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Abstract. We show that every Hardy field extends to an ω-free Hardy field.
This result relates to classical oscillation criteria for second-order homogeneous

linear differential equations. It is essential in [11], and here we apply it to

answer questions of Boshernitzan, and to generalize a theorem of his.

Introduction

We let a, b, c range over R in this introduction. Let f : [a,+∞) → R be continuous,
and consider the second-order linear differential equation

(∗) Y ′′ + fY = 0.

A (real) solution to (∗) is a C2-function y : [a,+∞) → R such that y′′ + fy = 0, and
such a solution is either (identically) zero, or its zero set as a subspace of [a,+∞)
is discrete. Some equations (∗) have oscillating solutions. Here, a continuous func-
tion g : [a,+∞) → R oscillates if g(t) = 0 for arbitrarily large t ⩾ a, and g(t) ̸= 0
for arbitrarily large t ⩾ a. Every oscillating solution to (∗) has arbitrarily large
isolated zeros, whereas each nonzero non-oscillating solution to (∗) has only finitely
many zeros. We say that f generates oscillation if (∗) has an oscillating solution.
In this case, by Sturm [59], every nonzero solution to (∗) oscillates. This is really a
property of the germ of f at +∞: for b ⩾ a, f generates oscillation iff f |[b,+∞) does.
Below “germ” means “germ at +∞” and “oscillates” and “generates oscillation”
will hold by convention for the germ of f iff it holds for f .

There is an extensive literature giving criteria on f to generate oscillation (see for
example [36, 60, 63]), some of which have their root in another fundamental result
of Sturm, his Comparison Theorem: for continuous g : [a,+∞) → R,

if f generates oscillation and f ⩽ g on [a,+∞), then g generates oscillation.

To see this theorem in action, let ℓ0 := x be the germ of the identity function on R
and inductively define the germs ℓ1, ℓ2, . . . by ℓn+1 := log ℓn for each n. Also set

γn :=
1

ℓ0 · · · ℓn
, ωn := γ

2
0 + γ

2
1 + · · ·+ γ

2
n =

1

ℓ20
+

1

(ℓ0ℓ1)2
+ · · ·+ 1

(ℓ0 · · · ℓn)2
.

Computation shows that the germ y = γ
−1/2
n satisfies the equation y′′+(ωn/4)y = 0,

so ωn/4 doesn’t generate oscillation. More precisely, a germ

ωn + cγ2n
4

=
1

4

(
1

ℓ20
+

1

(ℓ0ℓ1)2
+ · · ·+ 1

(ℓ0 · · · ℓn−1)2
+

c+ 1

(ℓ0 · · · ℓn)2

)
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generates oscillation if and only if c > 0. (See [13, Chapter 6, Theorem 10] or
Corollary 7.8 below.) In the rest of this introduction C is the ring of germs (at +∞)
of continuous real-valued functions whose domain is a subset of R containing some
interval (a,+∞), and f , g range over C. We partially order C by:

f ⩽ g :⇐⇒ f(t) ⩽ g(t), eventually,

where tacitly f and g also denote representatives of their germs, and “eventually”
means “for all sufficiently large real t”. So if f ⩽ ωn/4 for some n, then (∗) has
no oscillating solutions, whereas if f ⩾ (ωn + cγ2n)/4 for some n and c > 0, then f
generates oscillation. For n = 0 this was first noted by A. Kneser [38]: if f ⩽ 1/4x2,
then f does not generate oscillation, but if f ⩾ (1 + c)/4x2 for some c > 0, then f
generates oscillation. The general case is implicit in Riemann-Weber [62, p. 63],
and was rediscovered by various authors [30, 35, 50].

Now ωn ⩽ ωn+1 ⩽ ωn+1 + γ2n+1 ⩽ ωn + cγ2n for all n and all c > 0, and it is
not difficult to obtain a germ ω such that ωn ⩽ ω ⩽ ωn + γ2n for all n, hence the
Riemann-Weber criterion is inconclusive for f = ω/4. (One can even take such ω to
be the germ of an analytic function (a,+∞) → R, by our Example 7.12.) However,
Hartman [30] observed that if f is the germ of a logarithmico-exponential function
(LE-function) in the sense of Hardy [25, 27], then this criterion applies:

(H) f does not generate oscillation ⇐⇒ f ⩽ ωn/4 for some n.

Roughly speaking, LE-functions are the real-valued functions obtained in finitely
many steps from real constants and the variable x using addition, multiplication,
division, exponentiation, and taking logarithms. Examples: every rational function

in R(x), each power function xr (r ∈ R), each iterated logarithm ℓn, e
√
ℓ1/ℓ2 , etc.

Hardy showed that each LE-function, defined on some interval (a,+∞) → R, has
eventually constant sign, and so the germs at +∞ of such functions form what
Bourbaki [19] later called a Hardy field : a subfield H of the ring C consisting of
germs of continuously differentiable functions (a,+∞) → R such that the germ of
the derivative of the function is also in H (so H is a differential field).

The Hardy field HLE of LE-functions has good uses (see [20, 29, 49]), but overall is
too small for many analytic purposes: for example, every h ∈ HLE is differentially
algebraic over R (that is, satisfies a differential equation P

(
h, h′, . . . , h(n)

)
= 0

with P a nonzero polynomial over R in 1 + n indeterminates), and yet HLE con-

tains no antiderivative of ex
2

(Liouville [46, 47]). Boshernitzan [17, Theorem 17.7]
(see also Corollary 7.9) generalized Hartman’s result and showed that the equiv-
alence (H) continues to hold provided f is merely assumed to be hardian (i.e.,
contained in some Hardy field) and to be differentially algebraic over R. In [17,
Conjecture 17.11] he conjectured a version of (H) with the increasing sequence (ωn)
replaced by the decreasing sequence (ωn+γ2n), and “for some” replaced accordingly
by “for all”: if f is hardian and differentially algebraic over R, then

(B) f does not generate oscillation ⇐⇒ f ⩽ (ωn + γ
2
n)/4 for all n.

Corollary 7.10 below establishes this conjecture along the way to our main result.
Important here is (cf. Theorem 5.25 and Corollary 5.28) that if f is hardian and
differentially algebraic over R, then there is an n such that ℓn ⩽ g for all positive
infinite g in R⟨f⟩ := R(f, f ′, f ′′, . . . ) (= the Hardy field generated by f over R);
here g is positive infinite (g ∈ C) means that g(t) → +∞ as t→ +∞.
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The germ f being hardian and not generating oscillation has nice consequences:
for example, each Hardy field containing such an f extends to one which con-
tains a fundamental system of solutions of (∗), and a Hardy-type inequality with
weight f holds. (See Proposition 6.1 and Remarks 3.16, 6.15, respectively.) Hence
it is desirable to have versions of (H) and (B) for arbitrary hardian f . Many nat-
ural functions, for example the restrictions of Euler’s Γ-function and Riemann’s
ζ-function to (1,+∞), have non-oscillating germs that are hardian but are not dif-
ferentially algebraic over R [55]. More trouble are hardian germs ω as above, that
is, ωn ⩽ ω ⩽ ωn + γ2n for all n, as in our Example 7.12. In this paper we show
that nevertheless, versions of (H) and (B) can be restored if we extend the relevant
Hardy field and prolong the sequence (ℓn) of iterated logarithms accordingly.

To make this precise, letH be a Hardy field. The partial ordering ⩽ on C restricts to
a total ordering onH, makingH an ordered field. We also assume: H ⊇ R(x) andH
is log-closed, that is, log h ∈ H for all h > 0 in H. (This holds for H = HLE, and
every Hardy field extends to one with these properties.) Then H ⊇ R(ℓ0, ℓ1, ℓ2, . . . )
and we extend the sequence ℓ0, ℓ1, ℓ2, . . . by transfinite recursion to a sequence (ℓρ)
of positive infinite elements of H, indexed by all ordinals ρ less than some infinite
limit ordinal κ, as follows: ℓρ+1 := log ℓρ, and if λ is an infinite limit ordinal
such that all ℓρ with ρ < λ have already been chosen, then we pick ℓλ to be any
positive infinite element of H such that ℓλ ⩽ ℓρ for all ρ < λ, if there is such
an element; otherwise we put κ := λ. Given z ∈ H we set ω(z) := −(2z′ + z2);
then for y ∈ H \ {0} we have y′′ + fy = 0 iff z := 2y′/y satisfies the (Riccati)
equation ω(z) = 4f . We now define

γρ := ℓ′ρ/ℓρ, ωρ := ω(−γ
′
ρ/γρ).

We have γn := ℓ′n/ℓn = 1/(ℓ0 · · · ℓn), and taking y := 1/
√

γn we obtain

z := 2y′/y = −γ
′
n/γn = γ0 + · · ·+ γn, ω(z) = γ

2
0 + γ

2
1 + · · ·+ γ

2
n.

(Note that these γn, ωn agree with the γn,ωn given earlier.) In the beginning of
Section 7 we show that the sequences (ωρ) and (ωρ+γ2ρ) in H are strictly increasing

and strictly decreasing, respectively, and that ωλ < ωµ + γ2µ for all indices λ, µ.

Using results from [17, 54] it is easy (see Corollary 7.1 and subsequent comment)
to extend any Hardy field to an H as above (that is, H ⊇ R(x) and H is log-closed)
such that the following variant of (H) holds for all f ∈ H:

(H∗) f does not generate oscillation ⇐⇒ f ⩽ ωρ/4 for some ρ.

Restoring (B) requires the concept of a Hardy field being ω-free. This (first-order)
concept was introduced in a more general setting in our book [ADH, 11.7], where it
was shown to be very robust. (For example, by [ADH, 13.6.1] it is preserved under
passage to differentially algebraic Hardy field extensions.) We repeat the formal
definition in Section 1, and Corollary 7.3 says that H is ω-free if and only if for
all f ∈ H the equivalence (H∗) holds as well as the following equivalence:

(B∗) f does not generate oscillation ⇐⇒ f ⩽ (ωρ + γ
2
ρ)/4 for all ρ.

Keeping in mind that H ranges over log-closed Hardy fields containing R(x), here
is the main result of this paper, already announced in [7, 8]:

Theorem. Every Hardy field is contained in some ω-free H.
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A more precise version is given by Theorem 7.14. There are H that are not ω-
free, but those with a natural origin usually are. (For example, by Hartman’s and
Boshernitzan’s oscillation criteria, HLE is ω-free.) The proof of Theorem 7.14 takes
nevertheless considerable effort.

After the preliminary Section 1 we give in Section 2 basic definitions and facts
about germs of one-variable (real- or complex-valued) functions, and in Section 3
we collect the main facts we need about second-order linear differential equations.
In Section 4 we introduce Hardy fields in more detail and review some extension
results due to Boshernitzan [16, 17, 18] and Rosenlicht [54]. In Section 5 we discuss
upper and lower bounds on the growth of hardian germs from [17, 18, 55], and
Section 6 focusses on second-order linear differential equations over Hardy fields.
In Section 7 we review ω-freeness, prove the theorem above, and some refinements.

By Zorn, each Hardy field is contained in one which is maximal , that is, which has
no proper Hardy field extension. By the theorem above, maximal Hardy fields are
ω-free. This is a first important step towards showing that they are H-closed fields,
in the terminology of [8]. This requires serious further work, which is in [11].

In Section 8 we show that our main theorem by itself, combined with results about
ω-freeness from [ADH], already has some applications. First, it yields a positive
answer to a question about maximal Hardy fields posed by Boshernitzan [18, §7]:

Corollary 1. Every maximal Hardy field contains a positive infinite germ ℓω such
that ℓω ⩽ ℓn for all n.

This corollary is actually much weaker than [9, Corollary 4.8], which however ulti-
mately relies on deeper results from [11] that in turn depend on Theorem 7.14.

In the remainder of this introduction we let H range over arbitrary Hardy fields.
The intersection E(H) of all maximal Hardy fields that contain H is a Hardy
field that is log-closed and properly contains HLE. These Hardy fields E(H) were
studied in detail by Boshernitzan [16, 17], who proved, among other things, that the
sequence (ℓn) is coinitial in the set of positive infinite elements of E(Q) = E(HLE).
Theorem 8.6 generalizes this fact as follows:

Corollary 2. If H ⊇ R(x) is log-closed and ω-free, then any log-sequence (ℓρ) in H
as above is coinitial in the set E(H)>R of positive infinite elements of E(H).

Notations and conventions. We generally follow the conventions from [ADH].
In particular, m, n range over the set N = {0, 1, 2, . . . } of natural numbers. Given
an additively written abelian group A we set A̸= := A \ {0}. By convention, the
ordering of an ordered abelian group or ordered field is total. For an ordered abelian
group A and b ∈ A we put A>b := {a ∈ A : a > b} and A> := A>0, and likewise
with ⩾, <, or ⩽ in place of >. Rings are associative with identity 1 (and almost
always commutative). For a commutative ring R we let R× be the multiplicative
group of units of R.

Acknowledgements. We thank the anonymous referee for a careful reading of
the paper and useful comments.

1. Preliminaries on Asymptotic Fields

In this section we first collect some basic definitions from [ADH] needed throughout
this paper. We then review some general facts on iterated logarithmic derivatives,
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iterated exponentials, and the asymptotic behavior of “large” solutions of algebraic
differential equations in H-asymptotic fields. We do not need these facts to achieve
our main objective, but they will be used at a few points for applications and
corollaries; see Sections 5 and 8.

Differential rings and fields. Let R be a differential ring , that is, a commutative
ring R containing (an isomorphic copy of) Q as a subring equipped with a deriva-
tion ∂ : R→ R. Then CR := ker ∂ is a subring of R, called the ring of constants
of R, and Q ⊆ CR. If R is a field, then so is CR. A differential field is a differen-
tial ring that happens to be a field. When the derivation ∂ of R is clear from the
context and a ∈ R, then we denote ∂(a), ∂

2(a), . . . , ∂
n(a), . . . by a′, a′′, . . . , a(n), . . . ,

and for a ∈ R× we set a† := a′/a (the logarithmic derivative of a), so (ab)† = a†+b†

for a, b ∈ R×.

We have the differential ring R{Y } = R[Y, Y ′, Y ′′, . . . ] of differential polynomials
in a differential indeterminate Y over R. We say that P = P (Y ) ∈ R{Y } has order
at most r ∈ N if P ∈ R[Y, Y ′, . . . , Y (r)]; in this case P =

∑
i PiY

i, as in [ADH,

4.2], with i ranging over tuples (i0, . . . , ir) ∈ N1+r, Y i := Y i0(Y ′)i1 · · · (Y (r))ir ,
coefficients Pi in R, and Pi ̸= 0 for only finitely many i.

For P ∈ R{Y } and a ∈ R we let P×a := P (aY ). For ϕ ∈ R× we let Rϕ be the
compositional conjugate of R by ϕ: the differential ring with the same underlying
ring as R but with derivation ϕ−1

∂ (usually denoted by δ) instead of ∂. We have
an R-algebra isomorphism P 7→ Pϕ : R{Y } → Rϕ{Y } such that Pϕ(y) = P (y) for
all y ∈ R; see [ADH, 5.7].

Let K be a differential field. Then K{Y } is an integral domain, and the differential
fraction field of K{Y } is denoted by K⟨Y ⟩. Let y be an element of a differential
field extension L of K. We let K{y} be the differential subring of L generated by y
over K, and let K⟨y⟩ be the differential fraction field of K{y} in L. We say that y
is differentially algebraic over K if P (y) = 0 for some P ∈ K{Y } ̸=; otherwise y
is called differentially transcendental over K. As usual in [ADH], the prefix “d”
abbreviates “differentially”, so “d-algebraic” means “differentially algebraic”. We
say that L is d-algebraic over K if each y ∈ L is d-algebraic over K. See [ADH,
4.1] for more on this. We set K† := (K×)†, a subgroup of the additive group of K.

Valued fields. For a field K we have K× = K ̸=, and a (Krull) valuation on K is
a surjective map v : K× → Γ onto an ordered abelian group Γ (additively written)
satisfying the usual laws, and extended to v : K → Γ∞ := Γ ∪ {∞} by v(0) = ∞,
where the ordering on Γ is extended to a total ordering on Γ∞ by γ < ∞ for
all γ ∈ Γ. A valued field K is a field (also denoted by K) together with a valuation
ring O of that field, and the corresponding valuation v : K× → Γ on the underlying
field is such that O = {a ∈ K : va ⩾ 0} as explained in [ADH, 3.1].

Let K be a valued field with valuation ring O and valuation v : K× → Γ. Then O
is a local ring with maximal ideal O := {a ∈ K : va > 0}. In this paper K
always has equicharacteristic zero, that is, the residue field res(K) := O/O of K
has characteristic zero. In asymptotic differential algebra, sometimes the following
notations are more natural: with a, b ranging over K, set

a ≍ b :⇔ va = vb, a ≼ b :⇔ va ⩾ vb, a ≺ b :⇔ va > vb,

a ≽ b :⇔ b ≼ a, a ≻ b :⇔ b ≺ a, a ∼ b :⇔ a− b ≺ a.
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It is easy to check that if a ∼ b, then a, b ̸= 0 and a ≍ b, and that ∼ is an
equivalence relation on K×. Let L be a valued field extension of K; then the
relations ≍, ≼, etc. on L restrict to the corresponding relations on K, and we
identify in the usual way the value group of K with an ordered subgroup of the
value group of L and res(K) with a subfield of res(L). Such a valued field extension
is called immediate if for every a ∈ L× there is a b ∈ K× with a ∼ b. We use
pc-sequence to abbreviate pseudocauchy sequence, and aρ ⇝ a indicates that (aρ)
is a pc-sequence pseudoconverging to a; here the aρ and a lie in a valued field
understood from the context, see [ADH, 2.2, 3.2].

A binary relation ≼ on a field K for which there is a valuation v on K such
that a ≼ b ⇔ va ⩾ vb for each a, b ∈ K is called a dominance relation on K.
See [ADH, 3.1] for an axiomatization of dominance relations.

Valued differential fields. As in [ADH], a valued differential field is a valued field
of equicharacteristic zero together with a derivation, generally denoted by ∂, on the
underlying field. The derivation ∂ of a valued differential field K is said to be small
if ∂O ⊆ O; then ∂O ⊆ O [ADH, 4.4.2], so ∂ induces a derivation on res(K) making the
residue map O → res(K) into a morphism of differential rings. A valued differential
field K in this paper is usually an asymptotic field , that is, for all nonzero f, g ≺ 1
in K we have: f ≼ g ⇐⇒ f ′ ≼ g′. Every compositional conjugate of an asymptotic
field is asymptotic.

Let K be an asymptotic field, with constant field C = CK and valuation ring O.
Then C ⊆ O, and we say that K is d-valued if for all f ∈ K with f ≍ 1 there is
a c ∈ C with f ∼ c. Let I(K) be the O-submodule of K generated by ∂O. Then K
is called pre-d-valued if I(K) ∩ (K×)† = (O×)†. (This is not exactly the definition
from [ADH, 10.1], but equivalent to it.) Pre-d-valued fields are exactly the valued
differential subfields of d-valued fields, by [3, 4.4].

We associate to K its asymptotic couple (Γ, ψ), where ψ : Γ ̸= → Γ is given by

ψ(vg) = v(g†) for g ∈ K× with vg ̸= 0.

We put Ψ := ψ(Γ ̸=). If we want to stress the dependence on K, we write (ΓK , ψK)
and ΨK instead of (Γ, ψ) and Ψ, respectively. An asymptotic couple (without
mentioning any asymptotic field) is a pair (Γ, ψ) consisting of an ordered abelian
group Γ and a map ψ : Γ ̸= → Γ subject to natural axioms obeyed by the asymp-
totic couples of asymptotic fields, see [ADH, 6.5]. We extend ψ : Γ̸= → Γ to a
map Γ∞ → Γ∞ by ψ(0) := ψ(∞) := ∞. If (Γ, ψ) is understood from the context
and γ ∈ Γ we write γ† and γ′ instead of ψ(γ) and γ + ψ(γ), respectively. An
H-asymptotic couple is an asymptotic couple (Γ, ψ) such that for all γ, δ ∈ Γ we
have: 0 < γ ⩽ δ ⇒ ψ(γ) ⩾ ψ(δ). An asymptotic field whose asymptotic couple is
H-asymptotic is called an H-asymptotic field (or an asymptotic field of H-type).

Let (Γ, ψ) be an asymptotic couple and Ψ := ψ(Γ ̸=). Then γ ∈ Γ is said to
be a gap in (Γ, ψ) if Ψ < γ < (Γ>)′. (There is at most one such γ.) We also
say that (Γ, ψ) is grounded if Ψ has a largest element, and (Γ, ψ) has asymptotic
integration if (Γ ̸=)′ = Γ. An asymptotic field is said to have a gap if its asymptotic
couple does, and likewise with “grounded” or “asymptotic integration” in place of
“has a gap”. See [ADH, 9.1, 9.2] for more on this, in particular for the following
important trichotomy: every H-asymptotic couple either has a gap, or is grounded,
or has asymptotic integration [ADH, 9.2.16]. An element ϕ of an asymptotic fieldK
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is said to be active in K if ϕ ≽ f† for some f ̸≍ 1 in K×; in that case the
derivation ϕ−1

∂ of the compositional conjugate Kϕ is small, cf. [ADH, 11.1].
Next two concepts from [ADH, 11.6, 11.7] that may seem technical but that

are key to understanding subtler aspects of Hardy fields. Let K be an asymptotic
field. We say that K is λ-free if K is H-asymptotic and ungrounded, and for
all f ∈ K there exists g ≻ 1 in K such that f − g†† ≽ g†. We say that K is
ω-free if K is H-asymptotic, ungrounded, and for all f ∈ K there exists g ≻ 1 in K
such that f − ω(g††) ≽ (g†)2, where ω(z) := −2z′ − z2 for z ∈ K. This notion
of ω-freeness is clearly first-order in the logical sense. If K is ω-free, then K is
λ-free [ADH, 11.7.3], and if K is λ-free, then K has asymptotic integration [ADH,
11.6.8]. (We do not use λ-freeness or ω-freeness before Section 6.)

Ordered differential fields. An ordered differential field is a differential field K
with an ordering on K making K an ordered field. Likewise, an ordered valued
differential field is a valued differential field K equipped an ordering on K mak-
ing K an ordered field (no relation between derivation, valuation, or ordering being
assumed). Let K be an ordered differential field. Then we have the convex subring

O :=
{
g ∈ K : |g| ⩽ c for some c ∈ C

}
,

which is a valuation ring of K and has maximal ideal

O =
{
g ∈ K : |g| < c for all positive c ∈ C

}
.

