof of Corollary 7.4.25. □

Let Ω be the differential fraction field of K[eHi] and V := solΩ(N) ⊆ K[eHi]n, a
C-linear subspace of Ωn. Then dimC V = n and V = solC<∞[i](N). In the corollary
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below we assume that y′ = Ny is self-adjoint, and we equip V with the symmetric
bilinear form ⟨ , ⟩ defined after Lemma 2.4.38 (with Ω instead of K).

Corollary 7.4.36. There are m ⩽ n and distinct θ1, . . . , θm in H>R that are
apart, subspaces V1, . . . , Vm,W of the C-linear space V with W ⊆ Kn, and for j =
1, . . . ,m, nonzero subspaces V +

j , V
−
j of Kn, such that

Vj = V +
j eθj i ⊕V −

j e−θj i (internal direct sum of subspaces of Vj),

V = V1 ⊥ · · · ⊥ Vm ⊥W (orthogonal sum with respect to ⟨ , ⟩).

For any such m and θj, Vj, V
+
j , V

−
j , W we have dimC V

+
j = dimC V

−
j and ⟨ , ⟩

restricts to a null form on V +
j eθj i and on V −

j e−θj i.

Proof. Take M and ϕ1, . . . , ϕn as in Corollary 7.4.35, and set

D := diag(eϕ1i, . . . , eϕni).

Let (f1, . . . , fn)
t be the jth column ofM and (g1, . . . , gn)

t be the kth column ofM .
The jth column of MD is f = (f1 e

ϕj i, . . . , fn e
ϕj i)t, and the kth column of MD

is g = (g1 e
ϕki, . . . , gn e

ϕki)t, and f, g ∈ solΩ(N) by Corollary 7.4.35(ii). Thus by
Lemma 2.4.38 applied to Ω in place of K we have

⟨f, g⟩ = (f1g1 + · · ·+ fngn) e
(ϕj+ϕk)i ∈ C.

Corollary 7.4.35(i) gives l ∈ {1, . . . , n} with ϕk = −ϕl; then ϕj + ϕk = ϕj − ϕl.

Hence if ϕj ̸= −ϕk, then ϕj + ϕk ≻ 1 by ϕj , ϕl being apart, so e(ϕj+ϕk)i /∈ K by
Corollary 5.5.23 and thus ⟨f, g⟩ = 0. Taking θ1, . . . , θm to be the distinct positive
elements of {ϕ1, . . . , ϕn}, this yields the existence statement. The rest follows from
Corollary 2.4.36, Lemma 5.10.24, and again Corollary 5.5.23. □

Remark. Suppose y′ = Ny is hamiltonian. Then Corollary 7.4.36 remains true
with ⟨ , ⟩ replaced by the alternating bilinear form ω on V of Lemma 2.4.41. (Same
proof, using Lemma 2.4.41 instead of Lemma 2.4.38.)

The complex conjugation automorphism of the differential ring C<∞[i] restricts to
an automorphism of the differential integral domain U = K[eHi], which in turn
extends uniquely to an automorphism g 7→ g of the differential field Ω, with g = g
for all g ∈ Ω. Let Ωr be the fixed field of this automorphism of Ω. Then Ωr is a
differential subfield of Ω, and Ω = Ωr[i]. Set Ur := Ωr ∩U. Then

Ωr = Frac(Ur) inside Ω, Ur = U ∩ C<∞ inside C<∞[i], U = Ur[i].

Assume in the rest of this subsection that y′ = Ny is anti-self-adjoint, and equip the
C-linear space V = solΩ(N) with the positive definite hermitian form ⟨ , ⟩ introduced
after Lemma 2.4.45, with Ω in the role of K. Then we have the following analogue
of Corollary 7.4.36:

Corollary 7.4.37. There are m ∈ {1, . . . , n}, distinct θ1, . . . , θm ∈ H that are
apart, and nonzero C-linear subspaces V1, . . . , Vm of Kn such that V is the following
orthogonal sum with respect to ⟨ , ⟩:

V = V1 e
θ1i ⊥ · · · ⊥ Vm eθmi .

Proof. Corollary 7.4.25 givesM ∈ GLn(K) and ϕ1, . . . , ϕn ∈ H that are apart such
that MD is a fundamental matrix for y′ = Ny where D := diag

(
eϕ1i, . . . , eϕni

)
.

For j, k = 1, . . . , n, let f = (f1 e
ϕj i, . . . , fn e

ϕj i)t be the jth column of MD and g =
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(g1 e
ϕki, . . . , gn e

ϕki)t the kth column of MD, where f1, . . . , fn and g1, . . . , gn are
in K. Then by Lemma 2.4.45,

⟨f, g⟩ = (f1g1 + · · ·+ fngn) e
(ϕj−ϕk)i ∈ C

and hence ⟨f, g⟩ = 0 if ϕj ̸= ϕk, by Corollary 5.5.23. Taking θ1, . . . , θm to be the
distinct elements of {ϕ1, . . . , ϕn}, this yields the desired result. □

Corollary 7.4.37 and [122, Chapter XV, Corollary 5.2] yield M ∈ GLn(K) and
ϕ1, . . . , ϕn ∈ H that are apart, such thatMD with D := diag

(
eϕ1i, . . . , eϕni

)
is not

only a fundamental matrix for y′ = Ny but also unitary as an element of GLn(Ω).
(Cf. Lemma 2.4.46.)

Example (Schrödinger equation for quantum systems with n states [199, §3.4]).
This is the matrix differential equation y′ = −iSy where the n×n matrix S over K
(the Hamiltonian of the system) is hermitian, i.e., St = S. Then y′ = −iSy is
anti-self-adjoint, so we have the positive definite hermitian form

(y, z) 7→ ⟨y, z⟩ = y1z1 + · · ·+ ynzn (y = (y1, . . . , yn)
t, z = (z1, . . . , zn)

t)

on the C-linear space of solutionsW of y′ = −iSy in C<∞[i]. There are ϕ1, . . . , ϕn ∈
H that are apart and f1, . . . , fn ∈ Kn such that

f1 e
ϕ1i, . . . , fn e

ϕni (“wave functions”)

is an orthonormal basis of W with respect to ⟨ , ⟩. Note again the striking fact
that ⟨y, y⟩ is a positive real constant, not just an element of H>, for every y ∈W ̸=.

Definability. Here we drop the d-maximality assumption from earlier subsections.
We begin with consequences of our earlier boundedness results for matrix differential
equations depending on (constant) parameters. For this, let H ⊇ R, let C =
(C1, . . . , Cm) be a tuple of distinct indeterminates over K and let N(C) be an
n× n matrix over the polynomial ring K[C], n ⩾ 1. Then for c ∈ Rm we have the
matrix differential equation y′ = N(c)y over K. Combining Corollary 7.1.5 with
Lemmas 7.4.39 and 7.4.40 yields:

Corollary 7.4.38. The set of c ∈ Rm such that all solutions of y′ = N(c)y in C1[i]n

are bounded is semialgebraic, and so is the set of c ∈ Rm such that y′ = N(c)y has
no nonzero bounded solution in C1[i]n.

For matrix differential equations depending analytically on a single parameter,
see [204, Chapter VII]. In this connection we record that for m = 1 it follows
from Corollary 7.4.38: if y′ = N(c)y has for arbitrarily large c ∈ R only bounded
solutions in C1[i]n, then this happens for all sufficiently large c ∈ R; if y′ = N(c)y
has for arbitrarily large c ∈ R no nonzero bounded solution in C1[i]n, then this
happens for all sufficiently large c ∈ R.

By the next lemma, the property of a matrix differential equation over a com-
plexified Hardy field to have only bounded solutions is “uniformly definable” from
the entries in the matrix. Here we view the canonical ΛΩ-expansion H of a Hardy
field H as a structure for the language Lι

ΛΩ
from [ADH, Chapter 16], and we

let u = (uij), v = (vij) be disjoint multivariables of size n× n with n ⩾ 1.

Lemma 7.4.39. There is a quantifier-free Lι
ΛΩ

-formula β(u, v) such that for every
Hardy field H and n× n matrix N over K = H[i]:

H |= β(ReN, ImN) ⇐⇒ all solutions of y′ = Ny in C1[i]n are bounded.
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Proof. Let N be an n × n matrix over K, ϕ ∈ H, z ∈ Kn. Then eϕi z ∈ K[eHi]n

is a solution of y′ = Ny iff z′ + ϕ′iz = Nz. Moreover, for d-maximal H it follows
from Corollary 7.4.25 that all solutions of y′ = Ny in C1[i]n are bounded iff all
solutions eϕi z with ϕ ∈ H and z ∈ Kn are bounded. Now use that d-maximal
Hardy fields areH-closed and that the theory ofH-closedH-fields admits quantifier
elimination in the language Lι

ΛΩ
. □

Using Lemma 7.4.32 we obtain in the same way:

Lemma 7.4.40. There is a quantifier-free Lι
ΛΩ

-formula γ(u, v) such that for every
Hardy field H and n× n matrix N over K = H[i]:

H |= γ(ReN, ImN) ⇐⇒ some nonzero solution of y′ = Ny in C1[i]n is bounded.

Example. Let a, b ∈ H, and take g, ϕ ∈ Li
(
H(R)

)
with g ̸= 0, g† = a, and ϕ′ = b.

Then
{
y ∈ C1[i] : y′ = (a + bi)y

}
= Cg eϕi, and g eϕi ≍ g. Thus if H is Liouville

closed, then by [ADH, 11.8.19]:

every y ∈ C1[i] with y′ = (a+ bi)y is bounded

⇐⇒ some y ∈ C1[i] ̸= with y′ = (a+ bi)y is bounded

⇐⇒ a /∈ Γ(H)

⇐⇒ a ⩽ 0 or a ∈ I(H).

The real case. In this subsection we assume A ∈ H[∂]. Recall that if H is d-
maximal, then K is linearly closed, so [ADH, 5.1.35] yields the following, which
includes Corollary 9 from the introduction:

Corollary 7.4.41. If H is d-maximal, then A is a product of irreducible operators
in H[∂] which are monic of order 1 or monic of order 2.

The next result follows from Corollaries 5.5.19 and 5.10.34, and is a version of
Theorem 7.4.1 in the case of a real operator:

Corollary 7.4.42. Let E be a d-maximal Hardy field extension of H. Then the
C-linear space V := kerC<∞[i]A of zeros of A in C<∞[i] has a basis

g1 e
ϕ1i, g1 e

−ϕ1i, . . . , gm eϕmi, gm e−ϕmi, h1, . . . , hn (2m+ n = r),

where gj , ϕj ∈ E> with ϕj ≻ 1 (j = 1, . . . ,m) and hk ∈ E× (k = 1, . . . , n). For
any such basis of V , the R-linear space V ∩ C<∞ of zeros of A in C<∞ has basis

g1 cosϕ1, g1 sinϕ1, . . . , gm cosϕm, gm sinϕm, h1, . . . , hn,

and the R-linear space V ∩ E has basis h1, . . . , hn.

Remarks. Let E be a d-maximal Hardy field extension of H. The quantity n =
dimR kerE A in Corollary 7.4.42 (and hence also m = (r − n)/2) is independent of
the choice of E, by Theorem 7.1.3. Likewise, the number of distinct eigenvalues of A
with respect to E[i] does not depend on E. In more detail, the tuple (d, µ1, . . . , µd)
where d is the number of distinct eigenvalues of A and µ1 ⩾ · · · ⩾ µd ⩾ 1 are their
multiplicities, with respect to E[i], does not depend on E.

Corollary 7.4.42 yields:

Corollary 7.4.43. If r is odd, then A(y) = 0 for some H-hardian germ y ̸= 0.

From Corollary 5.10.36 we obtain:
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Corollary 7.4.44. Suppose H is d-maximal, and let ϕ > R be an element of H
such that ϕ′i + K† is not an eigenvalue of A. Then for every h ∈ H there are
unique f, g ∈ H such that A(f cosϕ+ g sinϕ) = h cosϕ.

Taking A = ∂, with K† as the only eigenvalue (Example 2.3.1), we recover the
following result due to Shackell [186, Theorem 2]; his proof is based on [35].

Corollary 7.4.45. Let h, ϕ ∈ H and ϕ > R. The germ h cosϕ ∈ C<∞ has an
antiderivative f cosϕ + g sinϕ ∈ C<∞ with f , g in a Hardy field extension of H,
and any Hardy field extension of H contains at most one such pair (f, g).

Besides Corollary 7.4.44 we use here that by a remark preceding Lemma 1.2.16 we
have ϕ′i /∈ K† for ϕ ∈ H with ϕ > R.
We also record a real version of Corollary 7.4.25, which follows from Corollary 7.4.42
in the same way that Corollary 7.4.25 followed from Theorem 7.4.1. Let Im denote
the m×m identity matrix. Recall that Ur = K[eHi] ∩ C<∞.

Corollary 7.4.46. Suppose H is d-maximal and N is an n × n matrix over H,
n ⩾ 1. Then there are M ∈ GLn(H) as well as k, l ∈ N with 2k + l = n and

D =


D1

. . .

Dk

Il

 where Dj =
(

cosϕj sinϕj

− sinϕj cosϕj

)
, ϕj ∈ H, ϕj > R

such that the n× n matrix MD is a fundamental matrix for y′ = Ny with respect
to Ur. In particular, if n is odd, then y′ = Ny for some 0 ̸= y ∈ Hn.

Proof. Let R and Ω be as in the proof of Corollary 7.4.25, and let L ∈ H[∂] be monic
of order n. Then Corollary 7.4.42 yields g1, . . . , gk, h1, . . . , hl and ϕ1, . . . , ϕk > R
in H, where 2k + l = n, such that the R-linear space kerC<∞ L has basis

g1 cosϕ1, g1 sinϕ1, . . . , gk cosϕk, gk sinϕk, h1, . . . , hl.

This is also a basis of the C-linear space kerC<∞[i] L = kerΩ L. Thus

W := Wr(g1 cosϕ1, g1 sinϕ1, . . . , gk cosϕk, gk sinϕk, h1, . . . , hl) ∈ GLn(Ω).

Note that Ur = R ∩ C<∞. It is routine to verify that W = QD where Q is
an n × n matrix over H and D is the n× n matrix over Ur displayed above. We
have detD = 1, hence

detW = detQ ∈ H ∩ Ω× = H× ⊆ U×
r

and thus Q ∈ GLn(H) andW ∈ GLn(Ur). So by the remarks before [ADH, 5.5.14],
W is a fundamental matrix for y′ = ALy with Ur as the ambient differential ring.

Now take monic L ∈ H[∂] such that y′ = Ny is equivalent to y′ = ALy, with
respect to the differential field H. Then take P ∈ GLn(H) such that P solUr

(AL) =
solUr

(N), and let W be as above. Then PW ∈ GLn(Ur) is a fundamental matrix
for y′ = Ny. With D, Q as before such that W = QD, and M := PQ ∈ GLn(H),
we have MD = PW . □

Example. Let T be an n×nmatrix overH, n ⩾ 1, and suppose T is skew-symmetric,
that is, T t = −T . Then the purely imaginary matrix S := −iT is hermitian, giving
the Schrödinger equation y′ = Ty (= −iSy) as in the example after Corollary 7.4.37.
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If n is odd, then this equation has a solution y ∈ En with y21+ · · ·+y2n = 1 for some
Hardy field extension E of H; such y exhibits no oscillatory behavior and hence is
a “degenerate” wave.

We don’t know whether in Corollary 7.4.46 for n ⩾ 4 we can choose ϕ1, . . . , ϕk to be
apart. In the next corollary we let ⟨ , ⟩ : Ωnr ×Ωnr → Ωr denote the usual symmetric
bilinear form on Ωnr , n ⩾ 1, where Ωr = Frac(Ur).

Corollary 7.4.47. Suppose H is d-maximal, y′ = Ny is self-adjoint, and M , k, l,
and D are as in Corollary 7.4.46. Then ⟨f, f⟩ ∈ R> for each column f of MD.
Let f1, g1, . . . , fk, gk, h1, . . . , hl ∈ Unr be the 1st, 2nd,. . . , nth column of MD. Then
for i = 1, . . . , k, j = 1, . . . , l we have ⟨fi, gi⟩ = ⟨fi, hj⟩ = ⟨gi, hj⟩ = 0.

Proof. For any columns f, g of MD we have ⟨f, g⟩ ∈ R, by Lemma 2.4.38. This
proves the first claim. Let i ∈ {1, . . . , k} and set ϕ := ϕi. Then fi = f cosϕ−g sinϕ,
gi = f sinϕ+ g cosϕ where f, g ∈ Hn. Hence

⟨fi, gi⟩ = (⟨f, f⟩ − ⟨g, g⟩) cosϕ sinϕ+ ⟨f, g⟩(cos2 ϕ− sin2 ϕ) ∈ R.
Lemma 5.10.17 gives e2ϕi = θ e(λ), e−2ϕi = θ−1 e(−λ) with θ ∈ K×, λ ∈ Λ ̸=, so the
elements 1, e2ϕi, e−2ϕi of K[eHi] are K-linearly independent. In view of

cosϕ sinϕ = 1
4i (e

2ϕi − e−2ϕi), cos2 ϕ− sin2 ϕ = 1
2 (e

2ϕi +e−2ϕi),

this yields ⟨fi, gi⟩ = 0. For j ∈ {1, . . . , l} we have

⟨fi, hj⟩ = ⟨f, hj⟩ cosϕ−⟨g, hj⟩ sinϕ ∈ R, ⟨gi, hj⟩ = ⟨f, hj⟩ sinϕ+⟨g, hj⟩ cosϕ ∈ R,
and we obtain likewise ⟨fi, hj⟩ = ⟨gi, hj⟩ = 0. □

Corollary 7.4.42 holds for r = 1 with the assumption “E is d-maximal” weakened
to “E is Liouville closed”. The next section has more about the case r = 2. The
next lemma shows that Corollary 7.4.42 fails for r = 3 with the hypothesis “E is
d-maximal” replaced by “E is perfect”.

Lemma 7.4.48. Suppose H = E(Q) and A = (∂ − 2x)(∂2 + 1). Then with U :=
K[eHi] we have kerUA = C e−xi ⊕C exi.

The proof is similar to that of Corollary 7.4.4, using ∂
2 + 1 = (∂ − i)(∂ + i) in K[∂]

and the fact that y′′ + y ̸= ex
2

for all y ∈ K.

Remark. Let H and A be as in the previous lemma. There is an H-hardian germ y
with y ̸= 0 and A(y) = 0, but by the lemma, no such y is in H. Thus Theorem 1
in [161] is false.

If H is d-maximal and A has exactly one eigenvalue, then this eigenvalue is 0 by
Corollary 2.5.21. This situation will be investigated in the next subsection.

Non-oscillation and disconjugacy. In this subsection we continue to assume
that A ∈ H[∂]. In light of Corollary 7.4.42 one may ask whether every non-
oscillating y ∈ kerC<∞ A is H-hardian. The answer is “no” for some A: Suppose y
in H satisfies y′′ + y = x. (If H is d-maximal, then H is linearly surjective and
such y exists.) Then y ≻ 1, and y + sinx ∈ kerC<∞ A is non-oscillating, but not
H-hardian.

Here is a better question: if y ∈ kerC<∞ A and y − h is non-oscillating for
all h ∈ H, does it follow that y is H-hardian? The next two results shows that the
answer may depend on H. The first is a consequence of Corollary 5.10.39.
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Lemma 7.4.49. Suppose H is d-maximal. Then every y ∈ kerC<∞ A such that y−h
is non-oscillating for all h ∈ H lies in H.

Lemma 7.4.50. Let H := E(Q). Then there is a monic A ∈ H[∂] of order 5 and
a y ∈ kerC<∞ A such that y−h is non-oscillating for all h ∈ H, but y is not hardian.

Proof. Recall that each d-maximal Hardy field contains an f with f ′′+ f = ex
2

, by

Theorem 6.7.22. Take an H-hardian z ∈ C<∞ with z′′ + z = ex
2

. Then z − h ≻ xn

for all n and all h ∈ H, by [35, Proposition 3.7 and Theorem 3.9]. Set

B1 := ∂
3 − 2x∂

2 + ∂ − 2x ∈ H[∂], B2 := ∂
2 + 4 ∈ H[∂].

Then B1(z) = B2(sin 2x) = 0, hence y := z + sin 2x ∈ C<∞ satisfies A(y) = 0 for
some monic A ∈ H[∂] of order 5, by [ADH, 5.1.39]. For all h ∈ H we have y − h =
(z − h) + sin 2x ∼ z − h, so y − h is non-oscillating. Towards a contradiction,
assume y is hardian. Then y is H-hardian. Take an H⟨y⟩-hardian u ∈ C<∞ such

that u′′+u = ex
2

. Then (u−z)′′+(u−z) = 0, so u−z = c cos(x+d), with c, d ∈ R.
But u− y = c cos(x+d)− sin 2x is not hardian: this is clear if c = 0, and otherwise
follows from B2(u− y) = 3c cos(x+ d). This is the desired contradiction. □

We can also ask: if no y ∈ kerC<∞ A oscillates, does it follow that kerC<∞ A is
contained in some Hardy field extension of H? We now extend Corollary 5.5.9 to
give a positive answer:

Theorem 7.4.51. The following are equivalent:

(i) no y ∈ kerC<∞ A oscillates;
(ii) kerC<∞ A ⊆ D(H);
(iii) A splits over D(H);
(iv) A splits over some Hardy field extension of H.

Proof. Corollary 7.4.42 gives (i) ⇒ (ii). For (ii) ⇒ (iii) use that A splits over D(H)
whenever dimR kerD(H)A = r, by Corollary 7.4.42, and Corollary 2.5.5 with the
remark following it. The implication (iii) ⇒ (iv) is obvious. Suppose (iv) holds; to
show (i), arrange that A splits over H and H is Liouville closed. Then kerC<∞ A is
contained in H by Lemma 2.5.30, so (i) holds. □

Remark. The implication (i) ⇒ (ii) in Theorem 7.4.51 is also claimed in [162,
Theorem 1]; but the proof given there is defective: in the proof of the auxiliary [162,
Lemma 1] it is assumed that if y ∈ C<∞ is non-oscillating and A(y) = 0, y ̸= 0,
then y† is also non-oscillating; but A = ∂

3 + ∂, y = 2 + sinx contradicts this.

We say that A does not generate oscillations if it satisfies one of the equiv-
alent conditions in the theorem above. Thus if r ⩽ 1, then A does not generate
oscillations, and by Corollary 5.5.7, the operator ∂

2 + g∂ + h (g, h ∈ H) generates
oscillations iff the germ − 1

2g
′ − 1

4g
2 + h generates oscillations in the sense of Sec-

tion 5.2. The property of A to not generate oscillations is uniformly definable in
the canonical ΛΩ-expansion H of H viewed as a structure in the language Lι

ΛΩ

from [ADH, Chapter 16] (see also the proof of Theorem 7.1.3); more precisely:

Corollary 7.4.52. There is a quantifier-free Lι
ΛΩ

-formula ωr(x1, . . . , xr) such that
for every Hardy field H and all (h1, . . . , hr) ∈ Hr:

H |= ωr(h1, . . . , hr) ⇐⇒
{

∂
r + h1∂

r−1 + · · · + hr ∈ H[∂] does
not generate oscillations.
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Proof. Note that A does not generate oscillations iff A splits over some d-maximal
Hardy field extension of H. Now use that the Lι

ΛΩ
-theory of canonical ΛΩ-ex-

pansions of d-maximal Hardy fields eliminates quantifiers, by [ADH, 16.0.1] and
Theorem 6.7.22. □

Example. For ω2(x1, x2) we may take the Lι
ΛΩ

-formula Ω(−2x′1 − x21 + 4x2). Let
α, β ∈ R, and let ωn be as in Corollary 5.5.38. Then for H = R in that corollary,

∂
2 + α∂ + β does not generate oscillations ⇐⇒ −α2 + 4β < ωn for some n

⇐⇒ α2 − 4β ⩾ 0,

and applying the corollary to H = R(x) gives

∂
2+αx−1

∂+βx−2 does not generate
oscillations

}
⇐⇒ (2α− α2 + 4β)x−2 < ωn for some n

⇐⇒ (1− α)2 − 4β ⩾ 0,

in accordance with Corollary 7.1.5. (By the way, y′′+αx−1y+βx−2y = 0 is Euler’s
differential equation of order 2, cf. [111, §22.3], [203, §20, V].)

From Corollary 2.5.20 we obtain:

Corollary 7.4.53. Suppose H is d-perfect. Then:

A does not generate oscillations ⇐⇒ mult0(A) = r.

If H is moreover d-maximal, then:

A does not generate oscillations ⇐⇒ A has no eigenvalue different from 0.

We say that B ∈ H[∂] ̸= does not generate oscillations if bB does not generate
oscillations, for b ∈ H× such that bB is monic. Using [ADH, 5.1.22] we obtain:

Corollary 7.4.54. Let B1, B2 ∈ H[∂] ̸=. Then B1 and B2 do not generate oscilla-
tions iff B1B2 does not generate oscillations.

Note also that if E is a Hardy field extension of H, then A generates oscillations
iff A generates oscillations when viewed as element of E[∂]. Moreover, A generates
oscillations iff its adjoint A∗ does.

In the next corollary ϕ ranges over elements of D(H)> that are active in D(H).

Corollary 7.4.55. Suppose A does not generate oscillations. Then the R-linear
space kerC<∞ A has a basis y1, . . . , yr with all yj ∈ D(H) and y1 ≺ · · · ≺ yr, and
there is a unique splitting (ar, . . . , a1) of A over D(H) such that eventually we
have aj + ϕ† < aj+1 for j = 1, . . . , r − 1.

Proof. By Theorem 7.4.51, A splits over D(H). Now use Lemma 2.5.30 and Corol-
lary 2.5.38 applied to the Liouville closed H-field D(H) in place of H. □

Theorem 7.4.51 and Corollary 7.4.55 yield Corollary 10 from the introduction. The
next lemma complements this Corollary 10 by taking a look at splittings over the
differential ring extension R := C<∞ of H:

Lemma 7.4.56. Suppose H ⊇ R is Liouville closed, A splits over H, a1, . . . , ar lie
in R, and A = (∂ − ar) · · · (∂ − a1) in R[∂]. Then a1, . . . , ar ∈ H.
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Proof. By induction on r. The case r = 0 being trivial, suppose r ⩾ 1. By
Lemma 2.5.19 we have kerRA ⊆ H. Take y ∈ R× with y† = a1. Then A(y) = 0,
hence y ∈ H×, so a1 = y† ∈ H. SetB := (∂−ar) · · · (∂−a2) ∈ R[∂], soA = B(∂−a1).
Now A⋉y ∈ H[∂] and A⋉y = B⋉y∂, so B⋉y ∈ H[∂]. Thus B ∈ H[∂], and B splits
over H by [ADH, 5.1.22]. Hence, inductively, a2, . . . , ar ∈ H. □

Corollary 7.4.57. Suppose A does not generate oscillations, and let b ∈ H. Then
all y ∈ C<∞ with A(y) = b are in D(H).

Proof. This follows from Corollary 7.4.55 and variation of constants [ADH, 5.5.22],
using that D(H) is closed under integration. □

As promised in the remarks following Corollary 11 from the Introduction we now
strengthen the Trench normal form of disconjugate linear differential operators.
(See Section 5.2, just before Lemma 5.2.40, for “disconjugate” in the present con-
text.) Below we use for h ∈ C the suggestive notation

∫∞
h = ∞ to indicate that

for some a ∈ R and representative h ∈ Ca (and thus for every a ∈ R and every

representative h ∈ Ca) we have
∫ t
a
h(t)dt→ +∞ as t→ +∞.

Corollary 7.4.58. Let r ⩾ 1. Then A does not generate oscillations iff A is
disconjugate. Suppose A is disconjugate. Then there are g1, . . . , gr ∈ D(H)> with

(7.4.1) A = g1 · · · gr(∂g−1
r ) · · · (∂g−1

2 )(∂g−1
1 ), gj ∈ Γ

(
D(H)

)
for j = 2, . . . , r.

Given any such g1, . . . , gr, if h1, . . . , hr ∈ (C<∞)× satisfy

(7.4.2) A = h1 · · ·hr(∂h−1
r ) · · · (∂h−1

2 )(∂h−1
1 ),

∫ ∞
hj = ∞ for j = 2, . . . , r,

then gj ∈ R> · hj for j = 1, . . . , r.

Proof. If A does not generate oscillations, then A is disconjugate by Lemma 5.2.40
and Theorem 7.4.51. The converse is clear. Now suppose A is disconjugate.
Then Proposition 2.5.39 yields g1, . . . , gr ∈ D(H)> such that (7.4.1) holds. Let
h1, . . . , hr ∈ (C<∞)× be such that (7.4.2) holds, and set aj := (h1 · · ·hj)† ∈ C<∞

(j = 1, . . . , r). Then A = (∂−ar) · · · (∂−a1), so a1, . . . , ar ∈ D(H) by Lemma 7.4.56,
hence h1, . . . , hr ∈ D(H) as well. Thus h1, . . . , hr > 0 and h2, . . . , hr ∈ Γ

(
D(H)

)
.

The uniqueness part of Proposition 2.5.39 gives gj ∈ R> · hj for j = 1, . . . , r. □

This yields in particular Corollary 11 from the Introduction.

Example (Trench [200, p. 321]). Suppose H = R, r = 3, and A = ∂
3 − ∂. Then A

splits as (∂ − 1)∂(∂ + 1) over H, so A does not generate oscillations. In D(H)[∂],

A = ex ∂ e−2x
∂ ex ∂ = e−x ∂ ex ∂ ex ∂ e−x = ex ∂ e−x ∂ e−x ∂ ex,

where only the last factorization is as in (7.4.1).

Generating oscillations is an invariant of the type of A:

Lemma 7.4.59. Suppose A does not generate oscillations and B ∈ H[∂] has the
same type as A. Then B also does not generate oscillations.

Proof. By [ADH, 5.1.19]: r = order(B) and we have R ∈ H[∂] of order < r such
that 1 ∈ H[∂]R+R[∂]A and BR ∈ H[∂]A. Now kerC<∞ A = kerD(H)A, and [ADH,
5.1.20] gives an isomorphism y 7→ R(y) : kerD(H)A→ kerD(H)B of R-linear spaces.
Hence kerC<∞ B = kerD(H)B, so B does not generate oscillations. □
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Next, let M be a differential module over H. Recall from Section 2.3 the notions
of M splitting, and of M splitting over a given differential field extension of H.

Lemma 7.4.60. The following are equivalent:

(i) M splits over some Hardy field extension of H;
(ii) M splits over D(H);
(iii) M splits over E(H).

Proof. Let E be a Hardy field extension of H such that M splits over E. To
show that M splits over D(H), replace E by D(E) to arrange E = D(E). Next,
using E⊗HM ∼= E⊗D(H) (D(H)⊗HM) and replacing H,M by D(H), D(H)⊗HM ,
respectively, also arrange H = D(H). In particular, H ̸⊆ R, so M ∼= H[∂]/H[∂]B
for some monic B ∈ H[∂], by [ADH, 5.5.3]. Then B splits over E by [ADH, 5.9.2]
and hence over H (Theorem 7.4.51), so M splits. This shows (i) ⇒ (ii). The
implications (ii) ⇒ (iii) ⇒ (i) are obvious. □

We define: M does not generate oscillations if it satisfies one of the equivalent
conditions in the previous lemma. If M = H[∂]/H[∂]A, then M does not generate
oscillations iff A does not generate oscillations.

Corollary 7.4.61. Let E be a Hardy field extension of H. Then M does not
generate oscillations iff its base change E⊗HM to E does not generate oscillations.

Proof. Use D(E)⊗HM ∼= D(E)⊗E
(
E⊗HM) as differential modules over D(E). □

If N is a differential submodule of M , then M does not generate oscillations iff N
and M/N do not generate oscillations. Hence:

Corollary 7.4.62. Let A1, . . . , Am ∈ H[∂]̸=, m ⩾ 1. Then A1, . . . , Am do not
generate oscillations iff lclm(A1, . . . , Am) ∈ H[∂] does not generate oscillations.

