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Abstract. The derivation of a Hardy field induces on its value group a certain
function ψ. If a Hardy field extends the real field and is closed under powers,

then its value group is also a vector space over R. Such “ordered vector spaces
with ψ-function” are called H-couples. We define closed H-couples and

show that every H-couple can be embedded into a closed one. The key fact is

that closed H-couples have an elimination theory: solvability of an arbitrary
system of equations and inequalities (built up from vector space operations,

the function ψ, parameters, and the unknowns to be solved for) is equivalent

to an effective condition on the parameters of the system. The H-couple of
a maximal Hardy field is closed, and this is also the case for the H-couple of

the field of logarithmic-exponential series over R. We analyse in detail finitely

generated extensions of a given H-couple.
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Introduction

We describe here roughly the main result of the paper, and explain for non-experts
the role of model theory in its conception. Precise formulations follow in section 1,
and sections 2–4 contain the proof of the main result.

We begin with motivating our subject via Hardy fields, and assume some famil-
iarity with its basic theory as developed by Bourbaki [3] and Rosenlicht [17], [18].
This theory is the modern incarnation of ideas on “Orders of Infinity” originating
with Du Bois-Reymond [2] and put on a firm basis by Hardy [7]. Hardy fields are
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ordered differential fields of germs at +∞ of real valued differentiable functions
defined on half lines (a,+∞) with a ∈ R. A Hardy field F has valuation ring

O(F ) :=
{
f ∈ F : |f | ≤ r for some real number r

}
with associated valuation v : F× → V = v(F×). This valuation measures the
growth of functions at infinity: given f, g ∈ F× we have

v(f) > v(g)⇐⇒ lim
x→∞

f(x)

g(x)
= 0.

A key fact [17] is that v(f ′) only depends on v(f) for v(f) 6= 0, f ∈ F×. Thus
the value group V comes equipped with a natural extra operation ψ : V \ {0} → V
given by

ψ
(
v(f)

)
:= v(f ′/f) = v(f ′)− v(f) for v(f) 6= 0, f ∈ F×.

The pair (V, ψ) is an “asymptotic couple of Hardy type” in the sense of Rosenlicht
[16] who studies especially the situation where the abelian group V has finite rank;
in that case ψ takes only finitely many different values. We focus on the opposite
situation where (V, ψ) is large in a certain sense. In addition we include a scalar
multiplication R× V → V among the basic operations. Here is why.

Suppose our Hardy field F extends R(x), and is closed under powers, that is,
0 < f ∈ F =⇒ fr ∈ F for all r ∈ R. (All maximal Hardy fields have these
properties, see [3] or [17].) Then V becomes an ordered vector space over R by
setting r ·v(f) := v(fr) for 0 < f ∈ F . Consider the two-sorted structure consisting
of the ordered field R (first sort), the ordered abelian group V equipped with the
function ψ : V \ {0} → V as above (second sort), with the scalar multiplication
R × V → V relating them. This two-sorted structure is completely determined
by the structure of F as ordered differential field: R is the field of constants of
F ; the valuation ring, and hence the valuation, is defined in terms of R and the
ordering as above; the scalar multiplication is then given by r ·v(f) = v(g) whenever
0 < f, g ∈ F and rf ′/f = g′/g. (The presence of this scalar multiplication is a
contrast to the situation with henselian valued fields of equicharacteristic 0, where
no “definable interaction” between residue field and value group can exist.)

The “asymptotic couples with scalar multiplication” associated to Hardy fields
F as above belong to a certain elementary class, the class of H-couples (the “H”
of Hardy and Hahn). If F is a maximal Hardy field, its associated H-couple (V, ψ)
is even closed , which implies that the set Ψ := ψ

(
V \ {0}

)
is closed downward in

V . (Precise definitions are in section 1.)
Our ultimate aim is to develop a model theory for ordered differential fields such

as maximal Hardy fields. At the most basic level this requires these differential
fields to have a common elimination theory for algebraic differential equations and
inequalities. We do not yet know if such an elimination theory exists, but our main
theorem goes in that direction: it says that the class of closed H-couples with real
closed scalar field has an elimination theory.

Roughly speaking, this means the following. Let S be any finite system of
equations and inequalities built up from symbols for the vector space operations
and the function ψ, and from variables, some ranging over scalars and the others
over vectors; in addition, some variables are considered as parameters, and the
others as the unknowns to be solved for. Let the parameters of the system be given
values in a closed H-couple (V, ψ) with real closed scalar field. Then the solvability
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of S in (V, ψ) is shown to be equivalent to the parameters satisfying a certain finite
system S′ of equations and inequalities (in which the unknowns do not occur any
longer, they have been eliminated). Moreover, S′ only depends on S, not on (V, ψ)
or the particular values of the parameters. However, this is only true if among
the “inequalities” in S′ we allow conditions of the form t ∈ Ψ, and t /∈ Ψ, with
Ψ = ψ

(
V \ {0}

)
. (Such “inequalities” are also allowed in S.) That is why we deal

with H-triples, not just H-couples. (A closed H-couple (V, ψ) gives rise to the
closed H-triple (V, ψ,Ψ).)

One can express this more concisely (and accurately!) using logical terminology
where S and S′ become formulas in a certain language. Relevant here are the
notions of quantifier elimination (Tarski) and model completion (A. Robinson),
which clarify the significance of “having an elimination theory”. For these matters
we refer to the first half of [20] (or corresponding parts of other standard texts in
model theory, like [12]). Indeed, by model-theoretic generalities the class of closed
H-triples with real closed scalar field has an elimination theory as indicated above
if and only if any embedding of a substructure of a closed H-triple (V, ψ,Ψ) with
real closed scalar field into a “sufficiently saturated” closed H-triple (V ′, ψ′,Ψ′)
with real closed scalar field extends to an embedding of (V, ψ,Ψ) into (V ′, ψ′,Ψ′).

Thus rather than directly constructing an elimination theory, we obtain its ex-
istence by proving in section 4 an embedding theorem. The first four sections are
mostly algebraic, with model theory as our guide. In section 5 we address issues
of a more intrinsic nature, both algebraically and from the point of view of model
theory.

We hope the sketch above is helpful to readers not familiar with the model-
theoretic background, which from now on will be assumed. In particular, “⊆” will
be used for the substructure relation as defined in model theory.

1. Definitions and Results

We now formally introduce the objects studied in this paper.

Notation. We put S>a := {s ∈ S : s > a} for an element a of a linearly ordered set
S; similarly for “≥”, “<” or “≤” instead of “>”.

Recall that an ordered vector space over an ordered field k is a vector space V over
k equipped with a linear ordering such that if 0 < v,w ∈ V and 0 < λ ∈ k, then
0 < v + w and 0 < λv. We then define an equivalence relation on V by

v ∼ w :⇐⇒ ∃λ ∈ k>1 :
1

λ
|v| ≤ |w| ≤ λ|v|.

The equivalence class of v ∈ V is written as [v] (or [v]k, if k is not clear from
context), and is called its k-archimedean class. We let [V ] (or [V ]k) be the set
of k-archimedean classes, and linearly order [V ] by

[v] < [w] :⇐⇒ ∀λ ∈ k>0 : λ|v| < |w|
⇐⇒ [v] 6= [w] and |v| < |w|.

Thus [0] = {0} is the smallest k-archimedean class. For ease of notation we put
V ∗ := V \ {0}, and [V ∗] :=

{
[v] : v ∈ V ∗

}
.

Definition 1.1. A Hahn space is an ordered vector space V over an ordered field
k such that for all vectors v, w ∈ V ∗

[v] = [w] =⇒ ∃λ ∈ k : [v − λw] < [w].
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V ↑

→ V
(1, 1)

-1 1

1
◦ •

| |
—

w = v + ψ(v)

w = ψ(v)

It is easy to see that any ordered vector space over R is a Hahn space. We have
chosen the term “Hahn space” since these spaces satisfy an analogue of the Hahn
embedding theorem, see section 2. There we also establish the good behaviour of
Hahn spaces under scalar extension.

Definition 1.2. An H-couple V = (V, ψ) consists of a Hahn space V over an
ordered field k, a distinguished positive element 1 ∈ V , and a function ψ : V ∗ → V
such that for all v, w ∈ V ∗

1. ψ(1) = 1,
2. ψ(v) ≤ ψ(w)⇐⇒ [v] ≥ [w] (hence ψ(v) = ψ(w)⇐⇒ [v] = [w]),
3. ψ(v) < ψ(w) + |w|.

We refer to V as an “H-couple over k” if we want to specify the scalar field k.

The figure above shows the qualitative behavior of the functions ψ and id +ψ on
V ∗. (In section 3 we will see that id +ψ is strictly increasing.) The picture is quite
rough: it cannot show that ψ is constant on k-archimedean classes. But it has been
a precious guide in our work.

Examples.

1. To every Hardy field F ⊇ R(x) closed under powers we associate the corre-
sponding H-couple V = (V, ψ) over R, as indicated in the introduction, with
1 := v(x−1). That we actually obtain an H-couple in this way is clear from
remarks made above, and results in [15].

2. Let k be a logarithmic-exponential ordered field, and let F be a differential
subfield of k((t))LE containing k(x), and closed under powers, that is, if 0 <
f ∈ F and r ∈ k, then fr ∈ F . (See [6] for the construction of k((t))LE, the
field of logarithmic-exponential series over k.) Let v be the valuation on F
with valuation ring {f ∈ F : |f | ≤ r for some r ∈ k}, and associate to F an
H-couple just as we did for the Hardy fields above, with 1 := v(t) = v(x−1).
(In section 3 we show this gives indeed an H-couple over k.)

When dealing with H-couples V = (V, ψ) as model-theoretic objects we construe
them as LH -structures, where LH is the two-sorted language with
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1. scalar variables ranging over the extended scalar field k∞ := k ∪ {∞},
2. vector variables ranging over the extended vector space V∞ := V ∪ {∞},

and with the following non-logical symbols:

3. <, 0, 1, +, −, ·, interpreted as usual in the ordered field k of scalars, with
∞ serving as a default value: the linear ordering on k is extended to a linear
ordering on k∞ by setting λ <∞ for all λ ∈ k, and λ∗µ :=∞ for ∗ ∈ {+,−, ·}
and all λ, µ ∈ k∞ with λ =∞ or µ =∞.

4. <, 0, 1, +, −, ψ, interpreted in the obvious way in V and with ∞ serving as
default value: the linear ordering on V is extended to a linear order on V∞
by setting a <∞ for all a ∈ V , and a+∞ =∞+ a = a−∞ =∞− a =∞
for all a ∈ V∞ , and ψ(0) = ψ(∞) =∞,

5. a symbol · for the map k∞ × V∞ → V∞ that is the scalar multiplication on
k × V and with λ · v =∞ for all (λ, v) ∈

(
k∞ × V∞

)
\ (k × V ),

6. a symbol : for the function V 2
∞ → k∞ that assigns to each (a, b) ∈ V 2 with

[a] ≤ [b] and b 6= 0 the unique scalar a : b = λ ∈ k such that [a − λb] < [b],
and that assigns to all other pairs (a, b) ∈ V 2

∞ the default value a : b =∞.

Remarks.

1. Despite overlap in how we write the symbols of (3), (4), and (5), we actually
distinguish them: for example, the symbol + in (3) is to be regarded as
different from the symbol + in (4). Similarly, the element ∞ ∈ k∞ is to be
distinguished from the element ∞ ∈ V∞.

2. The default values∞ are included to make all basic operations totally defined,
so that no ambiguities arise in the interpretation of terms.

It is easy to see that the H-couples in the model-theoretic sense are exactly the
models of a universal theory in the language LH . Thus each substructure of an
H-couple is also an H-couple, with possibly smaller scalar field. (That’s why we
included the division operation of (6).) We will keep writing H-couples as (V, ψ),
and so on, even when we regard them as LH -structures.

Let (V, ψ) be an H-couple. Then clearly ψ(v) < w + ψ(w) for all v, w ∈ V >0.
Thus (V, ψ) has an “H-cut” in the following sense.

Definition 1.3. An H-cut of (V, ψ) is a set P ⊆ V such that:

1. For all a, b ∈ V , if a < b ∈ P , then a ∈ P .
2. ψ(v) ∈ P and w + ψ(w) /∈ P for all v, w ∈ V >0.

We then also call (V, ψ, P ) an H-triple, and we regard (V, ψ, P ) as an LH,P -
structure, where LH,P extends the language LH by an extra unary predicate P , to
be interpreted by the set P ⊆ V . Clearly the H-triples are then exactly the models
of a universal theory in the language LH,P .

Definition 1.4. The H-couple (V, ψ) is closed if ψ(V ∗) has no largest element,
and

ψ(V ∗) =
{
a ∈ V : a < w + ψ(w) for all w ∈ V >0

}
.

In that case Ψ := ψ(V ∗) is clearly the only H-cut of (V, ψ); we call (V, ψ,Ψ) a
closed H-triple.

In section 3 we prove that each H-triple can be embedded (as LH,P -structure) into
a closed H-triple with the same scalar field. We also show there that the H-couples
associated to maximal Hardy fields and to the ordered differential field R((t))LE are
closed.
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We can now state the main result of this paper, to be established in section 4.

Theorem. The theory of closed H-triples over real closed scalar fields is complete,
eliminates quantifiers, and is the model-completion of the theory of H-triples.

We actually obtain a relative quantifier elimination where the scalar field is not
assumed to be real closed. In section 5 we show that no new structure is induced
on the scalar field in closed H-triples and that the underlying ordered vector space
in such triples is locally o-minimal. We also determine there the definable closure
of a substructure in a closed H-triple, and study simple extensions of H-triples.

In section 6 we indicate a variant of the results above, where there is no scalar
field. Here we have a model-completion that is even weakly o-minimal. In section 7
we discuss a connection to Kuhlmann’s “contraction groups” in [8].

Remarks on 1 and P . The role of the distinguished positive element 1 with
ψ(1) = 1 is to give a convenient normalization. This role is hardly essential, but
does affect issues like completeness as stated in the theorem above. To clarify this
point further, consider an “H-couple without 1”, that is, a couple (V, ψ) consisting
of a non-trivial Hahn space V over an ordered field k and a function ψ : V ∗ → V
satisfying axioms (2) and (3) for H-couples. (We do not distinguish a positive
element 1 and omit the axiom ψ(1) = 1.) Then for each vector a ∈ V the translate
(V, a + ψ) is clearly also an H-couple without 1. Choose any vector b ∈ V >0, and
put a := b− ψ(b). Then a+ ψ(b) = b, so by taking b as our distinguished positive
element 1 we make (V, a+ ψ) into an H-couple over k.

Similarly, without the predicate P for an H-cut we would not have quantifier
elimination: Using results from §3, it is easy to construct closed H-couples (V1, ψ1),
(V2, ψ2) over R, with common substructure (V, ψ) containing a vector v, such that
v ∈ ψ1(V ∗1 ), but v /∈ ψ2(V ∗2 ).

Notational conventions. Let (S,<) be a linearly ordered set. When a ≤ b in S
and (S,<) is clear from context we use the following notations:

[a, b] :=
{
x ∈ S : a ≤ x ≤ b

}
,

(−∞, b] :=
{
x ∈ S : x ≤ b

}
,

[a,∞) :=
{
x ∈ S : x ≥ a

}
.

A set X ⊆ S is called convex (in S) if [a, b] ⊆ X for all a, b ∈ X with a < b. For
any subset X of S and a ∈ X, the convex component of a in X is the (convex)
set {

x ∈ X≤a : [x, a] ⊆ X
}
∪
{
x ∈ X≥a : [a, x] ⊆ X

}
.

(This also depends on S.) The convex components of X are by definition the
convex components of the members of X in X. They form a partition of X. The
convex hull of X (in S) is the smallest convex subset of S containing X. We call
a subset X of S closed upward (in S) if a ∈ S, a > b ∈ X implies a ∈ X, and
closed downward (in S), or a cut in S, if a ∈ S, a < b ∈ X implies a ∈ X.
An element a in an ordered extension of (S,<) is said to realize the cut X in S if
X < a < S \X.

Throughout the paper, we let m,n range over the set N =
{

0, 1, 2, . . .
}

of natural
numbers. If G is an ordered abelian group and g ∈ G, we set |g| := max{−g, g},
and let sgn(g) := −1 if g < 0, sgn(0) := 0, and sgn(g) := 1 if g > 0.
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2. Hahn Spaces

The notion of a Hahn space has been already defined in §1, see Definition 1.1. In
this section we study embedding and scalar extension properties of Hahn spaces.
We also include a very useful lemma about functions on ordered abelian groups.
Throughout this section, let k be an ordered field and V an ordered vector space
over k.

Properties of k-archimedean classes. Let v, w ∈ V and λ ∈ k×. Then:

1. [v] = {0} ⇐⇒ v = 0,
2. [v] = [λv],
3. [v + w] ≤ max

{
[v], [w]

}
,

4. [v + w] = max
{

[v], [w]
}

, if [v] 6= [w].

We say that V is k-archimedean if [V ∗] is a singleton. For example, k as an
ordered vector space over itself is k-archimedean.

For γ ∈ [V ∗], we define the convex linear subspaces

V(γ) :=
{
v ∈ V : [v] < γ

}
, V (γ) :=

{
v ∈ V : [v] ≤ γ

}
.

Note that the ordered vector space V (γ)/V(γ) is k-archimedean.

Remarks. The following facts are easy consequences of the definitions:

1. V is a Hahn space if and only if all vector spaces V (γ)/V(γ) have dimension 1.
2. Any linear subspace of a Hahn space over k is itself a Hahn space over k with

respect to the induced ordering.
3. Any ordered vector space over the field of real numbers is a Hahn space.
4. R as an ordered vector space over Q is not a Hahn space.

Hahn products. Let Γ be a totally ordered set and (Vγ)γ∈Γ a system of ordered
vector spaces over k. For each element v = (vγ)γ∈Γ of the vector space

∏
γ∈Γ Vγ ,

we let

supp v :=
{
γ ∈ Γ : vγ 6= 0

}
denote the support of v. The subset H

(
Γ, (Vγ)γ∈Γ

)
of
∏
γ∈Γ Vγ consisting of

those elements with anti-wellordered support is a k-linear subspace of
∏
γ∈Γ Vγ . It

becomes an ordered vector space over k by setting, for v ∈ H
(
Γ, (Vγ)γ∈Γ

)
, v 6= 0,

0 < v :⇐⇒ 0 < vµ(v),

where µ(v) := max (supp v). We call H
(
Γ, (Vγ)γ∈Γ

)
the Hahn product of

(Vγ)γ∈Γ. Note that if all Vγ are Hahn spaces over k, then H
(
Γ, (Vγ)γ∈Γ

)
is a Hahn

space over k. If all Vγ are equal to V , we also write H(Γ, V ). If V is k-archimedean,
and we put H := H(Γ, V ), then we have a well defined map

[v] 7→ max (supp v) : [H∗]→ Γ (v ∈ H∗),

and this map is an isomorphism of linearly ordered sets.