We callK anH-field if for all f ∈ K with f > C we have f ′ > 0, and O = C+O. We
view such anH-fieldK as an ordered valued differential field with its valuation given
by O. Pre-H-fields are the ordered valued differential subfields of H-fields. Every
pre-H-field is H-asymptotic, and each H-field is d-valued of H-type. See [ADH,
10.5] for basic facts about (pre-)H-fields. An H-field K is said to be Liouville closed
if K is real closed and for all f, g ∈ K there exists y ∈ K× with y′ + fy = g. Every
H-field extends to a Liouville closed one; see [ADH, 10.6].

In the rest of this section K is an H-asymptotic field, and f , g range over K.

Iterated logarithmic derivatives. Let (Γ, ψ) be an H-asymptotic couple. We
let γ range over Γ, and we denote by

[γ] =
{
δ ∈ Γ : |γ| ⩽ n|δ| and δ ⩽ n|γ| for some n ⩾ 1

}
the archimedean class of γ; cf. [ADH, 2.4]. We define γ⟨n⟩ ∈ Γ∞ inductively
by γ⟨0⟩ := γ and γ⟨n+1⟩ := ψ(γ⟨n⟩). The following is [2, Lemma 5.2]; for the
convenience of the reader we include a proof:

Lemma 1.1. Suppose that 0 ∈ (Γ<)′, γ ̸= 0, and n ⩾ 1. If γ⟨n⟩ < 0, then γ⟨i⟩ < 0
for i = 1, . . . , n and [γ] > [γ†] > · · · > [γ⟨n−1⟩] > [γ⟨n⟩].

Proof. By [ADH, 9.2.9] we have (Γ>)′ ⊆ Γ>, so the case n = 1 follows from [ADH,
9.2.10(iv)]. Assume inductively that the lemma holds for a certain value of n ⩾ 1,
and suppose γ⟨n+1⟩ < 0. Then γ⟨n⟩ ̸= 0, so we can apply the case n = 1 to γ⟨n⟩

instead of γ and get [γ⟨n⟩] > [γ⟨n+1⟩]. By the inductive assumption the remaining
inequalities will follow from γ⟨n⟩ < 0. From 0 ∈ (Γ<)′ we obtain an element 1 of Γ>

with 0 = (−1)′ = −1 + 1†. Suppose γ⟨n⟩ ⩾ 0. Then γ⟨n⟩ ∈ Ψ, thus 0 < γ⟨n⟩ <
1 + 1† = 1 + 1 and so [γ⟨n⟩] ⩽ [1]. Hence 0 > γ⟨n+1⟩ ⩾ 1† = 1, a contradiction. □
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Suppose now that (Γ, ψ) is the asymptotic couple of K and y ∈ K×. In [ADH,
p. 213], we defined the nth iterated logarithmic derivative of y: y⟨0⟩ := y, and
recursively, if y⟨n⟩ ∈ K is defined and nonzero, then y⟨n+1⟩ := (y⟨n⟩)†, while oth-
erwise y⟨n+1⟩ is not defined. (Thus if y⟨n⟩ is defined, then so are y⟨0⟩, . . . , y⟨n−1⟩.)
If (vy)⟨n⟩ ̸= ∞, then y⟨n⟩ is defined and v(y⟨n⟩) = (vy)⟨n⟩ ∈ Γ. Recall from [ADH,
p. 383] that for f, g ̸= 0,

f ≺≺ g :⇔ f† ≺ g†, f ⪯⪯ g :⇔ f† ≼ g†, f −≍ g :⇔ f† ≍ g†,

hence, assuming also f, g ̸≍ 1,

f ≺≺ g ⇒ [vf ] < [vg], [vf ] ⩽ [vg] ⇒ f ⪯⪯ g.

In the rest of this section we are given x ≻ 1 in K with x′ ≍ 1. Then 0 ∈ (Γ<)′, so
from the previous lemma we obtain:

Corollary 1.2. If y ∈ K×, y ̸≍ 1, n ⩾ 1, and (vy)⟨n⟩ < 0, then y⟨i⟩ ≻ 1 for i =
1, . . . , n and [vy] >

[
v(y†)

]
> · · · >

[
v(y⟨n−1⟩)

]
>

[
v(y⟨n⟩)

]
.

Let i = (i0, . . . , in) ∈ Z1+n and y ∈ K× be such that y⟨n⟩ is defined; we put

y⟨i⟩ := (y⟨0⟩)i0 · · · (y⟨n⟩)in ∈ K.

If y⟨n⟩ ̸= 0, then i 7→ y⟨i⟩ : Z1+n → K× is a group morphism. Suppose now
that y ∈ K×, (vy)⟨n⟩ < 0, and i = (i0, . . . , in) ∈ Z1+n, i ̸= 0, and m ∈ {0, . . . , n} is
minimal with im ̸= 0. Then by Corollary 1.2,

[
v(y⟨i⟩)

]
=

[
v(y⟨m⟩)

]
. Thus if y ≻ 1,

we have the equivalence y⟨i⟩ ≻ 1 ⇔ im ⩾ 1. If K is equipped with an ordering
making it a pre-H-field and y ≻ 1, then y† > 0, so y⟨i⟩ > 0 for i = 1, . . . , n, and
thus sign y⟨i⟩ = sign yi0 .

Iterated exponentials. In this subsection we assume that Ψ is downward closed.
For f ≻ 1 we have f ′ ≻ f†, so we can and do choose E(f) ∈ K× such that E(f) ≻ 1
and E(f)† ≍ f ′, hence f ≺ E(f) and f ≺≺ E(f). Moreover, if f, g ≻ 1, then

f ≺ g ⇐⇒ E(f) ≺≺ E(g).

For f ≻ 1 define En(f) ∈ K≻1 inductively by

E0(f) := f, En+1(f) := E
(
En(f)

)
,

and thus by induction

En(f) ≺ En+1(f) and En(f) ≺≺ En+1(f) for all n.

In the rest of this subsection f ≽ x, and y ranges over elements of H-asymptotic
extensions of K. The proof of the next lemma is like that of [4, Lemma 1.3(2)].

Lemma 1.3. If y ≽ En+1(f), n ⩾ 1, then y ̸= 0 and y† ≽ En(f).

Proof. If y ≽ E2(f), then y ̸= 0, and using E2(f) ≻ 1 we obtain

y† ≽ E2(f)
† ≍ E(f)′ = E(f) E(f)† ≍ E(f)f ′ ≽ E(f),

Thus the lemma holds for n = 1. In general, En−1(f) ≽ f ≽ x, hence the lemma
follows from the case n = 1 applied to En−1(f) in place of f . □

An obvious induction on n using Lemma 1.3 shows: if y ≽ En(f), then (vy)⟨n⟩ ⩽
vf < 0. We shall use this fact without further reference.

Lemma 1.4. If y ≽ En+1(f), then y
⟨n⟩ is defined and y⟨n⟩ ≽ E(f).

8



Proof. First note that if y ̸= 0, n ⩾ 1, and (y†)⟨n−1⟩ is defined, then y⟨n⟩ is defined
and y⟨n⟩ = (y†)⟨n−1⟩. Now use induction on n and Lemma 1.3. □

Lemma 1.5. If y ≽ En(f
2), then y⟨n⟩ is defined and y⟨n⟩ ≽ f , with y⟨n⟩ ≻ f

if f ≻ x.

Proof. This is clear if n = 0, so suppose y ≽ En+1(f
2). Then by Lemma 1.4

(applied with f2 in place of f) we have y⟨n⟩ ≽ E(f2) ≻ 1, so

y⟨n+1⟩ = (y⟨n⟩)† ≽ E(f2)† ≍ (f2)′ = 2ff ′ ≽ f,

with y⟨n+1⟩ ≻ f if f ≻ x, as required. □

Corollary 1.6. Suppose y ≽ En(f
2), and let i ∈ Z1+n be such that i > 0 lexico-

graphically. Then y⟨n⟩ is defined and y⟨i⟩ ≽ f , with y⟨i⟩ ≻ f if f ≻ x.

Proof. By Lemma 1.5, y⟨n⟩ is defined with y⟨n⟩ ≽ f , and y⟨n⟩ ≻ f if f ≻ x. Letm ∈
{0, . . . , n} be minimal such that im ̸= 0; so im ⩾ 1. If m = n then y⟨i⟩ = (y⟨n⟩)in ≽
y⟨n⟩, hence y⟨i⟩ ≽ f , with y⟨i⟩ ≻ f if f ≻ x. Suppose m < n. Then y ≽ Em+1(f

2)
and hence y⟨m⟩ ≽ E(f2) by Lemma 1.4. Also, f −≍ f2 ≺≺ E(f2), thus y⟨m⟩ ≻≻ f .
The remarks following Corollary 1.2 now yield y⟨i⟩ ≻ f . □

Asymptotic behavior of P (y) for large y. In this subsection i, j, k range
over N1+n. Let P⟨i⟩ ∈ K be such that P⟨i⟩ = 0 for all but finitely many i

and P⟨i⟩ ̸= 0 for some i, and set P :=
∑

i P⟨i⟩Y
⟨i⟩ ∈ K⟨Y ⟩. So if P ∈ K{Y },

then P =
∑

i P⟨i⟩Y
⟨i⟩ is the logarithmic decomposition of the differential polyno-

mial P as defined in [ADH, 4.2].

Example. Y = Y ⟨0⟩, Y ′ = Y ⟨0⟩Y ⟨1⟩, Y ′′ = Y ⟨0⟩(Y ⟨1⟩)2 + Y ⟨0⟩Y ⟨1⟩Y ⟨2⟩, and for
all m, Y (m) ∈ Z

[
Y ⟨0⟩, Y ⟨1⟩, . . . , Y ⟨m⟩]. Thus P = 2Y 3 + Y ′Y ′′ has logarithmic

decomposition

P = 2(Y ⟨0⟩)3 + (Y ⟨0⟩)2(Y ⟨1⟩)3 + (Y ⟨0⟩)2(Y ⟨1⟩)2Y ⟨2⟩.

If y is an element in a differential field extension L of K such that y⟨n⟩ is defined,
then we put P (y) :=

∑
i P⟨i⟩y

⟨i⟩ ∈ L (and for P ∈ K{Y } this has the usual value).
Let j be lexicographically maximal such that P⟨j⟩ ̸= 0, and choose k so that P⟨k⟩
has minimal valuation. If P⟨k⟩/P⟨j⟩ ≻ x, set f := P⟨k⟩/P⟨j⟩; otherwise set f := x2.
Then f ≻ x and f ≽ P⟨i⟩/P⟨j⟩ for all i. The following is a more precise version
of [ADH, 16.6.10] and [37, (8.8)]:

Proposition 1.7. Suppose Ψ is downward closed, and y in an H-asymptotic ex-
tension of K satisfies y ≽ En(f

2). Then y⟨n⟩ is defined and P (y) ∼ P⟨j⟩y
⟨j⟩.

Proof. Let i < j. We have f ≻ x, so y⟨j−i⟩ ≻ f ≽ P⟨i⟩/P⟨j⟩ by Corollary 1.6.

Hence P⟨j⟩y
⟨j⟩ ≻ P⟨i⟩y

⟨i⟩. □

From Corollary 1.2, Lemma 1.5, and Proposition 1.7 we obtain:

Corollary 1.8. Suppose Ψ is downward closed and y in an H-asymptotic extension
of K satisfies y ≻ K. Then y is d-transcendental over K, and for all n, y⟨n⟩ is
defined, y⟨n⟩ ≻ K, and y⟨n+1⟩ ≺≺ y⟨n⟩. The H-asymptotic extension K⟨y⟩ of K has
residue field resK⟨y⟩ = resK and value group ΓK⟨y⟩ = Γ⊕

⊕
n Zv(y⟨n⟩) (internal

direct sum), and ΓK⟨y⟩ contains Γ as a convex subgroup.
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Suppose now that K is equipped with an ordering making it a pre-H-field. From
Proposition 1.7 we recover [4, Theorem 3.4] in slightly stronger form:

Corollary 1.9. Suppose y lies in a Liouville closed H-field extension of K.
If y ≽ En(f

2), then y⟨n⟩ is defined and signP (y) = signP⟨j⟩y
j0 . In particular,

if y⟨n⟩ is defined and P (y) = 0, then y ≺ En(f
2).

Example. Suppose P ∈ K{Y }. Using [ADH, 4.2, subsection on logarithmic decom-
position] we obtain j0 = degP , and the logarithmic decomposition

P (−Y ) =
∑
i

P⟨i⟩(−1)i0Y ⟨i⟩.

If degP is odd, and y > 0 lies in a Liouville closed H-field extension of K such
that y ≽ En(f

2), then

signP (y) = signP⟨j⟩, signP (−y) = − signP⟨j⟩ = − signP (y).

2. Germs of Continuous Functions

Hardy fields consist of germs of one-variable differentiable real-valued functions. In
this section we first consider the ring C of germs of continuous real-valued functions,
and its complex counterpart C[i]. With an eye towards applications to Hardy fields,
we pay particular attention to extending subfields of C.

Germs. As in [ADH, 9.1] we let G be the ring of germs at +∞ of real-valued
functions whose domain is a subset of R containing an interval (a,+∞), a ∈ R; the
domain may vary and the ring operations are defined as usual. If g ∈ G is the germ
of a real-valued function on a subset of R containing an interval (a,+∞), a ∈ R,
then we simplify notation by letting g also denote this function if the resulting
ambiguity is harmless. With this convention, given a property P of real numbers
and g ∈ G we say that P

(
g(t)

)
holds eventually if P

(
g(t)

)
holds for all sufficiently

large real t. Thus for g ∈ G we have g = 0 iff g(t) = 0 eventually (and so g ̸= 0
iff g(t) ̸= 0 for arbitrarily large t). Note that the multiplicative group G× of units
of G consists of the f ∈ G such that f(t) ̸= 0, eventually. We identify each real
number r with the germ at +∞ of the function R → R that takes the constant
value r. This makes the field R into a subring of G. Given g, h ∈ G, we set

(2.1) g ⩽ h :⇐⇒ g(t) ⩽ h(t), eventually.

This defines a partial ordering ⩽ on G which restricts to the usual ordering of R.
Let g, h ∈ G. Then g, h ⩾ 0 ⇒ g + h, g · h, g2 ⩾ 0, and g ⩾ r ∈ R> ⇒ g ∈ G×.

We define g < h :⇔ g ⩽ h and g ̸= h. Thus if g(t) < h(t), eventually, then g < h;
the converse is not generally valid.

Continuous germs. We call a germ g ∈ G continuous if it is the germ of a
continuous function (a,+∞) → R for some a ∈ R, and we let C ⊇ R be the
subring of G consisting of the continuous germs g ∈ G. We have C× = G× ∩ C;
thus for f ∈ C×, we have f(t) ̸= 0, eventually, hence either f(t) > 0, eventually,
or f(t) < 0, eventually, and so f > 0 or f < 0. More generally, if g, h ∈ C
and g(t) ̸= h(t), eventually, then g(t) < h(t), eventually, or h(t) < g(t), eventually.
We let x denote the germ at +∞ of the identity function on R, so x ∈ C×.
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The ring C[i]. In analogy with C we define its complexification C[i] as the ring
of germs at +∞ of C-valued continuous functions whose domain is a subset of R
containing an interval (a,+∞), a ∈ R. It has C as a subring. Identifying each
complex number c with the germ at +∞ of the function R → C that takes the
constant value c makes C also a subring of C[i] with C[i] = C + Ci, justifying
the notation C[i]. The “eventual” terminology for germs f ∈ C (like “f(t) ̸= 0,
eventually”) is extended in the obvious way to germs f ∈ C[i]. Thus for f ∈ C[i] we
have: f(t) ̸= 0, eventually, if and only if f ∈ C[i]×. In particular C× = C[i]× ∩ C.
Let Φ: U → C be a continuous function where U ⊆ C, and let f ∈ C[i] be such
that f(t) ∈ U , eventually; then Φ(f) denotes the germ in C[i] with Φ(f)(t) =
Φ
(
f(t)

)
, eventually. For example, taking U = C, Φ(z) = ez, we obtain for f ∈ C[i]

the germ exp f = ef ∈ C[i] with (ef )(t) = ef(t), eventually. Likewise, for f ∈ C
with f(t) > 0, eventually, we have the germ log f ∈ C. For f ∈ C[i] we have f ∈ C[i]
with f(t) = f(t), eventually; the map f 7→ f is an automorphism of the ring C[i]
with f = f and f ∈ C ⇔ f = f . For f ∈ C[i] we also have Re f, Im f, |f | ∈ C
with f(t) = (Re f)(t) + (Im f)(t)i and |f |(t) = |f(t)|, eventually.

Asymptotic relations on C[i]. Although C[i] is not a valued field, it will be
convenient to equip C[i] with the asymptotic relations ≼, ≺, ∼ (which are defined
on any valued field [ADH, 3.1]) as follows: for f, g ∈ C[i],

f ≼ g :⇐⇒ there exists c ∈ R> such that |f | ⩽ c|g|,
f ≺ g :⇐⇒ g ∈ C[i]× and lim

t→∞
f(t)/g(t) = 0

⇐⇒ g ∈ C[i]× and |f | ⩽ c|g| for all c ∈ R>,

f ∼ g :⇐⇒ g ∈ C[i]× and lim
t→∞

f(t)/g(t) = 1

⇐⇒ f − g ≺ g.

If h ∈ C[i] and 1 ≼ h, then h ∈ C[i]×. Also, for f, g ∈ C[i] and h ∈ C[i]× we have

f ≼ g ⇔ fh ≼ gh, f ≺ g ⇔ fh ≺ gh, f ∼ g ⇔ fh ∼ gh.

The binary relation ≼ on C[i] is reflexive and transitive, and ∼ is an equivalence
relation on C[i]×. Moreover, for f, g, h ∈ C[i] we have

f ≺ g ⇒ f ≼ g, f ≼ g ≺ h ⇒ f ≺ h, f ≺ g ≼ h ⇒ f ≺ h.

Note that ≺ is a transitive binary relation on C[i]. For f, g ∈ C[i] we also set

f ≍ g : ⇔ f ≼ g & g ≼ f, f ≽ g : ⇔ g ≼ f, f ≻ g : ⇔ g ≺ f,

so ≍ is an equivalence relation on C[i], and f ∼ g ⇒ f ≍ g. Thus for f, g, h ∈ C[i],
f ≼ g ⇒ fh ≼ gh, f ≼ h & g ≼ h ⇒ f + g ≼ h, f ≼ 1 & g ≺ 1 ⇒ fg ≺ 1,

hence

C[i]≼ :=
{
f ∈ C[i] : f ≼ 1

}
=

{
f ∈ C[i] : |f | ⩽ n for some n

}
is a subalgebra of the C-algebra C[i] and

C[i]≺ :=
{
f ∈ C[i] : f ≺ 1

}
=

{
f ∈ C[i] : lim

t→∞
f(t) = 0

}
is an ideal of C[i]≼. The group of units of C[i]≼ is

C[i]≍ :=
{
f ∈ C[i] : f ≍ 1

}
=

{
f ∈ C[i] : 1/n ⩽ |f | ⩽ n for some n ⩾ 1

}
11



and has the subgroup

C×(1 + C[i]≺
)

=
{
f ∈ C[i] : lim

t→∞
f(t) ∈ C×

}
.

We set C≼ := C[i]≼ ∩ C, and similarly with ≺, ≍ in place of ≼.

Lemma 2.1. Let f, g, f∗, g∗ ∈ C[i]× with f ∼ f∗ and g ∼ g∗. Then 1/f ∼ 1/f∗

and fg ∼ f∗g∗. Moreover, f ≼ g ⇔ f∗ ≼ g∗, and similarly with ≺, ≍, or ∼ in
place of ≼.

This follows easily from the observations above. For later reference we also note:

Lemma 2.2. Let f, g ∈ C× be such that 1 ≺ f ≼ g; then log |f | ≼ log |g|.

Proof. Clearly log |g| ≻ 1. Take c ∈ R> such that |f | ⩽ c|g|. Then log |f | ⩽
log c+ log |g| where log c+ log |g| ∼ log |g|; hence log |f | ≼ log |g|. □

Lemma 2.3. Let f, g, h ∈ C× be such that f − g ≺ h and (f − h)(g − h) = 0.
Then f ∼ g.

Proof. Take a ∈ R and representatives (a,+∞) → R of f , g, h, denoted by the
same symbols, such that for each t > a we have f(t), g(t), h(t) ̸= 0, and f(t) =
h(t) or g(t) = h(t). Let ε ∈ R with 0 < ε ⩽ 1 be given, and choose b ⩾ a
such that |f(t) − g(t)| ⩽ 1

2ε|h(t)| for all t > b. Set q := f/g and let t > b; we
claim that then |q(t) − 1| ⩽ ε. This is clear if g(t) = h(t), so suppose otherwise;
then f(t) = h(t), and |1 − 1/q(t)| ⩽ 1

2ε ⩽
1
2 . In particular, 0 < q(t) ⩽ 2 and

so |1− q(t)| = |1− 1/q(t)| · q(t) ⩽ ε as claimed. □

Subfields of C. Let H be a Hausdorff field, that is, a subring of C that happens
to be a field; see [8]. Then H has the subfield H ∩ R. If f ∈ H×, then f(t) ̸= 0
eventually, hence either f(t) < 0 eventually or f(t) > 0 eventually. The partial
ordering of G from (2.1) thus restricts to a total ordering on H making H an
ordered field in the usual sense of that term. By [16, Propositions 3.4 and 3.6]:

Proposition 2.4. Let Hrc consist of the y ∈ C with P (y) = 0 for some P ∈ H[Y ] ̸=.
Then Hrc is the unique real closed Hausdorff field that extends H and is algebraic
over H. In particular, Hrc is a real closure of the ordered field H.

Boshernitzan [16] assumes H ⊇ R for this result, but this is not really needed in
the proof, much of which already occurs in Hausdorff [34].

Note that H[i] is a subfield of C[i], and by Proposition 2.4 and [ADH, 3.5.4], the
subfield Hrc[i] of C[i] is an algebraic closure of the field H. If f ∈ C[i] is integral
over H, then so is f , and hence so are the elements Re f = 1

2 (f + f) and Im f =
1
2i (f − f) of C [ADH, 1.3.2]. Thus Hrc[i] consists of the y ∈ C[i] with P (y) = 0 for

some P ∈ H[Y ] ̸=.

