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The derivation of a Hardy field induces on its value group a certain functionψ. If a
Hardy field extends the real field and is closed under powers, then its value group is also a
vector space overR. Such “ordered vector spaces withψ-function” are calledH-couples.
We defineclosedH-couplesand show that everyH-couple can be embedded into a closed
one. The key fact is that closedH-couples have an elimination theory: solvability of an
arbitrary system of equations and inequalities (built up from vector space operations, the
functionψ, parameters, and the unknowns to be solved for) is equivalent to an effective
condition on the parameters of the system. TheH-couple of a maximal Hardy field is
closed, and this is also the case for theH-couple of the field of logarithmic-exponential
series overR. We analyse in detail finitely generated extensions of a givenH-couple.

INTRODUCTION

We describe here roughly the main result of the paper, and explain for non-experts
the role of model theory in its conception. Precise formulations follow in section 1,
and sections 2–4 contain the proof of the main result.

We begin with motivating our subject via Hardy fields, and assume some famil-
iarity with its basic theory as developed by Bourbaki [3] andRosenlicht [14], [15].
This theory is the modern incarnation of ideas on “Orders of Infinity” originating
with Du Bois-Reymond [2] and put on a firm basis by Hardy [6]. Hardy fields are
ordered differential fields of germs at+∞ of real valued differentiable functions
defined on half lines(a,+∞) with a ∈ R. A Hardy fieldF has valuation ring
O(F ) :=

{
f ∈ F : |f | ≤ r for some real numberr

}
with associated valuation

v : F× → V = v(F×). This valuation measures the growth of functions at
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infinity: givenf, g ∈ F× we have

v(f) > v(g) ⇐⇒ lim
x→∞

f(x)

g(x)
= 0.

A key fact [14] is thatv(f ′) only depends onv(f) for v(f) 6= 0, f ∈ F×. Thus
the value groupV comes equipped with a natural extra operationψ : V \{0} → V
given by

ψ
(
v(f)

)
:= v(f ′/f) = v(f ′) − v(f) for v(f) 6= 0, f ∈ F×.

The pair(V, ψ) is an “asymptotic couple of Hardy type” in the sense of Rosenlicht
[13] who studies especially the situation where the abeliangroupV has finite rank;
in that caseψ takes only finitely many different values. We focus on the opposite
situation where(V, ψ) is large in a certain sense. In addition we include a scalar
multiplicationR × V → V among the basic operations. Here is why.

Suppose our Hardy fieldF extendsR(x), and is closed under powers, that
is, 0 < f ∈ F =⇒ f r ∈ F for all r ∈ R. (All maximal Hardy fields have
these properties, see [3] or [14].) ThenV becomes an ordered vector space
over R by settingr · v(f) := v(f r) for 0 < f ∈ F . Consider the two-sorted
structure consisting of the ordered fieldR (first sort), the ordered abelian group
V equipped with the functionψ : V \ {0} → V as above (second sort), with the
scalar multiplicationR × V → V relating them. This two-sorted structure is
completely determined by the structure ofF as ordered differential field:R is the
field of constants ofF ; the valuation ring, and hence the valuation, is defined in
terms ofR and the ordering as above; the scalar multiplication is thengiven by
r · v(f) = v(g) whenever0 < f, g ∈ F andrf ′/f = g′/g. (The presence of this
scalar multiplication is a contrast to the situation with henselian valued fields of
equicharacteristic0, where no “definable interaction” between residue field and
value group can exist.)

The “asymptotic couples with scalar multiplication” associated to Hardy fields
F as above belong to a certain elementary class, the class ofH-couples (the “H”
of Hardy and Hahn). IfF is a maximal Hardy field, its associatedH-couple(V, ψ)
is evenclosed, which implies that the setΨ := ψ

(
V \ {0}

)
is closed downward

in V . (Precise definitions are in section 1.)
Our ultimate aim is to develop a model theory for ordered differential fields such

as maximal Hardy fields. At the most basic level this requiresthese differential
fields to have a common elimination theory for algebraic differential equations
and inequalities. We do not yet know if such an elimination theory exists, but our
main theorem goes in that direction: it says that the class ofclosedH-couples
with real closed scalar field has an elimination theory.

Roughly speaking, this means the following. LetS be any finite system of
equations and inequalities built up from symbols for the vector space operations
and the functionψ, and from variables, some ranging over scalars and the others
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over vectors; in addition, some variables are considered asparameters, and the
others as the unknowns to be solved for. Let the parameters ofthe system be
given values in a closedH-couple(V, ψ) with real closed scalar field. Then the
solvability ofS in (V, ψ) is shown to be equivalent to theparameterssatisfying a
certain finite systemS′ of equations and inequalities (in which the unknowns do
not occur any longer, they have beeneliminated). Moreover,S′ only depends on
S, not on(V, ψ) or the particular values of the parameters. However, this isonly
true if among the “inequalities” inS′ we allow conditions of the formt ∈ Ψ, and
t /∈ Ψ, with Ψ = ψ

(
V \ {0}

)
. (Such “inequalities” are also allowed inS.) That

is why we deal withH-triples, not justH-couples. (A closedH-couple(V, ψ)
gives rise to the closedH-triple (V, ψ,Ψ).)

One can express this more concisely (and accurately!) usinglogical terminology
whereS andS′ become formulas in a certain language. Relevant here are the
notions ofquantifier elimination(Tarski) andmodel completion(A. Robinson),
which clarify the significance of “having an elimination theory”. For these matters
we refer to the first half of [17] (or corresponding parts of other standard texts in
model theory, like [9]). Indeed, by model-theoretic generalities the class of closed
H-triples with real closed scalar field has an elimination theory as indicated above
if and only if any embedding of asubstructureof a closedH-triple (V, ψ,Ψ) with
real closed scalar field into a “sufficiently saturated” closedH-triple (V ′, ψ′,Ψ′)
with real closed scalar field extends to an embedding of(V, ψ,Ψ) into (V ′, ψ′,Ψ′).

Thus rather than directly constructing an elimination theory, we obtain its
existence by proving in section 4 an embedding theorem. The first four sections
are mostly algebraic, with model theory as our guide. In section 5 we address
issues of a more intrinsic nature, both algebraically and from the point of view of
model theory.

We hope the sketch above is helpful to readers not familiar with the model-
theoretic background, which from now on will be assumed. In particular, “⊆”
will be used for the substructure relation as defined in modeltheory.

1. DEFINITIONS AND RESULTS

We now formally introduce the objects studied in this paper.

Notation. We putS>a := {s ∈ S : s > a} for an elementa of a linearly
ordered setS; similarly for “≥”, “<” or “≤” instead of “>”.

Recall that an ordered vector space over an ordered fieldk is a vector spaceV
overk equipped with a linear ordering such that if0 < v,w ∈ V and0 < λ ∈ k,
then0 < v + w and0 < λv. We then define an equivalence relation onV by

v ∼ w :⇐⇒ ∃λ ∈ k>1 :
1

λ
|v| ≤ |w| ≤ λ|v|.

The equivalence class ofv ∈ V is written as[v] (or [v]k, if k is not clear from
context), and is called itsk-archimedean class.We let[V ] (or [V ]k) be the set of
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k-archimedean classes, and linearly order[V ] by

[v] < [w] :⇐⇒ ∀λ ∈ k>0 : λ|v| < |w|

⇐⇒ [v] 6= [w] and|v| < |w|.

Thus[0] = {0} is the smallestk-archimedean class. For ease of notation we put
V ∗ := V \ {0}, and[V ∗] :=

{
[v] : v ∈ V ∗

}
.

Definition 1.1. A Hahn spaceis an ordered vector spaceV over an ordered
field k such that for all vectorsv, w ∈ V ∗

[v] = [w] =⇒ ∃λ ∈ k : [v − λw] < [w].

It is easy to see that any ordered vector space overR is a Hahn space. We have
chosen the term “Hahn space” since these spaces satisfy an analogue of the Hahn
embedding theorem, see section 2. There we also establish the good behaviour of
Hahn spaces under scalar extension.

Definition 1.2. An H-coupleV = (V, ψ) consists of a Hahn spaceV
over an ordered fieldk, a distinguished positive element1 ∈ V , and a function
ψ : V ∗ → V such that for allv, w ∈ V ∗

1. ψ(1) = 1,
2. ψ(v) ≤ ψ(w) ⇐⇒ [v] ≥ [w] (henceψ(v) = ψ(w) ⇐⇒ [v] = [w]),
3. ψ(v) < ψ(w) + |w|.

We refer toV as an “H-couple overk” if we want to specify the scalar fieldk.

Figure 1 shows the qualitative behavior of the functionsψ andid +ψ onV ∗.
(In section 3 we will see thatid +ψ is strictly increasing.) The picture is quite
rough: it cannot show thatψ is constant onk-archimedean classes. But it has
been a precious guide in our work.

Example 1.1. To every Hardy fieldF ⊇ R(x) closed under powers we
associate the correspondingH-coupleV = (V, ψ) over R, as indicated in the
introduction, with1 := v(x−1). That we actually obtain anH-couple in this way
is clear from remarks made above, and results in [12].

Example 1.2. Let k be a logarithmic-exponential ordered field, and letF
be a differential subfield ofk((t))LE containingk(x), and closed under powers,
that is, if 0 < f ∈ F andr ∈ k, thenf r ∈ F . (See [5] for the construction of
k((t))LE, the field of logarithmic-exponential series overk.) Letv be the valuation
onF with valuation ring

{
f ∈ F : |f | ≤ r for somer ∈ k

}
, and associate toF

anH-couple just as we did for the Hardy fields above, with1 := v(t) = v(x−1).
(In section 3 we show this gives indeed anH-couple overk.)
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FIG. 1. ψ andid +ψ onV ∗.

When dealing withH-couplesV = (V, ψ) as model-theoretic objects we construe
them asLH -structures, whereLH is the two-sorted language with

1. scalar variables ranging over the extended scalar fieldk∞ := k ∪ {∞},
2. vector variables ranging over the extended vector spaceV∞ := V ∪ {∞},

and with the following non-logical symbols:

3. <, 0, 1, +,−, ·, interpreted as usual in the ordered fieldk of scalars, with∞
serving as a default value: the linear ordering onk is extended to a linear ordering
onk∞ by settingλ <∞ for all λ ∈ k, andλ ∗ µ := ∞ for ∗ ∈ {+,−, ·} and all
λ, µ ∈ k∞ with λ = ∞ or µ = ∞.

4. <, 0, 1, +, −, ψ, interpreted in the obvious way inV and with∞ serving
as default value: the linear ordering onV is extended to a linear order onV∞ by
settinga <∞ for all a ∈ V , anda+ ∞ = ∞ + a = a−∞ = ∞− a = ∞ for
all a ∈ V∞ , andψ(0) = ψ(∞) = ∞,

5. a symbol· for the mapk∞ × V∞ → V∞ that is the scalar multiplication on
k × V and withλ · v = ∞ for all (λ, v) ∈

(
k∞ × V∞

)
\ (k × V ),

6. a symbol: for the functionV 2
∞ → k∞ that assigns to each(a, b) ∈ V 2 with

[a] ≤ [b] andb 6= 0 the unique scalara : b = λ ∈ k such that[a− λb] < [b], and
that assigns to all other pairs(a, b) ∈ V 2

∞ the default valuea : b = ∞.

Remarks.

1. Despite overlap in how we write the symbols of (3), (4), and(5), we actually
distinguish them: for example, the symbol+ in (3) is to be regarded as different
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from the symbol+ in (4). Similarly, the element∞ ∈ k∞ is to be distinguished
from the element∞ ∈ V∞.

2. The default values∞are included to make all basic operations totally defined,
so that no ambiguities arise in the interpretation of terms.

It is easy to see that theH-couples in the model-theoretic sense are exactly the
models of auniversaltheory in the languageLH . Thus each substructure of an
H-couple is also anH-couple, with possibly smaller scalar field. (That’s why we
included the division operation of (6).) We will keep writingH-couples as(V, ψ),
and so on, even when we regard them asLH -structures.

Let (V, ψ) be anH-couple. Then clearlyψ(v) < w+ψ(w) for all v, w ∈ V >0.
Thus(V, ψ) has an “H-cut” in the following sense.

Definition 1.3. An H-cut of (V, ψ) is a setP ⊆ V such that:

1. For alla, b ∈ V , if a < b ∈ P , thena ∈ P .
2. ψ(v) ∈ P andw + ψ(w) /∈ P for all v, w ∈ V >0.

We then also call(V, ψ, P ) anH-triple , and we regard(V, ψ, P ) as anLH,P -
structure, whereLH,P extends the languageLH by an extra unary predicateP ,
to be interpreted by the setP ⊆ V . Clearly theH-triples are then exactly the
models of a universal theory in the languageLH,P .

Definition 1.4. TheH-couple(V, ψ) is closedif ψ(V ∗) has no largest
element, and

ψ(V ∗) =
{
a ∈ V : a < w + ψ(w) for all w ∈ V >0

}
.

In that caseΨ := ψ(V ∗) is clearly the onlyH-cut of (V, ψ); we call(V, ψ,Ψ) a
closedH-triple .

In section 3 we prove that eachH-triple can be embedded (asLH,P -structure)
into a closedH-triple with the same scalar field. We also show there that the
H-couples associated to maximal Hardy fields and to the ordered differential field
R((t))LE are closed.

We can now state the main result of this paper, to be established in section 4.

Theorem 1.1. The theory of closedH-triples over real closed scalar fields
is complete, eliminates quantifiers, and is the model-completion of the theory of
H-triples.

We actually obtain a relative quantifier elimination where the scalar field is not
assumed to be real closed.

In section 5 we show that no new structure is induced on the scalar field in
closedH-triples and that the underlying ordered vector space in such triples is
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locally o-minimal. We also determine there the definable closure of a substructure
in a closedH-triple, and study simple extensions ofH-triples.

In section 6 we indicate a variant of the results above, wherethere is no scalar
field. Here we have a model-completion that is even weakly o-minimal.

Remarks on1 andP
The role of the distinguished positive element1 with ψ(1) = 1 is to give a
convenient normalization. This role is hardly essential, but does affect issues like
completeness as stated in the theorem above. To clarify thispoint further, consider
an “H-couple without1”, that is, a couple(V, ψ) consisting of a non-trivial Hahn
spaceV over an ordered fieldk and a functionψ : V ∗ → V satisfying axioms (2)
and (3) forH-couples. (We do not distinguish a positive element1 and omit the
axiomψ(1) = 1.) Then for each vectora ∈ V the translate(V, a+ ψ) is clearly
also anH-couple without1. Choose any vectorb ∈ V >0, and puta := b− ψ(b).
Thena + ψ(b) = b, so by takingb as our distinguished positive element1 we
make(V, a+ ψ) into anH-couple overk.

Similarly, without the predicateP for anH-cut we would not have quantifier
elimination: Using results from§3, it is easy to construct closedH-couples
(V1, ψ1), (V2, ψ2) overR, with common substructure(V, ψ) containing a vector
v, such thatv ∈ ψ1(V

∗
1 ), butv /∈ ψ2(V

∗
2 ).

