Solving linear differential equations over H-fields

Matthias Aschenbrenner

University of Illinois at Chicago

(joint work with L. van den Dries and J. van der Hoeven)

July 2005

Overview.

- (1) Differential rings and fields; linear differential operators.
- (2) Differential valuations.
- (3) Linear differential operators over differential-valued fields.
- (4) Factorizations theorems for linear differential operators.
- (5) Complete solution of A(y) = g.
- (6) Examples.
- (7) Uniqueness questions.

1. Differential rings and fields; linear differential operators.

A differential ring is a ring K (here: always commutative and containing \mathbb{Q}) equipped with a derivation D, i.e., a map $D: K \to K$ satisfying

 $D(f+g) = D(f) + D(g), \quad D(fg) = fD(g) + gD(f) \qquad (f, g \in K).$

Usually write, for $f \in K$:

$$f' = D(f), f'' = D^2(f), \dots, f^{(n)} = D^n(f), n > 0.$$

A differential field is a differential ring K whose underlying ring is a field. In this case $C = C_K := \{f \in K : f' = 0\}$ forms a subfield of K, called the constant field of K.

For a nonzero element f of a differential field put

 $f^{\dagger} := f'/f$ (the logarithmic derivative of f).

Let K be a differential field. We put

K[D] = the ring of linear differential operators over K.

Formally, K[D] is a ring with 1 containing K as a subring (with the same 1), with a distinguished element D, such that K[D], as a left-module over K, is free with basis

$$D^{0}, D^{1}, D^{2}, \dots,$$
 with $D^{0} = 1, D^{1} = D, D^{m} \neq D^{n}$ for $m \neq n$,

and such that Da = aD + a' for all $a \in K$.

Every $A \in K[D]$ can be written as

$$A = a_0 + a_1 D + \dots + a_n D^n \quad (a_0, \dots, a_n \in K).$$

If $a_n \neq 0$, then we say that A has order n. Put $order(0) := -\infty$. Then order(AB) = order(A) + order(B) for all $A, B \in K[D]$. Let R be a differential ring extension of K. With A as above we obtain a C-linear operator

$$y \mapsto A(y) := a_0 y + a_1 y' + \dots + a_n y^{(n)} \colon R \to R.$$

Multiplication in $K[D] \longleftrightarrow$ composition of C-linear operators:

$$(AB)(y) = A(B(y))$$
 for $A, B \in K[D]$ and $y \in R$.

One calls A of positive order **irreducible** if there are no $A_1, A_2 \in K[D]$ of positive order with $A = A_1A_2$.

The kernel of $A \in K[D]$ acting as C-linear operator on K,

$$\ker A := \{ y \in K : A(y) = 0 \},\$$

is a C-linear subspace of K of dimension $\leq n$ if $0 \leq \text{order } A \leq n$.

Division with remainder. For $A, B \in K[D]$, $B \neq 0$, there exist unique $Q, R \in K[D]$ with A = QB + R and order R < order B.

As a consequence we obtain: Let $A \in K[D]$ be of order n > 0, and $u^{\dagger} = a \in K$ with $u \neq 0$ from some differential field extension of K. Then

$$A = B \cdot (D - a)$$
 for some $B \in K[D] \iff A(u) = 0.$

Proof. Write $A = B \cdot (D - a) + b$, $B \in K[D]$, and note A(u) = bu.

Here is another useful fact about zeros of differential operators:

Suppose that K is real closed, and u is a nonzero element in a differential field extension of K(i), $i^2 = -1$, such that $u^{\dagger} \in K(i)$. Then

$$B(u) = 0$$
 for some $B \in K[D]$ of order 2.

2. Differential valuations.

Let K be a differential field, and let

$$f \mapsto v(f) = vf \colon K^{\times} = K \setminus \{0\} \to \Gamma$$

be a (Krull) valuation of K, extended to K by $v(0) := \infty > \Gamma$. We put

$$\mathcal{O} := \{ f \in K : vf \ge 0 \} \quad \text{(the valuation ring of } v \text{)},$$

 $\mathfrak{m} := \{ f \in K : vf > 0 \}$ (the maximal ideal of \mathcal{O}).

Definition (Rosenlicht). The valuation v is called a **differential** valuation of K (and the pair (K, v) a **differential-valued field**) if

(1) for all $f, g \in K^{\times}$ with $vf, vg \neq 0$: $vf \leq vg \iff v(f') \leq v(g')$;

(2) v is trivial on C, and $\mathcal{O} = C + \mathfrak{m}$.