Let now N be an n × n matrix over H, where n ⩾ 1. We also say that the
matrix differential equation y′ = Ny over H does not generate oscillations if
the differential module over H associated to N [ADH, p. 277] does not generate
oscillations. If a matrix differential equation over H generates oscillations, then so
does every equivalent matrix differential equation over H. Moreover, given a Hardy
field extension E of H, the matrix differential equation y′ = Ny over H does not
generate oscillations iff y′ = Ny viewed as matrix differential equation over E does
not generate oscillations (by Corollary 7.4.61).

Lemma 7.4.63. Suppose B ∈ H[∂] is monic and N is the companion matrix of B.
Then y′ = Ny does not generate oscillations iff B does not generate oscillations.
For each Hardy field extension E of H(R) we have an isomorphism

y 7→ (y, y′, . . . , y(n−1))t : kerE(B) → solE(N)

of R-linear spaces.

Proof. For the first claim, use that MN
∼= H[∂]/H[∂]B∗ by [ADH, 5.5.8], and B

does not generate oscillations iff B∗ does not generate oscillations (remark before
Corollary 7.4.55). For the second claim, see [ADH, pp. 271–272]. □

Corollary 7.4.64. Suppose H is d-perfect. Then y′ = Ny does not generate
oscillations iff mult0(N) = n.
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Proof. Using [ADH, 5.5.9], arrange that N is the companion matrix of the mo-
nic B ∈ H[∂]. Then mult0(B) = mult0(N) by Lemma 2.4.35. Now use Corol-
lary 7.4.53 and Lemma 7.4.63. □

Proposition 7.4.65. The following are equivalent:

(i) y′ = Ny does not generate oscillations;
(ii) D(H) contains a fundamental matrix of solutions for y′ = Ny;
(iii) E(H) contains a fundamental matrix of solutions for y′ = Ny;
(iv) every maximal Hardy field extension of H contains a fundamental matrix

of solutions for y′ = Ny;
(v) some Hardy field extension of H contains a fundamental matrix of solutions

for y′ = Ny.

Proof. Suppose y′ = Ny does not generate oscillations. Then y′ = Ny viewed
as matrix differential equation over D(H) does not generate oscillations. Hence
to show (ii) we may arrange that H = D(H). Then H ̸⊆ R, so by [ADH, 5.5.9]
we arrange that N is the companion matrix of the monic B ∈ H[∂]. Then B
does not generate oscillations, so H contains a fundamental matrix of solutions
for y′ = Ny, by Theorem 7.4.51 and Lemma 7.4.63. This proves (ii). The impli-
cations (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) are clear. Suppose (v) holds. To prove (i), we
first arrange that H is d-perfect and contains a fundamental matrix of solutions
for y′ = Ny, and as in the proof of (i) ⇒ (ii) we then arrange that N is the com-
panion matrix of some monic operator in H[∂]. Then y′ = Ny does not generate
oscillations, by Theorem 7.4.51 and Lemma 7.4.63. □

In [33, Definition 16.14], Boshernitzan defines y′ = Ny to be H-regular if it satisfies
condition (iii) in the proposition above. In [33, Theorem 16.16] he then notes the
following version of Corollary 7.4.57, with E(H) in place of D(H):

Corollary 7.4.66. Suppose the matrix differential equation y′ = Ny does not gen-
erate oscillations. Let b ∈ Hn be a column vector. Then each solution y in (C<∞)n

to the differential equation y′ = Ny + b lies in D(H)n.

Proof. By Proposition 7.4.65, D(H) contains a fundamental matrix of solutions
for y′ = Ny. Now use [ADH, 5.5.21] and D(H) being closed under integration. □

Here is an application of the material above to the parametrization of curves in
euclidean n-space, where for simplicity we only treat the case n = 3, denoting the
usual euclidean norm on R3 by | · |.

Example (Frenet-Serret formulas). Let U ⊆ R be a nonempty open interval and
γ : U → R3 be a C∞-curve, parametrized by arc length, that is, |γ′(t)| = 1 for
all t ∈ U . Let T := γ′ and κ := |T ′| (the curvature of γ). Suppose κ(t) ̸= 0 for
each t ∈ U , set N := T ′/|T ′| and B := T×N (vector cross product). Then for t ∈ U
the vectors T (t), N(t), B(t) ∈ R3 are orthonormal and y = (T,N,B) : U → R9 is a
solution of the matrix differential equation y′ = Fy in C∞(U) where

F =

 κI
−κI τI

−τI

 (I = the 3× 3 identity matrix),

for some C∞-function τ : U → R (the torsion of γ).
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Conversely, let C∞-functions κ, τ : U → R such that κ(t) > 0 for all t ∈ U be
given. Then there is a C∞-curve γ = (γ1, γ2, γ3) : U → R3, parametrized by arc
length, with curvature κ and torsion τ . In fact, γ is unique up to proper euclidean
motions in R3. (See [193, Chapter 1] for these facts.) Fix such γ and assume in
addition that U = (c,+∞) with c ∈ R ∪ {−∞} and that H is a d-maximal C∞-
Hardy field and contains the germs of κ, τ , also denoted by κ, τ . Then for some α ∈
K/K†, the matrix differential equation y′ = Fy over K has spectrum {α,−α, 0}.
(Example 2.4.37.) If α = 0, then y′ = Fy does not generate oscillations, hence the
germs of γ1, γ2, γ3 lie in H and so γ does not exhibit oscillating behavior. If α ̸= 0,
then α = ϕ′i +K† where ϕ ∈ H, ϕ > R, and then by Corollaries 7.4.45 and 7.4.46,
the germs of γ1, γ2, γ3 lie in

H cosϕ+H sinϕ+H ⊆ C∞.

For example, if κ ∈ R> and τ ∈ R are constant, then γ is the helix given by

t 7→
(
−a cos(t/D), a sin(t/D), bt/D

)
where D =

√
a2 + b2, κ = a/D2, τ = b/D2.

7.5. Revisiting Second-Order Linear Differential Equations

In this section we analyze the oscillating solutions of second-order linear differential
equations over Hardy fields in more detail. In particular, we prove Corollary 12
from the introduction. This is connected to the ω-freeness of the perfect hull of a
Hardy field, which is characterized in Theorem 7.5.32. Throughout this section H
is a Hardy field and K := H[i] ⊆ C<∞[i].

Parametrizing the solution space. Let a, b ∈ H. We now continue the study
of the linear differential equation

(L̃) Y ′′ + aY ′ + bY = 0

over H from Section 5.3 (with slightly changed notation), and focus on the oscil-
lating case, viewed in the light of our main theorem. (Corollaries 5.5.7 and 5.5.9
already dealt with the non-oscillating case, which didn’t need our main result.)
Most of the following theorem was claimed without proof by Boshernitzan [35,
Theorem 5.4]:

Theorem 7.5.1. Suppose (L̃) has an oscillating solution (in C<∞). Then there
are H-hardian germs g > 0, ϕ > R such that for all y ∈ C<∞,

y is a solution of (L̃) ⇐⇒ y = cg cos(ϕ+ d) for some c, d ∈ R.
Any such H-hardian germs g, ϕ are d-algebraic over H and lie in a common Hardy
field extension of H. If D(H) is ω-free, then these properties force g, ϕ ∈ D(H), and
determine g uniquely up to multiplication by a positive real number and ϕ uniquely
up to addition of a real number.

Remarks. If H is ω-free, then D(H) is ω-free by Theorem 1.4.1. Also, if H is not
λ-free or ω(H) = H \ σ

(
Γ(H)

)↑, then D(H) is ω-free, by Lemma 5.5.37. (See
Section 5.5 or [ADH, 5.2] for the definition of the function σ, and recall that ω(H)
is the set of all f ∈ H such that f/4 does not generate oscillations. If H is ω-
free, then ω(H) = H \ σ

(
Γ(H)

)↑, by Corollary 5.5.36.) Recall also that λ-freeness
includes having asymptotic integration. In the last sentence of Theorem 7.5.1 we
cannot drop the hypothesis that D(H) is ω-free; see Remark 7.5.34.
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Let V be an R-linear subspace of C. A pair (g, ϕ) is said to parametrize V if

g ∈ C×, g > 0, ϕ ∈ C, ϕ > R, V =
{
cg cos(ϕ+ d) : c, d ∈ R

}
;

equivalently, g ∈ C×, g > 0, ϕ ∈ C, ϕ > R, and V = Rg cosϕ + Rg sinϕ, by Corol-
lary 5.5.15. If (g, ϕ) parametrizes V , then so does (cg, ϕ+d) for any c ∈ R>, d ∈ R.

Example. The example following Corollary 5.2.24 shows that for f ∈ R> the

pair (1,
√
f
2 x) parametrizes kerC<∞(4∂

2 + f).

Suppose V = kerC<∞(∂2 + a∂ + b), and let g ∈ C×, g > 0, and ϕ ∈ C, ϕ > R.
Then (g, ϕ) parametrizes V iff g eϕi ∈ kerC<∞[i](∂

2 + a∂ + b).

For later use we record the next lemma where V is an R-linear subspace of C1

and V ′ := {y′ : y ∈ V } (an R-linear subspace of C).

Lemma 7.5.2. Suppose H ⊇ R is real closed and closed under integration, and
(g, ϕ) ∈ H × H parametrizes V . Set q :=

√
(g′)2 + (gϕ′)2 and u := arccos(g′/q).

Then q, u ∈ H and (q, ϕ+ u) ∈ H ×H parametrizes V ′.

Proof. Note that u is as in Corollary 5.5.16 with g′, −gϕ′ in place of g, h. Let y ∈ V ,
so y = cg cos(ϕ+ d) where c, d ∈ R. Then

y′ = cg′ cos(ϕ+ d)− cgϕ′ sin(ϕ+ d) = cq cos(ϕ+ u+ d).

Conversely, for c, d ∈ R we have cq cos(ϕ+u+d) = y′ for y = cg cos(ϕ+d) ∈ V . □

Lemma 7.5.3. Set f := −2a′−a2+4b. Let h be an H-hardian germ such that h > 0
and h† = − 1

2a. Let g ∈ C×, g > 0 and ϕ ∈ C, ϕ > R. Then:

(i) (g, ϕ) parametrizes kerC<∞ 4∂
2+f iff (gh, ϕ) parametrizes kerC<∞ ∂

2+a∂+b.

Assume also that ϕ is hardian (so ϕ′ is hardian with ϕ′ > 0). Then:

(ii) (1/
√
ϕ′, ϕ) parametrizes kerC<∞ 4∂

2 + σ(2ϕ′).

Proof. The arguments leading up to Corollary 5.5.7 yield (i). As to (ii), the defini-
tion of σ in [ADH, p. 262] gives

σ(2ϕ′) = ω
(
−(2ϕ′)† + 2ϕ′i

)
= ω

(
−ϕ′† + 2ϕ′i

)
= ω(2y†)

where y := (1/
√
ϕ′) eϕi. Hence A(y) = 0 for A = 4∂

2 + σ(2ϕ′) by the computation
in [ADH, p. 258], and thus

(
1/
√
ϕ′, ϕ

)
parametrizes kerC<∞ A. □

Item (i) in Lemma 7.5.3 reduces the proof of Theorem 7.5.1 to the case a = 0,
and (ii) is about that case. Next we isolate an argument in the proof of [ADH,
14.2.18]:

Lemma 7.5.4. Let E be a 2-newtonian H-asymptotic field with asymptotic inte-
gration, e ∈ E×, f ∈ E, and γ be active in E such that e2 = f − σ(γ) and e ≻ γ.
Then σ(y) = f and y ∼ e for some y ∈ E×.

Proof. Note that e is active in E since e ≻ γ. By [ADH, 11.7.6] we have

σ(e)− f = σ(e)− σ(γ)− e2 = ω(−e†)− ω(−γ
†)− γ

2 ≺ e2,

and so ω(−e†) − f ∼ −e2. Eventually ϕ ≺ e, so (ϕ/e)† ≺ e by [ADH, 9.2.11].
Hence with R, Q as defined before [ADH, 14.2.18], eventually we have Rϕ ≺ e2,
and thus Qϕ ∼ e2Y 2(Y 2 − 1). Now [ADH, 14.2.12] yields u ∈ E with u ∼ 1
and Q(u) = 0, thus σ(y) = f for y := eu ∼ e. □
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Let A = 4∂
2 + f ∈ H[∂] where f/4 ∈ H generates oscillations, and set V :=

kerC<∞ A. If H is ω-free, then f ∈ σ
(
Γ(H)

)↑, by Corollary 5.5.36. Theorem 7.5.1
now follows from Lemmas 7.5.5, 7.5.6, and 7.5.7 below, which give more information.

Lemma 7.5.5. There is a pair of H-hardian germs parametrizing V . For any such
pair (g, ϕ) we have σ(2ϕ′) = f and g2ϕ′ ∈ R>, so g, ϕ are d-algebraic over Q⟨f⟩
and lie in a common Hardy field extension of H. If f ∈ C∞, then each pair of
H-hardian germs parametrizing V is in (C∞)2; likewise with Cω in place of C∞.

Proof. The first statement follows from Corollaries 5.5.19, 7.2.10, and 5.10.35. Next,
let (g, ϕ) be a pair of H-hardian germs parametrizing V . Set y := g eϕi ∈ C<∞[i]×;
then we have A(y) = 0 and hence ω(2y†) = f where y† = g† + ϕ′i ∈ C<∞[i]. Now
for p, q ∈ C1 we have ω(p+ qi) = ω(p) + q2 − 2(pq + q′)i, so

ω(p+ qi) ∈ C ⇔ pq + q′ = 0.

Therefore 2g† = −(2ϕ′)† = −(ϕ′)† and so g2ϕ′ ∈ R>, and σ(2ϕ′) = f [ADH,
p. 262]. If f ∈ C∞, then y ∈ C∞[i], so g2 = |y|2 ∈ C∞ and hence also ϕ ∈ C∞

since g2ϕ′ ∈ R>; likewise with Cω in place of C∞. □

Lemma 7.5.6. Suppose that H ⊇ R is real closed with asymptotic integration, and
that f ∈ σ

(
Γ(H)

)↑. Then there is an active e > 0 in H such that ϕ′ ∼ e for all
pairs (g, ϕ) of H-hardian germs parametrizing V .

Proof. Choose a logarithmic sequence (ℓρ) for H and set γρ := ℓ†ρ [ADH, 11.5];
then (γρ) is strictly decreasing and coinitial in Γ(H) [ADH, p. 528]. Take ρ such
that f > σ(γρ). As in the proof of [ADH, 14.2.18], we increase ρ so that f−σ(γρ) ≻
γ2ρ , and take e ∈ H> with e2 = f −σ(γρ). Then e ≻ γρ and so e ∈ Γ(H)↑. Let (g, ϕ)
be a pair of elements in a Hardy field extension E of H parametrizing V . We claim
that ϕ′ ∼ e/2 (so e/2 in place of e has the property desired in the lemma). We
arrange that E is d-maximal. Then E is Liouville closed and ϕ > R, so e, 2ϕ′ ∈
Γ(E) by [ADH, 11.8.19]. Now E is newtonian by Theorem 6.7.22, so Lemma 7.5.4
yields u ∼ 1 in E such that σ(eu) = f . Now the map y 7→ σ(y) : Γ(E) → E is strictly
increasing [ADH, 11.8.29], hence 2ϕ′ = eu by Lemma 7.5.5, and thus ϕ′ ∼ e/2. □

Lemma 7.5.7. Suppose D(H) is ω-free or f ∈ σ
(
Γ(H)

)↑. Let Hi be a Hardy field
extension of H with (gi, ϕi) ∈ Hi ×Hi parametrizing V , for i = 1, 2. Then

g1/g2 ∈ R>, ϕ1 − ϕ2 ∈ R.

Thus g, ϕ ∈ D(H) for any pair (g, ϕ) of H-hardian germs parametrizing V .

Proof. We arrange thatH1,H2 are d-maximal and thus contain D(H). ReplacingH
by D(H) we further arrange that H is d-perfect and f ∈ σ

(
Γ(H)

)↑. Then ϕ′1 ∼ ϕ′2
by Lemma 7.5.6, and for i = 1, 2 we have ci ∈ R> with ϕ′i = ci/g

2
i , by Lemma 7.5.5.

Replacing gi by gi/
√
ci we arrange ci = 1 (i = 1, 2), so g1 ∼ g2. Consider now the

elements g1 cosϕ1, g1 sinϕ1 of V ; take a, b, c, d ∈ R such that

g1 cosϕ1 = ag2 cos(ϕ2 + b), g1 sinϕ1 = cg2 cos(ϕ2 + d).

Then

(7.5.1) g21 = g21(cos
2 ϕ1 + sin2 ϕ1) = g22

(
a2 cos2(ϕ2 + b) + c2 cos2(ϕ2 + d)

)
,

and hence

a2 cos2(ϕ2 + b) + c2 cos2(ϕ2 + d) ∼ 1.
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Thus the 2π-periodic function

t 7→ F (t) := a2 cos2(t+ b) + c2 cos2(t+ d) : R → R
satisfies F (t) → 1 as t → +∞, hence F (t) = 1 for all t, so g1 = g2 by (7.5.1). It
follows that ϕ′1 = ϕ′2, so ϕ1 − ϕ2 ∈ R.

For the final claim, let (g, ϕ) be a pair of H-hardian germs parametrizing V .
LetM be any d-maximal extension ofH. Then Lemma 7.5.5 gives a pair (gM , ϕM ) ∈
M2 that also parametrizes V . By the above, g/gM ∈ R> and ϕ − ϕM ∈ R,
hence g, ϕ ∈M . Since M is arbitrary, this gives g, ϕ ∈ D(H). □

This finishes the proof of Theorem 7.5.1 (and Corollary 12 from the introduction).

Corollary 7.5.8. Suppose that H is d-perfect. Then ω(H) = ω(H) is downward
closed and σ

(
Γ(H)

)
is upward closed.

Proof. By Corollary 5.5.3, ω(H) = ω(H) is downward closed.
Let f ∈ σ

(
Γ(H)

)↑. The last part of Lemma 7.5.7 gives g, ϕ ∈ H such that (g, ϕ)
parametrizes V . Then σ(2ϕ′) = f by Lemma 7.5.5. Now 2ϕ′ ∈ Γ(H) by [ADH,
11.8.19], so f lies in σ

(
Γ(H)

)
. Thus σ

(
Γ(H)

)
is upward closed. □

Recall from [ADH, 11.8] that H ⊇ R is said to be Schwarz closed if H is Liouville
closed and H = ω

(
Λ(H)

)
∪ σ
(
Γ(H)

)
.

Corollary 7.5.9. Suppose H is d-perfect. Then the following are equivalent:

(i) H is Schwarz closed;
(ii) H is ω-free;
(iii) for all f ∈ H the operator 4∂

2 + f ∈ H[∂] splits over K;
(iv) for all a, b ∈ H the operator ∂

2 + a∂ + b ∈ H[∂] splits over K.

Proof. The equivalence (iii) ⇔ (iv) holds by Corollary 5.5.10, and the equivalen-
ces (i) ⇔ (ii) ⇔ (iii) follow from [ADH, 11.8.33] and Corollary 7.5.8. □

In the rest of this subsection A = ∂
2 + a∂ + b (a, b ∈ H). We set V := kerC<∞ A

and f := −2a′ − a2 + 4b, and we take H-hardian h > 0 such that h† = − 1
2a. Note

the relevance of Lemma 7.5.3(i) in this situation.

Corollary 7.5.10. Suppose f > 0, f ≻ 1/x2. Then f /∈ ω(H), and for some H-
hardian germ ϕ with ϕ′ ∼ 1

2

√
f , and g := 1/

√
ϕ′ we have: (gh, ϕ) parametrizes V .

Proof. By Theorem 5.6.2 we arrange that H ⊇ R is Liouville closed and ω-free.
With notation as at the beginning of Section 5.6 we have ωρ ∼ 1/x2 for all ρ;
hence f/4 > ωρ for all ρ, so f/4 generates oscillations by [ADH, 11.8.21] and
Corollary 5.5.36, and f /∈ ω(H), f ∈ σ

(
Γ(H)

)↑. Lemma 7.5.5 gives a pair (g, ϕ)

parametrizing kerC<∞(4∂
2 + f) with H-hardian ϕ and g := 1/

√
ϕ′. Now γ := 1/x

is active in H with σ(γ) = 2γ2 and so f > σ(γ) and f − σ(γ) ∼ f . Then ϕ′ ∼ 1
2

√
f

by the proof of Lemma 7.5.6, so ϕ has the property stated in Corollary 7.5.10. □

Corollary 7.5.11. Suppose f /∈ ω(H) and let (g, ϕ) be a pair of H-hardian germs
parametrizing V . Then ϕ ≺ x iff f ≺ 1, and the same with ≼ in place of ≺. Also,

if f ∼ c ∈ R>, then ϕ ∼
√
c
2 x and (f < c⇒ ϕ′′ > 0), (f > c⇒ ϕ′′ < 0).

Proof. We arrange H ⊇ R is ω-free, Liouville closed, and g, ϕ ∈ H. Then y :=
2ϕ′ ∈ Γ(H) by [ADH, 11.8.19]. Lemma 7.5.5 gives σ(y) = f ; also σ(c) = c2 for
all c ∈ R>. As the restriction of σ to Γ(H) is strictly increasing [ADH, 11.8.29],
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this yields the first part. Now suppose f ∼ c ∈ R>, and take λ ∈ R> with ϕ ∼ λx.
Then y ∼ 2λ, and with z := −y† ≺ 1 we have f = σ(y) = ω(z) + y2 ∼ 4λ2.
Hence λ =

√
c/2. Suppose f < c; then f = σ(y) < c = σ(

√
c) yields y <

√
c,

so ϕ′ < λ. With g := ϕ − λx we have g ≺ x, g′ ≺ 1 and g′ = ϕ′ − λ < 0,
so g′′ = ϕ′′ > 0. The case f > c is similar. □

Combining Corollaries 7.5.5 and 7.5.11 yields:

Corollary 7.5.12. Suppose f /∈ ω(H). Then for every y ∈ V ̸= we have:

(i) if f ≺ 1, then y ̸≼ h (so y is unbounded if in addition a ⩽ 0);
(ii) if f ≻ 1, then y ≺ h; and
(iii) if f ≍ 1, then y ≼ h.

Remarks. See [18, Chapter 6] for related (though generally weaker) results in a more
general setting. For example, if g ∈ C is eventually increasing with g ≻ 1 or g ∈ C1

and g ∼ 1 with
∫
|g′| ≼ 1, then every y ∈ C2 with y′′ + gy = 0 satisfies y ≼ 1;

cf. §§6, 18 in loc. cit.

Corollary 7.5.13. Suppose f /∈ ω(H), H ⊇ R, and H does not have asymptotic
integration or H is ω-free. Then the following are equivalent:

(i) A(y) = 0 for some y ̸= 0 in a Liouville extension of K;
(ii) some pair (g, ϕ) ∈ Li(H)2 with g†, ϕ′ algebraic over H parametrizes V ;
(iii) some pair in Li(H)2 parametrizes V ;
(iv) every pair of H-hardian germs parametrizing V lies in Li(H)2.

Proof. Suppose (i) holds. Then Lemma 7.4.6 gives g, ϕ ∈ L := Li(H), g ̸= 0,
such that g†, ϕ′ are algebraic over H and A(g eϕi) = 0. Replacing g by −g if
necessary we arrange g > 0. We have ϕ ≻ 1: otherwise g eϕi ∈ E[i]× for some
Hardy field extension E of L, by Corollary 5.5.24, hence Re(g eϕi) ∈ V ̸= does not
oscillate, or Im(g eϕi) ∈ V ̸= does not oscillate, a contradiction. Replacing ϕ by −ϕ
if necessary we arrange ϕ > R. Then (g, ϕ) parametrizes V . This yields (ii). The
implication (ii) ⇒ (iii) is trivial. By the assumptions on H, Li(H), and thus D(H),
is ω-free, so (iii) ⇒ (iv) follows from Theorem 7.5.1. For (iv) ⇒ (i), note that the
differential fraction field of K[eHi] ⊆ C<∞[i] is a Liouville extension of K. □

Corollary 7.5.14. Suppose H ⊇ R is Liouville closed and f /∈ ω(H). Then the
following are equivalent:

(i) g, ϕ ∈ H for every pair (g, ϕ) of H-hardian germs parametrizing V ;
(ii) there is a pair of germs in H parametrizing V ;
(iii) f ∈ σ(H×).

Proof. The implications (i) ⇒ (ii) ⇒ (iii) follow from Lemma 7.5.5 and the remarks
preceding Lemma 7.5.3. Suppose f ∈ σ(H×). Since f /∈ ω(H) and ω(H)↓ ⊆ ω(H),
we have f /∈ ω(H)↓, so f ∈ σ

(
Γ(H)

)
by [ADH, 11.8.31]. Also, 4∂

2 + f splits
over K but not over H (cf. [ADH, pp. 259, 262]) and f/4 generates oscillations.
Hence Corollary 5.10.35 and the remark following it yield a pair of germs in H
parametrizing V . Now (i) follows from Lemma 7.5.7. □

The case of Theorem 7.5.1 where a, b are d-algebraic over Q is used later. In that
case the Ψ-set of the Hardy subfield H0 := Q⟨a, b⟩ of H is finite by Lemma 5.4.26,
so H0 has no asymptotic integration. Thus the relevance of the next result:
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Corollary 7.5.15. Suppose f /∈ ω(H) and H has no asymptotic integration. Then
there is a pair (g, ϕ) ∈ D(H)2 parametrizing V such that every pair of H-hardian
germs parametrizing V equals (cg, ϕ+ d) for some c ∈ R> and d ∈ R.

Proof. The assumption onH gives that D(H) is ω-free. Now use Theorem 7.5.1. □

In the rest of this subsection f /∈ ω(H), and (g, ϕ) is a pair of H-hardian germs
parametrizing V . Then σ(2ϕ′) = f (cf. Lemma 7.5.5) and thus

P (2ϕ′) = 0 where P (Y ) := 2Y Y ′′ − 3(Y ′)2 + Y 4 − fY 2 ∈ H{Y }.
Hence Theorem 5.4.25 applied to E := H⟨ϕ⟩ = H(ϕ, ϕ′, ϕ′′) gives for grounded H
elements h0, h1 ∈ H> and m, n with h0, h1 ≻ 1 and m+ n ⩽ 3, such that

logm+1 h0 ≺ ϕ ≼ expn h1.

In the next two lemmas we improve on these bounds:

Lemma 7.5.16. Suppose ℓ0 ∈ H>, ℓ0 ≻ 1, and maxΨH = v(γ0) for γ0 := ℓ†0.

Then f − ω(−γ
†
0) ≻ γ20 and ϕ ≻ log ℓ0, or f − ω(−γ

†
0) ≍ γ20 and ϕ ≍ log ℓ0.

Proof. By Lemma 5.5.34 we have f /∈ ω(H) = ω(−γ
†
0) + γ20O

↓
H and hence f =

ω(−γ
†
0) + γ20u where u ≽ 1, u > 0, so f − σ(γ0) = γ20 (u − 1). Suppose u ≻ 1;

then f −σ(γ0) ∼ uγ20 ≻ γ20 , and the proof of Lemma 7.5.6 shows that then ϕ′ ∼ e/2
where e2 = f − σ(γ0), so e ≻ γ0 and thus ϕ ≻ log ℓ0. Now suppose u ≍ 1, and

put ℓ1 := log ℓ0, γ1 := ℓ†1. Then by [ADH, 11.7.6],

f − σ(γ1) = ω
(
−γ

†
0

)
− ω

(
−γ

†
1

)
+ uγ

2
0 − γ

2
1 ∼ uγ

2
0 ≻ γ

2
1 ,

and arguing as in the proof of Lemma 7.5.6 as before gives ϕ ≍ log ℓ0. □

Lemma 7.5.17. Suppose f ∈ σ
(
Γ(H)

)↑ or H is not λ-free, and u ∈ H> is such

that u ≻ 1 and v(u†) = minΨH . Then ϕ ⩽ un for some n ⩾ 1.

Proof. We have H-hardian ϕ ≻ 1, but this is not enough to get θ ∈ H× with ϕ ≍ θ.
That is why we consider first the case that H ⊇ R is real closed with asymptotic
integration, and f ∈ σ

(
Γ(H)

)↑. Then Lemma 7.5.6 gives e ∈ H> such that ϕ′ ∼ e,

and as H has asymptotic integration we obtain θ ∈ H× with ϕ ≍ θ. Hence ϕ† ≍
θ† ≼ u†, and thus ϕ ⩽ un for some n ⩾ 1, by [ADH, 9.1.11].

We now reduce the general case to this special case. Take a d-maximal Hardy
field extension E of H with g, ϕ ∈ E. Suppose H is λ-free. Then f ∈ σ

(
Γ(H)

)↑.
Also, H(R) is λ-free with the same value group as H, by Proposition 1.4.3, so L :=
H(R)rc ⊆ E has asymptotic integration, with v(u†) = minΨL. Thus ϕ ⩽ un for
some n ⩾ 1 by the special case applied to L in the role of H.

For the rest of the proof we assume H is not λ-free. Then H(R) is not λ-free by
Lemmas 1.4.13 and 1.4.14, and so L := H(R)rc ⊆ E is not λ-free by [ADH, 11.6.8].
Using [ADH, 10.3.2] we also have v(u†) = minΨL. Hence replacing H by L we
arrange that H ⊇ R and H is real closed in what follows.

Suppose H has no asymptotic integration. As in the proof of Lemma 1.4.18
this yields an ω-free Hardy subfield L ⊇ H of E such that Γ>H is cofinal in Γ>L ,
so v(u†) = minΨL. Moreover, f ∈ L\ω(L) = σ

(
Γ(L)

)↑ by Corollary 5.5.36. Hence
replacing H by Lrc we have a reduction to the special case.

Suppose H has asymptotic integration. Since H is not λ-free, [ADH, 11.6.1]
gives s ∈ H creating a gap over H. Take y ∈ E× with y† = s. Then vy is
a gap in H(y) by the remark following [ADH, 11.5.14], and thus a gap in L :=
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H(y)rc. Moreover, Γ>H is cofinal in Γ>H(y) by [ADH, 10.4.5](i), hence cofinal in Γ>L ,

so v(u†) = minΨL. Thus replacing H by L yields a reduction to the “no asymptotic
integration” case. □

Corollary 7.5.18. Let a, b ∈ H := R(x). Then g, ϕ ∈ D(Q) ⊆ Cω, and ϕ ≼ xn for
some n ⩾ 1. Moreover, f ≻ 1/x2 and log x ≺ ϕ, or f ≍ 1/x2 and log x ≍ ϕ.

Proof. Apply Lemma 7.5.16 with ℓ0 := x, and Lemma 7.5.17 with u = x, and note
that f ≺ 1/x2 is excluded by the standing assumption f /∈ ω(H). □

Remark. Suppose a = 0. Then b = f/4, and g2ϕ′ ∈ R> by Lemma 7.5.5; hence
bounds on ϕ give bounds on g. Thus by Corollary 7.5.18, if b ∈ H := R(x),
then g ≽ x−n for some n ⩾ 1, and either f ≻ 1/x2, g ≺

√
x, or f ≍ 1/x2, g ≍

√
x.

Examples. Let H := R(x). Then for a = 0 and b = 5
4x

−2 the standing as-

sumption f /∈ ω(H) holds, since f = 5x−2. The germ y = x1/2 cos log x ∈ Cω
solves the corresponding second-order linear differential equation 4Y ′′ + fY = 0.
Other example: let H contain x and xr where r ∈ R, r > −1. Then for a = 0
and b := 1

4

(
x2r−r(r+2)x−2

)
∈ Cω the standing assumption f /∈ ω(H) holds in view

of f = 4b ∼ x2r ≻ 1/x2. Here z = x−r/2 cos
(

xr+1

2(r+1)

)
∈ Cω satisfies 4z′′ + fz = 0.

We now set B := ∂
3 + f∂ + (f ′/2) ∈ H[∂], and observe:

Lemma 7.5.19. B(1/ϕ′) = 0.

