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Two success stories at the crossroads of algebra and model theory:

(1) Differential algebra (Ritt, Kolchin; A. Robinson, L. Blum . . . )

– Basic objects aredifferential fields: fieldsK equipped with a

derivationf 7→ f ′:

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′.

– “Universal domains”:differentially closed fields.

– Fits in the model-theoretic framework of “ω-stable theories.”

– Differential algebraic geometry: Nullstellensatz (Seidenberg).

– Applications: Diophantine questions (Buium, Hrushovski),

integration in finite terms (Risch) . . .
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(2) Real algebra (Artin-Schreier, Krull; Tarski, A. Robinson . . . )

– Basic objects areordered fields: fieldsK equipped with a total

ordering≤ such that

a ≤ b, 0 ≤ d ⇒ a+ c ≤ b+ c, ad ≤ bd.

– “Universal domains”:real closed fields(such asR).

– Real (semi-) algebraic geometry: Null- and Positivstellensätze

(Dubois-Risler-Krivine).

– Fits in the wider framework of “o-minimal theories.”

– Applications: Hilbert’s 17th problem (Artin), quantifier

elimination, optimization . . .
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Definition. (Bourbaki, 1961.) AHardy field K is a set of germs at+∞
of differentiable real-valued functions on half-lines(a,+∞), a ∈ R,

forming a differential field with respect to the usual operations on (germs

of) functions.

Examples.

• Q, R, R(x), wherex = germ of the identity function onR

• R(x, ex), R(x, lnx), R(Γ,Γ′,Γ′′, . . . ), . . .

• G. Hardy’s field ofLE-functions:constructed fromR(x) by algebraic

operations, exponentiation, logarithm, and composition.

• Every o-minimal expansioñR of the field of reals gives rise to a

Hardy fieldH(R̃): the field of germs at+∞ of functionsR → R

definable inR̃.
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Any Hardy fieldK carries a natural ordering:

f > 0 :⇐⇒ f(x) > 0 eventually.

In particular, it follows that everyf ∈ K is eventually monotonic, and

lim
x→∞

f(x) ∈ R ∪ {±∞}

exists.

History: du Bois-Reymond (1870s), Hardy (1910), Bourbaki, Rosenlicht,

Boshernitzan, Shackell . . .

Any Hardy fieldK comes equipped with “dominance relations”

f � g ⇐⇒ f = O(g) ⇐⇒ |f | ≤ c|g| for somec ∈ R,

f ≺ g ⇐⇒ f = o(g) ⇐⇒ |f | ≤ c|g| for all c ∈ R, c > 0.
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H-fields.

Definition. An H-field is an ordered differential fieldK (with constant

fieldC) such that:

(H1) f > C ⇒ f ′ > 0;

(H2) f � 1 ⇒ f − c ≺ 1 for somec ∈ C.

In (H2), we considerK as equipped with the dominance relations

f � g ⇐⇒ f = O(g) ⇐⇒ |f | ≤ c|g| for somec ∈ C,

f ≺ g ⇐⇒ f = o(g) ⇐⇒ f � g andg 6� f.

Examples:

Every Hardy fieldK ⊇ R is anH-field (with constant fieldR).
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Properties of the dominance relation.For all elementsf, g, h of an

H-fieldK:

(D1) f � f

(D2) f � g or g � f

(D3) f � g, g � h ⇒ f � h

(D4) f � g ⇒ fh � gh

(D5) f � h, g � h ⇒ f + g � h

(A) If f, g ≺ 1, thenf � g ⇐⇒ f ′ � g′.

Terminology:
f ≺ 1 : f is infinitesimal

f ≻ 1 : f is infinite

f � 1 : f is finite (or bounded).
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We also define an equivalence relation≍ (asymptotic) onK:

f ≍ g :⇐⇒ f � g andg � f.

The equivalence classesv(f), wheref ∈ K× = K \ {0}, are the

elements of an ordered abelian groupΓ = v(K×):

v(f) + v(g) = v(fg), v(f) ≥ v(g) ⇐⇒ f � g.

We have a (Krull)valuation

v : K → Γ∞ = Γ ∪ {∞} (v(0) := ∞)

with value groupΓ. (By (D1)–(D5).)
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By property(A), we have, forf, g ∈ K× with v(f), v(g) 6= 0:

v(f) ≤ v(g) ⇐⇒ v(f ′) ≤ v(g′).

In particular,v(f ′) depends only onv(f), providedv(f) 6= 0.

So the derivation induces a function

ψ : Γ∗ = Γ \ {0} → Γ

by

ψ
(
v(f)

)
:= v

(
f ′

f

)
= v(f ′) − v(f).

The pair(Γ, ψ) is called theasymptotic coupleof K. (Rosenlicht.)
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The field of logarithmic-exponential series.

Let Γ be a (multiplicative) ordered abelian group. Then

R((Γ)) :=



f =

∑

γ∈Γ

cγγ : cγ ∈ R, suppf anti-wellordered



 ,

where suppf := {γ ∈ Γ : cγ 6= 0}, is called thefield of formal series
with coefficients inR and monomials inΓ.