Example. Suppose K is an H-field. The valuation with valuation ring \mathcal{O} = the convex hull of C in K, is a differential valuation of K.

Example. Let C be a field of characteristic zero. Equip

 $K = C[[x^{\mathbb{Z}}]] =$ the field of Laurent series in x^{-1} over C

with the derivation $D = \frac{d}{dx}$, with constant field C. For $f \in K$ written as

$$f = a_r x^r + a_{r-1} x^{r-1} + \dots \quad (a_r, a_{r-1}, \dots \in C, a_r \neq 0, r \in \mathbb{Z})$$

put vf := -r. Then $v \colon K^{\times} \to \mathbb{Z}$ is a differential valuation of K.

Fact. (Rosenlicht.) If K is a differential-valued field, then so is the algebraic closure K^{a} of K (with the unique extension of D to a derivation of K^{a} and any extension of v to a valuation of K^{a}).

Let K be a differential-valued field. Sometimes it is useful to work with the **dominance relations** \preccurlyeq , \prec , \approx , ... on K associated to v, rather than with v directly:

 $f \preccurlyeq g : \iff vf \geqslant vg$ (g dominates f) $f \prec g : \iff vf > vg$ (f can be neglected with respect to g) $f \asymp g : \iff vf = vg$ (f and g are asymptotic).

Terminology:

 $f \prec 1$: f is infinitesimal $f \succ 1$: f is infinite $f \preccurlyeq 1$: f is finite (or bounded).

Axiom (2) reads: $c \approx 1$ for all $c \in C^{\times}$, and for every $f \preccurlyeq 1$ in K there exists $c \in C$ with $f - c \prec 1$.

By Axiom (1), for all $f \in K^{\times}$ with $vf \neq 0$, the value v(f') depends only on vf. So the derivation of K induces a function

$$\psi \colon \Gamma^* = \Gamma \setminus \{0\} \to \Gamma, \qquad \psi(vf) := v(f^{\dagger}) = v(f') - v(f).$$

The pair (Γ, ψ) is called the **asymptotic couple** of K. (Rosenlicht.)

We say that the asymptotic couple (Γ, ψ) of K is of H-type if

$$0 < \alpha \leq \beta \Rightarrow \psi(\alpha) \ge \psi(\beta)$$
 for all $\alpha, \beta \in \Gamma$.

The asymptotic couple of an H-field is of H-type.

We say that K **preserves infinitesimals** if

 $f \prec 1 \Rightarrow f' \prec 1$ for all $f \in K$.

(Can always achieved by replacing D by aD for suitable $a \in K^{\times}$.)

Other (less obvious) consequences of Axiom (1):

• for all
$$f, g \in K^{\times}$$
 with $vf, vg > 0$:

$$\psi(vf) < v(g') = (\mathrm{id} + \psi)(vg);$$

- there is at most one $\beta \in \Gamma$ with $\beta \notin (id + \psi)(\Gamma^*)$;
- if (Γ, ψ) is of *H*-type, then

 $\beta \in \Gamma \setminus (\mathrm{id} + \psi)(\Gamma^*) \iff \Psi < \beta < (\mathrm{id} + \psi)(\Gamma^{>0}), \text{ or } \beta = \max \Psi.$

Here

$$\Psi := \big\{ \psi(\gamma) : \gamma \in \Gamma^* \big\}.$$

Example. Suppose $K = C[[x^{\mathbb{Z}}]]$. Then $\Psi = \{-vx\}$.

3. Linear differential operators over differential-valued fields.

Let K be a differential-valued field whose asymptotic couple (Γ, ψ) is of *H*-type, with $\Gamma \neq \{0\}$. Let

$$A = a_0 + a_1 D + \dots + a_n D^n \in K[D], \quad a_0, \dots, a_n \in K, \quad a_n \neq 0.$$

We write

$$v(A) := \min_{i} v(a_i)$$
 (the Gauss valuation of A)
 $\mu(A) := \min\{i : v(a_i) = v(A)\}.$

Fact. For each $y \in K^{\times}$, v(Ay) and $\mu(Ay)$ only depend on vy.

