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1. Differential rings and fields; linear differential operators.

A differential ring is a ringK (here: always commutative and containing

Q) equipped with aderivation D, i.e., a mapD : K → K satisfying

D(f + g) = D(f) +D(g), D(fg) = fD(g) + gD(f) (f, g ∈ K).

Usually write, forf ∈ K:

f ′ = D(f), f ′′ = D2(f), . . . , f (n) = Dn(f), n > 0.

A differential field is a differential ringK whose underlying ring is a

field. In this caseC = CK := {f ∈ K : f ′ = 0} forms a subfield ofK,

called theconstant fieldof K.

For a nonzero elementf of a differential field put

f† := f ′/f (the logarithmic derivative of f ).

2



LetK be a differential field. We put

K[D] = the ring of linear differential operators overK.

Formally,K[D] is a ring with1 containingK as a subring (with the same

1), with a distinguished elementD, such thatK[D], as a left-module over

K, is free with basis

D0, D1, D2, . . . , with D0 = 1,D1 = D,Dm 6= Dn for m 6= n,

and such thatDa = aD + a′ for all a ∈ K.

EveryA ∈ K[D] can be written as

A = a0 + a1D + · · ·+ anD
n (a0, . . . , an ∈ K).

If an 6= 0, then we say thatA hasorder n. Putorder(0) := −∞. Then

order(AB) = order(A) + order(B) for all A,B ∈ K[D].
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LetR be a differential ring extension ofK. WithA as above we obtain a

C-linear operator

y 7→ A(y) := a0y + a1y
′ + · · ·+ any

(n) : R→ R.

Multiplication inK[D]←→ composition ofC-linear operators:

(AB)(y) = A
(

B(y)
)

for A,B ∈ K[D] andy ∈ R.

One callsA of positive orderirreducible if there are noA1, A2 ∈ K[D]

of positive order withA = A1A2.

The kernel ofA ∈ K[D] acting asC-linear operator onK,

kerA :=
{

y ∈ K : A(y) = 0
}

,

is aC-linear subspace ofK of dimension6 n if 0 6 orderA 6 n.
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Division with remainder. For A,B ∈ K[D],B 6= 0, there exist unique

Q,R ∈ K[D] withA = QB +R andorderR < orderB.

As a consequence we obtain:LetA ∈ K[D] be of ordern > 0, and

u† = a ∈ K with u 6= 0 from some differential field extension ofK. Then

A = B · (D − a) for someB ∈ K[D] ⇐⇒ A(u) = 0.

Proof. WriteA = B · (D − a) + b,B ∈ K[D], and noteA(u) = bu.

Here is another useful fact about zeros of differential operators:

Suppose thatK is real closed, andu is a nonzero element in a differential

field extension ofK(i), i2 = −1, such thatu† ∈ K(i). Then

B(u) = 0 for someB ∈ K[D] of order2.
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2. Differential valuations.

LetK be a differential field, and let

f 7→ v(f) = vf : K× = K \ {0} → Γ

be a (Krull) valuation ofK, extended toK by v(0) :=∞ > Γ. We put

O := {f ∈ K : vf > 0} (the valuation ring ofv),

m := {f ∈ K : vf > 0} (the maximal ideal ofO).

Definition (Rosenlicht). The valuationv is called adifferential
valuation of K (and the pair(K, v) adifferential-valued field) if

(1) for all f, g ∈ K× with vf, vg 6= 0: vf 6 vg ⇐⇒ v(f ′) 6 v(g′);

(2) v is trivial onC, andO = C + m.
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Example.SupposeK is anH-field. The valuation with valuation ring

O = the convex hull ofC in K, is a differential valuation ofK.

Example.LetC be a field of characteristic zero. Equip

K = C[[xZ]] = the field of Laurent series inx−1 overC

with the derivationD = d
dx

, with constant fieldC. Forf ∈ K written as

f = arx
r + ar−1x

r−1 + · · · (ar, ar−1, · · · ∈ C, ar 6= 0, r ∈ Z)

putvf := −r. Thenv : K× → Z is a differential valuation ofK.

Fact. (Rosenlicht.)If K is a differential-valued field, then so is the

algebraic closureKa ofK (with the unique extension ofD to a

derivation ofKa and any extension ofv to a valuation ofKa).
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LetK be a differential-valued field. Sometimes it is useful to work with

thedominance relations4,≺,≍, . . . onK associated tov, rather than

with v directly:

f 4 g :⇐⇒ vf > vg (g dominatesf )

f ≺ g :⇐⇒ vf > vg (f can beneglectedwith respect tog)

f ≍ g :⇐⇒ vf = vg (f andg areasymptotic).