Hahn embedding theorem. Let V ′ be an ordered vector space over an ordered
field extension k′ of k. Then by an embedding V → V ′ we mean an injective
order preserving k-linear map V → V ′. Such an embedding i : V → V ′ induces a
map [v] 7→ [i(v)] : [V ] → [V ′] from the set of k-archimedean classes of V into the
set of k′-archimedean classes of V ′. This induced map is clearly injective if k = k′.
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Proposition 2.1. Let Γ := [V ∗]. Then there exists an embedding

V → H := H
(
Γ,
(
V (γ)/V(γ)

))
of ordered vector spaces over k with bijective induced map [V ]→ [H].

Proof. The proof is an easy adaptation of Banaschewski’s proof [1] of the Hahn
embedding theorem as presented in [13], pp. 16–17. Let S(V ) be the collection of
all k-linear subspaces of V . We use the fact that there is a map σ : S(V ) → S(V )
with the property that V = W ⊕ σ(W ) and U ⊆ W =⇒ σ(U) ⊇ σ(W ), for all
U,W ∈ S(V ). For each γ ∈ Γ, we can decompose V = V (γ) ⊕ σ

(
V (γ)

)
, and hence

each v ∈ V can be written v = vγ + vσγ for certain vγ ∈ V (γ), vσγ ∈ σ
(
V (γ)

)
.

Consider the map

v 7→
(
vγ + V(γ)

)
γ∈Γ

: V → H.

One verifies that this is an embedding with the desired property.

Corollary 2.2. (Hahn Embedding Theorem for Hahn Spaces) If V is a Hahn
space, then there exists an embedding V → H := H(Γ,k), where Γ := [V ∗], with
bijective induced map [V ]→ [H].

Thus up to isomorphism of ordered vector spaces over k the Hahn spaces over k are
exactly the ordered linear subspaces of Hahn products H(Γ,k) for linearly ordered
sets Γ.

Scalar extension. Given a field extension k′ ⊇ k, let Vk′ be V ⊗k k′ viewed as a
vector space over k′ in the usual way. We consider V as k-linear subspace of Vk′ by
identifying v ∈ V with v ⊗ 1 ∈ Vk′ . The following fact will be used several times:

Lemma 2.3. Let V be a Hahn space, and k′ ⊇ k a field extension. Then every
non-zero vector u ∈ Vk′ can be written as

(2.1) u =

m∑
i=1

λiui with scalars λi ∈ k′ and vectors ui ∈ V >0,

such that [u1] > [u2] > · · · > [um] in [V ∗].

Proof. Let 0 6= u =
∑n
j=1 µjvj (µj ∈ k′, vj ∈ V ). We show by induction on n that

u can be rewritten as in the lemma, with [u1] ≤ max
{

[vj ] : j = 1, . . . , n
}

. The case
n = 1 is trivial; so assume n > 1. We can assume there is k ∈ {1, . . . , n} such that
[v1] = · · · = [vk] > [vj ], for k < j ≤ n. For j = 2, . . . , k we write vj = ρjv1 + wj
with ρj ∈ k, wj ∈ V , [wj ] < [v1]. Put

w :=

k∑
j=2

µjwj +

n∑
j=k+1

µjvj , a sum of n− 1 terms.

Then u = (µ1 +ρ2µ2 + · · ·+ρkµk)v1 +w. Apply the induction hypothesis to w.

Proposition 2.4. Let V be a Hahn space, and let k ⊆ k′ be an extension of ordered
fields. Then there is a unique linear ordering on Vk′ extending the ordering of V ,
making Vk′ into an ordered vector space over k′, such that the inclusion V ↪→ Vk′

is an embedding with injective induced map [V ]→ [Vk′ ].
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Proof. Assume that we are given such an ordering on Vk′ . We can write each non-
zero vector u ∈ Vk′ as in (2.1), with λ1 6= 0. Then u > 0 if and only if λ1 > 0.
This shows uniqueness. Existence: By Corollary 2.2 above, we have an embedding
V → H(Γ,k) of ordered vector spaces over k , where Γ := [V ∗]k. Tensoring with
k′ gives a k′-linear injective map Vk′ → H(Γ,k′). This induces an ordering on Vk′ ,
making it into an ordered vector space over k′ with the desired properties, as one
easily verifies.

Remarks. Under the hypothesis of the proposition above we will consider Vk′ as
being equipped with the unique linear ordering of the proposition. Note that then
Vk′ is a Hahn space over k′, and that the map [V ]→ [Vk′ ] induced by the embedding
V ↪→ Vk′ is a bijection.

Corollary 2.5. (Universal Property) Let V be a Hahn space and k ⊆ k′ be an
extension of ordered fields. Any embedding V → V ′ into an ordered vector space
V ′ over k′ with injective induced map [V ]→ [V ′] extends uniquely to an embedding
Vk′ → V ′.

A lemma about functions on ordered abelian groups. We shall say that a
function f : X → Y between linearly ordered sets X and Y has the intermediate
value property if for all x1 < x2 in X and all y ∈ Y with f(x1) < y < f(x2) or
f(x2) < y < f(x1) there is x ∈ X such that x1 < x < x2 and f(x) = y.

Let G be an ordered abelian group, and for a, b ∈ G write a = o(b) to indicate
that n|a| ≤ |b| for each positive integer n.

Lemma 2.6. Let C ⊆ G be a convex subset, and let the function η : C → G have
the following properties:

1. η(x)− η(y) = o(x− y) for all distinct x, y ∈ C,
2. η(y) = η(z) whenever x, y, z ∈ C with x < y < z and z − y = o(z − x).

Then the function x 7→ x + η(x) : C → G is strictly increasing and has the inter-
mediate value property.

Proof. That x+ η(x) is strictly increasing is an easy consequence of (1). To prove
the intermediate value property, let a, b ∈ C with a < b. Let c := b− a and define
η1 : [0, c] → G by η1(x) := η(a + x) − η(a). Then properties (1) and (2) remain
valid if C is replaced by [0, c] and η by η1, and it suffices to prove the intermediate
value property for the corresponding function x 7→ x + η1(x). So we can assume
C = [0, c] and η(0) = 0. Let 0 < v < c+ η(c). It suffices to find u ∈ (0, c) such that
u+ η(u) = v. We distinguish two cases:

1. c − v = o(c). Then we put u := v − η(c), so 0 < u < c. By (1), we have
η(c) = o(c), hence c−u = (c− v) + (v−u) = (c− v) + η(c) = o(c). Therefore,
by (2), we have η(u) = η(c), that is, u+ η(u) = v.

2. c− v 6= o(c). Since v < c+ η(c) and η(c) = o(c) by (1), we get 0 < v < c. Put
u := v−η(v). Since η(v) = o(v) by (1), we have 0 < u, v < c and v−u = o(v),
hence η(v) = η(u) by (2), that is, u+ η(u) = v.

Remark. The lemma above remains of course valid when (2) is replaced by

2′. η(y) = η(z) whenever x, y, z ∈ C with x > y > z and z − y = o(z − x).
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3. H-couples: Examples, and Embedding Properties

We refer to §1 for various notions concerning H-couples. In this section (V, ψ) is
an H-couple over the ordered field k, Ψ := ψ(V ∗), and P is an H-cut of (V, ψ). So
(V, ψ, P ) is an H-triple over k.

Basic properties of ψ. (See also [16].)

1. The map v 7→ ψ(v) : V → V∞ (with ψ(0) = ∞ > V ) is a valuation on the
ordered group V , that is, ψ(v + w) ≥ min

{
ψ(v), ψ(w)

}
for v, w ∈ V .

2. ψ(v − w) > min{v, w}, for all v, w ∈ P . In particular, ψ
(
ψ(v) − ψ(w)

)
>

min
{
ψ(v), ψ(w)

}
, for all v, w ∈ V ∗.

3. [ψ(v)− ψ(w)] < [v − w] for v, w ∈ V ∗, v 6= w.
4. The map v 7→ v + ψ(v) : V ∗ → V is strictly increasing.

Proof. Property (1) follows easily from axiom (2) about H-couples. For (2), let
v, w ∈ P , v < w. Then ψ(w− v) + (w− v) > w, hence ψ(v −w) > v. Property (3)
follows from (1), (2) and axiom (2). Property (4) is now an immediate consequence
of (3).

Note that Lemma 2.6 and property (3) imply the intermediate value property for
the function x 7→ x + ψ(x) on V >0, and also the intermediate value property for
x 7→ x+ ψ(x) on V <0. A consequence of this is:

Lemma 3.1. The set

(id +ψ)
(
V >0

)
=
{
x+ ψ(x) : x ∈ V >0

}
is closed upward. The set

(− id +ψ)
(
V >0

)
=
{
− x+ ψ(x) : x ∈ V >0

}
is closed downward. Moreover,

(− id +ψ)
(
V >0

)
= (id +ψ)

(
V <0

)
=
{
a ∈ V : a < b for some b ∈ Ψ

}
.

Proof. Let a > 1 in V . Then |ψ(a)− 1| = |ψ(a)− ψ(1)| < a− 1 by basic property
(3), hence |ψ(a)| < a. Thus 2a+ ψ(2a) = 2a+ ψ(a) > a, showing that id +ψ takes
arbitrarily large values on V >0. Now use the intermediate value property for id +ψ
on V >0 to deduce the first statement. For the second, note that −2a+ψ(2a) < −a,
since a > ψ(a). Since clearly (− id +ψ)

(
V >0

)
= (id +ψ)

(
V <0

)
it follows as before

that (− id +ψ)
(
V >0

)
is closed downward. Let a ∈ V , a < ψ(x) for some x ∈ V >0.

Set y := min
{
x, ψ(x) − a

}
> 0; then a ≤ ψ(x) − y ≤ ψ(y) − y ∈ (− id +ψ)

(
V >0

)
.

Thus a ∈ (− id +ψ)
(
V >0

)
.

These facts will be tacitly used in the rest of the paper. Next we make the
following easy but very useful observation.

Proposition 3.2. There is at most one element v ∈ V such that

(3.1) Ψ < v < (id +ψ)
(
V >0

)
.

Hence (V, ψ) has at most two H-cuts, and (V, ψ) has exactly two H-cuts if and only
if there exists v such that (3.1) holds. If Ψ has a largest element, then (V, ψ) has
only one H-cut.
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Proof. If v > v′ are two elements satisfying (3.1), choosing u := v − v′ > 0 yields
ψ(u) ≤ v′ = v − u < (ψ(u) + u) − u = ψ(u), which is a contradiction. If Ψ has a
largest element v′, and v is supposed to satisfy (3.1), then the same argument leads
to a contradiction.

Closed H-couples have only one H-cut. In Lemma 3.4 we indicate a class of
H-couples with two H-cuts. First a general fact that we shall use several times:

Lemma 3.3. Let k ⊆ k′ be an ordered field extension, and i : V → V ′ be an
embedding of V into a Hahn space V ′ over k′, such that the induced map [V ]→ [V ′]
is bijective. Then there is a unique function ψ′ : (V ′)∗ → V ′ such that (V ′, ψ′) is an
H-couple over k′, with 1 ∈ V as its distinguished positive element, and i

(
ψ(v)

)
=

ψ′
(
i(v)

)
for all v ∈ V ∗.

Proof. Define ψ′(v′) := ψ(v) for v′ ∈ (V ′)∗ and v ∈ V ∗ such that [v′] = [i(v)].
Then ψ′ is well-defined, and (V ′, ψ′) is an H-couple. The main point to check here
is axiom (3) for H-couples, which follows from the bijectivity of [V ] → [V ′] and
property (3) for ψ stated at the beginning of this section.

Consider now an embedding of V into the Hahn space H := H(Γ,k) over k
as in Corollary 2.2, with Γ = [V ∗], and identify V with its image in H via this
embedding. Then the lemma above tells us that ψ extends uniquely to a function
ψH : H∗ → H such that (H,ψH) is an H-couple over k with distinguished element
1 ∈ V . The next result shows that (H,ψH) has always two H-cuts if Γ has no least
element.

Lemma 3.4. Let H = H(Γ,k) for some nonempty linearly ordered set Γ without
least element. Then each H-couple of the form (H,ψ) has two H-cuts.

Proof. Let κ be the coinitality of Γ and (γα)α<κ a coinital sequence in Γ. Choose
uα ∈ H>0 with [uα] = γα and set wα := ψ(uα), for all α < κ. Then (wα)α<κ is
cofinal in ψ(H∗), and (wα + uα)α<κ is coinitial in (id +ψ)

(
H>0

)
. Let γ ∈ Γ; take

α0 < κ such that γα0
< γ. Then α0 < α, β < κ implies [wα − wβ ] < γ, that is,

(wα)γ′ = (wβ)γ′ for all γ′ ≥ γ. So for each γ ∈ Γ, the sequence
(
(wα)γ

)
α<κ

is

eventually constant. Let vγ ∈ k be this constant, and set v := (vγ)γ∈Γ. One shows
that v ∈ H, and that wα < v < wα + uα for all α < κ. Therefore ψ

(
H>0

)
< v <

(id +ψ)
(
H>0

)
.

Examples of H-couples.

Example 1. Consider k as an ordered vector space over itself. Then (k, ψ) with
ψ(v) = 1 for all v ∈ k× and 1 ∈ k as distinguished positive element, is an H-couple
over k. It has a unique embedding (as LH -structure) into any H-couple over k.

Here, k≤1 is the only H-cut of (k, ψ).

Example 2. Every finite dimensional Hahn space over k is isomorphic to the
anti-lexicographically ordered vector space kn, for some n. (A non-zero vector
(α1, . . . , αn) ∈ kn is positive in the anti-lexicographic ordering if and only if αi > 0,
where i = max{j : 1 ≤ j ≤ n, αj 6= 0}.)

Let us fix an n > 0, and some positive vector (λ1, . . . , λn) in the anti-
lexicographically ordered vector space kn over k. Let e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1) be the standard basis vectors of kn, so [e1] < · · · < [en] are the non-
zero k-archimedean classes of kn . Let (kn, ψ) be an H-couple with (λ1, . . . , λn) as
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distinguished positive element. Define the n× n-matrix A = (αij) ∈ kn×n by

(αi1, . . . , αin) := ψ(ei) for i = 1, . . . , n.

Then A has the following properties:

1. (α11, . . . , α1n) < · · · < (αn1, . . . , αnn);
2. αij = αjj for all 1 ≤ j < i ≤ n;
3. (λ1, . . . , λn) = (αi1, . . . , αin) > 0, where i := max{j : 1 ≤ j ≤ n, λj 6= 0}.

Here, (1) and (3) follow from axiom (2) and (1) for H-couples, respectively, whereas
(2) is derived from ψ(ei) − ψ(ej) < ε · ej for all ε > 0 and 1 ≤ j < i ≤ n, which

holds by axiom (3). Conversely, given a matrix A = (αij) ∈ kn×n with properties
(1)–(3), define ψ by setting

ψ(µ1, . . . , µn) := (αi1, . . . , αin), where i := max{j : 1 ≤ j ≤ n, µj 6= 0},

for (µ1, . . . , µn) 6= 0 in kn, thus obtaining an H-couple (kn, ψ) with distinguished
positive element (λ1, . . . , λn). In this way, we get a one-to-one correspondence
between H-couples (kn, ψ) with distinguished positive element (λ1, . . . , λn) and
matrices A ∈ kn×n with the three properties above.

Example 3. Suppose the Hahn space V over k has countable dimension. Then by
Brown’s argument in [4] there is an embedding V → H(Γ,k) with Γ = [V ∗] as in
Corollary 2.2, whose image is the direct sum

k(Γ) :=
{
v ∈ kΓ : supp v finite

}
.

For any linearly ordered set Γ 6= ∅ we can give a description of H-couples
(
k(Γ), ψ

)
with distinguished positive element (λγ)γ∈Γ in terms of certain matrices in kΓ×Γ,

similar to the previous example. As an example, consider Γ := Z, V := k(Γ) =⊕
s∈Z kes with es > 0 and [es] < [es+1], for all s ∈ Z. Define ψ : V ∗ → V by

making ψ constant on each k-archimedean class, and setting

ψ(en) := −
(
e1 + · · ·+ en−1

)
if n > 0

(hence ψ(e1) = 0), and

ψ(e−n) := e−n + e−n+1 + · · ·+ e0 if n ≥ 0.

Then (V, ψ), with distinguished positive element e0, is an H-couple. In fact, if
k = R, it is the H-couple associated to the smallest Hardy field which is closed
under powers and contains R

(
. . . , ex, x, log x, log log x, . . .

)
. (See [14], p. 263, [19],

Cor. 2.) Note that Γ has no smallest element, but that (V, ψ) has only one H-cut.
Modifying the definition of ψ above by letting

ψ(e−n) := e0 + e−1 − e−n−1 for n ≥ 0,

we get an example of an H-couple with distinguished positive element e0, and with
two H-cuts, since in this case sup Ψ exists and equals e0 + e−1 /∈ Ψ.

Example 4. The H-couple associated with a maximal Hardy field is closed. More
generally: Let K be a Hardy field containing R(x) and closed under exponentiation
(i.e. f ∈ K ⇒ ef ∈ K) and integration (i.e. f ∈ K ⇒ ∃g ∈ K : g′ = f). Then K is
also closed under powers, and the H-couple associated with K is closed.
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Proof. Note that if f ∈ K>0, then log f ∈ K, since (log f)′ = f ′/f ∈ K. The
ordered set [v(K×)∗] has no least element since for any f ∈ K>0 with v(f) > 0,
we have 0 < r · v(1/ log f) < v(f) for all r ∈ R>0. It remains to show that for
f ∈ K×: either v(f) = v(g′/g) for some g ∈ K×, v(g) > 0, or v(f) = v(g′) for some
g ∈ K×, v(g) > 0. Take g ∈ K× with g′ = f . If v(g) ≥ 0, then by subtracting
a real constant from g if necessary, we may assume v(g) > 0, and we are done. If
v(g) < 0, then, changing f to −f and g to −g if necessary, we may assume g is
negative infinite, i.e. g < R. Then G := eg satisfies f = G′/G, so v(f) = v(G′/G)
and v(G) > 0.

In the next examples, we assume familiarity with [6].

Example 5. Let k be an ordered logarithmic-exponential field, and F any dif-
ferential subfield of k((t))LE containing k(x) and closed under powers. Then with
V := v(F×) and ψ defined as in the introduction, we get an H-couple (V, ψ) with
distinguished positive element 1 = v(t). Moreover, if F is also closed under expo-
nentiation and integration, then (V, ψ) is closed.