The ordered field H has a convex subring

O =
{
f ∈ H : |f | ⩽ n for some n

}
= C≼ ∩H,

which is a valuation ring of H, and we consider H accordingly as a valued ordered
field. The maximal ideal of O is O = C≺ ∩H. The residue morphism O → res(H)
restricts to an ordered field embedding H∩R → res(H), which is bijective if R ⊆ H.
Restricting the binary relations ≼, ≺, ∼ from the previous subsection to H gives
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exactly the asymptotic relations ≼, ≺, ∼ on H that it comes equipped with as a
valued field. By [ADH, 3.5.15],

O +Oi =
{
f ∈ H[i] : |f | ⩽ n for some n

}
= C[i]≼ ∩H[i]

is the unique valuation ring of H[i] whose intersection with H is O. In this way
we consider H[i] as a valued field extension of H. The maximal ideal of O + Oi
is O+Oi = C[i]≺∩H[i]. The asymptotic relations ≼, ≺, ∼ on C[i] restricted to H[i]
are exactly the asymptotic relations ≼, ≺, ∼ on H[i] that H[i] has as a valued field,
with f ≍ |f | in C[i] for all f ∈ H[i]. In particular, the binary relation ≼ on C[i]
restricts to a dominance relation on each subfield of H[i] (see [ADH, 3.1.1]). Let K
be a subfield of C[i]. We note that the following are equivalent:

(1) The binary relation ≼ on C[i] restricts to a dominance relation on K;
(2) for all f, g ∈ K: f ≼ g or g ≼ f ;
(3) for all f ∈ K: f ≼ 1 or 1 ≼ f .

Moreover, the following are equivalent:

(1) K = H[i] for some Hausdorff field H;
(2) i ∈ K and f ∈ K for each f ∈ K;
(3) i ∈ K and Re f, Im f ∈ K for each f ∈ K.

Composition. Let g ∈ C, and suppose that lim
t→+∞

g(t) = +∞; equivalently, g ⩾ 0

and g ≻ 1. Then the composition operation

f 7→ f ◦ g : C[i] → C[i], (f ◦ g)(t) := f
(
g(t)

)
eventually,

is an injective endomorphism of the ring C[i] that is the identity on the subring C.
For f1, f2 ∈ C[i] we have: f1 ≼ f2 ⇔ f1 ◦ g ≼ f2 ◦ g, and likewise with ≺, ∼. This
endomorphism of C[i] commutes with the automorphism f 7→ f of C[i], and maps
each subfield K of C[i] isomorphically onto the subfield K ◦ g = {f ◦ g : f ∈ K}
of C[i]. Note that if the subfield K of C[i] contains x, then K ◦ g contains g.
Moreover, f 7→ f ◦g restricts to an endomorphism of the subring C of C[i] such that
if f1, f2 ∈ C and f1 ⩽ f2, then f1 ◦ g ⩽ f2 ◦ g. This endomorphism of C maps each
Hausdorff field H isomorphically (as an ordered field) onto the Hausdorff field H ◦g.
Occasionally it is convenient to extend the composition operation on C to the ring G
of all (not necessarily continuous) germs. Let g ∈ G with lim

t→+∞
g(t) = +∞. Then

for f ∈ G we have the germ f ◦ g ∈ G with

(f ◦ g)(t) := f
(
g(t)

)
eventually.

The map f 7→ f ◦ g is an endomorphism of the R-algebra G. Let f1, f2 ∈ G.
Then f1 ⩽ f2 ⇒ f1 ◦ g ⩽ f2 ◦ g, and likewise with ≼ and ≺ instead of ⩽, where we
extend the binary relations ≼, ≺ from C to G in the natural way:

f1 ≼ f2 :⇐⇒ there exists c ∈ R> such that |f1(t)| ⩽ c|f2(t)|, eventually;
f1 ≺ f2 :⇐⇒ f2 ∈ G× and lim

t→∞
f1(t)/f2(t) = 0.

Compositional inversion. Suppose that g ∈ C is eventually strictly increas-
ing such that lim

t→+∞
g(t) = +∞. Then its compositional inverse ginv ∈ C is

given by ginv
(
g(t)

)
= t, eventually, and ginv is also eventually strictly increas-

ing with lim
t→+∞

ginv(t) = +∞. Then f 7→ f ◦ g is an automorphism of the ring C[i],

with inverse f 7→ f ◦ ginv. In particular, g ◦ ginv = ginv ◦ g = x. Moreover, f 7→ f ◦ g
13



restricts to an automorphism of C, and if h ∈ C is eventually strictly increasing
with g ⩽ h, then hinv ⩽ ginv.

Let now f, g ∈ C with f, g ⩾ 0, f, g ≻ 1. It is not true in general that if f , g
are eventually strictly increasing and f ∼ g, then f inv ∼ ginv. (Counterexample:
f = log x, g = log 2x.) Corollary 2.6 below gives a useful condition on f , g under
which this implication does hold. In addition, let h ∈ C× be eventually monotone
and continuously differentiable with h′/h ≼ 1/x.

Lemma 2.5 (Entringer [23]). Suppose f ∼ g. Then h ◦ f ∼ h ◦ g.

Proof. Replacing h by −h if necessary we arrange that h ⩾ 0, so h(t) > 0 eventually.
Set p := min(f, g) ∈ C and q := max(f, g) ∈ C. Then 0 ⩽ p ≻ 1 and f − g ≺ p. The
Mean Value Theorem gives ξ ∈ G such that p ⩽ ξ ⩽ q (so 0 ⩽ ξ ≻ 1) and

h ◦ f − h ◦ g = (h′ ◦ ξ) · (f − g).

From h′/h ≼ 1/x we obtain h′ ◦ ξ ≼ (h ◦ ξ)/ξ ≼ (h ◦ ξ)/p, hence h ◦ f − h ◦ g ≺
h ◦ ξ. Set u := max(h ◦ p, h ◦ q). Then 0 ⩽ h ◦ ξ ⩽ u, hence h ◦ f − h ◦ g ≺ u.
Also (u− h ◦ f)(u− h ◦ g) = 0, so Lemma 2.3 yields h ◦ f ∼ h ◦ g. □

Corollary 2.6. Suppose f , g are eventually strictly increasing such that f ∼ g
and f inv ∼ h. Then ginv ∼ h.

Proof. By the lemma above we have h◦f ∼ h◦g, and from f inv ∼ h we obtain x =
f inv ◦ f ∼ h ◦ f . Therefore ginv ◦ g = x ∼ h ◦ g and thus ginv ∼ h. □

Extending ordered fields inside an ambient partially ordered ring. Let R
be a commutative ring with 1 ̸= 0, equipped with a translation-invariant partial
ordering ⩽ such that r2 ⩾ 0 for all r ∈ R, and rs ⩾ 0 for all r, s ∈ R with r, s ⩾ 0.
It follows that for a, b, r ∈ R we have:

(1) if a ⩽ b and r ⩾ 0, then ar ⩽ br;
(2) if a is a unit and a > 0, then a−1 = a · (a−1)2 > 0;
(3) if a, b are units and 0 < a ⩽ b, then 0 < b−1 ⩽ a−1.

Relevant cases: R = G and R = C, with partial ordering given by (2.1).

An ordered subring of R is a subring of R that is totally ordered by the partial
ordering of R. An ordered subfield of R is an ordered subring H of R which happens
to be a field; then H equipped with the induced ordering is indeed an ordered field,
in the usual sense of that term. (Thus any Hausdorff field is an ordered subfield
of the partially ordered ring C.) We identify Z with its image in R via the unique
ring embedding Z → R, and this makes Z with its usual ordering into an ordered
subring of R.

Lemma 2.7. Assume D is an ordered subring of R and every nonzero element
of D is a unit of R. Then D generates an ordered subfield FracD of R.

Proof. It is clear that D generates a subfield FracD of R. For a ∈ D, a > 0, we
have a−1 > 0. It follows that FracD is totally ordered. □

Thus if every n ⩾ 1 is a unit of R, then we may identify Q with its image in R via
the unique ring embedding Q → R, making Q into an ordered subfield of R.

Lemma 2.8. Suppose H is an ordered subfield of R, all g ∈ R with g > H are
units of R, and H < f ∈ R. Then we have an ordered subfield H(f) of R.
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Proof. For P ∈ H[Y ] of degree d ⩾ 1 with leading coefficient a > 0 we have P (f) =
afd(1 + ε) with −1/n < ε < 1/n for all n ⩾ 1, in particular, P (f) > H is a unit
of R. It remains to appeal to Lemma 2.7. □

Lemma 2.9. Let H be a real closed ordered subfield of R. Let A be a nonempty
downward closed subset of H such that A has no largest element and B := H \ A
is nonempty and has no least element. Let f ∈ R be such that A < f < B. Then
the subring H[f ] of R has the following properties:

(i) H[f ] is a domain;
(ii) H[f ] is an ordered subring of R;
(iii) H is cofinal in H[f ];
(iv) for all g ∈ H[f ] \H and a ∈ H, if a < g, then a < b < g for some b ∈ H,

and if g < a, then g < b < a for some b ∈ H.

Proof. Let P ∈ H[Y ] ̸=; to obtain (i) and (ii) it suffices to show that then P (f) < 0
or P (f) > 0. We have

P = cQ (Y − a1) · · · (Y − an)

where c ∈ H ̸=, Q is a product of monic quadratic irreducibles in H[Y ],
and a1, . . . , an ∈ H. This gives δ ∈ H> such that Q(r) ⩾ δ for all r ∈ R. As-
sume c > 0. (The case c < 0 is handled similarly.) We can arrange that m ⩽ n is
such that ai ∈ A for 1 ⩽ i ⩽ m and aj ∈ B for m < j ⩽ n. Take ε > 0 in H such
that ai + ε ⩽ f for 1 ⩽ i ⩽ m and f ⩽ aj − ε for m < j ⩽ n. Then

P (f) = cQ(f) (f − a1) · · · (f − am)(f − am+1) · · · (f − an),

and (f−a1) · · · (f−am) ⩾ εm. If n−m is even, then (f−am+1) · · · (f−an) ⩾ εn−m,
so P (f) ⩾ cδεn > 0. If n − m is odd, then (f − am+1) · · · (f − an) ⩽ −εn−m,
so P (f) ⩽ −cδεn < 0. These estimates also yield (iii) and (iv). □

Lemma 2.10. With H, A, f as in Lemma 2.9, suppose all g ∈ R with g ⩾ 1 are
units of R. Then we have an ordered subfield H(f) of R such that (iii) and (iv) of
Lemma 2.9 go through for H(f) in place of H[f ].

Proof. Note that if g ∈ R and g ⩾ δ ∈ H>, then gδ−1 ⩾ 1, so g is a unit of R
and 0 < g−1 ⩽ δ−1. For Q ∈ H[Y ]̸= with Q(f) > 0 we can take δ ∈ H> such
that Q(f) ⩾ δ, so Q(f) ∈ R× and 0 < Q(f)−1 ⩽ δ−1. Thus we have an ordered
subfield H(f) of R by Lemma 2.7, and the rest now follows easily. □

Adjoining pseudolimits and increasing the value group. Let H be a real
closed Hausdorff field and view H as an ordered valued field as before. Let (aρ) be
a strictly increasing divergent pc-sequence in H. Set

A := {a ∈ H : a < aρ for some ρ}, B := {b ∈ H : b > aρ for all ρ},
so A is nonempty and downward closed without a largest element. Moreover, B =
H \ A is nonempty and has no least element, since a least element of B would be
a limit and thus a pseudolimit of (aρ). Let f ∈ C satisfy A < f < B. Then by
Lemma 2.10 for R = C we have an ordered subfield H(f) of C, and:

Lemma 2.11. H(f) is an immediate valued field extension of H with aρ ⇝ f .

Proof. We can assume that v(aτ − aσ) > v(aσ − aρ) for all indices τ > σ > ρ.
Set dρ := as(ρ)−aρ (s(ρ) := successor of ρ). Then aρ+2dρ ∈ B for all indices ρ; see
the discussion preceding [ADH, 2.4.2]. It then follows from that lemma that aρ ⇝ f .
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Now (aρ) is a divergent pc-sequence in the henselian valued field H, so it is of
transcendental type over H, and thus H(f) is an immediate extension of H. □

Lemma 2.12. Let H be a Hausdorff field with divisible value group Γ := v(H×).
Let P be a nonempty upward closed subset of Γ, and let f ∈ C be such that a < f
for all a ∈ H> with va ∈ P , and f < b for all b ∈ H> with vb < P . Then f
generates a Hausdorff field H(f) such that P > vf > Q where Q := Γ \ P , and f
is transcendental over H.

Proof. For any positive a ∈ Hrc there is b ∈ H> with a ≍ b and a < b, and also an
element b ∈ H> with a ≍ b and a > b. Thus by Proposition 2.4 we can replace H
by Hrc and arrange in this way that H is real closed. Set

A := {a ∈ H : a ⩽ 0 or va ∈ P}, B := H \A.

Then we are in the situation of Lemma 2.9 for R = C, so by that lemma and
Lemma 2.10 we have a Hausdorff field H(f). Clearly then P > vf > Q. In
particular, f /∈ H, so f is transcendental over H. □

Non-oscillation. A germ f ∈ C is said to oscillate if f(t) = 0 for arbitrarily
large t and f(t) ̸= 0 for arbitrarily large t. Thus for f, g ∈ C,

f − g is non-oscillating ⇐⇒
{

either f(t) < g(t) eventually, or f = g,
or f(t) > g(t) eventually.

In particular, f ∈ C does not oscillate iff f = 0 or f ∈ C×. If g ∈ C and g(t) → +∞
as t→ +∞, then f ∈ C oscillates iff f ◦ g oscillates. The following two lemmas are
included for use in [12]:

Lemma 2.13. Let f ∈ C be such that for every q ∈ Q the germ f − q is non-
oscillating. Then lim

t→∞
f(t) exists in R ∪ {−∞,+∞}.

Proof. Set S := {s ∈ Q : f(t) > s eventually}. If S = ∅, then lim
t→∞

f(t) = −∞,

whereas if S = Q, then lim
t→∞

f(t) = +∞. If S ̸= ∅,Q, then for ℓ := supS ∈ R we

have lim
t→∞

f(t) = ℓ. □

Lemma 2.14. Let H be a real closed Hausdorff field and f ∈ C. Then f lies in a
Hausdorff field extension of H iff f − h is non-oscillating for all h ∈ H.

Proof. The forward direction is clear. For the converse, suppose f − h is non-
oscillating for all h ∈ H. We assume f /∈ H, so h < f or h > f for all h ∈ H.
Set A := {h ∈ H : h < f}, a downward closed subset of H. If A = H, then we are
done by Lemma 2.8 applied to R = C; if A = ∅ then we apply the same lemma
to R = C and −f in place of f . Suppose A ̸= ∅,H. If A has a largest element a,
then we replace f by f − a to arrange 0 < f(t) < h(t) eventually, for all h ∈ H>,
and then Lemma 2.8 applied to R = C, f−1 in place of f yields that f−1, and hence
also f , lies in a Hausdorff field extension of H. The case that B := H \ A has a
least element is handled in the same way. If A has no largest element and B has
no least element, then we are done by Lemma 2.10. □
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3. Germs of Differentiable Functions

In this section we fix notations and conventions concerning differentiable functions
and summarize well-known results on second-order linear differential equations as
needed later. (Basic facts about linear differential equations can be found in [22,
Ch. X], [32, Ch. XI], and [61, Ch. IV].)

Differentiable functions. Let r range over N ∪ {∞}, and let U be a nonempty
open subset of R. Then Cr(U) denotes the R-algebra of r-times continuously differ-
entiable functions U → R, with the usual pointwise defined algebra operations. (We
use “C” instead of “C” since C will often denote the constant field of a differential
field.) For r = 0 this is the R-algebra C(U) of continuous real-valued functions
on U , so

C(U) = C0(U) ⊇ C1(U) ⊇ C2(U) ⊇ · · · ⊇ C∞(U).

For r ⩾ 1 we have the derivation f 7→ f ′ : Cr(U) → Cr−1(U) (with ∞− 1 := ∞).
This makes C∞(U) a differential ring, with its subalgebra Cω(U) of real-analytic
functions U → R as a differential subring. The algebra operations on the algebras
below are also defined pointwise. Note that

Cr(U)× =
{
f ∈ Cr(U) : f(t) ̸= 0 for all t ∈ U

}
,

also for ω in place of r [22, (9.2), ex. 4].

Let a range over R. Then Cr
a denotes the R-algebra of functions [a,+∞) → R that

extend to a function in Cr(U) for some open U ⊇ [a,+∞). Thus C0
a (also denoted

by Ca) is the R-algebra of real-valued continuous functions on [a,+∞), and

C0
a ⊇ C1

a ⊇ C2
a ⊇ · · · ⊇ C∞

a .

We have the subalgebra Cω
a of C∞

a , consisting of the functions [a,+∞) → R that
extend to a real-analytic function U → R for some open U ⊇ [a,+∞). For f ∈ C1

a

and g ∈ C1(U) extending f with open U ⊆ R containing [a,+∞), the restric-
tion of g′ to [a,+∞) → R depends only on f , not on g, and so we may de-
fine f ′ := g′|[a,+∞) ∈ Ca. For r ⩾ 1 this gives the derivation f 7→ f ′ : Cr

a → Cr−1
a .

This makes C∞
a a differential ring with Cω

a as a differential subring.

For each of the algebras A above we also consider its complexification A[i] which
consists by definition of the C-valued functions f = g+hi with g, h ∈ A, so g = Re f
and h = Im f for such f . We consider A[i] as a C-algebra with respect to the
natural pointwise defined algebra operations. We identify each complex number
with the corresponding constant function to make C a subfield of A[i] and R a
subfield of A. (This justifies the notation A[i].) We have Cr

a[i]
× = Ca[i]× ∩ Cr

a[i]
and (Cr

a)
× = C×

a ∩ Cr
a, and likewise with r replaced by ω.

For r ⩾ 1 we extend g 7→ g′ : Cr
a → Cr−1

a to the derivation

g + hi 7→ g′ + h′i : Cr
a[i] → Cr−1

a [i] (g, h ∈ Cr
a[i]),

which for r = ∞ makes C∞
a a differential subring of C∞

a [i]. We shall use the map

f 7→ f† := f ′/f : C1
a[i]

× =
(
C1
a[i]

)× → C0
a[i],

with

(fg)† = f† + g† for f, g ∈ C1
a[i]

×,
17



in particular the fact that f ∈ C1
a[i]

× and f† ∈ C0
a[i] are related by

f(t) = f(a) exp

[∫ t

a

f†(s) ds

]
(t ⩾ a).

For g ∈ C0
a[i], let exp

∫
g denote the function t 7→ exp

[∫ t

a
g(s) ds

]
in C1

a[i]
×. Then

(exp
∫
g)† = g and exp

∫
(g + h) = (exp

∫
g) · (exp

∫
h) for g, h ∈ C0

a[i].

Therefore f 7→ f† : C1
a[i]

× → C0
a[i] is surjective.

Notation. For b ⩾ a and f ∈ Ca[i] we set f |b := f |[b,+∞) ∈ Ca[i].

Differentiable germs. Let r ∈ N ∪ {∞} and let a range over R. Let Cr be
the partially ordered subring of C consisting of the germs at +∞ of the functions
in

⋃
a Cr

a; thus C0 = C consists of the germs at +∞ of the continuous real-valued
functions on intervals [a,+∞), a ∈ R. Note that Cr with its partial ordering
satisfies the conditions on R from Section 2. Also, every g ⩾ 1 in Cr is a unit of Cr,
so Lemmas 2.8 and 2.10 apply to ordered subfields of Cr. We have

C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ C∞.

Each subring Cr of C yields the subring Cr[i] = Cr + Cri of C0[i] = C[i], with

C0[i] ⊇ C1[i] ⊇ C2[i] ⊇ · · · ⊇ C∞[i].

Suppose r ⩾ 1; then for f ∈ Cr
a[i] the germ of f ′ ∈ Cr−1

a [i] only depends on the germ
of f , and we thus obtain a derivation g 7→ g′ : Cr[i] → Cr−1[i] with (germ of f)

′
=

(germ of f ′) for f ∈
⋃

a Cr
a[i]. This derivation restricts to a derivation Cr → Cr−1.

Note that C[i]× ∩ Cr[i] = Cr[i]×, and hence C× ∩ Cr = (Cr)×. Given g ∈ Cr

with g(t) → +∞ as t→ +∞ and f ∈ Cr[i], the germ f ◦ g (as defined in Section 2)
also lies in Cr[i], with f ◦ g ∈ Cr if f ∈ Cr.

We set

C<∞[i] :=
⋂
n

Cn[i].

Thus C<∞[i] is naturally a differential ring with C as its ring of constants. We also
have the differential subring

C<∞ :=
⋂
n

Cn

of C<∞[i], with R as its ring of constants and C<∞[i] = C<∞ + C<∞i. Note
that C<∞[i] has C∞[i] as a differential subring. Similarly, C<∞ has C∞ as a dif-
ferential subring, and the differential ring C∞ has in turn the differential sub-
ring Cω, whose elements are the germs at +∞ of the functions in

⋃
a Cω

a . We
have C[i]×∩C<∞[i] = (C<∞[i])× and C×∩C<∞ = (C<∞)×, and likewise with Cω in
place of C<∞. If R is a subring of C1 such that f ′ ∈ R for all f ∈ R, then R ⊆ C<∞

is a differential subring of C<∞.

Compositional conjugation of differentiable germs. Let ℓ ∈ C1, ℓ′(t) > 0
eventually (so ℓ is eventually strictly increasing) and ℓ(t) → +∞ as t → +∞.
Then ϕ := ℓ′ ∈ C×, and the compositional inverse ℓinv ∈ C1 of ℓ satisfies

ℓinv > R, (ℓinv)′ = (1/ϕ) ◦ ℓinv ∈ C.
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The C-algebra automorphism f 7→ f◦ := f ◦ ℓinv of C[i] (with inverse g 7→ g ◦ ℓ)
maps C1[i] onto itself and satisfies for f ∈ C1[i] a useful identity:

(f◦)′ = (f ◦ ℓinv)′ = (f ′ ◦ ℓinv) · (ℓinv)′ = (f ′/ℓ′) ◦ ℓinv = (ϕ−1f ′)◦.