The fieldR((Γ)) carries a natural ordering:

f > 0 :⇐⇒ cLm(f) > 0, whereLm(f) := max suppf .

Example.R((x−1)) = R((xZ)), the field offormal Laurent series in x−1.
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Problem:

ForΓ 6= {1}, the ordered fieldK = R((Γ)) does not admit an

exponential function (K, 0,+, <)
∼=−→ (K>0, 1, ·, <).

Solution:

Construction of the fieldR((x−1))LE of logarithmic-exponen-
tial serieswith real coefficients, as a subfield of someR((Γ)) for

a “very big” Γ (the group ofLE-monomials).

Its elements are formal series with real coefficients:

eex −
√

2ex5 − log x︸ ︷︷ ︸
infinite part

+ 42︸︷︷︸
constant

+x−1 + x−2 + · · · + e−x + e−x2

+ · · ·︸ ︷︷ ︸
infinitesimal part
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LE-series may be viewed asasymptotic expansions(often divergent) of

germs at+∞ of (non-oscillatory) real-valued functions, in terms of

LE-monomials.

Examples.

• Stirling expansion forΓ(x):

log Γ(x) ∼
(
x− 1

2

)
log x−x+

1

2
log(2π)+

∞∑

k=1

B2k

2k(2k − 1)
x1−2k

• Formal solutions to algebraic ODE’s (Écalle, van der Hoeven).

History: Hahn (1907), Higman (1950s), Dahn, Göring, Écalle, Macintyre,

Marker, van den Dries, van der Hoeven . . .
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Some properties ofR((x−1))LE:

• R((x−1))LE ⊇ R((x−1));

• has a naturalordering(with x > R);

• has a naturalexponential functionf 7→ ef ;

• has a naturalderivation(with x′ = 1, constant fieldR);

• has a naturalcomposition operation(f, g) 7→ f(g), for g > R;

• the iterates ofexp ex, eex

, eee
x

, . . . arecofinal in R((x−1))LE;

• is anelementary extensionof R equipped with lots of further

(analytic) structure: exp, analytic functions on compact cubes,

Γ-function on(0,∞) . . .
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There is positive evidence thatR((x−1))LE plays the role of a “universal

domain” for the theory ofH-fields:

• R((x−1))LE is a Liouville closedH-field: anH-fieldK is Liouville
closedif it is real closed and solves all differential equations

y′ = a,
z′

z
= b (a, b ∈ K).

• A fragment of the theory ofR((x−1))LE is “completely” understood,

namely the theory of its asymptotic couple. (A., van den Dries 1999;

A. 2000.)

• The intermediate value property(IVP) for differential polynomials

holds inR((x−1))LE. (van der Hoeven, 1999.)

• Many Hardy fields can be embedded intoR((x−1))LE (as ordered

differential fields), e.g.,H(Ran,exp).
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Conjecture. (van den Dries) AnH-fieldK is existentially closed(i.e., is

a “universal domain” for the theory ofH-fields) if and only if

• K is Liouville closed, and

• K satisfies the IVP for differential polynomials overK.

(So in particular,R((x−1))LE is a universal domain forH-fields.)

We do know:

Theorem. (A., van den Dries, 2000)

K existentially closed⇒





Liouville closed,

IVP for differential polynomials

of order1.
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Differential Equations over H-Fields.

LetK be anH-field, with asymptotic couple(Γ, ψ). Put

Ψ :=
{
ψ(γ) : 0 6= γ ∈ Γ

}
=

{
v(f ′/f) : f > C

}
.

Let P (Y ) ∈ K{Y } = K[Y, Y ′, Y ′′, . . . ] be a non-zero differential

polynomial.

Theny 7→ P (y) defines acontinuousfunctionK → K which is not

identically zero on any non-empty open subset ofK.

Question 1: What are the zeros ofP? (InK, or anH-field extension.)
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Some basic facts:

Theorem. (A., van den Dries 2000)SupposeK is Liouville closed. Then

there existsf ∈ K>0 such thatP (y) has constant sign> 0 or < 0, for all

y in anH-field extension ofK with y > f .

(In particular, the zero set ofP is discrete.)

Theorem. (A., van den Dries 2000)SupposeK is Liouville closed, and

the coefficients ofP (Y ) lie in someH-subfieldE ofK with ΨE having a

largest element. Then there existsa > C in K such thatP (y) 6= 0 for all

y in all H-field extensionsL ofK withCL < y < a.

The hypothesis is always satisfied forK = R((x−1))LE. It can be omitted

if P is of order1. It cannotbe omitted ifP is of order≥ 2. (A., van der

Hoeven, 2001.)

16



Question 2: How doesv
(
P (y)

)
behave asy varies? (InK, or anH-field

extension ofK.)