Proof. The valuation v on k((t))LE is defined in terms of the leading monomial map
Lm via v(f) = − log

(
Lm(f)

)
for f ∈ k((t))LE, f 6= 0, see [6], (2.9). In particular,

the ordered k-linear space V (the value group) is an ordered k-linear subspace of
k((t))LE itself. It is easy to see that the ordered k-linear space k((t))LE is a Hahn
space, and thus V is a Hahn space. It is clear that axiom (1) for H-couples holds,
while axiom (2) is (4.5) in [6]. Axiom (3) is a consequence of Theorem 4, (c) in
[15], since v is a differential valuation by [6], (4.1). The last part of the statement
follows by adapting the proof in the previous example.

Example 6. Let k be as in the previous example, and F = k((t))E the differential
subfield of exponential series in k((t))LE. One shows easily that F is closed under
powers. In the corresponding H-couple (V, ψ), where V := v(F×), the element
1 = v(t) = ψ(x) is the largest element of ψ(V ∗) = Ψ, see (2.2) in [6]. It follows
from results in [6], §5, that for each f ∈ F×, if v(f) > 1, then f = g′ for some g ∈ F
with v(g) > 0, while if v(f) ≤ 1, then f = g′/g for some g ∈ F× with v(g) > 0.
Thus Ψ = V ≤1 and (id +ψ)

(
V >0

)
= V >1.

Embedding into closed H-triples. Besides the H-triple (V, ψ, P ) over k we
now let (V ′, ψ′, P ′) denote a second H-triple with ordered scalar field k′. Since we
are dealing here with (two-sorted) LH,P -structures there is a well-defined notion of
embedding i : (V, ψ, P )→ (V ′, ψ′, P ′). Such an embedding i is uniquely determined
by its scalar part is : k → k′, an ordered field embedding, and its vector part
iv : V → V ′, an ordered group embedding between the underlying ordered additive
groups of V and V ′. Conversely, given an ordered field embedding i1 : k → k′ and
an ordered group embedding i2 : V → V ′ between the underlying ordered additive
groups of V and V ′ there is an embedding i : (V, ψ, P ) → (V ′, ψ′, P ′) with is = i1
and iv = i2 if and only if i1 and i2 satisfy the compatibility conditions

i2(λu) = i1(λ)i2(u), i2
(
ψ(v)

)
= ψ′

(
i2(v)

)
, i2(1V ) = 1V ′ ,

for all u, v ∈ V , v 6= 0, λ ∈ k, and

P ′ ∩ i2(V ) = i2(P ).

Here 1V , 1V ′ are the distinguished positive elements of (V, ψ, P ) and (V ′, ψ′, P ′),
respectively. Given an embedding i as above we usually write i(λ) for is(λ) when
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λ ∈ k, and i(a) for iv(a) when a ∈ V . Note that i induces an embedding [v] 7→[
i(v)

]
: [V ]→ [V ′] of linearly ordered sets.

We will now show that each H-triple (V, ψ, P ) has an H-closure (V c, ψc, P c) in
the following sense: (V c, ψc, P c) is a closed H-triple over k extending (V, ψ, P ) such
that any embedding (V, ψ, P )→ (V ′, ψ′, P ′) into a closed H-triple (not necessarily
over k) extends to an embedding (V c, ψc, P c) → (V ′, ψ′, P ′). (We do not require
uniqueness.) Later, we will see that any two H-closures of V = (V, ψ, P ) are
isomorphic over V, that is, isomorphic by an isomorphism whose vector part is
the identity on V and whose scalar part is the identity on k. (See Corollary 5.6.)
Towards the existence proof we show three basic extension lemmas:

Lemma 3.5. Suppose a ∈ V , P < a < (id +ψ)
(
V >0

)
. Then (V, ψ, P ) extends to

an H-triple (V ⊕ kε, ψε, P ε) over k such that:

1. ε > 0, a = ε+ ψε(ε).
2. Given any embedding i : (V, ψ, P )→ (V ′, ψ′, P ′) of H-triples and any ε′ ∈ V ′

with ε′ > 0 and i(a) = ε′ + ψ′(ε′), there is a unique extension of i to an
embedding j : (V ⊕ kε, ψε, P ε)→ (V ′, ψ′, P ′) with j(ε) = ε′.

Proof. Take an ordered vector space V ⊕ kε over k extending the ordered vector
space V , such that 0 < ε < V >0. One verifies immediately that V ⊕ kε is a Hahn
space. For a non-zero vector w = v + λε (v ∈ V , λ ∈ k), we put

ψε(w) :=

{
ψ(v), if v 6= 0

a− ε, otherwise.

Also let P ε :=
{
w ∈ V ⊕ kε : w ≤ a− ε

}
. One verifies easily that (V ⊕ kε, ψε, P ε)

is an H-triple extending (V, ψ, P ). Let i : (V, ψ, P )→ (V ′, ψ′, P ′) be an embedding
of H-triples, and ε′ ∈ V ′, ε′ > 0, with i(a) = ε′+ψ′(ε′). By making the usual iden-
tifications we may assume that (V, ψ, P ) ⊆ (V ′, ψ′, P ′), and that i is the natural in-
clusion. Then 0 < ε′ < V >0, hence the inclusion V ↪→ V ′ extends to an embedding
V ⊕kε→ V ′ of ordered vector spaces over k sending ε to ε′. It is easy to check that
this embedding is the vector part of an embedding (V ⊕ kε, ψε, P ε)→ (V ′, ψ′, P ′)
that extends i.

Note that P ε as in Lemma 3.5 has a maximum. In this situation we can apply
the next lemma.

Lemma 3.6. Suppose P has a largest element. Then (V, ψ, P ) extends to an H-
triple (V ⊕ kε, ψε, P ε) over k such that:

1. ε > 0, ψε(ε) = (maxP ) + ε.
2. Given any embedding i : (V, ψ, P )→ (V ′, ψ′, P ′) of H-triples and any ε′ ∈ V ′

with ε′ > 0 and ψ′(ε′) = i(maxP ) + ε′, there is a unique extension of i to an
embedding j : (V ⊕ kε, ψε, P ε)→ (V ′, ψ′, P ′) with j(ε) = ε′.

Proof. We proceed exactly as in the proof of the previous lemma, except that in
the definitions of ψε and P ε we put

ψε(w) :=

{
ψ(v), if v 6= 0

(maxP ) + ε, otherwise,

for non-zero w = v + λε (v ∈ V , λ ∈ k), and

P ε :=
{
w ∈ V ⊕ kε : w ≤ (maxP ) + ε

}
.
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Then ψε(ε) = (maxP ) + ε > maxP .

We remark that P ε as in Lemma 3.6 still has a largest element (though
larger than maxP ), so that this lemma can be applied again to the extension
(V ⊕ kε, ψε, P ε) of (V, ψ, P ).

Lemma 3.7. Suppose b ∈ P \ Ψ. Then (V, ψ, P ) can be extended to an H-triple
(V ⊕ ka, ψa, P a) over k such that:

1. a > 0, ψa(a) = b.
2. Given any embedding i : (V, ψ, P ) → (V ′, ψ′, P ′) of H-triples and any ele-

ment a′ > 0 in V ′ with ψ′(a′) = i(b), there is a unique extension of i to an
embedding j : (V ⊕ ka, ψa, P a)→ (V ′, ψ′, P ′) with j(a) = a′.

Proof. By Corollary 2.2, we may regard V as an ordered linear subspace of
H
(
[V ∗],k

)
. We take an object γ /∈ [V ∗] and extend the linear ordering on [V ∗] to a

linear ordering of Γ := [V ∗] ∪ {γ} by setting γ < [v] :⇐⇒ b > ψ(v), for all v ∈ V ∗.
Next we view H

(
[V ∗],k

)
as an ordered linear subspace of H(Γ,k) by identifying

each function f : [V ∗]→ k in H
(
[V ∗],k

)
with its extension to Γ obtained by setting

f(γ) := 0. Thus V ⊆ H(Γ,k). Choose a > 0 in H(Γ,k) with max(supp a) = γ.
Note that V ⊕ka is a Hahn space, as an ordered linear subspace of the Hahn space
H(Γ,k). For non-zero w = v + λa (v ∈ V , λ ∈ k), we set

ψa(w) :=

{
ψ(v), if [w] = [v]

b, otherwise, i.e. if [w] = [a].

Also set P a :=
{
w ∈ V ⊕ ka : w ≤ v for some v ∈ P

}
. We have to check that then

(V ⊕ ka, ψa, P a) is an H-triple over k, and that (V, ψ, P ) ⊆ (V ⊕ ka, ψa, P a). It is
immediate that axioms (1) and (2) for H-couples are satisfied. The main point is
axiom (3): Let w = v+λa, w′ = v′+λ′a be positive elements of V ⊕ka (v, v′ ∈ V ,
λ, λ′ ∈ k); we have to show that ψa(w′) < ψa(w) + w. We can assume [w′] < [w],
since otherwise ψa(w′) ≤ ψa(w) < ψa(w) + w. We distinguish the following cases:

1. [w′] = [v′], [w] = [v]. Then
[
ψ(v′) − ψ(v)

]
< [v′ − v] = [v] = [w], hence

ψa(w′) = ψ(v′) < ψ(v) + w = ψa(w) + w.
2. [w′] = [a], [w] = [v]. By basic properties (1) and (2) stated at the beginning

of this section, we get
[
b − ψ(v)

]
< [a − v] = [v] = [w], hence ψa(w′) = b <

ψ(v) + w = ψa(w) + w.
3. [w′] = [v′], [w] = [a]. Similar to the second case,

[
ψ(v′)− b

]
< [v′−a] = [a] =

[w], hence ψa(w′) = ψ(v′) < b+ w = ψa(w) + w.

Moreover, P a is the unique H-cut of (V ⊕ ka, ψa) such that P a ∩ V = P . To see
this, let P a0 be any H-cut of (V ⊕ ka, ψa) with P a0 ∩ V = P . Assume we are given
v ∈ V and λ ∈ k×. To determine when v + λa ∈ P a0 , we distinguish several cases:

1. λ > 0, v ≥ b. Then v + λa ≥ ψa(λa) + λa, hence v + λa /∈ P a0 .
2. λ > 0, b− v > a. Then ψa(a) > v + λa, hence v + λa ∈ P a0 .
3. λ > 0, 0 < b − v < a. Choose 0 < µ < λ. Then b − v < (λ − µ)a, hence
v + λa > b+ µa = ψa(µa) + µa, implying v + λa /∈ P a0 .

4. λ < 0, v − b > a. Then v − b > (1− λ)a, hence v + λa > ψa(λa) + λa, so we
get v + λa /∈ P a0 .

5. λ < 0, v − b < a. Then v − b < −λa, hence v + λa < ψa(a), so v + λa ∈ P a0 .

Therefore v + λa ∈ P a0 if and only if either λ > 0 and b − v > a, or λ < 0 and
v − b < a. Hence P a = P a0 .
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Now let i : (V, ψ, P )→ (V ′, ψ′, P ′) be an embedding of H-triples and a′ a positive
element of V ′ with ψ′(a′) = b. We can assume that (V, ψ, P ) ⊆ (V ′, ψ′, P ′), and
that i is the inclusion. Note that a′ /∈ V determines the same cut in V as a. Hence
the inclusion V ↪→ V ′ extends to a unique embedding V ⊕ ka → V ′ of ordered
vector spaces over k mapping a to a′. This embedding is the vector part of an
embedding (V ⊕ka, ψa, P a)→ (V ′, ψ′, P ′), by uniqueness of P a proved above.

Remark. Assume that in the last lemma there is no element v ∈ V with P < v <
(id +ψ)

(
V >0

)
, and that P has no maximum. Then there is also no w ∈ V ⊕ ka

with P a < w < (id +ψa)
(
(V ⊕ ka)>0

)
, and P a has no largest element.

Starting with (V, ψ, P ) and suitably iterating and alternating the constructions of
lemmas 3.5, 3.6 and 3.7 (possibly transfinitely often), we can build an increasing
chain of H-triples over k whose union is an H-closure of (V, ψ, P ):

Corollary 3.8. Every H-triple has an H-closure.

Behavior under scalar extension.

Lemma 3.9. Let k′ ⊇ k be an extension of ordered fields. Then there are unique
ψk′ and Pk′ such that (Vk′ , ψk′ , Pk′) is an H-triple over k′ extending (V, ψ, P ).

Proof. Let ψk′ := ψ′ as in Lemma 3.3 (where i : V → Vk′ is the natural inclusion).
We have to show that there is a unique H-cut Pk′ for (Vk′ , ψk′) with Pk′ ∩ V = P .
If Ψ has a largest element, this is clear since Ψ = ψ(V ∗) = ψk′(V ∗k′). So assume Ψ
has no largest element. Suppose v ∈ Vk′ satisfies

ψk′
(
V >0
k′

)
< v < (id +ψk′)

(
V >0
k′

)
.

It suffices to show that then v ∈ V . Let H := H(Γ,k), H ′ := H(Γ,k′), Γ := [V ∗].
Consider the following commutative diagram of ordered vector spaces over k and
embeddings between them:

Vk′
φ⊗id -Hk′

µ - H ′

6 6

��
�
��*

ι

V φ - H

Here, φ is given by Corollary 2.2, the maps V → Vk′ and H → Hk′ are obtained
from Proposition 2.4, ι is the natural inclusion H(Γ,k) ↪→ H(Γ,k′), and µ is
uniquely determined as an embedding by µ(h⊗ λ) = λh, for λ ∈ k′, h ∈ H (using
Corollary 2.5). After identifying the H-couples (V, ψ), (Vk′ , ψk′) and (H,ψH) via
these embeddings with LH -substructures of (H ′, ψH′) we have Vk′ ∩ H = V . By
Lemma 3.4, (H,ψH) and (H ′, ψH′) have two H-cuts, hence v ∈ H. Thus v ∈ V , as
desired.

In the next section we apply this last result as follows. Let V = (V, ψ, P )
and V ′ = (V ′, ψ′, P ′) be H-triples over ordered fields k and k′, respectively. Let
V0 = (V0, ψ0, P0) be a substructure of V. Thus V0 is an H-triple over an ordered
subfield k0 of k. Let an embedding i0 : V0 → V ′ be given, and also an embedding
e : k→ k′ of ordered fields, such that e|k0 = (i0)s.

By the last lemma the Hahn space (V0)k := V0 ⊗k0
k over k expands uniquely

to an H-triple (V0)k over k such that V0 ⊆ (V0)k. With these notations we have:
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Lemma 3.10. The embedding V0 ↪→ V extends uniquely to an embedding (V0)k →
V with scalar part idk. The embedding i0 : V0 → V ′ extends uniquely to an embed-
ding (V0)k → V ′ with scalar part e.

Proof. By Corollary 2.5 the inclusion V0 ↪→ V extends uniquely to an embedding
(V0)k → V of Hahn spaces over k. This is actually an embedding (V0)k → V of H-
triples with scalar part idk, by the uniqueness property in the last proposition.

4. Elimination of Quantifiers

In this section we obtain the main results of this paper. Let TH,P denote the
theory of closed H-triples in the language LH,P . By “formula” we shall mean
“LH,P -formula”. Let x = (x1, . . . , xm) denote a tuple of distinct scalar variables,
y = (y1, . . . , yn) a tuple of distinct vector variables. We call a formula η(x, y) a
scalar formula if it is of the form ζ

(
s1(x, y), . . . , sN (x, y)

)
where ζ(z1, . . . , zN ) is a

formula in the language of ordered rings (as specified in part (3) of the description
of LH in §1), where z1, . . . , zN are scalar variables, and s1(x, y), . . . , sN (x, y) are
scalar valued terms of LH,P .

Theorem 4.1. Every formula ϕ(x, y) is equivalent in TH,P to a boolean combina-
tion of scalar formulas η(x, y) and of atomic formulas α(x, y).

This elimination theorem says in particular that every formula is equivalent in TH,P
to a formula that is free of quantifiers over vector variables. It will be derived from
the following embedding result:

Proposition 4.2. Let (V, ψ, P ) and (V ′, ψ′, P ′) be closed H-triples over k and
k′, respectively. Assume that (V ′, ψ′, P ′) is κ-saturated, where κ := |V |+. Let
(V0, ψ0, P0) be a substructure of (V, ψ, P ), and thus an H-triple over a subfield
k0 of k. Let an embedding i0 : (V0, ψ0, P0) → (V ′, ψ′, P ′) be given, and also an
embedding e : k → k′ of ordered fields, such that e|k0 = (i0)s. Then i0 can be
extended to an embedding i : (V, ψ, P )→ (V ′, ψ′, P ′) such that e = is.

We postpone the proof of this proposition and first deduce Theorem 4.1 from it.
To this end we use the following consequence of Proposition 4.2.

Lemma 4.3. Let (V, ψ, P ) ⊆ (V ′, ψ′, P ′) be closed H-triples over k and k′, respec-
tively. Then k � k′ (as ordered fields) if and only if (V, ψ, P ) � (V ′, ψ′, P ′).

Proof. One direction being trivial, we assume k � k′, and shall derive (V, ψ, P ) �
(V ′, ψ′, P ′). Let ϕ(x, y) be a formula. By induction on the complexity of ϕ, one
shows, for all (V, ψ, P ) and (V ′, ψ′, P ′) as in the hypothesis of the lemma, and all
λ ∈ km, v ∈ V n:

(V, ψ, P ) |= ϕ(λ, v) ⇐⇒ (V ′, ψ′, P ′) |= ϕ(λ, v)

For the inductive step, let ϕ = ∃zθ, where θ(x, y, z) is a formula and z a single
variable of the vector or scalar sort. Since θ is of lower complexity than ϕ the
direction “⇒” follows from the induction hypothesis. So assume (V ′, ψ′, P ′) |=
ϕ(λ, v). Choose a κ-saturated elementary extension (V ′′, ψ′′, P ′′) of (V, ψ, P ), where
κ := |V ′|+. Let k′′ be the scalar field of (V ′′, ψ′′, P ′′). Then there is an elementary
embedding of ordered fields e : k′ → k′′ with e|k = id. By Proposition 4.2, there
is an embedding i : (V ′, ψ′, P ′) → (V ′′, ψ′′, P ′′) with is = e and iv|V = id. Using
the induction hypothesis on θ, it follows that (V ′′, ψ′′, P ′′) |= ϕ(λ, v). We conclude
that (V, ψ, P ) |= ϕ(λ, v).
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Proof of Theorem 4.1 assuming Proposition 3.2. Let (V, ψ, P ) and (V ′, ψ′, P ′) be
closed H-triples over k and k′, respectively, and let (λ, v) ∈ km×V n and (λ′, v′) ∈
(k′)m × (V ′)n satisfy the same scalar formulas and the same atomic formulas in
(V, ψ, P ) and (V ′, ψ′, P ′), respectively. By a standard model-theoretic argument,
it suffices to derive from these assumptions that (λ, v) and (λ′, v′) satisfy the same
formulas in (V, ψ, P ) and (V ′, ψ′, P ′), respectively. We may assume (V ′, ψ′, P ′)
is κ-saturated, where κ := |V |+. Let (V0, ψ0, P0), with scalar field k0, be the
substructure of (V, ψ, P ) generated by (λ, v). Since (λ, v) and (λ′, v′) satisfy the
same atomic formulas, there exists an embedding i0 : (V0, ψ0, P0) → (V ′, ψ′, P ′)
such that i0(λi) = λ′i for i = 1, . . . ,m and i0(vj) = v′j for j = 1, . . . , n. Since
(λ, v) and and (λ′, v′) satisfy the same scalar formulas, there exists an elementary
embedding of ordered fields e : k → k′ such that e|k0 = (i0)s. By Proposition 4.2,
there is an embedding i : (V, ψ, P )→ (V ′, ψ′, P ′) extending i0 such that e = is. By
the previous lemma i is an elementary embedding. Thus (λ, v) and (λ′, v′) satisfy
the same LH,P -formulas.