Proof. We arrange that H ⊇ R contains ϕ and is Liouville closed, and identify the
universal exponential extension U = UK of K = H[i] with a differential subring
of C<∞[i] as explained at the beginning of Section 5.10. Then

(ϕ′)−1/2 eϕi, (ϕ′)−1/2 e−ϕi ∈ kerU 4∂
2 + f.

Thus B(1/ϕ′) = 0 by Lemma 2.4.23 applied to Frac(U) in the role of K. □

For the canonical ΛΩ-expansion of a Hardy field, see Section 7.1.

Lemma 7.5.20. Let E be a pre-ΛΩ-field extension of the canonical ΛΩ-expansion
of H⟨ϕ′⟩. Then kerE B = CE(1/ϕ

′).

Proof. Using [ADH, 16.3.20, remark after 4.1.13] we arrange E to be Schwarz
closed. Then f /∈ ω(H) = ω(E) ∩ H, hence f ∈ σ(E×), so dimCE

kerE B = 1
by Lemma 2.5.25. □

We can now complement Corollary 7.5.13:

Corollary 7.5.21. Suppose ϕ′ is algebraic over H. Then (ϕ′)2 ∈ H and g† ∈ H.

Proof. Let E := Hrc ⊆ C<∞. Then by Corollary 7.1.2, the canonical ΛΩ-expansion
of E extends that of H⟨ϕ′⟩. Set L := E[i] ⊆ C<∞[i], so L is an algebraic clo-
sure of the differential field H. Put u := 2ϕ′ ∈ E, and let τ ∈ Aut(L|H).
Then B(τ(1/u)) = 0 by Lemma 7.5.19. So Re τ(1/u) and Im τ(1/u) in E are
also zeros of B, hence Lemma 7.5.20 yields c ∈ C× with τ(1/u) = c/u and
thus τ(u) = c−1u. Now with

P (Y ) := 2Y Y ′′ − 3(Y ′)2 + Y 4 − fY 2 ∈ H{Y }
we have P (u) = 0, so P (τ(u)) = 0, hence

0 = P (u)− c2P (τ(u)) = P (u)− c2P (c−1u) = (1− c−2)u4
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and thus c ∈ {−1, 1}, so τ(u2) = u2. This proves the first statement. The second
statement follows from the first and g2ϕ′ ∈ R> by Lemma 7.5.5. □

Distribution of zeros. Let a, b ∈ H and consider again the differential equation

(L̃) Y ′′ + aY ′ + bY = 0.

Below we use Theorem 7.5.1 to show that for any oscillating solution y ∈ C<∞ of (L̃)
the sequence of successive zeros of y grows very regularly, with growth comparable
to that of the sequence of successive relative maxima of y, and also to that of a
function whose germ is hardian. (For the equation Y ′′ + fY = 0, where f ∈ E(Q)
generates oscillations, this was suggested after [33, §20, Conjecture 4].)

To make this precise we first define a preordering ⩽ on the set RN of sequences
of real numbers by

(sn) ⩽ (tn) :⇐⇒ sn ⩽ tn eventually :⇐⇒ ∃m ∀n ⩾ m sn ⩽ tn.

(A preordering on a set is a reflexive and transitive binary relation on that set.) We
say that (sn), (tn) ∈ RN are comparable if (sn) ⩽ (tn) or (tn) ⩽ (sn). The induced
equivalence relation ∼tail on RN is that of having the same tail:

(sn) ∼tail (tn) :⇐⇒ (sn) ⩽ (tn) and (tn) ⩽ (sn) ⇐⇒ sn = tn eventually.

To any germ f ∈ C we take a representative in C0, denoted here also by f for
convenience, and associate to this germ the tail of the sequence

(
f(n)

)
, noting that

this tail is independent of the choice of representative.
For example, if the germs of f, g ∈ C0 are contained in a common Hardy field,

then the sequences
(
f(n)

)
,
(
g(n)

)
are comparable. Given an infinite set S ⊆ R

with a lower bound in R and without a limit point, the enumeration of S is the
strictly increasing sequence (sn) with S = {s0, s1, . . . } (so sn → +∞ as n→ +∞).

We take representatives of a, b in C1
e with e ∈ R, denoting these by a and b as

well, and set f := −2a′ − a2 + 4b ∈ Ce. Let y ∈ C2
e be oscillating with

y′′ + ay′ + by = 0, (so the germ of f does not lie in ω(H)),

and let (sn) be the enumeration of y−1(0). (See Lemma 5.2.10.) Theorem 7.5.1
yields e0 ⩾ e, g ∈ C×

e0 , and strictly increasing ϕ ∈ Ce0 such that y|e0 = g cosϕ,
and g, ϕ lie in a common Hardy field extension of H with (g, ϕ) parametrizing
kerC<∞(∂2 + a∂ + b) (where g, ϕ also denote their own germs).

Lemma 7.5.22. There is a strictly increasing ζ ∈ Cn0
(n0 ∈ N) such that sn = ζ(n)

for all n ⩾ n0 and the germ of ζ is hardian with H-hardian compositional inverse.

Proof. Take n0 ∈ N such that sn ⩾ e0 for all n ⩾ n0, and then k0 ∈ 1
2 + Z such

that ϕ(sn) = (k0 + n)π for all n ⩾ n0. Thus n0 =
(
ϕ(sn0)/π

)
− k0. Let ζ ∈ Cn0

be the compositional inverse of (ϕ/π) − k0 on [sn0
,+∞). Then ζ has the desired

properties: the germ of ζ is hardian by Lemma 5.3.5. □

If a, b ∈ C∞, then we can choose ζ in Lemma 7.5.22 such that its germ is in C∞;
likewise with Cω in place of C∞. We do not know whether we can always choose ζ
in Lemma 7.5.22 to have H-hardian germ. For ϕ not growing too slowly we can
describe the asymptotic behavior of ζ in terms of ϕ:

Corollary 7.5.23. If ϕ ≽ x1/n for some n ⩾ 1, then in Lemma 7.5.22 one can
choose ζ ∼ ϕinv ◦ πx.
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Proof. Let n0, k0, ζ be as in the proof of Lemma 7.5.22. Then

ζ inv ∼ (ϕ/π)− k0 ∼ ϕ/π.

Now assume ϕ ≽ x1/n, n ⩾ 1. Then ζ inv ≽ x1/n, so ζ ≼ xn, and thus the
condition stated just before Lemma 5.1.9 is satisfied for h := ζ. We can therefore
use Corollary 5.1.11 with ϕ/π, ζ in the role of g, h to give ϕinv ◦ πx ∼ ζ. □

Combining Corollaries 7.5.11, 7.5.23, and 5.1.11 we obtain:

Corollary 7.5.24. If f ∼ c (c ∈ R>), then sn ∼ 2√
c
πn as n→ ∞.

Combining Corollary 7.5.18 with the proof of Lemma 7.5.22 yields crude bounds
on the growth of (sn) when H = R(x):

Corollary 7.5.25. Suppose a, b ∈ R(x). If f ≍ 1/x2, then for some r ∈ R>
we have en/r ⩽ sn ⩽ ern eventually. If f ≻ 1/x2, then for some m ⩾ 1 and
every ε ∈ R> we have n1/m ⩽ sn ⩽ eεn eventually.

The next lemma is a version of the Sturm Convexity Theorem [21, p. 318] concerning
the differences between consecutive zeros of y:

Lemma 7.5.26. If f ≺ 1, then the sequence (sn+1 − sn) is eventually strictly
increasing with sn+1−sn → +∞ as n→ ∞. If f ≻ 1, then (sn+1−sn) is eventually
strictly decreasing with sn+1 − sn → 0 as n → ∞. Now suppose f ∼ c (c ∈ R>).
Then sn+1 − sn → 2π/

√
c as n → ∞, and if f < c, then (sn+1 − sn) is eventually

strictly decreasing, if f = c, then (sn+1 − sn) is eventually constant, and if f > c,
then (sn+1 − sn) is eventually strictly increasing.

Proof. We arrange ϕ ∈ C2
e0 such that ϕ′(t) > 0 for all t ⩾ e0. Take ζ as in the proof

of Lemma 7.5.22. Then ζ ∈ C2
n0

with

ζ ′ = π
1

ϕ′ ◦ ζ
, ζ ′′ = −π2 ϕ′′ ◦ ζ

(ϕ′ ◦ ζ)3
.

The Mean Value Theorem gives for every n ⩾ n0 a tn ∈ (n, n+ 1) such that

sn+1 − sn = ζ(n+ 1)− ζ(n) = ζ ′(tn).

If f ≺ 1, then Corollary 7.5.11 gives ϕ ≺ x, so ζ ≻ x, hence ζ ′ ≻ 1; this proves the
first claim of the lemma. The other claims follow likewise using Corollary 7.5.11
and the above remarks on ζ ′ and ζ ′′. □

Corollary 7.5.27. Let h ∈ C0 and suppose the germ of h is in E(Q). Then the
sequences (sn) and

(
h(n)

)
are comparable.

Proof. Let ζ be as in Lemma 7.5.22, and note that the germs of ζ and h lie in a
common Hardy field. □

Let also a, b ∈ H, and take representatives of a, b in C1
e (e ∈ R), denoting these

by a and b as well. Let y ∈ C2
e be an oscillating solution of the differential equation

Y ′′ + aY ′ + bY = 0,

and let (sn) be the enumeration of y−1(0).

Lemma 7.5.28. The sequences (sn) and (sn) are comparable.
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Proof. We arrange that H is maximal and take ζ as in Lemma 7.5.22. This lemma
also provides a strictly increasing ζ ∈ Cn0

(n0 ∈ N) such that sn = ζ(n) for
all n ⩾ n0 and the germ of ζ is hardian with H-hardian compositional inverse.

With ζ and ζ denoting also their germs this gives ζ inv ⩽ ζ inv or ζ inv ⩾ ζ inv,
hence ζ ⩾ ζ or ζ ⩽ ζ. Thus (sn) and (sn) are comparable. □

Now y′ also oscillates, so by Corollary 5.5.17 there is for all sufficiently large n
exactly one t ∈ (sn, sn+1) with y′(t) = 0. Also b ̸= 0 in H, since b = 0 would
mean that z := y′ satisfies z′ + az = 0, so z would be H-hardian. This leads
to the following: Let m ⩾ 1 and suppose y ∈ Cm+2

e (and y′′ + ay′ + by = 0
with oscillating y as before). Then the zero sets of y, y′, . . . , y(m) are eventually
parametrized by hardian germs as follows:

Lemma 7.5.29. For i = 0, . . . ,m we have an ni ∈ N and a strictly increasing
function ζi ∈ Cni

, such that:

(i) ζi(ni) ⩾ e and ζi(t) → +∞ as t→ +∞;
(ii) the germ of ζi is hardian with H-hardian compositional inverse;
(iii)

{
ζi(n) : n ⩾ ni

}
=
{
t ⩾ ζi(ni) : y(i)(t) = 0

}
;

(iv) ζ invi − ζ inv0 ≼ 1;
(v) if i < m, then ζi(n) < ζi+1(n) < ζi(n+ 1) for all n ⩾ ni+1.

Proof. We arrange that H is maximal. For simplicity we only do the case m = 1;
the general case just involves more notation. For ζ0 we take a function ζ as
constructed in the proof of Lemma 7.5.22, and also take n0 as in that proof, so
clauses (i), (ii), (iii) are satisfied for i = 0. Set A := ∂

2 + a∂ + b ∈ H[∂]. As b ̸= 0,
we have the monic operator A∂ ∈ H[∂] of order 2 as defined before Lemma 2.5.13,
with A∂(y′) = 0. Take a pair (g1, ϕ1) of elements of H parametrizing kerC<∞ A∂.
Then with A∂, g1, ϕ1 instead of A, g, ϕ, and taking suitable representatives of the
relevant germs, the proof of Lemma 7.5.22 provides likewise an n1 ∈ N, a k1 ∈ 1

2+Z,
and a strictly increasing function ζ1 ∈ Cn1 satisfying clauses (i), (ii), (iii) for i = 1
and with compositional inverse given by (ϕ1/π)− k1.

Recall that U = UK ⊆ C<∞[i] is a differential integral domain extending K,
and that kerC<∞[i]B = kerUB for all B ∈ K[∂] ̸=, by Theorem 7.4.1. There-

fore kerC<∞[i]A
∂ =

{
y′ : y ∈ kerC<∞[i]A

}
by Lemma 2.5.13, so in view of A ∈ H[∂],

kerC<∞ A∂ =
{
y′ : y ∈ kerC<∞ A

}
.

Now (iv) for i = 1 follows from Lemmas 7.5.2 and 7.5.7.
As to (v), the remark preceding the lemma gives ℓ ∈ N and p ∈ Z such that for

all n ⩾ n1 + ℓ we have: n+ p ⩾ n0 and ζ1(n) is the unique zero of y′ in the inter-
val
(
ζ(n+p), ζ(n+p+1)

)
. Set n∗1 := n1+ℓ+|p|, and modify ζ1 to ζ

∗
1 : [n

∗
1,+∞) → R

by setting ζ∗1 (t) = ζ1(t − p). Then ζ(n) < ζ∗1 (n) < ζ(n + 1) for all n ⩾ n∗1. The
compositional inverse of ζ∗1 is given by (ϕ1/π)− (k1 − p). Thus replacing ζ1, n1, k1
by ζ∗1 , n

∗
1, k1 − p, all clauses are satisfied. □

Define N : R⩾e → N by

N(t) :=
∣∣[e, t] ∩ y−1(0)

∣∣ = min{n : sn > t},

so for n ⩾ 1: N(t) = n⇔ sn−1 ⩽ t < sn. Thus N(t) → +∞ as t→ +∞; in fact:

Lemma 7.5.30. N ∼ ϕ/π.
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Proof. Take n0, k as in the proof of Lemma 7.5.22, so ϕ(sn) = (k+n)π for n ⩾ n0.
Let t ⩾ e be such that N(t) ⩾ n0 + 1 ; then sN(t)−1 ⩽ t < sN(t) and thus

N(t) + k − 1 = ϕ(sN(t)−1)/π ⩽ ϕ(t)/π < ϕ(sN(t))/π = N(t) + k.

This yields N ∼ ϕ/π. □

The quantity N(t) has been studied extensively in connection with second order
linear differential equations; see [91, Chapter IX, §5, and the literature quoted
on p. 401]. For example, the lemma below is a consequence of a result due to
Wiman [210] that holds under more general assumptions (see [91, Chapter IX,
Corollary 5.3]), but also follows easily using our Hardy field calculus. Here we
assume a = 0, so f = 4b ∈ Ce.

Lemma 7.5.31. Suppose f(t) > 0 for all t ⩾ e, and
(
1/
√
f
)′ ≺ 1. Then

N(t) ∼ 1

2π

∫ t

e

√
f(s) ds as t→ +∞.

Proof. From
(
1/
√
f
)′ ≺ 1 we get f† ≺

√
f . Now f is hardian, so f ≼ 1/x2 would

give f† ≽ 1/x, which together with f ≼ 1/x2 contradicts f† ≺
√
f . Thus f ≻

1/x2. For the rest of the argument we arrange H is maximal with (g, ϕ) ∈ H2.
Corollary 7.5.10 yields a pair (g1, ϕ1) ∈ H2 parametrizing kerC<∞(∂2 + b) such
that ϕ′1 ∼ (1/2)

√
f . Then ϕ−ϕ1 ∈ R by Lemma 7.5.7, so ϕ′ ∼ (1/2)

√
f . Let ϕ2 ∈ C1

e

be given by ϕ2(t) = (1/2)
∫ t
e

√
f(s) ds. Then ϕ′2 = (1/2)

√
f , so (the germ of) ϕ2

lies in H and
√
f ≻ 1/x, so ϕ2 > R. Hence by [ADH, 9.1.4(ii)] we have ϕ ∼ ϕ2.

Now apply Lemma 7.5.30. □

In view of Lemma 5.2.10 one may ask to what extent the results in this subsection
generalize to higher-order linear differential equations over Hardy fields.

When is the perfect hull ω-free? Here we use the lemmas that made up the
proof of Theorem 7.5.1 to characterize ω-freeness of the (d-) perfect hull of H:

Theorem 7.5.32. The following are equivalent:

(i) H is not λ-free or ω(H) = H \ σ
(
Γ(H)

)↑;
(ii) D(H) is ω-free;
(iii) E(H) is ω-free.

In connection with this theorem recall that by Corollary 7.5.9, a d-perfect Hardy
field is Schwarz closed iff it is ω-free, so in (ii), (iii) we could have also written
“Schwarz closed” instead of “ω-free”. The implication (i) ⇒ (ii) was shown already
in Lemma 5.5.37. To show the contrapositive of (iii) ⇒ (i) suppose H is λ-free
and ω(H) ̸= H \ σ

(
Γ(H)

)↑. Since ω(H) ⊆ H \ σ
(
Γ(H)

)↑ this yields ω ∈ H

with ω(H) < ω < σ
(
Γ(H)

)
, and so by Lemma 7.5.33 below, E(H) is not ω-free.

The proof of this lemma relies on Corollary 7.5.8, but additionally draws on some
results from Sections 5.3 and 5.6.

Lemma 7.5.33. Suppose H is λ-free, and ω ∈ H, ω(H) < ω < σ
(
Γ(H)

)
. Then

ω(E) < ω < σ
(
Γ(E)

)
for E := E(H),

hence E is not ω-free.
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Proof. We may replace H by any λ-free Hardy subfield L of E containing H such
that Γ< is cofinal in Γ<L , by [ADH, 11.8.14, 11.8.29]. Using this observation and
Proposition 1.4.3 we replace H by H(R) to arrange H ⊇ R. Next we replace H
by Li(H) ⊆ E to arrange that H is Liouville closed, using Proposition 1.4.15.
Now ω(E) = ω(E) is downward closed and ω(E) ∩H = ω(H), so ω(E) < ω. To-
wards a contradiction, assume ω ∈ σ

(
Γ(E)

)↑. Take γ ∈ Γ(E) with σ(γ) = ω. Corol-
laries 5.6.3 and 5.6.5 also yield a germ γ̃ ∈ (C<∞)× \ {γ} with γ̃ > 0 and σ(γ̃) = ω,
and a maximal Hardy field extension M of H containing γ̃. Since M is ω-free (by
Theorem 5.6.2) and ω /∈ ω(M), we have ω ∈ σ

(
Γ(M)

)↑ by Corollary 5.5.36 and
so γ̃ ∈ Γ(M) by [ADH, 11.8.31]. Since E ⊆ M we have Γ(E) ⊆ Γ(M). Then
from σ(γ) = ω = σ(γ̃) we obtain γ = γ̃ by [ADH, 11.8.29], a contradiction. □

Remark 7.5.34. Suppose H ⊇ R is Liouville closed and ω ∈ H satisfies

ω(H) < ω < σ
(
Γ(H)

)
.

Then the uniqueness in Theorem 7.5.1 fails, by Corollaries 5.6.3 and 5.6.5: any γ > 0
in any d-maximal Hardy field extension M of H with σ(γ) = ω yields a pair (g, ϕ)
parametrizing V := kerC<∞(4∂

2 + ω) where g := 1/
√

γ and ϕ ∈M , ϕ′ = 1
2γ.

To finish the proof of Theorem 7.5.32 it remains to show the implication (ii) ⇒ (iii),
which we do in Lemma 7.5.39 below. (This implication holds trivially if H is
bounded, by Theorem 5.4.20.) We precede this lemma with some observations.

If ϕ is active in H, then the pre-H-field Hϕ has small derivation δ = ϕ−1
∂; so

if h ∈ H, h ≺ 1, then δ
n(h) ≺ 1 for all n. The next lemma yields a variant of this

when h is multiplied by a germ in C<∞ with sufficiently small derivatives:

Lemma 7.5.35. Let y = hz, h ∈ H, h ≺ 1 and z ∈ C<∞, z ≼ 1 and z(j) ≼ e−x

for j = 1, . . . , n. Let also ϕ be active in H with 0 < ϕ ≼ 1/x, and δ = ϕ−1
∂.

Then δ
j(y) ≺ 1 for j = 0, . . . , n.

Proof. Let j, k with k ⩽ j range over {1, . . . , n}. By the Product Rule for the
derivation δ and the remark preceding the lemma it is enough to show that δ

j(z) ≼ 1.

Let Rjk ∈ Q{X} be as in Lemma 5.3.4. Now λ := −ϕ† ≍ 1/x, hence Rjk(λ) ≼ 1,

and (ϕ−j)† = −jϕ† ≍ λ ≺ 1 = (ex)†, hence also ϕ−j ≺ ex. This yields

δ
j(z) = ϕ−j

(
Rjj(λ)z

(j) + · · ·+Rj1(λ)z
′) ≼ ϕ−j e−x ≺ 1,

which is more than enough. □

We have an ample supply of oscillating germs z as in Lemma 7.5.35:

Lemma 7.5.36. Let z := e−x sinx ∈ Cω; then |z(n)| ⩽ 2n e−x for all n.

In the next lemma and its corollary our Hardy field H contains R and is real closed,

and Ĥ is an immediate Hardy field extension of H. We now have the following
perturbation result:

Lemma 7.5.37. Suppose H is ungrounded, Ψ>0
H := ΨH ∩ Γ>H ̸= ∅. Let f̂ ∈ Ĥ \H

and Z(H, f̂) = ∅. Let g ∈ H, vg > v(f̂ − H) and z ∈ C<∞, z ≼ 1, z(n) ≼ e−x

for all n ⩾ 1. Then f := f̂ + gz ∈ C<∞ is hardian over H, and we have an

isomorphism H⟨f⟩ → H⟨f̂⟩ of H-fields over H sending f to f̂ .
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Proof. The hypothesis Ψ>0
H ̸= ∅ and [ADH, 9.2.15] yields active ϕ in H with ϕ† ≍ ϕ.

But also t† ≍ t for t := x−1 in H(x), so ϕ ≍ t by the uniqueness in [ADH,
9.2.15]. Below ϕ ranges over the active elements of H such that 0 < ϕ ≼ t,

and δ := ϕ−1
∂. Let h ∈ H, m ∈ H× be such that f̂ − h ≼ m; by Corollary 6.7.12

it is enough to show that then δ
n
(
f−h
m

)
≼ 1 for all n. Now u := f̂−h

m ∈ Ĥ,

u ≼ 1, and the valued differential field Ĥϕ has small derivation, so δ
n(u) ≼ 1 for

all n. Moreover, g/m ∈ H, g/m ≺ 1, so δ
n
(
g
mz
)
≺ 1 for all n, by Lemma 7.5.35.

Thus δ
n
(
f−h
m

)
= δ

n
(
f̂−h
m

)
+ δ

n
(
g
mz
)
≼ 1, for all n. □

Using Lemmas 7.5.36 and 7.5.37, and results of [ADH, 11.4] we now obtain:

Corollary 7.5.38. Suppose H is ungrounded with Ψ>0
H ̸= ∅. Let (fρ) be a divergent

pc-sequence in H of d-transcendental type over H and with a pseudolimit in E(H).
Then (fρ) is a c-sequence.

Proof. Let fρ ⇝ f̂ ∈ E(H). Then by [ADH, 11.4.7, 11.4.13] the Hardy field H⟨f̂⟩ is
an immediate extension of H, and Z(H, f̂) = ∅ . Suppose (fρ) is not a c-sequence.

Then we can take g ∈ H× with vg > v(H − f̂). By Lemmas 7.5.36 and 7.5.37, the

germ f := f̂+g e−x sinx generates a Hardy fieldH⟨f⟩ overH; however, no maximal

Hardy field extension of H contains both f̂ and f , contradicting f̂ ∈ E(H). □

We can now supply the proof of the still missing implication (ii) ⇒ (iii) in Theo-
rem 7.5.32:

Lemma 7.5.39. Suppose H is ω-free. Then E(H) is also ω-free.

Proof. Since E := E(H) is Liouville closed and contains R we may replace H by
the Hardy subfield Li

(
H(R)

)
of E, which remains ω-free by Theorem 1.4.1, and

arrange thatH ⊇ R andH is Liouville closed (so Corollary 7.5.38 applies). Towards
a contradiction, suppose ω ∈ E, ω(E) < ω < σ

(
Γ(E)

)
; then ω(H) < ω < σ

(
Γ(H)

)
.

Choose a logarithmic sequence (ℓρ) for H and define ωρ := ω(−ℓ††ρ ). Then (ωρ) is
a divergent pc-sequence in H with ωρ ⇝ ω, by [ADH, 11.8.30]. By [ADH, 13.6.3],
(ωρ) is of d-transcendental type over H. Its width is

{
γ ∈ (ΓH)∞ : γ > 2ΨH

}
by [ADH, 11.7.2], which contains v(1/x4) = 2v

(
(1/x)′

)
, so (ωρ) is not a c-sequence,

contradicting Corollary 7.5.38. □

Next we describe for j = 1, 2 a λ-free Hardy field H(j) ⊇ R and ω(j) ∈ H(j) such

that ω
(
Λ(H(j))

)
< ω(j) < σ

(
Γ(H(j))

)
(so H(j) is not ω-free by [ADH, 11.8.30]),

and

(1) ω(1) ∈ ω(H(1));
(2) ω(2) /∈ ω(H(2)).

It follows that ω(H(1)) = H(1) \ σ
(
Γ(H(1))

)↑ by Lemma 5.5.35, hence condition (i)
in Theorem 7.5.32 is satisfied for H = H(1), but it is not satisfied for H = H(2);
thus E(H(1)) is ω-free, whereas E(H(2)) is not.

To construct such H(j) and ω(j) ∈ H(j) we start with a hardian translogarithmic
germ ℓω (see the remarks before Proposition 5.6.6), and set

γ := ℓ†ω, λ := −γ
†, ω(1) := ω(λ), ω(2) := σ(γ) = ω(1) + γ

2.
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Using [ADH, Sections 11.5, 11.7] we see that the Hardy field E := R(ℓ0, ℓ1, ℓ2, . . . )
is ω-free and that the elements ω(1),ω(2) ∈ M := E⟨ℓω⟩ are pseudolimits of the
pc-sequence (ωn) in E. For j = 1, 2, we consider the Hardy subfield

H(j) := E⟨ω(j)⟩

of M , an immediate λ-free extension of E by [ADH, 13.6.3, 13.6.4], and there-
fore ω

(
Λ(H(j)

)
< ω(j) < σ

(
Γ(H(j))

)
by [ADH, 11.8.30]. Moreover

ω
(
H(j)

)
= ω(M) ∩H(j) for j = 1, 2,

so (1) holds since ω1 ∈ ω(M) ⊆ ω(M), whereas ω2 ∈ σ
(
Γ(M)

)
⊆ M \ ω(M),

hence (2) holds.

Example 7.5.40. Set H := E(H(2)). Then the Hardy field H is perfect, so H ⊇ R
is a Liouville closed Hardy field with I(K) ⊆ K†, but H is not ω-free. This makes
good on a promise made before Lemma 4.4.32.

Antiderivatives of rational functions as phase functions. In this subsec-
tion H = R(x), so K = H[i] = C(x). If f ∈ H \ ω(H) and (g, ϕ) ∈ Li(H)2 para-
metrizes kerC<∞(4∂

2 + f), then (ϕ′)2 ∈ H by Corollaries 7.5.13, 7.5.15, and 7.5.21.
In Corollary 7.5.51 below we give a condition on such f , g, ϕ that ensures ϕ′ ∈ H,
to be used in Section 7.6. We precede this with remarks about ramification in
quadratic extensions of K. So let L be a field extension of K with [L : K] = 2.

Lemma 7.5.41. Up to multiplication by −1, there is a unique y ∈ L such that L =
K(y) and y2 = p(x) where p ∈ C[X] is monic and separable.

Proof. By [ADH, 1.3.11], A := C[x] is integrally closed, so [ADH, 1.3.12, 1.3.13]
yield a y ∈ L with minimum polynomial P ∈ A[Y ] over K such that L = K(y).
Take a, b ∈ A with P = Y 2 + aY + b. Replacing a, b, y by 0, b− (a/2)2, y + (a/2),
respectively, we arrange a = 0. Thus y2 = p(x) for p ∈ C[X] with p(x) = −b, and
replacing y by cy for suitable c ∈ C× we arrange that p is monic. If c ∈ C and p ∈
(X − c)2C[X], then we may also replace p, y by p/(X − c)2, y/(x− c), respectively.
In this way we arrange that p is separable. Suppose L = K(z) and z2 = q(x)
where q ∈ C[X] is monic and separable. Take r, s ∈ K with z = r+sy. Then s ̸= 0,
and q(x) = z2 =

(
r2+s2p(x)

)
+(2rs)y, hence r = 0 and so q(x) = s2p(x). Since p, q

are monic and separable, this yields s2 = 1 and thus z = −y or z = y. □

In the following y, p are as in Lemma 7.5.41. For each c ∈ C we have the val-
uation vc : K

× → Z that is trivial on C with vc(x− c) = 1, and we also have
the valuation v∞ : K× → Z that is trivial on C with v∞(x−1) = 1 [ADH, 3.1.30].
Given f ∈ K× there are only finitely many c ∈ C∞ := C∪{∞} such that vc(f) ̸= 0;
moreover,

∑
c∈C∞

vc(f) = 0, with f ∈ C× iff vc(f) = 0 for all c ∈ C. Let c ∈ C∞,

and equip K with the valuation ring Oc of vc. By [ADH, 3.1.15, 3.1.21], ei-
ther exactly one or exactly two valuation rings of L lie over Oc. The residue
morphism Oc → res(K) restricts to an isomorphism C → res(K), and equip-
ping L with a valuation ring lying over Oc, composition with the natural inclu-
sion res(K) → res(L) yields an isomorphism C → res(L); thus the valued field
extension L ⊇ K is immediate iff L is unramified over K, that is, ΓL = Γ = Z.

Lemma 7.5.42. Suppose c ̸= ∞. If p(c) = 0, then only one valuation ring of L lies
over Oc, and equipping L with this valuation ring we have [ΓL : Γ] = 2. If p(c) ̸= 0,
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then there are exactly two valuation rings of L lying over Oc, and equipped with
any one of these valuation rings, L is unramified over K.

Proof. If p(c) = 0, then vc(p) = 1, so by [ADH, 3.1.28] there is a unique valuation
ring OL of L lying over Oc, and equipping L with OL we have [ΓL : Γ] = 2. Now
suppose p(c) ̸= 0. We identify K with its image under the embedding of K into
the valued field Kc := C((t)) of Laurent series over C which is the identity on C
and sends x − c to t. Take α ∈ C× with α2 = p(c). Hensel’s Lemma [ADH, 3.3.5]
yields z ∈ Kc with z2 = p(x) and z ∼ α. Let O+, O− be the preimages of the
valuation ring of the valued subfield K(z) of Kc under the field isomorphisms L =
K(y) → K(z) over K with y 7→ z and y 7→ −z, respectively. Then O+ ̸= O− lie
over Oc, and each turns L into an immediate extension of K. □

In the next lemma we set d := deg p, so d ⩾ 1.

Lemma 7.5.43. If d is odd, then only one valuation ring of L lies over O∞, and
equipping L with this valuation ring we have [ΓL : Γ] = 2. If d is even, then there
are exactly two valuation rings of L lying over O∞, and equipped with any one of
these valuation rings, L is unramified over K.

Proof. We have v∞(p) = −d. Hence if d is odd, then we can argue using [ADH,
3.1.28] as in the proof of Lemma 7.5.42. Suppose d is even, so with e = d/2 we
have (y/xe)2 = p(x)/xd ∼ 1. Identify K with its image under the embedding of K
into the valued field Kc := C((t)) of Laurent series over C which is the identity on C
and sends x−1 to t. Then [ADH, 3.3.5] yields z ∈ Kc with z ∼ 1 and z2 = p(x)/xd.
Let O+, O− be the preimages of the valuation ring of the valued subfield K(z)
of Kc under the field isomorphisms L→ K(z) over K with y 7→ xez and y 7→ −xez,
respectively. Then O+ ̸= O− are valuation rings of L lying over O∞, each of which
turns L into an immediate extension of K. □

Corollary 7.5.44. There are at least two c ∈ C∞ such that some valuation ring
of L lying over Oc makes L ramified over K.