Hence if n ⩾ 1 and ℓ ∈ Cn, then ℓinv ∈ Cn and f 7→ f◦ maps Cn[i] and Cn

onto themselves, for each n. Therefore, if ℓ ∈ C<∞, then ℓinv ∈ C<∞ and f 7→ f◦

maps C<∞[i] and C<∞ onto themselves; likewise with C∞ or Cω in place of C<∞. In
the rest of this subsection we assume ℓ ∈ C<∞. Denote the differential ring C<∞[i]
by R, and as usual let Rϕ be R with its derivation f 7→ ∂(f) = f ′ replaced by the
derivation f 7→ δ(f) = ϕ−1f ′ [ADH, 5.7]. Then f 7→ f◦ : Rϕ → R is an isomorphism
of differential rings by the identity above. We extend it to the isomorphism

Q 7→ Q◦ : Rϕ{Y } → R{Y }

of differential rings given by Y ◦ = Y . Let y ∈ R. Then

Q(y)◦ = Q◦(y◦) for Q ∈ Rϕ{Y }

and thus

P (y)◦ = Pϕ(y)◦ = (Pϕ)◦(y◦) for P ∈ R{Y }.

Second-order differential equations. Let f ∈ Ca, that is, f : [a,∞) → R is
continuous. We consider the differential equation

(L) Y ′′ + fY = 0.

The solutions y ∈ C2
a of (L) form an R-linear subspace Sol(f) of C2

a. The solu-
tions y ∈ C2

a[i] of (L) are the y1 + y2i with y1, y2 ∈ Sol(f) and form a C-linear
subspace SolC(f) of C2

a[i]. For any complex numbers c, d there is a unique solu-
tion y ∈ C2

a[i] of (L) with y(a) = c and y′(a) = d, and the map that assigns to (c, d)
in C2 this unique solution is an isomorphism C2 → SolC(f) of C-linear spaces; it
restricts to an R-linear bijection R2 → Sol(f). We have f ∈ Cn

a ⇒ Sol(f) ⊆ Cn+2
a

(hence f ∈ C∞
a ⇒ Sol(f) ⊆ C∞

a ) and f ∈ Cω
a ⇒ Sol(f) ⊆ Cω

a . (See [22, (10.5.3)].)

Let y1, y2 ∈ Sol(f), with Wronskian w = y1y
′
2 − y′1y2. Then w ∈ R, and

w ̸= 0 ⇐⇒ y1, y2 are R-linearly independent.

By [13, Chapter 6, Lemmas 2 and 3] we have:

Lemma 3.1. Let y1, y2 ∈ Sol(f) be R-linearly independent and g ∈ Ca. Then

t 7→ y(t) := −y1(t)
∫ t

a

y2(s)

w
g(s) ds+ y2(t)

∫ t

a

y1(s)

w
g(s) ds : [a,+∞) → R

lies in C2
a and satisfies y′′ + fy = g, y(a) = y′(a) = 0.

Lemma 3.2. Let y1 ∈ Sol(f) with y1(t) ̸= 0 for t ⩾ a. Then the function

t 7→ y2(t) := y1(t)

∫ t

a

1

y1(s)2
ds : [a,+∞) → R

also lies in Sol(f), and y1, y2 are R-linearly independent.

From [13, Chapter 2, Lemma 1] we also recall:
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Lemma 3.3 (Gronwall’s Lemma). Let C ∈ R⩾, v, y ∈ Ca satisfy v(t), y(t) ⩾ 0 for
all t ⩾ a and

y(t) ⩽ C +

∫ t

a

v(s)y(s) ds for all t ⩾ a.

Then

y(t) ⩽ C exp

[∫ t

a

v(s) ds

]
for all t ⩾ a.

In the rest of this subsection we assume that a ⩾ 1 and that c ∈ R> is such
that |f(t)| ⩽ c/t2 for all t ⩾ a. Under this hypothesis, Lemma 3.3 yields the
following bound on the growth of the solutions y ∈ Sol(f); the proof we give is
similar to that of [13, Chapter 6, Theorem 5].

Proposition 3.4. Let y ∈ Sol(f). Then there is C ∈ R⩾ such that |y(t)| ⩽ Ctc+1

and |y′(t)| ⩽ Ctc for all t ⩾ a.

Proof. Let t range over [a,+∞). Integrating y′′ = −fy twice between a and t, we
obtain constants c1, c2 such that for all t,

y(t) = c1 + c2t−
∫ t

a

∫ t1

a

f(t2)y(t2) dt2 dt1 = c1 + c2t−
∫ t

a

(t− s)f(s)y(s) ds

and hence, with C := |c1|+ |c2|,

|y(t)| ⩽ Ct+ t

∫ t

a

|f(s)| · |y(s)| ds, so
|y(t)|
t

⩽ C +

∫ t

a

s|f(s)| · |y(s)|
s

ds.

Then by Lemma 3.3,

|y(t)|
t

⩽ C exp

[∫ t

a

s|f(s)| ds
]
⩽ C exp

[∫ t

1

c/s ds

]
= Ctc

and thus |y(t)| ⩽ Ctc+1. Now

y′(t) = c2 −
∫ t

a

f(s)y(s) ds, so

|y′(t)| ⩽ |c2|+
∫ t

a

|f(s)y(s)| ds ⩽ C + Cc

∫ t

1

sc−1 ds

= C + Cc

[
tc

c
− 1

c

]
= Ctc. □

Let y1, y2 ∈ Sol(f) be R-linearly independent. Recall that w = y1y
′
2 − y′1y2 ∈ R×.

It follows that y1 and y2 cannot be simultaneously very small:

Lemma 3.5. There is a positive constant d such that

max
(
|y1(t)|, |y2(t)|

)
⩾ dt−c for all t ⩾ a.

Proof. Proposition 3.4 yields C ∈ R> such that |y′i(t)| ⩽ Ctc for i = 1, 2 and
all t ⩾ a. Hence |w| ⩽ 2max

(
|y1(t)|, |y2(t)|

)
Ctc for t ⩾ a, so

max
(
|y1(t)|, |y2(t)|

)
⩾

|w|
2C

t−c (t ⩾ a). □

Corollary 3.6. Set y := y1 + y2i and z := y†. Then for some D ∈ R>,

|z(t)| ⩽ Dt2c for all t ⩾ a.
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Proof. Take C as in the proof of Lemma 3.5, and d as in that lemma. Then

|z(t)| =
|y′1(t) + y′2(t)i|
|y1(t) + y2(t)i|

⩽
|y′1(t)|+ |y′2(t)|

max
(
|y1(t)|, |y2(t)|

) ⩽ (
2C

d

)
t2c

for t ⩾ a. □

Oscillation. Let y ∈ Ca. We say that y oscillates if its germ in C oscillates. So y
does not oscillate iff sign y(t) is constant, eventually. If y oscillates, then so does cy
for c ∈ R×. If y ∈ C1

a oscillates, then so does y′ ∈ Ca, by Rolle’s Theorem.
We now continue with the study of (L). Let y ∈ Sol(f) ̸=, and let Z := y−1(0)

be the set of zeros of y, so Z ⊆ [a,+∞) is closed in R. Moreover, Z has no limit
points: for all t0 < t1 in Z there is an s ∈ (t0, t1) with y

′(s) = 0 (by Rolle), hence
if t is a limit point of Z, then t ⩾ a and y(t) = y′(t) = 0, so y = 0, a contradiction.
In particular, Z ∩ [a, b] is finite for every b ⩾ a. Thus

y does not oscillate ⇐⇒ Z is finite ⇐⇒ Z is bounded.

If t0 ∈ Z is not the largest element of Z, then Z ∩ (t0, t1) = ∅ for some t1 > t0
in Z. We say that a pair of zeros t0 < t1 of y is consecutive if Z ∩ (t0, t1) = ∅.
Sturm’s Separation Theorem says that if y, z ∈ Sol(f) are R-linearly independent
and t0 < t1 are consecutive zeros of z, then (t0, t1) contains a unique zero of y [61,
§27, VI]. Thus:

Lemma 3.7. Some y ∈ Sol(f) ̸= oscillates ⇐⇒ every y ∈ Sol(f) ̸= oscillates.

We say that f generates oscillation if some element of Sol(f) ̸= oscillates.

Lemma 3.8. Let b ∈ R⩾a. Then

f generates oscillation ⇐⇒ f |b ∈ Cb generates oscillation.

Proof. The forward direction is obvious. For the backward direction, use that
every y ∈ C2

b with y′′+gy = 0 for g := f |b extends uniquely to a solution of (L). □

By this lemma, whether f generates oscillation depends only on its germ in C. So
this induces the notion of an element of C generating oscillation. Here is another
result of Sturm [61, loc. cit.] that we use below:

Theorem 3.9 (Sturm’s Comparison Theorem). Let g ∈ Ca with f(t) ⩾ g(t) for
all t ⩾ a. Let y ∈ Sol(f )̸= and z ∈ Sol(g) ̸=, and let t0 < t1 be consecutive zeros of z.
Then either (t0, t1) contains a zero of y, or on [t0, t1] we have f = g and y = cz
for some constant c ∈ R×.

Here is an immediate consequence:

Corollary 3.10. If g ∈ Ca generates oscillation and f(t) ⩾ g(t), eventually, then f
also generates oscillation.

Example. For k ∈ R× we have the differential equation of the harmonic oscillator,

y′′ + k2y = 0.

A function y ∈ C2
a is a solution iff for some real constants c, t0 and all t ⩾ a,

y(t) = c sin k(t− t0).

For c ̸= 0, any function y ∈ C2
a as displayed oscillates. Thus if f(t) ⩾ ε, eventually,

for some constant ε > 0, then f generates oscillation.
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To (L) we associate the corresponding Riccati equation

(R) z′ + z2 + f = 0.

Let y ∈ Sol(f) ̸= be a non-oscillating solution to (L), and take b ⩾ a with y(t) ̸= 0
for t ⩾ b. Then the function

t 7→ z(t) := y′(t)/y(t) : [b,+∞) → R

in C1
b satisfies (R). Conversely, if z ∈ C1

b (b ⩾ a) is a solution to (R), then

t 7→ y(t) := exp

(∫ t

b

z(s) ds

)
: [b,+∞) → R

is a non-oscillating solution to (L) with y ∈ (C1
b )

× and z = y†.

Let g ∈ C1
a, h ∈ C0

a and consider the second-order linear differential equation

(L̃) y′′ + gy′ + hy = 0.

For the next corollary, see also [13, Chapter 6, Lemma 4].

Corollary 3.11. Set f := − 1
2g

′− 1
4g

2+h ∈ Ca. Then the following are equivalent:

(i) some nonzero solution of (L̃) oscillates;

(ii) all nonzero solutions of (L̃) oscillate;
(iii) f generates oscillation.

Proof. Let G ∈ (C2
a)

× be given by G(t) := exp
(
− 1

2

∫ t

a
g(s) ds

)
. Then y ∈ C2

a is a

solution to (L) iff Gy is a solution to (L̃); cf. [ADH, 5.1.13]. □

Non-oscillation. We continue with (L). Let y1, y2 range over elements of Sol(f),
and recall that its Wronskian w = y1y

′
2 − y′1y2 is a real constant.

Lemma 3.12. Suppose b ⩾ a is such that y2(t) ̸= 0 for t ⩾ b. Then for q :=
y1/y2 ∈ C2

b we have q′(t) = −w/y2(t)2 for t ⩾ b, so q is monotone and limt→∞ q(t)
exists in R ∪ {−∞,+∞}.

This leads to:

Corollary 3.13. Suppose b ⩾ a and y1(t), y2(t) ̸= 0 for t ⩾ b. For i = 1, 2, set

hi(t) :=

∫ t

b

1

yi(s)2
ds for t ⩾ b, so hi ∈ C3

b .

Then: y1 ≺ y2 ⇐⇒ h1 ≻ 1 ≽ h2.

Proof. Let q := y1/y2; so q
′ = −wh′2 by Lemma 3.12, hence q + wh2 is constant.

Thus, if w ̸= 0, then y1 ≼ y2 ⇔ q ≼ 1 ⇔ h2 ≼ 1.
Suppose y1 ≺ y2. Then y1, y2 are R-linearly independent, so w ̸= 0, and h2 ≼ 1.

Note that h1 is strictly increasing. Also h1y1 ∈ Sol(f) by a routine computation.
If h1(t) → r ∈ R as t → +∞, then z := (r − h1)y1 ∈ Sol(f), and z ≺ y1, so z = 0,
hence h1 = r, a contradiction. Thus h1 ≻ 1.

For the converse, suppose h1 ≻ 1 ≽ h2. Then y1, y2 are R-linearly independent,
so w ̸= 0, and q ≼ 1. If q(t) → r ∈ R ̸= as t → +∞, then y1 = qy2 ≍ y2, and
thus h1 ≍ h2, a contradiction. Hence q ≺ 1, and thus y1 ≺ y2. □
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The pair (y1, y2) is said to be a principal system of solutions of (L) if

(1) y1(t), y2(t) > 0 eventually, and
(2) y1 ≺ y2.

Then y1, y2 form a basis of the R-linear space Sol(f), and f does not generate
oscillation, by Lemma 3.7. Moreover, for y = c1y1 + c2y2 with c1, c2 ∈ R, c2 ̸= 0
we have y ∼ c2y2. Here are some facts about this notion:

Lemma 3.14. If (y1, y2), (z1, z2) are principal systems of solutions of (L), then
there are c1, d1, d2 ∈ R such that z1 = c1y1, z2 = d1y1 + d2y2, and c1, d2 > 0.

Lemma 3.15. Suppose f does not generate oscillation. Then (L) has a principal
system of solutions.

Proof. It suffices to find a basis y1, y2 of Sol(f) with y1 ≺ y2. Suppose y1, y2 is any
basis of Sol(f), and set c := limt→∞ y1(t)/y2(t) ∈ R∪{−∞,+∞}. If c = ±∞, then
interchange y1, y2, otherwise replace y1 by y1 − cy2. Then c = 0, so y1 ≺ y2. □

One calls y1 a principal solution of (L) if (y1, y2) is a principal system of solutions
of (L) for some y2. (See [32, Theorem XI.6.4] and [42, 44].) By the previous two
lemmas, (L) has a principal solution iff f does not generate oscillation, and any two
principal solutions differ by a multiplicative factor in R>. If y1 ∈ (Ca)× and y2 is
given as in Lemma 3.2, then y2 is a non-principal solution of (L) and y1 /∈ Ry2.

Remark 3.16 (Hardy-type inequality associated to (L)). Suppose f(t) > 0 for
all t > a and (L) has a solution y such that y(t), y′(t) > 0 for all t > a. Then
for some C = Cf ∈ R⩾, every u ∈ C1

a with u(a) = 0 satisfies

(3.1)

∫ ∞

a

|u(t)|2 f(t) dt ⩽ C

∫ ∞

a

|u′(t)|2 dt.

For a > 0 and f(t) := 1
4t2 for t ⩾ a this was shown by Hardy [26, 28]; here one can

take C = 1, and this is optimal [40]. For the general case, see [51, Theorem 4.1].

4. Hardy Fields

In this brief section we introduce Hardy fields and review some classical extension
theorems for Hardy fields.

Hardy fields. A Hardy field is a subfield of C<∞ that is closed under the derivation
of C<∞; see also [ADH, 9.1]. Let H be a Hardy field. Then H is considered as an
ordered valued differential field in the obvious way; see Section 2 for the ordering
and valuation on H. The field of constants of H is R∩H. Hardy fields are pre-H-
fields, and H-fields if they contain R; see [ADH, 9.1.9(i), (iii)]. As in Section 2 we
equip the differential subfield H[i] of C<∞[i] with the unique valuation ring whose
intersection with H is the valuation ring of H. Then H[i] is a pre-d-valued field of
H-type with small derivation and constant field C ∩ H[i]; if H ⊇ R, then H[i] is
d-valued with constant field C. (Section 5 has an example of a differential subfield
of C<∞[i] that is not contained in H[i] for any Hardy field H.)

We also consider variants: a C∞-Hardy field is a Hardy field H ⊆ C∞, and a
Cω-Hardy field (also called an analytic Hardy field) is a Hardy field H ⊆ Cω. Most
Hardy fields arising in practice are actually Cω-Hardy fields.
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Hardian germs. Let y ∈ G. Following [56] we call y hardian if it lies in a Hardy
field (and thus y ∈ C<∞). We also say that y is C∞-hardian if y lies in a C∞-Hardy
field, equivalently, y ∈ C∞ and y is hardian; likewise with Cω in place of C∞. Let H
be a Hardy field. Call y ∈ G H-hardian (or hardian over H) if y lies in a Hardy
field extension of H. (Thus y is hardian iff y is Q-hardian.) If H is a C∞-Hardy field
and y ∈ C∞ is hardian over H, then y generates a C∞-Hardy field extension H⟨y⟩
of H; likewise with Cω in place of C∞.

Maximal and perfect Hardy fields. Let H be a Hardy field. Call H maximal if
no Hardy field properly containsH. Following Boshernitzan [17] we denote by E(H)
the intersection of all maximal Hardy fields containing H; thus E(H) is a Hardy
field extension of H, and a maximal Hardy field contains H iff it contains E(H),
so E(E(H)) = E(H). If H∗ is a Hardy field extension of H, then E(H) ⊆ E(H∗);
hence if H∗ is a Hardy field with H ⊆ H∗ ⊆ E(H), then E(H∗) = E(H). Note
that E(H) consists of the f ∈ G that are hardian over each Hardy field E ⊇ H.
Hence E(Q) consists of the germs in G that are hardian over each Hardy field. As
in [17] we also say that H is perfect if E(H) = H. (This terminology is slightly
unfortunate, since Hardy fields, being of characteristic zero, are perfect as fields.)
Thus E(H) is the smallest perfect Hardy field extension of H. Maximal Hardy
fields are perfect.

Differentially maximal Hardy fields. Let H be a Hardy field. We now define
differentially-algebraic variants of the above: call H differentially maximal, or
d-maximal for short, if H has no proper d-algebraic Hardy field extension. Every
maximal Hardy field is d-maximal, so each Hardy field is contained in a d-maximal
one; in fact, by Zorn, each Hardy field H has a d-maximal Hardy field exten-
sion which is d-algebraic over H. Let D(H) be the intersection of all d-maximal
Hardy fields containing H. Then D(H) is a d-algebraic Hardy field extension of H
with D(H) ⊆ E(H). We have D(H) = E(H) iff E(H) is d-algebraic over H:

Lemma 4.1. D(H) =
{
f ∈ E(H) : f is d-algebraic over H

}
.

Proof. We only need to show the inclusion “⊇”. For this let f ∈ E(H) be d-
algebraic over H, and let E be a d-maximal Hardy field extension of H; we need
to show f ∈ E. To see this extend E to a maximal Hardy field M ; then f ∈ M ,
hence f generates a Hardy field extension E⟨f⟩ of E. Since f is d-algebraic over H
and thus over E, this yields f ∈ E by d-maximality of E, as required. □

A d-maximal Hardy field contains H iff it contains D(H), hence D(D(H)) = D(H).
For any Hardy field H∗ ⊇ H we have D(H∗) ⊇ D(H), hence if also H∗ ⊆ D(H),
then D(H∗) = D(H). We say that H is d-perfect if D(H) = H. Thus D(H)
is the smallest d-perfect Hardy field extension of H. Every perfect Hardy field is
d-perfect, as is every d-maximal Hardy field. The following diagram summarizes
the various implications among these properties of Hardy fields:

maximal +3

��

perfect

��
d-maximal +3 d-perfect

We call D(H) the d-perfect hull of H, and E(H) the perfect hull of H.
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Variants of the perfect hull. Let H be a Cr-Hardy field where r ∈ {∞, ω}. We
say thatH is Cr-maximal if no Cr-Hardy field properly contains it. By Zorn, H has
a Cr-maximal extension. In analogy with E(H), define the Cr-perfect hull Er(H)
of H to be the intersection of all Cr-maximal Hardy fields containing H. We say
that H is Cr-perfect if Er(H) = H. The penultimate subsection goes through
with Hardy field, maximal, hardian, E( · ), and perfect replaced by Cr-Hardy field,
Cr-maximal, Cr-hardian, Er( · ), and Cr-perfect, respectively. (In [11] we show that
no analogue of D(H) is needed for the Cr-category.)

Some basic extension theorems. We summarize some well-known extension
results for Hardy fields, cf. [19, 56, 54]:

Proposition 4.2. Any Hardy field H has the following Hardy field extensions:

(i) H(R), the subfield of C<∞ generated by H and R;
(ii) Hrc, the real closure of H as defined in Proposition 2.4;
(iii) H(ef ) for any f ∈ H;
(iv) H(f) for any f ∈ C1 with f ′ ∈ H;
(v) H(log f) for any f ∈ H>.

If H is contained in C∞, then so are the Hardy fields in (i), (ii), (iii), (iv), (v);
likewise with Cω instead of C∞.

Note that (v) is a special case of (iv), since (log f)′ = f† ∈ H for f ∈ H>. Another
special case of (iv) is that a Hardy field H yields a Hardy field H(x). It also yields
the Hardy field HLE from the introduction as the smallest (under inclusion) Hardy
field extension of R(x) that is log-closed and exp-closed.

A consequence of the proposition is that any Hardy field H has a smallest real
closed Hardy field extension L with R ⊆ L such that for all f ∈ L we have ef ∈ L
and g′ = f for some g ∈ L. Note that then L is a Liouville closed H-field as
defined in Section 1. Let H be a Hardy field with H ⊇ R. As in [3] and [ADH,
p. 460] we then denote the above L by Li(H); so Li(H) is the smallest Liouville
closed Hardy field containing H, called the Hardy-Liouville closure of H in [8]. We
have Li(H) ⊆ D(H), hence if H is d-perfect, then H is a Liouville closed H-field.
Moreover, if H ⊆ C∞ then Li(H) ⊆ C∞, and similarly with Cω in place of C∞.

The next more general result in Rosenlicht [54] is attributed there to M. Singer:

Proposition 4.3. Let H be a Hardy field and p, q ∈ H[Y ], y ∈ C1, such
that y′q(y) = p(y) with q(y) ∈ C×. Then y generates a Hardy field H(y) over H.