Notational conventions
Let (S,<) be a linearly ordered set. Whena ≤ b in S and(S,<) is clear from
context we use the following notations:

[a, b] :=
{
x ∈ S : a ≤ x ≤ b

}
,

(−∞, b] :=
{
x ∈ S : x ≤ b

}
,

[a,∞) :=
{
x ∈ S : x ≥ a

}
.

A setX ⊆ S is calledconvex(in S) if [a, b] ⊆ X for all a, b ∈ X with a < b.
ForX ⊆ S anda ∈ X , theconvex component ofa in X is the (convex) set

{
x ∈ X≤a : [x, a] ⊆ X

}
∪

{
x ∈ X≥a : [a, x] ⊆ X

}
.

(This also depends onS.) Theconvex components ofX are by definition the
convex components of the members ofX in X . They form a partition ofX . The
convex hull ofX (in S) is the smallest convex subset ofS containingX . We call
a subsetX of S closed upward(in S) if a ∈ S, a > b ∈ X impliesa ∈ X , and
closed downward(in S), or acut in S, if a ∈ S, a < b ∈ X impliesa ∈ X . An
elementa in an ordered extension of(S,<) is said torealize the cutX in S if
X < a < S \X .

Throughout the paper, we letm,n range over the setN =
{
0, 1, 2, . . .

}
of

natural numbers. IfG is an ordered abelian group andg ∈ G, we set|g| :=
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max{−g, g}, and letsgn(g) := −1 if g < 0, sgn(0) := 0, andsgn(g) := 1 if
g > 0.

2. HAHN SPACES

The notion of a Hahn space has been already defined in§1, see Definition 1.1. In
this section we study embedding and scalar extension properties of Hahn spaces.
We also include a very useful lemma about functions on ordered abelian groups.
Throughout this section, letk be an ordered field andV an ordered vector space
overk.

Properties ofk-archimedean classes. Let v, w ∈ V andλ ∈ k×. Then:

1. [v] = {0} ⇐⇒ v = 0,
2. [v] = [λv],
3. [v + w] ≤ max

{
[v], [w]

}
,

4. [v + w] = max
{
[v], [w]

}
, if [v] 6= [w].

We say thatV is k-archimedeanif [V ∗] is a singleton. For example,k as an
ordered vector space over itself isk-archimedean.

Forγ ∈ [V ∗], we define the convex linear subspaces

V(γ) :=
{
v ∈ V : [v] < γ

}
, V (γ) :=

{
v ∈ V : [v] ≤ γ

}
.

Note that the ordered vector spaceV (γ)/V(γ) is k-archimedean.

Remarks. The following facts are easy consequences of the definitions:

1. V is a Hahn space if and only if all the vector spacesV (γ)/V(γ) have
dimension1.

2. Any linear subspace of a Hahn space overk is itself a Hahn space overk
with respect to the induced ordering.

3. Any ordered vector space over the fieldR of real numbers is a Hahn space.
4. R as an ordered vector space overQ is not a Hahn space.

Hahn products
Let Γ be a totally ordered set and(Vγ)γ∈Γ a system of ordered vector spaces over
k. For each elementv = (vγ)γ∈Γ of the vector space

∏
γ∈Γ Vγ , we let

suppv :=
{
γ ∈ Γ : vγ 6= 0

}

denote thesupport of v. The subsetH
(
Γ, (Vγ)γ∈Γ

)
of

∏
γ∈Γ Vγ consist-

ing of those elements with anti-wellordered support is ak-linear subspace of



CLOSED ASYMPTOTIC COUPLES 9

∏
γ∈Γ Vγ . It becomes an ordered vector space overk by setting, for non-zero

v ∈ H
(
Γ, (Vγ)γ∈Γ

)
,

0 < v :⇐⇒ 0 < vµ(v),

whereµ(v) := max (suppv). We callH
(
Γ, (Vγ)γ∈Γ

)
the Hahn product of

(Vγ)γ∈Γ. Note that if allVγ are Hahn spaces overk, thenH
(
Γ, (Vγ)γ∈Γ

)
is a

Hahn space overk. If all Vγ are equal toV , we also writeH(Γ, V ). If V is
k-archimedean, and we putH := H(Γ, V ), then we have a well defined map

[v] 7→ max (suppv) : [H∗] → Γ (v ∈ H∗),

and this map is an isomorphism of linearly ordered sets.

Hahn embedding theorem
Let V ′ be an ordered vector space over an ordered field extensionk′ of k. Then
by anembeddingV → V ′ we mean an injective order preservingk-linear map
V → V ′. Such an embeddingi : V → V ′ induces a map[v] 7→ [i(v)] : [V ] → [V ′]
from the set ofk-archimedean classes ofV into the set ofk′-archimedean classes
of V ′. This induced map is clearly injective ifk = k′.

Proposition 2.1. LetΓ := [V ∗]. Then there exists an embedding

V → H := H
(
Γ,

(
V (γ)/V(γ)

))

of ordered vector spaces overk with bijective induced map[V ] → [H ].

Proof. The proof is an easy adaptation of Banaschewski’s proof [1] of the Hahn

embedding theorem as presented in [10], pp. 16–17.

Corollary 2.1. (Hahn Embedding Theorem for Hahn Spaces)If V is a Hahn
space, then there exists an embeddingV → H := H(Γ,k), whereΓ := [V ∗],
with bijective induced map[V ] → [H ].

Thus up to isomorphism of ordered vector spaces overk the Hahn spaces over
k are exactly the ordered linear subspaces of Hahn productsH(Γ,k) for linearly
ordered setsΓ.

Scalar extension
Given a field extensionk′ ⊇ k, letVk′ beV ⊗k k

′ viewed as a vector space over
k′ in the usual way. We considerV ask-linear subspace ofVk′ by identifying
v ∈ V with v ⊗ 1 ∈ Vk′ . The following fact will be used several times:



10 ASCHENBRENNER AND VAN DEN DRIES

Lemma 2.1. Let V be a Hahn space, andk′ ⊇ k a field extension. Then
every non-zero vectoru ∈ Vk′ can be written as

u =

m∑

i=1

λiui with scalarsλi ∈ k
′ and vectorsui ∈ V >0, (1)

such that[u1] > [u2] > · · · > [um] in [V ∗].

Proof. Let0 6= u =
∑n

j=1 µjvj (µj ∈ k
′, vj ∈ V ). One then shows by induc-

tion onn thatu can be rewritten as in (1), with[u1] ≤ max
{
[vj ] : j = 1, . . . , n

}
.

Proposition 2.2. Let V be a Hahn space, and letk ⊆ k′ be an extension
of ordered fields. Then there is a unique linear ordering onVk′ extending the
ordering ofV , makingVk′ into an ordered vector space overk′, such that the
inclusionV →֒ Vk′ is an embedding with injective induced map[V ] → [Vk′ ].

Proof. Assume that we are given such an ordering onVk′ . We can write each
non-zero vectoru ∈ Vk′ as in (1), withλ1 6= 0. Thenu > 0 if and only ifλ1 > 0.
This shows uniqueness. Existence: By Corollary 2.1 above, we have an embed-
dingV → H(Γ,k) of ordered vector spaces overk , whereΓ := [V ∗]k. Tensoring
with k′ gives ak′-linear injective mapVk′ → H(Γ,k′). This induces an ordering
onVk′ , making it into an ordered vector space overk

′ with the desired properties,as

one easily verifies.

Remarks. Under the hypothesis of the proposition above we will consider
Vk′ as being equipped with the unique linear ordering of the proposition. Note
that thenVk′ is a Hahn space overk′, and that the map[V ] → [Vk′ ] induced by
the embeddingV →֒ Vk′ is a bijection.

Corollary 2.2. (Universal Property)Let V be a Hahn space andk ⊆ k′

be an extension of ordered fields. Any embeddingV → V ′ into an ordered vector
spaceV ′ overk′ with injective induced map[V ] → [V ′] extends uniquely to an
embeddingVk′ → V ′.

A lemma about functions on ordered abelian groups
We shall say that a functionf : X → Y between linearly ordered setsX andY
has theintermediate value property if for all x1 < x2 in X and ally ∈ Y with
f(x1) < y < f(x2) orf(x2) < y < f(x1) there isx ∈ X such thatx1 < x < x2

andf(x) = y.
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LetG be an ordered abelian group, and fora, b ∈ G write a = o(b) to indicate
thatn|a| ≤ |b| for each positive integern.

Lemma 2.2. Let C ⊆ G be a convex subset, and assume that the function
η : C → G has the following properties:

1. η(x) − η(y) = o(x − y) for all distinctx, y ∈ C,
2. η(y) = η(z) wheneverx, y, z ∈ C with x < y < z andz − y = o(z − x).

Then the functionx 7→ x + η(x) : C → G is strictly increasing and has the
intermediate value property.

Proof. Thatx + η(x) is strictly increasing is an easy consequence of (1). To
prove the intermediate value property, leta, b ∈ C with a < b. Let c := b − a
and defineη1 : [0, c] → G by η1(x) := η(a+ x) − η(a). Then properties (1) and
(2) remain valid ifC is replaced by[0, c] andη by η1, and it suffices to prove the
intermediate value property for the corresponding function x 7→ x + η1(x). So
we can assumeC = [0, c] andη(0) = 0. Let 0 < v < c+ η(c). It suffices to find
u ∈ (0, c) such thatu+ η(u) = v. We distinguish two cases:

If c − v = o(c), then we putu := v − η(c), so0 < u < c. By (1), we have
η(c) = o(c), hencec−u = (c−v)+(v−u) = (c−v)+η(c) = o(c). Therefore,
by (2), we haveη(u) = η(c), that is,u+ η(u) = v.

If c − v 6= o(c), then sincev < c + η(c) and η(c) = o(c) by (1), we get
0 < v < c. Putu := v − η(v). Sinceη(v) = o(v) by (1), we have0 < u, v < c

andv−u = o(v), henceη(v) = η(u) by (2), that is,u+ η(u) = v, as required.

Remark. Lemma 2.2 remains of course valid when (2) is replaced by

2′. η(y) = η(z) wheneverx, y, z ∈ C with x > y > z andz − y = o(z − x).

3. H-COUPLES: EXAMPLES, AND EMBEDDING PROPERTIES

We refer to§1 for various notions concerningH-couples. In this section(V, ψ) is
anH-couple over the ordered fieldk, Ψ := ψ(V ∗), andP is anH-cut of (V, ψ).
So(V, ψ, P ) is anH-triple overk.

Basic properties ofψ. (See also [13].)

1. The mapv 7→ ψ(v) : V → V∞ (with ψ(0) = ∞ > V ) is a valuation on the
ordered groupV , that is,ψ(v + w) ≥ min

{
ψ(v), ψ(w)

}
for v, w ∈ V .

2. ψ(v−w) > min{v, w}, for all v, w ∈ P . In particular,ψ
(
ψ(v)−ψ(w)

)
>

min
{
ψ(v), ψ(w)

}
, for all v, w ∈ V ∗.

3.
[
ψ(v) − ψ(w)

]
< [v − w] for v, w ∈ V ∗, v 6= w.
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4. The mapv 7→ v + ψ(v) : V ∗ → V is strictly increasing.

Proof. Property (1) follows easily from axiom (2) aboutH-couples. For (2), let
v, w ∈ P ,v < w. Thenψ(w−v)+(w−v) > w, henceψ(v−w) > v. Property (3)
follows from (1), (2) and axiom (2). Property (4) is now an immediate consequence

of (3).

Note that Lemma 2.2 and property (3) imply the intermediate value property for
the functionx 7→ x+ ψ(x) onV >0, and also the intermediate value property for
x 7→ x+ ψ(x) onV <0. A consequence of this is:

Lemma 3.1. The set

(id +ψ)
(
V >0

)
=

{
x+ ψ(x) : x ∈ V >0

}

is closed upward. The set

(− id +ψ)
(
V >0

)
=

{
− x+ ψ(x) : x ∈ V >0

}

is closed downward. Moreover,

(− id+ψ)
(
V >0

)
= (id +ψ)

(
V <0

)
=

{
a ∈ V : a < b for someb ∈ Ψ

}
.

Proof. Let a > 1 in V . Then|ψ(a) − 1| = |ψ(a) − ψ(1)| < a − 1 by basic
property (3), hence|ψ(a)| < a. Thus2a + ψ(2a) = 2a + ψ(a) > a, showing
that id +ψ takes arbitrarily large values onV >0. Now use the intermediate value
property forid +ψ on V >0 to deduce the first statement. For the second, note
that−2a + ψ(2a) < −a, sincea > ψ(a). Since clearly(− id+ψ)

(
V >0

)
=

(id +ψ)
(
V <0

)
it follows as before that(− id +ψ)

(
V >0

)
is closed downward.

Let a ∈ V , a < ψ(x) for somex ∈ V >0. Sety := min
{
x, ψ(x) − a

}
> 0;

thena ≤ ψ(x)−y ≤ ψ(y)−y ∈ (− id +ψ)
(
V >0

)
. Thusa ∈ (− id +ψ)

(
V >0

)
.

These facts will be tacitly used in the rest of the paper. Nextwe make the
following easy but very useful observation.

Proposition 3.1. There is at most one elementv ∈ V such that

Ψ < v < (id +ψ)
(
V >0

)
. (2)

Hence(V, ψ) has at most twoH-cuts, and(V, ψ) has exactly twoH-cuts if and
only if there existsv such that(2) holds. IfΨ has a largest element, then(V, ψ)
has only oneH-cut.
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Proof. If v > v′ are two elements satisfying (2), choosingu := v − v′ > 0
yieldsψ(u) ≤ v′ = v−u < (ψ(u)+u)−u = ψ(u), which is a contradiction. If
Ψ has a largest elementv′, andv is supposed to satisfy (2), then the same argument

leads to a contradiction.

ClosedH-couples have only oneH-cut. In Lemma 3.3 we indicate a class of
H-couples with twoH-cuts. First a general fact that we shall use several times:

Lemma 3.2. Let k ⊆ k′ be an ordered field extension, andi : V → V ′ be
an embedding ofV into a Hahn spaceV ′ over k′, such that the induced map
[V ] → [V ′] is bijective. Then there is a unique functionψ′ : (V ′)∗ → V ′ such
that (V ′, ψ′) is anH-couple overk′, with 1 ∈ V as its distinguished positive
element, andi

(
ψ(v)

)
= ψ′

(
i(v)

)
for all v ∈ V ∗.

Proof. Defineψ′(v′) := ψ(v) for v′ ∈ (V ′)∗ andv ∈ V ∗ such that[v′] =
[i(v)]. Thenψ′ is well-defined, and(V ′, ψ′) is anH-couple. The main point
to check here is axiom (3) forH-couples, which follows from the bijectivity

of [V ] → [V ′] and property (3) forψ stated at the beginning of this section.

Consider now an embedding ofV into the Hahn spaceH := H(Γ,k) overk
as in Corollary 2.1, withΓ = [V ∗], and identifyV with its image inH via this
embedding. Then the lemma above tells us thatψ extends uniquely to a function
ψH : H∗ → H such that(H,ψH) is anH-couple overk with distinguished
element1 ∈ V . The next result shows that(H,ψH) has always twoH-cuts if Γ
has no least element.