Next we let C be any field of characteristic zero and consider the d-valued Hahn
field C((tQ)) with its strongly additive C-linear derivation satisfying t′ = 1. We
let q, r, s range over Q, and z =

∑
q zqt

q ∈ C((tQ))× with all zq ∈ C. Put

q0 := vz = min supp z ∈ Q,

so z ∼ zq0t
q0 . If z /∈ C((t)), then we also set q1 := min

(
(supp z) \ Z

)
∈ Q \ Z,

so q1 ⩾ q0. In Lemmas 7.5.46 and 7.5.47 below we give sufficient conditions for z
to be in C((t)). Set

w := z2 =
∑
q

wqt
q where wq =

∑
r+s=q

zrzs,

so w ∼ z2q0t
2q0 , and observe:

Lemma 7.5.45. If w /∈ C((t)) (and so z /∈ C((t))), then

min
(
(suppw) \ Z

)
= q0 + q1, wq0+q1 = 2zq0zq1 .

Lemma 7.5.46. Suppose ω(z) ∈ t−1C[[t]]. Then z ∈ C((t)).
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Proof. Put u := z′ =
∑
q uqt

q, uq = (q + 1)zq+1. If q0 ̸= 0, then u ∼ q0zq0t
q0−1.

Hence q0 ⩾ −1: otherwise −ω(z) = 2u + w ∼ z2q0t
2q0 , contradicting ω(z) ≼ t−1 ≼

t−2. Moreover, if q0 = −1, then (2u+w)− (−2z−1+z
2
−1)t

−2 ≺ t−2 and so z−1 = 2.
Towards a contradiction, suppose z /∈ C((t)). We have u /∈ C((t)). Indeed

(7.5.2) min
(
(suppu) \ Z

)
= q1 − 1, uq1−1 = q1zq1 .

Also w = −ω(z)− 2u /∈ C((t)), and by the previous lemma

(7.5.3) min
(
(suppw) \ Z

)
= q0 + q1, wq0+q1 = 2zq0zq1 .

From (7.5.2), (7.5.3), and 2u + w ∈ C((t)) we get q1 − 1 = q0 + q1 and 2q1zq1 =
−2zq0zq1 , hence q0 = −1, q1 = −zq0 . Thus q1 = −2 < −1 = q0, a contradiction. □

In [ADH, p. 519] we defined ωϕ : E → E for a differential field E and ϕ ∈ E×.

Lemma 7.5.47. Suppose ω−1/t2(z) ∈ C[[t]]×. Then z ∈ C((t)).

Proof. Put u := −t2z′ =
∑
q uqt

q where uq = −(q − 1)zq−1. If q0 ̸= 0, then u ∼
−q0zq0tq0+1. We must have q0 = 0: otherwise, if q0 < 1, then 2q0 < q0 + 1

and so −ω−1/t2(z) = 2u + w ∼ z2q0t
2q0 , contradicting ω−1/t2(z) ≍ 1, whereas

if q0 ⩾ 1 then 2u + w ≼ tq0+1 ≼ t2, again contradicting ω−1/t2(z) ≍ 1. Now
suppose z /∈ C((t)). Then

(7.5.4) min
(
(suppu) \ Z

)
= q1 + 1, uq1+1 = −q1zq1

and by Lemma 7.5.45:

(7.5.5) min
(
(suppw) \ Z

)
= q1, wq1 = 2z0zq1 .

Together with 2u+ w ∈ C((t)) this yields a contradiction. □

We now apply the above with C = C to show:

Corollary 7.5.48. Let z ∈ L be such that ω(z) = f ∈ K. If vc(f) ⩾ −1 for
all c ∈ C, or vc(f) ⩾ −1 for all but one c ∈ C and v∞(f) = 0, then z ∈ K.

Proof. Let c ∈ C∞ and let L be equipped with a valuation ring lying over Oc.
If c ∈ C, then we have a valued differential field embedding L → C((tQ)) over C
with x−c 7→ t, and identifying L with its image under this embedding, if vc(f) ⩾ −1,
then f ∈ t−1C[[t]], hence z ∈ C((t)) by Lemma 7.5.46, so K(z) ⊆ C((t)) is un-
ramified over K. If c = ∞, then we have a valued differential field embed-

ding L → C((tQ))−1/t2 over C with x−1 7→ t, and again identifying L with its
image under this embedding, if v∞(f) = 0, then f ∈ C[[t]]× by Lemma 7.5.47,
so K(z) is unramified over K. Now use Corollary 7.5.44. □

In the next two lemmas we fix c ∈ C∞ and equip K = C(x) with v = vc. Then
the valued differential field K is d-valued, and for all z ∈ K× with vz = k ̸= 0 we
have z† ∼ k(x− c)−1 if c ̸= ∞, and z† ∼ −kx−1 if c = ∞. In these two lemmas we
let z ∈ K×, and set k := vz, f := ω(z).

Lemma 7.5.49. Suppose z ≻ 1. If c = ∞, then f ∼ −z2. If c ̸= ∞ and f ≼ 1,
then z − 2(x− c)−1 ≼ 1.
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Proof. If c = ∞, then x ≻ 1 and so z† ∼ −kx−1 ≺ 1 ≺ z, hence f = ω(z) =
−z(2z† + z) ∼ −z2. Now suppose c ̸= ∞ and f ≼ 1. Applying the automorphism
of the differential field K over C with x 7→ x + c we arrange c = 0. So x ≺ 1
and z† ∼ kx−1. We have −z(2z† + z) = ω(z) = f ≼ 1, so 2z† ∼ −z, and
thus z ∼ 2x−1, that is, z − 2x−1 ≼ 1. □

Lemma 7.5.50. Suppose c ̸= ∞ and d ∈ C× is such that f − d(x − c)−2 ≼ 1.
Then z ≻ 1, and for some b ∈ C with b(2− b) = d we have z − b(x− c)−1 ≼ 1.

Proof. We arrange again c = 0, so ω(z) = f ∼ dx−2. If z ≼ 1, then z′ ≺ x−1

and thus dx−2 ∼ ω(z) = −(2z′ + z2) ≺ x−1, contradicting x ≺ 1. Thus z ≻ 1,
hence z† ∼ kx−1 with k < 0. Together with −z(2z† + z) = ω(z) ∼ dx−2 this
yields k = −1 and z ∼ bx−1 with b ∈ C×, b(2− b) = d, so z − bx−1 ≼ 1. □

Let f ∈ H \ω(H), and suppose (g, ϕ) ∈ Li(H)2 parametrizes kerC<∞(4∂
2+f). Here

is the promised sufficient condition for ϕ′ ∈ H:

Corollary 7.5.51. Suppose vc(f) ⩾ −1 for all c ∈ C, or vc(f) ⩾ −1 for all but
one c ∈ C and v∞(f) = 0. Then ϕ′ ∈ H.

Proof. Put y := g eϕi ∈ C<∞[i]×. The proof of Lemma 7.5.5 gives 4y′′ + fy = 0
and ω(z) = f for z := 2y† = −ϕ′† + 2ϕ′i . We have the differential field exten-
sion L := K[z] = K[ϕ′] ⊆ Li(H)[i] of K. If ϕ′ /∈ H, then [L : K] = 2, and then
Corollary 7.5.48 gives z ∈ K, a contradiction. Thus ϕ′ ∈ H. □

In the next section on the Bessel equation the relevant f satisfies an even stronger
condition, and this gives more information about ϕ:

Corollary 7.5.52. Suppose vc(f) ⩾ 0 for all c ∈ C×, v∞(f) = 0, and d ∈ C,
v0
(
f − dx−2

)
⩾ 0. Then there are a, b ∈ C and distinct c1, . . . , cn ∈ C× such that

−ϕ′† + 2ϕ′i = a+ bx−1 + 2

n∑
j=1

(x− cj)
−1 and b(2− b) = d.

Proof. Corollary 7.5.51 and its proof gives z := −ϕ′† + 2ϕ′i ∈ K× and ω(z) = f .
Consider first the case d ̸= 0. Then by Lemma 7.5.49 we have v∞(z) ⩾ 0 and

vc
(
z − 2(x− c)−1

)
⩾ 0 whenever c ∈ C× and vc(z) < 0.

Lemma 7.5.50 gives v0(z − bx−1) ⩾ 0 with b ∈ C such that b(2 − b) = d. Tak-
ing c1, . . . , cn as the distinct poles of z in C×, this yields the desired result by
considering the partial fraction decomposition of z with respect to C[x]. Next, sup-
pose d = 0. Then vc(f) ⩾ 0 for all c ∈ C∞, hence f ∈ C ∩ H = R. Also f > 0,
since 0 ∈ ω(H) and f /∈ ω(H). The example preceding Lemma 7.5.2, together with

Corollary 7.5.15, gives ϕ =
√
f
2 x + r with r ∈ R, so z =

√
f · i, and this gives the

desired result with a =
√
f · i, b = 0, n = 0. □

7.6. The Example of the Bessel Equation

We are going to use the results from Section 7.5 to obtain information about the
solutions of the Bessel equation

(Bν) x2Y ′′ + xY ′ + (x2 − ν2)Y = 0
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of order ν ∈ R. For solutions in C2
e (e ∈ R>), this is equivalent to the equation (L̃)

in Section 7.5 with a = x−1, b = 1− ν2x−2, so that fν := −2a′ − a2 + 4b gives

fν = −2(x−1)′ − (x−1)2 + 4
(
1− ν2x−2

)
= 4 + (1− 4ν2)x−2 ∼ 4.

Thus fν /∈ ω
(
R(x)

)
, and we have the isomorphism y 7→ x1/2y of the R-linear

space Vν ⊆ C<∞ of solutions of (Bν) onto the R-linear space of solutions in C<∞ of

(Lν) 4Y ′′ + fνY = 0.

The nonzero solutions of (Bν) in C2(R>) are known as (real) cylinder functions;
cf. [205, §15.22].

Proposition 7.6.1. There is a unique hardian germ ϕν such that

ϕν − x ≼ x−1 and Vν =

{
c√
xϕ′ν

cos(ϕν + d) : c, d ∈ R

}
.

This germ ϕν lies in D(Q) ⊆ Cω. (Recall that D(Q) = E(Q).)

If ν2 = 1
4 , then Vν = Rx−1/2 cosx + Rx−1/2 sinx, and Proposition 7.6.1 holds

with ϕν = x. So suppose ν2 ̸= 1
4 . Then Corollary 7.5.10 gives a germ ϕ ∼ x

in D(Q) such that (g, ϕ) parametrizes Vν , where g := (xϕ′)−1/2. Using this fact,
Proposition 7.6.1 now follows from Corollary 7.5.15, Lemma 7.5.5, and the next
lemma about any such pair (g, ϕ):

Lemma 7.6.2. We have ϕ− x− r − 1
2 (ν

2 − 1
4 )x

−1 ≼ x−3 for some r ∈ R.

Proof. Set z := 2ϕ′, so z = 2 + ε, ε ≺ 1. From σ(z) = fν and multiplication by z2,

2zz′′ − 3(z′)2 + z2(z2 − fν) = 0

and thus with µ := 4ν2 − 1 ∈ R×, u := −(2zz′′ − 3(z′)2) = 3(ε′)2 − 2yε′′:

u = z2(z2 − fν) ∼ 4(z2 − fν) = 4(4ε+ ε2 + µx−2), and thus

(7.6.1) u/4 ∼ ε(4 + ε) + µx−2.

We claim that u ≺ x−2. If ε ≼ x−2, then ε′ ≼ x−3, ε′′ ≼ x−4, and the claim
is valid. If ε ≻ x−2, then ε† ≼ (x−2)† = −2x−1, so ε′ ≼ x−1ε ≺ x−1 ≺ 1,
hence ε′′ ≺ (x−1)′ = −x−2, which again yields u ≺ x−2. The claim and (7.6.1)
give ε ∼ −µ

4x
−2 and hence δ := ε+ µ

4x
−2 ≺ x−2. Indeed, we have δ ≼ x−4. To see

why, note that ε′ ∼ 1
2µx

−3 and ε′′ ∼ − 3
2µx

−4, so u ∼ 6µx−4, and

3
2µx

−4 ∼ g/4 ∼ ε(4 + ε) + µx−2 = 4δ + ε2, ε2 ∼ µ2

16x
−4.

Now the lemma follows by integration from

ϕ′ − 1 + 1
2 (ν

2 − 1
4 )x

−2 = 1
2ε+

1
8µx

−2 = δ/2 ≼ x−4. □

With ϕ and r as in Lemma 7.6.2, it is ϕ−r that is the germ ϕν in Proposition 7.6.1,
and till further notice we set ϕ := ϕν , f := fν , and V := Vν . Thus σ(2ϕ′) = f
and ϕν = ϕ−ν . As mentioned before, we do not know if E(Q)>R is closed under
compositional inversion. Nevertheless:

Lemma 7.6.3. ϕinv ∈ E(Q).
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Proof. Set α := 1
2 (ν

2 − 1
4 ). Then ϕ = x+ αx−1 + o(x−1), so

ϕinv = x− αx−1 + o(x−1)

by Corollary 5.1.12, and ϕinv is hardian. Let P ∈ R(x){Y } be as in the re-
marks before Lemma 7.5.16 with H = R(x), so P (2ϕ′) = 0. Corollary 5.3.12

then gives P̃ ∈ R(x){Z} such that for all hardian y > R,

P (2y′) = 0 ⇐⇒ P̃ (yinv) = 0,

in particular, P̃ (ϕinv) = 0. Let now H be any maximal Hardy field. Theorem 7.1.3

then yields z ∈ H such that z = x − αx−1 + o(x−1) and P̃ (z) = 0, so y := zinv

is hardian and P (2y′) = 0. Then σ(2y′) = f , so
(
(xy′)−1/2, y

)
parametrizes V by

Lemma 7.5.3 and a remark preceding that lemma. Also y = x+ αx−1 + o(x−1) by
Corollary 5.1.12. Thus ϕ = y by Proposition 7.6.1 and so ϕinv = z ∈ H. □

This quickly yields some facts on the distribution of zeros of solutions: Let y ∈ C2
e

(e ∈ R>) be a nonzero solution of (Bν) and let (sn) be the enumeration of its zero
set. From Corollary 7.5.24 and Lemma 7.5.26 we obtain a well-known result, see
for example [91, Chapter XI, Exercise 3.2(d)], [203, §27, XIII]:

Corollary 7.6.4. We have sn ∼ πn and sn+1 − sn → π as n→ ∞.

Lemma 7.6.5. There is a strictly increasing ζ ∈ Cn0
(n0 ∈ N) whose germ is

in E(Q) such that sn = ζ(n) for all n ⩾ n0.

Proof. Take e0 ⩾ e, a representative of ϕ in C1
e0 denoted also by ϕ, and c, d ∈ R,

such that ϕ′(t) > 0 and y(t) =
(
c/
√
tϕ′(t)

)
· cos

(
ϕ(t) + d

)
for all t ⩾ e0. So we are

in the situation described before Lemma 7.5.22. Next, take n0, k0, ζ as in the proof
of that lemma. Then ζ is strictly increasing with sn = ζ(n) for all n ⩾ n0, and the
germ of ζ, denoted by the same symbol, satisfies ζ = ϕinv ◦

(
π · (x+ k0)

)
. Now use

Lemma 7.6.3 and E(Q) ◦ E(Q)>R ⊆ E(Q) (see the remark after Lemma 5.3.7), to
conclude ζ ∈ E(Q). □

Lemma 7.6.5 yields an improvement of Corollary 7.5.27 in our (Bessel) case:

Corollary 7.6.6. For any h ∈ C0 with hardian germ the sequences (sn) and
(
h(n)

)
are comparable.

Lemma 7.5.26 also has the following corollary, the first part of which was observed
by Porter [157] (cf. also [205, §15.8, 15.82]).

Corollary 7.6.7. If ν2 > 1
4 , then the sequence (sn+1 − sn) is eventually strictly

decreasing, and if ν2 < 1
4 , then (sn+1 − sn) is eventually strictly increasing.

Finally, if ν ∈ R and y ∈ C2
e with e ∈ R> is a nonzero solution of the Bessel equation

of order ν, then (sn) and the enumeration (sn) of the zero set of y are comparable,
by Lemma 7.5.28. This is related to classical results on the “interlacing of zeros”
of cylinder functions; cf. [205, §§15.22, 15.24].

In the next lemma, [21, Chapter 10, Theorem 8] has − 1
2 (ν

2 − 1
4 )x

−1 instead of

our 1
2 (ν

2 − 1
4 )x

−1. This sign error originated in an integration on [21, p. 327].

Lemma 7.6.8. Let y ∈ V ̸=. Then there is a pair (c, d) ∈ R×× [0, π) such that y =
c√
xϕ′ cos(ϕ+ d), and for any such pair we have

(7.6.2) y − c√
x
cos
(
x+ d+ 1

2 (ν
2 − 1

4 )x
−1
)
≼ x−5/2.
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Proof. Proposition 7.6.1 yields (c, d) ∈ R × [0, π) such that y = c√
xϕ′ cos(ϕ + d).

Then c ̸= 0. From ϕ′ − 1 ≼ x−2 we get 1√
ϕ′ − 1 ≼ x−2, and for every u ∈ C we

have cos(x+ u)− cos(x) ≼ u. Using also Lemma 7.6.2 this yields (7.6.2). □

We complement this with some uniqueness properties:

Lemma 7.6.9. Let y ∈ V ̸=. Then there is a unique (c, d) ∈ R× × [0, π) such that

(7.6.3) y − c√
x
cos(x+ d) ≺ 1√

x
,

and this is also the unique (c, d) ∈ R× × [0, π) such that y = c√
xϕ′ cos(ϕ+ d).

Proof. For (c, d) ∈ R× × [0, π) with y = c√
xϕ′ cos(ϕ+ d) we have (7.6.2), so

y − c√
x
cos(x+ d) ≼ x−3/2

in view of cos(x+ u) − cos(x) ≼ u for u ∈ C. This gives (7.6.3). Suppose towards
a contradiction that (7.6.3) also holds for a pair (c∗, d∗) ∈ R× × [0, π) instead
of (c, d), with (c∗, d∗) ̸= (c, d). Then d ̸= d∗, say d < d∗, so 0 < θ := d∗ − d < π.
Then c cos(x + d) − c∗ cos(x + d + θ) ≺ 1, and hence c cos(x) − c∗ cos(x + θ) ≺ 1,
which by a trigonometric identity turns into

(c− c∗ cos θ) cos(x)+ c∗ sin θ sin(x) =
√

(c− c∗ cos θ)2 + (c∗ sin θ)2 · cos(x+ s) ≺ 1

with s ∈ R depending only on c, c∗, θ; see the remarks preceding Lemma 5.5.14.
This forces c∗ sin θ = 0, but sin θ > 0, so c∗ = 0, contradicting c∗ ∈ R×. □

Corollary 7.6.10. For any (c, d) ∈ R× × [0, π) there is a unique y ∈ V ̸= such
that (7.6.3) holds. This y is given by y = c√

xϕ′ cos(ϕ+ d).

Remark 7.6.11. Lemmas 7.6.8, 7.6.9, and Corollary 7.6.10 remain valid when we
replace R× × [0, π) everywhere by R> × [0, 2π). (Use that cos(θ + π) = − cos(θ)
for θ ∈ R.)

Call a germ in C eventually convex if it has a convex representative in Cr for
some r ∈ R; likewise with “concave” in place of “convex”. The two lemmas be-
low comprise a slightly weaker version of [105, Theorem 2]. By Lemma 7.6.2 we
have ϕ = x + αx−1 + O(x−3) where α := 1

2 (ν
2 − 1

4 ), so with ϕ being hardian we
obtain

ϕ′ = 1− αx−2 +O(x−4), ϕ′′ = 2αx−3 +O(x−5).

Hence ϕ′′ > 0 if ν2 > 1
4 and ϕ′′ < 0 if ν2 < 1

4 , and thus:

Lemma 7.6.12. ϕ is eventually convex if ν2 > 1
4 , and eventually concave if ν2 < 1

4 .

Lemma 7.5.2 yields (q, θ) ∈ D(Q)2 parametrizing V ′ := {y′ : y ∈ V }.

Lemma 7.6.13. We have θ−x−r− 1
2 (ν

2+ 3
4 )x

−1 ≼ x−3 for some r ∈ R. Hence θ
is eventually convex.

Proof. Set g := (xϕ′)−1/2, q :=
√
(g′)2 + (gϕ′)2, so g, q ∈ D(Q). The proof of

Lemma 7.5.29(iv) and Lemmas 7.5.2 and 7.5.7 give θ = ϕ + d + u with d ∈ R
and u = arccos(g′/q). Now ϕ′† = 2αx−3 + O(x−5) and so g† = − 1

2x
−1 + O(x−3).

Since (ϕ′)2 = 1 +O(x−2), this yields ((g†)2 + (ϕ′)2)−1/2 = 1 +O(x−2) and thus

g′/q = g†
(
(g†)2 + (ϕ′)2

)−1/2
= − 1

2x
−1 +O(x−3).
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Hence

(g′/q)′ = 1
2x

−2 +O(x−4),
(
1− (g′/q)2

)−1/2
= 1 +O(x−2).

We obtain

u′ = − (g′/q)′√
1− (g′/q)2

= − 1
2x

−2 +O(x−4)

and thus u = c+ 1
2x

−1 +O(x−3) with c ∈ R, and so θ− x− r− (α+ 1
2 )x

−1 ≼ x−3

for r := c+ d, as claimed. □

Asymptotic expansions for ϕ and ϕinv. The arguments in this subsection
demonstrate the efficiency of our transfer theorems from Section 7.1. They allow us
to produce hardian solutions of algebraic differential equations from transseries so-
lutions of these equations. Such transseries solutions may be constructed by purely
formal computations in T (without convergence considerations). Our first goal is
to improve on the relation ϕ ∼ x+ µ−1

8 x−1 from Lemma 7.6.2, where µ := 4ν2:

Theorem 7.6.14. The germ ϕ = ϕν has an asymptotic expansion

ϕ ∼ x+
µ− 1

8
x−1 +

µ2 − 26µ+ 25

384
x−3 +

µ3 − 115µ2 + 1187µ− 1073

5120
x−5 + · · ·

Here we use the sign ∼ not in the sense of comparing germs, but to indicate an
asymptotic expansion: for a sequence (gn) in C<∞[i] with g0 ≻ g1 ≻ g2 ≻ · · · we
say that g ∈ C<∞[i] has the asymptotic expansion

g ∼ c0g0 + c1g1 + c2g2 + · · · (c0, c1, c2, · · · ∈ C)

if g − (c0g0 + · · · + cngn) ≺ gn for all n (and then the sequence c0, c1, c2, . . . of
coefficients is uniquely determined by g, g0, g1, g2, . . . ).

In the course of the proof of Theorem 7.6.14 we also obtain an explicit formula for
the coefficient of x−2n+1 in the asymptotic expansion of the theorem. Towards the
proof, set

(ν, n) :=
(µ− 12)(µ− 32) · · · (µ− (2n− 1)2)

n! 22n
(Hankel’s symbol),

so (ν, 0) = 1, (ν, 1) = µ−1
4 , and (ν, n) = (−ν, n). Also, if (ν, n) = 0 for some n,

then ν ∈ 1
2 + Z: and if ν = 1

2 + m, then (ν, n) = 0 for n ⩾ m + 1. Moreover,

if ν /∈ 1
2 + Z, then in terms of Euler’s Gamma function (cf. [123, XV, §2, Γ3, Γ5]),

(ν, n) =
(−1)n

πn!
cos(πν) Γ( 12 + n− ν) Γ( 12 + n+ ν), and so

(m,n) =
(−1)m+n

πn!
Γ( 12 + n−m) Γ( 12 + n+m).(

To prove the first identity, use Γ(z + 1) = zΓ(z) n times to give

Γ( 12 + n− ν) = Γ( 12 − ν + n) =
(∏n−1

j=0 (
1
2 − ν + j)

)
· Γ( 12 − ν); likewise

Γ( 12 + n+ ν) = Γ( 12 + ν + n) =
(∏n−1

j=0 (
1
2 + ν + j)

)
· Γ( 12 + ν),

and then use Γ(z)Γ(1− z) = π
sin(πz) to get Γ( 12 − ν)Γ( 12 + ν) = π

cos(πν) .
)
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Below we consider the H-subfield R((x−1)) of T, and set

y :=

∞∑
n=0

ynx
−2n ∈ R((x−1)) where yn := (2n− 1)!!

(ν, n)

2n
.

Here (2n− 1)!! := 1 · 3 · 5 · · · (2n− 1) = (2n)!
2nn! , so (−1)!! = 1. Thus

y = 1 +

(
µ− 1

8

)
x−2 +

3!!

2!

(
µ− 1

8

)(
µ− 9

8

)
x−4 +

5!!

3!

(
µ− 1

8

)(
µ− 9

8

)(
µ− 25

8

)
x−6 + · · · .

The definition of the yn yields the recursion

(7.6.4) y0 = 1 and yn+1 =

(
2n+ 1

n+ 1

)(
µ− (2n+ 1)2

8

)
yn.

Using this recursion and Γ(1/2) =
√
π for n = 0, induction on n yields for ν /∈ 1

2+Z:

yn =
Γ(n+ 1

2 ) Γ(ν +
1
2 + n)

n!
√
π Γ(ν + 1

2 − n)
.

We now verify that y satisfies the linear differential equation

Y ′′′ + fY ′ + (f ′/2)Y = 0.

Here f = 4 + (1− µ)x−2, so f ′/2 = (µ− 1)x−3. Thus

(f ′/2)y =
∑
n

(µ− 1)ynx
−2n−3 = (µ− 1)x−3 +

∑
n⩾1

(µ− 1)ynx
−2n−3.

We also have y′ =
∑
n⩾1 −2nynx

−2n−1 and so

fy′ =
(
4 + (1− µ)x−2

)∑
n⩾1

−2nynx
−2n−1

=
∑
n⩾1

2n(µ− 1)ynx
−2n−3 −

∑
n⩾1

8nynx
−2n−1

=
∑
n⩾1

2(µ− 1)nynx
−2n−3 −

∑
m⩾0

8(m+ 1)ym+1x
−2m−3

= −8y1x
−3 +

∑
n⩾1

(
2(µ− 1)nyn − 8(n+ 1)yn+1

)
x−2n−3

and hence, using µ− 1 = 8y1:

fy′ + (f ′/2)y =
∑
n⩾1

(
(2n+ 1)(µ− 1)yn − 8(n+ 1)yn+1

)
x−2n−3.

Moreover

y′′ =
∑
n⩾1

2n(2n+ 1)ynx
−2n−2, y′′′ =

∑
n⩾1

−4n(2n+ 1)(n+ 1)ynx
−2n−3.

This yields the claim by (7.6.4). We now identify the Hardy field R(x) with an
H-subfield of T in the obvious way. Then R(x) ⊆ R((x−1)), and the above yields:

Lemma 7.6.15. Let H be an H-closed field extending the H-field R(x) and set B :=
∂
3 + f∂ + (f ′/2) ∈ R(x)[∂]. Then dimCH

kerH B = 1. If H extends the H-
field R⟨x, y⟩ ⊆ T, then kerH B = CHy.
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Proof. We have σ(1/x) = 2/x2 ≺ 4 ∼ f , so f ∈ σ
(
Γ(H)

)↑, hence f ∈ σ(H×)\ω(H).
Thus dimCH

kerH B = 1 by Lemma 2.5.25. Hence if H extends the H-field R⟨x, y⟩,
then kerH B = CHy since B(y) = 0 by the argument preceding the lemma. □

Proposition 7.6.16. There is a unique hardian germ ψ = ψν such that

(7.6.5) ψ ∼ 1 and ψ′′′ + fψ′ + (f ′/2)ψ = 0.

This ψ satisfies ψ = 1/ϕ′ ∈ D(Q) and has the asymptotic expansion

(7.6.6) ψ ∼ 1 +
µ− 1

8
x−2 + · · ·+ (2n− 1)!!

(ν, n)

2n
x−2n + · · · .

Moreover ψ−ν = ψν , and if ν = 1
2 +m, then

ψ = 1 +
µ− 1

8
x−2 + · · ·+ (2m− 1)!!

(ν,m)

2m
x−2m.

Proof. For any H-closed field H ⊇ R(x), consider the statement
there is a unique ψ ∈ H such that (7.6.5) holds, and this ψ

satisfies ψ −
m∑
n=0

ynx
−2n ≺ x−2m−1 for all m.

This holds for H = T by Lemma 7.6.15, and hence also for any d-maximal Hardy
field H by Corollary 7.1.17 (applied with R(x) in the role of H). Thus every d-
maximal Hardy field contains a unique germ ψ satisfying (7.6.5), and every such ψ
has an asymptotic expansion (7.6.6).

Now let ψ be any hardian germ satisfying (7.6.5). Take a d-maximal Hardy
field H containing ψ; then R⟨x, ϕ⟩ ⊆ D(Q) ⊆ H. Let B be as in Lemma 7.6.15.
Then Lemma 7.5.19 gives B(1/ϕ′) = 0. Since 1/ϕ′ ∼ 1, this yields ψ = 1/ϕ′ ∈
D(Q). For the rest, use that ϕν = ϕ−ν and that for ν = 1

2 +m we have yn = 0
for n ⩾ m+ 1. □

Corollary 7.6.17. Let ψ = ψν and suppose µ ̸= 1. Then

ψ(n) ∼ (−1)n(n+ 1)!

(
µ− 1

8

)
x−n−2 for n ⩾ 1.

In particular, ψ is eventually strictly increasing if ν2 < 1/2 and eventually strictly
decreasing if ν2 > 1/2.

Lemma 7.6.18. Let H be a Hausdorff field extension of R(x), e : H → T a valued
field embedding over R(x), and h ∈ H, e(h) ∈ R((x−1)), say

e(h) = hk0x
−k0 + hk0+1x

−k0−1 + · · · where k0 ∈ Z and hk ∈ R for k ⩾ k0.

Then h has an asymptotic expansion

h ∼ hk0x
−k0 + hk0+1x

−k0−1 + · · · .

Moreover, if e(h) ∈ R[x, x−1], then e(h) = h.

Proof. For k ⩾ k0 we set h⩽k := hk0x
−k0 + · · ·+ hkx

−k ∈ R[x, x−1]. Then

e(h− h⩽k) = e(h)− h⩽k = hk+1x
−k−1 + · · · ≺ x−k = e(x−k),

so h−h⩽k ≺ x−k, giving the asymptotic expansion. If e(h) ∈ R[x, x−1], take k ⩾ k0
so large that e(h) = h⩽k, and then e(h) = e(h⩽k), so h = h⩽k ∈ R[x, x−1]. □
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We now prove Theorem 7.6.14, using also results and notations from the Appendix
to this section. Corollary 7.3.2 yields anH-field embedding e : D(Q) → T over R(x).
Let ψ be as in Proposition 7.6.16. Then e(ψ) = y and so

e(ϕ′) = e(1/ψ) = y−1 = z0 + z1
x−2

1!
+ z2

x−4

2!
+ · · ·+ zn

x−2n

n!
+ · · ·

where

zn := Bn(−y11!, . . . ,−ynn!) ∈ Q[y1, . . . , yn] ⊆ Q[µ]

by Lemma 7.6.53 at the end of this section; here the Bn are as defined in (7.6.23).
Using Lemma 7.6.18 and ϕ ∼ x we obtain the asymptotic expansion

ϕ ∼ u0x+ u1
x−1

1!
+ u2

x−3

2!
+ · · ·+ un

x−2n+1

n!
+ · · · where un :=

zn
−2n+ 1

.

The first few terms of the sequence (zn) are

z0 = 1,

z1 = −y1 =
−(µ− 1)

8
,

z2 = −2y2 + 2y21 =
−3(µ− 1)(µ− 9) + 2(µ− 1)2

64
,

z3 = −6y3 + 12y1y2 − 6y31

=
−15(µ− 1)(µ− 9)(µ− 25) + 18(µ− 1)2(µ− 9)− 6(µ− 1)3

512

and so

u0 = 1,

u1 =
µ− 1

8
,

u2 =
3(µ− 1)(µ− 9)− 2(µ− 1)2

192
=
µ2 − 26µ+ 25

192

u3 =
15(µ− 1)(µ− 9)(µ− 25)− 18(µ− 1)2(µ− 9) + 6(µ− 1)3

2560

=
3(µ3 − 115µ2 + 1187µ− 1073)

2560
.

