Solving linear differential equations over H-fields

Matthias Aschenbrenner
University of Illinois at Chicago

(joint work with L. van den Dries and J. van der Hoeven)

July 2005

Overview.

(1) Differential rings and fields; linear differential operators.
(2) Differential valuations.
(3) Linear differential operators over differential-valued fields.
(4) Factorizations theorems for linear differential operators.
(5) Complete solution of $A(y)=g$.
(6) Examples.
(7) Uniqueness questions.

1. Differential rings and fields; linear differential operators.

A differential ring is a ring K (here: always commutative and containing
\mathbb{Q}) equipped with a derivation D, i.e., a map $D: K \rightarrow K$ satisfying

$$
D(f+g)=D(f)+D(g), \quad D(f g)=f D(g)+g D(f) \quad(f, g \in K)
$$

Usually write, for $f \in K$:

$$
f^{\prime}=D(f), f^{\prime \prime}=D^{2}(f), \ldots, f^{(n)}=D^{n}(f), n>0
$$

A differential field is a differential ring K whose underlying ring is a field. In this case $C=C_{K}:=\left\{f \in K: f^{\prime}=0\right\}$ forms a subfield of K, called the constant field of K.

For a nonzero element f of a differential field put

$$
f^{\dagger}:=f^{\prime} / f \quad \text { (the logarithmic derivative of } f \text {). }
$$

Let K be a differential field. We put

$$
K[D]=\text { the ring of linear differential operators over } K
$$

Formally, $K[D]$ is a ring with 1 containing K as a subring (with the same 1), with a distinguished element D, such that $K[D]$, as a left-module over K, is free with basis

$$
D^{0}, D^{1}, D^{2}, \ldots, \quad \text { with } D^{0}=1, D^{1}=D, D^{m} \neq D^{n} \text { for } m \neq n
$$

and such that $D a=a D+a^{\prime}$ for all $a \in K$.
Every $A \in K[D]$ can be written as

$$
A=a_{0}+a_{1} D+\cdots+a_{n} D^{n} \quad\left(a_{0}, \ldots, a_{n} \in K\right)
$$

If $a_{n} \neq 0$, then we say that A has order n. Put order $(0):=-\infty$. Then

$$
\operatorname{order}(A B)=\operatorname{order}(A)+\operatorname{order}(B) \quad \text { for all } A, B \in K[D]
$$

Let R be a differential ring extension of K. With A as above we obtain a C-linear operator

$$
y \mapsto A(y):=a_{0} y+a_{1} y^{\prime}+\cdots+a_{n} y^{(n)}: R \rightarrow R
$$

Multiplication in $K[D] \longleftrightarrow$ composition of C-linear operators:

$$
(A B)(y)=A(B(y)) \quad \text { for } A, B \in K[D] \text { and } y \in R
$$

One calls A of positive order irreducible if there are no $A_{1}, A_{2} \in K[D]$ of positive order with $A=A_{1} A_{2}$.

The kernel of $A \in K[D]$ acting as C-linear operator on K,

$$
\operatorname{ker} A:=\{y \in K: A(y)=0\}
$$

is a C-linear subspace of K of dimension $\leqslant n$ if $0 \leqslant$ order $A \leqslant n$.

Division with remainder. For $A, B \in K[D], B \neq 0$, there exist unique $Q, R \in K[D]$ with $A=Q B+R$ and order $R<\operatorname{order} B$.

As a consequence we obtain: Let $A \in K[D]$ be of order $n>0$, and $u^{\dagger}=a \in K$ with $u \neq 0$ from some differential field extension of K. Then

$$
A=B \cdot(D-a) \text { for some } B \in K[D] \quad \Longleftrightarrow \quad A(u)=0 .
$$

Proof. Write $A=B \cdot(D-a)+b, B \in K[D]$, and note $A(u)=b u$.