Note that for H, p, q, y as in the proposition we have y ∈ D(H).

Compositional conjugation in Hardy fields. Let now H be a Hardy field, and
let ℓ ∈ C1 be such that ℓ > R and ℓ′ ∈ H. Then ℓ ∈ C<∞, ϕ := ℓ′ is active in H,
ϕ > 0, and we have a Hardy field H(ℓ). The C-algebra automorphism f 7→ f◦ :=
f ◦ ℓinv of C[i] restricts to an ordered field isomorphism

h 7→ h◦ : H → H◦ := H ◦ ℓinv.
The identity (f◦)′ = (ϕ−1f ′)◦, valid for each f ∈ C1[i], shows that H◦ is again a
Hardy field. Conversely, if E is a subfield of C<∞ with ϕ ∈ E and E◦ := E ◦ ℓinv
is a Hardy field, then E is a Hardy field. If H ⊆ C∞ and ℓ ∈ C∞, then H◦ ⊆ C∞;
likewise with Cω instead of C∞. If E is a Hardy field extension of H, then E◦ is
a Hardy field extension of H◦, and E is d-algebraic over H iff E◦ is d-algebraic
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over H◦. Hence H is maximal iff H◦ is maximal, and likewise with “d-maximal”
in place of “maximal”. So E(H◦) = E(H)◦ and D(H◦) = D(H)◦, and thus H is
perfect iff H◦ is perfect, and likewise with “d-perfect” in place of “perfect”. The
next lemma is [16, Corollary 6.5]; see also [5, Theorem 1.7].

Lemma 4.4. The germ ℓinv is hardian. Moreover, if ℓ is C∞-hardian, then ℓinv is
also C∞-hardian, and likewise with Cω in place of C∞.

Proof. By Proposition 4.2(iv) we can arrange that our Hardy fieldH contains both ℓ
and x. Then ℓinv = x ◦ ℓinv is an element of the Hardy field H ◦ ℓinv. □

Next we consider the pre-d-valued field K := H[i] of H-type, which gives rise to

K◦ := K ◦ ℓinv = H◦[i],

also a pre-d-valued field of H-type, and we have the valued field isomorphism

h 7→ h◦ : K → K◦.

Note: h 7→ h◦ : Hϕ → H◦ is an isomorphism of pre-H-fields, and h 7→ h◦ : Kϕ → K◦

is an isomorphism of valued differential fields. Recall that K and Kϕ have the same
underlying field.

Lemma 4.5. From the isomorphisms Hϕ ∼= H◦ and Kϕ ∼= K◦ we obtain: If H is
Liouville closed, then so is H◦. If I(K) ⊆ K†, then I(K◦) ⊆ (K◦)†.

5. Upper and Lower Bounds on the Growth of Hardian Germs

In this section we use logarithmic decompositions to simplify arguments in [17, 18,
55]. It is not used for proving our main theorem, but some of it is needed for its
applications, in the proofs of Corollary 7.10, Proposition 8.1, and Theorem 8.6.

Generalizing logarithmic decomposition. In this subsection K is a differential
ring and y ∈ K. In [ADH, p. 213] we defined the nth iterated logarithmic derivative
of y⟨n⟩ when K is a differential field. (See also Section 1.) Generalizing this,
set y⟨0⟩ := y, and recursively, if y⟨n⟩ ∈ K is defined and a unit in K, then y⟨n+1⟩ :=
(y⟨n⟩)†, while otherwise y⟨n+1⟩ is not defined. (Thus if y⟨n⟩ is defined, then so
are y⟨0⟩, . . . , y⟨n−1⟩.) With Ln in Z[X1, . . . , Xn] as in [ADH, p. 213], if y⟨n⟩ is
defined, then

y(n) = y⟨0⟩ · Ln(y
⟨1⟩, . . . , y⟨n⟩).

If y⟨n⟩ is defined and i = (i0, . . . , in) ∈ N1+n, we set

y⟨i⟩ := (y⟨0⟩)i0(y⟨1⟩)i1 · · · (y⟨n⟩)in ∈ K.

Hence if H is a differential subfield of K, P ∈ H{Y } has order at most n and
logarithmic decomposition P =

∑
i P⟨i⟩Y

⟨i⟩ (i ranging over N1+n, all P⟨i⟩ ∈ H,

and P⟨i⟩ = 0 for all but finitely many i), and y⟨n⟩ is defined, then P (y) =∑
i P⟨i⟩y

⟨i⟩. Below we apply these remarks to K = C<∞, where for y ∈ K×

we have y† = (log |y|)′, hence y⟨n+1⟩ = (log |y⟨n⟩|)′ if y⟨n+1⟩ is defined.
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Transexponential germs. For f ∈ C we recursively define the germs expn f
in C by exp0 f := f and expn+1 f := exp(expn f). Following [17] we say that
a germ y ∈ C is transexponential if y ⩾ expn x for all n. In the rest of this
subsection H is a Hardy field. By Corollary 1.9 and Proposition 4.2:

Lemma 5.1. If the H-hardian germ y is d-algebraic over H, then y ⩽ expn h for
some n and some h ∈ H(x).

Thus each transexponential hardian germ is d-transcendental (over R). In the rest
of this subsection: y ∈ C<∞ is transexponential and hardian, and z ∈ C<∞[i].
Then y⟨n⟩ is defined, and y⟨n⟩ is also transexponential and hardian, for all n. Next
some variants of results from Section 1. For this, let n be given and let f ∈ C<∞,
not necessarily hardian, be such that f ≻ 1, f ⩾ 0, and y ≽ expn+1 f .

Lemma 5.2. We have y† ≽ expn f and y⟨n⟩ ≽ exp f .

Proof. Since y ≽ exp2 x, we have log y ≽ expx by Lemma 2.2, and thus y† =
(log y)′ ≽ log y. Since y ≽ expn+1 f , the same lemma gives log y ≽ expn f .

Thus y† ≽ expn f . Now the second statement follows by an easy induction. □

Corollary 5.3. Let i ∈ Z1+n and suppose i > 0 lexicographically. Then y⟨i⟩ ≻ f .

Proof. Let m ∈ {0, . . . , n} be minimal such that im ̸= 0; so im ⩾ 1. The remarks
after Corollary 1.2 then give y⟨i⟩ ≻ 1 and [v(y⟨i⟩)] = [v(y⟨m⟩)], so we have k ∈ N,
k ⩾ 1, such that y⟨i⟩ ≽ (y⟨m⟩)1/k. Then Lemma 5.2 gives y⟨i⟩ ≽ (y⟨m⟩)1/k ≽
(exp f)1/k ≻ f as required. □

In the next proposition and lemma P ∈ H{Y } ̸= has order at most n, and i, j, k
range over N1+n. Let j be lexicographically maximal such that P⟨j⟩ ̸= 0, and
choose k so that P⟨k⟩ has minimal valuation. If P⟨k⟩/P⟨j⟩ ≻ x, set f := |P⟨k⟩/P⟨j⟩|;
otherwise set f := x. Then f ∈ H(x), f > 0, f ≻ 1, and f ≽ P⟨i⟩/P⟨j⟩ for all i.

Proposition 5.4. We have P (y) ∼ P⟨j⟩y
⟨j⟩ and thus

P (y) ∈
(
C<∞)×

, signP (y) = signP⟨j⟩ ̸= 0.

Proof. For i < j we have y⟨j−i⟩ ≻ f ≽ P⟨i⟩/P⟨j⟩ by Corollary 5.3, hence P⟨j⟩y
⟨j⟩ ≻

P⟨i⟩y
⟨i⟩. Thus P (y) ∼ P⟨j⟩y

⟨j⟩. □

Lemma 5.5. Suppose that z⟨n⟩ is defined and y⟨i⟩ ∼ z⟨i⟩ for i = 0, . . . , n.
Then P (y) ∼ P (z).

Proof. For all i with P⟨i⟩ ̸= 0 we have P⟨i⟩y
⟨i⟩ ∼ P⟨i⟩z

⟨i⟩, by Lemma 2.1. Now use

that for i ̸= j we have P⟨i⟩y
⟨i⟩ ≺ P⟨j⟩y

⟨j⟩ by the proof of Proposition 5.4. □

From here on n is no longer fixed.

Corollary 5.6 (Boshernitzan [17, Theorem 12.23]). If y ⩾ expn h for all h ∈ H(x)
and all n, then y is H-hardian.

This is an immediate consequence of Proposition 5.4. (In [17], the proof of this fact
is only indicated.) From Lemma 5.5 we also obtain:

Corollary 5.7. Suppose that y is as in Corollary 5.6 and z ∈ C<∞, and z⟨n⟩ is
defined and y⟨n⟩ ∼ z⟨n⟩, for all n. Then z is H-hardian, and there is a unique
ordered differential field isomorphism H⟨y⟩ → H⟨z⟩ over H which sends y to z.
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Lemma 5.13 below contains another criterion for z to be H-hardian. This involves
a certain binary relation ∼∞ on germs defined in the next subsection. Lemma 5.5
also yields a complex version of Corollary 5.7:

Corollary 5.8. Suppose that y is as in Corollary 5.6 and that z⟨n⟩ is defined
and y⟨n⟩ ∼ z⟨n⟩, for all n. Then z generates a differential subfield H⟨z⟩ of C<∞[i],
and there is a unique differential field isomorphism H⟨y⟩ → H⟨z⟩ over H which
sends y to z. Moreover, the binary relation ≼ on C[i] restricts to a dominance
relation on H⟨z⟩ which makes this an isomorphism of valued differential fields.

A useful equivalence relation. We set

C<∞[i]≼ :=
{
f ∈ C<∞[i] : f (n) ≼ 1 for all n

}
⊆ C[i]≼,

a differential C-subalgebra of C<∞[i], and

I :=
{
f ∈ C<∞[i] : f (n) ≺ 1 for all n

}
⊆ C<∞[i]≼,

a differential ideal of C<∞[i]≼ (thanks to the Product Rule). Recall from the
remarks preceding Lemma 2.1 that (C[i]≼)× = C[i]≍.

Lemma 5.9. The group of units of C<∞[i]≼ is

C<∞[i]≍ := C<∞[i]≼ ∩ C[i]≍ =
{
f ∈ C<∞[i] : f ≍ 1, f (n) ≼ 1 for all n

}
.

Moreover, 1 + I is a subgroup of C<∞[i]≍.

Proof. It is clear that

(C<∞[i]≼)× ⊆ C<∞[i]≼ ∩ (C[i]≼)× = C<∞[i]≼ ∩ C[i]≍ = C<∞[i]≍.

Conversely, suppose f ∈ C<∞[i] satisfies f ≍ 1 and f (n) ≼ 1 for all n. For each n we
have Qn ∈ Q{X} such that (1/f)(n) = Qn(f)/f

n+1, hence (1/f)(n) ≼ 1. Thus f ∈
(C<∞[i]≼)×. This shows the first statement. Clearly 1 + I ⊆ C<∞[i]≍, and 1+I is
closed under multiplication. If δ ∈ I, then 1+δ is a unit of C<∞[i]≼ and (1+δ)−1 =
1 + ε where ε = −δ(1 + δ)−1 ∈ I. □

For y, z ∈ C[i]× we define

y ∼∞ z :⇐⇒ y ∈ z · (1 + I);
hence y ∼∞ z ⇒ y ∼ z. Lemma 5.9 yields that ∼∞ is an equivalence relation
on C[i]×, and for yi, zi ∈ C[i]× (i = 1, 2) we have

y1 ∼∞ y2 & z1 ∼∞ z2 =⇒ y1z1 ∼∞ y2z2, y−1
1 ∼∞ y−1

2 .

Lemma 5.10. Let y, z ∈ C1[i]× with y ∼∞ z and z ∈ z′ C<∞[i]≼. Then

y′, z′ ∈ C[i]×, y′ ∼∞ z′.

Proof. Let δ ∈ I and f ∈ C<∞[i]≼ with y = z(1 + δ) and z = z′f . Then z′ ∈ C[i]×
and y′ = z′(1 + δ) + zδ′ = z′(1 + δ + fδ′) where δ + fδ′ ∈ I, so y′ ∼∞ z′. □

If ℓ ∈ Cn[i] and f ∈ Cn with f ⩾ 0, f ≻ 1, then ℓ ◦ f ∈ Cn[i]. In fact, for n ⩾ 1
and 1 ⩽ k ⩽ n we have a differential polynomial Qn

k ∈ Q{X ′} ⊆ Q{X} of order ⩽ n,
isobaric of weight n, and homogeneous of degree k, such that for all such ℓ, f ,

(ℓ ◦ f)(n) = (ℓ(n) ◦ f)Qn
n(f) + · · ·+ (ℓ′ ◦ f)Qn

1 (f).

For example,

Q1
1 = X ′, Q2

2 = (X ′)2, Q2
1 = X ′′, Q3

3 = (X ′)3, Q3
2 = 3X ′X ′′, Q3

1 = X ′′′.
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The following lemma is only used in the proof of Theorem 8.6 below.

Lemma 5.11. Let f, g ∈ C<∞ be such that f, g ⩾ 0 and f, g ≻ 1, and set r := g − f .
Suppose P (f) ·Q(r) ≺ 1 for all P,Q ∈ Q{Y } with Q(0) = 0, and let ℓ ∈ C<∞[i] be
such that ℓ′ ∈ I. Then ℓ ◦ g − ℓ ◦ f ∈ I.

Proof. Treating real and imaginary parts separately we arrange ℓ ∈ C<∞. Note
that r ≺ 1. Taylor expansion [ADH, 4.2] for P ∈ Q{X} of order ⩽ n gives

P (g)− P (f) =
∑
|i|⩾1

1

i!
P (i)(f) · ri (i ∈ N1+n),

and thus P (g) − P (f) ≺ 1 and rP (g) ≺ 1. The Mean Value Theorem yields a
germ rn ∈ G such that

ℓ(n) ◦ g − ℓ(n) ◦ f =
(
ℓ(n+1) ◦ (f + rn)

)
· r and |rn| ⩽ |r|.

Now r0 ≺ 1, so ℓ′ ◦ (f + r0) ≺ 1, hence ℓ ◦ g − ℓ ◦ f ≺ 1. For 1 ⩽ k ⩽ n,

(ℓ(k) ◦ g)Qn
k (g)− (ℓ(k) ◦ f)Qn

k (f) =

(ℓ(k) ◦ f)
(
Qn

k (g)−Qn
k (f)

)
+

(
ℓ(k+1) ◦ (f + rk)

)
· rQn

k (g),

so (ℓ(k) ◦ g)Qn
k (g)− (ℓ(k) ◦ f)Qn

k (f) ≺ 1, and thus
(
ℓ ◦ g − ℓ ◦ f

)(n) ≺ 1. □

We consider next the differential R-subalgebra

(C<∞)≼ := C<∞[i]≼ ∩ C<∞ ⊆ C≼

of C<∞. In the rest of this subsection H is a Hardy field and y, z ∈ C<∞, y, z ≻ 1.
Note that (C<∞)≼∩H = O is the valuation ring of H and I∩H = O is the maximal
ideal of O. This yields:

Lemma 5.12. Suppose y − z ∈ (C<∞)≼ and z is hardian. Then y ∼∞ z.

Proof. From y = z+ f with f ∈ (C<∞)≼ we obtain y = z(1+ fz−1). Now z−1 ∈ I,
so fz−1 ∈ I, and thus y ∼∞ z. □

We now formulate a sufficient condition involving ∼∞ for y to be H-hardian.

Lemma 5.13. Suppose z is H-hardian with z ⩾ expn h for all h ∈ H(x) and all n,
and y ∼∞ z. Then y is H-hardian, and there is a unique ordered differential field
isomorphism H⟨y⟩ → H⟨z⟩ which is the identity on H and sends y to z.

Proof. By Lemma 5.1 we may replace H by the Hardy subfield Li
(
H(R)

)
of E(H)

to arrange that H ⊇ R is Liouville closed. By Corollary 5.7 (with the roles
of y, z reversed) it is enough to show that for each n, y⟨n⟩ is defined, y⟨n⟩ ≻ 1,
and y⟨n⟩ ∼∞ z⟨n⟩. This holds by hypothesis for n = 0. By Lemma 1.3, z > H
gives z† > H, so z = z′f with f ≺ 1 in the Hardy field H⟨z⟩, hence f (n) ≺ 1
for all n. So by Lemma 5.10, y⟨1⟩ = y† is defined, y⟨1⟩ ∈ (C<∞)×, y⟨1⟩ ∼∞ z⟨1⟩,
and thus y⟨1⟩ ≻ 1. Assume for a certain n ⩾ 1 that y⟨n⟩ is defined, y⟨n⟩ ≻ 1,
and y⟨n⟩ ∼∞ z⟨n⟩. Then z⟨n⟩ is H-hardian and H < z⟨n⟩ by Lemma 1.5. Hence by
the case n = 1 applied to y⟨n⟩, z⟨n⟩ in place of y, z, respectively, y⟨n+1⟩ = (y⟨n⟩)†

is defined, y⟨n+1⟩ ≻ 1, and y⟨n+1⟩ ∼∞ z⟨n+1⟩. □

The next two corollaries are Theorems 13.6 and 13.10, respectively, in [17].
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Corollary 5.14. Suppose z is transexponential and hardian, and y− z ∈ (C<∞)≼.
Then y is hardian, and there is a unique isomorphism R⟨y⟩ → R⟨z⟩ of ordered
differential fields that is the identity on R and sends y to z.

Proof. Take H := Li(R). Then z lies in a Hardy field extension of H, name-
ly Li

(
R⟨z⟩

)
, and H < z. So y ∼∞ z by Lemma 5.12. Now use Lemma 5.13. □

Corollary 5.15. If z ∈ E(H)>R, then z ⩽ expn h for some h ∈ H(x) and some n.
(Thus if x ∈ H and expH ⊆ H, then H>R is cofinal in E(H)>R.)

Proof. Towards a contradiction, suppose z ∈ E(H)>R and z > expn h in E(H) for
all h ∈ H(x) and all n. Set y := z + sinx. Then y is H-hardian by Lemmas 5.12
and 5.13, so y, z lie in a common Hardy field extension of H, a contradiction. □

Remark. The same proof shows that Corollary 5.15 remains true ifH is a C∞-Hardy
field and E(H) is replaced by E∞(H); likewise for ω in place of ∞.

Next a lemma similar to Lemma 5.13, but obtained using Corollary 5.8 instead of
Corollary 5.7:

Lemma 5.16. Let H be a Hardy field, let z ∈ C<∞ be H-hardian with z ⩾ expn h
for all h ∈ H(x) and all n, and y ∈ C<∞[i] with y ∼∞ z. Then y generates a
differential subfield H⟨y⟩ of C<∞[i], and there is a unique differential field isomor-
phism H⟨y⟩ → H⟨z⟩ which is the identity on H and sends y to z. The binary
relation ≼ on C[i] restricts to a dominance relation on H⟨y⟩ which makes this an
isomorphism of valued differential fields.

We use the above at the end of the next subsection to produce a differential subfield
of C<∞[i] that is not contained in H[i] for any Hardy field H.

Boundedness. Let H ⊆ C. We say that b ∈ C bounds H if h ⩽ b for each h ∈ H.
We call H bounded if some b ∈ C bounds H, and we call H unbounded if H is
not bounded. If H1, H2 ⊆ C and for each h2 ∈ H2 there is an h1 ∈ H1 with h2 ⩽ h1,
then any b ∈ C bounding H1 also bounds H2. Every bounded subset of C is bounded
by a germ in Cω; this follows from [17, Lemma 14.3]:

Lemma 5.17. For every b ⩾ 0 in C× there is a ϕ ⩾ 0 in (Cω)× such that ϕ(n) ≺ b
for all n.

Every countable subset of C is bounded, by du Bois-Reymond [14]; see also [27,
Chapter II] or [19, Chapitre V, p. 53, ex. 8]. Thus H ⊆ C is bounded if it is
totally ordered by the partial ordering ⩽ of C and has countable cofinality. If H is
a Hausdorff field and b ∈ C bounds H, then b also bounds the real closure Hrc ⊆ C
of H [ADH, 5.3.2]. In the rest of this subsection H is a Hardy field.

Lemma 5.18. Let H∗ be a d-algebraic Hardy field extension of H and suppose H
is bounded. Then H∗ is also bounded.

Proof. By [ADH, 3.1.11] we have f ∈ H(x)> such that for all g ∈ H(x)× there
are h ∈ H× and q ∈ Q with g ≍ hfq. Hence H(x) is bounded. Replacing H, H∗

by H(x)rc, Li
(
H∗(R)

)
, respectively, we arrange that H is real closed with x ∈ H,

and H∗ ⊇ R is Liouville closed. Let b ∈ C bound H. Then any b∗ ∈ C such
that expn b ⩽ b

∗ for all n bounds H∗, by Lemma 5.1. □

In particular, if H is bounded, then so is Li
(
H(R)

)
. We use this to show:
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Lemma 5.19. Suppose that H is bounded and f ∈ C<∞ is hardian over H.
Then H⟨f⟩ is bounded.

Proof. Using that f remains hardian over the bounded Hardy field Li
(
H(R)

)
, we

arrange that H is Liouville closed. The case that H⟨f⟩ has no element > H is
trivial, so assume we have y ∈ H⟨f⟩ with y > H. Then y is d-transcendental
over H and the sequence y, y2, y3, . . . is cofinal in H⟨y⟩, by Corollary 1.8, so H⟨y⟩
is bounded. Now use that f is d-algebraic over H⟨y⟩. □

Theorem 5.20 (Boshernitzan [17, Theorem 14.4]). Suppose H is bounded. Then
the perfect hull E(H) of H is d-algebraic over H and hence bounded. If H ⊆ C∞,
then E∞(H) is d-algebraic over H; likewise with ω in place of ∞.

Using the results above the proof is not difficult. It is omitted in [17], but we include
it here for the sake of completeness. First, a lemma also needed for the proof of
Theorem 8.6:

Lemma 5.21. Let b ∈ C× bound H, let ϕ ⩾ 0 in C<∞ satisfy ϕ(n) ≺ b−1 for all n,
and let r ∈ ϕ · (C<∞)≼. Then Q(r) ≺ 1 for all Q ∈ H{Y } with Q(0) = 0.