This finishes the proof of Theorem 7.6.14. □

We turn to the compositional inverse ϕinv of ϕ. Recall: ϕinv ∈ D(Q) by Lemma 7.6.3.
To prove the next result we use Corollary 7.6.67 in the Appendix to this section.

Corollary 7.6.19. We have an asymptotic expansion

ϕinv ∼ x− µ− 1

8
x−1 − (µ− 1)(7µ− 31)

192

x−3

2!
+ · · ·

Proof. Let e : D(Q) → T and (un) be as above. Set

u :=
∑
n

un
x−2n+1

n!
= x+

µ− 1

8
x−1 +

µ2 − 26µ+ 25

384
x−3 + · · · ∈ R((x−1)) ⊆ T,
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so e(ϕ) = u. Let P ∈ R(x){Y } be as in the proof of Lemma 7.6.3, so P (2u′) =

e(P (2ϕ′)) = 0. Corollary 5.3.12 and the remark following it yield a P̃ ∈ R(x){Z}
such that for all hardian y > R,

P (2y′) = 0 ⇐⇒ P̃ (yinv) = 0

and such that this equivalence also holds for y ∈ T>R and yinv the compositional

inverse of y in T. Hence P̃ (e(ϕinv)) = e(P̃ (ϕinv)) = 0 and P̃ (uinv) = 0. The proof
of Lemma 7.6.3 shows that each maximal Hardy field H contains a unique zero z

of P̃ such that z = x − 1
8 (µ − 1)x−1 + o(x−1). By Corollary 7.1.17 this remains

true with T in place of H. Now e(ϕinv) = x − 1
8 (µ − 1)x−1 + o(x−1), and by the

remarks following Corollary 7.6.67 we have uinv = u[−1] = x− 1
8 (µ−1)x−1+o(x−1).

Hence e(ϕinv) = uinv and thus ϕinv has an asymptotic expansion as claimed. □

Remark. Corollary 7.6.67 yields the more detailed asymptotic expansion

ϕinv ∼ x−
∞∑
j=1

gj
x−2j+1

j!
, where gj =

j∑
i=1

(2(j − 1))!

(2j − 1− i)!
Bij(u1, . . . , uj−i+1).

Liouvillian phase functions. The next proposition adds to Corollary 7.5.13 for
the differential equation (Lν). This subsection is not used in the rest of the section.

Proposition 7.6.20. With ϕ = ϕν , the following are equivalent:

(i) ν ∈ 1
2 + Z;

(ii) 1/ϕ′ ∈ R[x−1];
(iii) f ∈ σ

(
R(x)>

)
; recall: f = 4 + (1− µ)x−2;

(iv) ϕ ∈ Li
(
R(x)

)
;

(v) x2y′′+xy′+(x2−ν2)y = 0 for some y ̸= 0 in a Liouville extension of C(x);
(vi) there are a, b ∈ C and distinct c1, . . . , cn ∈ C× such that

−ϕ′† + 2ϕ′i = a+ bx−1 + 2

n∑
i=1

(x− ci)
−1 and b = 1 + 2ν or b = 1− 2ν.

Proof. The implication (i) ⇒ (ii) follows from Proposition 7.6.16, and (ii) ⇒ (iii)
from f = σ(2ϕ′). If f ∈ σ

(
R(x)×

)
, then ϕ ∈ Li

(
R(x)

)
by Corollary 7.5.14

with H := Li
(
R(x)

)
; thus (iii) ⇒ (iv). For the rest of the proof, recall that by

Lemma 7.5.3 the pair
(
1/
√
ϕ′, ϕ

)
parametrizes kerC<∞(4∂

2 + f), so
(
1/
√
xϕ′, ϕ

)
parametrizes Vν . Thus (iv) ⇔ (v) by Corollary 7.5.13. Moreover, if (iv) holds,

then
(
1/
√
ϕ′, ϕ

)
∈ Li

(
R(x)

)2
, so (vi) then follows from Corollary 7.5.52.

Suppose a, b, c1, . . . , cn are as in (vi) and set

y := (ϕ′)−1/2 eϕi, z := 2y† = −ϕ′† + 2ϕ′i ∈ C(x),

so 4y′′ + fy = 0, hence ω(z) = f . Then, as germs at +∞,

z = a+(b+2n)x−1+O(x−2), so z′ = O(x−2), z2 = a2+2a(b+2n)x−1+O(x−2)

and hence

f = 4 + (1− µ)x−2 = ω(z) = −(2z′ + z2) = −a2 − 2a(b+ 2n)x−1 +O(x−2),

so b+ 2n = 0, hence ν = −n− 1
2 or ν = n+ 1

2 , and thus ν ∈ 1
2 + Z. □
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Remark. In the setting of analytic functions, the above equivalence (i) ⇔ (v) goes
back to Liouville [132]. For more on this, see [113, appendix], [116, §4.2], [164,
Chapter VI], and [205, §4.74].)

For the next result, note that arctan(g) ∈ Li
(
R(x)

)
for g ∈ R(x).

Corollary 7.6.21. Suppose ν ∈ 1
2+Z. Then there are distinct (a1, b1), . . . , (am, bm)

in R× × R such that

ϕ = x+

m∑
i=1

arctan

(
ai

x− bi

)
.

Proof. Take imaginary parts in the equality of Proposition 7.6.20(vi), integrate,
and appeal to the defining property of ϕ in Proposition 7.6.1 in combination with
the fact that for a, b ∈ R we have arctan

(
a
x−b
)
≼ x−1. Here we also use that the

derivative of arctan
(

a
x−b
)
is −a

(x−b)2+a2 = Im
(

1
x−c
)
for a, b ∈ R, c = b− ai. □

Is ϕ, ϕinv ∈ Li
(
R(x)

)
possible? The answer is “no” except for ϕ = x:

Corollary 7.6.22. Suppose ϕ ∈ Li
(
R(x)

)
, ϕ ̸= x, and ν ⩾ 0, so ν = 1

2 + m

where m ⩾ 1. Then θ := 1/ϕinv satisfies

θ′ = −θ2(1 + y1θ
2 + · · ·+ ymθ

2m) where yi = (2i− 1)!!
(ν, i)

2i
for i = 1, . . . ,m

and θ /∈ Li
(
R(x)

)
.

Proof. By the Chain Rule and Proposition 7.6.16 we have

θ′ = −θ2(ϕinv)′ = −θ2(ψ ◦ ϕinv) where ψ = 1 + y1x
−2 + · · ·+ ymx

−2m,

and this yields the first claim. Towards a contradiction, assume θ ∈ Li
(
R(x)

)
. Then

by [ADH, 10.6.6], θ lies in the Liouville extension Li
(
R(x)

)
[i] of C(x) = R(x)[i].

Hence by Corollary 1.1.35, θ is algebraic over C(x). Also θ /∈ C, so Lemma 1.1.36
yields Q ∈ C(Y ) with Q′ = 1/P where P := −Y 2(1 + y1Y

2 + · · ·+ ymY
2m). Thus

ϕ′ =
1

ψ
= − x−2

P (x−1)
= −x−2Q′(x−1) = Q(x−1)′

and so ϕ ∈ R(x). This is impossible by the lemma below. □

Lemma 7.6.23. µ = 1 ⇐⇒ ϕ = x ⇐⇒ ϕ ∈ R(x).

Proof. The first equivalence is clear from the remarks following Proposition 7.6.1.
Assume ϕ ∈ R(x). Then by Proposition 7.6.20,

−ϕ′† + 2ϕ′i = a+ bx−1 + 2

n∑
i=1

(x− ci)
−1 (a, b ∈ C, distinct c1, . . . , cn ∈ C×),

so 2ϕ′i − a ∈ ∂F ∩ CF † for F := C(x), hence 2ϕ′i = a by Corollary 1.2.14.
Thus ϕ ∈ Rx+ R. Since ϕ ∼ x and ϕ− x ≼ x−1, this gives ϕ = x. □

Question. Does there exist a ν /∈ 1
2 + Z for which ϕinv ∈ Li

(
R(x)

)
?
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The Bessel functions. We can now establish some classical facts about distin-
guished solutions to the Bessel differential equation (Bν): Corollaries 7.6.40, 7.6.41,
7.6.42 below. Our proofs use less complex analysis than those in the literature:
we need just one contour integration, for Proposition 7.6.29 below. We assume
some basic facts about Euler’s Γ-function and recall that 1/Γ is an entire function
with −N as its set of zeros (all simple), so Γ is meromorphic on the complex plane
without any zeros and has −N as its set of poles. Our main reference for these
and other properties of Γ used below is [123]. Let also z 7→ log z : C \ R⩽ → C
be the holomorphic extension of the real logarithm function, and for z ∈ C \ R⩽,
set zν := exp(ν log z). Let ν ∈ C until further notice, and note that (ν, z) 7→ zν is
analytic on C× (C\R⩽), and, keeping ν fixed, has derivative z 7→ νzν−1 on C\R⩽.
Moreover, for z ∈ C \ R, ν, ν1, ν2 ∈ C, t ∈ R> we have

zν1+ν2 = zν1zν2 , (tz)ν = tνzν , |zν | = |z|Re ν , zν = zν ,

and for z1, z2 ∈ C× with Re z1 ⩾ 0, Re z2 > 0: z1z2 ∈ C \ R⩽, (z1z2)
ν = zν1 z

ν
2 .

Lemma 7.6.24. Let A,B ⊆ C be nonempty and compact. Then∑
n

max
(ν,z)∈A×B

∣∣∣∣ (−1)n

n! Γ(ν + n+ 1)

(z
2

)2n∣∣∣∣ <∞, so the series

∑
n

(−1)n

n! Γ(ν + n+ 1)

(z
2

)2n
converges absolutely and uniformly on A×B.

Proof. Take R ∈ R> such that |z| ⩽ 2R for all z ∈ B. Set Mn := max
ν∈A

∣∣∣ 1
Γ(ν+n+1)

∣∣∣
and take n0 ∈ N such that |ν+n+1| ⩾ 1 for all n ⩾ n0 and ν ∈ A. ThenMn+1 ⩽Mn

for n ⩾ n0, by the functional equation for Γ, so the sequence (Mn) is bounded.

Hence
∑
n

max
(ν,z)∈A×B

∣∣∣ (−1)n

n! Γ(ν+n+1)

(
z
2

)2n∣∣∣ ⩽∑
n

MnR
n

n! <∞. □

By Lemma 7.6.24 and [123, V, §1, Theorem 1.1] we obtain a holomorphic function

z 7→ Jν(z) :=
∑
n

(−1)n

n! Γ(n+ ν + 1)

(z
2

)2n+ν
: C \ R⩽ → C.

For example, for z ∈ C \ R⩽, we have

J 1
2
(z) =

∑
n

(−1)n

n! Γ(n+ 3
2 )

(z
2

)2n+ 1
2

.

Note also that

(7.6.7) J−m(z) =
∑
n⩾m

(−1)n

n! (n−m)!

(z
2

)2n−m
= (−1)mJm(z)

and thus

J−m(z) ∼ (−1)m

m!

(z
2

)m
, Jm(z) ∼ 1

m!

(z
2

)m
as z → 0.

Termwise differentiation shows that Jν satisfies the differential equation (Bν) on
C \ R⩽. The function Jν is known as the Bessel function of the first kind of order ν.
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Note that (Bν) doesn’t change when replacing ν by −ν, so J−ν is also a solution
of (Bν). Lemma 7.6.24 shows that the function

(ν, z) 7→ Jν(z) : C× (C \ R⩽) → C

is analytic, and that for fixed ν the function z 7→ z−νJν(z) on C \ R⩽ extends to
an entire function.

Termwise differentiation gives (zνJν)
′ = zνJν−1 and (z−νJν)

′ = −z−νJν+1, so

(7.6.8) Jν−1 =
ν

z
Jν + J ′

ν , Jν+1 =
ν

z
Jν − J ′

ν ,

by the Product Rule, and thus

(7.6.9) Jν−1 + Jν+1 =
2ν

z
Jν Jν−1 − Jν+1 = 2J ′

ν .

Note: if ν + 1 /∈ −N, then for z ∈ C \ R⩽ and z → 0 we have

(7.6.10) Jν(z) ∼
1

Γ(ν + 1)

(z
2

)ν
, and for ν ̸= 0 : J ′

ν(z) ∼
ν

2Γ(ν + 1)

(z
2

)ν−1

.

If ν − 1 /∈ N, then (7.6.10) holds with −ν in place of ν. It follows that for ν /∈ Z
the solutions Jν , J−ν of (Bν) are C-linearly independent. Set

w := wr(Jν , J−ν) = JνJ
′
−ν − J ′

νJ−ν .

Then w′(z) = −w(z)/z on C \ R⩽ (cf. remarks following Lemma 5.2.4). This
gives c ∈ C such that w(z) = c/z on C \ R⩽. If ν /∈ Z, then c ̸= 0, and by (7.6.10)
and the remark following it we obtain c = − 2ν

Γ(ν+1)Γ(−ν+1) = − 2
Γ(ν)Γ(−ν+1) . Hence

using Γ(ν)Γ(1− ν) = π/ sin(πν):

(7.6.11) wr(Jν , J−ν)(z) = −2 sin(πν)

πz
for ν /∈ Z and z ∈ C \ R⩽.

Next we express J1/2 and J−1/2 in terms of sin z and cos z:

Lemma 7.6.25. On C \ R⩽ we have

J1/2(z) =

√
2

πz
sin z, J−1/2(z) =

√
2

πz
cos z.

Proof. For ν = 1/2, a fundamental system of solutions of (Bν) on R> is given
by x−1/2 cosx, x−1/2 sinx. This yields a, b ∈ R such that on R>,

J1/2(t) = at−1/2 cos t+ bt−1/2 sin t.

As t→ 0+ we have:

t−1/2 cos t = t−1/2 +O(t3/2), t−1/2 sin t = t1/2 +O(t5/2), and

J1/2(t) ∼
1

Γ(3/2)

(
t

2

)1/2

=

√
2

π
t1/2 (using (7.6.10)),

so a = 0, b =
√

2
π , giving the identity claimed for J1/2. For ν = −1/2 one can use

the left identity (7.6.8) for ν = 1/2. □

From Lemma 7.6.25 and (7.6.8) we obtain by induction on n:
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Corollary 7.6.26. For each n there are Pn, Qn ∈ Q[Z] with degPn = degQn = n,
both with positive leading coefficient, such that, with Q−1 := 0, we have on C \R⩽:

Jn+ 1
2
(z) =

√
2

πz

(
Pn(z

−1) sin z −Qn−1(z
−1) cos z

)
,

J−n− 1
2
(z) = (−1)n

√
2

πz

(
Pn(z

−1) cos z +Qn−1(z
−1) sin z

)
.

For example,

J3/2(z) =

√
2

πz

(
sin z

z
− cos z

)
.

For ν /∈ Z we have the solution

Yν :=
cos(πν)Jν − J−ν

sin(πν)

of (Bν) on C \ R⩽. For fixed z ∈ C \ R⩽, the entire function

ν 7→ cos(πν)Jν(z)− J−ν(z)

has a zero at each ν ∈ Z, by (7.6.7), so the holomorphic function

ν 7→ Yν(z) : C \ Z → C

has a removable singularity at each ν ∈ Z, and thus extends to an entire function
whose value at k ∈ Z is given by

Yk(z) := lim
ν∈C\Z, ν→k

Yν(z), for z ∈ C \ R⩽.

In this way we obtain a two-variable analytic function

(ν, z) 7→ Yν(z) : C× (C \ R⩽) → C,

and thus for each ν ∈ C a solution Yν of (Bν) on C \R⩽, called the Bessel function
of the second kind of order ν. Using (7.6.11) we determine the Wronskian of Jν , Yν
(first for ν /∈ Z, and then by continuity for all ν):

(7.6.12) wr(Jν , Yν)(z) = −wr(Jν , J−ν)(z)

sin(πν)
=

2

πz
(z ∈ C \ R⩽),

hence Jν , Yν are C-linearly independent. The recurrence formulas (7.6.9) yield
analogous formulas for the Bessel functions of the second kind:

(7.6.13) Yν−1 + Yν+1 =
2ν

z
Yν Yν−1 − Yν+1 = 2Y ′

ν .

Adding and subtracting these identities gives the analogue of (7.6.8)

(7.6.14) Yν−1 =
ν

z
Yν + Y ′

ν , Yν+1 =
ν

z
Yν − Y ′

ν .

For ν ∈ R we have Jν(R>), Yν(R>) ⊆ R, and for such ν we let Jν , Yν denote also
the germs (at +∞) of their restrictions to R>. We can now state the main result
of the rest of this section. It gives rather detailed information about the behavior
of Jν(t) and Yν(t) for ν ∈ R and large t ∈ R>:

Theorem 7.6.27. Let ν ∈ R. Then for the germs Jν and Yν we have

Jν =

√
2

πxϕ′ν
cos
(
ϕν −

πν

2
− π

4

)
, Yν =

√
2

πxϕ′ν
sin
(
ϕν −

πν

2
− π

4

)
.
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The proof will take some effort, especially for Yν with ν ∈ Z.

Below J denotes the analytic function (ν, z) 7→ Jν(z) : C× (C \ R⩽) → C.

Lemma 7.6.28. Let k ∈ Z and z ∈ C \ R⩽. Then

Yk(z) =
1

π

((
∂J

∂ν

)
(k, z) + (−1)k

(
∂J

∂ν

)
(−k, z)

)
.

In particular, Y−k = (−1)kYk and Y0(z) =
2

π

(
∂J

∂ν

)
(0, z).

Proof. By l’Hôpital’s Rule for germs of holomorphic functions at k,

lim
ν→k

cos(πν)J(ν, z)− J(−ν, z)
sin(πν)

= lim
ν→k

−π sin(πν)J(ν, z) + cos(πν)(∂J/∂ν)(ν, z) + (∂J/∂ν)(−ν, z)
π cos(πν)

=
1

π
lim
ν→k

(
(∂J/∂ν)(ν, z) +

(∂J/∂ν)(−ν, z)
cos(πν)

)
,

and this yields the claims. □

The following asymptotic relation is crucial for establishing Theorem 7.6.27. It is
due to Hankel [82] with earlier special cases provided by Poisson [155] (ν = 0),
Hansen [83] (ν = 1) and Jacobi [108] (ν ∈ Z).

Proposition 7.6.29 (Hankel). Let ν ∈ R. Then for the germ Jν we have:

Jν −
√

2

πx
cos
(
x− πν

2
− π

4

)
≼ x−3/2.

Proposition 7.6.29 with Lemma 7.6.9 and Remark 7.6.11 yield the identity for the
germ Jν in Theorem 7.6.27. As to Yν , let us simplify notation by setting S :=√

2
πxϕ′

ν
, α := πν

2 , θ := ϕν − π
4 . Using the identity for Jν in Theorem 7.6.27, the

numerator in the definition of Yν turns into

S ·
[
cos(2α) cos(θ − α)− cos(θ + α)

]
and the denominator into sin(2α). Trigonometric addition formulas yield

cos(2α) cos(θ − α)− cos(θ + α) = sin(2α) sin(θ − α).

For ν /∈ Z, we have sin(2α) ̸= 0, so this gives the identity for the germ Yν in
Theorem 7.6.27. The identity for Yν with ν ∈ Z will be dealt with after the proof
of Proposition 7.6.29. First a useful reduction step:

Lemma 7.6.30. Let ν ∈ R, and let Jν , Jν+1 denote also the germs (at +∞) of
their restrictions to R>. Then the following are equivalent:

(i) Jν −
√

2

πx
cos
(
x− πν

2
− π

4

)
≼ x−3/2;

(ii) Jν+1 −
√

2

πx
cos

(
x− π(ν + 1)

2
− π

4

)
≼ x−3/2.
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Proof. Put αν := πν
2 + π

4 and gν :=
√

2
πxϕ′

ν
∈ D(Q). The proof of Lemma 7.6.8

gives 1√
ϕ′
ν

−1 ≼ x−2, so gν−
√

2
πx ≼ x

−5/2, hence gν ≼ x−1/2 and thus g′ν ≼ x
−3/2.

Assume now (i). By (7.6.8) we have

(7.6.15) Jν+1 =
ν

x
Jν − J ′

ν

and by (i)

(7.6.16)
1

x
Jν =

√
2

π
x−3/2 cos(x− αν) +O(x−5/2) = O(x−3/2).

We have Jν ∈ Vν , so by Lemma 7.6.9 and (ii),

Jν = gν cos(ϕν − αν),

and αν+1 = αν +
π
2 gives sin(t− αν) = cos(t− αν+1). Thus

−J ′
ν = −g′ν cos(ϕν − αν) + gνϕ

′
ν sin(ϕν − αν)

= gνϕ
′
ν cos(ϕν − αν+1) +O(x−3/2).

Also cos(x + u) − cosx ≼ u for u ∈ C and ϕν − x ≼ x−1, so cos(ϕν − αν+1) =

cos(x− αν+1) +O(x−1). Using ϕ′ν − 1 ≼ x−2 and gν −
√

2
πx ≼ x

−5/2 this yields

gνϕ
′
ν cos(ϕν − αν+1) =

√
2

πx
cos(x− αν+1) +O(x−3/2)

and so

(7.6.17) −J ′
ν =

√
2

πx
cos(x− αν) +O(x−3/2).

Combining (7.6.15), (7.6.16), (7.6.17) yields (ii). Likewise one proves (ii) ⇒ (i),
using

Jν =
ν + 1

x
Jν+1 − J ′

ν+1

instead of (7.6.15). □

Remark. Using the identities (7.6.14) instead of (7.6.8) shows that Lemma 7.6.30
also holds with sin, Yν , Yν+1 in place of cos, Jν , Jν+1.

Lemma 7.6.30 gives a reduction of Proposition 7.6.29 to the case ν > −1/2. (We
could also reduce to the case ν > 1, say, but the choice of −1/2 is useful later.)

Lemma 7.6.31 (Poisson representation). Let Re ν > − 1
2 and z ∈ C \ R⩽. Then

Jν(z) =
( z2 )

ν

Γ(ν + 1
2 )
√
π

∫ 1

−1

etzi(1− t2)ν−
1
2 dt.

Proof. For p, q ∈ C with Re p,Re q > 0 and B(p, q) :=
∫ 1

0
tp−1(1− t)q−1 dt we have

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
,

see for example [144, Chapter 2, §1.6]. From the definition of B(p, q) we obtain∫ 1

−1

t2n(1− t2)ν−
1
2 dt =

∫ 1

0

sn−
1
2 (1− s)ν−

1
2 ds = B

(
n+ 1

2 , ν +
1
2

)
.
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In the equalities below we use this for the fourth equality (and one can appeal to a
Dominated Convergence Theorem for the second):∫ 1

−1

etzi(1− t2)ν−
1
2 dt =

∫ 1

−1

∑
m

(1− t2)ν−
1
2 tm

(iz)m

m!
dt

=
∑
m

(∫ 1

−1

tm(1− t2)ν−
1
2 dt

)
(iz)m

m!

=
∑
n

(∫ 1

−1

t2n(1− t2)ν−
1
2 dt

)
(−1)nz2n

(2n)!

=
∑
n

B
(
n+ 1

2 , ν +
1
2

) (−1)nz2n

(2n)!

= Γ
(
ν + 1

2

)∑
n

(−1)n22n Γ
(
n+ 1

2

)
Γ(n+ ν + 1)(2n)!

(z
2

)2n
= Γ

(
ν + 1

2

)√
π
∑
n

(−1)n

n! Γ(n+ ν + 1)

(z
2

)2n
,

where for the last equality we used Γ
(
n + 1

2

)
=

√
π (2n)!/(n!22n), a consequence

of the Gauss-Legendre duplication formula for the Gamma function (see [123, XV,
§2, Γ8]). □

We also need the following estimate:

Lemma 7.6.32. Let λ, t ∈ R with λ > −1 and t ⩾ 1. Then

t−(λ+1)Γ(λ+ 1) =

∫ ∞

0

e−st sλ ds ⩽
∫ 1

0

e−st sλ ds+ Γ(λ+ 1) e1−t,

and thus

∫ ∞

1

e−st sλ ds ⩽ Γ(λ+ 1) e1−t.

Proof. We have∫ ∞

0

e−st sλ ds =

∫ ∞

0

e−u
(u
t

)λ du
t

= t−(λ+1)Γ(λ+ 1)

and ∫ ∞

1

e−st sλ ds = e−t
∫ ∞

1

e−t(s−1) sλ ds ⩽ e−t
∫ ∞

1

e−(s−1) sλ ds.

Now use

∫ ∞

1

e−(s−1) sλ ds = e

∫ ∞

1

e−s sλ ds ⩽ e

∫ ∞

0

e−s sλ ds = eΓ(λ+ 1). □

Corollary 7.6.33. Let λ ∈ C with Reλ > −1 and t ∈ R⩾1. Then∣∣∣∣∫ 1

0

e−st sλ ds − t−(λ+1)Γ(λ+ 1)

∣∣∣∣ ⩽ Γ
(
Re(λ) + 1

)
e1−t .

Proof. The identities in the beginning of the proof of Lemma 7.6.32 generalize to∫ ∞

0

e−st sλ ds = t−(λ+1)Γ(λ+ 1).
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Hence∣∣∣∣∫ 1

0

e−st sλ ds − t−(λ+1)Γ(λ+ 1)

∣∣∣∣ =

∣∣∣∣∫ ∞

1

e−st sλ ds

∣∣∣∣ ⩽ ∫ ∞

1

e−st sReλ ds,

and now use Lemma 7.6.32. □

By Lemma 7.6.30 the next result is more than enough to give Proposition 7.6.29.
The proof is classical and uses Laplace’s method, cf. [144, Chapter 3, §7].

Lemma 7.6.34. Suppose Re ν > − 1
2 , and let t range over R⩾1. Then

Jν(t) =

√
2

πt
cos
(
t− πν

2
− π

4

)
+O(t−

3
2 ) as t→ +∞.

Proof. We consider the holomorphic function

z 7→ fν,t(z) := etzi(1− z2)ν−
1
2 : C \ (R⩽−1 ∪ R⩾1) → C,

and set Iν(t) :=

∫ 1

−1

fν,t(s) ds. By Lemma 7.6.31 we have Jν(t) =
( t2 )

ν

Γ(ν + 1
2 )
√
π
Iν(t).

To determine the asymptotic behavior of Iν(t) as t → +∞ we integrate along the
contour γR depicted below, where R is a real number > 1.

−1 +Ri 1 +Ri

−1 + i
R 1 + i

R

−1 + 1
R 1− 1

R
−1 1

γR

By Cauchy,
∫
γR
fν,t(z) dz = 0 (see [123, III, §5]), and letting R → +∞ we ob-

tain Iν(t) = I−ν (t)− I+ν (t) where

I−ν (t) := i

∫ ∞

0

fν,t(−1 + is) ds, I+ν (t) := i

∫ ∞

0

fν,t(1 + is) ds.

Now

I+ν (t) = i

∫ ∞

0

et(1+si)i
(
1− (1 + si)2

)ν− 1
2 ds = i eti

∫ ∞

0

e−st(s2 − 2si)ν−
1
2 ds.

The complex analytic function (κ, z) 7→
(
1 + i

2z
)κ − 1 on C × {z ∈ C : |z| < 2}

vanishes on the locus z = 0, so we have a complex analytic function (κ, z) 7→ rκ(z)

on the same region such that
(
1 + i

2z
)κ − 1 = zrκ(z) for all (κ, z) in this region.

For κ = ν− 1
2 this yields a continuous function r : [0, 1] → C such that

(
1+ i

2s
)ν− 1

2 =
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1 + r(s)s for all s ∈ [0, 1], and r(0) = (ν − 1
2 )

i
2 . In view of an identity stated just

before Lemma 7.6.24 this yields for s ∈ (0, 1]:

(s2 − 2si)ν−
1
2 = (−2si)ν−

1
2

(
1 + i

2s
)ν− 1

2 = (−2si)ν−
1
2 + r(s)s(−2si)ν−

1
2 ,

so∫ 1

0

e−st(s2 − 2si)ν−
1
2 ds =

∫ 1

0

e−st(−2si)ν−
1
2 ds+

∫ 1

0

e−st r(s)s(−2si)ν−
1
2 ds.

By Corollary 7.6.33, as t→ +∞,∫ 1

0

e−st(−2si)ν−
1
2 ds = (−2i)ν−

1
2 t−(ν+ 1

2 )Γ
(
ν + 1

2

)
+O(e−t).

Take C ∈ R> such that |r(s)| ⩽ C for all s ∈ [0, 1], and set λ := Re(ν) − 1
2 ,

so λ > −1. Then by Lemma 7.6.32,∣∣∣∣∫ 1

0

e−st r(s)s(−2si)ν−
1
2 ds

∣∣∣∣ ⩽ 2λC

∫ 1

0

e−st sλ+1 ds

⩽ 2λC

∫ ∞

0

e−st sλ+1 ds

= 2λC Γ(λ+ 2)t−λ−2.

Hence, as t→ +∞,

(7.6.18)

∫ 1

0

e−st(s2 − 2si)ν−
1
2 ds = (−2i)λt−ν−

1
2Γ
(
ν + 1

2

)
+O(t−λ−2).

Next, take D ∈ R> such that |(1 − 2 i
s )
ν− 1

2 | ⩽ D for all s ∈ [1,∞). For such s we

have |(s2 − 2si)ν−
1
2 | ⩽ Ds2λ ⩽ Ds2Re ν and thus∣∣∣∣∫ ∞

1

e−st(s2 − 2si)ν−
1
2 ds

∣∣∣∣ ⩽ D

∫ ∞

1

e−st s2Re ν ds,

hence by Lemma 7.6.32:

(7.6.19)

∫ ∞

1

e−st(s2 − 2si)ν−
1
2 ds = O(e−t) as t→ +∞.

Combining (7.6.18) and (7.6.19) yields

I+ν (t) = i(−2i)ν−
1
2 eti t−ν−

1
2Γ
(
ν + 1

2

)
+O(t−λ−2) as t→ +∞.

In the same way we obtain

I−ν (t) = i(2i)ν−
1
2 e−ti t−ν−

1
2Γ
(
ν + 1

2

)
+O(t−λ−2) as t→ +∞.

Thus as t→ +∞:

Iν(t) = I−ν (t)− I+ν (t)

= 2ν−
1
2 i
[
iν−

1
2 e−ti −(−i)ν−

1
2 eti

]
t−ν−

1
2Γ
(
ν + 1

2

)
+O(t−λ−2).

Using iν−
1
2 = e

1
2 (ν−

1
2 )πi and the like we have

i
[
iν−

1
2 e−ti −(−i)ν−

1
2 eti

]
= 2 cos

(
t− πν

2
− π

4

)
, and thus

Jν(t) =
( t2 )

ν

Γ(ν + 1
2 )
√
π
Iν(t) =

√
2

πt
cos
(
t− πν

2
− π

4

)
+O(t−

3
2 )

as t→ +∞. □
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Here is a consequence of Hankel’s result, cf. Lommel [133, p. 67]:

Corollary 7.6.35. Let ν ∈ R. Then J2
ν + J2

ν+1 =
2

πx
+O(x−2).

Proof. With αν := πν
2 + π

4 we have by Proposition 7.6.29,

Jν =

√
2

πx
cos(x−αν)+O(x−3/2), Jν+1 =

√
2

πx
cos(x−αν+1)+O(x−3/2).

Now use sin(x− αν) = cos(x− αν+1). □

Since Proposition 7.6.29 is now established, so is Theorem 7.6.27, except for the
Yν-identity when ν ∈ Z. To treat that case, and also for use in the next subsection,
we now prove a uniform version of Lemma 7.6.34:

Lemma 7.6.36. Let ν0 ∈ C and Re ν0 > − 1
2 . Then there are reals ε > 0, t0 ⩾ 1,

and C0 > 0, such that for all ν ∈ C with |ν − ν0| < ε and all t ⩾ t0:

Re ν > −1

2
,

∣∣∣∣∣Jν(t)−
√

2

πt
cos
(
t− πν

2
− π

4

)∣∣∣∣∣ ⩽ C0t
− 3

2 .