Lemma 3.3. Let H = H(Γ,k) for some nonempty linearly ordered setΓ
without least element. Then eachH-couple of the form(H,ψ) has twoH-cuts.

Proof. Let κ be the coinitality ofΓ and(γα)α<κ a coinital sequence inΓ.
Chooseuα ∈ H>0 with [uα] = γα and setwα := ψ(uα), for all α < κ. Then
(wα)α<κ is cofinal inψ(H∗), and(wα + uα)α<κ is coinitial in (id +ψ)

(
H>0

)
.

Let γ ∈ Γ; take α0 < κ such thatγα0 < γ. Thenα0 < α, β < κ im-
plies [wα − wβ ] < γ, that is, (wα)γ′ = (wβ)γ′ for all γ′ ≥ γ. So for
eachγ ∈ Γ, the sequence

(
(wα)γ

)
α<κ

is eventually constant. Letvγ ∈ k

be this constant, and setv := (vγ)γ∈Γ. One shows thatv ∈ H , and that
wα < v < wα + uα for all α < κ. Thereforeψ

(
H>0

)
< v < (id +ψ)

(
H>0

)
.

Examples ofH-couples

Example 3.1. Considerk as an ordered vector space over itself. Then(k, ψ)
with ψ(v) = 1 for all v ∈ k× and1 ∈ k as distinguished positive element, is an
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H-couple overk. It has a unique embedding (asLH -structure) into anyH-couple
overk. Here,k≤1 is the onlyH-cut of (k, ψ).

Example 3.2. Every finite dimensional Hahn space overk is isomorphic
to the anti-lexicographically ordered vector spacekn, for somen. (A non-zero
vector(α1, . . . , αn) ∈ kn is positive in the anti-lexicographic ordering if and only
if αi > 0, wherei = max{j : 1 ≤ j ≤ n, αj 6= 0}.)

Let us fix ann > 0, and some positive vector(λ1, . . . , λn) in the anti-
lexicographically ordered vector spacekn overk. Let

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

be the standard basis vectors ofkn, so [e1] < · · · < [en] are the non-zerok-
archimedean classes ofkn . Let (kn, ψ) be anH-couple with(λ1, . . . , λn) as
distinguished positive element. Define then× n-matrixA = (αij) ∈ k

n×n by

(αi1, . . . , αin) := ψ(ei) for i = 1, . . . , n.

ThenA has the following properties:

1. (α11, . . . , α1n) < · · · < (αn1, . . . , αnn);

2. αij = αjj for all 1 ≤ j < i ≤ n;

3. (λ1, . . . , λn) = (αi1, . . . , αin) > 0, for i := max{j : 1 ≤ j ≤ n, λj 6= 0}.

Here, (1) and (3) follow from axiom (2) and (1) forH-couples, respectively,
whereas (2) is derived fromψ(ei)−ψ(ej) < ε·ej for all ε > 0 and1 ≤ j < i ≤ n,
which holds by axiom (3). Conversely, given a matrixA = (αij) ∈ kn×n with
properties (1)–(3), defineψ by setting

ψ(µ1, . . . , µn) := (αi1, . . . , αin), wherei := max{j : 1 ≤ j ≤ n, µj 6= 0},

for (µ1, . . . , µn) 6= 0 in kn, thus obtaining anH-couple(kn, ψ) with distin-
guished positive element(λ1, . . . , λn). In this way, we get a one-to-one cor-
respondence betweenH-couples(kn, ψ) with distinguished positive element
(λ1, . . . , λn) and matricesA ∈ kn×n with the three properties above.

Example 3.3. Suppose the Hahn spaceV overk has countable dimension.
Then by Brown’s argument in [4] there is an embeddingV → H(Γ,k) with
Γ = [V ∗] as in Corollary 2.1, whose image is the direct sum

k(Γ) :=
{
v ∈ kΓ : suppv finite

}
.
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For any linearly ordered setΓ 6= ∅ we can give a description ofH-couples(
k(Γ), ψ

)
with distinguished positive element(λγ)γ∈Γ in terms of certain matrices

in kΓ×Γ, similar to the previous example. As an example, considerΓ := Z,
V := k(Γ) =

⊕
s∈Z kes with es > 0 and[es] < [es+1], for all s ∈ Z. Define

ψ : V ∗ → V by makingψ constant on eachk-archimedean class, and setting

ψ(en) := −
(
e1 + · · · + en−1

)
if n > 0

(henceψ(e1) = 0), and

ψ(e−n) := e−n + e−n+1 + · · · + e0 if n ≥ 0.

Then(V, ψ), with distinguished positive elemente0, is anH-couple. In fact, if
k = R, it is theH-couple associated to the smallest Hardy field which is closed
under powers and containsR

(
. . . , ex, x, log x, log log x, . . .

)
. (See [11], p. 263,

[16], Cor. 2.) Note thatΓ has no smallest element, but that(V, ψ) has only one
H-cut. Modifying the definition ofψ above by letting

ψ(e−n) := e0 + e−1 − e−n−1 for n ≥ 0,

we get an example of anH-couple with distinguished positive elemente0, and
with twoH-cuts, since in this casesup Ψ exists and equalse0 + e−1 /∈ Ψ.

Example 3.4. The H-couple associated with a maximal Hardy field is
closed. More generally: LetK be a Hardy field containingR(x) and closed under
exponentiation (i.e.f ∈ K ⇒ ef ∈ K) and integration (i.e.f ∈ K ⇒ ∃g ∈ K :
g′ = f ). ThenK is also closed under powers, and theH-couple associated with
K is closed.

Proof. Note that if f ∈ K>0, then log f ∈ K, since(log f)′ = f ′/f ∈
K. The ordered set[v(K×)∗] has no least element since for anyf ∈ K>0

with v(f) > 0, we have0 < r · v(1/ log f) < v(f) for all r ∈ R>0. It
remains to show that forf ∈ K×: eitherv(f) = v(g′/g) for someg ∈ K×,
v(g) > 0, or v(f) = v(g′) for someg ∈ K×, v(g) > 0. Takeg ∈ K× with
g′ = f . If v(g) ≥ 0, then by subtracting a real constant fromg if necessary,
we may assumev(g) > 0, and we are done. Ifv(g) < 0, then, changing
f to −f and g to −g if necessary, we may assumeg is negative infinite, i.e.

g < R. ThenG := eg satisfiesf = G′/G, sov(f) = v(G′/G) andv(G) > 0.

In the next examples, we assume familiarity with [5].

Example 3.5. Let k be an ordered logarithmic-exponential field, andF any
differential subfield ofk((t))LE containingk(x) and closed under powers. Then
with V := v(F×) andψ defined as in the introduction, we get anH-couple(V, ψ)
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with distinguished positive element1 = v(t). Moreover, ifF is also closed under
exponentiation and integration, then(V, ψ) is closed.

Proof. The valuationv onk((t))LE is defined in terms of the leading monomial
mapLm via v(f) = − log

(
Lm(f)

)
for f ∈ k((t))LE, f 6= 0, see [5], (2.9). In

particular, the orderedk-linear spaceV (the value group) is an orderedk-linear
subspace ofk((t))LE itself. It is easy to see that the orderedk-linear spacek((t))LE

is a Hahn space, and thusV is a Hahn space. It is clear that axiom (1) for
H-couples holds, while axiom (2) is (4.5) in [5]. Axiom (3) is aconsequence
of Theorem 4, (c) in [12], sincev is a differential valuation by [5], (4.1). The
last part of the statement follows by adapting the proof in the previous example.

Example 3.6. Let k be as in the previous example, andF = k((t))E the
differential subfield of exponential series ink((t))LE. One shows easily thatF is
closed under powers. In the correspondingH-couple(V, ψ), whereV := v(F×),
the element1 = v(t) = ψ(x) is the largest element ofψ(V ∗) = Ψ, see (2.2) in
[5]. It follows from results in [5],§5, that for eachf ∈ F×, if v(f) > 1, then
f = g′ for someg ∈ F with v(g) > 0, while if v(f) ≤ 1, thenf = g′/g for some
g ∈ F× with v(g) > 0. ThusΨ = V ≤1 and(id +ψ)

(
V >0

)
= V >1.

Embedding into closedH-triples
Besides theH-triple (V, ψ, P ) overk we now let(V ′, ψ′, P ′) denote a second
H-triple with ordered scalar fieldk′. Since we are dealing here with (two-sorted)
LH,P -structures there is a well-defined notion of embeddingi : (V, ψ, P ) →
(V ′, ψ′, P ′). Such an embeddingi is uniquely determined by itsscalar part
is : k → k

′, an ordered field embedding, and itsvector part iv : V → V ′, an
ordered group embedding between the underlying ordered additive groups ofV
andV ′. Conversely, given an ordered field embeddingi1 : k→ k′ and an ordered
group embeddingi2 : V → V ′ between the underlying ordered additive groups
of V andV ′ there is an embeddingi : (V, ψ, P ) → (V ′, ψ′, P ′) with is = i1 and
iv = i2 if and only if i1 andi2 satisfy the compatibility conditions

i2(λu) = i1(λ)i2(u), i2
(
ψ(v)

)
= ψ′

(
i2(v)

)
, i2(1V ) = 1V ′ ,

for all u, v ∈ V , v 6= 0, λ ∈ k, and

P ′ ∩ i2(V ) = i2(P ).

Here1V , 1V ′ are the distinguished positive elements of(V, ψ, P ) and(V ′, ψ′, P ′),
respectively. Given an embeddingi as above we usually writei(λ) for is(λ) when
λ ∈ k, and i(a) for iv(a) when a ∈ V . Note thati induces an embedding
[v] 7→

[
i(v)

]
: [V ] → [V ′] of linearly ordered sets.
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We will now show that eachH-triple(V, ψ, P ) has anH-closure(V c, ψc, P c) in
the following sense:(V c, ψc, P c) is a closedH-triple overk extending(V, ψ, P )
such that any embedding(V, ψ, P ) → (V ′, ψ′, P ′) into a closedH-triple (not nec-
essarily overk) extends to an embedding(V c, ψc, P c) → (V ′, ψ′, P ′). (We do not
require uniqueness.) Later, we will see that any twoH-closures ofV = (V, ψ, P )
are isomorphic overV , that is, isomorphic by an isomorphism whose vector part
is the identity onV and whose scalar part is the identity onk. (See Corollary 5.3.)
Towards the existence proof we show three basic extension lemmas:

Lemma 3.4. Supposea ∈ V , P < a < (id +ψ)
(
V >0

)
. Then(V, ψ, P )

extends to anH-triple (V ⊕ kε, ψε, P ε) overk such that:

1. ε > 0, a = ε+ ψε(ε).
2. Given any embeddingi : (V, ψ, P ) → (V ′, ψ′, P ′) of H-triples and any

ε′ ∈ V ′ with ε′ > 0 andi(a) = ε′ + ψ′(ε′), there is a unique extension ofi to an
embeddingj : (V ⊕ kε, ψε, P ε) → (V ′, ψ′, P ′) with j(ε) = ε′.

Proof. Take an ordered vector spaceV ⊕ kε overk extending the ordered
vector spaceV , such that0 < ε < V >0. One verifies immediately thatV ⊕ kε is
a Hahn space. For a non-zero vectorw = v + λε (v ∈ V , λ ∈ k), we put

ψε(w) :=

{
ψ(v), if v 6= 0

a− ε, otherwise.

Also let P ε :=
{
w ∈ V ⊕ kε : w ≤ a − ε

}
. One verifies easily that(V ⊕

kε, ψε, P ε) is anH-triple extending(V, ψ, P ). Let i : (V, ψ, P ) → (V ′, ψ′, P ′)
be an embedding ofH-triples, andε′ ∈ V ′, ε′ > 0, with i(a) = ε′ + ψ′(ε′). By
making the usual identifications we may assume that(V, ψ, P ) ⊆ (V ′, ψ′, P ′),
and thati is the natural inclusion. Then0 < ε′ < V >0, hence the inclu-
sion V →֒ V ′ extends to an embeddingV ⊕ kε → V ′ of ordered vector
spaces overk sendingε to ε′. It is easy to check that this embedding is the

vector part of an embedding(V ⊕ kε, ψε, P ε) → (V ′, ψ′, P ′) that extendsi.

Note thatP ε as in Lemma 3.4 has a maximum. In this situation we can apply the
next lemma.

Lemma 3.5. SupposeP has a largest element. Then(V, ψ, P ) extends to an
H-triple (V ⊕ kε, ψε, P ε) overk such that:

1. ε > 0, ψε(ε) = (maxP ) + ε.
2. Given any embeddingi : (V, ψ, P ) → (V ′, ψ′, P ′) of H-triples and any

ε′ ∈ V ′ with ε′ > 0 andψ′(ε′) = i(maxP ) + ε′, there is a unique extension ofi
to an embeddingj : (V ⊕ kε, ψε, P ε) → (V ′, ψ′, P ′) with j(ε) = ε′.
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Proof. We proceed exactly as in the proof of the previous lemma, except that
in the definitions ofψε andP ε we put

ψε(w) :=

{
ψ(v), if v 6= 0

(maxP ) + ε, otherwise,

for non-zerow = v + λε (v ∈ V , λ ∈ k), and

P ε :=
{
w ∈ V ⊕ kε : w ≤ (maxP ) + ε

}
.

Thenψε(ε) = (maxP ) + ε > maxP .

We remark thatP ε as in Lemma 3.5 still has a largest element (though larger than
maxP ), so that this lemma can be applied again to the extension(V ⊕kε, ψε, P ε)
of (V, ψ, P ).

Lemma 3.6. Supposeb ∈ P \ Ψ. Then(V, ψ, P ) can be extended to an
H-triple (V ⊕ ka, ψa, P a) overk such that:

1. a > 0, ψa(a) = b.
2. Given any embeddingi : (V, ψ, P ) → (V ′, ψ′, P ′) of H-triples and any

elementa′ > 0 in V ′ with ψ′(a′) = i(b), there is a unique extension ofi to an
embeddingj : (V ⊕ ka, ψa, P a) → (V ′, ψ′, P ′) with j(a) = a′.

Proof. By Corollary 2.1, we may regardV as an ordered linear subspace of
H

(
[V ∗],k

)
. We take an objectγ /∈ [V ∗] and extend the linear ordering on[V ∗]

to a linear ordering ofΓ := [V ∗] ∪ {γ} by settingγ < [v] :⇐⇒ b > ψ(v), for
all v ∈ V ∗. Next we viewH

(
[V ∗],k

)
as an ordered linear subspace ofH(Γ,k)

by identifying each functionf : [V ∗] → k in H
(
[V ∗],k

)
with its extension toΓ

obtained by settingf(γ) := 0. ThusV ⊆ H(Γ,k). Choosea > 0 in H(Γ,k)
with max(suppa) = γ. Note thatV ⊕ ka is a Hahn space, as an ordered linear
subspace of the Hahn spaceH(Γ,k). For non-zerow = v + λa (v ∈ V , λ ∈ k),
we set

ψa(w) :=

{
ψ(v), if [w] = [v]

b, otherwise, i.e. if[w] = [a].