Hence we get induced functions

$$vy \mapsto v_A(vy) := v(Ay) \colon \Gamma \to \Gamma,$$

 $vy \mapsto \mu_A(vy) := \mu(Ay) \colon \Gamma \to \{0, \dots, n\}.$

Some basic facts about v_A and μ_A :

Theorem.

- The map $v_A \colon \Gamma \to \Gamma$ is an order-preserving bijection.
- Suppose that Ψ has a supremum in Γ . Then $\mu_A(\gamma) = 0$ for all but finitely many γ ; in fact, $\sum_{\gamma} \mu_A(\gamma) \leq n$.

Note also that for $y \in K$ we have

$$Ay = A(y) + (\cdots)D + (\cdots)D^2 + \cdots + a_n D^n,$$

hence $v_A(vy) = v(A(y)) \iff \mu_A(vy) = 0$. Put

$$\mathscr{E}(A) := \{ \gamma \in \Gamma : \mu_A(\gamma) > 0 \}.$$

Note: $A(y) = 0 \Rightarrow vy \in \mathscr{E}(A)$, so $\dim_C \ker A \leq |\mathscr{E}(A)|$.

Ingredients in the proof: Newton diagrams and Riccati polynomials.

Newton diagrams. Suppose $P(Z) = a_0 + a_1 Z + \cdots + a_n Z^n \in K[Z]$ is an ordinary polynomial over K, $a_n \neq 0$. The **Newton diagram** of P is

$$\mathcal{N}(P) := \left\{ \left(i, v(a_i) \right) : 0 \leqslant i \leqslant n, a_i \neq 0 \right\} \subseteq \mathbb{Z} \times \Gamma.$$

An **approximate zero** of P is an element $z \in K$ such that

 $P(z) \prec a_i z^i$ for all *i*.

Studying how $\mathcal{N}(P)$ changes when passing from P(Z) to

 $P(Z+\phi) = P_{+\phi}(Z),$

where ϕ is an approximate zero of P, one obtains a piecewise uniform description of $z \mapsto v(P(z))$ in terms of functions of the form

$$z \mapsto v(z - \theta), \qquad \theta \in K,$$

provided K is *henselian* as valued field.

Riccati polynomials. For every *n* there exists $R_n(Z) \in \mathbb{Q}\{Z\}$ such that

$$\frac{y^{(n)}}{y} = R_n(z) \qquad \text{for } y \in K^{\times}, \ z = y^{\dagger}.$$

Examples. $R_0(Z) = 1, R_1(Z) = Z, R_2(Z) = Z^2 + Z', \dots$

We associate to A its **Riccati polynomial**

$$\operatorname{Ri} A := a_0 R_0 + a_1 R_1 + \dots + a_n R_n \in K\{Z\}$$

and its Newton diagram $\mathcal{N}(A) := \mathcal{N}(P)$ where

$$P(Z) := a_0 + a_1 Z + \dots + a_n Z^n \in K[Z].$$

We have, for $y \in K^{\times}$, $z = y^{\dagger}$:

- $A(y)/y = (\operatorname{Ri} A)(z);$
- $\operatorname{Ri}(Ay) = y \operatorname{Ri}(A)_{+z};$
- $v(A) = v(\operatorname{Ri}(A)).$

An element z of K is an **approximate zero** of $\operatorname{Ri} A$ if

$$(\operatorname{Ri} A)(z) \prec a_i R_i(z)$$
 for all *i*.

Fact. For $z \geq 1$, we have:

z is an approximate zero of $\operatorname{Ri} A \iff z$ is an approximate zero of P.

This leads to a piecewise uniform description of $z \mapsto v((\operatorname{Ri} A)_{+z})$ in terms of functions of the form

$$z \mapsto v(z - \theta), \qquad \theta \in K.$$

4. Factorization theorems for linear differential operators.

Let K be a differential-valued field. We say that

- K is 1-maximal if K is henselian, and whenever A(f) = g with A ∈ K[D] of order 1, g ∈ K, and f in an immediate differential-valued field extension of K, then f ∈ K;
- for n ≥ 2, K is said to be n-maximal if K is (n − 1)-maximal, and whenever A(f) = 0 with A ∈ K[D] of order n and f in an immediate differential-valued field extension of K, then f ∈ K;
- K is ∞ -maximal if K is n-maximal for all n > 0.