Here is another useful fact about zeros of differential operators:
Suppose that K is real closed, and u is a nonzero element in a differential field extension of $K(i), i^{2}=-1$, such that $u^{\dagger} \in K(i)$. Then

$$
B(u)=0 \quad \text { for some } B \in K[D] \text { of order } 2 \text {. }
$$

2. Differential valuations.

Let K be a differential field, and let

$$
f \mapsto v(f)=v f: K^{\times}=K \backslash\{0\} \rightarrow \Gamma
$$

be a (Krull) valuation of K, extended to K by $v(0):=\infty>\Gamma$. We put

$$
\begin{aligned}
\mathcal{O} & :=\{f \in K: v f \geqslant 0\} \\
\mathfrak{m} & \text { (the valuation ring of } v) \\
=\{f \in K: v f>0\} & \text { (the maximal ideal of } \mathcal{O} \text {). }
\end{aligned}
$$

Definition (Rosenlicht). The valuation v is called a differential valuation of K (and the pair (K, v) a differential-valued field) if
(1) for all $f, g \in K^{\times}$with $v f, v g \neq 0: v f \leqslant v g \Longleftrightarrow v\left(f^{\prime}\right) \leqslant v\left(g^{\prime}\right)$;
(2) v is trivial on C, and $\mathcal{O}=C+\mathfrak{m}$.

Example. Suppose K is an H-field. The valuation with valuation ring $\mathcal{O}=$ the convex hull of C in K, is a differential valuation of K.

Example. Let C be a field of characteristic zero. Equip

$$
K=C\left[\left[x^{\mathbb{Z}}\right]\right]=\text { the field of Laurent series in } x^{-1} \text { over } C
$$

with the derivation $D=\frac{d}{d x}$, with constant field C. For $f \in K$ written as

$$
f=a_{r} x^{r}+a_{r-1} x^{r-1}+\cdots \quad\left(a_{r}, a_{r-1}, \cdots \in C, a_{r} \neq 0, r \in \mathbb{Z}\right)
$$

put $v f:=-r$. Then $v: K^{\times} \rightarrow \mathbb{Z}$ is a differential valuation of K.

Fact. (Rosenlicht.) If K is a differential-valued field, then so is the algebraic closure K^{a} of K (with the unique extension of D to a derivation of K^{a} and any extension of v to a valuation of K^{a}).

Let K be a differential-valued field. Sometimes it is useful to work with the dominance relations $\preccurlyeq, \prec, \asymp, \ldots$ on K associated to v, rather than with v directly:

$$
\begin{array}{lll}
f \preccurlyeq g & : \Longleftrightarrow \quad v f \geqslant v g & \\
(g \text { dominates } f) \\
f \prec g & : \Longleftrightarrow \quad v f>v g & \\
f \asymp g \text { can be neglected with respect to } g) \\
f & : \Longleftrightarrow \quad v f=v g & \\
(f \text { and } g \text { are asymptotic }) .
\end{array}
$$

Terminology:

$$
\begin{array}{ll}
f \prec 1: & f \text { is infinitesimal } \\
f \succ 1: & f \text { is infinite } \\
f \preccurlyeq 1: & f \text { is finite (or bounded). }
\end{array}
$$

Axiom (2) reads: $c \asymp 1$ for all $c \in C^{\times}$, and for every $f \preccurlyeq 1$ in K there exists $c \in C$ with $f-c \prec 1$.

By Axiom (1), for all $f \in K^{\times}$with $v f \neq 0$, the value $v\left(f^{\prime}\right)$ depends only on $v f$. So the derivation of K induces a function

$$
\psi: \Gamma^{*}=\Gamma \backslash\{0\} \rightarrow \Gamma, \quad \psi(v f):=v\left(f^{\dagger}\right)=v\left(f^{\prime}\right)-v(f)
$$

The pair (Γ, ψ) is called the asymptotic couple of K. (Rosenlicht.)
We say that the asymptotic couple (Γ, ψ) of K is of H-type if

$$
0<\alpha \leqslant \beta \Rightarrow \psi(\alpha) \geqslant \psi(\beta) \quad \text { for all } \alpha, \beta \in \Gamma
$$

The asymptotic couple of an H-field is of H-type.
We say that K preserves infinitesimals if

$$
f \prec 1 \Rightarrow f^{\prime} \prec 1 \quad \text { for all } f \in K
$$

(Can always achieved by replacing D by $a D$ for suitable $a \in K^{\times}$.)