Terminology:
f ≺ 1 : f is infinitesimal

f ≻ 1 : f is infinite

f 4 1 : f is finite (or bounded).

Axiom (2) reads:c ≍ 1 for all c ∈ C×, and for everyf 4 1 in K there

existsc ∈ C with f − c ≺ 1.
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By Axiom (1), for all f ∈ K× with vf 6= 0, the valuev(f ′) depends only

onvf . So the derivation ofK induces a function

ψ : Γ∗ = Γ \ {0} → Γ, ψ(vf) := v(f†) = v(f ′)− v(f).

The pair(Γ, ψ) is called theasymptotic coupleof K. (Rosenlicht.)

We say that the asymptotic couple(Γ, ψ) of K is of H-type if

0 < α 6 β ⇒ ψ(α) > ψ(β) for all α, β ∈ Γ.

The asymptotic couple of anH-field is ofH-type.

We say thatK preserves infinitesimalsif

f ≺ 1⇒ f ′ ≺ 1 for all f ∈ K.

(Can always achieved by replacingD by aD for suitablea ∈ K×.)
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Other (less obvious) consequences of Axiom (1):

• for all f, g ∈ K× with vf, vg > 0:

ψ(vf) < v(g′) = (id+ψ)(vg);

• there is at most oneβ ∈ Γ with β /∈ (id+ψ)(Γ∗);

• if (Γ, ψ) is ofH-type, then

β ∈ Γ \ (id +ψ)(Γ∗)⇐⇒ Ψ < β < (id +ψ)
(

Γ>0
)

, or β = max Ψ.

Here

Ψ :=
{

ψ(γ) : γ ∈ Γ∗
}

.

Example.SupposeK = C[[xZ]]. ThenΨ = {−vx}.
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Γ ↑

→ Γ
◦

β = α+ ψ(α)

β = ψ(α)
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3. Linear differential operators over differential-valued fields.

LetK be a differential-valued field whose asymptotic couple(Γ, ψ) is of

H-type, withΓ 6= {0}. Let

A = a0 + a1D + · · ·+ anD
n ∈ K[D], a0, . . . , an ∈ K, an 6= 0.

We write

v(A) := min
i
v(ai) (the Gauss valuation ofA)

µ(A) := min
{

i : v(ai) = v(A)
}

.

Fact. For eachy ∈ K×, v(Ay) andµ(Ay) only depend onvy.

Hence we get induced functions

vy 7→ vA(vy) := v(Ay) : Γ→ Γ,

vy 7→ µA(vy) := µ(Ay) : Γ→ {0, . . . , n}.
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Some basic facts aboutvA andµA:

Theorem.

• The mapvA : Γ→ Γ is an order-preserving bijection.

• Suppose thatΨ has a supremum inΓ. ThenµA(γ) = 0 for all but

finitely manyγ; in fact,
∑

γ µA(γ) 6 n.

Note also that fory ∈ K we have

Ay = A(y) + (· · · )D + (· · · )D2 + · · ·+ anD
n,

hencevA(vy) = v
(

A(y)
)

⇐⇒ µA(vy) = 0. Put

E (A) :=
{

γ ∈ Γ : µA(γ) > 0
}

.

Note:A(y) = 0⇒ vy ∈ E (A), sodimC kerA 6 |E (A)|.

Ingredients in the proof:Newton diagramsandRiccati polynomials.
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Newton diagrams.SupposeP (Z) = a0 + a1Z + · · ·+ anZ
n ∈ K[Z] is

an ordinary polynomial overK, an 6= 0. TheNewton diagramof P is

N (P ) :=
{(

i, v(ai)
)

: 0 6 i 6 n, ai 6= 0
}

⊆ Z× Γ.

An approximate zeroof P is an elementz ∈ K such that

P (z) ≺ aiz
i for all i.

Studying howN (P ) changes when passing fromP (Z) to

P (Z + φ) = P+φ(Z),

whereφ is an approximate zero ofP , one obtains a piecewise uniform

description ofz 7→ v
(

P (z)
)

in terms of functions of the form

z 7→ v(z − θ), θ ∈ K,

providedK is henselianas valued field.
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Riccati polynomials. For everyn there existsRn(Z) ∈ Q{Z} such that

y(n)

y
= Rn(z) for y ∈ K×, z = y†.