Proof. From ϕ ∈ I we obtain r ∈ I, so it is enough that hr(n) ≺ 1 for all h ∈ H
and all n. Now use the Product Rule and hϕ(n) ≺ hb−1 ≼ 1 for h ∈ H×. □

Proof of Theorem 5.20. Using Lemma 5.18, replace H by Li
(
H(R)

)
to arrange

that H ⊇ R is Liouville closed. Let b ∈ C bound H. Then b also bounds E(H),
by Corollary 5.15. Lemma 5.17 yields ϕ ⩾ 0 in (Cω)× such that ϕ(n) ≺ b−1 for
all n; set r := ϕ · sinx ∈ Cω. Then Q(r) ≺ f for all f ∈ E(H)× and Q ∈ E(H){Z}
with Q(0) = 0, by Lemma 5.21.

Suppose towards a contradiction that f ∈ E(H) is d-transcendental over H, and
set g := f + r ∈ C<∞. Then f , g are not in a common Hardy field, so g is not
hardian over H. On the other hand, let P ∈ H{Y }̸=. Then P (f) ∈ E(H)×, and
by Taylor expansion,

P (f + Z) = P (f) +Q(Z) where Q ∈ E(H){Z} with Q(0) = 0,

so P (g) = P (f + r) ∼ P (f). Hence g is hardian over H, a contradiction.
The proof in the case whereH ⊆ C∞ is similar, using the version of Corollary 5.15

for E∞(H); similarly for ω in place of ∞. □

As to the existence of transexponential hardian germs, we have:

Theorem 5.22. For every b ∈ C there is a Cω-hardian germ y ⩾ b.

This is Boshernitzan [18, Theorem 1.2], and leads to [18, Theorem 1.1]:

Corollary 5.23. No maximal Hardy field is bounded.

Proof. Suppose x ∈ H, and b ∈ C bounds H. Take b∗ ∈ C such that b∗ ⩾ expn b for
all n. Now Theorem 5.22 yields a Cω-hardian germ y ⩾ b∗. By Corollary 5.6, y is
H-hardian, so H⟨y⟩ is a proper Hardy field extension of H. □

The same proof shows also that no C∞-maximal Hardy field and no Cω-maximal
Hardy field is bounded. In particular (Boshernitzan [18, Theorem 1.3]):

Corollary 5.24. Every maximal Hardy field contains a transexponential germ.
Likewise with “C∞-maximal” or “Cω-maximal” in place of “maximal”.
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Remark. For C∞-Hardy fields, some of the above is in Sjödin’s [56], predating [17,
18]: if H is a bounded C∞-Hardy field, then so is Li

(
H(R)

)
[56, Theorem 2];

no maximal C∞-Hardy field is bounded [56, Theorem 6]; and E := E∞(Q) is
bounded [56, Theorem 10].

We can now produce a differential subfield K of Cω[i] containing i such that ≼
restricts to a dominance relation on K making K a d-valued field of H-type with
constant field C, yet K ̸⊆ H[i] for every H: Take a transexponential Cω-hardian
germ z, and h ∈ R(x) with 0 ̸= h ≺ 1. Then ε := h exi ∈ I, so y := z(1 + ε) ∈ Cω[i]
with y ∼∞ z. Lemma 5.16 applied with H = R shows that y generates a differ-
ential subfield K0 := R⟨y⟩ of Cω[i], and ≼ restricts to a dominance relation on K0

making K0 a d-valued field of H-type with constant field R. Then K := K0[i]
is a differential subfield of Cω[i] with constant field C. Moreover, ≼ also re-
stricts to a dominance relation on K, and this dominance relation makes K a
d-valued field of H-type [ADH, 10.5.15]. We cannot have K ⊆ H[i] for any H,
since Im y = zh sinx /∈ H.

Lower bounds on d-algebraic hardian germs. In this subsection H is a Hardy
field. Let f ∈ C and f ≻ 1, f ⩾ 0. Then the germ log f ∈ C also satisfies log f ≻ 1,
log f ⩾ 0. So we may inductively define the germs logn f in C by log0 f := f ,
logn+1 f := log logn f . (So ℓn = logn x for each n.) Lemma 5.1 gives exponential
upper bounds on d-algebraic H-hardian germs. The next result leads to logarithmic
lower bounds on such germs when H is grounded.

Theorem 5.25 (Rosenlicht [55, Theorem 3]). Suppose H is grounded, and let E
be a Hardy field extension of H such that |ΨE \ΨH | ⩽ n (so E is also grounded).
Then there are r, s ∈ N with r + s ⩽ n such that

(i) for any h ∈ H> with h ≻ 1 and maxΨH = v(h†), there exists g ∈ E> such
that g ≍ logr h and maxΨE = v(g†);

(ii) for any g ∈ E there exists h ∈ H such that g < exps h.

This theorem is most useful in combination with the following lemma, which is [55,
Proposition 5] (and also [4, Lemma 2.1] in the context of pre-H-fields).

Lemma 5.26. Let E be a Hardy field extension of H such that trdeg(E|H) ⩽ n.
Then |ΨE \ΨH | ⩽ n.

From [ADH, 9.1.11] we recall that for f, g ≻ 1 in a Hardy field we have f† ≼ g†

iff |f | ⩽ |g|n for some n ⩾ 1. Thus by Lemma 5.26 and Theorem 5.25:

Corollary 5.27. Let h ∈ H>, h ≻ 1, and maxΨH = v(h†). Then for any Hardy
field extension E of H with trdeg(E|H) ⩽ n: E is grounded, and for all g ∈ E
with g ≻ 1 there is an m ⩾ 1 such that logn h ≼ g

m (and so logn+1 h ≺ g).

Hence for h as in Corollary 5.27 and H-hardian y ∈ C, if y is d-algebraic over H,
then the Hardy field E = H⟨y⟩ is grounded, and there is an n such that logn h ≺ g
for all g ∈ E with g ≻ 1. Applying this to H = R(x), h = x yields:

Corollary 5.28 (Boshernitzan [17, Proposition 14.11]). If y ∈ C is hardian and
d-algebraic over R, then the Hardy field E = R(x)⟨y⟩ is grounded, and there is an n
such that ℓn ≺ g for all g ∈ E with g ≻ 1.
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Following [18] we say that y ∈ C is translogarithmic if r ⩽ y ⩽ ℓn for all n
and all r ∈ R. Thus for eventually strictly increasing y ≻ 1 in C, y is transloga-
rithmic iff its compositional inverse yinv is transexponential. By Lemma 4.4 and
Corollary 5.24 there exist Cω-hardian translogarithmic germs; see also [ADH, 13.9].
Translogarithmic hardian germs are d-transcendental, by Corollary 5.28.

6. Second-Order Linear Differential Equations over Hardy Fields

In this section we review Boshernitzan’s work [17, §16] on adjoining non-oscillating
solutions of second-order linear differential equations to Hardy fields in the light
of results from [ADH], and deduce some consequences about complex exponentials
over Hardy fields for use in [11]. Throughout this section H is a Hardy field.

Oscillation over Hardy fields. In this subsection we assume f ∈ H and consider
the linear differential equation

(4L) 4Y ′′ + fY = 0

over H. The factor 4 is to simplify certain expressions, in conformity with [ADH,
5.2]. There we also defined for any differential field K the function ω : K → K
given by ω(z) = −2z′−z2, and the function σ : K× → K given by σ(y) = ω(z)+y2

for z := −y†. We define likewise

ω : C1[i] → C0[i], σ : C2[i]× → C0[i]

by
ω(z) = −2z′ − z2 and σ(y) = ω(z) + y2 for z := −y†.

Note that ω(C1) ⊆ C0 and σ
(
(C2)×

)
⊆ C0, and σ(y) = ω(z + yi) for z := −y†.

To clarify the role of ω and σ in connection with second-order linear differen-
tial equations, suppose y ∈ C2 is a non-oscillating solution to (4L) with y ̸= 0.
Then z := 2y† ∈ C1 satisfies −2z′ − z2 = f , so z generates a Hardy field H(z)
with ω(z) = f , by Proposition 4.3, which in turn yields a Hardy field H(z, y)
with 2y† = z. Thus y1 := y lies in a Hardy field extension of H. From Lemma 3.2
and Proposition 4.2(iv) we also obtain a solution y2 of (4L) in a Hardy field exten-
sion of H⟨y1⟩ = H(y, z) such that y1, y2 are R-linearly independent; see also [54,
Theorem 2, Corollary 2]. This shows:

Proposition 6.1. If f/4 does not generate oscillation, then D(H) contains R-
linearly independent solutions y1, y2 to (4L).

Indeed, if f/4 does not generate oscillation, then D(H) contains solutions y1, y2
of (4L) with y1, y2 > 0 and y1 ≺ y2. Here y1 is determined up to multiplication by
a factor in R>; we call such y1 a principal solution of (4L). (Lemmas 3.14, 3.15.)

Notation. Let K be a differential field. Then K[∂] denotes the ring of linear differ-
ential operators over K; see [ADH, 5.1]. Let A ∈ K[∂]. The twist of A by b ∈ K×

is A⋉b := b−1Ab ∈ K[∂]. We say that A splits over K if A = a(∂−b1) · · · (∂−bn) for
some a ∈ K×, b1, . . . , bn ∈ K. If A splits over K, then so does A⋉b for each b ∈ K×.

By [ADH, p. 259], with A := 4∂
2 + f ∈ H[∂] we have

4y′′ + fy = 0 for some y ∈ H× ⇒ A splits over H ⇐⇒ f ∈ ω(H).

To simplify the discussion we now also introduce the subset

ω(H) :=
{
f ∈ H : f/4 does not generate oscillation

}
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of H. If E is a Hardy field extension of H, then ω(E) ∩ H = ω(H). By Corol-
lary 3.10, ω(H) is downward closed, and ω(H) ⊆ ω(H) by the discussion follow-
ing (R) in Section 3.

Corollary 6.2. If H is d-perfect, then

ω(H) = ω(H) =
{
f ∈ H : 4y′′ + fy = 0 for some y ∈ H×},

and ω(H) is downward closed in H.

Lemma 3.1 and Proposition 6.1 also yield:

Corollary 6.3. If f ∈ ω(H), then each y ∈ C2 such that 4y′′+fy ∈ H is in D(H).

Next some consequences of Proposition 6.1 for more general linear differential equa-
tions of order 2: Let g, h ∈ H, and consider the linear differential equation

(L̃) Y ′′ + gY ′ + hY = 0

over H. An easy induction on n shows that for a solution y ∈ C2 of (L̃) we

have y ∈ Cn with y(n) ∈ Hy + Hy′ for all n, so y ∈ C<∞. To reduce (L̃) to an
equation (4L) we take

f := ω(g) + 4h = −2g′ − g2 + 4h ∈ H,

take a ∈ R, and take a representative of g in C1
a, also denoted by g, and letG ∈ (C2)×

be the germ of

t 7→ exp

(
−1

2

∫ t

a

g(s) ds

)
(t ⩾ a).

This gives an isomorphism y 7→ Gy from the R-linear space of solutions of (4L)

in C2 onto the R-linear space of solutions of (L̃) in C2, and y ∈ C2 oscillates iff Gy

oscillates. By Proposition 4.2, G ∈ D(H). Using f
4 = − 1

2g
′− 1

4g
2+h we now obtain

the following germ version of Corollary 3.11:

Corollary 6.4. The following are equivalent:

(i) some solution in C2 of (L̃) oscillates;

(ii) all nonzero solutions in C2 of (L̃) oscillate;
(iii) − 1

2g
′ − 1

4g
2 + h generates oscillation.

Moreover, if − 1
2g

′− 1
4g

2+h does not generate oscillation, then all solutions of (L̃)

in C2 belong to D(H).

Set A := ∂
2 + g∂ + h, and let f = ω(g) + 4h, G be as above. Then A⋉G = ∂

2 + f
4 .

Thus by combining Corollary 6.3 and Corollary 6.4 we obtain:

Corollary 6.5. If (L̃) has no oscillating solution in C2, and y ∈ C2 is such that
y′′ + gy′ + hy ∈ H, then y ∈ D(H).

The next corollary follows from Proposition 6.1 and [ADH, 5.1.21]:

Corollary 6.6. The following are equivalent, for A ∈ H[∂] and f as above:

(i) f/4 does not generate oscillation;
(ii) A splits over some Hardy field extension of H;
(iii) A splits over D(H).

For A ∈ H[∂] and f as before we have A⋉G = ∂
2 + f

4 and G† = − 1
2g ∈ H, so:
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Corollary 6.7. A splits over H[i] ⇐⇒ ∂
2 + f

4 splits over H[i].

Proposition 6.1 and its corollaries 6.3–6.5 are from [17, Theorems 16.17, 16.18,
16.19], and Corollary 6.2 is essentially [17, Lemma 17.1].

Proposition 6.1 applies only when (4L) has a solution in (C2)×. Such a solution
might not exist, but (4L) does have R-linearly independent solutions y1, y2 ∈ C2,
so w := y1y

′
2 − y′1y2 ∈ R×. Set y := y1 + y2i. Then 4y′′ + fy = 0 and y ∈ C2[i]×,

and for z = 2y† ∈ C1[i] we have −2z′ − z2 = f . Now

z =
2y′1 + 2iy′2
y1 + iy2

=
2y′1y1 + 2y′2y2 − 2i(y′1y2 − y1y

′
2)

y21 + y22
=

2(y′1y1 + y′2y2) + 2iw

y21 + y22
,

so Re z =
2(y′1y1 + y′2y2)

y21 + y22
∈ C1, Im z =

2w

y21 + y22
∈ C2.

Thus Im z ∈ (C2)× and (Im z)† = −Re z, and so

σ(Im z) = ω
(
−(Im z)† + (Im z)i

)
= ω(z) = f in C1.

Replacing y1 by −y1 changes w to −w; this way we can arrange w > 0, so Im z > 0.

Conversely, every u ∈ (C2)× such that u > 0 and σ(u) = f arises in this way. To
see this, suppose we are given such u, take ϕ ∈ C3 with ϕ′ = 1

2u, and set

y1 :=
1√
u
cosϕ, y2 :=

1√
u
sinϕ (elements of C2).

Then wr(y1, y2) = 1/2, and y1, y2 solve (4L). To see the latter, consider

y := y1 + y2i =
1√
u
eϕi ∈ C2[i]×

and note that z := 2y† satisfies

ω(z) = ω(−u† + ui) = σ(u) = f,

hence 4y′′ + fy = 0. The computation above shows Im z = 1/(y21 + y22) = u. We
have ϕ′ > 0, so either ϕ > R or ϕ − c ≺ 1 for some c ∈ R, with ϕ > R iff f/4
generates oscillation. As to uniqueness of the above pair (y1, y2), we have:

Lemma 6.8. Suppose f /∈ ω(H). Let ỹ1, ỹ2 ∈ C2 be R-linearly independent solu-
tions of (4L) with wr(ỹ1, ỹ2) = 1/2. Set ỹ := ỹ1 + ỹ2i, z̃ := 2ỹ†. Then

Im z̃ = u ⇐⇒ ỹ = eθi y for some θ ∈ R.

Proof. If ỹ = eθi y (θ ∈ R), then clearly z̃ = 2ỹ† = 2y† = z, hence Im z = Im z̃.
For the converse, let A be the invertible 2× 2 matrix with real entries and Ay = ỹ;
here y = (y1, y2)

t and ỹ = (ỹ1, ỹ2)
t, column vectors with entries in C2. As in the

proof of [ADH, 4.1.18], wr(y1, y2) = wr(ỹ1, ỹ2) yields detA = 1.
Suppose Im z̃ = u, so y21 + y

2
2 = ỹ21 + ỹ

2
2 . Choose a ∈ R and representatives for u,

y1, y2, ỹ1, ỹ2 in Ca, denoted by the same symbols, such that in Ca we have Ay = ỹ
and y21 + y22 = ỹ21 + ỹ22 , and u(t) ·

(
y1(t)

2 + y2(t)
2
)
= 1 for all t ⩾ a. With ∥ · ∥ the

usual euclidean norm on R2, we then have ∥Ay(t)∥ = ∥y(t)∥ = 1/
√
u(t) for t ⩾ a.

Since f/4 generates oscillation, we have ϕ > R, and we conclude that ∥Av∥ = 1 for
all v ∈ R2 with ∥v∥ = 1. It is well-known that then A =

(
cos θ − sin θ
sin θ cos θ

)
with θ ∈ R

(see, e.g., [41, Chapter XV, Exercise 2]), so ỹ = eθi y. □
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The observations above will be used in the proof of Theorem 7.14 below. We finish
this subsection with miscellaneous historical remarks (not used later):

Remarks. The connection between the second-order linear differential equation (4L)
and the third-order non-linear differential equation σ(u) = f was first investigated
by Kummer [39] in 1834. Appell [1] noted that the linear differential equation

Y ′′′ + fY ′ + (f ′/2)Y = 0

has R-linearly independent solutions y21 , y1y2, y
2
2 ∈ C<∞, though some cases were

known earlier [21, 48]; in particular, 1/u = y21 + y22 is a solution. Hartman [31, 33]
investigates monotonicity properties of y21 + y22 . Steen [58] in 1874, and inde-

pendently Pinney [52], remarked that r := 1/
√
u =

√
y21 + y22 ∈ C<∞ satis-

fies 4r′′ + fr = 4w2/r3 where w := y1y
′
2 − y′1y2 ∈ R×. (See also [53].)

Complex exponentials over Hardy fields. We now use some of the above to
prove an extension theorem for Hardy fields (cf. [17, Lemma 11.6(6)]). Recall that
the H-asymptotic field extension K := H[i] of H is a differential subring of C<∞[i].

Proposition 6.9. If ϕ ∈ H and ϕ ≼ 1, then cosϕ, sinϕ ∈ D(H).

Proof. Replacing H by D(H) we arrange D(H) = H. Then by Proposition 4.2,
H ⊇ R is a Liouville closed H-field, and by Corollary 6.2, ω(H) is downward closed.
Hence by [10, Lemma 1.2.17], there is for all ϕ ≼ 1 inH a (necessarily unique) y ∈ K
with y ∼ 1 and y† = ϕ′i. Let now ϕ ∈ H and ϕ ≼ 1. Then (eϕi)† = ϕ′i ∈ K†,
so cosϕ+ i sinϕ = eϕi ∈ K using K ⊇ C. Thus cosϕ, sinϕ ∈ H. □

Corollary 6.10. Let ϕ ∈ H and ϕ ≼ 1. Then cosϕ, sinϕ generate a d-algebraic
Hardy field extension E := H(cosϕ, sinϕ) of H. If H is a C∞-Hardy field, then so
is E, and likewise with Cω in place of C∞.

In [10, Part 4] we sometimes assume I(K) ⊆ K†, a condition that we consider more
closely in the next proposition:

Proposition 6.11. Suppose H ⊇ R is closed under integration, that is, ∂(H) = H.
Then the following conditions are equivalent:

(i) I(K) ⊆ K†;
(ii) ef ∈ K for all f ∈ K with f ≺ 1;
(iii) eϕ, cosϕ, sinϕ ∈ H for all ϕ ∈ H with ϕ ≺ 1.

Proof. Assume (i), and let f ∈ K, f ≺ 1. Then f ′ ∈ I(K), so we have g ∈ K×

with f ′ = g† and thus ef = cg for some c ∈ C×. Therefore ef ∈ K. This
shows (i) ⇒ (ii), and (ii) ⇒ (iii) is clear. Assume (iii), and let f ∈ I(K). Then f =
g + hi, g, h ∈ I(H). Taking ϕ, θ ≺ 1 in H with ϕ′ = g and θ′ = h,

exp(ϕ+ θi) = exp(ϕ)
(
cos(θ) + sin(θ)i

)
∈ H[i] = K

has the property that f =
(
exp(ϕ+ θi)

)† ∈ K†. This shows (iii) ⇒ (i). □

From Propositions 6.9 and 6.11 we obtain:

Corollary 6.12. If H is d-perfect, then I(K) ⊆ K†.
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Some special subsets of H. Let f ∈ H. Principal solutions of (4L) arise from
certain distinguished solutions of the non-linear (Riccati) equation ω(z) = f . To
explain this and for later use we recall from [ADH, 11.8] some special subsets of H:

Γ(H) :=
{
h† : h ∈ H, h ≻ 1

}
⊆ H>,

Λ(H) :=
{
−h†† : h ∈ H, h ≻ 1

}
,

∆(H) :=
{
−h′† : h ∈ H, 0 ̸= h ≺ 1

}
.

Here Λ(H) = −Γ(H)† and ∆(H) are disjoint, and ω : H → H and σ : H× → H
are strictly increasing on Λ(H) and Γ(H), respectively. If H ⊇ R is Liouville
closed, then Γ(H) is upward closed, Λ(H) is downward closed, H = Λ(H) ∪ ∆(H),
and ω

(
Λ(H)

)
= ω

(
∆(H)

)
= ω(H); see [ADH, 11.8.13, 11.8.19, 11.8.20, 11.8.29].

Lemma 6.13. Suppose H is d-perfect and f/4 does not generate oscillation, and
let y ∈ H be a principal solution of (4L). Then 2y† is the unique z ∈ Λ(H) such
that ω(z) = f .

Proof. We already know ω(2y†) = f , and as ω is strictly increasing on Λ(H), it
remains to show that 2y† ∈ Λ(H). For this take h ∈ H with h′ = 1/y2. Then h ≻ 1
by Corollary 3.13, hence 1/y2 ∈ Γ(H), and thus 2y† = −(1/y2)† ∈ Λ(H). □

Combining Lemma 6.13 with the remarks after Proposition 6.1 yields:

Corollary 6.14. If H is d-perfect and f/4 does not generate oscillation, then (4L)

has solutions y1, y2 ∈ H such that y1, y2 > 0, y1 ≺ y2, 2y
†
1 ∈ Λ(H), and 2y†2 ∈ ∆(H)

(and thus y′2 > 0 in view of −(ex)†† = 0 ∈ Λ(H)).

Remark 6.15. Suppose f/4 > 0 does not generate oscillation. Remark 3.16 and
Corollary 6.14 yield a ∈ R, a representative of f in Ca, also denoted by f , and a
constant C ∈ R⩾ such that the inequality (3.1) holds for all u ∈ C1

a with u(a) = 0.
(This is not used later.)

We have ω(H) < σ
(
Γ(H)

)
by [ADH, remark before 11.8.29]. Recall that ω(H) is

downward closed and ω(H) ⊆ ω(H), with equality for d-perfect H. (Corollary 6.2.)
This yields a property of ω(H) used in the proof of Corollary 6.24:

Lemma 6.16. ω(H) < Γ(H).