Let TH,P,RCF ⊇ TH,P be the theory of closed H-triples over real closed scalar
fields. The following result was announced in section 1:

Theorem 4.4. The theory TH,P,RCF is complete, decidable, and admits elimination
of quantifiers. It is the model-completion of the theory of H-triples.

The proof uses the following consequence of Proposition 4.2:

Lemma 4.5. Let (V, ψ, P ) and (V ′, ψ′, P ′) be closed H-triples over scalar fields k
and k′, respectively. Then k ≡ k′ if and only if (V, ψ, P ) ≡ (V ′, ψ′, P ′).

Proof. One direction being trivial, we assume k ≡ k′, and shall derive (V, ψ, P ) ≡
(V ′, ψ′, P ′). We can assume that (V ′, ψ′, P ′) is κ-saturated, where κ := |V |+. We
may further assume, by example 1 of section 3, that (V, ψ, P ) and (V ′, ψ′, P ′) have
as common substructure an H-triple (V0, ψ0, P0) over the scalar field k0 := Q. Since
k ≡ k′ and k′ is |k|+-saturated, there is an elementary embedding of ordered fields
e : k → k′. Since necessarily e|k0 = id, Proposition 4.2 implies that e is the scalar
part of an embedding (V, ψ, P )→ (V ′, ψ′, P ′), which is elementary by Lemma 4.3.
Thus (V, ψ, P ) ≡ (V ′, ψ′, P ′).

Proof of Theorem 4.4. The completeness of the theory RCF of real closed ordered
fields, together with Lemma 4.5, implies the completeness of TH,P,RCF. By Corol-
lary 3.8, every H-triple can be embedded into a closed H-triple over a real closed
field. That TH,P,RCF admits quantifier elimination follows from Theorem 4.1 and
the fact that RCF admits quantifier elimination.

Remark. By Examples 4 and 5 in §3, the H-triples of maximal Hardy fields and
the H-triple of the field of LE-series over R are models of TH,P,RCF. Thus, by 4.4,
a certain fragment of the elementary theories of these ordered differential fields has
been fully analyzed at the most basic model-theoretic level.

The rest of this section is devoted to proving Proposition 4.2.

The functions ψa. We need a generalization of the intermediate value property
of id +ψ on V >0 and V <0. Below, let V = (V, ψ) be an H-couple (not necessarily
closed) over the scalar field k. For a = (a1, . . . , an) ∈ V n, n > 0, we define a
function ψa : V∞ → V∞. We proceed by induction:
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1. For n = 1 (with a ∈ V ) we put ψa(v) := ψ(v − a).
2. For n > 1, we put ψa(v) := ψ

(
ψa′(v)− an

)
, where a′ := (a1, . . . , an−1).

We let Da :=
{
v ∈ V : ψa(v) 6= ∞

}
. Thus Da = V \ {a} for n = 1, and

Da =
{
v ∈ Da′ : ψa′(v) 6= an

}
for n > 1. So given a1, a2, a3, . . . in V , we get

ψ(a1,a2)(v) = ψ
(
ψ(v − a1)− a2

)
,

ψ(a1,a2,a3)(v) = ψ
(
ψ
(
ψ(v − a1)− a2

)
− a3

)
,

and so on. One verifies easily by induction on n that if v, v′ ∈ Da with v 6= v′, then[
ψa(v)− ψa(v′)

]
< [v − v′].

Lemma 4.6. Let a = (a1, . . . , an) ∈ V n, λ1, . . . , λn ∈ k, n > 0. The function

v 7→ v + λ1ψa1(v) + λ2ψ(a1,a2)(v) + · · ·+ λnψa(v) : Da → V

is strictly increasing, and has the intermediate value property on each convex com-
ponent of Da.

Proof. Let η : Da → V be the function given by

η(v) := λ1ψa1(v) + λ2ψ(a1,a2)(v) + · · ·+ λnψa(v).

Then v 7→ v + η(v) : Da → V is strictly increasing, since for distinct v, v′ ∈ Da we
have [η(v) − η(v′)] < [v − v′]. Let C be a convex component of Da with a1 < C,
and let x < y < z be in C, with z − y ≤ y − x. Then

y − a1 < z − a1 = (z − y) + (y − a1) ≤ 2(y − a1),

so ψ(y−a1) = ψ(z−a1); hence η(y) = η(z) since η(v) depends only on ψ(v−a1). By
Lemma 2.6 the function η|C has the intermediate value property. For the convex
components < a1 of Da we verify instead condition (2′) of the remark following
Lemma 2.6.

Lemma 4.7. Suppose V is closed, and let a = (a1, . . . , an) ∈ V n, n > 0. Then Da

has at most 2n convex components in V , and on each of these, ψa is monotone and
has the intermediate value property.

Proof. We proceed by induction on n. For n = 1, the two convex components of Da

are V <a, on which ψa is increasing, and V >a, on which ψa is decreasing; on each of
these, ψa has the intermediate value property, since V is closed. Suppose the lemma
holds for a certain a = (a1, . . . , an) ∈ V n, and let â = (a1, . . . , an, an+1) ∈ V n+1.
Consider a convex component C of Da. Then ψa is monotone on Da, say increasing
on C, and has the intermediate value property on C. Put

C1 :=
{
v ∈ C : ψa(v) < an+1

}
,

C2 :=
{
v ∈ C : ψa(v) = an+1

}
,

C3 :=
{
v ∈ C : ψa(v) > an+1

}
.

Thus C is the disjoint union of its convex subsets C1, C2 and C3, and C1 < C2 < C3.
Also ψâ is clearly increasing on C1, and decreasing on C3. If both C1 and C3 are
nonempty, then also C2 is nonempty (because of the intermediate value property of
ψa on C), and thus C1 and C3 are the convex components of Dâ that are contained
in C. Otherwise C only contributes one convex component to Dâ, or none at all,
depending on whether one or both of C1 and C3 are empty.
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Archimedean classes and coinitiality.

Lemma 4.8. Let V ⊆ V ′ be an extension of ordered vector spaces over the ordered
field k, and let b ∈ V ′ \ V be such that

1. for each ε ∈ V >0 there are a, c ∈ V with a < b < c and c− a < ε,
2. {a ∈ V : a < b} has no maximum, and {c ∈ V : c > b} has no minimum.

Then [V ] = [V ⊕ kb] (as subsets of [V ′]).

Proof. Assume not. Then there is v ∈ V with [b − v] /∈ [V ]. Changing b to −b
and v to −v, if necessary, we may assume b > v. Let ε ∈ V >0 be such that
v + ε < b, by (2), and a, c ∈ V with v + ε ≤ a < b < c and c− a < ε, by (1). Then
b− a < c− a < ε ≤ a− v, hence [b− a] ≤ [a− v]. But b− v = (b− a) + (a− v) and
thus [a− v] < [b− v] = [b− a], a contradiction.

For the proof of Proposition 4.2, and also in §5, we shall need the following easy
consequence of the lemma above:

Corollary 4.9. Let (V, ψ) ⊆ (V ′, ψ′) be an extension of H-couples over k and over
k′ ⊇ k respectively, such that [V ∗] has no minimum. If x ∈ V ′ and 0 < x < V >0,
then [V ]k =

[
V ⊕ kψ′(x)

]
k

inside [V ′]k. In particular, if [V ]k 6= [V ⊕ ky]k for all

y ∈ V ′ \ V , then V >0 is coinitial in (V ′)>0.

Proof. Let 0 < x < V >0, x ∈ V ′. Then b := ψ′(x) satisfies the hypothesis of the
previous lemma, where V ′ is considered as an ordered vector space over k. Thus
we have [V ]k = [V ⊕ kb]k.

Properties (A) and (B). Given an extension (V, ψ) ⊆ (V ′, ψ′) of H-couples (not
necessarily over the same scalar field), and a = (a1, . . . , an) ∈ V n, n > 0, we have
functions ψa : V∞ → V∞, with Da =

{
v ∈ V : ψa(v) 6= ∞

}
, and ψ′a : V ′∞ → V ′∞,

with D′a =
{
v′ ∈ V ′ : ψ′a(v′) 6= ∞

}
. Clearly ψa is the restriction of ψ′a to V∞,

and thus D′a ∩ V = Da. Consider the following two properties of an extension
(V, ψ) ⊆ (V ′, ψ′) of closed H-couples:

(A) For all a ∈ V n, n > 0, and convex components C ′ of D′a, C ′ ∩ V 6= ∅.
(B) For all x ∈ V ′, a = (a1, . . . , an) ∈ V n, b ∈ V , λ1, . . . , λn ∈ k, n > 0, if

x+ λ1ψ
′
a1(x) + λ2ψ

′
(a1,a2)(x) + · · ·+ λnψ

′
a(x) = b,

then x ∈ V .

(By Lemma 4.6 and Lemma 4.7 these conditions (A) and (B) are clearly satisfied
for elementary extensions of closed H-couples.)

Remark. Let (V, ψ) be a closed H-couple, a ∈ V n, n > 0, and E a cut in the ordered
set V . Then there exists a convex component C of Da and ε ∈ {−1, 1} such that
for any extension (V ′, ψ′) ⊇ (V, ψ) of closed H-couples satisfying (A) and (B) and
any v′ ∈ D′a \Da realizing the cut E: if C ′ is the convex component of v′ in D′a,
then C ′ ∩ V = C, and sgn

(
v′ − ψ′a(v′)

)
= ε. (This follows by an easy induction on

n as in the proof of Lemma 4.7.)

Proof of Proposition 4.2 using (A) and (B). The hardest part of the proof of
Proposition 4.2 consists in showing that all extensions of closed H-couples satisfy
(A) and (B). This was the last difficulty we overcame, and accordingly we postpone
this part. Thus in this subsection we assume:

All extensions of closed H-couples satisfy (A) and (B).
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Let the hypothesis in the statement of Proposition 4.2 hold. To simplify notation,
we may as well assume that (V0, ψ0, P0) is a common substructure of (V, ψ, P ) and
(V ′, ψ′, P ′), and that k is an ordered subfield of k′, with i0 and e the natural
inclusions. We want to extend i0 to an embedding i : (V, ψ, P )→ (V ′, ψ′, P ′) such
that is = e. By scalar extension (Lemma 3.10), we can reduce to the case k0 = k.
By Corollary 3.8, we can further reduce to the case that (V0, ψ0, P0) is closed. We
may also assume that V 6= V0. By a familiar Zorn’s Lemma argument, it suffices
to show that there is some H-triple (V1, ψ1, P1) ⊆ (V, ψ, P ) strictly containing
(V0, ψ0, P0) as a substructure, such that i0 extends to an embedding (V1, ψ1, P1)→
(V ′, ψ′, P ′).

Case 1. Assume that we have v ∈ V \V0 with [V0⊕kv] = [V0]. Then ψ(V0⊕kv) =
ψ0(V0), in particular,

(V1, ψ1, P1) :=
(
V0 ⊕ kv, ψ|(V0 ⊕ kv)∗, P ∩ (V0 ⊕ kv)

)
is a substructure of (V, ψ, P ). We claim that there is an embedding of this sub-
structure into (V ′, ψ′, P ′) over V0. To see this, we distinguish two subcases:

1. No u ∈ V0 ⊕ kv satisfies P0 < u < V0 \ P0. (Thus
(
V0 ⊕ kv, ψ|(V0 ⊕ kv)∗

)
has only one cut, namely P ∩ (V0 ⊕ kv).) By saturation, we can find v′ ∈ V ′
realizing the same cut in V0 as v. It follows that we have an isomorphism
V0 ⊕ kv → V0 ⊕ kv′ of ordered vector spaces over k that sends v to v′ and
is the identity on V0. Hence ψ(v0 + λv) = ψ′(v0 + λv′), for all v0 ∈ V0,
λ ∈ k, and there is no u′ ∈ V0 ⊕ kv′ with P0 < u′ < V0 \ P0. (Thus also(
V0 ⊕ kv′, ψ′|(V0 ⊕ kv′)∗

)
has only one cut.) So we have an embedding of

(V1, ψ1, P1) into (V ′, ψ′, P ′) as desired.
2. There is u ∈ V0 ⊕ kv with P0 < u < V0 \ P0. If w ∈ V0 ⊕ kv also satisfies
P0 < w < V0 \ P0, then ψ(δ) < u,w < ψ(δ) + δ, hence |u − w| < δ, for all
δ ∈ V >0

0 . Therefore u = w because of [V0 ⊕ kv] = [V0]. After renaming,
we may also assume u = v. By saturation, we can find v′ ∈ V ′ such that
P0 < v′ < V0 \ P0 and such that v ∈ P ⇔ v′ ∈ P ′. It follows as before that
we get an embedding of (V1, ψ1, P1) into (V ′, ψ′, P ′) as desired.

Case 2. Assume that for every v ∈ V \ V0 we have [V0 ⊕ kv] 6= [V0]. Fix some
v ∈ V \V0. Then there is some a1 ∈ V0 such that [v−a1] /∈ [V0], hence ψ(v−a1) /∈ V0.
So for some a2 ∈ V0,

[
ψ(v − a1) − a2

]
/∈ [V0], hence ψ

(
ψ(v − a1) − a2

)
/∈ V0.

Continuing this way, we obtain elements a1, a2, a3, . . . in V0 such that for all n ≥ 1,
ψ(a1,...,an)(v) /∈ V0. (We use the notation introduced earlier in this section.) Let

b1 := v − a1, bn := ψ(bn−1)− an for n > 1.

Then [bn] /∈ [V0] and ψ(bn) = ψ(a1,...,an)(v), for all n ≥ 1. We claim that {bn}n≥1

is a family of vectors linearly independent over V0. Otherwise, we would have a
linear relation among the bn and elements of V0. By changing from {an}n≥1 to
{an+k}n≥1 and from v to ψ(a1,...,ak)(v), for some k ≥ 1, if necessary, we can assume
it to be of the form

v + λ1ψa1(v) + λ2ψ(a1,a2)(v) + · · ·+ λnψa(v) = v0

for some n > 0, a = (a1, . . . , an), λ1, . . . , λn ∈ k, and v0 ∈ V0. But then condition
(B) would imply v ∈ V0, contrary to our assumption. Thus in particular,

(4.1) [bn] 6= [bm] for all m > n ≥ 1,

since otherwise bn+1 − bm+1 = am+1 − an+1 ∈ V0.
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By saturation we can find v′ ∈ V ′ \ V0 realizing the same cut in the ordered set
V0 as v. Put

b′1 := v′ − a1, b′n := ψ′(b′n−1)− an for n > 1.

We now show by induction on n ≥ 1 that

1. v′ ∈ D(a1,...,an) and b′n 6=∞,
2. the cut C(bn) determined by bn in V0 is the same as the cut C(b′n) determined

by b′n in V0 (hence [b′n] /∈ [V0]).

This is clear for n = 1, by choice of v′. Suppose (1) and (2) hold for a certain n ≥ 1.
Then we obtain from [b′n] /∈ [V0] that ψ′a(v′) = ψ′(b′n) /∈ V0, with a = (a1, . . . , an).
In particular ψ′a(v′) 6= an+1, hence (1) holds for n+ 1 in place of n. Let

C1 :=
{
ψ0(v0) : v0 ∈ V0, [v0] > [bn]

}
,

C2 :=
{
u0 ∈ V0 : u0 ≥ ψ0(v0) for some v0 ∈ V0 with [v0] < [bn]

}
.

Then C1 < ψ(bn) < C2 and C1 < ψ′(b′n) < C2, C1 ∪ C2 = V0. Hence C1 − an+1 <
bn+1 < C2 − an+1, C1 − an+1 < b′n+1 < C2 − an+1, thus C(bn+1) = C(b′n+1). So
(2) holds with n+ 1 instead of n, finishing the inductive step.

Now condition (B) implies just as with b1, b2, . . . that {b′n}n≥1 is a family of
linearly independent vectors over V0. From (2), we get

(4.2) sgn(bn) = sgn(b′n) for all n ≥ 1,

and, by the remark preceding this proof,

(4.3) [bn] < [bm]⇔ [b′n] < [b′m], for all n,m ≥ 1.

We set

V1 := V0 ⊕
∞⊕
n=1

kbn ⊆ V, ψ1 := ψ|V ∗1 , P1 := P ∩ V1.

Clearly (V1, ψ1, P1) is the LH,P -substructure of (V, ψ, P ) generated by v over
(V0, ψ0, P0). Consider the (injective) k-linear map V1 → V ′ that is the identity
on V0 and sends each bn to b′n. Using the fact that [bn] /∈ [V0], [b′n] /∈ [V0], and
C(bn) = C(b′n), for all n ≥ 1, together with (4.1)–(4.3), one sees that this map is also
order-preserving. Moreover it is easily shown to be the vector part of an embedding
(V1, ψ1)→ (V ′, ψ′) of LH -structures with the identity on k as scalar part. To show
that we even have an embedding of LH,P -structures (V1, ψ1, P1) → (V ′, ψ′, P ′), it
suffices to prove that (V1, ψ1) has only one H-cut. For a contradiction, assume that
there exists v1 ∈ V1 with ψ1

(
V >0

1

)
< v1 < (id +ψ1)

(
V >0

1

)
. But ψ0

(
V >0

0

)
is cofinal

in ψ
(
V >0

)
, and (id +ψ)

(
V >0

0

)
is coinitial in (id +ψ)

(
V >0

)
, by Corollary 4.9. This

implies ψ
(
V >0

)
< v1 < (id +ψ)

(
V >0

)
, i.e. (V, ψ) has two H-cuts, contradicting the

closedness of (V, ψ).
This finishes the proof of Proposition 4.2, except that we still have to prove

properties (A) and (B) for all extensions (V, ψ) ⊆ (V ′, ψ′) of closed H-couples. The
remainder of this section is devoted to this task.