Examples.R0(Z) = 1,R1(Z) = Z,R2(Z) = Z2 + Z ′, . . .

We associate toA its Riccati polynomial

RiA := a0R0 + a1R1 + · · ·+ anRn ∈ K{Z}

and itsNewton diagramN (A) := N (P ) where

P (Z) := a0 + a1Z + · · ·+ anZ
n ∈ K[Z].
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We have, fory ∈ K×, z = y†:

• A(y)/y = (RiA)(z);

• Ri(Ay) = yRi(A)+z;

• v(A) = v
(

Ri(A)
)

.

An elementz of K is anapproximate zeroof RiA if

(RiA)(z) ≺ aiRi(z) for all i.

Fact. For z < 1, we have:

z is an approximate zero ofRiA ⇐⇒ z is an approximate zero ofP .

This leads to a piecewise uniform description ofz 7→ v
(

(RiA)+z

)

in

terms of functions of the form

z 7→ v(z − θ), θ ∈ K.
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4. Factorization theorems for linear differential operators.

LetK be a differential-valued field. We say that

• K is 1-maximal if K is henselian, and wheneverA(f) = g with
A ∈ K[D] of order1, g ∈ K, andf in an immediate
differential-valued field extension ofK, thenf ∈ K;

• for n > 2,K is said to ben-maximal if K is (n− 1)-maximal, and
wheneverA(f) = 0 with A ∈ K[D] of ordern andf in an
immediate differential-valued field extension ofK, thenf ∈ K;

• K is∞-maximal ifK is n-maximal for alln > 0.

By Zorn,K has an immediate differential-valued field extensionL which
has no proper immediate differential-valued field extension; such anL is
∞-maximal. In particular, maximally valued⇒∞-maximal; e.g.,R[[xZ]]

andC[[xZ]] are∞-maximal.

The differential-valued subfieldR{{xZ}} of R[[xZ]] is not 1-maximal.
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From now on assume that the asymptotic couple(Γ, ψ) of K is of

H-type, withΓ 6= {0}.

Theorem. SupposeK is algebraically closed andn-maximal,n > 0,

andΨ has a supremum inΓ. Then eachA ∈ K[D] of ordern is a product

A = A1 · · ·An with all Ai ∈ K[D] of order1, and

dimC kerA = dimC K/A(K).

Main problem in the proof. We do not know whetherK has an

immediate differential-valued field extension that is maximally valued.

Corollary. SupposeK is real closed, its algebraic closure isn-maximal,

n > 0, andΨ has a supremum inΓ. Then eachA ∈ K[D] of ordern is a

productA1 · · ·Am with all Ai ∈ K[D] irreducible of order1 or order2.
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5. Complete solution ofA(y) = g.

LetK be a differential-valued field whose asymptotic couple(Γ, ψ) is of
H-type,Γ 6= {0}, andsupΨ = 0. Then there is noy ∈ K with y′ = 1.
However, we can adjoin a solution of this equation toK:

LetK(x) be a field extension ofK with x transcendental overK. There

is a unique pair consisting of a derivation ofK(x) and a valuation ring

ofK(x) that makesK(x) a differential-valued field extension ofK such
thatx′ = 1 andx ≻ 1.

Suppose now thatK is algebraically closed and∞-maximal, and let
A ∈ K[D] have ordern > 0.

Theorem. There exists aC-linear operatorA−1 : K[x]→ K[x] such

that for all h ∈ K[x]:

A
(

A−1(h)
)

= h, degxA
−1(h) 6 degx h+

∑

γ

µA(γ).
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As to solving the homogeneous equationA(y) = 0 in K[x], we have:

Theorem. Letα1 > · · · > αr be the distinct elements ofE (A). Then

there arehij ∈ K[x] for 1 6 i 6 r and0 6 j < µA(αi) such that

A(hij) = 0, v(hij) = αi + j · vx, degx hij <
∑

γ

µA(γ).

Each such family(hij) is a basis of theC-linear space

kerxA :=
{

h ∈ K[x] : A(h) = 0
}

.