First we study a somewhat better behaved quantity. Let

v(P ) := minimum of the valuations of the coefficients ofP

(This defines a valuation onK{Y }.)

Now put

P×h := P (hY ) for h ∈ K (multiplicative conjugation).

Fact: v(P×h) only depends onv(h).

We get an induced function

vP : Γ → Γ, vP

(
v(h)

)
:= v(P×h).
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We have a good understanding ofvL for

L(Y ) = a0Y + a1Y
′ + · · · + anY

(n) ∈ K{Y }.

Functoriality: vL1◦L2
= vL1

◦ vL2
;

Definability: if K is Liouville closed, thenvL is definable in(Γ, ψ);

Bijectivity: if K is real closed, thenvL : Γ → Γ is an order-preserving

bijection;

Relation to v
(
L(h)

)
: if Ψ has a maximum, thenv

(
L(h)

)
= vL(γ) for

all but finitely manyγ = v(h).

Main ideas in the proofs: Newton diagramsandRicatti polynomials.

(à la Ramis, Malgrange, van der Hoeven.)
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SupposeP (Z) = a0 + a1Z + · · · + anZ
n ∈ K[Z] is an ordinary

polynomial overK, an 6= 0. TheNewton diagramof P is

N (P ) :=
{(
i, v(ai)

)
: 0 ≤ i ≤ n, ai 6= 0

}
⊆ Z × Γ.

An approximate zeroof P is an elementz ∈ K such that

P (z) ≺ aiz
i for all i.

Studying howN (P ) changes when passing fromP (Z) to

P (Z + φ) = P+φ(Z),

whereφ is an approximate zero ofP , one obtains a piecewise uniform

description ofz 7→ v
(
P (z)

)
in terms of functions of the form

z 7→ v(z − θ), θ ∈ K.

(ProvidedK is henselianas valued field.)
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Ricatti polynomials. For eachn ∈ N there exists a differential

polynomialRn(Z) (with coefficients inN) such that

y(n)/y = Rn(z) for all y ∈ K×, z = y′/y.

Examples.R0(Z) = 1,R1(Z) = Z,R2(Z) = Z2 + Z ′, . . .

To a linear homogeneous differential polynomial

L(Y ) = a0Y + a1Y
′ + · · · + anY

(n) ∈ K{Y }

we associate itsRicatti polynomial

Ric(L) := a0R0(Z) + a1R1(Z) + · · · + anRn(Z) ∈ K{Z}

and itsNewton diagramN (L) := N (P ), where

P (Z) := a0 + a1Z + · · · + anZ
n ∈ K[Z].
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We have, fory ∈ K×, z = y′/y:

• L(y)/y = Ric(L)(z);

• Ric(L×y) = yRic(L)+z;

• v(L) = v
(
Ric(L)

)
.

An elementz � 1 of K is anapproximate non-infinitesimal zeroof
Ric(L) if

Ric(L)(z) ≺ aiRi(z) for all i.

Fact:
z is an approximate non-infinitesimal zero ofRic(L) ⇐⇒

z is an approximate zero ofP .

This leads to a piecewise uniform description ofz 7→ v
(
Ric(L)+z

)
in

terms of functions of the form

z 7→ v(z − θ), θ ∈ K.
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Consequences for solvingL(y) = g: Suppose thatK is a real closed

H-field such that

(1) Ψ has alargest elementmax Ψ = 0;

(2) K hasno immediateH-field extension.

PutK(i) = algebraic closure ofK (wherei2 = −1) andK(i)dc =

differential closure ofK(i). Letx ∈ K(i)dc with x′ = 1.

(I) The map

y 7→ L(y) : K(i)[x] → K(i)[x]

is surjective.

(II) There is a non-zeroy ∈ K(i)dc with

L(y) = 0 and y′/y ∈ K(i).

(Think of y asexp(
∫
f + ig), f, g ∈ K.)
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Corollary. SupposeK is a Liouville closedH-field which can be written

as a directed union

K =
⋃

i∈I

Ki

of H-fieldsKi satisfying conditions (1) and (2) from before.Then any

linear homogeneous differential polynomial overK is a composition of

1st and2nd order linear homogeneous polynomials overK.

TheH-fieldK = R((x−1))LE satisfies (1) & (2):

R((x−1))LE =
⋃

i

R((1/ logi x))
E

Question: Can every existentially closedH-field be written as a directed

union ofH-fields satisfying (1)?
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The corollary follows from (II) and:

Observation.LetK be a Liouville closedH-field. Any non-zero element

y of K(i)dc with y′/y ∈ K(i) satisfies a 1st or 2nd order linear

homogeneous ODE overK.

Proof. Supposey′/y = a+ ib with a, b ∈ K. If b = 0, theny′ = ay.

Assumeb 6= 0. Write a = −λ′

λ
with λ ∈ K×; then (λy)′

λy
= ib. So we

may assume as well thata = 0. Now differentiatey′ = iby to get

y′′ = ib′y + iby′ =
b′

b
y − b2y′.
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