By Zorn, K has an immediate differential-valued field extension L which has no proper immediate differential-valued field extension; such an L is ∞ -maximal. In particular, maximally valued $\Rightarrow \infty$ -maximal; e.g., $\mathbb{R}[[x^{\mathbb{Z}}]]$ and $\mathbb{C}[[x^{\mathbb{Z}}]]$ are ∞ -maximal.

The differential-valued subfield $\mathbb{R}\{\{x^{\mathbb{Z}}\}\}\$ of $\mathbb{R}[[x^{\mathbb{Z}}]]$ is *not* 1-maximal.

From now on assume that the asymptotic couple (Γ, ψ) of K is of *H*-type, with $\Gamma \neq \{0\}$.

Theorem. Suppose K is algebraically closed and n-maximal, n > 0, and Ψ has a supremum in Γ . Then each $A \in K[D]$ of order n is a product $A = A_1 \cdots A_n$ with all $A_i \in K[D]$ of order 1, and

 $\dim_C \ker A = \dim_C K/A(K).$

Main problem in the proof. We do not know whether *K* has an immediate differential-valued field extension that is maximally valued.

Corollary. Suppose K is real closed, its algebraic closure is n-maximal, n > 0, and Ψ has a supremum in Γ . Then each $A \in K[D]$ of order n is a product $A_1 \cdots A_m$ with all $A_i \in K[D]$ irreducible of order 1 or order 2. **5.** Complete solution of A(y) = g.

Let K be a differential-valued field whose asymptotic couple (Γ, ψ) is of H-type, $\Gamma \neq \{0\}$, and $\sup \Psi = 0$. Then there is no $y \in K$ with y' = 1. However, we can adjoin a solution of this equation to K:

Let K(x) be a field extension of K with x transcendental over K. There is a unique pair consisting of a derivation of K(x) and a valuation ring of K(x) that makes K(x) a differential-valued field extension of K such that x' = 1 and $x \succ 1$.

Suppose now that K is algebraically closed and ∞ -maximal, and let $A \in K[D]$ have order n > 0.

Theorem. There exists a C-linear operator A^{-1} : $K[x] \to K[x]$ such that for all $h \in K[x]$:

$$A(A^{-1}(h)) = h, \quad \deg_x A^{-1}(h) \leq \deg_x h + \sum_{\gamma} \mu_A(\gamma).$$

As to solving the homogeneous equation A(y) = 0 in K[x], we have:

Theorem. Let $\alpha_1 > \cdots > \alpha_r$ be the distinct elements of $\mathscr{E}(A)$. Then there are $h_{ij} \in K[x]$ for $1 \leq i \leq r$ and $0 \leq j < \mu_A(\alpha_i)$ such that

$$A(h_{ij}) = 0, \quad v(h_{ij}) = \alpha_i + j \cdot vx, \quad \deg_x h_{ij} < \sum_{\gamma} \mu_A(\gamma).$$

Each such family (h_{ij}) is a basis of the C-linear space

$$\ker_x A := \left\{ h \in K[x] : A(h) = 0 \right\}$$

In particular

$$\sum_{\gamma} \mu_A(\gamma) = \mu_A(\alpha_1) + \dots + \mu_A(\alpha_r) = \dim_C \ker_x A.$$

Let

 $\mathscr{L} := \{ y^{\dagger} : y \in K^{\times} \} \qquad (a \mathbb{Q}\text{-linear subspace of } K)$ and let Q be a \mathbb{Q} -linear subspace Q of K such that $K = \mathscr{L} \oplus Q$. Let $q \mapsto e(q) \colon Q \xrightarrow{\cong} e(Q)$

be a multiplicatively written copy of Q, and let

$$x^{\mathbb{N}} := \{x^n : n \in \mathbb{N}\} \subseteq K(x).$$

Equip

$$U := K \big[\operatorname{e}(Q) \cdot x^{\mathbb{N}} \big]$$

with the unique derivation extending the one on K[x] and satisfying e(q)' = q e(q) for all $q \in Q$. (Think of e(q) as $exp(\int q)$.)

Proposition. There are *C*-linearly independent $h_1, \ldots, h_n \in U$ with

$$A(h_i) = 0, \quad \deg_x h_i < n \qquad \text{for } i = 1, \dots, n.$$

6. Examples.

Let K be a differential-valued field with asymptotic couple of H-type.

Corollary (to the factorization theorem). Suppose K is a directed union of maximally valued differential-valued subfields F whose Ψ_F has a supremum in Γ_F .