Proof. We follow the proof of Lemma 7.6.34, where in the beginning we introduced
the complex analytic function (ν, z) 7→ rν(z) on C×

{
z ∈ C : |z| < 2

}
. Take ε ∈ R>

and C ∈ R⩾1 such that 0 < ε < Re(ν0) +
1
2 and |rν− 1

2
(s)| ⩽ C for all (ν, s) ∈

B0 × [−1, 1] where B0 := {ν ∈ C : |ν − ν0| < ε}. (To handle I+ν we use this
for s ∈ [0, 1], and to deal with I−ν we use s ∈ [−1, 0].) Take also have D ∈ R>
such that |(1 − 2 i

s )
ν− 1

2 | ⩽ D for all ν ∈ B0 and s ⩾ 1 (and thus also for ν ∈ B0

and s ⩽ −1). Next, set λ0 := Re(ν0)− 1
2 , and take t0 ⩾ 1 such that et−1 ⩾ tλ0+ε+2

for all t ⩾ t0. Below ν ranges over B0 and t over R⩾t0 , and λ := Re(ν) − 1
2 ,

so λ > −1. Then, as in the proof of Lemma 7.6.34:∣∣∣∣∫ 1

0

e−st rν− 1
2
(s)s(−2si)ν−

1
2 ds

∣∣∣∣ ⩽ 2λC Γ(λ+ 2)t−λ−2.

Take CΓ ∈ R> such that 2λC Γ(λ+ 2) ⩽ CΓ for all ν. Then∣∣∣∣∫ 1

0

e−st rν− 1
2
(s)s(−2si)ν−

1
2 ds

∣∣∣∣ ⩽ CΓ t
−λ−2.

By increasing CΓ we arrange that CΓ ⩾ C and that for all ν,

2λ Γ(λ+ 1), D Γ(2λ+ 2) ⩽ CΓ.

We have e1−t ⩽ t−λ−2, so by Corollary 7.6.33:∣∣∣∣∫ 1

0

e−st(−2si)ν−
1
2 ds− (−2i)ν−

1
2 t−(ν+ 1

2 )Γ(ν + 1
2 )

∣∣∣∣ ⩽ CΓ t
−λ−2.

Combining this with an earlier displayed inequality yields:

(7.6.20)

∣∣∣∣∫ 1

0

e−st(s2 − 2si)ν−
1
2 ds− (−2i)ν−

1
2 t−ν−

1
2Γ(ν + 1

2 )

∣∣∣∣ ⩽ 2CΓ t
−λ−2.

As in the proof of Proposition 7.6.29 and using Lemma 7.6.32 we also have∣∣∣∣∫ ∞

1

e−st(s2 − 2si)ν−
1
2 ds

∣∣∣∣ ⩽ D

∫ ∞

1

e−st s2Re(ν) ds

⩽ DΓ(2λ+ 2) e1−t ⩽ CΓ t
−λ−2.

431



Combining this with (7.6.20) we obtain:∣∣I+ν (t)− i(−2i)ν−
1
2 eti t−ν−

1
2Γ
(
ν + 1

2

)∣∣ ⩽ 3CΓ t
−λ−2.

In the same way,∣∣I−ν (t)− i(2i)ν−
1
2 e−ti t−ν−

1
2Γ
(
ν + 1

2

)∣∣ ⩽ 3CΓ t
−λ−2

and so as in the proof of Proposition 7.6.29:∣∣∣Iν(t)− 2ν+
1
2 t−ν−

1
2Γ
(
ν + 1

2

)
cos
(
t− πν

2 − π
4

)∣∣∣ ⩽ 6CΓ t
−λ−2.

Hence ∣∣∣∣∣Jν(t)−
√

2

πt
cos
(
t− πν

2
− π

4

)∣∣∣∣∣ ⩽ 6CΓ√
π 2Re(ν)|Γ(ν + 1

2 )|
t−

3
2 .

Thus ε, t0 as chosen, and a suitable C0 have the required properties. □

To finish the proof of Theorem 7.6.27, it suffices by Lemma 7.6.9 and Remark 7.6.11
to show the following:

Lemma 7.6.37. Let k ∈ Z. Then for the germ Yk we have:

Yk −
√

2

πx
sin

(
x− πk

2
− π

4

)
≼ x−

3
2 .

Proof. By the remark after the proof of Lemma 7.6.30 it is enough to treat the
case k = 0. Lemma 7.6.36 with ν0 = 0 yields reals t0 ⩾ 1, C0 > 0, and ε
with 0 < ε < 1

2 such that for all ν ∈ C with |ν| < ε and all t ⩾ t0:∣∣∣∣∣Jν(t)−
√

2

πt
cos
(
t− πν

2
− π

4

)∣∣∣∣∣ ⩽ C0t
− 3

2 .

Let t ⩾ t0 be fixed and consider the entire function d given by

d(ν) := J(ν, t)−
√

2

πt
cos
(
t− πν

2
− π

4

)
, so

d′(ν) =

(
∂J

∂ν

)
(ν, t)−

√
π

2t
sin
(
t− πν

2
− π

4

)
and hence by Lemma 7.6.28:

d′(0) =

(
∂J

∂ν

)
(0, t)−

√
π

2t
sin
(
t− π

4

)
=
π

2

[
Y0(t)−

√
2

πt
sin
(
t− π

4

)]
.

Also |d′(0)| ⩽ 1
ε max|ν|=ε|d(ν)|, a Cauchy inequality, and thus∣∣∣∣∣Y0(t)−

√
2

πt
sin
(
t− π

4

)∣∣∣∣∣ =
2

π
|d′(0)| ⩽ 2C0

πε
t−

3
2 ,

which gives the desired result for k = 0 and thus for all k ∈ Z. □

In the rest of this subsection we let ν range over R and derive some consequences
of Theorem 7.6.27. Toward showing that the germ ψν ∈ E(Q) depends analytically
on ν we introduce the real analytic function Ψ: R× R> → R> by

Ψ(ν, t) :=
πt

2

[
J(ν, t)2 + Y (ν, t)2

]
,

and let Ψ(ν,−) be the function t 7→ Ψ(ν, t) : R> → R>. Then by Theorem 7.6.27:
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Corollary 7.6.38. ψν is the germ at +∞ of Ψ(ν,−).

For ϕν we consider the real analytic function

Φ̃ : R× R> → R, (ν, t) 7→
∫ t

1

1

Ψ(ν, s)
ds.

Let Φ̃ν be the germ (at +∞) of t 7→ Φ̃(ν, t). Then Φ̃′
ν = 1

ψν
= ϕ′ν , so ϕν =

Φ̃ν + cν where cν is a real constant. To determine this constant we note that by
Proposition 7.6.16 we have 1− 1

ψν
≼ x−2, which gives the real number

c̃ν :=

∫ ∞

1

(
1− 1

Ψ(ν, s)

)
ds.

We also set c̃(ν, t) =
∫ t
1

(
1− 1

Ψ(ν,s)

)
ds, so c̃(ν, t) → c̃ν as t → +∞, and for t > 0

we have Φ̃(ν, t) + c̃(ν, t) = t − 1. Taking germs we obtain Φ̃ν + c̃ν + 1 − x ≺ 1.

Also ϕν − x ≺ 1, so Φ̃ν + cν − x ≺ 1, and thus cν = c̃ν + 1. This suggests the
function

Φ : R× R> → R, (ν, t) 7→ Φ̃(ν, t) + c̃ν + 1.

The above arguments yield:

Corollary 7.6.39. For each ν the germ of Φ(ν,−) is ϕν .

Thus as for ψν the germ ϕν has a unique real analytic representative on R>,
namely Φ(ν,−). Note that Φ is real analytic iff the function ν 7→ c̃ν : R → R
is real analytic, but we don’t even know if this last function is continuous.

For the next result, cf. [205, §13.74]:

Corollary 7.6.40. J2
ν+Y

2
ν is eventually strictly decreasing, x(J2

ν+Y
2
ν ) is eventually

strictly increasing if |ν| < 1/2 and eventually strictly decreasing if |ν| > 1/2.

Proof. We have ψν ∼ 1 + µ−1
8 x−2 by Proposition 7.6.16, and ψν is hardian, thus

ψ′
ν ≼ x

−3, and so (x−1ψν)
′ = −x−2ψν+x

−1ψ′
ν ∼ −x−2. This yields the claims. □

Corollary 7.6.41 (Schafheitlin [179, p. 86]). If ν > 1/2, then, as elements of D(Q),

2/π

x
< J2

ν + Y 2
ν <

2/π

(x2 − ν2)1/2
.

Proposition 7.6.16 also yields (cf. [205, §13.75] or [144, Chapter 9, §9]):

Corollary 7.6.42. The germ J2
ν + Y 2

ν has the asymptotic expansion

J2
ν + Y 2

ν ∼ 2

πx

∑
n

(2n− 1)!!
(ν, n)

2n
x−2n.

Remark. Nicholson [142, 141] (see [205, §§13.73–13.75]) established Corollary 7.6.42,
but “the analysis is difficult” [144, p. 340]. A simpler deduction of the integral
representation of J2

ν+Y
2
ν used by Nicholson was given byWilkins [208], see also [144,

Chapter 9, §7.2]. For more on the history of this result, see [109, §1].

Theorem 7.6.27 and the recurrence relations (7.6.9) and (7.6.13) yield remarkable
identities among the germs ϕν , ϕν−1, ϕν+1 ∈ D(Q). For example:
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Corollary 7.6.43. Recalling that ψν = 1/ϕ′ν , we have

−
√
ψν−1 sin(ϕν−1 − ϕν) +

√
ψν+1 sin(ϕν+1 − ϕν) =

2ν

x

√
ψν ,√

ψν−1 cos(ϕν−1 − ϕν)−
√
ψν+1 cos(ϕν+1 − ϕν) = 0.

Proof. Put Hν := Jν + Yνi ∈ C<∞[i]. Then

Hν =
√
ψν ·

√
2

πx
e(ϕν−πν

2 −π
4 )i, Hν−1 +Hν+1 =

2ν

x
Hν ,

and dividing both sides of the equality on the right by

√
2

πx
e(ϕν−πν

2 −π
4 )i gives√

ψν−1 e
(ϕν−1−ϕν+π/2)i +

√
ψν+1 e

(ϕν+1−ϕν−π/2)i

=
√
ψν−1 i e(ϕν−1−ϕν)i −

√
ψν+1 i e(ϕν+1−ϕν)i =

2ν

x

√
ψν .

Now take real and imaginary parts in the last identity. □

An asymptotic expansion for the zeros of Bessel functions. We are going to
use Corollary 7.6.19 to strengthen a result of McMahon on parametrizing the zeros
of Bessel functions: Corollary 7.6.51 and the remark following it. Lemma 7.6.46
below, due to Fourier [71] for ν = 0 and to Lommel [133, p. 69] in general, is only
included for completeness; its proof is based on the following useful identity also
due to Lommel [134]:

Lemma 7.6.44. Let α, β ∈ C×, µ, ν ∈ C, and let yµ, yν : C \R⩽ → C be holomor-
phic solutions of (Bµ) and (Bν), respectively. Then on C \

(
α−1R⩽ ∪ β−1R⩽

)
:

d

dz

[
z
(
βyµ(αz)y

′
ν(βz)− αyν(βz)y

′
µ(αz)

)]
=(

(α2 − β2)z − µ2 − ν2

z

)
yµ(αz)yν(βz).

Proof. Let U ⊆ C be open, let g, g̃ : U → C be continuous, and let y, ỹ : U → C be
holomorphic such that 4y′′ + gy = 4ỹ′′ + g̃ỹ = 0. An easy computation gives

wr(y, ỹ)′ = 1
4 (g − g̃)yỹ.

Assume for now that α, β ∈ R> and apply this remark to U := C \ R⩽ and

y(z) := (αz)1/2yµ(αz), g(z) := 4α2 + (1− 4µ2)z−2

ỹ(z) := (βz)1/2yν(βz), g̃(z) := 4β2 + (1− 4ν2)z−2.

Then 4y′′ + gy = 0, since z 7→ z1/2yµ(z) : C \ R⩽ → C satisfies (Lµ). Likewise,
4ỹ′′ + g̃ỹ = 0. This yields the claimed identity for α, β ∈ R> by a straightforward
computation using that (αz)

1
2 = α

1
2 z

1
2 for such α and for z ∈ C \ R⩽.

Next, for general α, β, z we note that U3 :=
{
(α, β, z) ∈ (C×)3 : αz, βz /∈ R⩽

}
is

open in C3. Moreover, U3 is connected. (Proof sketch: suppose (α, β, z) ∈ U3; then
so is (eθi α, eθi β, e−θi z) for θ ∈ R, so we can “connect to” α ∈ R>; next keep α, z
fixed, and rotate β to a point in R> while preserving β /∈ z−1R⩽.) Both sides in
the claimed identity define a complex analytic function on U3. Now use analytic
continuation as in [57, (9.4.4)]. □
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We now define certain improper complex integrals and state some basic facts about
them. Let U be an open subset of C with 0 ∈ ∂U and let f : U → C be holomorphic
such that for some ε ∈ R> we have f(u) = O

(
|u|−1+ε

)
as u → 0. For z ∈ U such

that (0, z] :=
{
tz : t ∈ (0, 1]

}
⊆ U , we set∫ z

0

f(u) du := lim
δ↓0

∫ 1

δ

zf(tz) dt (the limit exists in C).

Suppose (0, z] ⊆ U for all z ∈ U . Then the function z 7→
∫ z
0
f(u) du on U

is holomorphic with derivative f , and limz→0

∫ z
0
f(u) du = 0; to see this, first

show that for any z0 ∈ U , open ball B ⊆ U centered at z0, and z ∈ U , we
have

∫ z
0
f(u) du =

∫ z0
0
f(u) du +

∫ z
z0
f(u) du, where the last integral is by defini-

tion
∫ 1

0
(z − z0)f

(
z0 + t(z − z0)

)
dt. Thus the integral below makes sense:

Corollary 7.6.45. Let α, β, z ∈ C× satisfy αz, βz /∈ R⩽, and let ν ∈ R⩾−1. Then

(7.6.21) (α2−β2)

∫ z

0

uJν(αu)Jν(βu) du = z
(
βJν(αz)J

′
ν(βz)−αJν(βz)J

′
ν(αz)

)
.

Proof. Fixing α, β ∈ C× and ν ∈ R⩾−1, both sides in (7.6.21) are holomorphic
functions of z on the open subset C\

(
α−1R⩽∪β−1R⩽

)
of C, with equal derivatives

by Lemma 7.6.44. Moreover, both sides tend to 0 as z → 0 in C\
(
α−1R⩽∪β−1R⩽

)
,

using for the right hand side the first two terms in the power series for Jν and J
′
ν . □

Lemma 7.6.46. Let ν ∈ R⩾−1. Then all zeros of Jν are contained in R>.

Proof. Let α ∈ C \ R⩽ be a zero of Jν . From the power series for Jν we see that
then α is also a zero of Jν , and α /∈ iR. Putting β = α and z = 1 in (7.6.21) yields

(α2 − α2)

∫ 1

0

tJν(αt)Jν(αt) dt = αJν(α)J
′
ν(α)− αJν(α)J

′
ν(α) = 0.

If α /∈ R, then this yields

∫ 1

0

tJν(αt)Jν(αt) dt = 0, but Jν(αt)Jν(αt) ∈ R⩾ for

all t ∈ (0, 1] and Jν(αt) ̸= 0 for some t ∈ (0, 1], a contradiction. Thus α ∈ R. □

Taking α = β = 1 in Lemma 7.6.44 yields (for all µ, ν ∈ C):

(7.6.22)
d

dz

[
z
(
J ′
µ(z)Jν(z)− Jµ(z)J

′
ν(z)

)]
= (µ2 − ν2)

Jµ(z)Jν(z)

z
on C \ R⩽.

In the next result it is convenient to let J denote the analytic function (ν, z) 7→ Jν(z)
on C× (C \R⩽), so for (ν, z) ∈ C× (C \R⩽) we have J ′

ν(z) =
∂J
∂z (ν, z). In its proof

we also use that for any complex analytic functions A, B on an open set U ⊆ C2

and (µ, z) and (ν, z) ranging over U :

lim
µ→ν

∂

∂z

(
A(µ, z)

B(µ, z)−B(ν, z)

µ− ν

)
=

∂

∂z

(
A(ν, z)

∂B

∂ν
(ν, z)

)
,

an easy consequence of ∂2B
∂ν∂z = ∂2B

∂z∂ν .

Corollary 7.6.47. On C× (C \ R⩽) we have

d

dz

[
z

(
Jν(z) ·

∂2J

∂ν∂z
(ν, z)− J ′

ν(z) ·
∂J

∂ν
(ν, z)

)]
= 2ν

J2
ν (z)

z
,
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Proof. For µ, ν ∈ C with µ ̸= ν we obtain from (7.6.22) that on C \ R⩽,

d

dz

[
z

(
Jµ(z)

J ′
µ(z)− J ′

ν(z)

µ− ν
− J ′

µ(z)
Jµ(z)− Jν(z)

µ− ν

)]
= (µ+ ν)

Jµ(z)Jν(z)

z
.

Now let µ tend to ν and use the identity preceding the corollary. □

Below ν ∈ R, so the set Zν := R> ∩ J−1
ν (0) of positive real zeros of Jν is infinite

and has no limit point. Let (jν,n) be the enumeration of Zν . Note that if t ∈ Zν ,
then Jν+1(t) = −J ′

ν(t) by (7.6.9), so Jν+1(t) ̸= 0.

Proposition 7.6.48 (Schläfli [180]). Let n be given. Then the function

ν 7→ j(ν) := jν,n : R>−1 → R>

is analytic, and its derivative at ν > 0 is given by

j′(ν) =
2ν

j(ν) J2
ν+1

(
j(ν)

) ∫ j(ν)

0

J2
ν (s)

ds

s
.

In particular, the restriction of j to R> is strictly increasing.

In the proof of Proposition 7.6.48 we use:

Lemma 7.6.49. Let ε ∈ R>. Then there exists δ ∈ R> such that Jν(t) ̸= 0 for
all ν ⩾ −1 + ε and t ∈ (0, δ].

Proof. Take δ ∈ R> such that δ2 < 4 log(1+ε). Then for ν ⩾ −1+ε and 0 < t ⩽ δ:∣∣∣∣Γ(ν + 1)Jν(t)

( 12 t)
ν

− 1

∣∣∣∣ =

∣∣∣∣∣∣
∑
n⩾1

(−1)n( 14 t
2)n

n!(ν + n) · · · (ν + 1)

∣∣∣∣∣∣ ⩽ exp( 14δ
2)− 1

ε
< 1 ,

hence Jν(t) ̸= 0. □

Proof of Proposition 7.6.48. Let ν0 ∈ R>−1. For each m we have Jν0(jν0,m) = 0
and J ′

ν0(jν0,m) ̸= 0. So IFT (the Implicit Function Theorem [57, (10.2.2), (10.2.4)])
yields an interval I = (ν0−ε, ν0+ε) with ε ∈ R>, −1 < ν0−ε, and for eachm ⩽ n an
analytic function jm : I → R> with Jν

(
jm(ν)

)
= 0 for ν ∈ I and jm(ν0) = jν0,m.

Shrinking ε if necessary we also arrange to have δ ∈ R> such that jν0,m > δ
and |jm(ν)− jν0,m| < δ for all ν ∈ I and m ⩽ n, and J ′

ν(t) ̸= 0 for all ν ∈ I, m ⩽ n
and t ∈ R with |t− jν0,m| < δ. Hence for ν ∈ I and m ⩽ n (using IFT at all ν ∈ I):

Zν ∩ (jν0,m − δ, jν0,m + δ) =
{
jm(ν)

}
, j0(ν) < j1(ν) < · · · < jn(ν).

We claim that for ν ∈ I we have{
t ∈ Zν : t ⩽ jn(ν)

}
=
{
j0(ν), j1(ν), . . . , jn(ν)

}
.

Suppose for example that ν1 ∈ I, t1 ∈ Zν1 , t1 < j0(ν1); we shall derive a contradic-
tion. (The assumption ν1 ∈ I, t1 ∈ Zν , jm(ν1) < t1 < jm+1(ν1), m < n, leads to a
contradiction in the same way.) Using IFT again we see that

U :=
{
ν ∈ I : there is a t ∈ Zν with t < j0(ν)

}
is open in I, and by an easy extra argument using Lemma 7.6.49 also closed
in I. As ν1 ∈ U , this gives U = I, so ν0 ∈ U , a contradiction. The claim
gives jm(ν) = jν,m for ν ∈ I and m ⩽ n. Taking m = n it follows that j is analytic.
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Next, let ν range over R>. Differentiating J
(
ν, j(ν)

)
= 0 yields

∂J

∂ν

(
ν, j(ν)

)
+ J ′

ν

(
j(ν)

)
j′(ν) = 0.

Using the primitive of s 7→ J2
ν (s)
s provided by Corollary 7.6.47 gives∫ j(ν)

0

J2
ν (s)

s
ds = −j(ν)

2ν
J ′
ν

(
j(ν)

)∂J
∂ν

(
ν, j(ν)

)
.

Now combine the two displayed identities with J ′
ν

(
j(ν)

)
= −Jν+1

(
j(ν)

)
. □

We now bring in Lemma 7.6.36 to bound jν,n for ν > 0 and sufficiently large n:

Proposition 7.6.50. Let ν0 ∈ R>. Then there is an n0 ∈ N such that for n ⩾ n0:

(n+ 1
2ν0 +

1
2 )π ⩽ jν0,n ⩽ (n+ 1

2ν0 + 1)π.

Proof. Compactness and Lemma 7.6.36 yield C0, t0 ∈ R> such that for all ν in the
smallest closed interval I containing both ν0 and 1/2, and for all t ⩾ t0:∣∣∣∣∣Jν(t)−

√
2

πt
cos
(
t− πν

2
− π

4

)∣∣∣∣∣ ⩽ C0t
−3/2.

We arrange that t0 ⩾ C0
√
π. Hence if ν ∈ I and jν,n ⩾ t0, then∣∣∣cos(jν,n − π

2
ν − π

4

)∣∣∣ ⩽ 1√
2
,

and so we have a unique kν,n ∈ Z with

1
4π ⩽ jν,n − ( 12ν +

1
4 + kν,n)π ⩽ 3

4π.

Let ν1 be the left endpoint of I (so ν1 = 1/2 or ν1 = ν0) and take n0 ∈ N such
that jν1,n0

⩾ t0. Then jν,n ⩾ t0 for ν ∈ I and n ⩾ n0 by Proposition 7.6.48.
Let n ⩾ n0; we claim that ν 7→ kν,n : I → Z is constant. To see this, note that
Proposition 7.6.48 yields δ ∈ (0, 1/4) such that for all ν, ν̃ ∈ I with |ν − ν̃| < δ we
have |jν,n − jν̃,n| < π/4, which in view of

− 1
2π ⩽ (jν,n − jν̃,n)− (ν − ν̃)π2 − (kν,n − kν̃,n)π ⩽

1
2π,

gives kν,n = kν̃,n. Thus ν 7→ kν,n : I → Z is locally constant, and hence constant.
Let kn be the common value of kν,n for ν ∈ I. Now Z1/2 = {mπ : m ⩾ 1} by
Lemma 7.6.25, hence j1/2,n = (n+ 1)π and so

1
4π ⩽ (n+ 1)π − ( 12 + kn)π ⩽ 3

4π.

This yields kn = n. □

Corollary 7.6.51. Suppose ν > 0. There is a strictly increasing ζ ∈ Cn0
(n0 ∈ N)

whose germ is in E(Q) such that jν,n = ζ(n) for all n ⩾ n0 and which has for s :=(
x+ 1

2ν +
3
4

)
π the asymptotic expansion

ζ ∼ s−
(
µ− 1

8

)
s−1 −

(
(µ− 1)(7µ− 31)

192

)
s−3

2!
+ · · · .
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Proof. Take n0 as in Proposition 7.6.50 with ν0 = ν. Theorem 7.6.27 yields t0 ∈ R>
and a representative of ϕ = ϕν in C1

t0 , also denoted by ϕ, such that for all t ⩾ t0,

ϕ′(t) > 0, Jν(t) =

√
2

πtϕ′(t)
cos
(
ϕ(t)− π

2
ν − π

4

)
.

Increasing n0 if necessary we arrange that jν,n0
⩾ t0 + π

2 . Then for n ⩾ n0,

ϕ(jν,n)−
(
1
2ν +

3
4

)
π ∈ Zπ.

Take k ∈ Z with ϕ(jν,n0) =
(
1
2ν +

3
4 + k

)
π. Then for n ⩾ n0 we have ϕ(jν,n) =(

n− n0 +
1
2ν +

3
4 + k

)
π. By Proposition 7.6.50 we have for n ⩾ n0,

(n+ 1
2ν +

1
2 )π ⩽ jν,n ⩽ (n+ 1

2ν + 1)π,

and thus for all n ⩾ n0,

ϕ
(
(n+ 1

2ν +
1
2 )π
)
⩽ ϕ(jν,n) =

(
n+ 1

2ν +
3
4 + k − n0

)
π ⩽ ϕ

(
(n+ 1

2ν + 1)π
)
.

Since ϕ−x ≼ x−1, this yields k = n0, therefore ϕ(jν,n) =
(
n+ 1

2ν +
3
4

)
π for n ⩾ n0.

Let ϕinv ∈ Ct1 be the compositional inverse of ϕ, where t1 := ϕ(t0), and let ζ ∈ Cn0

be given by ζ(t) := ϕinv
((
t+ 1

2ν +
3
4

)
π
)
for t ⩾ n0. Then ζ is strictly increasing

with jν,n = ζ(n) for n ⩾ n0. Taking ζ and ϕinv as germs we have ζ = ϕinv ◦ s.
Now ϕinv ∈ E(Q) by Lemma 7.6.3, and E(Q) ◦ E(Q)>R ⊆ E(Q), so ζ ∈ E(Q). The
claimed asymptotic expansion for ζ follows from Corollary 7.6.19. □

Remark. The asymptotic expansion for jν,n as n → ∞ in Corollary 7.6.51 was
obtained by McMahon [138]. (For ν = 1, apparently Gauss was aware of it as early
as 1797, cf. [205, p. 506].) What is new here is that we specified a function ζ with
germ in E(Q) such that jν,n = ζ(n) for all sufficiently large n.

In [144, p. 247], Olver states: “No explicit formula is available for the general term”
of the asymptotic expansion for jν,n as n → ∞ in Corollary 7.6.51. The remark
after the proof of Corollary 7.6.19 yields the asymptotic expansion

ζ ∼ s−
∞∑
j=1

(
j∑
i=1

(2(j − 1))!

(2j − 1− i)!
Bij(u1, . . . , uj−i+1)

)
s−2j+1

j!
,

which is perhaps as explicit as possible. The values of u1, u2, u3 given before
Corollary 7.6.19 yield the first few terms of this expansion:

ζ ∼ s − µ− 1

8
s−1 − (µ− 1)(7µ− 31)

192

s−3

2!
−

(µ− 1)(83µ2 − 982µ+ 3779)

2560

s−5

3!
− · · · .

Appendix: inversion of formal power series. In this appendix we discuss
multiplicative and compositional inversion of power series. We use [ADH, 12.5] and
its notations. Thus x, y1, y2, . . . , z are distinct indeterminates, and

R := Q[x, y1, y2, . . . ], A := R[[z]].
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We also let K be a field of characteristic zero. Recall from [ADH, 12.5.1] the
definition of the Bell polynomials Bij ∈ Q[y1, . . . , yd], where i ⩽ j and d = j− i+1:

Bij :=
∑

k=(k1,...,kd)∈Nd

|k|=i, ∥k∥=j

j!

k1!k2! · · · kd!

(y1
1!

)k1 (y2
2!

)k2
· · ·
(yd
d!

)kd
.

(Also Bij := 0 ∈ Q[y1, y2, . . . ] for i > j.) Let

y :=
∑
n⩾1

yn
zn

n!
∈ zR[[z]].

By [ADH, (12.5.2)] we have in R[[z]]:

yi

i!
=
∑
j⩾0

Bij
zj

j!
=
∑
j⩾i

Bij
zj

j!
.

Lemma 7.6.52. Let i ⩽ j and d = j − i+ 1; then

Bij

(
y2
2
,
y3
3
, . . . ,

yd+1

d+ 1

)
=

j!

(i+ j)!
Bi,i+j(0, y2, y3, . . . , yj+1).

Proof. We have

y − y1z = z
∑
n⩾1

(
yn+1

n+ 1

)
zn

n!
=
∑
n⩾2

yn
zn

n!
,

hence

(y − y1z)
i

i!
=
∑
j⩾0

Bij

(y2
2
,
y3
3
, . . .

) zi+j
j!

=
∑
k⩾0

Bik(0, y2, y3, . . . )
zk

k!
. □

For j ∈ N we set

(7.6.23) Bj :=

j∑
i=0

i!Bij ∈ Q[y1, . . . , yj+1].

Note that

Bj
j!

=

j∑
i=0

∑
k=(k1,...,kd)∈Nd

|k|=i, ∥k∥=j, d=j−i+1

i!

k1! · · · kd!

(y1
1!

)k1 (y2
2!

)k2
· · ·
(yd
d!

)kd
.

We have B0 = B00 = 1 and Bj =

j∑
i=1

i!Bij ∈ Q[y1, . . . , yj ] for j ⩾ 1. Using the

examples following [ADH, 12.5.4] we obtain

B1 = y1,

B2 = y2 + 2y21 ,

B3 = y3 + 6y1y2 + 6y31 ,

B4 = y4 + 8y1y3 + 6y22 + 36y21y2 + 24y41 ,

B5 = y5 + 10y1y4 + 20y2y3 + 60y21y3 + 90y1y
2
2 + 240y31y2 + 120y51 .
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We have 1−y ∈ 1+zR[[z]] ⊆ R[[z]]× with inverse (1−y)−1 =
∑
i⩾0 y

i, so form ⩾ 1:

(7.6.24) (1− y)−m =
∑
i⩾0

(
i+m− 1

m− 1

)
yi =

∑
j⩾0

(
j∑
i=0

miBij

)
zj

j!

where mi := m(m+ 1) · · · (m+ i− 1) (so m0 = 1, 1i = i!). In particular,

(1− y)−1 =
∑
j⩾0

Bj
zj

j!
.

Corollary 7.6.53. Let f =
∑
n⩾1

fn
zn

n!
∈ K[[z]] (fn ∈ K). Then

(1− f)−1 =
∑
j⩾0

Bj(f1, . . . , fj)
zj

j!

= 1 + f1z + (f2 + 2f21 )
z2

2!
+ (f3 + 6f1f2 + 6f31 )

z3

3!
+ · · · .

Next we discuss the compositional inversion of formal power series. From [ADH,
12.5] recall that zK× + z2K[[z]] is a group under formal composition with z as its
identity element. We denote the compositional inverse of any f ∈ zK× + z2K[[z]]
by f [−1]. We equip the field K((z)) of Laurent series with the strongly additive and
K-linear derivation d/dz (so z′ = 1).

Definition 7.6.54. Let f =
∑
k∈Z fkz

k ∈ K((z)) where fk ∈ K for k ∈ Z.
Then res(f) := f−1 ∈ K is the residue of f . (We also have the residue mor-
phism f 7→ f(0) : K[[z]] → K of the valuation ring K[[z]] of K((z)).)

The map f 7→ res(f) : K((z)) → K is strongly additive and K-linear.

Lemma 7.6.55. Let f ∈ K((z)). Then res(f ′) = 0, and if f ̸= 0, then res(f†) = vf .

Proof. The first claim is clearly true. For the second, let f = zkg where k = vf ,
g ∈ K[[z]]×. Then f† = kz−1 + g† ∈ kz−1 +K[[z]], so res(f†) = k = vf . □

Corollary 7.6.56. Let f, g ∈ K((z)). Then res(f ′g) = − res(fg′) and thus, if g ̸= 0
and k ∈ Z, then res(f ′gk) = −k res(fgk−1g′).