Also setP a :=
{
w ∈ V ⊕ ka : w ≤ v for somev ∈ P

}
. We have to check

that then(V ⊕ ka, ψa, P a) is anH-triple overk, and that(V, ψ, P ) ⊆ (V ⊕
ka, ψa, P a). It is immediate that axioms (1) and (2) forH-couples are satisfied.
The main point is axiom (3): Letw = v+λa,w′ = v′ +λ′a be positive elements
of V ⊕ ka (v, v′ ∈ V , λ, λ′ ∈ k); we have to show thatψa(w′) < ψa(w) + w.
We can assume[w′] < [w], since otherwiseψa(w′) ≤ ψa(w) < ψa(w) +w. We
distinguish the following cases:
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1. [w′] = [v′], [w] = [v]. Then
[
ψ(v′) − ψ(v)

]
< [v′ − v] = [v] = [w], hence

ψa(w′) = ψ(v′) < ψ(v) + w = ψa(w) + w.
2. [w′] = [a], [w] = [v]. By basic properties (1) and (2) stated at the beginning

of this section, we get
[
b − ψ(v)

]
< [a − v] = [v] = [w], henceψa(w′) = b <

ψ(v) + w = ψa(w) + w.
3. [w′] = [v′], [w] = [a]. Similar to the second case,

[
ψ(v′) − b

]
< [v′ − a] =

[a] = [w], henceψa(w′) = ψ(v′) < b+ w = ψa(w) + w.

Moreover,P a is the uniqueH-cut of (V ⊕ ka, ψa) such thatP a ∩ V = P . To
see this, letP a0 be anyH-cut of (V ⊕ ka, ψa) with P a0 ∩ V = P . Assume we
are givenv ∈ V andλ ∈ k×. To determine whenv + λa ∈ P a0 , we distinguish
several cases:

1. λ > 0, v ≥ b. Thenv + λa ≥ ψa(λa) + λa, hencev + λa /∈ P a0 .
2. λ > 0, b− v > a. Thenψa(a) > v + λa, hencev + λa ∈ P a0 .
3. λ > 0, 0 < b− v < a. Choose0 < µ < λ. Thenb− v < (λ − µ)a, hence

v + λa > b+ µa = ψa(µa) + µa, implying v + λa /∈ P a0 .
4. λ < 0, v − b > a. Thenv − b > (1 − λ)a, hencev + λa > ψa(λa) + λa,

so we getv + λa /∈ P a0 .
5. λ < 0, v − b < a. Then v − b < −λa, hencev + λa < ψa(a), so

v + λa ∈ P a0 .

Thereforev + λa ∈ P a0 if and only if eitherλ > 0 andb − v > a, orλ < 0 and
v − b < a. HenceP a = P a0 .

Now leti : (V, ψ, P ) → (V ′, ψ′, P ′) be an embedding ofH-triples anda′ a pos-
itive element ofV ′ withψ′(a′) = b. We can assume that(V, ψ, P ) ⊆ (V ′, ψ′, P ′),
and thati is the inclusion. Note thata′ /∈ V determines the same cut inV asa.
Hence the inclusionV →֒ V ′ extends to a unique embeddingV ⊕ka→ V ′ of or-
dered vector spaces overkmappinga toa′. This embedding is the vector part of an
embedding(V ⊕ ka, ψa, P a) → (V ′, ψ′, P ′), by uniqueness ofP a proved
above.

Remark. Assume that in the last lemma there is no elementv ∈ V with
P < v < (id +ψ)

(
V >0

)
, and thatP has no maximum. Then there is also no

w ∈ V ⊕ ka with P a < w < (id +ψa)
(
(V ⊕ ka)>0

)
, andP a has no largest

element.

Starting with(V, ψ, P ) and suitably iterating and alternating the constructions
of lemmas 3.4, 3.5 and 3.6 (possibly transfinitely often), wecan build an increasing
chain ofH-triples overk whose union is anH-closure of(V, ψ, P ):

Corollary 3.1. EveryH-triple has anH-closure.

Behavior under scalar extension
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Lemma 3.7. Let k′ ⊇ k be an extension of ordered fields. Then there are
uniqueψk′ andPk′ such that(Vk′ , ψk′ , Pk′) is anH-triple overk′ extending
(V, ψ, P ).

Proof. Let ψk′ := ψ′ as in Lemma 3.2 (wherei : V → Vk′ is the natural
inclusion). We have to show that there is a uniqueH-cutPk′ for (Vk′ , ψk′) with
Pk′ ∩ V = P . If Ψ has a largest element, this is clear sinceΨ = ψ(V ∗) =
ψk′(V ∗

k′). So assumeΨ has no largest element. Supposev ∈ Vk′ satisfies

ψk′

(
V >0

k′

)
< v < (id +ψk′)

(
V >0

k′

)
.

It suffices to show that thenv ∈ V . Let H := H(Γ,k), H ′ := H(Γ,k′),
Γ := [V ∗]. Consider the following commutative diagram of ordered vector spaces
overk and embeddings between them:

Vk′

φ⊗id -Hk′

µ - H ′

6 6

�����*
ι

V
φ - H

Here,φ is given by Corollary 2.1, the mapsV → Vk′ andH → Hk′ are obtained
from Proposition 2.2,ι is the natural inclusionH(Γ,k) →֒ H(Γ,k′), andµ is
uniquely determinedas an embeddingbyµ(h⊗λ) = λh, forλ ∈ k′,h ∈ H (using
Corollary 2.2). After identifying theH-couples(V, ψ), (Vk′ , ψk′) and(H,ψH)
via these embeddings withLH -substructures of(H ′, ψH′ ) we haveVk′ ∩H = V .
By Lemma 3.3,(H,ψH) and(H ′, ψH′) have twoH-cuts, hencev ∈ H . Thusv ∈

V , as desired.

In the next section we apply this last result as follows. LetV = (V, ψ, P ) and
V ′ = (V ′, ψ′, P ′) beH-triples over ordered fieldsk andk′, respectively. Let
V0 = (V0, ψ0, P0) be a substructure ofV . ThusV0 is anH-triple over an ordered
subfieldk0 of k. Let an embeddingi0 : V0 → V ′ be given, and also an embedding
e : k→ k′ of ordered fields, such thate|k0 = (i0)s.

By the last lemma the Hahn space(V0)k := V0 ⊗k0
k overk expands uniquely

to anH-triple (V0)k overk such thatV0 ⊆ (V0)k. With these notations we have:

Lemma 3.8. The embeddingV0 →֒ V extends uniquely to an embedding
(V0)k → V with scalar partidk. The embeddingi0 : V0 → V ′ extends uniquely
to an embedding(V0)k → V ′ with scalar parte.

Proof. By Corollary 2.2 the inclusionV0 →֒ V extends uniquely to an embed-
ding(V0)k → V of Hahn spaces overk. This is actually an embedding(V0)k → V
of H-triples with scalar partidk, by the uniqueness property in the last proposi-
tion.
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4. ELIMINATION OF QUANTIFIERS

In this section we obtain the main results of this paper. LetTH,P denote the theory
of closedH-triples in the languageLH,P . By “formula” we shall mean “LH,P -
formula”. Letx = (x1, . . . , xm) denote a tuple of distinct scalar variables,y =
(y1, . . . , yn) a tuple of distinct vector variables. We call a formulaη(x, y) ascalar
formula if it is of the form ζ

(
s1(x, y), . . . , sN (x, y)

)
whereζ(z1, . . . , zN ) is a

formula in the language of ordered rings (as specified in part(3) of the description
of LH in §1), wherez1, . . . , zN are scalar variables, ands1(x, y), . . . , sN (x, y)
are scalar valued terms ofLH,P .

Theorem 4.1. Every formulaϕ(x, y) is equivalent inTH,P to a boolean
combination of scalar formulasη(x, y) and of atomic formulasα(x, y).

This elimination theorem says in particular that every formula is equivalent
in TH,P to a formula that is free of quantifiers over vector variables. It will be
derived from the following embedding result:

Proposition 4.1. Let (V, ψ, P ) and(V ′, ψ′, P ′) be closedH-triples overk
andk′, respectively. Assume that(V ′, ψ′, P ′) is κ-saturated, whereκ := |V |+.
Let (V0, ψ0, P0) be a substructure of(V, ψ, P ), and thus anH-triple over a
subfieldk0 ofk. Let an embeddingi0 : (V0, ψ0, P0) → (V ′, ψ′, P ′) be given, and
also an embeddinge : k → k′ of ordered fields, such thate|k0 = (i0)s. Theni0
can be extended to an embeddingi : (V, ψ, P ) → (V ′, ψ′, P ′) such thate = is.

We postpone the proof of this proposition and first deduce Theorem 4.1 from
it. To this end we use the following consequence of Proposition 4.1.

Lemma 4.1. Let (V, ψ, P ) ⊆ (V ′, ψ′, P ′) be closedH-triples overk and
k′, respectively. Thenk � k′ (as ordered fields) if and only if (V, ψ, P ) �
(V ′, ψ′, P ′).

Proof. One direction being trivial, we assumek � k′, and shall derive
(V, ψ, P ) � (V ′, ψ′, P ′). Let ϕ(x, y) be a formula. By induction on the com-
plexity of ϕ, one shows, for all(V, ψ, P ) and(V ′, ψ′, P ′) as in the hypothesis of
the lemma, and allλ ∈ km, v ∈ V n:

(V, ψ, P ) |= ϕ(λ, v) ⇐⇒ (V ′, ψ′, P ′) |= ϕ(λ, v)

For the inductive step, letϕ = ∃zθ, whereθ(x, y, z) is a formula andz a
single variable of the vector or scalar sort. Sinceθ is of lower complexity
thanϕ the direction “⇒” follows from the induction hypothesis. So assume
(V ′, ψ′, P ′) |= ϕ(λ, v). Choose aκ-saturated elementary extension(V ′′, ψ′′, P ′′)
of (V, ψ, P ), whereκ := |V ′|+. Letk′′ be the scalar field of(V ′′, ψ′′, P ′′). Then
there is an elementary embedding of ordered fieldse : k′ → k′′ with e|k = id.
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By Proposition 4.1, there is an embeddingi : (V ′, ψ′, P ′) → (V ′′, ψ′′, P ′′)
with is = e and iv|V = id. Using the induction hypothesis onθ, it fol-

lows that(V ′′, ψ′′, P ′′) |= ϕ(λ, v). We conclude that(V, ψ, P ) |= ϕ(λ, v).

Proof (of Theorem 4.1, assuming Proposition 4.1). Suppose(V, ψ, P ) and
(V ′, ψ′, P ′) are closedH-triples overk andk′, respectively, and let(λ, v) ∈
km × V n and(λ′, v′) ∈ (k′)m × (V ′)n satisfy the same scalar formulas and the
same atomic formulas in(V, ψ, P ) and(V ′, ψ′, P ′), respectively. By a standard
model-theoretic argument, it suffices to derive from these assumptions that(λ, v)
and(λ′, v′) satisfy the same formulas in(V, ψ, P ) and(V ′, ψ′, P ′), respectively.
We may assume(V ′, ψ′, P ′) is κ-saturated, whereκ := |V |+. Let (V0, ψ0, P0),
with scalar fieldk0, be the substructure of(V, ψ, P ) generated by(λ, v). Since
(λ, v) and(λ′, v′) satisfy the same atomic formulas, there exists an embedding
i0 : (V0, ψ0, P0) → (V ′, ψ′, P ′) such thati0(λi) = λ′i for i = 1, . . . ,m and
i0(vj) = v′j for j = 1, . . . , n. Since(λ, v) and and(λ′, v′) satisfy the same scalar
formulas, there exists an elementary embedding of ordered fieldse : k→ k′ such
that e|k0 = (i0)s. By Proposition 4.1, there is an embeddingi : (V, ψ, P ) →
(V ′, ψ′, P ′) extendingi0 such thate = is. By the previous lemmai is an
elementary embedding. Thus(λ, v) and(λ′, v′) satisfy the sameLH,P -formulas.

Let TH,P,RCF ⊇ TH,P be the theory of closedH-triples over real closed scalar
fields. The following result was announced in section 1:

Theorem 4.2. The theoryTH,P,RCF is complete, decidable, and admits elim-
ination of quantifiers. It is the model-completion of the theory ofH-triples.

The proof uses the following consequence of Proposition 4.1:

Lemma 4.2. Let (V, ψ, P ) and (V ′, ψ′, P ′) be closedH-triples over scalar
fieldsk andk′, respectively. Thenk ≡ k′ if and only if(V, ψ, P ) ≡ (V ′, ψ′, P ′).

Proof. One direction being trivial, we assumek ≡ k
′, and shall derive

(V, ψ, P ) ≡ (V ′, ψ′, P ′). We can assume that(V ′, ψ′, P ′) is κ-saturated, where
κ := |V |+. We may further assume, by Example 3.1, that(V, ψ, P ) and
(V ′, ψ′, P ′) have as common substructure anH-triple (V0, ψ0, P0) over the scalar
field k0 := Q. Sincek ≡ k′ andk′ is |k|+-saturated, there is an elementary
embedding of ordered fieldse : k → k′. Since necessarilye|k0 = id, Proposi-
tion 4.1 implies thate is the scalar part of an embedding(V, ψ, P ) → (V ′, ψ′, P ′).

This is an elementary embedding by Lemma 4.1. Thus(V, ψ, P ) ≡ (V ′, ψ′, P ′).

Proof (of Theorem 4.2). The completeness of the theoryRCF of real closed
ordered fields, together with Lemma 4.2, implies the completeness ofTH,P,RCF.
By Corollary 3.1, everyH-triple can be embedded into a closedH-triple over a
real closed field. ThatTH,P,RCF admits quantifier elimination follows from Theo-
rem 4.1 and the fact thatRCF admits quantifier elimination.
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Remark. By Examples 3.4 and 3.5, theH-triples of maximal Hardy fields
and theH-triple of the field of LE-series overR are models ofTH,P,RCF. Thus,
by Theorem 4.2, a certain fragment of the elementary theories of these ordered
differential fields has been fully analyzed at the most basicmodel-theoretic level.

The rest of this section is devoted to proving Proposition 4.1.

The functionsψa

We need a generalization of the intermediate value propertyof id +ψ on V >0

andV <0. Below, letV = (V, ψ) be anH-couple (not necessarily closed) over
the scalar fieldk. For a = (a1, . . . , an) ∈ V n, n > 0, we define a function
ψa : V∞ → V∞. We proceed by induction:

1. Forn = 1 (with a ∈ V ) we putψa(v) := ψ(v − a).
2. Forn > 1, we putψa(v) := ψ

(
ψa′(v) − an

)
, wherea′ := (a1, . . . , an−1).