Other (less obvious) consequences of Axiom (1):

- for all $f, g \in K^{\times}$with $v f, v g>0$:

$$
\psi(v f)<v\left(g^{\prime}\right)=(\mathrm{id}+\psi)(v g)
$$

- there is at most one $\beta \in \Gamma$ with $\beta \notin(\mathrm{id}+\psi)\left(\Gamma^{*}\right)$;
- if (Γ, ψ) is of H-type, then

$$
\beta \in \Gamma \backslash(\operatorname{id}+\psi)\left(\Gamma^{*}\right) \Longleftrightarrow \Psi<\beta<(\mathrm{id}+\psi)\left(\Gamma^{>0}\right), \text { or } \beta=\max \Psi
$$

Here

$$
\Psi:=\left\{\psi(\gamma): \gamma \in \Gamma^{*}\right\}
$$

Example. Suppose $K=C\left[\left[x^{\mathbb{Z}}\right]\right]$. Then $\Psi=\{-v x\}$.

3. Linear differential operators over differential-valued fields.

Let K be a differential-valued field whose asymptotic couple (Γ, ψ) is of H-type, with $\Gamma \neq\{0\}$. Let

$$
A=a_{0}+a_{1} D+\cdots+a_{n} D^{n} \in K[D], \quad a_{0}, \ldots, a_{n} \in K, \quad a_{n} \neq 0 .
$$

We write

$$
\begin{aligned}
v(A) & :=\min _{i} v\left(a_{i}\right) \quad \text { (the Gauss valuation of } A \text {) } \\
\mu(A) & :=\min \left\{i: v\left(a_{i}\right)=v(A)\right\} .
\end{aligned}
$$

Fact. For each $y \in K^{\times}, v(A y)$ and $\mu(A y)$ only depend on $v y$.
Hence we get induced functions

$$
\begin{aligned}
v y \mapsto v_{A}(v y) & :=v(A y): \Gamma \rightarrow \Gamma, \\
v y & \mapsto \mu_{A}(v y)
\end{aligned}:=\mu(A y): \Gamma \rightarrow\{0, \ldots, n\} .
$$

Some basic facts about v_{A} and μ_{A} :

Theorem.

- The map $v_{A}: \Gamma \rightarrow \Gamma$ is an order-preserving bijection.
- Suppose that Ψ has a supremum in Γ. Then $\mu_{A}(\gamma)=0$ for all but finitely many γ; in fact, $\sum_{\gamma} \mu_{A}(\gamma) \leqslant n$.
Note also that for $y \in K$ we have

$$
A y=A(y)+(\cdots) D+(\cdots) D^{2}+\cdots+a_{n} D^{n}
$$

hence $v_{A}(v y)=v(A(y)) \Longleftrightarrow \mu_{A}(v y)=0$. Put

$$
\mathscr{E}(A):=\left\{\gamma \in \Gamma: \mu_{A}(\gamma)>0\right\} .
$$

Note: $A(y)=0 \Rightarrow v y \in \mathscr{E}(A)$, so $\operatorname{dim}_{C} \operatorname{ker} A \leqslant|\mathscr{E}(A)|$.
Ingredients in the proof: Newton diagrams and Riccati polynomials.

Newton diagrams. Suppose $P(Z)=a_{0}+a_{1} Z+\cdots+a_{n} Z^{n} \in K[Z]$ is an ordinary polynomial over $K, a_{n} \neq 0$. The Newton diagram of P is

$$
\mathcal{N}(P):=\left\{\left(i, v\left(a_{i}\right)\right): 0 \leqslant i \leqslant n, a_{i} \neq 0\right\} \subseteq \mathbb{Z} \times \Gamma .
$$

An approximate zero of P is an element $z \in K$ such that

$$
P(z) \prec a_{i} z^{i} \quad \text { for all } i .
$$

Studying how $\mathcal{N}(P)$ changes when passing from $P(Z)$ to

$$
P(Z+\phi)=P_{+\phi}(Z),
$$

where ϕ is an approximate zero of P, one obtains a piecewise uniform description of $z \mapsto v(P(z))$ in terms of functions of the form

$$
z \mapsto v(z-\theta), \quad \theta \in K,
$$

provided K is henselian as valued field.