- If K is algebraically closed, then every $A \in K[D]$ of degree n > 0 is a product $A = A_1 \cdots A_n$ with all $A_i \in K[D]$ of degree 1.
- If K is real closed, then every $A \in K[D]$ of positive degree is a product $A = A_1 \cdots A_m$ with all $A_i \in K[D]$ of degree 1 or degree 2.

In particular, for $K = \mathbb{R}[[x^{\mathbb{R}}]]^{\text{LE}}$, we obtain: every $A \in K[D]$ of positive degree is a product $A = A_1 \cdots A_m$ with all $A_i \in K[D]$ of degree 1 or degree 2. The \mathbb{R} -linear map $y \mapsto A(y) \colon K \to K$ is surjective.

The following differential-valued fields are ∞ -maximal:

- $\mathbb{R}[[x^{\mathbb{R}}]]^{\text{LE}}$, as well as its algebraic closure $\mathbb{R}[[x^{\mathbb{R}}]]^{\text{LE}}(i)$;
- the real closure P(ℝ) of ℝ[[x^ℤ]] (= the field of Puiseux series in x⁻¹ with real coefficients);
- the algebraic closure P(ℂ) of ℂ[[x^ℤ]] (= the field of Puiseux series in x⁻¹ with complex coefficients);
- every existentially closed *H*-field.

(If K is henselian, and K has a differential-valued field extension, algebraic over K, which is n-maximal, n > 0, then K is n-maximal.)

7. Uniqueness questions.

Let K be a differential-valued field with asymptotic couple (Γ, ψ) of *H*-type, $\Gamma \neq \{0\}$, and $\sup \Psi = 0$.

Question. Let n > 0. Is there an immediate differential-valued field extension M of K which is n-maximal, and such that for every immediate n-maximal differential-valued field extension L of K there exists an embedding $M \rightarrow L$ which is the identity on K?

```
The answer is "no" even for n = 1:
```

Example. Suppose K = the real closure of the H-subfield $\mathbb{R}(e^x, e^{e^x})$ of $\mathbb{R}[[x^{\mathbb{R}}]]^{\text{LE}}$. Then $a' - e^{e^x} > 1$ for all $a \in K$. For every 1-maximal differential-valued field extension M of K there exists an immediate 1-maximal differential-valued field extension L of K such that there is *no* embedding $M \to L$ which is the identity on K.

We say that K is closed under logarithmic integration if for all $s \in K$ there is $y \in K^{\times}$ with $y^{\dagger} = s$. For n > 0, we say that K is strongly *n*-maximal if the algebraic closure of K is *n*-maximal.

Suppose that $\sup \Psi = 0$, and K is equipped with an ordering making it a real closed H-field, with algebraic closure K(i), $i^2 = -1$.

Theorem. Suppose $\max \Psi = 0$. There exists an *H*-field extension *M* of *K* with the following properties:

- (1) $\max \Psi_M = 0 \text{ and } C_M = C;$
- (2) *M* is real closed, strongly 1-maximal, and closed under logarithmic integration;
- (3) no proper real closed H-subfield of M contains K and is strongly 1-maximal and closed under logarithmic integration.

For each M with these properties and each existentially closed H-field extension E of K there is an embedding $M \to E$ that is the identity on K.

The theorem remains true if "strongly 1-maximal" is replaced by "1-maximal", and "existentially closed" by "Liouville closed."

The H-field K is strongly 1-maximal if and only if

(1) for each $\varepsilon \prec 1$ in K there are $y, z \prec 1$ in K with

$$y' = \varepsilon, \qquad (1+z)^{\dagger} = \varepsilon;$$

(2) for all $\varepsilon \prec 1$ in K there are $y_1, y_2 \prec 1$ in K with

 $(1+y_1+y_2i)^{\dagger} = \varepsilon i$

(think of $y_1 = -1 + \cos \int \varepsilon$ and $y_2 = \sin \int \varepsilon$);

(3) for every $g \in K$ there is $a \in K$ with $a' - g \prec 1$;

(4) for every $A \in K^{a}[D]$ of degree 1 with $\mathscr{E}(A) = \emptyset$ and every $g \in K$ there exists $f \in K^{a}$ with A(f) = g.

Also: K 2-maximal $\Rightarrow K$ strongly 1-maximal $\Rightarrow K 1$ -maximal.