Proof. We have ω(H) ⊆ ω
(
D(H)

)
and Γ(H) ⊆ Γ

(
D(H)

)
. Thus, replacing H

by D(H), we arrange that H is d-perfect. Hence H ⊇ R is Liouville closed
and ω(H) = ω(H). From x−1 = x† ∈ Γ(H) and σ(x−1) = 2x−2 ≍ (x−1)′ ≺ ℓ† for
all ℓ ≻ 1 in H we obtain Γ(H) ⊆ σ

(
Γ(H)

)↑, so ω(H) < Γ(H). □

Suppose H has asymptotic integration. Then by [ADH, 11.8.16, 11.8.30]: H is
λ-free iff there is no λ ∈ H such that Λ(H) < λ < ∆(H), and H is ω-free iff there
is no ω ∈ H such that ω

(
Λ(H)

)
< ω < σ

(
Γ(H)

)
. By [ADH, 11.7.3], if H is ω-free,

then H is λ-free. If H ⊇ R is Liouville closed, then H is λ-free, and

H is ω-free ⇐⇒ ω(H)↓ = H \ σ
(
Γ(H)

)↑.
Determining ω(H). In [ADH, 16.3] we introduced the concept of a ΛΩ-cut in a
pre-H-field F : these are the triples (I,Λ,Ω) of subsets of F such that

(I,Λ,Ω) =
(
I(E) ∩ F,Λ(E)↓ ∩ F, ω(E)↓ ∩ F

)
for some ω-free H-field extension E of F . Every pre-H-field has exactly one or
exactly two ΛΩ-cuts [ADH, remark before 16.3.19]. By [ADH, 16.3.14, 16.3.16]:
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Lemma 6.17. Suppose H is d-perfect. Then
(
I(H),Λ(H), ω(H)

)
is a ΛΩ-cut

in H, and this is the unique ΛΩ-cut in H iff H is ω-free.

Thus in general, (
I
(
D(H)

)
∩H, Λ

(
D(H)

)
∩H, ω(H)

)
is a ΛΩ-cut in H, and hence ω(H) < σ

(
Γ(H)

)↑ (see [ADH, p. 692]). The classifica-
tion of ΛΩ-cuts in H from [ADH, 16.3] can be used to narrow down the possibilities
for ω(H). For this we recall the trichotomy from [ADH, 9.2.16]: either H has a
gap, or H is grounded, or H has asymptotic integration. With O = valuation ring
of H and O = maximal ideal of O, we have:

Lemma 6.18. Let ϕ ∈ H> be such that vϕ /∈ (Γ̸=
H)′. Then

ω(H) = ω(−ϕ†) + ϕ2O↓ or ω(H) = ω(−ϕ†) + ϕ2O↓.

The first alternative holds if H is grounded, and the second alternative holds if vϕ
is a gap in H with ϕ ≍ b′ for some b ≍ 1 in H.

Proof. Either vϕ = maxΨH or vϕ is a gap in H, by [ADH, 9.2]. The remark
following Lemma 6.17 yields an ΛΩ-cut (I,Λ,Ω) in H where Ω = ω(H). Now
use the proofs of [ADH, 16.3.11, 16.3.12, 16.3.13] together with the transformation
formulas [ADH, (16.3.1)] for ΛΩ-cuts. □

By [ADH, 16.3.15] we have:

Lemma 6.19. If H has asymptotic integration and the set 2ΨH does not have a
supremum in ΓH , then

ω(H) = ω
(
Λ(H)

)↓ = ω(H)↓ or ω(H) = H \ σ
(
Γ(H)

)↑.
Corollary 6.20. Suppose H is ω-free. Then

ω(H) = ω
(
Λ(H)

)↓ = ω(H)↓ = H \ σ
(
Γ(H)

)↑.
Proof. By [ADH, 11.8.30] we have ω

(
Λ(H)

)↓ = ω(H)↓ = H \ σ
(
Γ(H)

)↑. It follows
from [ADH, 9.2.17] that 2ΨH has no supremum in ΓH . Now use Lemma 6.19. □

Non-oscillation and compositional conjugation. Which “changes of variable”
preserve the general form of the linear differential equation (4L)? The next lemma
and Corollary 6.22 (used in the proof of our main Theorem 7.14) give an answer.

Lemma 6.21. Let K be a differential ring, f ∈ K, and P := 4Y ′′ + fY ∈ K{Y }.
Then for g ∈ K× and ϕ := g−2 we have

g3Pϕ
×g = 4Y ′′ + g3P (g)Y.

Proof. Let g, ϕ ∈ K×. Then

P×g = 4gY ′′ + 8g′Y ′ + (4g′′ + fg)Y = 4gY ′′ + 8g′Y ′ + P (g)Y, so

Pϕ
×g = 4g(ϕ2Y ′′ + ϕ′Y ′) + 8g′ϕY ′ + P (g)Y

= 4gϕ2Y ′′ + (4gϕ′ + 8g′ϕ)Y ′ + P (g)Y.

Now 4gϕ′+8g′ϕ = 0 is equivalent to ϕ† = −2g†, which holds for ϕ = g−2. For this ϕ

we get Pϕ
×g(Y ) = g−3

(
4Y ′′ + g3P (g)Y

)
, that is, g3Pϕ

×g(Y ) = 4Y ′′ + g3P (g)Y . □
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Now let ℓ ∈ C1 be such that ℓ > R and ϕ := ℓ′ ∈ H. We use the superscript ◦
as in the subsection on compositional conjugation in Hardy fields of Section 4.
Let P := 4Y ′′ + fY where f ∈ H. Recall that if y ∈ C2[i] and 4y′′ + fy = 0,
then y ∈ C<∞[i]. Towards using Lemma 6.21, suppose ϕ = g−2, g ∈ H×, and
set h :=

(
g3P (g)

)◦ ∈ H◦. We then obtain the following reduction of solving the
differential equation (4L) to solving a similar equation over H◦:

Corollary 6.22. Let y ∈ C2[i]. Then z := (y/g)◦ ∈ C2[i], and

4y′′ + fy = 0 ⇐⇒ 4z′′ + hz = 0.

In particular, f/4 generates oscillation iff h/4 does.

Remark. Corollary 6.22 is a special case of a result of Kummer [39]; cf. [15, §11]
and [63, §2]. Lie [45] and Stäckel [57] proved uniqueness results about the transfor-
mation y 7→ (y/h)◦; see [15, §22].

Consider the increasing bijection

f 7→ Φ(f) :=
((
f − ω(−ϕ†)

)
/ϕ2

)◦ : H → H◦,

and note that

g3P (g) = g3(4g′′ + fg) =
(
f − ω(−ϕ†)

)
/ϕ2,

so h = Φ(f).

Lemma 6.23. Φ
(
ω(H)

)
= ω(H◦).

Proof. First replace H by its real closure to arrange that H is real closed, then
take g ∈ H× with g−2 = ϕ, and use the remarks above. □

The bijection

y 7→ (y/ϕ)◦ : H → H◦

restricts to bijections I(H) → I(H◦) and Γ(H) → Γ(H◦), and the bijection

z 7→
(
(z + ϕ†)/ϕ

)◦ : H → H◦

restricts to bijections Λ(H) → Λ(H◦) and ∆(H) → ∆(H◦). (See the transformation
formulas in [ADH, p. 520].) Then for y ∈ H×, z ∈ H we have

σ
(
(y/ϕ)◦

)
= Φ

(
σ(y)

)
, ω

((
(z + ϕ†)/ϕ

)◦) = Φ
(
ω(z)

)
.

(See the formulas in [ADH, pp. 518–519].) Hence Φ also restricts to bijections

σ(H×) → σ
(
(H◦)×

)
, σ

(
I(H) ̸=

)
→ σ

(
I(H◦)̸=

)
, σ

(
Γ(H)

)
→ σ

(
Γ(H◦)

)
,

and

ω(H) → ω(H◦), ω
(
Λ(H)

)
→ ω

(
Λ(H◦)

)
, ω

(
∆(H)

)
→ ω

(
∆(H◦)

)
.

To illustrate the above, we use it to prove the Fite-Leighton-Wintner oscillation
criterion for self-adjoint second-order linear differential equations over H [24, 43,
64]. (See also [36, §2] and [60, p. 45].) For this, let A = f∂

2+f ′∂+g where f ∈ H×

and g ∈ H. For each h ∈ C we choose a germ
∫
h in C1 such that (

∫
h)′ = h.

Corollary 6.24. Suppose
∫
f−1 > R and

∫
g > R. Then A(y) = 0 for some

oscillating y ∈ C<∞.
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Proof. We arrange that H ⊇ R is Liouville closed. Then f−1, g ∈ Γ(H) by [ADH,
11.8.19]. Note that ϕ := f−1 is active in H. Put B := 4ϕA⋉ϕ1/2 , so B = 4∂

2 + h

with h := ω(−ϕ†) + 4gϕ. Then

A(y) = 0 for some oscillating y ∈ C2 ⇐⇒ B(z) = 0 for some oscillating z ∈ C2

⇐⇒ h /∈ ω(H),

by Corollary 6.4. The latter is equivalent to (4g/ϕ)◦ /∈ ω(H◦), by Lemma 6.23
applied to h in place of f . Now Γ(H◦) ∩ ω(H◦) = ∅ by Lemma 6.16, so it remains
to note that 4g ∈ Γ(H) yields (4g/ϕ)◦ ∈ Γ(H◦). □

7. Extending Hardy Fields to ω-free Hardy Fields

In this section H is a Hardy field. We first discuss in more detail the fundamental
property of ω-freeness and then prove a conjecture from [17, §17]. Next we establish
the main result of the paper, Theorem 7.14, to the effect hat every maximal Hardy
field is ω-free. We finish with some complements to the theorem.

Iterated logarithms and ω-freeness. In this subsection H ⊇ R(x) is log-closed.
As in the introduction this yields a log-sequence (ℓρ) in H

>R from which we obtain
sequences (γρ), (λρ), (ωρ) in H as follows:

γρ := ℓ†ρ ∈ Γ(H), λρ := −γ
†
ρ ∈ Λ(H), ωρ := ω(λρ) ∈ ω

(
Λ(H)

)
.

Also λρ+1 = λρ + γρ+1 and ωρ+1 = ωρ + γ2ρ+1. The sequence
(
v(γρ)

)
is strictly

increasing and cofinal in ΨH by [ADH, beginning of 11.5], so the sequence (γρ) is
strictly decreasing and coinitial in Γ(H). Using in addition that for all f, g ∈ H× we
have f ≺ g ⇒ f† < g†, it follows that the pc-sequence (λρ) is strictly increasing and
cofinal in Λ(H) and the pc-sequence (λρ + γρ) =

(
−(1/ℓρ)

′†) is strictly decreasing
and coinitial in ∆(H); cf. [ADH, proof of 11.8.15]. Recall that ω : H → H is
strictly increasing on Λ(H); so the pc-sequence (ωρ) is strictly increasing and cofinal
in ω

(
Λ(H)

)
. Hence using also Corollary 6.2, we obtain:

Corollary 7.1. If H is d-perfect, then (ωρ) is cofinal in ω(H).

Note that Corollary 7.1 applies in particular to the d-perfect hull of any Hardy
field. We have σ(γρ) = ωρ + γ2ρ , and by [ADH, 11.8.29] the sequence

(
σ(γρ)

)
is

strictly decreasing and coinitial in σ
(
Γ(H)

)
. Thus by Corollary 6.20:

if H is ω-free, then (ωρ) is cofinal in ω(H) and
(
σ(γρ)

)
is coinitial in H \ ω(H).

Lemma 7.2. Suppose H is ω-free and f ∈ H. Then the following are equivalent:

(i) f ∈ ω(H);
(ii) f < ωρ for some ρ;
(iii) f < ωρ + cγ2ρ for all c ∈ R> and all ρ;

(iv) there exists c ∈ R> such that for all ρ we have f < ωρ + cγ2ρ .

Proof. The equivalence (i) ⇔ (ii) holds by the sentence preceding the lemma. The
implication (ii) ⇒ (iii) follows from [ADH, 11.8.22], and (iii) ⇒ (iv) is obvious.
Since 0 < γρ+1 ≺ γρ we obtain for c ∈ R>:

ωρ+1 + cγ2ρ+1 = ωρ + γ
2
ρ+1 + cγ2ρ+1 < ωρ + γ

2
ρ = σ(γρ).

This yields (iv) ⇒ (i) by the sentence before the lemma. □
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Corollary 7.3. The following are equivalent:

(i) H is ω-free;
(ii) (ωρ) is cofinal in ω(H) and

(
σ(γρ)

)
is coinitial in H \ ω(H).

Proof. The sentence preceding Lemma 7.2 yields (i) ⇒ (ii). Now assume (ii).
As (ωρ) is cofinal in ω

(
Λ(H)

)
and

(
σ(γρ)

)
is coinitial in σ

(
Γ(H)

)
, we obtain

ω(H) = ω
(
Λ(H)

)↓, H \ ω(H) = σ
(
Γ(H)

)↑,
hence there is no ω ∈ H with ω

(
Λ(H)

)
< ω < σ

(
Γ(H)

)
. Thus if H has asymptotic

integration, thenH is ω-free by the remarks following Lemma 6.16. SupposeH does
not have asymptotic integration. As H is log-closed, it is ungrounded, hence we
have a gap vγ in H, γ ∈ H×. Then λρ ⇝ λ := −γ† by [ADH, remark after 11.5.9],
hence ωρ ⇝ ω := ω(λ) by [ADH, 11.7.3], so ωρ < ω ∈ ω(H) for all ρ, and this
contradicts (ii). □

Note that (ωρ) is cofinal in ω(H) iff for all f ∈ H the equivalence (H∗) in the
introduction holds, and that

(
σ(γρ)

)
is coinitial in H \ ω(H) iff for all f ∈ H the

equivalence (B∗) holds. This justifies a remark before (B∗). Lemma 7.2 also yields
a generalization of Hartman’s [30, Lemma 1]:

Corollary 7.4. Suppose H is ω-free, and f ∈ H. Then there exists ρ such
that f − ωρ′ ∼ f − ωρ for all ρ′ ⩾ ρ; for such ρ we have f < ωρ iff f ∈ ω(H).

Proof. If f /∈ ω(H), then (i)⇒(iv) in Lemma 7.2 yields ρ such that f−ωρ ⩾ γ2ρ and

so f − ωρ ≻ γ2ρ+1, hence f − ωρ ≻ ωρ′ − ωρ for ρ′ > ρ, and thus f − ωρ′ ∼ f − ωρ

for ρ′ > ρ, as required. Suppose f ∈ ω(H), and take an index σ such that f ⩽ ωσ,
and put ρ := σ + 1. Then ωρ − f ⩾ ωρ − ωσ > 0 and thus for all ρ′ > ρ we
have ωρ − f ≽ γ2ρ ≻ γ2ρ+1 ≍ ωρ′ − ωρ and so ωρ − f ∼ ωρ′ − f . □

In the proof of Theorem 7.14 we shall use:

Lemma 7.5. Let γ ∈ (C1)×, γ > 0, and λ := −γ† with λρ < λ < λρ + γρ in C, for
all ρ. Then γρ > γ > γρ/ℓρ = (−1/ℓρ)

′ in C, for all ρ.

Proof. Pick a ∈ R (independent of ρ) and functions in Ca whose germs at +∞ are
the elements ℓρ, γρ, λρ of H; denote these functions also by ℓρ, λρ, γρ. From ℓ†ρ = γρ

and γ†ρ = −λρ in H we obtain cρ, dρ ∈ R> such that for all sufficiently large t ⩾ a,

ℓρ(t) = cρ exp

[∫ t

a

γρ(s) ds

]
, γρ(t) = dρ exp

[
−
∫ t

a

λρ(s) ds

]
.

(How large is “sufficiently large” depends on ρ.) Likewise we pick functions in Ca
whose germ at +∞ are γ, λ, and also denote these functions by γ, λ. From γ† = −λ

in H we obtain a real constant d > 0 such that for all sufficiently large t ⩾ a,

γ(t) = d exp

[
−
∫ t

a

λ(s) ds

]
.

Also, λρ < λ < λρ + γρ yields constants aρ, bρ ∈ R such that for all t ⩾ a∫ t

a

λρ(s) ds < aρ +

∫ t

a

λ(s) ds < bρ +

∫ t

a

λρ(s) ds+

∫ t

a

γρ(s) ds,

which by applying exp(−∗) yields that for all sufficiently large t ⩾ a,

1

dρ
γρ(t) >

1

eaρ d
γ(t) >

cρ
ebρ dρ

γρ(t)/ℓρ(t).
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Here the positive constant factors don’t matter, since the valuation of γρ is strictly
increasing and that of γρ/ℓρ = (−1/ℓρ)

′ is strictly decreasing with ρ. Thus for all ρ
we have γρ > γ > γρ/ℓρ = (−1/ℓρ)

′, in C. □

Constructing ω-free Hardy field extensions: special cases. If H is ω-free,
then so is every d-algebraic Hardy field extension of H, by [ADH, 13.6.1]. Thus if H
is ω-free, then the Hardy-Liouville closure Li

(
H(R)

)
of H(R) is ω-free. Moreover,

by [10, Lemma 1.3.20]:

Proposition 7.6. If H is not λ-free, then Li
(
H(R)

)
is ω-free.

Together with Corollary 5.27, this yields:

Corollary 7.7. Suppose H is grounded. Then L := Li
(
H(R)

)
is ω-free. Moreover,

if for some m we have h ≻ ℓm for all h ∈ H with h ≻ 1, then for all g ∈ L with g ≻ 1
there is an n with g ≻ ℓn.

In particular, Li(R) = Li
(
R(x)

)
is ω-free, and (ℓn) is coinitial in Li(R)>R. We now

use these observations to establish [17, Conjecture 17.11]: Corollary 7.10. We first
note that for c ∈ R, the germ (ωn + cγ2n)/4 generates oscillation iff c > 0. (See also
the introduction.) This follows from the next corollary applied to f = ωn+cγ

2
n and

the grounded Hardy subfield H := R⟨ℓn⟩ = R(ℓ0, . . . , ℓn) of Li(R):

Corollary 7.8. Suppose H is grounded and for some m we have h ≻ ℓm for
all h ∈ H with h ≻ 1. Then for f ∈ H, the following are equivalent:

(i) f ∈ ω(H);
(ii) f < ωn for some n;
(iii) f < ωn + cγ2n for all n and all c ∈ R>;
(iv) there exists c ∈ R> such that for all n we have f < ωn + cγ2n.

Proof. By Corollary 7.7, L := Li
(
H(R)

)
is ω-free, and for all g ∈ L with g ≻ 1

there is an n such that ℓn ≺ g. Hence the corollary follows from Lemma 7.2 applied
to L in place of H, using ω(H) = H ∩ ω(L). □

From the above equivalence (i) ⇔ (ii) we recover [17, Theorem 17.7]:

Corollary 7.9. Suppose f ∈ C is hardian and d-algebraic over R. Then

f generates oscillation ⇐⇒ f > ωn/4 for all n.

Proof. By Corollary 5.28 the Hardy field H := R(x)⟨f⟩ satisfies the hypotheses of
Corollary 7.8. Also, f generates oscillation iff 4f /∈ ω(H). Now the equivalence
follows from (i) ⇔ (ii) in Corollary 7.8. □

Using the above implication (iv) ⇒ (i) we obtain in the same way:

Corollary 7.10. Let f ∈ C be hardian and d-algebraic over R, and suppose for
some c ∈ R> we have f < ωn+cγ

2
n for all n. Then f/4 does not generate oscillation.

Next a variant of Proposition 7.6. Let L ⊇ R be a Liouville closed d-algebraic
Hardy field extension of H such that ω(L) = ω(L). (By Corollary 6.2 this holds
for L = D(H).) Note that then ω(L) = ω

(
Λ(L)

)
by [ADH, 11.8.20].

Lemma 7.11. If H is not λ-free or ω(H) = H \ σ
(
Γ(H)

)↑, then L is ω-free.
42



Proof. If H is ω-free, then L is ω-free by [ADH, 13.6.1]. Hence, if H is not λ-free,
then L is ω-free by Proposition 7.6. Suppose H is λ-free but not ω-free, and ω(H) =
H \ σ

(
Γ(H)

)↑. Then [ADH, 11.8.30] gives ω ∈ H with ω
(
Λ(H)

)
< ω < σ

(
Γ(H)

)
.

Hence ω ∈ ω(H) ⊆ ω(L) = ω
(
Λ(L)

)
. Thus L is ω-free by [10, Corollary 1.3.21]. □

In [12] we show that for L = D(H) the converse of Lemma 7.11 holds. Here are
examples of (1) a non-ω-free Liouville closed Cω-Hardy field L ⊇ R(x), and (2) a
non-λ-free log-closed Cω-Hardy field M ⊇ R(x) with asymptotic integration:

Example 7.12. Remarks after Corollary 5.28 yield a translogarithmic and hardian
germ ℓ ∈ Cω. Then E := R(ℓ0, ℓ1, ℓ2, . . . ) is a Hardy subfield of Li

(
R⟨ℓ⟩

)
. Now E is

ω-free by [ADH, 11.7.15], ℓ is E-hardian, and R < ℓ < E>R by Corollary 7.7. Set

γ := ℓ†, λ := −γ
†, ω := ω(λ), H := E⟨ω⟩, L := Li(H).

We have λn ⇝ λ by [ADH, 11.5.7], hence ωn ⇝ ω by [ADH, 11.7.3]. Then H is
an immediate λ-free extension of E by [ADH, 13.6.3, 13.6.4], and H>R is coinitial
in L>R by [10, Proposition 1.3.15]. Now (ℓn) is coinitial in E>R, hence in H>R,
and thus in L>R. It follows that L is not ω-free. Also L ⊆ Li

(
R⟨ℓ⟩

)
⊆ Cω.

Example 7.13. Let E, etc. be as in the previous example. Then E has asymptotic
integration, and E⟨λ⟩ is an immediate extension of E by [ADH, 13.6.3], so E⟨λ⟩
has asymptotic integration. Let M be the smallest Hardy field extension of E⟨λ⟩
that is henselian as a valued field and closed under integration (hence log-closed).
Then M ⊆ Cω, M is an immediate extension of E⟨λ⟩ by [ADH, 10.2.7], so has
asymptotic integration, and is not λ-free in view of λn ⇝ λ.