Riccati polynomials. For every n there exists $R_{n}(Z) \in \mathbb{Q}\{Z\}$ such that

$$
\frac{y^{(n)}}{y}=R_{n}(z) \quad \text { for } y \in K^{\times}, z=y^{\dagger} .
$$

Examples. $R_{0}(Z)=1, R_{1}(Z)=Z, R_{2}(Z)=Z^{2}+Z^{\prime}, \ldots$
We associate to A its Riccati polynomial

$$
\operatorname{Ri} A:=a_{0} R_{0}+a_{1} R_{1}+\cdots+a_{n} R_{n} \in K\{Z\}
$$

and its Newton diagram $\mathcal{N}(A):=\mathcal{N}(P)$ where

$$
P(Z):=a_{0}+a_{1} Z+\cdots+a_{n} Z^{n} \in K[Z] .
$$

We have, for $y \in K^{\times}, z=y^{\dagger}$:

- $A(y) / y=(\operatorname{Ri} A)(z)$;
- $\operatorname{Ri}(A y)=y \operatorname{Ri}(A)_{+z} ;$
- $v(A)=v(\operatorname{Ri}(A))$.

An element z of K is an approximate zero of $\mathrm{Ri} A$ if

$$
(\operatorname{Ri} A)(z) \prec a_{i} R_{i}(z) \quad \text { for all } i .
$$

Fact. For $z \succcurlyeq 1$, we have:
z is an approximate zero of $\operatorname{Ri} A \Longleftrightarrow z$ is an approximate zero of P.
This leads to a piecewise uniform description of $z \mapsto v\left((\operatorname{Ri} A)_{+z}\right)$ in terms of functions of the form

$$
z \mapsto v(z-\theta), \quad \theta \in K
$$

4. Factorization theorems for linear differential operators.

Let K be a differential-valued field. We say that

- K is 1-maximal if K is henselian, and whenever $A(f)=g$ with $A \in K[D]$ of order $1, g \in K$, and f in an immediate differential-valued field extension of K, then $f \in K$;
- for $n \geqslant 2, K$ is said to be n-maximal if K is $(n-1)$-maximal, and whenever $A(f)=0$ with $A \in K[D]$ of order n and f in an immediate differential-valued field extension of K, then $f \in K$;
- K is ∞-maximal if K is n-maximal for all $n>0$.

By Zorn, K has an immediate differential-valued field extension L which has no proper immediate differential-valued field extension; such an L is ∞-maximal. In particular, maximally valued $\Rightarrow \infty$-maximal; e.g., $\mathbb{R}\left[\left[x^{\mathbb{Z}}\right]\right]$ and $\mathbb{C}\left[\left[x^{\mathbb{Z}}\right]\right]$ are ∞-maximal.

The differential-valued subfield $\mathbb{R}\left\{\left\{x^{\mathbb{Z}}\right\}\right\}$ of $\mathbb{R}\left[\left[x^{\mathbb{Z}}\right]\right]$ is not 1 -maximal.

From now on assume that the asymptotic couple (Γ, ψ) of K is of H-type, with $\Gamma \neq\{0\}$.

Theorem. Suppose K is algebraically closed and n-maximal, $n>0$, and Ψ has a supremum in Γ. Then each $A \in K[D]$ of order n is a product $A=A_{1} \cdots A_{n}$ with all $A_{i} \in K[D]$ of order 1 , and

$$
\operatorname{dim}_{C} \operatorname{ker} A=\operatorname{dim}_{C} K / A(K)
$$

Main problem in the proof. We do not know whether K has an immediate differential-valued field extension that is maximally valued.

Corollary. Suppose K is real closed, its algebraic closure is n-maximal, $n>0$, and Ψ has a supremum in Γ. Then each $A \in K[D]$ of order n is a product $A_{1} \cdots A_{m}$ with all $A_{i} \in K[D]$ irreducible of order 1 or order 2.