Proof. For the first claim, use the Product Rule and the first part of Lemma 7.6.55.
The second claim follows from the first. □

Corollary 7.6.57 (Jacobi [107]). Let f ∈ zK[[z]]̸= and g ∈ K((z)). Then

res
(
(g ◦ f)f ′

)
= vf res(g).

Proof. By strong additivity and K-linearity it is enough to show this for g = zk

(k ∈ Z). If k ̸= −1, then

res
(
(g ◦ f)f ′

)
= res(fkf ′) = res

((
fk+1/(k + 1)

)′)
= 0 = vf res(g),

and if k = −1, then

res
(
(g ◦ f)f ′

)
= res(f†) = vf = vf res(g),

using Lemma 7.6.55. □

We now obtain the Lagrange Inversion Formula, following [76]:
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Theorem 7.6.58. Let f ∈ zK× + z2K[[z]], g ∈ K[[z]]. Then

g ◦ f [−1] = g(0) +
∑
n⩾1

1

n
res(g′f−n)zn.

Proof. Let h := g ◦ f [−1] =
∑
n hnz

n (hn ∈ K). Then for n ⩾ 1 we have

1

n
res(g′f−n) = res

(
gf−n−1f ′

)
= res

(
(h ◦ f)f−n−1f ′

)
= res

((
hz−n−1 ◦ f

)
· f ′
)

= res
(
hz−n−1

)
= hn,

using Corollary 7.6.56 for the first equality, and 7.6.57 for the next to last. □

Taking g = zm in the above yields:

Corollary 7.6.59. If f ∈ zK× + z2K[[z]], then for m ⩾ 1:

(f [−1])m =
∑
n⩾m

m

n
res(zm−1f−n)zn.

Remark. Theorem 7.6.58 stems from Lagrange [120] and Bürmann (cf. [98]). The
identity in Corollary 7.6.59 is from Jabotinsky [106, Theorem II] and Schur [182].

We now use Corollary 7.6.59 to express the coefficients of f [−1] in terms of those of f ;
cf. [50, §3.8, Theorem E]. Here f = z +

∑
n⩾2 fn

zn

n! with fn ∈ K for n ⩾ 2. Then

g := f [−1] = z +
∑
n⩾2

gn
zn

n!
(gn ∈ K for n ⩾ 2).

For h ∈ zK[[z]], let JhK denote the (upper triangular) iteration matrix of h as
in [ADH, 12.5], so JhKm,n = 0 for m > n, JhK0,0 = 1, JhK0,n = 0 for n ⩾ 1.

Proposition 7.6.60. For 1 ⩽ m ⩽ n we have

JgKm,n =

n−m∑
i=0

(−1)i(i+ n− 1)!

(i+ n−m)!(m− 1)!
Bi,i+n−m(0, f2, . . . , fn−m+1).

Proof. By [ADH, remarks before 12.5.5] we have gm/m! =
∑
nJgKm,nz

n/n! and so
by Corollary 7.6.59, JgKm,n = (n− 1)!/(m− 1)! res(zm−1f−n) if 1 ⩽ m ⩽ n. Set

h := 1− f

z
=
∑
n⩾1

hn
zn

n!
where hn = −fn+1/(n+ 1) for n ⩾ 1.

Then res(zm−1f−n) is the constant term of zmf−n and so equals the coefficient

of zn−m in zn−mzmf−n = (z/f)n =
(

1
1−h

)n
. Hence by (7.6.24) for n ⩾ m ⩾ 1:

res(zm−1f−n) =

n−m∑
i=0

ni

(n−m)!
Bi,n−m(h1, . . . , hn−m−i+1).

Lemma 7.6.52 gives for n ⩾ m and i ⩽ n−m:

Bi,n−m
(
h1, . . . , hn−m−i+1

)
= Bi,n−m

(−f2
2
, . . . ,

−fn−m−i+2

n−m− i+ 2

)
=

(n−m)!

(i+ n−m)!
Bi,i+n−m

(
0,−f2, . . . ,−fn−m+1

)
=

(−1)i(n−m)!

(i+ n−m)!
Bi,i+n−m

(
0, f2, . . . , fn−m+1

)
.
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For 1 ⩽ m ⩽ n this yields the identity claimed for JgKm,n. □

Corollary 7.6.61 (Ostrowski [146]). For n ⩾ 2 we have

gn =
∑

k=(k1,...,kn)∈Nn

|k|=n−1, ∥k∥=2n−2

(−1)n−k1−1 (2n− k1 − 2)!

k2!k3! · · · kn!

(
f2
2!

)k2 (f3
3!

)k3
· · ·
(
fn
n!

)kn
.

Proof. Let n ⩾ 2. We have gn = JgK1,n, so by Proposition 7.6.60:

gn =

n−1∑
i=1

(−1)iBi,i+n−1(0, f2, f3, . . . , fn) (n ⩾ 2).

Now use the definition of the Bell polynomials and reindex. □

One now easily determines the first few gn:

g2 = −f2
g3 = −f3 + 3f22

g4 = −f4 + 10f3f2 − 15f32

g5 = −f5 + 15f4f2 + 10f23 − 105f3f
2
2 + 105f42

We now establish analogues of some of these results for compositional inversion
in the field K((x−1)) of Laurent series in x−1 over K. We have the usual valua-
tion v : K((x−1))× → Z on K((x−1)) with valuation ring K[[x−1]]; so v(x) = −1.
We also have the unique continuous derivation f 7→ f ′ on K((x−1)) such that a′ = 0
for a ∈ K and x′ = 1. This valuation and derivation make K((x−1)) a d-valued field
with small derivation.

As in K((z)), we have a well-behaved notion of composition in K((x−1)): for f, g
in K((x−1)) with f ≻ 1 and g =

∑
k gkx

k (gk ∈ K for k ∈ Z), the family (gkf
k)

is summable in K((x−1)), and we denote its sum by g ◦ f . For f ∈ K((x−1))
with f ≻ 1, the map g 7→ g ◦ f is a strongly additive and K-linear field embedding,
which is bijective if f ≍ x. This can be seen, for example, by relating composition
in K((x−1)) to composition in K((z)): The strongly additive, K-linear map

τ : K((x−1)) → K((z)) with τ(x−k) = zk for all k ∈ Z,

is an isomorphism of valued fields. Let f ∈ K((x−1)), f ≻ 1. Then τ(1/f) ∈ zK[[z]],
and we have a commutative diagram

K((x−1))
g 7→ g◦f //

τ

��

K((x−1))

τ

��
K((z))

h 7→h◦τ(1/f) // K((z))

of strongly additive, K-linear maps. Also τ(1/f) ∈ zK× + z2K[[z]] if f ≍ x.

As in Definition 7.6.54, we define:

Definition 7.6.62. Let f =
∑
k∈Z fkx

k ∈ K((x−1)) where fk ∈ K for k ∈ Z.
Then res(f) := f−1 ∈ K is the residue of f .

The map f 7→ res(f) : K((x−1)) → K is strongly additive and K-linear.
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Lemma 7.6.63. Let f ∈ K((x−1)). Then res(f ′) = 0; if f ̸= 0, then res(f†) = −vf .

Proof. The first claim is clearly true. For the second, let f = xkg where k = −vf ,
g ∈ K((x−1)), g ≍ 1. Then f† = kx−1+g† with g† ≼ x−2, so res(f†) = k = −vf . □

Just like Lemma 7.6.55 led to Corollaries 7.6.56 and 7.6.57, Lemma 7.6.63 gives:

Corollary 7.6.64. If f, g ∈ K((x−1)), then res(f ′g) = − res(fg′) and thus, if
also g ̸= 0 and k ∈ Z, then res(f ′gk) = −k res(fgk−1g′).

Corollary 7.6.65. If f, g ∈ K((x−1)), f ≻ 1, then res
(
(g ◦ f)f ′

)
= −vf res(g).

For f ∈ K((x−1)), f ≍ x, let f [−1] be the compositional inverse of f . One verifies
easily that if f ∈ x+ x−1K[[x−1]], then f [−1] ∈ x+ x−1K[[x−1]]. More generally:

Theorem 7.6.66. Let f, g ∈ x+ x−1K[[x−1]]. Then

g ◦ f [−1] = x−
∑
n⩾1

1

n
res(g′fn)x−n.

Proof. Let h := g ◦ f [−1] =
∑
k hkx

k (hk ∈ K). Then for k ∈ Z̸= we have

1

k
res(g′f−k) = res

(
gf−k−1f ′

)
= res

(
(h ◦ f)f−k−1f ′

)
= res

(
(hx−k−1 ◦ f)f ′

)
= res

(
hx−k−1

)
= hk,

using Corollary 7.6.64 for the first equality and 7.6.65 for the next to last one.
This computation goes through for any f, g ∈ K((x−1)) with f ≍ x, but under the
assumptions of the theorem gives the desired result. □

Corollary 7.6.67. Let f = x+
∑
n⩾1 fn

x−2n+1

n! , all fn ∈ K, and g = f [−1]. Then

g = x−
∑
j⩾1

gj
x−2j+1

j!
where gj =

j∑
i=1

(2(j − 1))!

(2j − 1− i)!
Bij(f1, . . . , fj−i+1).

Proof. Put F :=
∑
n⩾1 fn

zn

n! ∈ zK[[z]], h :=
∑
n⩾1 fn

x−2n

n! . Then f = x(1 + h),

and res(fn) is the coefficient of x−n−1 in fn/xn = (1 + h)n. Thus res(fn) = 0
if n is even. Now suppose n is odd, n = 2j − 1 (j ⩾ 1). Then the coefficient
of x−n−1 = x−2j in (1+h)n equals the coefficient of zj in the power series (1+F )n =∑n
i=0

n!
(n−i)!

F i

i! , and this coefficient in turn is given by

1

j!

j∑
i=1

n!

(n− i)!
Bij(f1, . . . , fj−i+1).

Now use Theorem 7.6.66 with x in the role of of g there. □

Using the formulas for Bij for small values of i, j given on [ADH, p. 554] we readily
compute:

g1 = f1,

g2 = f2 + 2f21 ,

g3 = f3 + 12f1f2 + 12f31 ,

g4 = f4 + 24f1f3 + 18f22 + 180f21 f2 + 120f41

g5 = f5 + 40f1f4 + 80f2f3 + 560f21 f3 + 840f1f
2
2 + 3660f31 f2 + 1830f51
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Remark. Suppose K = R. Then R((x−1)) is a subfield of T, and the composition
(g, f) 7→ g ◦ f : T× T>R → T in T (see the remarks after Corollary 5.3.12) extends
the composition in R((x−1)) defined above. All f ∈ T>R have a compositional
inverse f inv in T, with f inv = f [−1] if f ∈ R((x−1)). For f > R in the subfield Tg

of T consisting of the grid based series we have f inv ∈ Tg, and [103, Section 5.4.2]
has a formula for the coefficients of f inv in that case.

7.7. Holes and Slots in Perfect Hardy Fields

In this section H ⊇ R is a real closed Hardy field with asymptotic integration. We
set K := H[i] ⊆ C<∞[i], an algebraically closed d-valued extension of H. Moreover,

Ĥ is an immediate H-field extension of H and K̂ := Ĥ[i] is the corresponding
immediate d-valued extension of K as in Section 6.7. We also fix a d-maximal
Hardy field extension H∗ of H. The H-field H∗ is newtonian, and the d-valued
field extension K∗ := H∗[i] ⊆ C<∞[i] of K is newtonian and linearly closed.

K∗ K̂

K

QQQQQQ
mmmmmm

H∗ Ĥ

H

QQQQQQ
mmmmmm

Recall that if I(K) ⊆ K† and A ∈ K[∂] ̸= splits over K, then A is terminal. In this
section we show:

Theorem 7.7.1. Suppose H is d-perfect and ω-free. Then every minimal hole in K
of positive order is flabby. Moreover, H has no hole of order 1, every minimal hole
in H of order 2 is flabby, and if all A ∈ H[∂] ̸= are terminal, then every minimal
hole in H of positive order is flabby.

In Corollary 7.7.50 below we also show that if H is d-perfect (but not necessarily

ω-free), then every linear minimal hole (P,m, f̂) in K of order 1 with f̂ ∈ K̂ is
flabby. (See the discussion after the proof of Lemma 7.5.39 for an example of a
d-perfect Hardy field that is not ω-free.)

The theorem above originated in an attempt to characterize ω-free d-perfect Hardy
fields among Hardy fields containing R purely in terms of asymptotic differential
algebra. We hope to return to this topic at a later occasion.

With the proof of Corollary 7.7.50 we also finish the proof of Theorem 7.7.1.

Asymptotic similarity and equivalence of slots. Let (P,m, f̂) be a slot in H

of order ⩾ 1 where f̂ ∈ Ĥ. If f ∈ C<∞ is H-hardian and (P,m, f) is a slot in H
(we regard this as including the requirement that f /∈ H and the Hardy field H⟨f⟩
is an immediate extension of H), then

f ≈H f̂ ⇐⇒ (P,m, f) and (P,m, f̂) are equivalent.

Note that if f ∈ C, f ≈H f̂ , and g, h ∈ H, g ̸= 0, then fg − h ≈H f̂g − h. From
Corollary 3.2.29 and newtonianity of H∗ we get a useful result about filling slots
in H by elements of d-maximal Hardy field extensions of H:
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Lemma 7.7.2. If H is ω-free and (P,m, f̂) is Z-minimal, then there exists f ∈ H∗
such that (P,m, f) is a hole in H equivalent to (P,m, f̂), in particular, P (f) = 0,

f ≺ m, and f ≈H f̂ .

In Lemma 7.7.2 we cannot drop the assumption that H is ω-free. To see why,
suppose H is d-perfect and not ω-free (such H exists by Example 7.5.40), and
take ω ∈ H and (P,m, λ) as in Lemma 3.2.10 for H in the role of K there,
so P = 2Y ′ + Y 2 + ω and (P,m, λ) is a minimal hole in H by Corollary 3.2.11.
Since ω /∈ ω(H) and H is 1-d-closed in all its Hardy field extensions, no H-hardian

germ f satisfies P (f) = 0. Thus the conclusion of Lemma 7.7.2 fails for f̂ = λ.
Corollary 3.2.30 yields a variant for P of order 1:

Lemma 7.7.3. If H is λ-free and (P,m, f̂) is Z-minimal of order 1 with a quasi-
linear refinement, then there exists f ∈ H∗ such that H⟨f⟩ is an immediate exten-

sion of H and (P,m, f) is a hole in H equivalent to (P,m, f̂).

Here are complex versions of some of the above: Let (P,m, f̂) be a slot in K of

order ⩾ 1 where f̂ ∈ K̂. If f ∈ K∗ and (P,m, f) is a slot in K (so f /∈ K
and K⟨f⟩ ⊆ K∗ is an immediate extension of K), then

f ≈K f̂ ⇐⇒ (P,m, f) and (P,m, f̂) are equivalent.

If f ∈ C[i], f ≈K f̂ ,and g, h ∈ K, g ̸= 0, then fg − h ≈K f̂g − h. Recall that H is
ω-free iff K is, by [ADH, 11.7.23]. Again by Corollaries 3.2.29 and 3.2.30:

Lemma 7.7.4. If H is ω-free and (P,m, f̂) is Z-minimal as a slot in K, then there
exists f ∈ K∗ such that K⟨f⟩ is an immediate extension of K and (P,m, f) is a

hole in K equivalent to (P,m, f̂) (and thus P (f) = 0, f ≺ m, and f ≈K f̂).

Lemma 7.7.5. If H is λ-free and, as a slot over K, (P,m, f̂) is Z-minimal of
order 1 with a quasilinear refinement, then there exists f ∈ K∗ such that K⟨f⟩ is

an immediate extension of K and (P,m, f) is a hole in K equivalent to (P,m, f̂).

In the rest of this section H is Liouville closed and I(K) ⊆ K†. (These condi-
tions are satisfied if H is d-perfect.) We take an R-linear complement ΛH of I(H)
in H, so Λ := ΛH i is a complement of K† in K. Next we take an R-linear
complement ΛH∗ of I(H∗) in H∗, so Λ∗ := ΛH∗ i is a complement of K†

∗ in K∗.
Accordingly we identify in the usual way U := UK := K

[
e(Λ)

]
with K[eHi] and

likewise U∗ := UK∗ := K∗
[
e(Λ∗)

]
with K∗[e

H∗i].

Zeros of linear differential operators close to the linear part of a slot. In

this subsection (P, 1, ĥ) with ĥ ∈ Ĥ is a normal or linear slot in H of order r ⩾ 1.
Then order(LP ) = r, so dimC kerU∗ LP = r by Theorem 7.4.1. Lemma 4.4.4(ii)

then gives E u
K∗

(LP ) = vg(ker
̸=
U∗
LP ). If LP is terminal, then E u(LP ) = E u

K∗
(LP ),

by Corollary 2.6.23. We use these remarks to deal with firm and flabby cases:

Lemma 7.7.6. Suppose (P, 1, ĥ) is firm and ultimate and LP is terminal. Then
there is no y ∈ Cr[i] ̸= such that LP (y) = 0 and y ≺ 1.

Proof. Suppose y ∈ Cr[i] ̸=, LP (y) = 0, and y ≺ 1. Then y ∈ U∗, so y ≺g 1
by Lemma 5.10.8. The remarks above give vgy ∈ E u(LP ). Then vgy ⩽ 0 by
Remark 4.4.29, contradicting y ≺g 1. □
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Lemma 7.7.7. Suppose (P, 1, ĥ) is flabby. Then there exists y ∈ C<∞[i]̸= such

that LP (y) = 0 and y ≺ m for all m ∈ H× with vm ∈ v(ĥ − H). If in addi-

tion (P, 1, ĥ) is Z-minimal, deep, and special, then y′, . . . , y(r) ≺ m for all such y
and m.

Proof. Flabbiness of (P, 1, ĥ) and Lemmas 4.4.27 and 4.4.28 yield a γ ∈ E u(LP )

with γ > v(ĥ − H). Then γ ∈ E u
K∗

(LP ) by Corollary 4.4.3, so a remark above

gives y ∈ ker ̸=U∗
LP such that vgy = γ. Then y ≺g m and thus y ≺ m, for all m ∈ H×

with vm ∈ v(ĥ−H). For the remainder, use Lemma 5.10.12. □

Next we consider a suitable perturbation A of LP : In the rest of this subsection we
assume LP = A+B with A,B ∈ K[∂] satisfying

order(A) = r, v := v(A) ≺♭ 1, B ≺∆(v) v
r+1A.

Then Lemma 3.1.1 gives v(LP ) ∼ v. By Lemma 4.4.4(ii),(iii),

vg(ker
̸=
U∗
A) = E u

K∗
(A) = E u

K∗
(LP ), E u(A) = E u(LP ).

If A is terminal, then all five displayed sets are equal by Corollary 2.6.23. Recall
also from Corollary 2.6.21 that if A splits over K, then A is terminal, and from
Proposition 2.6.26 that if dimC kerUA = r, then A is terminal.

We can now generalize Proposition 5.10.15:

Proposition 7.7.8. Suppose (P, 1, ĥ) is ultimate, A is terminal, and y ∈ Cr[i]
satisfies A(y) = 0, y ≺ 1. Then y ≺ m for all m ∈ H× with vm ∈ v(ĥ−H).

Proof. We have y ∈ U∗, so y ≺g 1 by Lemma 5.10.8. If y = 0, then we are done,
so suppose y ̸= 0. Then 0 < vgy ∈ E u(LP ) by remarks before Proposition 7.7.8.

Hence vgy > v(ĥ−H) by Lemma 4.4.12 if (P, 1, ĥ) is normal, and by Lemma 4.4.13

if (P, 1, ĥ) is linear, so y ≺g m for all m ∈ H× with vm ∈ v(ĥ−H), and thus y ≺ m
for all such m by Corollary 5.10.9. □

Corollary 7.7.9. Suppose A is terminal and (P, 1, ĥ) is Z-minimal, deep, ultimate,
and special. If y ∈ Cr[i] satisfies A(y) = 0 and y ≺ 1, then y, y′, . . . , y(r) ≺ m for

all m ∈ H× with vm ∈ v(ĥ−H).

Proof. First use Proposition 7.7.8 and then Lemma 5.10.12. □

Next we turn to firm and flabby cases.

Lemma 7.7.10. Suppose A is terminal and (P, 1, ĥ) is firm and ultimate. Then
there is no y ∈ Cr[i] ̸= such that A(y) = 0 and y ≺ 1.

Proof. Suppose y ∈ Cr[i] ̸=, A(y) = 0, and y ≺ 1. Then y ∈ U∗, so y ≺g 1
by Lemma 5.10.8. The remarks before Proposition 7.7.8 give vgy ∈ E u(LP ).
Hence vgy ⩽ 0 by Remark 4.4.29, contradicting y ≺g 1. □

Lemma 7.7.11. Suppose (P, 1, ĥ) is flabby. Then there exists y ∈ C<∞[i] ̸= such

that A(y) = 0 and y ≺ m for all m ∈ H× with vm ∈ v(ĥ−H). If in addition (P, 1, ĥ)
is Z-minimal, deep, and special, then y′, . . . , y(r) ≺ m for all such y and m.

Proof. Flabbiness of (P, 1, ĥ) and Lemmas 4.4.27 and 4.4.28 yield a γ ∈ E u(LP ) =

E u(A) with γ > v(ĥ−H). The rest of the proof is the same as that of Lemma 7.7.7
with A instead of LP . □
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Remark. The material above in this subsection goes through if instead of (P, 1, ĥ)

with ĥ ∈ Ĥ being a normal or linear slot in H of order r ⩾ 1 we assume (P, 1, ĥ)

with ĥ ∈ K̂ is a normal or linear slot in K of order r ⩾ 1, and “m ∈ H×

with vm ∈ v(ĥ−H)” is replaced everywhere by “m ∈ K× with vm ∈ v(ĥ−K)”.
To see this, use the K-versions of Lemmas 4.4.12, 4.4.13, 4.4.27, of Lemma 4.4.28

and Remark 4.4.29, and of Lemma 5.10.12; cf. the discussion at the end of the
subsection An application to slots in H of Section 5.10.

Application to linear slots. In this subsection we apply the material in the last

subsection to the study of linear slots (inH and inK). Until further notice (P,m, ĥ)

with ĥ ∈ Ĥ is a Z-minimal linear slot in H of order r ⩾ 1.

Lemma 7.7.12. There exists f ∈ H∗ such that P (f) = 0 and f ≺ m.

Proof. We may replace (P,m, ĥ) by a refinement whenever convenient. Hence

by Remark 3.4.7 we may arrange that (P,m, ĥ) is isolated. Then P (0) ̸= 0,

and γ := vĥ is the unique element of Γ \ E e(LP ) such that veLP
(γ) = v(P (0)),

by Lemmas 3.2.14 and 3.4.15. Now H∗ is linearly newtonian, so Corollary 1.5.7
yields f ∈ H×

∗ with P (f) = 0, vf /∈ E e
H∗(LP ), and v

e
LP

(vf) = v(P (0)). By Corol-
lary 1.8.10, veLP

(γ) does not change when passing from H to H∗, and γ /∈ E e
H∗

(LP ).
Thus vf = γ by Lemma 1.5.6; in particular, f ≺ m. □

Corollary 7.7.13. Suppose (P,m, ĥ) is flabby, and f ∈ Cr is such that P (f) = 0
and f ≺ m. Then f ∈ C<∞ and there exists g ∈ C<∞ such that P (g) = 0, g ≺ m,

and 0 ̸= f − g ≺ n for all n ∈ H× with vn ∈ v(ĥ−H). For any such g we have

f ≈H ĥ ⇒ g ≈H ĥ, H ⊆ C∞ ⇒ f, g ∈ C∞, H ⊆ Cω ⇒ f, g ∈ Cω.

If (P,m, ĥ) is also deep and special, then f − g ∈ m(Cr)≺ for any such g.

Proof. Lemma 6.3.4 gives f ∈ C<∞. Replace (P,m, ĥ), f , by (P×m, 1, ĥ/m), f/m
to arrange m = 1. Lemma 7.7.7 then yields y ∈ C<∞[i]̸= such that LP (y) = 0

and y ≺ n for all n ∈ H× with vn ∈ v(ĥ − H). Replacing y by Re y or Im y we
arrange y ∈ C<∞. Then g := f + y ∈ C<∞ satisfies f ̸= g, P (g) = 0, and g ≺ 1.
The rest follows from remarks after Corollary 5.2.3 and from Lemma 7.7.7. □

In the proof of the next corollary we use that if H is ω-free, then Lemma 7.7.2

yields an f ∈ H∗ such that P (f) = 0 and f ≈H ĥ.

Corollary 7.7.14. Suppose (P,m, ĥ) is ultimate and LP is terminal. Then

(P,m, ĥ) is firm ⇐⇒ there is a unique f ∈ Cr with P (f) = 0 and f ≺ m.

If (P,m, ĥ) is firm, f ∈ Cr, P (f) = 0, f ≺ m, then f ∈ D(H), there is no g ̸= f

in Cr[i] with P (g) = 0, g ≺ m, and if in addition H is ω-free, then f ≈H ĥ.

Proof. We arrange m = 1 as before. Then Lemmas 7.7.6 and 7.7.12 yield “⇒”.
For “⇐” and the rest, use Corollary 7.7.13 and the remark after its proof, and
observe that our d-maximal Hardy field extension H∗ of H was arbitrary. □

Corollary 7.7.15. Suppose H is ω-free and d-perfect, and all A ∈ H[∂] ⊆ K[∂] of
order r are terminal. Then every Z-minimal linear slot in H of order r is flabby.
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Proof. Given a firm Z-minimal linear slot in H of order r we use Remark 4.4.15
and Lemma 4.4.25 to refine it to be ultimate. So we arrive at an ultimate firm
Z-minimal linear slot in H of order r with terminal linear part. This contradicts H
being d-perfect by Corollary 7.7.14. □

Next the K-versions of Lemma 7.7.12 and its corollaries: Let (P,m, f̂) with f̂ ∈ K̂
be a Z-minimal linear slot in K of order r ⩾ 1. Now K is λ-free [ADH, 11.6.8], so
we can mimick the proof of Lemma 7.7.12 to obtain:

Lemma 7.7.16. There exists f ∈ K∗ such that P (f) = 0 and f ≺ m.

The K-version of Lemma 7.7.7 leads to the K-version of Corollary 7.7.13:

Corollary 7.7.17. Suppose (P,m, f̂) is flabby, and f ∈ Cr[i], P (f) = 0, and f ≺ m.
Then f ∈ C<∞[i] and there exists g ∈ C<∞[i] such that P (g) = 0, g ≺ m, and

0 ̸= f − g ≺ n for all n ∈ K× with vn ∈ v(f̂ −K). For any such g we have

f ≈K f̂ ⇒ g ≈K f̂ , H ⊆ C∞ ⇒ f, g ∈ C∞[i], H ⊆ Cω ⇒ f, g ∈ Cω[i].

If (P,m, f̂) is also deep and special, then f − g ∈ mCr[i]≺ for any such g.

If H is ω-free, then Lemma 7.7.4 yields f ∈ K∗ with P (f) = 0 and f ≈K f̂ . This
remark and K-versions of various results yield the K-version of Corollary 7.7.14:

Corollary 7.7.18. Suppose (P,m, f̂) is ultimate and LP is terminal. Then:

(P,m, f̂) is firm ⇐⇒ there is a unique f ∈ Cr[i] with P (f) = 0 and f ≺ m.

If (P,m, f̂) is firm, f ∈ Cr[i], P (f) = 0, f ≺ m, then f ∈ D(H)[i], and also f ≈K f̂
in case H is ω-free.

Using K-versions of various results (like Remark 4.4.19 instead of Remark 4.4.15),
then yields the K-version of Corollary 7.7.15:

Corollary 7.7.19. If H is ω-free and d-perfect, and all A ∈ K[∂] of order r are
terminal, then every Z-minimal linear slot in K of order r is flabby.

Linear slots in K of order 1 are Z-minimal, and we can say more in this case:

Corollary 7.7.20. Suppose r = 1. If (P,m, f̂) is flabby, then it is ultimate.

Moreover, LP is terminal, so if (P,m, f̂) is firm and ultimate, then there is a
unique f ∈ Cr[i] with P (f) = 0 and f ≺ m, and for this f we have: f ∈ D(H)[i],

with f ≈K f̂ in case H is ω-free or (P,m, f̂) is a hole in K.

Proof. Corollary 4.4.31(i) gives “flabby ⇒ ultimate”. Since LP has order 1, it is
terminal. Now use Corollary 7.7.18, and Lemma 7.7.3, noting in connection with

that lemma that the linear slot (P,m, f̂) is quasilinear. □

Our next goal is to establish refinements of Proposition 6.5.14 for the case of firm
and flabby slots in H: Lemmas 7.7.33, 7.7.34, 7.7.36, and 7.7.42 below. Towards
this goal, we introduce yet another useful concept of normality for slots.
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Absolutely normal slots in H. In this subsection (P,m, ĥ) is a slot in H of

order r ⩾ 1 with ĥ ∈ Ĥ. Given active ϕ > 0 in H we take ℓ ∈ H with ℓ′ = ϕ, and
set f◦ := f ◦ ℓinv for f ∈ C[i], as usual; see Section 6.4. Recall from Section 5.3
that H◦ is Liouville closed with K◦ = H◦[i] and I(K◦) ⊆ (K◦)†, and that H◦

∗ is a
d-maximal Hardy field extension of H◦, with K◦

∗ = H◦
∗ [i].

Since K∗ is linearly closed, each linear differential operator A ∈ K[∂] ̸= splits
over K∗. If A ∈ K[∂]̸= splits strongly over K∗, then by Theorem 7.1.3 this remains
true when K∗ is replaced by K∗∗ := H∗∗[i] ⊆ C<∞[i] for any d-maximal Hardy field

extension H∗∗ of H. We say that (P,m, ĥ) is absolutely normal if it is strictly

normal and its linear part splits strongly over K∗. If (P,m, ĥ) is absolutely normal,

then so is (P×m, 1, ĥ/m). Moreover:

Lemma 7.7.21. Suppose (P,m, ĥ) is absolutely normal, and ϕ is active in H

with 0 < ϕ ≼ 1. Then the slot (Pϕ◦,m◦, ĥ◦) in H◦ is absolutely normal.

Proof. By Lemma 3.3.40, the slot (Pϕ,m, ĥ) in Hϕ is strictly normal, hence so is

the slot (Pϕ◦,m◦, ĥ◦) in H◦. By Lemma 4.2.12 the linear part LPϕ
×m

= (LP×m
)ϕ

of (Pϕ,m, ĥ) splits strongly over Kϕ
∗ = Hϕ

∗ [i], hence the linear part of (P
ϕ◦,m◦, ĥ◦)

splits strongly over K◦
∗ = H◦

∗ [i]. □

Next we show how to achieve absolute normality:

Proposition 7.7.22. Suppose (P,m, ĥ) is Z-minimal, deep, and strictly normal,

and ĥ ≺∆(v) m with v := v(LP×m
). Then for all sufficiently small q ∈ Q>, (P, n, ĥ),

for any n ≍ m|v|q in H×, is a deep, absolutely normal refinement of (P,m, ĥ).

Proof. Recall that LP×m
splits over the H-asymptotic extension K∗ of K. The

argument in the proof of Corollary 4.2.14 shows that for all sufficiently small q ∈ Q>,
(P, n, ĥ), for any n ≍ m|v|q inH×, is a steep refinement of (P,m, ĥ) whose linear part

splits strongly over K∗. By Corollary 3.3.6 any such refinement (P, n, ĥ) of (P,m, ĥ)

is deep, and for all sufficiently small q ∈ Q>, any such refinement of (P,m, ĥ) also
remains strictly normal, by Lemma 3.3.44 and Remark 3.3.45. □

Corollary 7.7.23. If (P,m, ĥ) is Z-minimal, deep, normal, and special, then

(P,m, ĥ) has a deep, absolutely normal refinement.