Proof of (A) and (B). We first make a more detailed study of the behavior of
the functions ψa on the convex components of Da, in the case of a closed H-couple.
In the remainder of this section we let V = (V, ψ) be a closed H-couple.
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Lemma 4.10. Let p ∈ V . Then there is u ∈ V such that ψ(x) = u for all
sufficiently large x ∈ Ψ + p. Moreover, if (V ′, ψ′) is a closed H-couple extending
(V, ψ), the same u ∈ V has the property that ψ′(x) = u for all sufficiently large
x ∈ Ψ′ + p, where Ψ′ := ψ′((V ′)∗).

Proof. First assume −p ∈ Ψ, so ψ(x) + p > 0 for all sufficiently small x > 0. Now
take x0 > 0 in V such that ψ(x0) + p > 0 and [x0] < [ψ(x0) + p]. (Decreasing x0

makes ψ(x0) + p increase, so this is indeed possible.) We claim that[
ψ(x0) + p

]
=
[
ψ′(x′) + p

]
for all 0 < x′ < x0 in V ′.

Otherwise,[
ψ(x0) + p

]
<
[
ψ′(x′) + p

]
≤
[
ψ(x0) + x0 + p

]
=
[
ψ(x0) + p

]
,

a contradiction. Thus u := ψ
(
ψ(x0) + p

)
works. Now assume −p /∈ Ψ. Then

−p = ψ(x0) + x0 for some x0 > 0 in V . We claim that

[x0] =
[
ψ′(x′) + p

]
for all 0 < x′ < x0 in V ′.

Otherwise,

[x0] =
[
ψ(x0) + p

]
<
[
ψ′(x′) + p

]
=
[
ψ(x0) + x0 − ψ′(x′)

]
≤ [x0],

a contradiction. So u := ψ(x0) works in this case.

Notation. We will denote the element u in the lemma above by limx∈Ψ+p ψ(x).
(Hence limx∈Ψ+p ψ(x) = limx∈Ψ′+p ψ

′(x).)

We fix some terminology. Let f : V∞ → V∞ be a function, and let C be a non-
empty convex subset of V on which f does not take the value ∞. Let p, q ∈ V ,
and let S ⊆ V be downward closed. (We only use this for f = ψa, C is a convex
component of Da, and S = Ψ.)

1. f increases on C from p to q if f |C is increasing, p ≤ q, and

f(C) = [p, q] =
{
v ∈ V : p ≤ v ≤ q

}
.

(We allow f |C constant and p = q.)
2. f increases on C from −∞ to q if f |C is increasing and

f(C) = (−∞, q] =
{
v ∈ V : v ≤ q

}
.

3. f increases on C from p to S if f |C is increasing, and

f(C) = {v ∈ S : v ≥ p}.
4. f increases on C from −∞ to S if f |C is increasing, and f(C) = S.

Similarly, one defines what it means that f decreases on C from p to q, f
decreases on C from p to −∞, f decreases on C from S to q, and f decreases
on C from S to −∞.

Let now a second closed H-couple V ′ = (V ′, ψ′) extending V = (V, ψ) be given,
and let a = (a1, . . . , an) ∈ V n, n > 0.

Below, we write “component” instead of “convex component”.

Lemma 4.11.

1. Each component C of Da is contained in a (necessarily unique) component
C ′ of D′a, and the map C 7→ C ′ is a bijection between the set of components
of Da and the set of components of D′a, with C ′ ∩ V = C for each component
C of Da.
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2. Da has a (necessarily unique) component C∞ > a1 that is unbounded in V ;
the corresponding component C ′∞ of D′a is unbounded in V ′.

3. Let C be a bounded component of Da. Then there are p, q ∈ V such that one
of the following holds:
(a) ψa increases on C from p to q, and ψ′a increases on C ′ from p to q.
(b) ψa decreases on C from p to q, and ψ′a decreases on C ′ from p to q.
(c) ψa increases on C from p to Ψ, ψ′a increases on C ′ from p to Ψ′.
(d) ψa decreases on C from Ψ to q, ψ′a decreases on C ′ from Ψ′ to q.

4. Let C∞ be the unbounded component > a1 of Da, C ′∞ the corresponding com-
ponent of D′a. Then one of the following holds:
(a) ψa decreases on C∞ from Ψ to −∞, ψ′a decreases on C ′∞ from Ψ′ to −∞.
(b) There is p ∈ V such that ψa decreases on C∞ from p to −∞, and ψ′a

decreases on C ′∞ from p to −∞.

Proof. We proceed by induction on n. The case n = 1 is easy to verify. Suppose
the lemma holds for a certain a = (a1, . . . , an) ∈ V n. Let â = (a1, . . . , an, an+1) ∈
V n+1. Since the components < a1 of Da are obtained from the components > a1

of Da by reflection at the point x = a1, about which the functions ψa and ψ′a are
symmetric, we only need to consider the case of components > a1. So let C > a1

be a component of Da, and C ′ the corresponding component of D′a. Define

C1 :=
{
v ∈ C : ψa(v) < an+1

}
,

C2 :=
{
v ∈ C : ψa(v) = an+1

}
,

C3 :=
{
v ∈ C : ψa(v) > an+1

}
,

and define the sets C ′i for i = 1, 2, 3 in the same way, by replacing C by C ′ and ψa
by ψ′a. Hence C ′i∩V = Ci, for i = 1, 2, 3. The components of Dâ that are contained
in C are the nonempty sets among C1 and C3, and similarly, the components of D′â
that are contained in C ′ are the nonempty sets among C ′1 and C ′3.

Assume first C is bounded in V (and hence C ′ is bounded in V ′). We shall
assume ψa is increasing on C (hence ψ′a increasing on C ′). The case that ψa is
decreasing on C is similar and left to the reader. We distinguish several cases:

1. There exist p, q ∈ V such that ψa increases on C from p to q, and ψ′a increases
on C ′ from p to q.
(a) q ≤ an+1. Then C3, C

′
3 = ∅. If q < an+1, then C1, C

′
1 6= ∅, C2, C

′
2 = ∅,

and ψâ increases on C1 from ψ(p−an+1) to ψ(q−an+1), ψ′â increases on
C ′1 from ψ(p− an+1) to ψ(q − an+1). If an+1 = q > p, then C1, C

′
1 6= ∅,

C2, C
′
2 6= ∅, and ψâ increases on C1 from ψ(p − an+1) to Ψ, and ψ′â

increases on C ′1 from ψ(p−an+1) to Ψ′. If an+1 = p = q, then C1, C
′
1 = ∅.

(b) an+1 ≤ p, q 6= an+1. Then C1, C
′
1 = ∅ and C3, C

′
3 6= ∅. If an+1 < p, then

C2, C
′
2 = ∅, and ψâ decreases on C3 from ψ(p − an+1) to ψ(q − an+1),

and ψ′â decreases on C ′3 from ψ(p − an+1) to ψ(q − an+1). If an+1 = p,
then C2, C

′
2 6= ∅, and ψâ decreases on C3 from Ψ to ψ(q− an+1), and ψ′â

decreases on C ′3 from Ψ′ to ψ(q − an+1).
(c) p < an+1 < q. Then C1, C

′
1 6= ∅, C2, C

′
2 6= ∅, C3, C

′
3 6= ∅. Here, ψâ

increases on C1 from ψ(p − an+1) to Ψ, and ψ′â increases on C ′1 from
ψ(p− an+1) to Ψ′. Similarly, ψâ decreases on C3 from Ψ to ψ(q− an+1),
and ψ′â decreases on C ′3 from Ψ′ to ψ(q − an+1).

2. There exists p ∈ V such that ψa increases on C from p to Ψ, and ψ′a in-
creases on C ′ from p to Ψ′. (Thus p ∈ Ψ.) This case is essentially treated



CLOSED ASYMPTOTIC COUPLES 25

as the first one, using Lemma 4.10. If, for example, an+1 < p, so that
C1, C

′
1 = ∅, C2, C2 = ∅ and C3, C

′
3 6= ∅, then ψâ decreases on C3 from

ψ(p− an+1) to limx∈Ψ−an+1
ψ(x), and ψ′â decreases on C ′3 from ψ(p− an+1)

to limx∈Ψ′−an+1
ψ′(x) = limx∈Ψ−an+1

ψ(x). We leave the details to the reader.

Now suppose C = C∞ is the unbounded component > a1 of Da, and hence C ′ = C ′∞
the unbounded component > a1 of D′a. We have two cases again:

1. ψa decreases on C from Ψ to −∞, and ψ′a decreases on C ′ from Ψ′ to −∞. If
an+1 > Ψ, we have C1, C

′
1 6= ∅ and C2, C

′
2, C3, C

′
3 = ∅. Hence ψâ decreases on

C1 from limx∈Ψ−an+1
ψ(x) to −∞, ψ′â decreases on C ′1 from limx∈Ψ−an+1

ψ(x)
to −∞. In this case, C1 is the unbounded component > a1 of Dâ, C ′1 is the
unbounded component > a1 of D′â. If, on the other hand, an+1 ∈ Ψ, then
C1, C

′
1 6= ∅, C3, C

′
3 6= ∅. So ψâ decreases on C1 from Ψ to −∞, ψ′â decreases

on C ′1 from Ψ′ to −∞, and ψâ increases on C3 from limx∈Ψ−an+1
ψ(x) to Ψ,

ψ′â increases on C ′3 from limx∈Ψ−an+1
ψ(x) to Ψ′. The unbounded component

> a1 of Dâ is C1, and the unbounded component > a1 of D′â is C ′1.
2. There is p ∈ V such that ψa decreases on C from p to −∞, and ψ′a decreases

on C from p to −∞. This case is treated similarly to the previous one, except
that we now have three subcases, according to whether an+1 > p, an+1 = p,
or an+1 < p.

This finishes the inductive step, hence the proof of the lemma.

Corollary 4.12. ψ′a(C ′) ∩ V = ψa(C), for each component C of Da.

We now also fix scalars λ1, . . . , λn ∈ k, so that we have functions θ : Da → V and
θ′ : D′a → V given by

θ(v) := v + λ1ψa1(v) + λ2ψ(a1,a2)(v) + · · ·+ λnψa(v),

θ′(v′) := v′ + λ1ψ
′
a1(v′) + λ2ψ

′
(a1,a2)(v

′) + · · ·+ λnψ
′
a(v′),

for v ∈ Da and v′ ∈ D′a. Note that θ = θ′|Da.

Remark. Let C∞ be the unbounded component > a1 of Da. Then θ is not bounded
from above on C∞, that is, for any b ∈ V there exists x ∈ C∞ with θ(x) > b.
To see this, note that

[
θ(x) − θ(y)

]
= [x − y] for all x, y ∈ Da, and that [V ] has

no maximum, by closedness of (V, ψ). Now choose any y ∈ C∞, and x > y such
that [x] > [y],

[
b − θ(y)

]
. Then

[
θ(x) − θ(y)

]
>
[
b − θ(y)

]
, in particular θ(x) > b.

Similarly, θ is not bounded from below on the unbounded component < a1 of Da.

Lemma 4.13. Let C be a component of Da, with corresponding component C ′ of
D′a. If d ∈ C ′ \ C, then θ′(d) ∈ V ′ \ V .

Proof. We proceed by induction on n. The case n = 1 is easily checked using
Lemma 3.1. Assume the lemma holds for a certain a = (a1, . . . , an) ∈ V n and
certain scalars λ1, . . . , λn ∈ k. Let â = (a1, . . . , an, an+1) ∈ V n+1 and let a further

scalar λn+1 ∈ k be given. Then we have corresponding functions θ̂ : Dâ → V and

θ̂′ : D′â → V given by

θ̂(v) := θ(v) + λn+1ψâ(v),

θ̂′(v′) := θ′(v′) + λn+1ψ
′
â(v′).

Let C be a component of Da with corresponding component C ′ of D′a. We define
Ci and C ′i (for i = 1, 2, 3) as in the proof of Lemma 4.11. Then the components
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of Dâ that are contained in C are the nonempty sets among C1 and C3, and the
components of D′â that are contained in C ′ are the nonempty sets among C ′1 and

C ′3. We assume d ∈ C ′i \ Ci for i = 1 or i = 3, and have to show that θ̂′(d) /∈ V .
If d lies in the convex hull of Ci in C ′i, that is, if there are p, q ∈ Ci such that

p < d < q, then the injectivity of θ̂′ and intermediate value property of θ̂|[p, q]
already guarantee that θ̂′(d) ∈ V ′ \ V , without use of the induction hypothesis. So
from now on, we assume that d does not lie in the convex hull of Ci in C ′i.

Suppose there exists an element c ∈ V lying strictly between d and a1, and set
ε := 1

2 |c− a1| > 0. Then ψ′a1 is constant on the segment

I = Ic :=
{
x ∈ V ′ : d− ε ≤ x ≤ d+ ε

}
,

since [x − a1] = [d − a1] for all x ∈ I. By an easy induction on k, one shows that
I ⊆ D′(a1,...,ak) and that ψ′(a1,...,ak) is constant on I, for all k = 1, . . . , n + 1. In

particular, I ⊆ C ′i, and ψ′â is constant on I, and θ̂′(x) = θ̂′(d) + x− d for all x ∈ I.
If I ∩ Ci 6= ∅, say e ∈ I ∩ Ci, then

θ̂′(d) = θ′(d) + λn+1ψ
′
â(d) = θ′(d) + λn+1ψâ(e) /∈ V,

since θ′(d) /∈ V , by induction hypothesis. Thus for the rest of the proof we shall
assume that whenever c ∈ V lies strictly between d and a1, and I = Ic is defined
as above, then I ∩ Ci = ∅.

Next we observe that the situation is symmetric about a1, that is, the reflection

a1 + x 7→ a1 − x : V ′ → V ′ maps D′â onto itself, and θ̂′ is invariant under this
reflection. Therefore we shall assume in addition that d, C and C ′ are all > a1.

We now first consider the case that C is bounded in V , ψa is increasing on C
(hence ψ′a increasing on C ′), and i = 1. Then C1 < C2 < C3 and C ′1 < C ′2 < C ′3.
The following possibilities arise (see proof of Lemma 4.11):

1. ψâ increases on C1 from p to Ψ, and ψ′â increases on C ′1 from p to Ψ′, for
some p ∈ V . By the proof of Lemma 4.11, this implies C2 6= ∅. Since d is
not in the convex hull of C1 in C ′1, either d > C1 or d < C1.
(a) d > C1. Then there exists an element c ∈ V with a1 < c < d (take any

c ∈ C1), and thus C1 < I < C2, where I = Ic as defined above. We can
choose b ∈ C1 so large that |an+1 − ψa(b)| ≤ ε, with ε ∈ V >0 as above.
Hence, in [V ′],[

ψ′â(d)− ψâ(b)
]
<
[
ψ′a(d)− ψa(b)

]
≤
[
an+1 − ψa(b)

]
≤ [ε].

Let f(x) := θ′(x) + λn+1ψâ(b), for x ∈ I. Then

θ̂′(d)− f(d− ε) = ε+ θ̂′(d− ε)− f(d− ε)
= ε+ λn+1

(
ψ′â(d)− ψâ(b)

)
,

thus θ̂′(d) > f(d − ε), and similarly θ̂′(d) < f(d + ε). Hence, by the
intermediate value property for f on I (Lemma 4.6), there exists x ∈ I
with f(x) = θ̂′(d). Since I ∩ C1 = ∅, we have x /∈ V , hence f(x) /∈ V by

induction hypothesis. Therefore θ̂′(d) /∈ V , as required.

(b) d < C1. Then ψ′â(x) = p for all d ≤ x < C1. In particular θ̂′(d) =
θ′(d) + λn+1p /∈ V , by induction hypothesis.

2. ψâ increases on C1 from p to q, and ψ′â increases on C ′1 from p to q, for certain
p, q ∈ V . Again either d < C1 or d > C1. Both subcases are treated as in
(1), (b).
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Next we consider the case that C is bounded in V , ψa is increasing on C (hence
ψ′a increasing on C ′), and i = 3. Then either ψâ decreases on C3 from Ψ to q, and
ψ′â decreases on C ′3 from Ψ′ to q, for some q ∈ V , or ψâ decreases on C3 from p
to q, and ψ′â decreases on C ′3 from p to q, for some p, q ∈ V . The latter subcase is
treated as in (2) above. In the first subcase, suppose that d < C3. Then C2 6= ∅,
hence there exists c ∈ V with a1 < c < d, and thus C2 < I < C3, where I = Ic as
previously defined. Now for any ε ∈ V >0, in particular for ε = 1

2 (c − a1), we can
choose b ∈ C3 so small that |an+1 − ψa(b)| ≤ ε. Now continue as in (1), (a) above.
If d > C3, argue as in (1), (b).

The case that C is bounded in V and ψa is decreasing on C can be handled in
a similar way, and is left to the reader.

Now assume C is unbounded in V , and i = 1. Then we have the following
possibilities:

1. ψâ decreases on C1 from p to −∞, and ψ′â decreases on C ′1 from p to −∞,
for some p ∈ V . Again, either d < C1 or d > C1. The first option is treated

as in (1), (b) above, whereas in the second case, θ̂′(d) /∈ V follows from the
remark preceding this lemma, and Lemma 4.6.

2. ψâ decreases on C1 from Ψ to −∞, and ψ′â decreases on C ′1 from Ψ′ to −∞.
If d < C1, we see, by inspection of the proof of Lemma 4.11, that necessarily
C2 6= ∅. Hence there exists c ∈ V with a1 < c < d. Now adopt the argument
in 1, (a) above. If d > C1, we again apply the remark preceding the lemma.

Finally, consider the case that C is unbounded and i = 3. Then ψâ increases on C3

from p to Ψ, and ψ′â increases on C3 from p to Ψ′, for some p ∈ V . If d > C3, note
that any c ∈ C3 will satisfy a1 < c < d, and continue as in 1, (a). If d < C3, argue
as in 1, (b). This finishes the induction.

Remark. Property (A) now follows from Lemma 4.11, (1), and property (B) from
the previous lemma.

5. Model-Theoretic Properties

The results of the previous section constitute a model-theoretic analysis of closed
H-couples on the most basic level, namely that of “elimination theory”. In this
section we deal with more intrinsic properties of H-couples to which this analysis
gives access. This concerns in the first place the shape of the definable sets in a
closed H-couple, see 5.1 and 5.2 below. Here and in the rest of the paper “definable”
will mean “definable with parameters”. We also determine the definable closure of
an H-triple in a closed extension, and prove uniqueness of H-closures. Finally,
we analyse simple extensions of H-couples, and use it to show that in a finitely
generated H-couple the set Ψ is well ordered.