We letDa :=
{
v ∈ V : ψa(v) 6= ∞

}
. ThusDa = V \ {a} for n = 1, and

Da =
{
v ∈ Da′ : ψa′(v) 6= an

}
for n > 1. So givena1, a2, a3, . . . in V , we get

ψ(a1,a2)(v) = ψ
(
ψ(v − a1) − a2

)
,

ψ(a1,a2,a3)(v) = ψ
(
ψ

(
ψ(v − a1) − a2

)
− a3

)
,

and so on. One verifies easily by induction onn that if v, v′ ∈ Da with v 6= v′,
then

[
ψa(v) − ψa(v

′)
]
< [v − v′].

Lemma 4.3. Let a = (a1, . . . , an) ∈ V n, λ1, . . . , λn ∈ k, n > 0. The
function

v 7→ v + λ1ψa1(v) + λ2ψ(a1,a2)(v) + · · · + λnψa(v) : Da → V

is strictly increasing, and has the intermediate value property on each convex
component ofDa.

Proof. Let η : Da → V be the function given by

η(v) := λ1ψa1(v) + λ2ψ(a1,a2)(v) + · · · + λnψa(v).

Thenv 7→ v + η(v) : Da → V is strictly increasing, since for distinctv, v′ ∈ Da

we have[η(v) − η(v′)] < [v − v′]. Let C be a convex component ofDa with
a1 < C, and letx < y < z be inC, with z − y ≤ y − x. Then

y − a1 < z − a1 = (z − y) + (y − a1) ≤ 2(y − a1),

soψ(y−a1) = ψ(z−a1); thusη(y) = η(z), sinceη(v) depends only onψ(v−a1).
By Lemma 2.2 the functionη|C has the intermediate value property. For the con-
vex components< a1 ofDa we verify instead condition(2′) of the remark follow-

ing Lemma 2.2.
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Lemma 4.4. SupposeV is closed, and leta = (a1, . . . , an) ∈ V n, n > 0.
ThenDa has at most2n convex components inV , and on each of these,ψa is
monotone and has the intermediate value property.

Proof. We proceed by induction onn. Forn = 1, the two convex components
of Da areV <a, on whichψa is increasing, andV >a, on whichψa is decreasing;
on each of these,ψa has the intermediate value property, sinceV is closed.
Suppose the lemma holds for a certaina = (a1, . . . , an) ∈ V n, and letâ =
(a1, . . . , an, an+1) ∈ V n+1. Consider a convex componentC of Da. Thenψa
is monotone onDa, say increasing onC, and has the intermediate value property
onC. Put

C1 :=
{
v ∈ C : ψa(v) < an+1

}
,

C2 :=
{
v ∈ C : ψa(v) = an+1

}
,

C3 :=
{
v ∈ C : ψa(v) > an+1

}
.

ThusC is the disjoint union of its convex subsetsC1,C2 andC3, andC1 < C2 <
C3. Also ψba is clearly increasing onC1, and decreasing onC3. If bothC1 and
C3 are nonempty, then alsoC2 is nonempty (because of the intermediate value
property ofψa on C), and thusC1 andC3 are the convex components ofDba

that are contained inC. OtherwiseC only contributes one convex component to

Dba, or none at all, depending on whether one or both ofC1 andC3 are empty.

Archimedean classes and coinitiality

Lemma 4.5. Let V ⊆ V ′ be an extension of ordered vector spaces over the
ordered fieldk, and letb ∈ V ′ \ V be such that

1. for eachε ∈ V >0 there area, c ∈ V with a < b < c andc− a < ε,
2. {a ∈ V : a < b} has no maximum, and{c ∈ V : c > b} has no minimum.

Then[V ] = [V ⊕ kb] (as subsets of[V ′]).

Proof. Assume not. Then there isv ∈ V with [b − v] /∈ [V ]. Changingb
to −b andv to −v, if necessary, we may assumeb > v. Let ε ∈ V >0 be such
that v + ε < b, by (2), anda, c ∈ V with v + ε ≤ a < b < c andc − a < ε,
by (1). Thenb − a < c − a < ε ≤ a − v, hence[b − a] ≤ [a − v]. But

b− v = (b− a) + (a− v) and thus[a− v] < [b− v] = [b− a], a contradiction.

For the proof of Proposition 4.1, and also in§5, we shall need the following
easy consequence of the lemma above:

Corollary 4.1. Let (V, ψ) ⊆ (V ′, ψ′) be an extension ofH-couples over
k and overk′ ⊇ k respectively, such that[V ∗] has no minimum. Ifx ∈ V ′
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and0 < x < V >0, then[V ]k =
[
V ⊕ kψ′(x)

]
k

inside[V ′]k. In particular, if
[V ]k 6= [V ⊕ ky]k for all y ∈ V ′ \ V , thenV >0 is coinitial in (V ′)>0.

Proof. Let 0 < x < V >0, x ∈ V ′. Thenb := ψ′(x) satisfies the hypothesis
of the previous lemma, whereV ′ is considered as an ordered vector space overk.

Thus we have[V ]k = [V ⊕ kb]k.

Properties (A) and (B)
Given an extension(V, ψ) ⊆ (V ′, ψ′) of H-couples (not necessarily over the
same scalar field), anda = (a1, . . . , an) ∈ V n, n > 0, we have functions
ψa : V∞ → V∞, with Da =

{
v ∈ V : ψa(v) 6= ∞

}
, andψ′

a : V ′
∞ → V ′

∞, with
D′
a =

{
v′ ∈ V ′ : ψ′

a(v
′) 6= ∞

}
. Clearlyψa is the restriction ofψ′

a to V∞,
and thusD′

a ∩ V = Da. Consider the following two properties of an extension
(V, ψ) ⊆ (V ′, ψ′) of closedH-couples:

(A) For all a ∈ V n, n > 0, and convex componentsC′ of D′
a, C

′ ∩ V 6= ∅.
(B) For allx ∈ V ′, a = (a1, . . . , an) ∈ V n, b ∈ V , λ1, . . . , λn ∈ k, n > 0:

x+ λ1ψ
′
a1

(x) + λ2ψ
′
(a1,a2)

(x) + · · · + λnψ
′
a(x) = b =⇒ x ∈ V.

(By Lemma 4.3 and Lemma 4.4 these conditions (A) and (B) are clearly satisfied
for elementaryextensions of closedH-couples.)

Remark. Let (V, ψ) be a closedH-couple,a ∈ V n, n > 0, andE a cut in the
ordered setV . Then there exists a convex componentC of Da andε ∈ {−1, 1}
such that for any extension(V ′, ψ′) ⊇ (V, ψ) of closedH-couples satisfying (A)
and (B) and anyv′ ∈ D′

a \Da realizing the cutE: if C′ is the convex component
of v′ in D′

a, thenC′ ∩ V = C, andsgn
(
v′ − ψ′

a(v
′)
)

= ε. (This follows by an
easy induction onn as in the proof of Lemma 4.4.)

Proof of Proposition 4.1 using (A) and (B)
The hardest part of the proof of Proposition 4.1 consists in showing that all
extensions of closedH-couples satisfy (A) and (B). This was the last difficulty
we overcame, and accordingly we postpone this part. Thus in this subsection we
assume:

All extensions of closedH-couples satisfy(A) and(B).

Let the hypothesis in the statement of Proposition 4.1 hold.To simplify notation,
we may as well assume that(V0, ψ0, P0) is a common substructure of(V, ψ, P )
and(V ′, ψ′, P ′), and thatk is an ordered subfield ofk′, with i0 ande the natural
inclusions. We want to extendi0 to an embeddingi : (V, ψ, P ) → (V ′, ψ′, P ′)
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such thatis = e. By scalar extension (Lemma 3.8), we can reduce to the case
k0 = k. By Corollary 3.1, we can further reduce to the case that(V0, ψ0, P0) is
closed. We may also assume thatV 6= V0. By a familiar Zorn’s Lemma argument,
it suffices to show that there is someH-triple (V1, ψ1, P1) ⊆ (V, ψ, P ) strictly
containing(V0, ψ0, P0) as a substructure, such thati0 extends to an embedding
(V1, ψ1, P1) → (V ′, ψ′, P ′).

Case 1. Assume that we havev ∈ V \ V0 with [V0 ⊕ kv] = [V0]. Then
ψ(V0 ⊕ kv) = ψ0(V0), in particular,

(V1, ψ1, P1) :=
(
V0 ⊕ kv, ψ|(V0 ⊕ kv)

∗, P ∩ (V0 ⊕ kv)
)

is a substructure of(V, ψ, P ). We claim that there is an embedding of this
substructure into(V ′, ψ′, P ′) overV0. To see this, we distinguish two subcases:

1. Nou ∈ V0⊕kv satisfiesP0 < u < V0 \P0. (Thus
(
V0⊕kv, ψ|(V0⊕kv)

∗
)

has only one cut, namelyP ∩ (V0 ⊕ kv).) By saturation, we can findv′ ∈ V ′

realizing the same cut inV0 as v. It follows that we have an isomorphism
V0 ⊕ kv → V0 ⊕ kv′ of ordered vector spaces overk that sendsv to v′ and is the
identity onV0. Henceψ(v0+λv) = ψ′(v0+λv′), for allv0 ∈ V0,λ ∈ k, and there
is nou′ ∈ V0⊕kv′ withP0 < u′ < V0\P0. (Thus also

(
V0⊕kv′, ψ′|(V0⊕kv′)∗

)

has only one cut.) So we have an embedding of(V1, ψ1, P1) into (V ′, ψ′, P ′) as
desired.

2. There isu ∈ V0 ⊕ kv with P0 < u < V0 \P0. If w ∈ V0 ⊕ kv also satisfies
P0 < w < V0 \ P0, thenψ(δ) < u,w < ψ(δ) + δ, hence|u − w| < δ, for
all δ ∈ V >0

0 . Thereforeu = w because of[V0 ⊕ kv] = [V0]. After renaming,
we may also assumeu = v. By saturation, we can findv′ ∈ V ′ such that
P0 < v′ < V0 \ P0 and such thatv ∈ P ⇔ v′ ∈ P ′. It follows as before that we
get an embedding of(V1, ψ1, P1) into (V ′, ψ′, P ′) as desired.

Case 2. Assume that for everyv ∈ V \ V0 we have[V0 ⊕ kv] 6= [V0].
Fix somev ∈ V \ V0. Then there is somea1 ∈ V0 such that[v − a1] /∈ [V0],
henceψ(v − a1) /∈ V0. So for somea2 ∈ V0,

[
ψ(v − a1) − a2

]
/∈ [V0], hence

ψ
(
ψ(v− a1)− a2

)
/∈ V0. Continuing this way, we obtain elementsa1, a2, a3, . . .

in V0 such that for alln ≥ 1,ψ(a1,...,an)(v) /∈ V0. (We use the notation introduced
earlier in this section.) Let

b1 := v − a1, bn := ψ(bn−1) − an for n > 1.

Then [bn] /∈ [V0] andψ(bn) = ψ(a1,...,an)(v), for all n ≥ 1. We claim that
{bn}n≥1 is a family of vectors linearly independent overV0. Otherwise, we
would have a linear relation among thebn and elements ofV0. By changing from
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{an}n≥1 to{an+k}n≥1 and fromv toψ(a1,...,ak)(v), for somek ≥ 1, if necessary,
we can assume it to be of the form

v + λ1ψa1(v) + λ2ψ(a1,a2)(v) + · · · + λnψa(v) = v0

for somen > 0, a = (a1, . . . , an), λ1, . . . , λn ∈ k, andv0 ∈ V0. But then
condition (B) would implyv ∈ V0, contrary to our assumption. Thus in particular,

[bn] 6= [bm] for all m > n ≥ 1, (3)

since otherwisebn+1 − bm+1 = am+1 − an+1 ∈ V0.
By saturation we can findv′ ∈ V ′ \ V0 realizing the same cut in the ordered set

V0 asv. Put

b′1 := v′ − a1, b′n := ψ′(b′n−1) − an for n > 1.

We now show by induction onn ≥ 1 that

1. v′ ∈ D(a1,...,an) andb′n 6= ∞,
2. the cutC(bn) determined bybn in V0 is the same as the cutC(b′n) determined

by b′n in V0 (hence[b′n] /∈ [V0]).

This is clear forn = 1, by choice ofv′. Suppose (1) and (2) hold for a certain
n ≥ 1. Then we obtain from[b′n] /∈ [V0] that ψ′

a(v
′) = ψ′(b′n) /∈ V0, with

a = (a1, . . . , an). In particularψ′
a(v

′) 6= an+1, hence (1) holds forn+1 in place
of n. Let

C1 :=
{
ψ0(v0) : v0 ∈ V0, [v0] > [bn]

}
,

C2 :=
{
u0 ∈ V0 : u0 ≥ ψ0(v0) for somev0 ∈ V0 with [v0] < [bn]

}
.

ThenC1 < ψ(bn) < C2 andC1 < ψ′(b′n) < C2, C1 ∪ C2 = V0. Hence
C1 − an+1 < bn+1 < C2 − an+1, C1 − an+1 < b′n+1 < C2 − an+1, thus
C(bn+1) = C(b′n+1). So (2) holds withn+1 instead ofn, finishing the inductive
step.

Now condition (B) implies just as withb1, b2, . . . that{b′n}n≥1 is a family of
linearly independent vectors overV0. From (2), we get

sgn(bn) = sgn(b′n) for all n ≥ 1, (4)

and, by the remark preceding this proof,

[bn] < [bm] ⇔ [b′n] < [b′m], for all n,m ≥ 1. (5)

We set

V1 := V0 ⊕
∞⊕

n=1

kbn ⊆ V, ψ1 := ψ|V ∗
1 , P1 := P ∩ V1.
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Clearly (V1, ψ1, P1) is theLH,P -substructure of(V, ψ, P ) generated byv over
(V0, ψ0, P0). Consider the (injective)k-linear mapV1 → V ′ that is the identity
on V0 and sends eachbn to b′n. Using the fact that[bn] /∈ [V0], [b′n] /∈ [V0],
andC(bn) = C(b′n), for all n ≥ 1, together with (3)–(5), one sees that this
map is also order-preserving. Moreover it is easily shown tobe the vector part
of an embedding(V1, ψ1) → (V ′, ψ′) of LH -structures with the identity onk
as scalar part. To show that we even have an embedding ofLH,P -structures
(V1, ψ1, P1) → (V ′, ψ′, P ′), it suffices to prove that(V1, ψ1) has only oneH-
cut. For a contradiction, assume that there existsv1 ∈ V1 with ψ1

(
V >0

1

)
<

v1 < (id +ψ1)
(
V >0

1

)
. But ψ0

(
V >0

0

)
is cofinal inψ

(
V >0

)
, and(id +ψ)

(
V >0

0

)

is coinitial in (id +ψ)
(
V >0

)
, by Corollary 4.1. This impliesψ

(
V >0

)
< v1 <

(id +ψ)
(
V >0

)
, i.e.(V, ψ) has twoH-cuts, contradicting the closedness of(V, ψ).

This finishes the proof of Proposition 4.1, except that we still have to prove
properties (A) and (B) for all extensions(V, ψ) ⊆ (V ′, ψ′) of closedH-couples.
The remainder of this section is devoted to this task.