5. Complete solution of $A(y)=g$.

Let K be a differential-valued field whose asymptotic couple (Γ, ψ) is of H-type, $\Gamma \neq\{0\}$, and $\sup \Psi=0$. Then there is no $y \in K$ with $y^{\prime}=1$. However, we can adjoin a solution of this equation to K :

Let $K(x)$ be a field extension of K with x transcendental over K. There is a unique pair consisting of a derivation of $K(x)$ and a valuation ring of $K(x)$ that makes $K(x)$ a differential-valued field extension of K such that $x^{\prime}=1$ and $x \succ 1$.

Suppose now that K is algebraically closed and ∞-maximal, and let $A \in K[D]$ have order $n>0$.

Theorem. There exists a C-linear operator $A^{-1}: K[x] \rightarrow K[x]$ such that for all $h \in K[x]$:

$$
A\left(A^{-1}(h)\right)=h, \quad \operatorname{deg}_{x} A^{-1}(h) \leqslant \operatorname{deg}_{x} h+\sum_{\gamma} \mu_{A}(\gamma)
$$

As to solving the homogeneous equation $A(y)=0$ in $K[x]$, we have:
Theorem. Let $\alpha_{1}>\cdots>\alpha_{r}$ be the distinct elements of $\mathscr{E}(A)$. Then there are $h_{i j} \in K[x]$ for $1 \leqslant i \leqslant r$ and $0 \leqslant j<\mu_{A}\left(\alpha_{i}\right)$ such that

$$
A\left(h_{i j}\right)=0, \quad v\left(h_{i j}\right)=\alpha_{i}+j \cdot v x, \quad \operatorname{deg}_{x} h_{i j}<\sum_{\gamma} \mu_{A}(\gamma)
$$

Each such family $\left(h_{i j}\right)$ is a basis of the C-linear space

$$
\operatorname{ker}_{x} A:=\{h \in K[x]: A(h)=0\}
$$

In particular

$$
\sum_{\gamma} \mu_{A}(\gamma)=\mu_{A}\left(\alpha_{1}\right)+\cdots+\mu_{A}\left(\alpha_{r}\right)=\operatorname{dim}_{C} \operatorname{ker}_{x} A
$$

Let

$$
\mathscr{L}:=\left\{y^{\dagger}: y \in K^{\times}\right\} \quad(\mathrm{a} \mathbb{Q} \text {-linear subspace of } K)
$$

and let Q be a \mathbb{Q}-linear subspace Q of K such that $K=\mathscr{L} \oplus Q$. Let

$$
q \mapsto \mathrm{e}(q): Q \stackrel{ }{\cong} \mathrm{e}(Q)
$$

be a multiplicatively written copy of Q, and let

$$
x^{\mathbb{N}}:=\left\{x^{n}: n \in \mathbb{N}\right\} \subseteq K(x)
$$

Equip

$$
U:=K\left[\mathrm{e}(Q) \cdot x^{\mathbb{N}}\right]
$$

with the unique derivation extending the one on $K[x]$ and satisfying $\mathrm{e}(q)^{\prime}=q \mathrm{e}(q)$ for all $q \in Q$. (Think of $\mathrm{e}(q)$ as $\exp \left(\int q\right)$.)

Proposition. There are C-linearly independent $h_{1}, \ldots, h_{n} \in U$ with

$$
A\left(h_{i}\right)=0, \quad \operatorname{deg}_{x} h_{i}<n \quad \text { for } i=1, \ldots, n
$$

6. Examples.

Let K be a differential-valued field with asymptotic couple of H-type.
Corollary (to the factorization theorem). Suppose K is a directed union of maximally valued differential-valued subfields F whose Ψ_{F} has a supremum in Γ_{F}.

- If K is algebraically closed, then every $A \in K[D]$ of degree $n>0$ is a product $A=A_{1} \cdots A_{n}$ with all $A_{i} \in K[D]$ of degree 1 .
- If K is real closed, then every $A \in K[D]$ of positive degree is a product $A=A_{1} \cdots A_{m}$ with all $A_{i} \in K[D]$ of degree 1 or degree 2 .

In particular, for $K=\mathbb{R}\left[\left[x^{\mathbb{R}}\right]\right]^{\mathrm{LE}}$, we obtain: every $A \in K[D]$ of positive degree is a product $A=A_{1} \cdots A_{m}$ with all $A_{i} \in K[D]$ of degree 1 or degree 2 . The \mathbb{R}-linear map $y \mapsto A(y): K \rightarrow K$ is surjective.