Induced structure on the scalar field. We first show that in a closed H-couple,
no new structure is induced on the scalar field. More precisely:

Corollary 5.1. Let (V, ψ) be a closed H-couple over k, and let S ⊆ kn be definable
in (V, ψ). Then S is already definable in the ordered field k.

Proof. Let the H-couples (V1, ψ1) over k1 and (V2, ψ2) over k2 be elementary exten-
sions of (V, ψ). (In particular, the ordered fields k1 and k2 are elementary extensions
of the ordered field k.) Suppose λ = (λ1, . . . , λn) ∈ kn1 and µ = (µ1, . . . , µn) ∈ kn2
realize the same type over k in k1 and k2, respectively. It suffices to show that
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then they realize the same type over (V, ψ) in (V1, ψ1) and (V2, ψ2), respectively.
We may assume that (V2, ψ2) is κ-saturated, where κ := |V1|+. It follows that
there is an elementary embedding e : k1 → k2 that is the identity on k and that
sends each λi to µi. By Proposition 4.2 and Lemma 4.3, e is the scalar part of an
elementary embedding (V1, ψ1) → (V2, ψ2) over (V, ψ). Hence λ and µ realize the
same type over (V, ψ) in (V1, ψ1) and (V2, ψ2).

Induced structure on the vector space. Let (V, ψ) be a closed H-couple over
the scalar field k. To discuss the induced structure on the underlying vector space
V we introduce the one-sorted language Lk,v that extends the language {0,+,−, <}
of ordered abelian groups by an n-ary relation symbol Rλ,ϕ for every λ ∈ km and
LH -formula ϕ = ϕ(x, y), where x = (x1, . . . , xm) is a tuple of scalar variables and
y = (y1, . . . , yn) is a tuple of vector variables. We make V into an Lk,v-structure
by interpreting 0, +, −, < as usual, and Rλ,ϕ as{

v ∈ V n : (V, ψ) |= ϕ(λ, v)
}
.

Thus a set S ⊆ V n is definable in the one-sorted Lk,v-structure V if and only if it
is definable in the two-sorted LH -structure (V, ψ).

Let A = (A,<, . . . ) be a structure (in some one-sorted language L containing
a binary relation symbol <) that expands a linearly ordered nonempty set (A,<),
dense without endpoints. Following Marker and Steinhorn we say that A is locally
o-minimal if for each definable set S ⊆ A and each a ∈ A there exist a1, a2 ∈ A
such that a1 < a < a2, and (a1, a) is either disjoint from S or contained in S, and
(a, a2) is either disjoint from S or contained in S. The structure A is called weakly
o-minimal if every definable subset of A is a finite union of convex subsets, see [11].
Clearly, if A is weakly o-minimal, then it is locally o-minimal.

For a closed H-couple (V, ψ), the Lk,v-structure V is never weakly o-minimal:
Consider the definable subset k · 1 of V ; it is not a finite union of convex subsets.
However, we have:

Proposition 5.2. Let (V, ψ) be a closed H-couple over k. Then V is locally o-
minimal as an Lk,v-structure.

Proof. Below we consider V as Lk,v-structure. Take a κ-saturated elementary ex-
tension (V ′, ψ′) of (V, ψ) where κ = |V |+. Thus V ′ is then naturally a κ-saturated
Lk,v-structure elementary extending V . Below we consider V ′ as an Lk,v-structure
in this way.

By familiar model-theoretic reasoning, it now suffices to show that, given v ∈ V ,
any two vectors v1, v2 ∈ V ′ such that v < vi < v + ε for all ε > 0 in V , i = 1, 2,
realize the same type over V in V ′. By translation over −v we reduce to the case
v = 0. Then Ψ < ψ′(vi) < (id +ψ)

(
V >0

)
, hence

[
V ⊕ kψ′(vi)

]
k

= [V ]k inside

[V ′]k, for i = 1, 2, by Corollary 4.9. After embedding (V, ψ) into (H,ψH) with H =
H
(
[V ∗],k

)
, cf. Lemma 3.4, we see that in some H-couple over k extending (V, ψ),

there is an element u such that Ψ < u < (id +ψ)
(
V >0

)
. But V ⊕ku and V ⊕kψ′(vi)

are isomorphic over V as ordered vector spaces over k. Since V ⊕ku is a Hahn space

over k, so is Vi := V ⊕ kψ′(vi), for i = 1, 2. Let Pi := V
≤ψ′(vi)
i , for i = 1, 2. Since

[Vi] = [V ], we have ψ′(V ∗i ) ⊆ V ; let ψi := ψ′|V ∗i . As in the first part of the proof
of Proposition 4.2 above, we obtain an isomorphism (V1, ψ1, P1) → (V2, ψ2, P2)
over (V, ψ,Ψ), mapping ψ′(v1) to ψ′(v2). Since [vi] < [V ∗] = [V ∗i ], the cut in V1

realized by v1 corresponds, under this isomorphism, to the cut in V2 realized by
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v2. Hence we can extend the vector part of this isomorphism to an isomorphism
V ′1 := V1 ⊕ kv1 → V2 ⊕ kv2 =: V ′2 of ordered vector spaces over k, mapping v1

to v2. Note that the image Ψ ∪ {ψ′(vi)} of ψ′i := ψ′|(V ′i )∗ has a largest element
ψ′(vi); hence (V ′i , ψ

′
i) has only one H-cut. Therefore the map under consideration

is the vector part of an isomorphism
(
V ′1 , ψ

′
1,Ψ

′ ∩ V ′1
)
→
(
V ′2 , ψ

′
2,Ψ

′ ∩ V ′2
)

of LH,P -
structures, whose scalar part is the identity on k. Thus by relative quantifier
elimination, v1 and v2 have the same type over V in V ′.

Remark. The Lk,v-structure V is even “o-minimal at infinity”: For any definable
set S ⊆ V there exists a ∈ V such that either V >a ⊆ S or V >a ∩ S = ∅. To see
this, we argue as in the preceeding proof, but now take vectors v1, v2 ∈ V ′ satisfying
v1, v2 > V . Then, setting bi1 := vi and bi,n+1 := ψ′(bin) for n ≥ 1, one sees easily
that V ⊕

⊕∞
n=1 kbin is the underlying set of the LH,P -structure Vi ⊆ V ′ generated

by vi over V , for i = 1, 2. Hence, arguing as in case 2 of the proof of Proposition 4.2,
V1
∼= V2 by an isomorphism which maps v1 to v2 and is the identity map on V . In

particular, v1 and v2 have the same type over V .

Definable closure. Let V = (V, ψ, P ) be an H-triple with scalar field k, and let
V ′ = (V ′, ψ′, P ′) be a closed H-triple extending V, with the same scalar field k.
An element v′ ∈ V ′ is said to be definable over V if there is an LH,P -formula
ϕ(x, y, z), where x = (x1, . . . , xm) is a tuple of scalar variables, y = (y1, . . . , yn) a
tuple of vector variables and z a vector variable, and there are λ ∈ km, v ∈ V n,
such that v′ is the unique element in V ′ with V ′ |= ϕ(λ, v, v′). The definable
closure of V in V ′ is the substructure of V ′ that extends V and whose underlying
vector space consists of all v′ ∈ V ′ that are definable over V. If V ′′ ⊇ V is another
closed H-triple over k, the definable closure of V in V ′ is isomorphic to the definable
closure of V in V ′′, by a unique isomorphism that is the identity on V. We say that
V is definably closed in V ′ if every v′ ∈ V ′ definable over V belongs to V . In that
case V is definably closed in every closed H-triple over k extending V, and we also
just say then that V is definably closed. More generally, if W = (W, . . . ) ⊇ V
is any H-triple over k, we say that V is definably closed in W if W ∩ V = V ,
where V = (V , . . . ) is the definable closure of V in an H-closure of W.

Lemma 5.3. Suppose there is no a ∈ V with P < a < (id +ψ)
(
V >0

)
, and P has

no largest element. Then V is definably closed in V ′.

Proof. By iterating the construction of Lemma 3.7 we obtain an increasing con-
tinuous chain

{
(Vα, ψα, Pα)

}
α<µ

(µ an ordinal) of H-triples contained in V ′ as

substructures, with (V0, ψ0, P0) = (V, ψ, P ), such that the union

Vc = (V c, ψc, P c) =
⋃
α<µ

(Vα, ψα, Pα),

is H-closed. The reference to Lemma 3.7 means that for α < α + 1 < µ we have
Vα+1 = Vα ⊕ kaα with aα > 0 and ψα(aα) ∈ Pα \ ψα(V ∗α ). That the chain is
continuous means that (Vδ, ψδ, Pδ) =

⋃
α<δ(Vα, ψα, Pα) for limit ordinals δ < µ.

Since Vc � V ′, it suffices to show: For any v ∈ V c \V there exists an element w 6= v
in V c and an automorphism of Vc that is the identity on V and sends v to w. Now,
given such v, take α with 0 ≤ α < α+ 1 < µ and v ∈ Vα+1 \ Vα. Write

v = vα + λaα with vα ∈ Vα, λ ∈ k×.
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Let a ∈ V >0
α+1 be any element 6= aα with the same k-archimedean class as aα,

and let w := vα + λa. By Lemma 3.7, there is a unique automorphism σ of
(Vα+1, ψα+1, Pα+1) that is the identity on (Vα, ψα, Pα) and satisfies σ(aα) = a;
hence σ(v) = w. Applying once more Lemma 3.7 iteratively, we can extend σ to
an automorphism of (V c, ψc, P c) that sends v to w, as desired.

In general we define an H-triple V = (V , ψ, P ) with V ⊆ V ⊆ V ′ as follows,
distinguishing three mutually exclusive cases:

1. There is a ∈ V with P < a < (id +ψ)
(
V >0

)
. This element a determines a

sequence {εn} of positive elements of V ′, with

[V ∗] > [ε0] > [ε1] > [ε2] > · · ·
and a corresponding sequence {Vn} of linear subspaces of V ′ with

Vn = V ⊕ kε0 ⊕ · · · ⊕ kεn

by requiring a = ε0 + ψ′(ε0) and ψ′(εn+1) = max(P ′ ∩ Vn) + εn+1 (cf.
Lemma 3.5 and 3.6). Then V :=

⋃
n Vn, so that

[
V
]

= [V ] ∪
{

[εn] : n ≥ 0
}

.
2. P has a largest element. Proceeding as in case 1, except that we restrict

to n ≥ 1, we define a sequence {εn}n≥1 of positive elements of V ′ with
[V ∗] > [ε1] > [ε2] > · · · , and a corresponding sequence {Vn}n≥1 of linear
subspaces of V ′ with Vn = V ⊕ kε1 ⊕ · · · ⊕ kεn, by ψ′(ε1) = (maxP ) + ε1,
and ψ′(εn+1) = max(P ′ ∩ Vn) + εn+1. Then V :=

⋃
n≥1 Vn, so that

[
V
]

=

[V ] ∪
{

[εn] : n ≥ 1
}

.

3. There is no a ∈ V with P < a < (id +ψ)
(
V >0

)
and P has no largest element.

Then we put V := V .

The previous lemma now easily implies:

Corollary 5.4. The definable closure of V in V ′ is V.

In the next lemma we continue to use the notation introduced in the definition of
V above.

Lemma 5.5. The only H-triples W with V ⊆ W ⊆ V are V, V and

1.
(
Vn, ψ|V ∗n , P ∩ Vn

)
for n ≥ 0, in case 1 above,

2.
(
Vn, ψ|V ∗n , P ∩ Vn

)
for n ≥ 1, in case 2 above.

Proof. First assume we are in case 1. Let W be an H-triple such that V ⊆ W ⊆ V
and let W denote the underlying ordered vector space of W. Let w ∈W \V . After
subtracting from w a vector in V we have

w = λmεm + · · ·+ λnεn with n ≥ m, λm, . . . , λn ∈ k, λm 6= 0, λn 6= 0.

By induction on i we shall obtain εi ∈ W for i = 0, . . . , n, which immediately
implies the lemma in case 1. Note that ψ(w) = ψ(εm) = a−ε0 +ε1 + · · ·+εm ∈W,
hence ε0 = a − ψ

(
ψ(b) − a

)
∈ W , which proves our claim for i = 0. So assume

0 ≤ i < n, and ε0, . . . , εi ∈W .

1. Suppose i < m. Then

εi+1 + · · ·+ εm = ψ(w)−
(
a− ε0 + ε1 + · · ·+ εi

)
∈W,

hence

εi+1 = ψ
(
εi+1 + · · ·+ εm

)
−
(
a− ε0 + ε1 + · · ·+ εi

)
∈W.
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2. Suppose i ≥ m. Take j minimal such that i < j ≤ n and λj 6= 0. Then

λjεj + · · ·+ λnεn = w −
(
λmεm + · · ·+ λiεi

)
∈W,

hence

εi+1 + · · ·+ εj = ψ
(
λjεj + · · ·+ λnεn

)
−
(
a− ε0 + ε1 + · · ·+ εi

)
∈W,

and therefore

εi+1 = ψ
(
εi+1 + · · ·+ εj

)
−
(
a− ε0 + ε1 + · · ·+ εi

)
∈W.

This finishes the induction step, and thus the proof of the lemma in case 1. For
case 2 one argues similarly.

Uniqueness of H-closure. Let L be a one-sorted language and A = (A, . . . ) an
L-structure. A construction of A is an enumeration {aα}α<γ of A (γ an ordinal),
such that, with Aα := {aβ : β < α}, the type of aα over Aα in A is isolated, for each
α < γ. Let such a construction of A be given. Choose for each α < γ an L-formula
ϕα(yα, z), with yα = (yα1, . . . , yαn(α)) a tuple of variables and z a single variable,

and a tuple bα ∈ An(α)
α , such that ϕα(bα, z) isolates the type of aα over Aα. We

also choose by recursion on α a finite set Dα ⊆ Aα as follows: D0 := {a0}, and for
0 < α < γ, put Dα := {aα} ∪Dβ1

∪ · · · ∪Dβn(α)
, where bα = (aβ1

, . . . , aβn(α)
) for

certain β1, . . . , βn(α) < α. An elementary substructure C = (C, . . . ) of A is said to
be closed in A (relative to the given construction and the further choices made)
if for all α < γ, aα ∈ C implies Dα ⊆ C. In that case a theorem of Ressayre ([12],
Lemme 10.15, Théorème 10.18) implies that A ∼= C.

Corollary 5.6. Let V be an H-triple over k. Then any two H-closures of V are
isomorphic over V.

Proof. We may assume that V is definably closed. Then we build an H-closure Vc

of V as in the proof of Lemma 5.3. LetW ⊇ V be another H-closure of V. We have
to show that Vc ∼=W over V. By the defining property of H-closure we can assume
V ⊆ W ⊆ Vc. Write Vc =

⋃
α<µ(Vα, ψα, Pα) as in the proof of Lemma 5.3. We

now consider the underlying vector spaces W and V c of W and Vc as structures
for the language Lk,v(V ) obtained from Lk,v by adding names for the vectors in V ,
see 5.2. By Lemma 3.7, the type of aα over Vα in V c (for α < α+ 1 < µ) is isolated
by the formula ϕ

(
ψα(aα), z

)
, where ϕ(y, z) is “y = ψ(z) & z > 0”. It follows easily

that V c has a construction. By Lemma 4.3 we have W � V c. If α < α+ 1 < µ and
aα ∈W , then ψα(aα) ∈W , so W is closed in V c (relative to a suitable construction
of V c and associated choices of isolating formulas and so on). Thus by Ressayre’s
Theorem V c ∼= W , which implies Vc ∼=W over V.

Remark. We don’t know whether the H-closure Vc of an H-triple V is always
minimal over V, i.e. whether or not for some V there exists a closed H-tripleW ⊇ V
strictly contained in Vc as a substructure.

Analysis of simple extensions. Let an H-triple V = (V, ψ, P ) with scalar field k
be given, and a simple extension of V, that is, an H-triple V ′ = (V ′, ψ′, P ′) over
the same scalar field k and extending V for which there exists a vector c ∈ V ′ such
that V ′ is generated as LH,P -structure over V by c. (This state of affairs is also
indicated by writing V ′ = V〈c〉, and we put V ′ = V 〈c〉 for the underlying ordered
vector spaces in that case.)
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Consider the following five properties that this simple extension with its distin-
guished generator c may or may not have:

(I) 0 < c < V >0 and c+ ψ′(c) ∈ V .
(II) 0 < c < V >0 and −c+ ψ′(c) ∈ V .

(III) ψ′(c) ∈ P \Ψ.
(IV) c /∈ V and [V ⊕ kc] = [V ].
(V) V ′ = V ⊕

⊕∞
n=1 kbn for vectors bn ∈ V ′ that are k-linearly independent over

V , with [bn] /∈ [V ] for all n, and such that there are vectors an ∈ V with
b1 = c− a1 and bn+1 = ψ′(bn)− an+1 for all n ≥ 1.

Remarks. If (I), respectively (II) holds, then V ′ ∼=
(
V ⊕kε, ψε, P ε

)
, as in Lemma 3.5,

respectively Lemma 3.6, by an isomorphism that is the identity on V and sends c to
ε. If (III) holds, then V ′ ∼=

(
V ⊕ ka, ψa, P a

)
, as in Lemma 3.7, by an isomorphism

that is the identity on V and sends c to a. If (IV) holds, then V ′ = V ⊕ kc. Note
that if (V) holds, then [bn] 6= [bm] for all n 6= m. (Otherwise bn+1 − bm+1 =
am+1 − an+1 ∈ V , contradicting the linear independence of {bi}i≥1 over V .)

One sees easily that those properties are mutually exclusive. We call V ⊆ V〈c〉 a
simple extension of type (I), respectively (II), (III), (IV), (V), if (I), respectively
(II), (III), (IV), (V) hold. Here the generator c figuring in the definition of these
properties has been specified. If we do not want to specify the generator we simply
say that V ′ is a simple extension of type (I), respectively (II), (III), (IV), (V),
to mean that for some c ∈ V ′ we have V ′ = V〈c〉 and V ⊆ V〈c〉 is a simple extension
of type (I), respectively (II), (III), (IV), (V).

We now show that if V is definably closed in V ′, then we can obtain V ′ by a
finite number of simple extensions of types (I)–(V). More precisely:

Proposition 5.7. Suppose V is definably closed in its simple extension V ′ = V〈c〉,
with c /∈ V . Then either

1. V ⊆ V〈c〉 is a simple extension of type (V), or
2. there is a finite chain of H-triples

V = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V ′ (n ≥ 1)

such that V1 is a simple extension of V0 of type (III) or type (IV), and each
Vi+1 is a simple extension of Vi of type (III), for i = 1, . . . , n− 1.