Proof of the main theorem. Here now is our main result:

Theorem 7.14. Every Hardy field has a d-algebraic ω-free Hardy field extension.

Proof. It is enough to show that every d-maximal Hardy field is ω-free. That
reduces to showing that every non-ω-free Liouville closed Hardy field containing R
has a proper d-algebraic Hardy field extension. So assume H ⊇ R is Liouville closed
and not ω-free. We shall construct a proper d-algebraic Hardy field extension of H.
As indicated in the remarks after Lemma 6.16, we have ω ∈ H such that

ω(H) < ω < σ
(
Γ(H)

)
.

With ω in the role of f in the discussion following Corollary 6.7, we have R-linearly
independent solutions y1, y2 ∈ C2 of the differential equation 4Y ′′ + ωY = 0; in
fact, y1, y2 ∈ C<∞. Then the complex solution y = y1 + y2i is a unit of C<∞[i],
and so we have z := 2y† ∈ C<∞[i]. We shall prove that the elements λ := Re z
and γ := Im z of C<∞ generate a proper d-algebraic Hardy field extension K =
H(λ, γ) of H with ω = σ(γ) ∈ σ(K×). We can assume that w := y1y

′
2− y′1y2 ∈ R>,

so γ = 2w/|y|2 ∈ (C<∞)× and γ > 0.
Choose a log-sequence (ℓρ) in H and define (γρ), (λρ), (ωρ) as indicated at the

beginning of this section. Then ωρ ⇝ ω, with ω − ωρ ∼ γ2ρ+1 by [ADH, 11.7.1]. We
aim to show:

(7.1) λ − λρ ≺ γρ and γ ≺ γρ for all ρ.

For now we fix ρ and set gρ := γ
−1/2
ρ , so 2g†ρ = λρ = −γ†ρ. For h ∈ H× we also

have ω(2h†) = −4h′′/h, hence P := 4Y ′′ + ωY ∈ H{Y } gives

P (gρ) = gρ(ω − ωρ) ∼ gργ
2
ρ+1,
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and so with an eye towards using Lemma 6.21:

g3ρP (gρ) ∼ g4ργ
2
ρ+1 ∼ γ

2
ρ+1/γ

2
ρ ≍ 1/ℓ2ρ+1.

Thus with g := gρ = γ
−1/2
ρ , ϕ := g−2 = γρ we have Aρ ∈ R> such that

(7.2) g3Pϕ
×g(Y ) = 4Y ′′ + g3P (g)Y, |g3P (g)| ⩽ Aρ/ℓ

2
ρ+1.

From P (y) = 0 we get Pϕ
×g(y/g) = 0, that is, y/g ∈ C<∞[i]ϕ is a solution of

4Y ′′ + g3P (g)Y = 0, with g3P (g) ∈ H ⊆ C<∞.

Set ℓ := ℓρ+1, so ℓ′ = ℓ†ρ = ϕ. The subsection on compositional conjugation in
Section 4 yields the isomorphism

h 7→ h◦ = h ◦ ℓinv : Hϕ → H◦

of H-fields, where ℓinv is the compositional inverse of ℓ. Under this isomorphism
the equation 4Y ′′ + g3P (g)Y = 0 corresponds to the equation

4Y ′′ + fρY = 0, fρ :=
(
g3P (g)

)◦ ∈ H◦ ⊆ C<∞.

By Corollary 6.22, the equation 4Y ′′ + fρY = 0 has the “real” solutions

yj,ρ := (yj/g)
◦ ∈ (C<∞)◦ = C<∞ (j = 1, 2),

and the “complex” solution

yρ := y1,ρ + y2,ρi = (y/g)◦,

which is a unit of the ring C<∞[i]. Set zρ := 2y†ρ ∈ C<∞[i]. The bound in (7.2)

gives |fρ| ⩽ Aρ/x
2, which by Corollary 3.6 yields positive constants Bρ, cρ such

that |zρ| ⩽ Bρx
cρ . Using (f◦)′ = (ϕ−1f ′)◦ for f ∈ C<∞[i] we obtain

zρ = 2
(
(y/g)◦

)† = 2
(
ϕ−1(y/g)†

)◦
=

(
(z − 2g†)/ϕ

)◦
In combination with the bound on |zρ| this yields∣∣∣∣z − 2g†

ϕ

∣∣∣∣ ⩽ Bρ ℓ
cρ
ρ+1, hence

|z − λρ| ⩽ Bρ ℓ
cρ
ρ+1 ϕ = Bρ ℓ

cρ
ρ+1 γρ, and so

z = λρ +Rρ where |Rρ| ⩽ Bρ ℓ
cρ
ρ+1 γρ.

We now use this last estimate with ρ+ 1 instead of ρ, together with

λρ+1 = λρ + γρ+1, ℓρ+1γρ+1 = γρ.

This yields

z = λρ + γρ+1 +Rρ+1

with |Rρ+1| ⩽ Bρ+1 ℓ
cρ+1

ρ+2 γρ+1 = Bρ+1

(
ℓ
cρ+1

ρ+2 /ℓρ+1

)
γρ,

so z = λρ + o(γρ) that is, z − λρ ≺ γρ,

and thus λ = Re z = λρ + o(γρ), γ = Im z ≺ γρ, proving (7.1).

Now varying ρ again, (λρ) is a strictly increasing divergent pc-sequence in H which
is cofinal in Λ(H), and (λρ + γρ) is a strictly decreasing pc-sequence in H which is
coinitial in ∆(H) = H\Λ(H). By the above, for each ρ we have λ = λρ+1+o(γρ+1) =
λρ+ γρ+1+o(γρ+1) and hence λρ < λ < λρ+1+ γρ+1, thus λ = Re z satisfies Λ(H) <
λ < ∆(H). This yields an ordered subfield H(λ) of C<∞, which by Lemma 2.11 is an
immediate valued field extension of H with λρ ⇝ λ. Now λ = −γ† (see discussion
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before Lemma 6.8), so Lemma 7.5 gives γρ > γ > (−1/ℓρ)
′ in C<∞, for all ρ. In

view of Lemma 2.12 applied to H(λ), γ in the role of H, f this yields an ordered
subfield H(λ, γ) of C<∞ where γ is transcendental over H(λ). Moreover, γ satisfies
the second-order differential equation 2yy′′−3(y′)2+y4−ωy2 = 0 over H (obtained
from the relation σ(γ) = ω by multiplication with γ2). It follows that H(λ, γ) is
closed under the derivation of C<∞, and hence H(λ, γ) = H⟨γ⟩ is a Hardy field that
is d-algebraic over H. □

The proof also shows that every C∞-Hardy field has an ω-free d-algebraic C∞-Hardy
field extension, and the same with Cω instead of C<∞. In [11, 12] we prove that
the perfect hull of an ω-free Hardy field is ω-free, but that not every perfect Hardy
field is ω-free.

Improving Theorem 7.14. In this subsection, assume H ⊇ R is Liouville closed
and ω ∈ H, γ ∈ (C2)× satisfy ω(H) < ω < σ

(
Γ(H)

)
and σ(γ) = ω. Proposition 7.6

and results from [ADH, 13.7] lead to a more explicit version of Theorem 7.14:

Corollary 7.15. The germ γ generates a Hardy field extension H⟨γ⟩ of H with a
gap vγ, and so Li

(
H⟨γ⟩

)
is an ω-free Hardy field extension of H.

Proof. Since σ(−γ) = σ(γ), we may arrange γ > 0. The discussion before Lem-
ma 6.8 with ω, γ in the roles of f , u, respectively, yields R-linearly independent so-
lutions y1, y2 ∈ C<∞ of the differential equation 4Y ′′+ωY = 0 with Wronskian 1/2
such that γ = 1/(y21 + y22). The proof of Theorem 7.14 shows that γ generates a
Hardy field extension H⟨γ⟩ = H(λ, γ) of H. Recall that v(γρ) is strictly increasing
as a function of ρ and cofinal in ΨH ; as γ ≺ γρ for all ρ, this gives ΨH < vγ.
Also γ > (−1/ℓρ)

′ > 0 for all ρ and v(1/ℓρ)
′ is strictly decreasing as a function of ρ

and coinitial in (Γ>
H)′, and so vγ < (Γ>

H)′. Then by [ADH, 13.7.1 and subsequent
remark (2) on p. 626], vγ is a gap in H⟨γ⟩. Thus H⟨γ⟩ does not have asymptotic
integration and hence is not λ-free, so Li

(
H⟨γ⟩

)
is ω-free by Proposition 7.6. □

Corollary 7.16. Suppose γ > 0. Then with L := Li
(
H⟨γ⟩

)
,

ω /∈ ω(H) ⇐⇒ γ ∈ Γ(L), ω ∈ ω(H) ⇐⇒ γ ∈ I(L).

Proof. If γ /∈ Γ(L), then ω ∈ ω(L)↓ by [ADH, 11.8.31], hence ω ∈ ω(H). If γ ∈ Γ(L),
then we can use Corollary 6.20 for L to conclude ω /∈ ω(H). The equivalence on
the right now follows from that on the left and [ADH, 11.8.19]. □

We also note that if ω/4 generates oscillation, then we have many choices for γ:

Corollary 7.17. Suppose ω/4 generates oscillation. Then there are continuum
many γ̃ ∈ (C<∞)× with γ̃ > 0 and σ(γ̃) = ω; no Hardy field extension of H contains
more than one such germ γ̃. (Thus H has at least continuum many maximal Hardy
field extensions.)

Proof. As before we arrange γ > 0 and set L := Li
(
H⟨γ⟩

)
. Take ϕ ∈ L with ϕ′ = 1

2γ

and consider the germs

y1 :=
1
√

γ
cosϕ, y2 :=

1
√

γ
sinϕ in C<∞.

The remarks preceding Lemma 6.8 show that y1, y2 solve the differential equa-
tion 4Y ′′ + ωY = 0, their Wronskian equals 1/2, and ϕ ≻ 1 (since ω/4 generates
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oscillation). We now dilate y1, y2: let r ∈ R> be arbitrary and set

y1r := ry1, y2r := r−1y2.

Then y1r, y2r still solve the equation 4Y ′′ + ωY = 0, and their Wronskian is 1/2.
Put γr := 1/(y21r + y22r) ∈ C<∞. Then σ(γr) = ω. Let r, s ∈ R>. Then

γr = γs ⇐⇒ y21r+y
2
2r = y21s+y

2
2s ⇐⇒ (r2−s2) cos2 ϕ+

(
1
r2 −

1
s2

)
sin2 ϕ = 0,

so γr = γs iff r = s. Next, suppose M ⊇ H is a d-perfect Hardy field containing
both γ and γ̃ ∈ (C<∞)× with γ̃ > 0 and σ(γ̃) = ω. Corollary 6.2 gives ω /∈ ω(M),
so γ, γ̃ ∈ Γ(M) by [ADH, 11.8.31], hence γ = γ̃ by [ADH, 11.8.29]. □

8. A Question of Boshernitzan

In this final section we apply Theorem 7.14 to answer a question from [18] and to
generalize a theorem from [17].

Translogarithmic germs in maximal Hardy fields. The following analogue
of Corollary 5.24 for translogarithmic germs gives a positive answer to Question 4
in [18, §7]:

Proposition 8.1. Every maximal Hardy field contains a translogarithmic germ.

LetH ⊇ R be a Liouville closed Hardy field; thenH has no translogarithmic element
iff (ℓn) is a logarithmic sequence for H in the sense of [ADH, 11.5]. If in this case H
is also ω-free, then for each translogarithmic H-hardian germ y the isomorphism
type of the ordered differential field H⟨y⟩ over H is uniquely determined. This
is part of the next lemma, which follows from [ADH, 13.6.7, 13.6.8]. We need to
assume familiarity with the Newton degree ndeg(P ) and Newton weight nwt(P )
of P ∈ H{Y } ̸= for suitable H; see [ADH, 11.1].

Lemma 8.2. Let H be an ω-free H-field, with asymptotic couple (Γ, ψ), and
let L = H⟨y⟩ be a pre-H-field extension of H with Γ< < vy < 0. Then for
all P ∈ H{Y }̸= we have

v
(
P (y)

)
= γ + ndeg(P )vy + nwt(P )ψL(vy) where γ = ve(P ) ∈ Γ,

and thus

ΓL = Γ⊕ Zvy ⊕ ZψL(vy) (internal direct sum).

Moreover, if L∗ = H⟨y∗⟩ is a pre-H-field extension of H with Γ< < vy∗ < 0
and sign y = sign y∗, then there is a unique pre-H-field isomorphism L→ L∗ which
is the identity on H and sends y to y∗.

This lemma suggests how to obtain Proposition 8.1: follow the arguments in the
proof of [ADH, 13.6.7]. In the rest of this subsection we carry out this plan. In the
next lemma and corollary H ⊇ R is a Liouville closed Hardy field and y ∈ C<∞.
The proof of this lemma assumes familiarity with the binary relation ≼♭ on K
and K{Y } for suitable H-asymptotic fields K, and their variants; see [ADH, 9.4].

Lemma 8.3. Suppose H is ω-free and for all ℓ ∈ H>R we have, in C:
(i) 1 ≺ y ≺ ℓ;
(ii) δ

n(y) ≼ 1 for all n ⩾ 1, where δ := ϕ−1
∂, ϕ := ℓ′;

(iii) y′ ∈ C× and (1/ℓ)′ ≼ y†.
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Let P ∈ H{Y }̸=. Then in C we have

P (y) ∼ a yd (y†)w where a ∈ H×, d = ndeg(P ), w = nwt(P ).

(Hence y is hardian over H and d-transcendental over H.)

Proof. Since H is real closed, it has a monomial group by [ADH, 3.3.32], so the
material of [ADH, 13.3] applies. Then [ADH, 13.3.3] gives a monic D ∈ R[Y ] ̸=,
b ∈ H×, w ∈ N, and an active element ϕ of H with 0 < ϕ ≺ 1 such that:

Pϕ = b ·D · (Y ′)w +R, R ∈ Hϕ{Y }, R ≺♭
ϕ b.

Set d := ndegP , and note that by [ADH, 13.1.9] we have d = degD + w and w =
nwtP . Replace P , b, R by b−1P , 1, b−1R, respectively, to arrange b = 1. Take ℓ ∈ H
with ℓ′ = ϕ, so ℓ > R; we use the superscript ◦ as in the subsection on compositional
conjugation of Section 4; in particular, y◦ = y◦ℓinv with (y◦)′ = (ϕ−1y′)◦, so (y◦)† ≽
1/x2 by hypothesis (iii) of our lemma. For f, g ∈ H we have

f ≺♭
ϕ g (in H) ⇐⇒ f ≺♭ g (in Hϕ) ⇐⇒ f◦ ≺♭ g◦ (in H◦).

Hence in H◦{Y } we have

(Pϕ)◦ = D · (Y ′)w +R◦ where R◦ ≺♭ 1.

Evaluating at y◦ we have D(y◦)
(
(y◦)′

)
w ∼ (y◦)d

(
(y◦)†

)
w and so D(y◦)

(
(y◦)′

)
w ≽

x−2w ≍♭ 1. By (i) we have (y◦)m ≺ x for m ⩾ 1, and by (ii) we have (y◦)(n) ≼ 1
for n ⩾ 1. Hence R◦(y◦) ≼ h◦ for some h ∈ H with h◦ ≺♭ 1. Thus in C we have

(Pϕ)◦(y◦) ∼ (y◦)d
(
(y◦)†

)
w.

Since P (y)◦ = (Pϕ)◦(y◦), this yields P (y) ∼ a · yd · (y†)w for a = ϕ−w. □

Corollary 8.4. Suppose H is ω-free and 1 ≺ y ≺ ℓ for all ℓ ∈ H>R. Then the
following are equivalent:

(i) y is hardian over H;
(ii) for all h ∈ H>R there is an ℓ ∈ H>R such that ℓ ≼ h and y, ℓ lie in a

common Hardy field;
(iii) for all h ∈ H>R there is an ℓ ∈ H>R such that ℓ ≼ h and y ◦ℓinv is hardian.

Proof. (i) ⇒ (ii) ⇒ (iii) is clear. Let ℓ ∈ H>R be such that y◦ := y ◦ ℓinv lies in a
Hardy field H0; we arrange x ∈ H0. For ϕ := ℓ′ we have

(ϕ−1y†)◦ = (y◦)† ≻ (1/x)′ = −1/x2

and thus y† ≻ −ϕ/ℓ2 = (1/ℓ)′. Also y◦ ≺ x, hence z := (y◦)′ ≺ x′ = 1 and
so z(n) ≺ 1 for all n. With δ := ϕ−1

∂ and n ⩾ 1 we have δ
n(y)◦ = z(n−1), and

thus δ
n(y) ≺ 1. Moreover, for h ∈ H>R with ℓ ≼ h and θ := h′ we have θ−1

∂ = fδ

where f := ϕ/θ ∈ H, f ≼ 1. Let n ⩾ 1. Then

(θ−1
∂)n = (fδ)n = Gn

n(f)δ
n + · · ·+Gn

1 (f)δ on C<∞

where Gn
j ∈ Q{X} ⊆ Hϕ{X} for j = 1, . . . , n.

As δ is small as a derivation on H, we have Gn
j (f) ≼ 1 for j = 1, . . . , n, and

so (θ−1
∂)n(y) ≺ 1. Thus (iii) ⇒ (i) by Lemma 8.3. □
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Proof of Proposition 8.1. Let H ⊇ R be any ω-free Liouville closed Hardy field
not containing any translogarithmic element; in view of Theorem 7.14 it suffices
to show that then some Hardy field extension of H contains a translogarithmic
element. The remark after Corollary 5.28 yields a translogarithmic germ y in a Cω-
Hardy field H0 ⊇ R. Then for each n, the germs y, ℓn are contained in a common
Hardy field, namely Li(H0). Hence y generates a proper Hardy field extension of H
by (ii) ⇒ (i) in Corollary 8.4. □

Proposition 8.1 goes through when “maximal” is replaced by “C∞-maximal” or
“Cω-maximal”. This follows from its proof, using also remarks after the proof of
Theorem 7.14. Here is a conjecture that is much stronger than Proposition 8.1; it
postulates an analogue of Corollary 5.23 for infinite “lower bounds”:

Conjecture. If H is maximal, then there is no y ∈ C1 such that 1 ≺ y ≺ h for
all h ∈ H>R, and y′ ∈ C×.

We observe that in this conjecture we may restrict attention to Cω-hardian germs y:

Lemma 8.5. Suppose there exists y ∈ C1 such that 1 ≺ y ≺ h for all h ∈ H>R

and y′ ∈ C×. Then there exists such a germ y which is Cω-hardian.

Proof. Take y as in the hypothesis. Replace y by −y if necessary to arrange y > R.
Now Theorem 5.22 yields a Cω-hardian germ z ⩾ yinv. By Lemma 4.4, the germ zinv

is also Cω-hardian, and R < zinv ⩽ y ≺ h for all h ∈ H>R. □

Lower bounds on the growth of germs in E(H). In this subsection H is a
Hardy field. Recall from Corollary 5.15 that for all f ∈ E(H) there are h ∈ H(x)
and n such that f ⩽ expn h. In particular, the sequence (expn x) is cofinal in E(Q).
By Theorem 5.20 and Corollary 5.27, the sequence (ℓn) = (logn x) is coinitial
in E(Q)>R; see also [17, Theorem 13.2]. Thus for the Hardy field H = Li(R), the
subset H>R is coinitial in E(Q)>R = E(H)>R, equivalently, Γ<

H is cofinal in Γ<
E(H).

We now generalize this fact, also recalling from the remarks after Corollary 7.7
that Li(R) is ω-free:

Theorem 8.6. Suppose H is ω-free. Then Γ<
H is cofinal in Γ<

E(H).

Proof. Replacing H by Li
(
H(R)

)
and using [ADH, 13.6.1] we arrange that H is

Liouville closed and H ⊇ R. Let y ∈ E(H) and suppose towards a contradiction
that R < y < H>R. Then f := yinv is transexponential and hardian (Lemma 4.4).
Lemma 5.19 gives a bound b ∈ C× for R⟨f⟩. Lemma 5.17 gives ϕ ∈ (Cω)× such
that ϕ(n) ≺ 1/b for all n; set r := ϕ · sinx ∈ Cω. Then by Lemma 5.21 (with R⟨f⟩ in
place of H) we have Q(r) ≺ 1 for all Q ∈ R⟨f⟩{Y } with Q(0) = 0. Hence g := f+r
is eventually strictly increasing with g ≻ 1, and y = f inv and z := ginv ∈ C<∞ do
not lie in a common Hardy field. Thus in order to achieve the desired contradiction
it suffices to show that z is H-hardian. For this we use Corollary 8.4. It is clear
that f ∼ g, so y ∼ z by Corollary 2.6, and thus 1 ≺ z ≺ ℓ for all ℓ ∈ H>R.
Let ℓ ∈ H>R and ℓ ≺ x; we claim that z◦ℓinv is hardian, equivalently, by Lemma 4.4,
that ℓ◦g = (z ◦ ℓinv)inv is hardian. Now ℓ◦f = (y ◦ ℓinv)inv is hardian and ℓ◦f ≻ 1,
and Lemma 5.11 gives ℓ◦f − ℓ◦g ∈ (C<∞)≼. Hence ℓ ◦ f ∼∞ ℓ ◦ g by Lemma 5.12.
For all n we have ℓn ◦ ℓ = logn ℓ ∈ H>R, so y ⩽ ℓn ◦ ℓ, hence y ◦ ℓinv ⩽ ℓn, which by
compositional inversion gives ℓ ◦ f ⩾ expn x. So ℓ ◦ g is hardian by Corollary 5.14.
Thus z is H-hardian by (iii) ⇒ (i) of Corollary 8.4. □
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If H ⊆ C∞ is ω-free, then Γ<
H is also cofinal in Γ<

E∞(H), and similarly with ω in place

of ∞. (Same proof as that of Theorem 8.6.) If H is bounded, then D(H) = E(H)
by Theorem 5.20, in which case Theorem 8.6 already follows from [ADH, 13.6.1].
Boshernitzan [17, p. 144] asked whether D(H) = E(H) in general, and he gave
Theorem 5.20 as support for a positive answer. Our Theorem 8.6 can be seen as
further evidence.
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48. J. Liouville, Mémoire sur l’integration d’une classe d’équations différentielles du second
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