The following differential-valued fields are ∞-maximal:

- $\mathbb{R}\left[\left[x^{\mathbb{R}}\right]\right]^{\mathrm{LE}}$, as well as its algebraic closure $\mathbb{R}\left[\left[x^{\mathbb{R}}\right]\right]^{\mathrm{LE}}(i)$;
- the real closure $\mathrm{P}(\mathbb{R})$ of $\mathbb{R}\left[\left[x^{\mathbb{Z}}\right]\right]$ (= the field of Puiseux series in x^{-1} with real coefficients);
- the algebraic closure $\mathrm{P}(\mathbb{C})$ of $\mathbb{C}\left[\left[x^{\mathbb{Z}}\right]\right]$ (= the field of Puiseux series in x^{-1} with complex coefficients);
- every existentially closed H-field.
(If K is henselian, and K has a differential-valued field extension, algebraic over K, which is n-maximal, $n>0$, then K is n-maximal.)

7. Uniqueness questions.

Let K be a differential-valued field with asymptotic couple (Γ, ψ) of H-type, $\Gamma \neq\{0\}$, and $\sup \Psi=0$.

Question. Let $n>0$. Is there an immediate differential-valued field extension M of K which is n-maximal, and such that for every immediate n-maximal differential-valued field extension L of K there exists an embedding $M \rightarrow L$ which is the identity on K ?

The answer is "no" even for $n=1$:
Example. Suppose $K=$ the real closure of the H-subfield $\mathbb{R}\left(e^{x}, e^{e^{x}}\right)$ of $\mathbb{R}\left[\left[x^{\mathbb{R}}\right]\right]^{\text {LE }}$. Then $a^{\prime}-e^{e^{x}} \succ 1$ for all $a \in K$. For every 1-maximal differential-valued field extension M of K there exists an immediate 1-maximal differential-valued field extension L of K such that there is no embedding $M \rightarrow L$ which is the identity on K.

We say that K is closed under logarithmic integration if for all $s \in K$ there is $y \in K^{\times}$with $y^{\dagger}=s$. For $n>0$, we say that K is strongly n-maximal if the algebraic closure of K is n-maximal.

Suppose that $\sup \Psi=0$, and K is equipped with an ordering making it a real closed H-field, with algebraic closure $K(i), i^{2}=-1$.

Theorem. Suppose max $\Psi=0$. There exists an H-field extension M of K with the following properties:
(1) $\max \Psi_{M}=0$ and $C_{M}=C$;
(2) M is real closed, strongly 1-maximal, and closed under logarithmic integration;
(3) no proper real closed H-subfield of M contains K and is strongly 1-maximal and closed under logarithmic integration.
For each M with these properties and each existentially closed H-field extension E of K there is an embedding $M \rightarrow E$ that is the identity on K.

The theorem remains true if "strongly 1-maximal" is replaced by "1-maximal", and "existentially closed" by "Liouville closed."

The H-field K is strongly 1-maximal if and only if
(1) for each $\varepsilon \prec 1$ in K there are $y, z \prec 1$ in K with

$$
y^{\prime}=\varepsilon, \quad(1+z)^{\dagger}=\varepsilon ;
$$

(2) for all $\varepsilon \prec 1$ in K there are $y_{1}, y_{2} \prec 1$ in K with

$$
\left(1+y_{1}+y_{2} i\right)^{\dagger}=\varepsilon i
$$

(think of $y_{1}=-1+\cos \int \varepsilon$ and $y_{2}=\sin \int \varepsilon$);
(3) for every $g \in K$ there is $a \in K$ with $a^{\prime}-g \prec 1$;
(4) for every $A \in K^{a}[D]$ of degree 1 with $\mathscr{E}(A)=\emptyset$ and every $g \in K$ there exists $f \in K^{\mathrm{a}}$ with $A(f)=g$.

Also: K 2-maximal $\Rightarrow K$ strongly 1-maximal $\Rightarrow K$ 1-maximal.