Proof. If V ⊆ V〈c〉 is of type (IV), we are done. Suppose V ⊆ V〈c〉 is not of
type (IV). Then there is a1 ∈ V such that, with b1 := c − a1 we have [b1] /∈ [V ].
This is the starting point for an inductive construction of elements ai ∈ V and
bi ∈ V ′. Suppose we have already constructed a1, . . . , an ∈ V and non-zero vectors
b1, . . . , bn ∈ V ′ with n ≥ 1, where a1 and b1 are as above, bi+1 = ψ′(bi)− ai+1 for
i = 1, . . . , n− 1, such that [bi] /∈ [V ] for i = 1, . . . , n.

We claim that then [bi] 6= [bj ] for 1 ≤ i < j ≤ n (hence b1, . . . , bn are linearly inde-
pendent over V ). Otherwise [bi] = [bj ], for certain 1 ≤ i < j ≤ n, so ψ′(bj) = ψ′(bi).
But also ψ′(bj) = ψ′(ai+1,...,aj)

(
ψ′(bi)

)
(see §4), hence ψ′(bi) = ψ′(ai+1,...,aj)

(
ψ′(bi)

)
.

Thus by Lemma 4.6 the vector ψ′(bi) is definable over V. Therefore bi+1 ∈ V ,
contradicting bi+1 /∈ [V ].

If
[
ψ′(bn)− an+1

]
/∈ [V ] for some an+1 ∈ V , we take such a vector an+1 and put

bn+1 := ψ′(bn) − an+1. If there is no such an+1, the construction breaks off, with
an and bn as the last vectors.
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First assume that the construction goes on indefinitely, that is we obtain infinite
sequences {ai}i≥1 in V and {bi}i≥1 in V ′ such that b1 = c−a1, bi+1 = ψ′(bi)−ai+1

and [bi] /∈ [V ] for all i ≥ 1. Then one easily sees that V ′ = V ⊕
⊕∞

i=1 kbi, and that
V ⊆ V〈c〉 is of type (V).

Now suppose our construction stops after the vectors an and bn have been ob-
tained. There are two ways in which this could happen:

1. ψ′(bn) ∈ V ,
2. ψ′(bn) /∈ V , but

[
V ⊕ kψ′(bn)

]
= [V ],

In the first case we put V0 := V, and for i = 1, . . . , n we let Vi be the substructure
of V ′ with underlying vector space

Vi := V ⊕
n⊕

j=n−i+1

kbj .

Then Vi+1 is a simple extension of type (III) of Vi, for i = 0, . . . , n−1, and Vn = V ′.
In the second case, take V0 := V, and for i = 1, . . . , n+ 1 let Vi be the substructure
of V ′ with underlying vector space

Vi := V ⊕ kψ′(bn)⊕
n⊕

j=n−i+2

kbj .

Then V0 ⊆ V1 is a simple extension of type (IV), whereas Vi ⊆ Vi+1, for i = 1, . . . , n,
is a simple extension of type (III), and Vn+1 = V ⊕ kψ′(bn)⊕

⊕n
j=1 kbj = V ′.

Remark. In the previous proposition, if V is a closed H-triple and V ⊆ V ′ is not
of type (V), the extension V0 ⊆ V1 will be of type (IV), since V admits no simple
extensions of type (III).

Suppose that V ⊆ V ′ is a simple extension such that V is not definably closed in V ′.
To reduce to a situation where we can apply the last proposition, we let V = (V , . . . )
be the definable closure of V in an H-closure of V ′, and let W = (W, . . .) be the
H-triple with V ⊂ W ⊆ V ′ and W = V ′ ∩ V .

Then W is definably closed in V ′, so that Proposition 5.7 is applicable to the
simple extension W ⊆ V ′. The possibilities for the proper extension V ⊂ W are
described by Lemma 4.5, but can it actually happen that W = V? The following
example shows that this case indeed occurs, and also shows that there are simple
extensions that cannot be obtained by a finite number of simple extensions of types
(I)–(V).

Example. Let V = (V, ψ, P ) the H-triple over k with V := ke0 (e0 > 0), dis-
tinguished positive element 1 = e0, and maxP = e0. (See §3, Example 1.) Let
V ′ = (V ′, ψ′, P ′) be the H-triple over k, with V ′ =

⊕
n∈N ke−n and ψ′(e−n) :=

e0 + e−1 − e−n−1 for all n ∈ N, and P ′ :=
{
v′ ∈ V ′ : v′ < e0 + e−1

}
, as in §3, end

of Example 3. Note that V ′ = V〈e−1〉. Let V = (V , . . . ) be the definable closure of
V in an H-closure of V ′. Put εn := e−n − e−n−1 for n ≥ 1. One sees easily (using
Corollary 5.4) that then V ⊆ V〈e−1〉 with

V := ke0 ⊕
∞⊕
n=1

kεn.

It can be shown that V ′ = V〈e−1〉 can not be obtained from V by finitely many
simple extensions of type (I)–(V). One proves that whenever V1 = (V1, ψ1, P1) is
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an H-triple with V ⊆ V1 ⊂ V and c ∈ V 〈e−1〉 \ V1, then V1 ⊆ V1〈c〉 is not of type
(III), (IV) or (V). We want to show that V ′ = V〈e−1〉 can not be obtained from V
by finitely many simple extensions of type (I)–(V). For this, it is sufficient to prove
the following: Whenever V1 = (V1, ψ1, P1) is an H-triple with V ⊆ V1 ⊂ V and
c ∈ V 〈e−1〉 \ V1, then V1 ⊆ V1〈c〉 is not of type (III), (IV) or (V). By Lemma 5.5,
we have

V1 = ke0 ⊕
m⊕
n=1

kεn for some m ≥ 0.

Note Ψ1 := ψ1(V ∗1 ) =
{
e0 + e−1 − e−n−1 : 0 ≤ n ≤ m

}
.

1. V1 ⊆ V1〈c〉 can’t be of type (III), since Ψ′ \Ψ1 ⊆ V ′ \ V1.
2. Assume V1 ⊆ V1〈c〉 is of type (IV). Then we have [V1 ⊕ kc] = [V1] ={

[e−m], [e−m+1], . . . , [e0]
}

. Suppose that c =
∑m
i=0 λie−i + ε for some

λ0, . . . , λm ∈ k, ε ∈ V ′, [ε] < [e−m]. One verifies that for v := λ0e0 +∑m
i=1

(∑i
j=1 λj

)
(e−i − e−i−1) ∈ V1, we have 0 6= c − v = ε + (λ1 + · · · +

λm)e−m−1, hence [c− v] < [V1], a contradiction.
3. Assume V1 ⊆ V1〈c〉 is of type (V). So there exist sequences {an}n≥1 in V1 and
{bn}n≥1 in V1〈c〉 such that V1〈c〉 = V1⊕

⊕∞
n=1 kbn, [bn] /∈ [V1], and b1 = c−a1,

bn+1 = ψ′(bn) − an+1, for all n ≥ 1. Fix any i ≥ 1. Then ψ′(bi) /∈ V1, hence
ψ′(bi) = e0 + e−1− e−n−1 for some n > m. So ai+1 = e0 + e−1− e−m−1 ∈ V1,
since

[
ψ′(bi) − ai+1

]
/∈ [V1], hence bi+1 = ψ′(bi) − ai+1 = e−m−1 − e−n−1.

This implies [bi+1] = [e−m−1] for all i ≥ 1, which is impossible.

Well-orderedness of Ψ. We now use our analysis of simple extenions to show that
in a finitely generated H-couple (V, ψ), the set Ψ = ψ(V ∗) is always well-ordered.
We first need to take a closer look at type (V) extensions.

Lemma 5.8. Let V0 ⊆ V be ordered vector spaces over the ordered field k, and
v ∈ V \ V0 such that [v] /∈ [V0]. Then [V0 ⊕ kv] = [V0] ∪

{
[v]
}

and [v] ≤ [w] for all
w ∈ (V0 ⊕ kv) \ V0.

This follows easily from the properties of k-archimedean classes listed in the begin-
ning of §2, especially property (4).

Proposition 5.9. Let V ⊆ V〈c〉 = V ′ be a simple extension of H-triples of type
(V), with V ′ = V ⊕

⊕∞
n=1 kbn as in the definition of type (V) extensions. Then

1. [V ′] = [V ] ∪
{

[bn] : n = 1, 2, 3, . . .
}

.

2. V >0 is coinitial in (V ′)>0.
3. V is definably closed in V ′.
4. The sequence

{
[bn]
}

is strictly decreasing.

Proof. Using the lemma above, and the fact that [bi] 6= [bj ] for i 6= j, one shows by
induction on n that

[
V ⊕

⊕n
i=1 kbi

]
= [V ] ∪

{
[bi] : i = 1, . . . , n

}
. This proves (1).

For (2) we first note that if y ∈ V ′ \ V , then [V ] 6= [V ⊕ ky]: write y =
v+ λ1b1 + · · ·+ λnbn with v ∈ V , λ1, . . . , λn ∈ k, and some λi 6= 0; hence [y− v] =
[bi] ∈ [V ]\ [V ⊕ky] for some i, by (1). Thus by the last part of Corollary 4.9, if [V ∗]
has no minimum, then (2) holds, hence (3) holds as well, by Lemma 5.5. We now
prove (2) and (3) in the remaining case that [V ∗] has a minimum. Equivalently,
we assume Ψ has a maximum. We first show that then (3) holds. If it didn’t,
then by Lemma 5.5, there are v ∈ V , λ1, . . . , λn ∈ k (n > 0) such that v′ :=
v +

∑n
i=1 λibi > 0 and max Ψ = ψ′(v′)− v′. If [v] > [bi] for all i ∈ {1, . . . , n} with
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λi 6= 0, then ψ′(v′) = ψ(v), so max Ψ = ψ(v) − v′ < max Ψ, a contradiction. Now
assume [v] < [bi] for some i ∈ {1, . . . , n} with λi 6= 0, and let j ∈ {1, . . . , n} be such
that [bj ] = max

{
[bi] : 1 ≤ i ≤ n, λi 6= 0

}
. Then

max Ψ = ψ′(v′)− v′ = bj+1 + aj+1 − v −
n∑
i=1

λibi,

hence λj = 0, a contradiction. We have now established (3). To obtain (2),
suppose that ψ′(v′) > max Ψ for some v′ ∈ (V ′)>0. By Lemma 3.1, there is
w ∈ (V ′)>0 with ψ′(w) − w = max Ψ. So w is definable over V, hence w ∈ V and
ψ(w) = max Ψ + w > max Ψ, which is impossible. This finishes the proof of (2).

As to (4), given any n > 0, we can choose by (2) an a ∈ V ∗ with |bn| > |a|. By
Lemma 5.8 above and basic property (3) of ψ listed at the beginning of §3, we have

[bn+1] =
[
ψ′(bn)− an+1

]
≤
[
ψ′(bn)− ψ(a)

]
< [bn − a] = [bn],

as required.

Remark. In the situation of this proposition the sequence
{

[bn]
}

enumerates the set

[V ′] \ [V ] in strictly decreasing order. Thus the sequence
{

[bn]
}

is independent of
the choice of the sequence {bn}. It also follows that Ψ′ \Ψ is enumerated in strictly
increasing order by the sequence

{
ψ′(bn)

}
.

Theorem 5.10. Let V ⊆ V ′ be a finitely generated extension of H-couples over the
same scalar field, such that Ψ is well-ordered. Then Ψ′ is also well-ordered.

Proof. We first equip V ′ and V with suitable H-cuts so that we are dealing with an
extension of H-triples. By induction on the number of generators of V ′ over V we
then reduce to the case that V ⊆ V ′ is a simple extension.

Let V = (V , . . . ) be the definable closure of V in an H-closure of V ′, and let
W = (W, . . . ) be the H-triple with V ⊆ W ⊆ V ′ and W = V ′ ∩ V . By Lemma 5.5,
ψ′(W ∗) is well-ordered. Moreover, W is definably closed in V ′, and W ⊆ V ′ is
a simple extension. By Proposition 5.7 we then further reduce to the case that
W ⊆ V ′ is a simple extension of one of the types (III), (IV) or (V). If W ⊆ V ′ is of
type (III) or type (IV), Ψ′ \ψ′(W ∗) has at most one element, so Ψ′ is well-ordered.
If W ⊆ V ′ is of type (V), it follows from the remark preceding the theorem that Ψ′

is well-ordered.

Corollary 5.11. For any H-couple (V, ψ) over k that is finitely generated over its
substructure with vector space k · 1 ⊆ V , the set Ψ = ψ(V ∗) is well-ordered.

Another issue is whether in a finitely generated H-couple (V, ψ) the set Ψ = ψ(V ∗)
always has a supremum in V . This turns out to be false:

Example. We take V =
⊕

n∈N ke−n as in the example preceding Lemma 5.8, but
define ψ : V ∗ → V by making it constant on k-archimedean classes of V , and setting

ψ(e0) := e0, ψ(e−n) := e0 + e−1 + · · ·+ e−n − e−n−1 if n > 0.

It is easy to check that (V, ψ) is an H-couple with distinguished positive element
1 = e0. It is generated over its substructure with vector space k · 1 by its vector
e−1. The set Ψ has no supremum in V , as is easily verified.

However, we note that if V ⊆ V〈c〉 = V ′ is a simple extension of H-triples of one
of the types (I)–(V), and sup Ψ exists, so does sup Ψ′. This is clear for simple
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extensions of types (I)–(IV), while for type (V) extensions, it follows from part (2)
of Proposition 5.9.

6. Removing Scalars

The goal of this section is Proposition 6.7. It strenghtens the local o-minimality
result 5.2 to a global weak o-minimality for sets whose definition does not involve
scalars. Another motive for this section is that in attempting to construct a model
theory of Hardy fields, it appears useful to have analogues of the previous theorems
in a setting where no scalar field is present.

Definition 6.1. An H0-couple is a pair V = (V, ψ), consisting of a divisible
ordered abelian group V , a distinguished positive element 1 ∈ V , and a function
ψ : V ∗ → V , such that for all v, w ∈ V ∗

1. ψ(1) = 1,
2. ψ(nv) = ψ(v) for all n > 0,
3. ψ(v) < ψ(w) + |w|,
4. |v| ≤ |w| =⇒ ψ(v) ≥ ψ(w) (hence ψ(v) = ψ(−v)).

We consider a divisible ordered abelian group as an ordered vector space over Q in
the usual way.

Examples.

1. Each H-couple becomes an H0-couple by “forgetting” the scalar field.
2. If F ⊇ R(x) is a real closed Hardy field, V := v(F×) its value group, 1 :=
v(x−1), and ψ : V ∗ → V is defined as in the introduction, then (V, ψ) is an
H0-couple, with distinguished positive element 1.

Definition 6.2. An H0-cut of an H0-couple (V, ψ) is a set P ⊆ V which is closed
downward, contains Ψ := ψ(V ∗), and is disjoint from (id +ψ)

(
V >0

)
. We then call

(V, ψ, P ) an H0-triple. An H0-couple (V, ψ) is closed if Ψ has no maximum, and

ψ(V ∗) =
{
a ∈ V : a < w + ψ(w) for all w ∈ V >0

}
.

In that case Ψ = ψ(V ∗) is the only H0-cut of (V, ψ), and we call (V, ψ,Ψ) a closed
H0-triple. Note that a closed H-couple (closed H-triple) becomes a closed H0-
couple (closed H0-triple) by forgetting the scalar field.

When dealing with H0-couples V = (V, ψ) as model-theoretic objects we construe
them as LH0-structures, where LH0 is the (one-sorted) language with (vector) vari-
ables ranging over the extended vector space V∞ := V ∪ {∞}. The non-logical
symbols of LH0

are:

1. those listed under part (4) of the description of LH in section 1, to be inter-
preted as relations and functions on V∞, as indicated there;

2. a unary function symbol δn for each n > 0, to be interpreted on V as the
scalar multiplication by 1/n (and δn(∞) :=∞).

Adding to LH0 a unary predicate symbol P we obtain the language LH0,P , and
H0-triples (V, ψ, P ) are then construed as LH0,P -structures. The H0-couples are
easily seen to be the models of a universal theory in LH0

, and the same is true for
the H0-triples with respect to the language LH0,P .

Remark. The division symbols δn are included to guarantee quantifier elimination
for the theory of H0-triples, see Corollary 6.6 below. Here is an example to show
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that if we omit them, then in the resulting smaller language the theory of H0-triples
would not eliminate quantifiers.

Let (W,ψ) be a closed H-couple over Q. Choose an element b /∈ W in an
ordered vector space W ′ := W ⊕ Qb over Q extending W , such that Ψ < b

2 <

(id +ψ)
(
W>0

)
. Then, by Lemma 4.8, [W ′]Q = [W ]Q, hence ψ extends uniquely to a

map ψ′ : (W ′)∗ →W ′ such thatW ′ = (W ′, ψ′) is an H-couple over Q (Lemma 3.3).
We consider W ′ as an H0-couple. Note that [W ′]Q = [W ]Q implies

Ψ <
b

2
< (id +ψ′)

(
(W ′)>0

)
.

Hence W ′ has two H0-cuts. Now consider the ordered abelian group V :=
W ⊕ Zb ⊆ W ′. Since Ψ′ = Ψ ⊆ W , (V, ψ′|V ∗) is a substructure of W ′,
for the language LH0 with the division symbols δn removed. One checks easily
that the two distinct H0-cuts of W ′ have the same intersection with V , namely{
v ∈ V : v ≤ ψ(w) for some w ∈W

}
.

Notation. If V = (V, ψ) is an H0-couple, we set

[v] :=
{
w ∈ V : ψ(w) = ψ(v)

}
, for v ∈ V .

We let [V ] :=
{

[v] : v ∈ V
}

and make it into a linearly ordered set by defining

[v] < [w] :⇐⇒ [v] 6= [w] and |v| < |w|
⇐⇒ ψ(v) > ψ(w).

In the case that V is obtained from an H-couple over k by “forgetting the scalar
field”, [v] (or [v]k) also denotes the k-archimedean class of a vector v ∈ V . For-
tunately, this agrees with [v] as just defined. Note also that the four properties
of k-archimedean classes stated in the beginning of §2 go through for the classes
[v] ⊆ V of an H0-couple V as above, with λ ∈ Q× in property (2). For any
H0-couple V and vectors v, w ∈ V ∗, [v]Q ≤ [w]Q implies [v] ≤ [w].

Basic properties. The beginning of section 3 up to and including Proposition 3.2
goes through for H0-triples (V, ψ, P ), with [v] interpreted according to the definition
just given, and with H0-cuts instead of H-cuts in Proposition 3.2. The proofs are
the same.