Proof of (A) and (B)
We first make a more detailed study of the behavior of the functionsψa on the
convex components ofDa, in the case of a closedH-couple. In the remainder of
this section we letV = (V, ψ) be a closedH-couple.

Lemma 4.6. Let p ∈ V . Then there isu ∈ V such thatψ(x) = u for all
sufficiently largex ∈ Ψ+p. Moreover, if(V ′, ψ′) is a closedH-couple extending
(V, ψ), the sameu ∈ V has the property thatψ′(x) = u for all sufficiently large
x ∈ Ψ′ + p, whereΨ′ := ψ′((V ′)∗).

Proof. First assume−p ∈ Ψ, so ψ(x) + p > 0 for all sufficiently small
x > 0. Now takex0 > 0 in V such thatψ(x0) + p > 0 and[x0] < [ψ(x0) + p].
(Decreasingx0 makesψ(x0) + p increase, so this is indeed possible.) We claim
that

[
ψ(x0) + p

]
=

[
ψ′(x′) + p

]
for all 0 < x′ < x0 in V ′.

Otherwise,
[
ψ(x0) + p

]
<

[
ψ′(x′) + p

]
≤

[
ψ(x0) + x0 + p

]
=

[
ψ(x0) + p

]
,

a contradiction. Thusu := ψ
(
ψ(x0) + p

)
works. Now assume−p /∈ Ψ. Then

−p = ψ(x0) + x0 for somex0 > 0 in V . We claim that

[x0] =
[
ψ′(x′) + p

]
for all 0 < x′ < x0 in V ′.

Otherwise,

[x0] =
[
ψ(x0) + p

]
<

[
ψ′(x′) + p

]
=

[
ψ(x0) + x0 − ψ′(x′)

]
≤ [x0],
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a contradiction. Sou := ψ(x0) works in this case.

Notation. We will denote the elementu in Lemma 4.6 bylimx∈Ψ+p ψ(x).
(Hencelimx∈Ψ+p ψ(x) = limx∈Ψ′+p ψ

′(x).)

We fix some terminology. Letf : V∞ → V∞ be a function, and letC be
a non-empty convex subset ofV on whichf does not take the value∞. Let
p, q ∈ V , and letS ⊆ V be downward closed. (We only use this forf = ψa, C
is a convex component ofDa, andS = Ψ.)

1. f increases onC from p to q if f |C is increasing,p ≤ q, and

f(C) = [p, q] =
{
v ∈ V : p ≤ v ≤ q

}
.

(We allowf |C constant andp = q.)
2. f increases onC from −∞ to q if f |C is increasing and

f(C) = (−∞, q] =
{
v ∈ V : v ≤ q

}
.

3. f increases onC from p to S if f |C is increasing, and

f(C) = {v ∈ S : v ≥ p}.

4. f increases onC from −∞ to S if f |C is increasing, andf(C) = S.

Similarly, one defines what it means thatf decreases onC from p to q, f
decreases onC from p to −∞, f decreases onC from S to q, andf decreases
onC from S to −∞.

Let now a second closedH-coupleV ′ = (V ′, ψ′) extendingV = (V, ψ) be
given, and leta = (a1, . . . , an) ∈ V n, n > 0.

Below, we write “component” instead of “convex component”.

Lemma 4.7.

1. Each componentC ofDa is contained in a(necessarily unique) component
C′ ofD′

a, and the mapC 7→ C′ is a bijection between the set of components of
Da and the set of components ofD′

a, withC′ ∩ V = C for each componentC of
Da.

2.Da has a(necessarily unique) componentC∞ > a1 that is unbounded inV ;
the corresponding componentC′

∞ ofD′
a is unbounded inV ′.

3. LetC be a bounded component ofDa. Then there arep, q ∈ V such that
one of the following holds:

(a)ψa increases onC fromp to q, andψ′
a increases onC′ fromp to q.

(b)ψa decreases onC fromp to q, andψ′
a decreases onC′ fromp to q.
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(c)ψa increases onC fromp to Ψ, ψ′
a increases onC′ fromp to Ψ′.

(d)ψa decreases onC fromΨ to q, ψ′
a decreases onC′ fromΨ′ to q.

4. LetC∞ be the unbounded component> a1 of Da, C′
∞ the corresponding

component ofD′
a. Then one of the following holds:

(a)ψa decreases onC∞ from Ψ to −∞, ψ′
a decreases onC′

∞ from Ψ′ to
−∞.

(b) There isp ∈ V such thatψa decreases onC∞ from p to −∞, andψ′
a

decreases onC′
∞ fromp to−∞.

Proof. We proceed by induction onn. The casen = 1 is easy to verify.
Suppose the lemma holds for a certaina = (a1, . . . , an) ∈ V n. Let â =
(a1, . . . , an, an+1) ∈ V n+1. Since the components< a1 of Da are obtained
from the components> a1 of Da by reflection at the pointx = a1, about
which the functionsψa andψ′

a are symmetric, we only need to consider the
case of components> a1. So letC > a1 be a component ofDa, andC′ the
corresponding component ofD′

a. Define

C1 :=
{
v ∈ C : ψa(v) < an+1

}
,

C2 :=
{
v ∈ C : ψa(v) = an+1

}
,

C3 :=
{
v ∈ C : ψa(v) > an+1

}
,

and define the setsC′
i for i = 1, 2, 3 in the same way, by replacingC by C′ and

ψa by ψ′
a. HenceC′

i ∩ V = Ci, for i = 1, 2, 3. The components ofDba that
are contained inC are the nonempty sets amongC1 andC3, and similarly, the
components ofD′

ba that are contained inC′ are the nonempty sets amongC′
1 and

C′
3.
Assume firstC is bounded inV (and henceC′ is bounded inV ′). We shall

assumeψa is increasing onC (henceψ′
a increasing onC′). The case thatψa is

decreasing onC is similar and left to the reader. We distinguish several cases:

1. There existp, q ∈ V such thatψa increases onC from p to q, andψ′
a

increases onC′ from p to q.

(i) q ≤ an+1. ThenC3, C
′
3 = ∅. If q < an+1, thenC1, C

′
1 6= ∅,C2, C

′
2 = ∅,

andψba increases onC1 from ψ(p − an+1) to ψ(q − an+1), ψ′
ba increases on

C′
1 from ψ(p − an+1) to ψ(q − an+1). If an+1 = q > p, thenC1, C

′
1 6= ∅,

C2, C
′
2 6= ∅, andψba increases onC1 fromψ(p− an+1) to Ψ, andψ′

ba increases on
C′

1 fromψ(p− an+1) to Ψ′. If an+1 = p = q, thenC1, C
′
1 = ∅.

(ii) an+1 ≤ p, q 6= an+1. ThenC1, C
′
1 = ∅ andC3, C

′
3 6= ∅. If an+1 < p,

thenC2, C
′
2 = ∅, andψba decreases onC3 from ψ(p − an+1) to ψ(q − an+1),
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andψ′
ba decreases onC′

3 from ψ(p − an+1) to ψ(q − an+1). If an+1 = p, then
C2, C

′
2 6= ∅, andψba decreases onC3 from Ψ to ψ(q − an+1), andψ′

ba decreases
onC′

3 from Ψ′ to ψ(q − an+1).

(iii) p < an+1 < q. ThenC1, C
′
1 6= ∅, C2, C

′
2 6= ∅, C3, C

′
3 6= ∅. Here,ψba

increases onC1 fromψ(p−an+1) toΨ, andψ′
ba increases onC′

1 fromψ(p−an+1)
to Ψ′. Similarly,ψba decreases onC3 from Ψ to ψ(q − an+1), andψ′

ba decreases
onC′

3 from Ψ′ to ψ(q − an+1).

2. There existsp ∈ V such thatψa increases onC fromp toΨ, andψ′
a increases

onC′ from p to Ψ′. (Thusp ∈ Ψ.) This case is essentially treated as the first one,
using Lemma 4.6. If, for example,an+1 < p, so thatC1, C

′
1 = ∅,C2, C2 = ∅ and

C3, C
′
3 6= ∅, thenψba decreases onC3 from ψ(p − an+1) to limx∈Ψ−an+1 ψ(x),

andψ′
ba decreases onC′

3 fromψ(p− an+1) to limx∈Ψ′−an+1 ψ
′(x), which equals

limx∈Ψ−an+1 ψ(x). We leave the details to the reader.

Now supposeC = C∞ is the unbounded component> a1 of Da, and hence
C′ = C′

∞ the unbounded component> a1 of D′
a. We have two cases again:

1. ψa decreases onC fromΨ to−∞, andψ′
a decreases onC′ fromΨ′ to−∞. If

an+1 > Ψ, we haveC1, C
′
1 6= ∅ andC2, C

′
2, C3, C

′
3 = ∅. Henceψba decreases on

C1 from limx∈Ψ−an+1 ψ(x) to−∞,ψ′
ba decreases onC′

1 from limx∈Ψ−an+1 ψ(x)
to −∞. In this case,C1 is the unbounded component> a1 of Dba, C′

1 is the
unbounded component> a1 of D′

ba. If, on the other hand,an+1 ∈ Ψ, then
C1, C

′
1 6= ∅, C3, C

′
3 6= ∅. Soψba decreases onC1 from Ψ to −∞, ψ′

ba decreases
onC′

1 from Ψ′ to−∞, andψba increases onC3 from limx∈Ψ−an+1 ψ(x) to Ψ, ψ′
ba

increases onC′
3 from limx∈Ψ−an+1 ψ(x) to Ψ′. The unbounded component> a1

of Dba isC1, and the unbounded component> a1 of D′
ba isC′

1.
2. There isp ∈ V such thatψa decreases onC fromp to−∞, andψ′

a decreases
on C from p to −∞. This case is treated similarly to the previous one, except
that we now have three subcases, according to whetheran+1 > p, an+1 = p, or
an+1 < p.

This finishes the inductive step, hence the proof of the lemma.

Corollary 4.2. ψ′
a(C

′) ∩ V = ψa(C), for each componentC ofDa.

We now also fix scalarsλ1, . . . , λn ∈ k, so that we have functionsθ : Da → V
andθ′ : D′

a → V given by

θ(v) := v + λ1ψa1(v) + λ2ψ(a1,a2)(v) + · · · + λnψa(v),

θ′(v′) := v′ + λ1ψ
′
a1

(v′) + λ2ψ
′
(a1,a2)

(v′) + · · · + λnψ
′
a(v

′),

for v ∈ Da andv′ ∈ D′
a. Note thatθ = θ′|Da.

Remark. Let C∞ be the unbounded component> a1 of Da. Thenθ is not
bounded from above onC∞, that is, for anyb ∈ V there existsx ∈ C∞ with
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θ(x) > b. To see this, note that
[
θ(x) − θ(y)

]
= [x − y] for all x, y ∈ Da, and

that [V ] has no maximum, by closedness of(V, ψ). Now choose anyy ∈ C∞,
andx > y such that[x] > [y],

[
b − θ(y)

]
. Then

[
θ(x) − θ(y)

]
>

[
b − θ(y)

]
, in

particularθ(x) > b. Similarly, θ is not bounded from below on the unbounded
component< a1 of Da.

Lemma 4.8. LetC be a component ofDa, with corresponding componentC′

ofD′
a. If d ∈ C′ \ C, thenθ′(d) ∈ V ′ \ V .

Proof. We proceed by induction onn. The casen = 1 is easily checked
using Lemma 3.1. Assume the lemma holds for a certaina = (a1, . . . , an) ∈ V n

and certain scalarsλ1, . . . , λn ∈ k. Let â = (a1, . . . , an, an+1) ∈ V n+1 and
let a further scalarλn+1 ∈ k be given. Then we have corresponding functions
θ̂ : Dba → V andθ̂′ : D′

ba → V given by

θ̂(v) := θ(v) + λn+1ψba(v),

θ̂′(v′) := θ′(v′) + λn+1ψ
′
ba(v

′).

LetC be a component ofDa with corresponding componentC′ ofD′
a. We define

Ci andC′
i (for i = 1, 2, 3) as in the proof of Lemma 4.7. Then the components

of Dba that are contained inC are the nonempty sets amongC1 andC3, and the
components ofD′

ba that are contained inC′ are the nonempty sets amongC′
1 and

C′
3. We assumed ∈ C′

i \Ci for i = 1 or i = 3, and have to show that̂θ′(d) /∈ V .
If d lies in the convex hull ofCi in C′

i, that is, if there arep, q ∈ Ci such that
p < d < q, then the injectivity of̂θ′ and intermediate value property ofθ̂|[p, q]
already guarantee that̂θ′(d) ∈ V ′ \ V , without use of the induction hypothesis.
So from now on, we assume thatd does not lie in the convex hull ofCi in C′

i.
Suppose there exists an elementc ∈ V lying strictly betweend anda1, and set

ε := 1
2 |c− a1| > 0. Thenψ′

a1
is constant on the segment

I = Ic :=
{
x ∈ V ′ : d− ε ≤ x ≤ d+ ε

}
,

since[x − a1] = [d − a1] for all x ∈ I. By an easy induction onk, one shows
thatI ⊆ D′

(a1,...,ak) and thatψ′
(a1,...,ak) is constant onI, for all k = 1, . . . , n+ 1.

In particular,I ⊆ C′
i, andψ′

ba is constant onI, andθ̂′(x) = θ̂′(d) + x− d for all
x ∈ I. If I ∩Ci 6= ∅, saye ∈ I ∩ Ci, then

θ̂′(d) = θ′(d) + λn+1ψ
′
ba(d) = θ′(d) + λn+1ψba(e) /∈ V,

sinceθ′(d) /∈ V , by induction hypothesis. Thus for the rest of the proof we shall
assume that wheneverc ∈ V lies strictly betweend anda1, andI = Ic is defined
as above, thenI ∩ Ci = ∅.
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Next we observe that the situation is symmetric abouta1, that is, the reflection
a1 + x 7→ a1 − x : V ′ → V ′ mapsD′

ba onto itself, and̂θ′ is invariant under this
reflection. Therefore we shall assume in addition thatd, C andC′ are all> a1.

We now first consider the case thatC is bounded inV , ψa is increasing onC
(henceψ′

a increasing onC′), andi = 1. ThenC1 < C2 < C3 andC′
1 < C′

2 < C′
3.

The following possibilities arise (see proof of Lemma 4.7):

1. ψba increases onC1 from p to Ψ, andψ′
ba increases onC′

1 from p to Ψ′, for
somep ∈ V . By the proof of Lemma 4.7, this impliesC2 6= ∅. Sinced is not in
the convex hull ofC1 in C′

1, eitherd > C1 or d < C1.

(i) d > C1. Then there exists an elementc ∈ V with a1 < c < d (take any
c ∈ C1), and thusC1 < I < C2, whereI = Ic as defined above. We can choose
b ∈ C1 so large that|an+1 − ψa(b)| ≤ ε, with ε ∈ V >0 as above. Hence, in[V ′],

[
ψ′

ba(d) − ψba(b)
]
<

[
ψ′
a(d) − ψa(b)

]
≤

[
an+1 − ψa(b)

]
≤ [ε].