In particular
∑

γ

µA(γ) = µA(α1) + · · ·+ µA(αr) = dimC kerxA.
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Let
L := {y† : y ∈ K×} (aQ-linear subspace ofK)

and letQ be aQ-linear subspaceQ of K such thatK = L ⊕Q. Let

q 7→ e(q) : Q
∼=
−→ e(Q)

be a multiplicatively written copy ofQ, and let

xN := {xn : n ∈ N} ⊆ K(x).

Equip
U := K

[

e(Q) · xN
]

with the unique derivation extending the one onK[x] and satisfying
e(q)′ = q e(q) for all q ∈ Q. (Think of e(q) asexp(

∫

q).)

Proposition. There areC-linearly independenth1, . . . , hn ∈ U with

A(hi) = 0, degx hi < n for i = 1, . . . , n.
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6. Examples.

LetK be a differential-valued field with asymptotic couple ofH-type.

Corollary (to the factorization theorem). SupposeK is a directed union

of maximally valued differential-valued subfieldsF whoseΨF has a

supremum inΓF .

• If K is algebraically closed, then everyA ∈ K[D] of degreen > 0 is

a productA = A1 · · ·An with all Ai ∈ K[D] of degree1.

• If K is real closed, then everyA ∈ K[D] of positive degree is a

productA = A1 · · ·Am with all Ai ∈ K[D] of degree1 or degree2.

In particular, forK = R[[xR]]LE, we obtain: everyA ∈ K[D] of positive

degree is a productA = A1 · · ·Am with all Ai ∈ K[D] of degree1 or

degree2. TheR-linear mapy 7→ A(y) : K → K is surjective.
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The following differential-valued fields are∞-maximal:

• R[[xR]]LE, as well as its algebraic closureR[[xR]]LE(i);

• the real closureP(R) of R[[xZ]] (= the field of Puiseux series inx−1

with real coefficients);

• the algebraic closureP(C) of C[[xZ]] (= the field of Puiseux series in

x−1 with complex coefficients);

• every existentially closedH-field.

(If K is henselian, andK has a differential-valued field extension,

algebraic overK, which isn-maximal,n > 0, thenK is n-maximal.)
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7. Uniqueness questions.

LetK be a differential-valued field with asymptotic couple(Γ, ψ) of

H-type,Γ 6= {0}, andsupΨ = 0.

Question. Letn > 0. Is there an immediate differential-valued field

extensionM ofK which isn-maximal, and such that for every immediate

n-maximal differential-valued field extensionL ofK there exists an

embeddingM → L which is the identity onK?

The answer is “no” even forn = 1:

Example.SupposeK = the real closure of theH-subfieldR(ex, eex

) of

R[[xR]]LE. Thena′ − eex

≻ 1 for all a ∈ K. For every1-maximal

differential-valued field extensionM of K there exists an immediate

1-maximal differential-valued field extensionL of K such that there isno

embeddingM → L which is the identity onK.
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We say thatK is closed under logarithmic integration if for all s ∈ K
there isy ∈ K× with y† = s. Forn > 0, we say thatK is strongly
n-maximal if the algebraic closure ofK is n-maximal.

Suppose thatsupΨ = 0, andK is equipped with an ordering making it a
real closedH-field, with algebraic closureK(i), i2 = −1.

Theorem. Supposemax Ψ = 0. There exists anH-field extensionM of

K with the following properties:

(1) max ΨM = 0 andCM = C;

(2) M is real closed, strongly1-maximal, and closed under logarithmic

integration;

(3) no proper real closedH-subfield ofM containsK and is strongly

1-maximal and closed under logarithmic integration.

For eachM with these properties and each existentially closedH-field

extensionE ofK there is an embeddingM → E that is the identity onK.
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The theorem remains true if “strongly1-maximal” is replaced by

“1-maximal”, and “existentially closed” by “Liouville closed.”

TheH-fieldK is strongly1-maximal if and only if

(1) for eachε ≺ 1 in K there arey, z ≺ 1 in K with

y′ = ε, (1 + z)† = ε;

(2) for all ε ≺ 1 in K there arey1, y2 ≺ 1 in K with

(1 + y1 + y2i)
† = εi

(think ofy1 = −1 + cos
∫

ε andy2 = sin
∫

ε);

(3) for everyg ∈ K there isa ∈ K with a′ − g ≺ 1;

(4) for everyA ∈ Ka[D] of degree1 with E (A) = ∅ and everyg ∈ K

there existsf ∈ Ka withA(f) = g.

Also: K 2-maximal⇒K strongly1-maximal⇒K 1-maximal.
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