Embedding into closed H0-triples. An H0-closure of the H0-triple V =
(V, ψ, P ) is any closed H0-triple Vc = (V c, ψc, P c) extending V, such that any
embedding V → V ′ into a closed H0-triple V ′ extends to an embedding Vc → V ′.
We want to show that each H0-triple V = (V, ψ, P ) has an H0-closure. This will
follow, just as for H-triples, by iterated application of three basic extension lem-
mas. The first two of these lemmas are exactly the Lemmas 3.5 and 3.6 modified
as follows: H-triples become H0-triples, V ⊕ kε becomes V ⊕ Qε, and the phrase
“over k” should be omitted. The proofs go through, with similar trivial changes.

For the third extension lemma we have to modify the proof somewhat more, and
therefore we will be more explicit.

Lemma 6.3. Suppose b ∈ P \ Ψ. Then (V, ψ, P ) can be extended to an H0-triple
(V ⊕Qa, ψa, P a) such that:

1. a > 0, ψa(a) = b.
2. Given any embedding i : (V, ψ, P ) → (V ′, ψ′, P ′) of H0-triples and any ele-

ment a′ > 0 in V ′ with ψ′(a′) = i(b), there is a unique extension of i to an
embedding j : (V ⊕Qa, ψa, P a)→ (V ′, ψ′, P ′) with j(a) = a′.
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Proof. By the Hahn embedding theorem for ordered abelian groups (see [13], I, §5,
Satz 3), we can regard V as ordered linear subspace of the ordered vector space
H
(
[V ∗]Q,R

)
over Q. Take any object γ /∈ [V ∗]Q and extend the ordering on [V ∗]Q

to a linear ordering on Γ := [V ∗]Q ∪ {γ} by defining γ < [v]Q :⇐⇒ b > ψ(v), for all
v ∈ V ∗. We can view H

(
[V ∗]Q,R

)
as ordered subspace of H(Γ,R), and thus V as

ordered subspace of H(Γ,R). Choose any a > 0 in H(Γ,R) with max(supp a) = γ.
For non-zero w = v + λa (v ∈ V , λ ∈ Q) we set

ψa(w) :=

{
ψ(v), if [w]Q = [v]Q,

b, if [w]Q = [a]Q.

Also set P a :=
{
w ∈ V ⊕Qa : w ≤ v for some v ∈ P

}
. Then (V ⊕Qa, ψa, P a) is an

H0-triple extending (V, ψ, P ) with the property stated in the lemma. This assertion
can be verified much like the corresponding assertion in the proof of Lemma 3.7, in
the case k = Q.

Corollary 6.4. Every H0-triple has an H0-closure.

Elimination of quantifiers. We have the following counterpart of Proposi-
tion 4.2:

Proposition 6.5. Let V = (V, ψ, P ) and V ′ = (V ′, ψ′, P ′) be closed H0-triples,
where V ′ is κ-saturated, κ := |V |+. Let V0 = (V0, ψ0, P0) be a substructure of V, so
again an H0-triple. Any embedding i0 of V0 into V ′ can be extended to an embedding
of V into V ′.

Proof. One can basically copy the proof in §4, changing k to Q, and making other
obvious modifications.

Let TH0,P be the theory of closed H0-triples, in the language LH0,P .

Corollary 6.6. The theory TH0,P is complete, decidable, and has elimination of
quantifiers. It is the model completion of the theory of H0-triples.

Proof. Elimination of quantifiers follows from Proposition 6.5 and a variant of
the well-known Robinson-Shoenfield-Blum criterion for quantifier elimination (see
e.g. [20], Theorem 17.2). The H0-triple (V0, ψ0, P0), with V0 := Q, P0 := Q≤1,
ψ0(x) := 1 for all x ∈ Q∗, and 1 ∈ Q>0 as distinguished element, can be embedded
into any H0-triple. This implies completeness of TH0,P . The rest now follows from
Corollary 6.4.

Definable closure. Uniqueness of H0-closure. Analysis of simple exten-
sions. Well-orderedness of Ψ. The correspondingly named subsections of §5 go
through for H0-triples and H0-closures with the following changes: H-triples (over
k) become H0-triples, LH,P -formulas become LH0,P -formulas (without scalar vari-
ables x1, . . . , xm), k-linear spaces kw become Q-linear spaces Qw, more generally,
vector spaces over k become vector spaces over Q, scalars from k (as in the proofs
of lemmas 5.3 and 5.5) become scalars from Q, and, finally, k-linear independence
(as in property (V) of the analysis of simple extensions) becomes Q-linear indepen-
dence. Also, the equivalence classes [v] of vectors v should of course be interpreted
in the sense of the present section.
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Weak o-minimality. We now use the H0-version of Proposition 5.7 to show:

Proposition 6.7. The theory TH0,P of closed H0-triples is weakly o-minimal,
i.e. each closed H0-triple is weakly o-minimal.

(Compare with Proposition 5.2.) In the proof we also need the following.

A criterion for weak o-minimality. Let L be a language containing a binary
relation symbol <, and let A = (A,<, . . . ) be an L-structure expanding a nonempty
linearly ordered set (A,<), dense without endpoints. A cut in A is just a downward
closed set C ⊆ A. To such a cut C we associate the set

ΦC(y) :=
{
c < y : c ∈ C

}
∪
{
y < d : d ∈ A \ C

}
of LA-formulas in the variable y.

Lemma 6.8. (Kulpeshov, [10]) An L-structure A = (A,<, . . . ) as above is weakly
o-minimal if and only if for all cuts C in A there exist at most two complete y-types
over A extending ΦC(y), and for each of these types, its set of realizations in any
elementary extension B = (B,<, . . . ) of A is convex in B.

We may as well give here the short proof:

Proof. Suppose for each cut C in A there exist at most two complete y-types over A
extending ΦC(y), and for each of those types its set of realizations in any elementary
extension of A is convex. We claim that then A is weakly o-minimal.

Let Lc be the language L augmented by a new unary relation symbol C for each
cut C of A. We naturally expand A to an Lc-structure Ac. Let Bc � Ac be an
|A|+-saturated elementary extension of Ac, B := Bc|L. Let b1 < b2 be elements
of B \ A such that Bc |= C(b1) ↔ C(b2) for all these new relation symbols C. By
a standard model-theoretic argument it suffices to show that b1 and b2 realize the
same type (in L) over A. Put

C := {c ∈ A : c < b1} = {c ∈ A : c < b2}.
Assume C 6= ∅, C 6= A. (The cases C = ∅ and C = A are treated similarly.)
Suppose ϕ(y) is an LA-formula, and B |= ϕ(b1) ∧ ¬ϕ(b2). By hypothesis, B |=
ϕ(e) ∧ ¬ϕ(f) whenever C < e ≤ b1 < b2 ≤ f < A \ C. By saturation there exist
c ∈ C, d ∈ A \ C such that

B |= ∀y∀z
(
c < y ≤ b1 < b2 ≤ z < d→ ϕ(y) ∧ ¬ϕ(z)

)
.

Hence
Ac |= ∀y

(
c < y < d→

(
ϕ(y)↔ C(y)

))
.

Since Bc |=
(
C(b1)↔ C(b2)

)
, this implies B |= ϕ(b1)↔ ϕ(b2), a contradiction.

Assume conversely that A is weakly o-minimal, and let C ⊆ A be a cut. We
can assume C 6= ∅, C 6= A, the other two cases being similar. Let Ψ(y) be the
set of all LA-formulas ψ(y) for which there exist c ∈ C, d ∈ A \ C such that
A |= ψ(a) ⇔ a ∈ C, for all a ∈ (c, d). Let B � A, and let D,E ⊆ B be the set
of realizations of Ψ(y)∪ΦC(y) and ΦC(y), respectively. Then D ⊆ E is downward
closed in E. By weak o-minimality of A, all elements of D have the same type over
A. Note that for any ψ(y), ψ′(y) ∈ Ψ(y), there exist c ∈ C, d ∈ A \ C such that

A |= ∀y
(
c < y < d→

(
ψ(y)↔ ψ′(y)

))
.

Hence all elements of E \D realize ¬Ψ(y) =
{
¬ψ(y) : ψ(y) ∈ Ψ(y)

}
, and therefore

have the same type over A.
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Proof of Proposition 6.7. Let V = (V, ψ, P ) be a closed H0-triple, V ′ =
(V ′, ψ′, P ′) an elementary extension of V, and C a cut in V . By quantifier elim-
ination, the complete y-types over V extending ΦC(y) correspond bijectively to
isomorphism classes over V of simple extensions V〈c〉 of V with distinguished gen-
erator c such that C < c < V \ C. We claim:

1. Up to isomorphism over V, there exist at most two simple extensions V〈c〉 of
V with distinguished generator c such that C < c < V \ C.

2. If c is an element of V ′ with C < c < V \ C, then the set of all d ∈ V ′ such
that V〈c〉 ∼= V〈d〉 by an isomorphism over V that maps c to d, is a convex
subset of V ′.

By Kulpeshov’s criterion it will then follow that V is weakly o-minimal. So assume
V ⊆ V〈c〉 is a simple extension with C < c < V \ C. We may (for our purpose)
assume that c ∈ V ′. By our analysis of simple extensions, either

1. V ⊆ V〈c〉 is of type (IV) or type (V), or
2. there are n ≥ 1, a1, . . . , an ∈ V , and non-zero b1, . . . , bn ∈ V ′ such that
b1 = c− a1, bj+1 = ψ′(bj)− aj+1 for 1 ≤ j < n, the vectors ψ′(bn), b1, . . . , bn
are Q-linearly independent over V , [bj ] /∈ [V ] for 1 ≤ j < n, [bi] 6= [bj ] for
1 ≤ i < j ≤ n and V 〈c〉 = V ⊕Qψ′(bn)⊕

⊕n
j=1 Qbj .

In all three cases, an argument as in the proof of Proposition 4.2 shows that then for
any simple extension V〈d〉 of V with C < d < V \C, the H0-couples

(
V 〈c〉, ψ′|V 〈c〉∗

)
and

(
V 〈d〉, ψ′|V 〈d〉∗

)
are isomorphic over (V, ψ) by an isomorphism mapping c to

d. Also,
(
V 〈c〉, ψ′|V 〈c〉∗

)
has at most two H0-cuts, and hence can be expanded in

at most two ways to an H0-triple. This proves the first part of the claim.
For the second part we need some notation: Let n ∈ N, b ∈ V , a = (a1, . . . , an) ∈

V n, and λ = (λ0, . . . , λn) ∈ Qn+1. Consider the map

y 7→ θb,a,λ(y) := b+ λ0y +

n∑
j=1

λjψ
′
(a1,...,aj)

(y) : D′a → V ′.

It is monotone on each convex component of D′a. (By the analogues of Lemmas 4.6
and 4.7 for H0-couples.) In particular, for each convex component D of D′a, the set
D ∩ θ−1

b,a,λ(P ′) is downward or upward closed in D.

Now assume first that
(
V 〈c〉, ψ′|V 〈c〉∗

)
has only one H0-cut. Then each H0-

triple V〈d〉, where C < d < V \ C, is isomorphic to V〈c〉 by an isomorphism over
V mapping c to d. So assume that

(
V 〈c〉, ψ′|V 〈c〉∗

)
has two H0-cuts. This means

that there exists w ∈ V 〈c〉 such that

ψ′
(
V 〈c〉∗

)
< w < (id +ψ′)

(
V 〈c〉>0

)
.

In all three cases for V ⊆ V〈c〉, we find n ∈ N, b ∈ V , a ∈ V n and λ ∈ Qn+1 such
that w = θb,a,λ(c). Observe that for any d ∈ V ′ with C < d < V \ C, d lies in
D′a. In fact, it lies in the same convex component D of D′a as c, and V〈c〉 ∼= V〈d〉
by an isomorphism over V with c 7→ d if and only if either both c and d are in
D ∩ θ−1

b,a,λ(P ′), or both are not in D ∩ θ−1
b,a,λ(P ′). Thus also in this case, the second

part of the claim follows.

Remark. The weak o-minimality of closed H0-couples proved in the previous propo-
sition also implies a result about the closed H-couples from the previous sec-
tions: Let (V, ψ) be a closed H-couple over the scalar field k, and ϕ(y) a formula
with parameters from V and the single free vector variable y, in the sublanguage
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0, 1,+,−, <, ψ

}
of LH , consisting of the symbols listed under (4) in the definition

of LH in §1. Then the subset of V defined by ϕ(y) in (V, ψ) is a finite union of
convex sets.

7. Relation to Contraction Groups

Our couples resemble the contraction groups of Kuhlmann [8], [9], and there is
indeed a formal connection as indicated below. (A difference is that contraction
groups have nothing like our cut P .)

Contraction groups arise as follows: let F be a Hardy field closed under taking
logarithms (i.e. f ∈ F>0 ⇒ log f ∈ F ), with its valuation v : F× → V = v(F×).
The logarithm map then induces a so-called contraction map χ : V <0 → V <0 by

χ
(
v(f)

)
:= v(log f) for all f ∈ F>0 with v(f) < 0,

which we extend to a map V → V by requiring χ(−y) = −χ(y). If F is also closed
under exponentiation, then V is divisible, and χ is surjective (χ(V ) = V ). This
means that the pair (V, χ) (ordered group with contraction map) is a divisible
centripetal contraction group, as axiomatized in [8], where it was shown that
the elementary theory of non-trivial divisible centripetal contraction groups is com-
plete and has quantifier elimination in its natural language. The weak o-minimality
of this theory is proved in [9] (and also follows from its completeness and (3.16) in
[5]).

In the example above, we have for f ∈ F>0, with y = v(f) < 0:

(7.1) ψ(y) = v
(
(log f)′

)
= v
(
(log f)′/ log f

)
+ v(log f) = ψ

(
χ(y)

)
+ χ(y),

Let now (V, ψ) be any closed H0-couple. For y < 0 in V , let χ(y) = z be the unique
solution in V ∗ of the equation

z + ψ(z) = ψ(y).

For y > 0, set χ(y) := −χ(−y), and χ(0) := 0. It is easily seen that then (V, χ) is a
divisible centripetal contraction group; clearly χ is definable (without parameters)
in (V, ψ). However, we cannot definably reconstruct ψ in (V, χ):

Proposition 7.1. In no divisible centripetal contraction group (V, χ) can one de-
fine, even allowing parameters, a function ψ : V ∗ → V such that (V, ψ) is a closed
H0-couple (for some choice of 1 > 0) and χ+ ψ ◦ χ = ψ on V <0.

Before we can prove this we need some preparations. In the rest of this section we
let (V, ψ) denote a closed H0-couple.

Iterates of ψ. For n > 0, let ψn : V∞ → V∞ be the n-fold composition ψ◦ψ◦· · ·◦ψ.
Put

Dn :=
{
v ∈ V : ψn(v) 6=∞

}
.

So Dn = Da for a = (0, . . . , 0) ∈ V n. For example D1 = V ∗, D2 = V ∗ \ ψ−1(0),
etc. By induction on n one shows easily that ψn(Dn) = Ψ.

Lemma 7.2. Let n > 0 and ψn(v) < 0. Then ψi(v) < 0 for i = 1, . . . , n, and[
ψn(v)

]
<
[
ψn−1(v)

]
< · · · <

[
ψ(v)

]
< [v].
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Proof. Fix a vector v0 > 0 in V such that ψ(v0) = 0. For n = 1, note that
ψ(v) < 0 = ψ(v0) implies [v] > [v0], hence

[
ψ(v)

]
=
[
ψ(v)−ψ(v0)

]
< [v− v0] = [v].

Assume inductively that the lemma holds a certain n > 0. Let v ∈ Dn+1 with
ψn+1(v) < 0. Applying the case n = 1 to ψn(v) instead of v gives

[
ψn+1(v)

]
<[

ψn(v)
]
. By the inductive assumption the remaining inequalities will follow from

ψn(v) < 0. Suppose ψn(v) ≥ 0. Then ψn(v) ∈ Ψ>0, thus
[
ψn(v)

]
≤ [1]. On the

other hand, ψn+1(v) < 0 implies
[
ψn(v)

]
> [v0], a contradiction.

Let D∞ :=
⋂
n>0Dn and

Vinf :=
{
v ∈ D∞ : ψn(v) < 0 for all n > 0

}
,

Vfin := V \ Vinf.

Note that [v0] < [v] for all v ∈ Vinf, and that Vinf ∩ V >0 is closed upward and
Vinf ∩ V <0 is closed downward.

Remark. The previous lemma, together with ψn(Dn) = Ψ, implies that for all
n > 0, we can find an element v ∈ Dn such that all iterates

ψ(v), ψ2(v), . . . , ψn(v)

are negative. Hence if (V, ψ) is ℵ0-saturated, then Vinf 6= ∅.

The proof of the next lemma is easy and left to the reader.

Lemma 7.3. Vfin is a convex subspace of V , and (Vfin, ψ|V ∗fin) is a closed H0-couple.
Moreover, ψ(Vinf) = Vinf ∩ V <0.

Let χ be the contraction map defined by ψ(v) = χ(v) + ψ
(
χ(v)

)
for all v < 0.

Lemma 7.4. Let v ∈ V <0 and ψ2(v) < 0. Then χ(v) = ψ(v)− ψ2(v).

Proof. We have [v] >
[
ψ(v)

]
, so ψ(v)− ψ2(v) < 0. We compute:(

ψ(v)− ψ2(v)
)

+ ψ
(
ψ(v)− ψ2(v)

)
=
(
ψ(v)− ψ2(v)

)
+ ψ2(v) = ψ(v).

By the defining equation (7.1) of χ, it follows that χ(v) = ψ(v)− ψ2(v).

Proof of Proposition 7.1. Suppose (V, ψ) is a closed H0-couple such that we can
define ψ in (V, χ). We may assume that (V, ψ) is ℵ0-saturated. For ease of notation
we shall also assume that ψ is actually defined without parameters in (V, χ). (In
the general case the role of Vfin below is taken over by the convex hull in V of an
H0-closure inside (V, ψ, P ) of the substructure of (V, ψ, P ) generated by the finitely

many parameters used to define ψ.) We modify ψ to a function ψ̃ : V ∗ → V by
putting

ψ̃(v) :=

{
ψ(v), if v ∈ V ∗fin

ψ(v) + 1, if v ∈ V \ Vfin.

Then (V, ψ̃) is still an H0-couple, and ψ̃(Vinf \ Vfin) = ψ(Vinf \ Vfin), as is easily

checked. Thus Ψ = ψ̃(V ∗), so (V, ψ̃) is even a closed H0-couple. Let χ̃ be the

contraction map associated to (V, ψ̃). By completeness of the theory of closed H0-

couples, the same formula of LH0 that defines ψ in (V, χ) will define ψ̃ in (V, χ̃).

By Lemma 7.4, χ = χ̃, hence ψ = ψ̃, contradiction.
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Auflösung von Gleichungen, Math. Ann. 8 (1875), 362–414.
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