Let f(x) := θ′(x) + λn+1ψba(b), for x ∈ I. Then

θ̂′(d) − f(d− ε) = ε+ θ̂′(d− ε) − f(d− ε)

= ε+ λn+1

(
ψ′

ba(d) − ψba(b)
)
,

thusθ̂′(d) > f(d−ε), and similarlyθ̂′(d) < f(d+ε). Hence, by the intermediate
value property forf on I (Lemma 4.3), there existsx ∈ I with f(x) = θ̂′(d).
SinceI ∩ C1 = ∅, we havex /∈ V , hencef(x) /∈ V by induction hypothesis.
Thereforêθ′(d) /∈ V , as required.

(ii) d < C1. Thenψ′
ba(x) = p for all d ≤ x < C1. In particularθ̂′(d) =

θ′(d) + λn+1p /∈ V , by induction hypothesis.

2. ψba increases onC1 from p to q, andψ′
ba increases onC′

1 from p to q, for
certainp, q ∈ V . Again eitherd < C1 or d > C1. Both subcases are treated as in
(1), (b).

Next we consider the case thatC is bounded inV , ψa is increasing onC (hence
ψ′
a increasing onC′), andi = 3. Then eitherψba decreases onC3 fromΨ to q, and
ψ′

ba decreases onC′
3 from Ψ′ to q, for someq ∈ V , orψba decreases onC3 from p

to q, andψ′
ba decreases onC′

3 from p to q, for somep, q ∈ V . The latter subcase is
treated as in (2) above. In the first subcase, suppose thatd < C3. ThenC2 6= ∅,
hence there existsc ∈ V with a1 < c < d, and thusC2 < I < C3, whereI = Ic
as previously defined. Now for anyε ∈ V >0, in particular forε = 1

2 (c− a1), we
can chooseb ∈ C3 so small that|an+1 − ψa(b)| ≤ ε. Now continue as in (1), (a)
above. Ifd > C3, argue as in (1), (b).

The case thatC is bounded inV andψa is decreasing onC can be handled in
a similar way, and is left to the reader.
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Now assumeC is unbounded inV , andi = 1. Then we have the following
possibilities:

1. ψba decreases onC1 from p to−∞, andψ′
ba decreases onC′

1 from p to −∞,
for somep ∈ V . Again, eitherd < C1 or d > C1. The first option is treated as
in (1), (b) above, whereas in the second case,θ̂′(d) /∈ V follows from the remark
preceding this lemma, and Lemma 4.3.

2. ψba decreases onC1 from Ψ to −∞, andψ′
ba decreases onC′

1 from Ψ′ to
−∞. If d < C1, we see, by inspection of the proof of Lemma 4.7, that necessarily
C2 6= ∅. Hence there existsc ∈ V with a1 < c < d. Now adopt the argument in
1, (a) above. Ifd > C1, we again apply the remark preceding the lemma.

Finally, consider the case thatC is unbounded andi = 3. Thenψba increases
on C3 from p to Ψ, andψ′

ba increases onC3 from p to Ψ′, for somep ∈ V .
If d > C3, note that anyc ∈ C3 will satisfy a1 < c < d, and continue

as in 1, (a). Ifd < C3, argue as in 1, (b). This finishes the induction.

Remark. Property (A) now follows from Lemma 4.7, (1), and property (B)
from the previous lemma.

5. MODEL-THEORETIC PROPERTIES

The results of the previous section constitute a model-theoretic analysis of closed
H-couples on the most basic level, namely that of “elimination theory”. In this
section we deal with more intrinsic properties ofH-couples to which this analysis
gives access. This concerns in the first place the shape of thedefinable sets in
a closedH-couple, see Corollary 5.1 and Proposition 5.1 below. Here and in
the rest of the paper “definable” will mean “definable with parameters”. We also
determine the definable closure of anH-triple in a closed extension, and prove
uniqueness ofH-closures. Finally, we analyse simple extensions ofH-couples,
and use it to show that in a finitely generatedH-couple the setΨ is well ordered.

Induced structure on the scalar field
We first show that in a closedH-couple, no new structure is induced on the scalar
field. More precisely:

Corollary 5.1. Let(V, ψ) be a closedH-couple overk, and letS ⊆ kn be
definable in(V, ψ). ThenS is already definable in the ordered fieldk.

Proof. Let theH-couples(V1, ψ1) overk1 and(V2, ψ2) overk2 be elementary
extensions of(V, ψ). (In particular, the ordered fieldsk1 andk2 are elementary
extensions of the ordered fieldk.) Suppose thatλ = (λ1, . . . , λn) ∈ kn1 and
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µ = (µ1, . . . , µn) ∈ kn2 realize the same type overk in k1 andk2, respectively.
It suffices to show that then they realize the same type over(V, ψ) in (V1, ψ1)
and(V2, ψ2), respectively. We may assume that(V2, ψ2) is κ-saturated, where
κ := |V1|

+. It follows that there is an elementary embeddinge : k1 → k2 that is
the identity onk and that sends eachλi toµi. By Proposition 4.1 and Lemma 4.1,
e is the scalar part of an elementary embedding(V1, ψ1) → (V2, ψ2) over(V, ψ).

Henceλ andµ realize the same type over(V, ψ) in (V1, ψ1) and(V2, ψ2).

Induced structure on the vector space
Let (V, ψ) be a closedH-couple over the scalar fieldk. To discuss the induced
structure on the underlying vector spaceV we introduce the one-sorted language
Lk,v that extends the language{0,+,−, <} of ordered abelian groups by ann-
ary relation symbolRλ,ϕ for everyλ ∈ km andLH -formulaϕ = ϕ(x, y), where
x = (x1, . . . , xm) is a tuple of scalar variables andy = (y1, . . . , yn) is a tuple of
vector variables. We makeV into anLk,v-structure by interpreting0, +, −,< as
usual, andRλ,ϕ as

{
v ∈ V n : (V, ψ) |= ϕ(λ, v)

}
.

Thus a setS ⊆ V n is definable in the one-sortedLk,v-structureV if and only if
it is definable in the two-sortedLH -structure(V, ψ).

Let A = (A,<, . . . ) be a structure (in some one-sorted languageL containing
a binary relation symbol<) that expands a linearly ordered nonempty set(A,<),
dense without endpoints. Following Marker and Steinhorn wesay thatA is locally
o-minimal if for each definable setS ⊆ A and eacha ∈ A there exista1, a2 ∈ A
such thata1 < a < a2, and (a1, a) is either disjoint fromS or contained in
S, and(a, a2) is either disjoint fromS or contained inS. The structureA is
calledweakly o-minimal if every definable subset ofA is a finite union of convex
subsets, see [8]. Clearly, ifA is weakly o-minimal, then it is locally o-minimal.

For a closedH-couple(V, ψ), theLk,v-structureV is never weakly o-minimal:
Consider the definable subsetk · 1 of V ; it is not a finite union of convex subsets.
However, we have:

Proposition 5.1. Let(V, ψ) be a closedH-couple overk. ThenV is locally
o-minimal as anLk,v-structure.

Proof. Below we considerV asLk,v-structure. Take aκ-saturated elementary
extension(V ′, ψ′) of (V, ψ) whereκ = |V |+. ThusV ′ is then naturally aκ-
saturatedLk,v-structure elementary extendingV . Below we considerV ′ as an
Lk,v-structure in this way.

By familiar model-theoretic reasoning, it now suffices to show that, given
v ∈ V , any two vectorsv1, v2 ∈ V ′ such thatv < vi < v + ε for all ε > 0
in V , i = 1, 2, realize the same type overV in V ′. By translation over−v
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we reduce to the casev = 0. Then Ψ < ψ′(vi) < (id +ψ)
(
V >0

)
, hence[

V ⊕ kψ′(vi)
]
k

= [V ]k inside [V ′]k, for i = 1, 2, by Corollary 4.1. After
embedding(V, ψ) into (H,ψH) with H = H

(
[V ∗],k

)
, cf. Lemma 3.3, we see

that insomeH-couple overk extending(V, ψ), there is an elementu such that
Ψ < u < (id +ψ)

(
V >0

)
. But V ⊕ ku andV ⊕ kψ′(vi) are isomorphic over

V as ordered vector spaces overk. SinceV ⊕ ku is a Hahn space overk,

so is Vi := V ⊕ kψ′(vi), for i = 1, 2. Let Pi := V
≤ψ′(vi)
i , for i = 1, 2.

Since[Vi] = [V ], we haveψ′(V ∗
i ) ⊆ V ; let ψi := ψ′|V ∗

i . As in the first part
of the proof of Proposition 4.1 above, we obtain an isomorphism(V1, ψ1, P1) →
(V2, ψ2, P2) over(V, ψ,Ψ), mappingψ′(v1) toψ′(v2). Since[vi] < [V ∗] = [V ∗

i ],
the cut inV1 realized byv1 corresponds, under this isomorphism, to the cut inV2

realized byv2. Hence we can extend the vector part of this isomorphism to an
isomorphismV ′

1 := V1 ⊕ kv1 → V2 ⊕ kv2 =: V ′
2 of ordered vector spaces over

k, mappingv1 to v2. Note that the imageΨ ∪ {ψ′(vi)} of ψ′
i := ψ′|(V ′

i )
∗ has

a largest elementψ′(vi); hence(V ′
i , ψ

′
i) has only oneH-cut. Therefore the map

under consideration is the vector part of an isomorphism
(
V ′

1 , ψ
′
1,Ψ

′ ∩ V ′
1

)
→(

V ′
2 , ψ

′
2,Ψ

′∩V ′
2

)
of LH,P -structures, whose scalar part is the identity onk. Thus

by relative quantifier elimination,v1 andv2 have the same type overV in V ′.

Remark. The Lk,v-structureV is even “o-minimal at infinity”: For any
definable setS ⊆ V there existsa ∈ V such that eitherV >a ⊆ S orV >a∩S = ∅.
This can be verified easily along the lines of the preceding proof.

Definable closure
LetV = (V, ψ, P ) be anH-triple with scalar fieldk, and letV ′ = (V ′, ψ′, P ′) be
a closedH-triple extendingV , with the same scalar fieldk. An elementv′ ∈ V ′

is said to bedefinable overV if there is anLH,P -formula ϕ(x, y, z), where
x = (x1, . . . , xm) is a tuple of scalar variables,y = (y1, . . . , yn) a tuple of vector
variables andz a vector variable, and there areλ ∈ km, v ∈ V n, such thatv′ is the
unique element inV ′ with V ′ |= ϕ(λ, v, v′). Thedefinable closure ofV in V ′ is
the substructure ofV ′ that extendsV and whose underlying vector space consists
of all v′ ∈ V ′ that are definable overV . If V ′′ ⊇ V is another closedH-triple over
k, the definable closure ofV in V ′ is isomorphic to the definable closure ofV in
V ′′, by a unique isomorphism that is the identity onV . We say thatV is definably
closedin V ′ if every v′ ∈ V ′ definable overV belongs toV . In that caseV is
definably closed ineveryclosedH-triple overk extendingV , and we also just
say then thatV is definably closed.More generally, ifW = (W, . . . ) ⊇ V is any
H-triple overk, we say thatV is definably closed inW if W ∩ V = V , where
V = (V , . . . ) is the definable closure ofV in anH-closure ofW .
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Lemma 5.1. Suppose there is noa ∈ V with P < a < (id +ψ)
(
V >0

)
, and

P has no largest element. ThenV is definably closed inV ′.

Proof. By iterating the construction of Lemma 3.6 we obtain an increasing
continuous chain

{
(Vα, ψα, Pα)

}
α<µ

(µ an ordinal) ofH-triples contained inV ′

as substructures, with(V0, ψ0, P0) = (V, ψ, P ), such that the union

Vc = (V c, ψc, P c) =
⋃

α<µ

(Vα, ψα, Pα),

isH-closed. The reference to Lemma 3.6 means that forα < α+ 1 < µ we have
Vα+1 = Vα ⊕ kaα with aα > 0 andψα(aα) ∈ Pα \ ψα(V ∗

α ). That the chain
is continuous means that(Vδ, ψδ, Pδ) =

⋃
α<δ(Vα, ψα, Pα) for limit ordinals

δ < µ. SinceVc � V ′, it suffices to show: For anyv ∈ V c \ V there exists
an elementw 6= v in V c and an automorphism ofVc that is the identity onV
and sendsv to w. Now, given suchv, takeα with 0 ≤ α < α + 1 < µ and
v ∈ Vα+1 \ Vα. Write

v = vα + λaα with vα ∈ Vα, λ ∈ k×.

Let a ∈ V >0
α+1 be any element6= aα with the samek-archimedean class asaα,

and letw := vα + λa. By Lemma 3.6, there is a unique automorphismσ of
(Vα+1, ψα+1, Pα+1) that is the identity on(Vα, ψα, Pα) and satisfiesσ(aα) =
a; henceσ(v) = w. Applying once more Lemma 3.6 iteratively, we can

extendσ to an automorphism of(V c, ψc, P c) that sendsv tow, as desired.

In general we define anH-triple V = (V , ψ, P ) with V ⊆ V ⊆ V ′ as follows,
distinguishing three mutually exclusive cases:

1. There isa ∈ V with P < a < (id +ψ)
(
V >0

)
. This elementa determines a

sequence{εn} of positive elements ofV ′, with

[V ∗] > [ε0] > [ε1] > [ε2] > · · ·

and a corresponding sequence{Vn} of linear subspaces ofV ′ with

Vn = V ⊕ kε0 ⊕ · · · ⊕ kεn

by requiringa = ε0 + ψ′(ε0) and ψ′(εn+1) = max(P ′ ∩ Vn) + εn+1 (cf.
Lemma 3.4 and 3.5). ThenV :=

⋃
n Vn, so that

[
V

]
= [V ] ∪

{
[εn] : n ≥ 0

}
.

2. P has a largest element. Proceeding as in case 1, except that werestrict to
n ≥ 1, we define a sequence{εn}n≥1 of positive elements ofV ′ with [V ∗] >
[ε1] > [ε2] > · · · , and a corresponding sequence{Vn}n≥1 of linear subspaces of
V ′ with Vn = V ⊕kε1⊕ · · ·⊕kεn, byψ′(ε1) = (maxP )+ ε1, andψ′(εn+1) =
max(P ′∩Vn)+εn+1. ThenV :=

⋃
n≥1 Vn, so that

[
V

]
= [V ]∪

{
[εn] : n ≥ 1

}
.
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3. There is noa ∈ V with P < a < (id +ψ)
(
V >0

)
andP has no largest

element. Then we putV := V .

The previous lemma now easily implies:

Corollary 5.2. The definable closure ofV in V ′ is V.

In the next lemma we continue to use the notation introduced in the definition
of V above.

Lemma 5.2. The onlyH-triplesW with V ⊆ W ⊆ V areV , V and

1.
(
Vn, ψ|V ∗

n , P ∩ Vn
)

for n ≥ 0, in case1 above,

2.
(
Vn, ψ|V ∗

n , P ∩ Vn
)

for n ≥ 1, in case2 above.