This follows from Corollary 3.3.47 and Proposition 7.7.22.

Lemma 7.7.24. Suppose H is ω-free and (P,m, ĥ) is Z-minimal and special. Then

there are a refinement (P+h, n, ĥ − h) of (P,m, ĥ) and an active ϕ > 0 in H such

that the slot (Pϕ◦+h◦ , n◦, ĥ◦ − h◦) in H◦ is deep, absolutely normal, and ultimate.

Proof. For any active ϕ > 0 in H we may replace H, (P,m, ĥ) by H◦, (Pϕ◦,m◦, ĥ◦),

and we may also replace (P,m, ĥ) by any of its refinements. Since H is ω-free,

Proposition 3.3.36 yields a refinement (P+h, n, ĥ−h) of (P,m, ĥ) and an active ϕ > 0

in H such that the slot (Pϕ◦+h◦ , n◦, ĥ◦ −h◦) in H◦ is normal. Replacing H, (P,m, ĥ)

by H◦, (Pϕ◦+h◦ , n◦, ĥ◦ − h◦) we arrange that (P,m, ĥ) is normal. Proposition 4.4.14

now yields an ultimate refinement of (P,m, ĥ). Applying Proposition 3.3.36 to this

refinement and using Lemma 4.4.10, we obtain an ultimate refinement (P+h, n, ĥ−h)
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of (P,m, ĥ) and an active ϕ > 0 in H such that (Pϕ◦+h◦ , n◦, ĥ◦ − h◦) is deep, normal,

and ultimate. Again replacing H, (P,m, ĥ) by H◦, (Pϕ◦+h◦ , n◦, ĥ◦ − h◦), we arrange

that (P,m, ĥ) is deep, normal, and ultimate. Now apply Corollary 7.7.23 to (P,m, ĥ)
and use Lemma 4.4.10. □

Corollary 7.7.25. Suppose H is ω-free and r-linearly newtonian, and (P,m, ĥ) is
Z-minimal. Then the conclusion of Lemma 7.7.24 holds.

Proof. As in the beginning of the proof of Lemma 7.7.24, use Theorem 3.3.33 to

arrange that (P,m, ĥ) is normal. Then (P,m, ĥ) is quasilinear by Corollary 3.3.21

and hence special by Lemma 3.2.36, so Lemma 7.7.24 applies to (P,m, ĥ). □

Remark 7.7.26. By Corollary 3.2.6 the hypotheses of Corollary 7.7.25 are satisfied

if H is ω-free and (P,m, ĥ) is a nonlinear minimal hole in H.

Absolutely normal slots in K. Let (P,m, f̂) be a slot in K of order r ⩾ 1,

with f̂ ∈ K̂. Call (P,m, f̂) absolutely normal if it is strictly normal and LP×m

splits strongly over K∗. If (P,m, f̂) is absolutely normal, then so is (P×m, 1, f̂/m).

If (Q, n, ĥ) is a slot in H of order ⩾ 1 with ĥ ∈ Ĥ ⊆ K̂ , then it is a slot in K

(Corollary 4.3.2), and (Q, n, ĥ) is absolutely normal as a slot in H iff it is absolutely
normal as a slot in K.

Lemma 7.7.27. Suppose (P,m, f̂) is absolutely normal. Then there exists y in
C<∞[i] ∩m Cr[i]≼ such that P (y) = 0 and y ≺ m. If H ⊆ C∞, then any such y lies
in C∞[i], and likewise with Cω in place of C∞.

Proof. Use Lemma 6.4.5 with Q = (P×m)1 and H∗, K∗, P×m in place of H, K, P .
For the last part, use Corollary 6.3.5 as in the proof of that lemma. □

The K-versions of Lemma 7.7.21, Proposition 7.7.22, and Corollary 7.7.23 (with
the same proofs) are as follows:

Lemma 7.7.28. Suppose (P,m, f̂) is absolutely normal, and ϕ is active in H

with 0 < ϕ ≼ 1. Then the slot (Pϕ◦,m◦, ĥ◦) in K◦ is absolutely normal.

Proposition 7.7.29. Suppose (P,m, f̂) is Z-minimal, deep, and strictly normal,

and f̂ ≺∆(v) m with v := v(LP×m
). Then for all sufficiently small q ∈ Q>, (P, n, f̂),

for any n ≍ m|v|q in K×, is a deep, absolutely normal refinement of (P,m, f̂).

Corollary 7.7.30. If (P,m, f̂) is Z-minimal, deep, normal, and special, then

(P,m, f̂) has a deep, absolutely normal refinement.

The K-version of Lemma 7.7.24 is as follows (its proof uses Proposition 4.4.18
instead of Proposition 4.4.14, and the K-version of Lemma 4.4.10):

Lemma 7.7.31. Suppose H is ω-free and (P,m, f̂) is Z-minimal and special. Then

there are a refinement (P+f , n, f̂ − f) of (P,m, f̂) and an active ϕ > 0 in H such

that the slot (Pϕ◦+f◦ , n◦, f̂◦ − f◦) in K◦ is deep, absolutely normal, and ultimate.

The K-version of Corollary 7.7.25 now follows in the same way:

Corollary 7.7.32. Suppose H is ω-free, K is r-linearly newtonian, and (P,m, f̂)
is Z-minimal. Then the conclusion of Lemma 7.7.31 holds.
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Firm slots in H. In this subsection (P,m, ĥ) is a slot in H of order r ⩾ 1,

with ĥ ∈ Ĥ. We set d := deg(P ), w := wt(P ), and begin with a significant
strengthening of Proposition 6.5.14 for firm slots in H:

Lemma 7.7.33. Suppose (P,m, ĥ) is firm, ultimate, and strongly split-normal, and
let f, g ∈ Cr[i] satisfy P (f) = P (g) = 0 and f, g ≺ m. Then f = g.

Proof. The proof is similar to that of Proposition 6.5.14. We first replace (P,m, ĥ),

f , g by (P×m, 1, ĥ/m), f/m, g/m, to arrange m = 1. We set v := |v(LP )| ≺♭ 1
and ∆ := ∆(v), and take Q,R ∈ H{Y } where Q is homogeneous of degree 1 and
order r, A := LQ ∈ H[∂] splits strongly over K, P = Q − R, and R ≺∆ vw+1P1,
so v(A) ∼ v(LP ). Multiplying P , Q, R by some b ∈ H× we arrange that A =
∂
r + f1∂

r−1 + · · ·+ fr with f1, . . . , fr ∈ H and R ≺∆ vw. We have

(7.7.1) A = (∂−ϕ1) · · · (∂−ϕr), ϕ1, . . . , ϕr ∈ K, Reϕ1, . . . ,Reϕr ≽ v† ≽ 1.

Corollary 3.1.6 yields ϕ1, . . . , ϕr ≼ v−1. Take a0 ∈ R and functions on [a0,∞)
representing the germs ϕ1, . . . , ϕr, f1, . . . , fr, f , g and the Rj with j ∈ N1+r,
|j| ⩽ d, ∥j∥ ⩽ w (using the same symbols for the germs mentioned as for their
chosen representatives) so as to be in the situation described in the beginning
of Section 6.2, with f and g solutions on [a0,∞) of the differential equation (∗)
there. As there, we take ν ∈ Q with ν > w so that R ≺∆ vν and νv† ̸∼ Reϕj
for j = 1, . . . , r, and then increase a0 to satisfy all assumptions for Lemma 6.2.1.

With a ⩾ a0 and ha ∈ Cra[i] as in Lemma 6.2.5 we have Aa(ha) = 0 and ha ≺ 1.
Now A splits over K, so A is terminal as an element of K[∂], by Corollary 2.6.21.

As (P, 1, ĥ) is firm and ultimate, this yields ha = 0 (for all a ⩾ a0) by Lemma 7.7.10
and Corollary 5.2.2, and thus f = g by Corollary 6.2.15. □

Next we prove variants of Lemma 7.7.33 by modifying the restrictive hypothesis of
strong split-normality.

Lemma 7.7.34. Suppose (P,m, ĥ) is firm, ultimate, and absolutely normal, and
its linear part LP×m

∈ H[∂] ⊆ K[∂] is terminal. Then for all f, g ∈ Cr[i] such
that P (f) = P (g) = 0 and f, g ≺ m we have f = g.

Proof. Replacing (P,m, ĥ) by (P×m, 1, ĥ/m) we arrange m = 1. Put A := LP ∈ H[∂]
and R := P1 − P ∈ H{Y }, so R ≺∆ vw+1P1 where ∆ := ∆(v), v := v(A) ≺♭ 1.
Multiplying A, P , R on the left by some b ∈ H× we arrange

A = ∂
r + f1∂

r−1 + · · ·+ fr, f1, . . . , fr ∈ H, R ≺∆ vw.

Then (7.7.1) holds with ϕ1, . . . , ϕr ∈ K∗ instead of ϕ1, . . . , ϕr ∈ K, and ϕ1, . . . , ϕr ≼
v−1 by Corollary 3.1.6. Now argue as at the end of the proof of Lemma 7.7.33 to
get f = g, using that A ∈ K[∂] is terminal by assumption. □

From Corollary 2.6.21 and Lemma 7.7.34 we obtain:

Corollary 7.7.35. If (P,m, ĥ) is firm, ultimate, and strictly normal, and its linear
part splits strongly over K, then the conclusion of Lemma 7.7.34 holds.

In the rest of this subsection we assume that all A ∈ H[∂] ⊆ K[∂] of order r are

terminal. Recall that by Lemmas 4.4.10 and 4.4.25, if (P,m, ĥ) is ultimate, then so
is any refinement of it, and likewise with “firm” in place of “ultimate”.
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Lemma 7.7.36. Suppose (P,m, ĥ) is Z-minimal, deep, normal, special, ultimate,

firm, and f, g ∈ Cr[i], P (f) = P (g) = 0, f ≈K ĥ, g ≈K ĥ. Then f = g.

Proof. Corollary 7.7.23 gives a deep absolutely normal refinement (P+h, n, ĥ − h)

of (P,m, ĥ). Now apply Lemma 7.7.34 to (P+h, n, ĥ − h), f − h, g − h in the role

of (P,m, ĥ), f , g. □

Corollary 7.7.37. Suppose H is ω-free and r-linearly newtonian, and (P,m, ĥ) is

firm and Z-minimal. Then there is a unique f ∈ Cr[i] with P (f) = 0 and f ≈K ĥ.

For this f we have f ∈ D(H) and f ≈H ĥ.

Proof. Suppose f, g ∈ Cr[i] satisfy P (f) = P (g) = 0, f ≈K ĥ, and g ≈K ĥ; we claim
that f = g. If ϕ > 0 is active in H, then by the remarks before Lemma 4.4.25,
Lemma 6.4.3, and the remarks at the end of Section 6.6, and with the super-

script ◦ having the usual meaning, we may replace H, K, Ĥ, K̂, (P,m, ĥ), f , g

by H◦, K◦, Ĥ◦, K̂◦, (Pϕ◦,m◦, ĥ◦), f◦, g◦. Using this observation, Corollary 7.7.25

and the remarks before Lemma 7.7.36, we arrange that (P,m, ĥ) is ultimate and
absolutely normal. The claim now follows from Lemma 7.7.34. From Lemma 7.7.2

we obtain f ∈ H∗ with P (f) = 0 and f ≈H ĥ; then f ≈K ĥ by Corollary 6.6.13.
Our d-maximal Hardy field extension H∗ of H was arbitrary, so the uniqueness
statement just proved gives f ∈ D(H). □

Corollary 7.7.38. Suppose H is ω-free and (P,m, ĥ) is a firm minimal hole in H.
Then the conclusion of Corollary 7.7.37 holds.

Proof. If (P,m, ĥ) is nonlinear, then H is r-linearly newtonian by Corollary 3.2.6,
so the hypotheses of Corollary 7.7.37 are satisfied, and so is its conclusion.

Suppose (P,m, ĥ) is linear. By Remark 4.4.15 we can refine (P,m, ĥ) to arrange
it to be ultimate. By our standing assumption LP is terminal, so we can appeal to
Corollary 7.7.14. □

Z-minimal slots in d-perfect Hardy fields. In this subsection H is d-perfect.
By Corollary 7.2.15, H is 1-newtonian and so has no quasilinear Z-minimal slot
of order 1, by Corollary 3.4.14. This allows us to add to the characterization of
ω-freeness for d-perfect Hardy fields given in Corollary 7.5.9:

Corollary 7.7.39.

H is ω-free ⇐⇒ H has no hole of order 1 ⇐⇒ H has no slot of order 1.

Proof. The first equivalence follows from Lemma 3.2.1 and Corollary 7.2.15. For
the rest we observe that if H has a slot of order 1, then it also has a hole of order 1:

Given a slot (P,m, ĥ) in H of order 1, take Q ∈ Z(H, ĥ) of minimal complexity.

Then (Q,m, ĥ) is a Z-minimal slot of order ⩽ 1 in H, hence is equivalent to a

Z-minimal hole (Q,m, b̂) in H, by Lemma 3.2.14, so orderQ = 1 by a remark after
Lemma 3.2.1. □

Next, an immediate consequence of Corollaries 7.7.15 and 7.7.38:

Corollary 7.7.40. Let r ∈ N⩾1. If H is ω-free and all A ∈ H[∂] of order r are
terminal, then every minimal hole in H of order r is flabby.

From this we deduce:
452



Corollary 7.7.41. Suppose H is ω-free. Then every minimal hole in H of order 2
and every linear slot in H of order 2 is flabby.

Proof. By Corollaries 2.6.21 and 7.5.9, all A ∈ H[∂] of order 2 are terminal. Hence
every minimal hole in H of order 2 is flabby, by Corollary 7.7.40. Every linear
slot in H of order 2 is Z-minimal, by Corollary 7.7.39, and hence is flabby by
Corollary 7.7.15. □

In the next subsection we study flabby slots in H in more detail.

Flabby slots in H. In this subsection (P,m, ĥ) is a slot in H of order r ⩾ 1. Note

that if (P,m, f̂) is normal and f ∈ mCr[i]≼, P (f) = 0, then by Corollary 6.3.6 we
have f ∈ C<∞[i], and f ∈ C∞[i] if H ⊆ C∞, f ∈ Cω[i] if H ⊆ Cω.

Next some observations tacitly used in the proof of Lemma 7.7.42 below. For

this, suppose (P,m, ĥ) is flabby. Then (P×m, 1, ĥ/m) is flabby by Lemma 4.4.26,
and if g ∈ (Cr)≼ and P×m(g) = 0, g ≺ 1, then f := mg ∈ m (Cr)≼ satis-

fies P (f) = 0 and f ≺ m. Likewise, let (P+h, n, ĥ− h) be a refinement of (P,m, ĥ),

and suppose (P,m, ĥ) is also linear or normal. Then the slot (P+h, n, ĥ − h)
in H is flabby by Corollary 4.4.30, and if g ∈ n (Cr)≼ and P+h(g) = 0, g ≺ n,
then f := h + g ∈ m (Cr)≼ satisfies P (f) = 0 and f ≺ m. Finally, let ϕ be active
in H, 0 < ϕ ≼ 1, and let the superscript ◦ have the usual meaning. Then the

slot (Pϕ◦,m◦, ĥ◦) in H◦ is flabby, and if g ∈ m◦ (Cr)≼ and Pϕ◦(g) = 0, g ≺ m◦,
then taking f ∈ Cr with f◦ = g we have f ∈ m (Cr)≼, P (f) = 0, and f ≺ m, using
the remark after Lemma 6.4.2.

Lemma 7.7.42. Suppose (P,m, ĥ) is Z-minimal, deep, normal, special, and flabby.
Then there are f ̸= g in m (Cr)≼ such that P (f) = P (g) = 0, and f, g ≺ m.

Proof. Corollary 7.7.23 yields a deep absolutely normal refinement (P+h, n, ĥ − h)

of (P,m, ĥ). Using the remarks preceding the lemma, we can replace (P,m, ĥ)

by (P+h, n, ĥ − h) to arrange that (P,m, ĥ) is absolutely normal, and then replac-

ing (P,m, ĥ) by (P×m, 1, ĥ/m) we also arrange m = 1. Set d := degP and w :=
wt(P ). Let v, ∆, A, R be as in the proof of Lemma 7.7.34. Multiplying A, P , R on
the left by some b ∈ H× we arrange A = ∂

r + f1∂
r−1 + · · ·+ fr with f1, . . . , fr ∈ H

and R ≺∆ vw. Then (7.7.1) holds with ϕ1, . . . , ϕr ∈ K∗ instead of ϕ1, . . . , ϕr ∈ K,
and ϕ1, . . . , ϕr ≼ v−1 by Corollary 3.1.6. Take a0 ∈ R and functions on [a0,∞)
representing the germs ϕ1, . . . , ϕr, f1, . . . , fr, and the Rj with j ∈ N1+r, |j| ⩽ d,
∥j∥ ⩽ w (using the same symbols for the germs mentioned as for their chosen rep-
resentatives) so as to be in the situation described in the beginning of Section 6.2.
Increasing a0 if necessary and choosing ν as in the proof of Lemma 7.7.33 we arrange
that f1, . . . , fr, and the Rj are in C1

a0 and ∥R∥a0 ⩽ 1/E, with E = E(d, r) ∈ N⩾1 as
in Corollary 6.3.13, and the hypotheses of Lemma 6.2.1 are satisfied. Lemma 7.7.7
yields h ∈ C<∞[i] such that A(h) = 0, h ̸= 0, and h, h′, . . . , h(r) ≺ 1. Replacing h
by Reh or Imh we arrange h ∈ C<∞. Increasing a0 again we arrange that h is
represented by a function in Cra0 , denoted by the same symbol, such that

Aa0(h) = 0, ∥h∥a0;r ⩽ 1/8,

and such that we are in the situation of Lemma 6.2.6, with a ranging over [a0,+∞).
Then Corollaries 6.2.8 and 6.2.9 yield for sufficiently large a ⩾ a0 functions f, g ∈ Cra
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with ∥f∥a;r, ∥g∥a;r ⩽ 1 and (ReΞa)(f) = f , (ReΞa)(g) = g + h. Fix such a, f , g.
Then Aa(f) = R(f) and

Aa(g) = Aa(g + h) = Aa
(
(ReΞa)(g)

)
= ReAa

(
Ξa(g)

)
= ReR(g) = R(g),

and f ≺ 1 and g + h ≺ 1 by Lemma 6.2.6, so g ≺ 1, hence f , g are solutions of (∗)
on [a,∞). Denoting the germs of f , g also by f , g we have P (f) = P (g) = 0.
Moreover, f ̸= g as germs: otherwise f = g in Cra by the remark after the proof
of Corollary 6.3.13, and thus h = (ReΞa)(g) − g = (ReΞa)(f) − f = 0 in Cra, a
contradiction. □

Corollary 7.7.43. Suppose H is ω-free and r-linearly newtonian, and (P,m, ĥ) is

Z-minimal and flabby. Assume also that (P,m, ĥ) is linear or normal. Then the
conclusion of Lemma 7.7.42 holds.

Proof. Use Theorem 3.3.33 and the remarks preceding Lemma 7.7.42 to arrange

that (P,m, ĥ) is deep and normal. Then (P,m, ĥ) is quasilinear by Corollary 3.3.21,
and hence special by Lemma 3.2.36. Now Lemma 7.7.42 applies. □

Note that the hypotheses of Corollary 7.7.43 hold if H is ω-free and (P,m, ĥ) is a
flabby normal nonlinear minimal hole in H, by Corollary 3.2.6.

Suppose H is ω-free, all A ∈ H[∂] ⊆ K[∂] of order r are terminal, and (P,m, ĥ) is a
minimal hole in H. Then by Corollary 7.7.38 we have:

(P,m, ĥ) is firm =⇒ there is a unique f ∈ Cr with P (f) = 0 and f ≈H ĥ.

Thanks to Corollary 7.7.13, the converse of this implication also holds if degP = 1,
but we do not know whether this is still the case when degP > 1. We now prove
a partial generalization of Corollary 7.7.14:

Corollary 7.7.44. Suppose H is ω-free, (P,m, ĥ) is an ultimate minimal hole in H

with terminal linear part, and (P,m, ĥ) is linear or absolutely normal. Then

(P,m, ĥ) is firm ⇐⇒ there is a unique f ∈ Cr with P (f) = 0 and f ≺ m.

If (P,m, ĥ) is firm and f ∈ Cr, P (f) = 0, and f ≺ m, then f ∈ D(H) and f ≈H ĥ,
and there is no g ̸= f in Cr[i] with P (g) = 0 and g ≺ m.

Proof. If degP = 1, then this follows from Corollary 7.7.14. Suppose degP > 1.

Lemma 7.7.2 yields f ∈ H∗ with P (f) = 0 and f ≈H ĥ. This and Lemma 7.7.34
yield the forward direction of the displayed equivalence, as well as the rest in view
of H∗ being arbitrary. The converse holds by the remark after Corollary 7.7.43. □

Remark. Suppose H is ω-free, all A ∈ H[∂] ⊆ K[∂] of order r are terminal,

and (P,m, ĥ) is a minimal hole in H. Then Remarks 4.4.15 and 7.7.26 give a refine-

ment (P+h, n, ĥ − h) of (P,m, ĥ) and an active ϕ > 0 in H such that the minimal

hole (Pϕ◦+h◦ , n◦, ĥ◦ − h◦) in H◦ is ultimate, and linear or absolutely normal. There-

fore the hypotheses of Corollary 7.7.44 are satisfied by H◦ and (Pϕ◦+h◦ , n◦, ĥ◦ − h◦)

in place of H and (P,m, ĥ).

The next two subsections contain analogues of Lemmas 7.7.34, 7.7.36, and 7.7.42
for slots in K.
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Firm slots in K. In this subsection (P,m, f̂) is a slot in K of order r ⩾ 1,

with f̂ ∈ K̂. Here are K-versions of Lemma 7.7.34 and its Corollary 7.7.35 with
similar proofs:

Lemma 7.7.45. If (P,m, f̂) is firm, ultimate, and absolutely normal, with terminal
linear part, then for any f, g ∈ Cr[i] with P (f) = P (g) = 0, f, g ≺ m we have f = g.

Corollary 7.7.46. If (P,m, f̂) is firm, ultimate, and strictly normal, and its linear
part splits strongly over K, then the conclusion of Lemma 7.7.45 holds.

In the rest of this subsection we assume that all A ∈ K[∂] of order r are terminal.
(This holds if r = 1 or K is ω-free with a minimal hole of order r in K, because
then K is r-linearly closed by Corollary 3.2.4.)

By the K-versions of Lemmas 4.4.10 and 4.4.25, if (P,m, f̂) is ultimate, then so
is each of its refinements, and likewise with “firm” in place of “ultimate”. The
K-version of Corollary 7.7.23, and Lemma 7.7.45 in place of Lemma 7.7.34 then
yields the K-version of Lemma 7.7.36:

Lemma 7.7.47. If (P,m, f̂) is Z-minimal, deep, normal, special, ultimate, and

firm, then there is at most one f ∈ Cr[i] with P (f) = 0 and f ≈K f̂ .

Using the K-version of Corollary 7.7.25, and Lemmas 7.7.4 and 7.7.45 instead of
Lemmas 7.7.2 and 7.7.34 we obtain the K-version of Corollary 7.7.37:

Corollary 7.7.48. If H is ω-free, K is r-linearly newtonian, and (P,m, f̂) is firm

and Z-minimal, then there is a unique f ∈ Cr[i] with P (f) = 0 and f ≈K f̂ , and
this f is in D(H)[i].

Here is a K-analogue of Corollary 7.7.38:

Corollary 7.7.49. Suppose (P,m, f̂) is a firm minimal hole in K, and r = degP =
1 or H is ω-free. Then the conclusion of Corollary 7.7.48 holds.

Proof. If (P,m, f̂) has complexity (1, 1, 1), then by Remark 4.4.19 and theK-version

of Lemma 4.4.25 we arrange that (P,m, f̂) is ultimate, so that the desired conclusion

follows from Corollary 7.7.20. IfK is ω-free and (P,m, f̂) has complexity > (1, 1, 1),
then degP > 1 by Corollary 3.2.8, so K is r-linearly newtonian by Corollary 3.2.6,
and the desired conclusion follows from Corollary 7.7.48. □

Corollary 7.7.50. Suppose H is d-perfect. If (P,m, f̂) is a minimal hole in K of
complexity (1, 1, 1), then it is flabby. If H is ω-free, then every minimal hole in K
of positive order is flabby.

Proof. The first part is immediate from Corollary 7.7.49. For the second part,
suppose H is ω-free and we are given a minimal hole in K of positive order. By

Lemma 4.2.15 we can pass to an equivalent hole (Q, n, ã) in K with ã ∈ H̃[i] for

some immediate H-field extension H̃ of H, so Corollary 7.7.49 applies to it. □

Theorem 7.7.1 now follows from Corollaries 7.7.39, 7.7.40, 7.7.41, and 7.7.50.
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Flabby slots in K. Let (P,m, f̂) be a slot in K of order r ⩾ 1, f̂ ∈ K̂. Note

that if (P,m, f̂) is normal and f ∈ mCr[i]≼, P (f) = 0, then by Corollary 6.3.6 we
have f ∈ C<∞[i], and f ∈ C∞[i] if H ⊆ C∞, f ∈ Cω[i] if H ⊆ Cω.

Suppose (P,m, f̂) is flabby. The remarks about multiplicative conjugates, re-
finements, and compositional conjugates preceding Lemma 7.7.42 then go through

for the slot (P,m, f̂) in K instead of the slot (P,m, ĥ) in H with Cr[i] replac-
ing Cr and K◦ instead of H◦; this uses the K-versions of Lemma 4.4.26 and Corol-
lary 4.4.30. It helps in proving a complex version of Lemma 7.7.42:

Lemma 7.7.51. Suppose (P,m, f̂) is flabby, special, Z-minimal, deep, and strictly
normal. Then there are f ̸= g in m Cr[i]≼ such that P (f) = P (g) = 0, f, g ≺ m.

Proof. Using Corollary 7.7.30 and the remarks preceding the lemma, we arrange

that m = 1 and (P, 1, f̂) is absolutely normal. Now argue as in the proof of
Lemma 7.7.42, using instead of Lemma 7.7.7 its K-version. We also appeal to
Lemma 6.2.1, Theorem 6.2.3, and Lemma 6.2.4 instead of to Lemma 6.2.6 and
Corollaries 6.2.8 and 6.2.9. Naturally, we don’t need to take real or imaginary
parts, and use Ξa instead of ReΞa. □

Corollary 7.7.52. Suppose H is ω-free, K is r-linearly newtonian, and (P,m, f̂)

is Z-minimal and flabby. Assume also that (P,m, f̂) is linear or normal. Then the
conclusion of Lemma 7.7.51 holds.

Proof. Like that of Corollary 7.7.43, but using Corollary 3.3.48 instead of Theo-
rem 3.3.33, and Lemma 7.7.51 instead of Lemma 7.7.42. □

In particular, the conclusion of Lemma 7.7.51 holds if H is ω-free and (P,m, f̂) is
a flabby normal nonlinear minimal hole in K.

Corollary 7.7.53. Suppose that (P,m, f̂) is an ultimate minimal hole in K and,

in case the complexity of (P,m, f̂) is > (1, 1, 1), that H is ω-free and (P,m, f̂) is
absolutely normal. Then

(P,m, f̂) is firm ⇐⇒ there is a unique f ∈ Cr[i] with P (f) = 0 and f ≺ m.

If (P,m, f̂) is firm, f ∈ Cr[i], P (f) = 0, and f ≺ m, then f ∈ D(H)[i] and f ≈K f̂ .

Proof. If (P,m, f̂) has complexity (1, 1, 1), use Corollaries 7.7.18 and 7.7.20. Now

suppose H is ω-free and (P,m, f̂) is absolutely normal of complexity > (1, 1, 1).
Then degP > 1 by Corollary 3.2.8, and LP×m

is terminal by Corollaries 3.2.4
and 2.6.21. Thus the forward direction of the displayed equivalence follows from
Lemmas 7.7.45 and 7.7.4, and the backward direction from the remark after Corol-
lary 7.7.52. The rest follows by applying Lemma 7.7.4 to all choices of H∗. □

Remark. Suppose (P,m, f̂) is a minimal hole in K. If degP = 1, then (P,m, f̂)
refines to an ultimate hole inK by Remark 4.4.19. IfH is ω-free and degP > 1, then

Corollary 7.7.32 gives a refinement (P+f , n, f̂ − f) of (P,m, f̂) and an active ϕ > 0

in H such that the minimal hole (Pϕ◦+f◦ , n◦, f̂◦−f◦) in K◦ is ultimate and absolutely
normal.
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(1877), 149–167.

32. M. Boshernitzan, An extension of Hardy’s class L of “orders of infinity”, J. Analyse
Math. 39 (1981), 235–255.

33. M. Boshernitzan, New “orders of infinity”, J. Analyse Math. 41 (1982), 130–167.
34. M. Boshernitzan, Hardy fields and existence of transexponential functions, Aequa-

tiones Math. 30 (1986), 258–280.
35. M. Boshernitzan, Second order differential equations over Hardy fields, J. London

Math. Soc. 35 (1987), 109–120.
36. M. Boshernitzan, Uniform distribution and Hardy fields, J. Anal. Math. 62 (1994),

225–240.
37. M. Boshernitzan, M. Wierdl, Ergodic theorems along sequences and Hardy fields,

Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 16, 8205–8207.
38. S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, Differential algebra on lattice

Green functions and Calabi-Yau operators, J. Phys. A 47 (2014), 095203.

39. N. Bourbaki, Fonctions d’une Variable Réelle, Chapitre V, Étude Locale des Fonc-
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105. D. E. Horsley, Bessel phase functions: calculation and application, Numer. Math.

136 (2017), 679–702.
106. E. Jabotinsky, Representation of functions by matrices. Application to Faber polyno-

mials, Proc. Amer. Math. Soc. 4 (1953), 546–553.
107. C. G. J. Jacobi, De resolutione aequationum per series infinitas, J. Reine Angew.

Math. 6 (1830) 257–286.
108. C. G. J. Jacobi, Versuch einer Berechnung der grossen Ungleichheit des Saturns nach

einer strengen Entwicklung, Astr. Nachr. 28 (1849), col. 65–80, 81–94.
109. H. Kalf, A remark on Claus Müller’s version of Nicholson’s formula, Integral Trans-

form. Spec. Funct. 11 (2001), no. 3, 273–280.
110. T. Kaiser, J.-P. Rolin, P. Speissegger, Transition maps at non-resonant hyperbolic

singularities are o-minimal, J. Reine Angew. Math. 636 (2009), 1–45.
111. E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, I: Gewöhnliche
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145. Z. Opial, On a theorem of O. Aramă, J. Differential Equations 3 (1967), 88–91.
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nach den Bessel’schen Functionen
a

J(β1x),
a

J(β2x),
a

J(β3x), . . . , wo β1, β2, β3, . . . die

positiven Wurzeln der Gleichung
a

J(β) = 0 vorstellen, Math. Ann. 10 (1876), 137–
142.

181. L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, vol. 1,
B. G. Teubner, Leipzig, 1895.

182. I. Schur, On Faber polynomials, Amer. J. Math. 67 (1945), 33–41.
183. J. Shackell, Rosenlicht fields, Trans. Amer. Math. Soc. 335 (1993), no. 2, 579–595.
184. J. Shackell, Growth orders occurring in expansions of Hardy-field solutions of alge-

braic differential equations, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 183–221;
erratum, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 5, p. 1471.

185. J. Shackell, Symbolic Asymptotics, Algorithms and Computation in Mathematics,
vol. 12, Springer-Verlag, Berlin, 2004.

186. J. Shackell, Measured multiseries and integration, preprint, arXiv:1707.02235, 2017.
187. M. Singer, Solutions of linear differential equations in function fields of one variable,

Proc. Amer. Math. Soc. 54 (1976), 69–72.
188. M. Singer, The model theory of ordered differential fields, J. Symbolic Logic 43

(1978), no. 1, 82–91.
189. M. Singer, Testing reducibility of linear differential operators: a group-theoretic per-

spective, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 2, 77–104.
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