Proof. First assume we are in case 1. LetW be anH-triple such that
V ⊆ W ⊆ V and letW denote the underlying ordered vector space ofW . Let
w ∈ W \ V . After subtracting fromw a vector inV we have

w = λmεm + · · · + λnεn with n ≥ m, λm, . . . , λn ∈ k, λm 6= 0, λn 6= 0.

By induction oni we shall obtainεi ∈ W for i = 0, . . . , n, which immediately
implies the lemma in case 1. Note thatψ(w) = ψ(εm) = a−ε0+ε1+ · · ·+εm ∈
W, henceε0 = a − ψ

(
ψ(b) − a

)
∈ W , which proves our claim fori = 0. So

assume0 ≤ i < n, andε0, . . . , εi ∈W .

1. Supposei < m. Then

εi+1 + · · · + εm = ψ(w) −
(
a− ε0 + ε1 + · · · + εi

)
∈ W,

hence

εi+1 = ψ
(
εi+1 + · · · + εm

)
−

(
a− ε0 + ε1 + · · · + εi

)
∈W.

2. Supposei ≥ m. Takej minimal such thati < j ≤ n andλj 6= 0. Then

λjεj + · · · + λnεn = w −
(
λmεm + · · · + λiεi

)
∈W,

hence

εi+1 + · · · + εj = ψ
(
λjεj + · · · + λnεn

)
−

(
a− ε0 + ε1 + · · · + εi

)
∈ W,

and therefore

εi+1 = ψ
(
εi+1 + · · · + εj

)
−

(
a− ε0 + ε1 + · · · + εi

)
∈ W.
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This finishes the induction step, and thus the proof of the lemma in case 1. For case

2 one argues similarly.

Uniqueness ofH-closure
LetL be a one-sorted language andA = (A, . . . ) anL-structure. Aconstruction
of A is an enumeration{aα}α<γ ofA (γ an ordinal), such that, withAα := {aβ :
β < α}, the type ofaα overAα in A is isolated, for eachα < γ. Let such a
construction ofA be given. Choose for eachα < γ anL-formulaϕα(yα, z),
with yα = (yα1, . . . , yαn(α)) a tuple of variables andz a single variable, and a

tuplebα ∈ A
n(α)
α , such thatϕα(bα, z) isolates the type ofaα overAα. We also

choose by recursion onα a finite setDα ⊆ Aα as follows:D0 := {a0}, and for
0 < α < γ, putDα := {aα}∪Dβ1 ∪· · ·∪Dβn(α)

, wherebα = (aβ1 , . . . , aβn(α)
)

for certainβ1, . . . , βn(α) < α. An elementary substructureC = (C, . . . ) of A is
said to beclosed inA (relative to the given construction and the further choices
made) if for allα < γ, aα ∈ C impliesDα ⊆ C. In that case a theorem of
Ressayre ([9], Lemme 10.15, Théor̀eme 10.18) implies thatA ∼= C.

Corollary 5.3. LetV be anH-triple overk. Then any twoH-closures of
V are isomorphic overV .

Proof. We may assume thatV is definably closed. Then we build anH-
closureVc of V as in the proof of Lemma 5.1. LetW ⊇ V be anotherH-closure
of V . We have to show thatVc ∼= W over V . By the defining property of
H-closure we can assumeV ⊆ W ⊆ Vc. Write Vc =

⋃
α<µ(Vα, ψα, Pα) as

in the proof of Lemma 5.1. We now consider the underlying vector spacesW
andV c of W andVc as structures for the languageLk,v(V ) obtained fromLk,v

by adding names for the vectors inV , see Proposition 5.1. By Lemma 3.6,
the type ofaα overVα in V c (for α < α + 1 < µ) is isolated by the formula
ϕ
(
ψα(aα), z

)
, whereϕ(y, z) is “y = ψ(z) & z > 0”. It follows easily that

V c has a construction. By Lemma 4.1 we haveW � V c. If α < α + 1 < µ
and aα ∈ W , thenψα(aα) ∈ W , so W is closed inV c (relative to a suit-
able construction ofV c and associated choices of isolating formulas and so

on). Thus by Ressayre’s TheoremV c ∼= W , which impliesVc ∼= W overV .

Remark. We don’t know whether theH-closureVc of an H-triple V is
always minimal overV , i.e. whether or not for someV there exists a closed
H-tripleW ⊇ V strictly contained inVc as a substructure.
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Analysis of simple extensions
Let anH-tripleV = (V, ψ, P ) with scalar fieldk be given, and asimple extension
of V , that is, anH-triple V ′ = (V ′, ψ′, P ′) over the same scalar fieldk and
extendingV for which there exists a vectorc ∈ V ′ such thatV ′ is generated as
LH,P -structure overV by c. (This state of affairs is also indicated by writing
V ′ = V〈c〉, and we putV ′ = V 〈c〉 for the underlying ordered vector spaces in
that case.)

Consider the following five properties that this simple extension with its distin-
guished generatorc may or may not have:

(I) 0 < c < V >0 andc+ ψ′(c) ∈ V .
(II) 0 < c < V >0 and−c+ ψ′(c) ∈ V .
(III) ψ′(c) ∈ P \ Ψ.
(IV) c /∈ V and[V ⊕ kc] = [V ].
(V) V ′ = V ⊕

⊕∞

n=1 kbn for vectorsbn ∈ V ′ that arek-linearly independent
overV , with [bn] /∈ [V ] for all n, and such that there are vectorsan ∈ V with
b1 = c− a1 andbn+1 = ψ′(bn) − an+1 for all n ≥ 1.

Remarks. If (I), respectively (II) holds, thenV ′ ∼=
(
V ⊕ kε, ψε, P ε

)
, as in

Lemma 3.4, respectively Lemma 3.5, by an isomorphism that isthe identity onV
and sendsc to ε. If (III) holds, thenV ′ ∼=

(
V ⊕ ka, ψa, P a

)
, as in Lemma 3.6,

by an isomorphism that is the identity onV and sendsc to a. If (IV) holds, then
V ′ = V ⊕ kc. Note that if (V) holds, then[bn] 6= [bm] for all n 6= m. (Otherwise
bn+1 − bm+1 = am+1 − an+1 ∈ V , contradicting the linear independence of
{bi}i≥1 overV .)

One sees easily that those properties are mutually exclusive. We callV ⊆ V〈c〉
asimple extension of type (I),respectively (II), (III), (IV), (V), if (I), respectively
(II), (III), (IV), (V) hold. Here the generatorc figuring in the definition of these
properties has been specified. If we do not want to specify thegenerator we simply
say thatV ′ is asimple extension of type (I),respectively (II), (III), (IV), (V), to
mean that forsomec ∈ V ′ we haveV ′ = V〈c〉 andV ⊆ V〈c〉 is a simple extension
of type (I), respectively (II), (III), (IV), (V).

We now show that ifV is definably closed inV ′, then we can obtainV ′ by a
finite number of simple extensions of types (I)–(V). More precisely:

Proposition 5.2. SupposeV is definably closed in its simple extensionV ′ =
V〈c〉, with c /∈ V . Then either

1.V ⊆ V〈c〉 is a simple extension of type(V), or
2. there is a finite chain ofH-triples

V = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V ′ (n ≥ 1)

such thatV1 is a simple extension ofV0 of type(III) or type(IV) , and eachVi+1

is a simple extension ofVi of type(III) , for i = 1, . . . , n− 1.
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Proof. If V ⊆ V〈c〉 is of type (IV), we are done. SupposeV ⊆ V〈c〉 is
not of type (IV). Then there isa1 ∈ V such that, withb1 := c − a1 we have
[b1] /∈ [V ]. This is the starting point for an inductive construction ofelements
ai ∈ V andbi ∈ V ′. Suppose we have already constructeda1, . . . , an ∈ V and
non-zero vectorsb1, . . . , bn ∈ V ′ with n ≥ 1, wherea1 and b1 are as above,
bi+1 = ψ′(bi) − ai+1 for i = 1, . . . , n− 1, such that[bi] /∈ [V ] for i = 1, . . . , n.

We claim that then[bi] 6= [bj] for 1 ≤ i < j ≤ n (henceb1, . . . , bn are
linearly independent overV ). Otherwise[bi] = [bj], for certain1 ≤ i < j ≤ n,
so ψ′(bj) = ψ′(bi). But alsoψ′(bj) = ψ′

(ai+1,...,aj)

(
ψ′(bi)

)
(see§4), hence

ψ′(bi) = ψ′
(ai+1,...,aj)

(
ψ′(bi)

)
. Thus by Lemma 4.3 the vectorψ′(bi) is definable

overV . Thereforebi+1 ∈ V , contradictingbi+1 /∈ [V ].
If

[
ψ′(bn)− an+1

]
/∈ [V ] for somean+1 ∈ V , we take such a vectoran+1 and

putbn+1 := ψ′(bn)− an+1. If there is no suchan+1, the construction breaks off,
with an andbn as the last vectors.

First assume that the construction goes on indefinitely, that is we obtain infinite
sequences{ai}i≥1 in V and{bi}i≥1 in V ′ such thatb1 = c−a1, bi+1 = ψ′(bi)−
ai+1 and[bi] /∈ [V ] for all i ≥ 1. Then one easily sees thatV ′ = V ⊕

⊕∞

i=1 kbi,
and thatV ⊆ V〈c〉 is of type (V).

Now suppose our construction stops after the vectorsan and bn have been
obtained. There are two ways in which this could happen:

1. ψ′(bn) ∈ V ,

2. ψ′(bn) /∈ V , but
[
V ⊕ kψ′(bn)

]
= [V ],

In the first case we putV0 := V , and fori = 1, . . . , nwe letVi be the substructure
of V ′ with underlying vector space

Vi := V ⊕
n⊕

j=n−i+1

kbj.

ThenVi+1 is a simple extension of type (III) ofVi, for i = 0, . . . , n − 1, and
Vn = V ′. In the second case, takeV0 := V , and fori = 1, . . . , n+ 1 letVi be the
substructure ofV ′ with underlying vector space

Vi := V ⊕ kψ′(bn) ⊕
n⊕

j=n−i+2

kbj .

Then V0 ⊆ V1 is a simple extension of type (IV), whereasVi ⊆ Vi+1, for
i = 1, . . . , n, is a simple extension of type (III), andVn+1 = V ⊕ kψ′(bn) ⊕⊕n

j=1 kbj = V ′.
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Remark. In the previous proposition, ifV is aclosedH-triple andV ⊆ V ′

is not of type (V), the extensionV0 ⊆ V1 will be of type (IV), sinceV admits no
simple extensions of type (III).

Suppose thatV ⊆ V ′ is a simple extension such thatV is not definably closed
in V ′. To reduce to a situation where we can apply the last proposition, we
let V = (V , . . . ) be the definable closure ofV in anH-closure ofV ′, and let
W = (W, . . .) be theH-triple with V ⊂ W ⊆ V ′ andW = V ′ ∩ V .

ThenW is definably closed inV ′, so that Proposition 5.2 is applicable to the
simple extensionW ⊆ V ′. The possibilities for the proper extensionV ⊂ W are
described by Lemma 4.5, but can it actually happen thatW = V? The following
example shows that this case indeed occurs, and also shows that there are simple
extensions that cannot be obtained by a finite number of simple extensions of types
(I)–(V).

Example. Let V = (V, ψ, P ) theH-triple overk with V := ke0 (e0 > 0),
distinguished positive element1 = e0, andmaxP = e0. (See Example 3.1.)
Let V ′ = (V ′, ψ′, P ′) be theH-triple over k, with V ′ =

⊕
n∈N ke−n and

ψ′(e−n) := e0+e−1−e−n−1 for alln ∈ N, andP ′ :=
{
v′ ∈ V ′ : v′ < e0+e−1

}
,

as in§3, end of Example 3.3. Note thatV ′ = V〈e−1〉. Let V = (V , . . . ) be the
definable closure ofV in anH-closure ofV ′. Putεn := e−n − e−n−1 for n ≥ 1.
One sees easily (using Corollary 5.2) that thenV ⊆ V〈e−1〉 with

V := ke0 ⊕
∞⊕

n=1

kεn.

It can be shown thatV ′ = V〈e−1〉 cannot be obtained fromV by finitely many
simple extensions of type (I)–(V). One proves that wheneverV1 = (V1, ψ1, P1)
is anH-triple with V ⊆ V1 ⊂ V andc ∈ V 〈e−1〉 \ V1, thenV1 ⊆ V1〈c〉 is not of
type (III), (IV) or (V). We leave the details to the reader.

Well-orderedness ofΨ
We now use our analysis of simple extensions to show that in a finitely generated
H-couple(V, ψ), the setΨ = ψ(V ∗) is always well-ordered. We first need to
take a closer look at type (V) extensions.

Lemma 5.3. Let V0 ⊆ V be ordered vector spaces over the ordered fieldk,
andv ∈ V \V0 such that[v] /∈ [V0]. Then[V0 ⊕kv] = [V0]∪

{
[v]

}
and[v] ≤ [w]

for all w ∈ (V0 ⊕ kv) \ V0.

This follows easily from the properties ofk-archimedean classes listed in the
beginning of§2, especially property (4).
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Proposition 5.3. LetV ⊆ V〈c〉 = V ′ be a simple extension ofH-triples of
type(V), with V ′ = V ⊕

⊕∞

n=1 kbn as in the definition of type(V) extensions.
Then

1. [V ′] = [V ] ∪
{
[bn] : n = 1, 2, 3, . . .

}
.

2.V >0 is coinitial in (V ′)>0.
3.V is definably closed inV ′.
4. The sequence

{
[bn]

}
is strictly decreasing.

Proof. Using the lemma above, and the fact that[bi] 6= [bj ] for i 6= j, one
shows by induction onn that

[
V ⊕

⊕n
i=1 kbi

]
= [V ] ∪

{
[bi] : i = 1, . . . , n

}
.

This proves (1).
For (2) we first note that ify ∈ V ′ \ V , then [V ] 6= [V ⊕ ky]: write y =

v + λ1b1 + · · · + λnbn with v ∈ V , λ1, . . . , λn ∈ k, and someλi 6= 0; hence
[y − v] = [bi] ∈ [V ] \ [V ⊕ ky] for somei, by (1). Thus by the last part of
Corollary 4.1, if[V ∗] has no minimum, then (2) holds, hence (3) holds as well,
by Lemma 5.2. We now prove (2) and (3) in the remaining case that [V ∗] has a
minimum. Equivalently, we assumeΨ has a maximum. We first show that then (3)
holds. If it didn’t, then by Lemma 5.2, there arev ∈ V , λ1, . . . , λn ∈ k (n > 0)
such thatv′ := v +

∑n
i=1 λibi > 0 andmaxΨ = ψ′(v′) − v′. If [v] > [bi] for

all i ∈ {1, . . . , n} with λi 6= 0, thenψ′(v′) = ψ(v), somax Ψ = ψ(v) − v′ <
max Ψ, a contradiction. Now assume[v] < [bi] for somei ∈ {1, . . . , n} with
λi 6= 0, and letj ∈ {1, . . . , n}be such that[bj] = max

{
[bi] : 1 ≤ i ≤ n, λi 6= 0

}
.

Then

maxΨ = ψ′(v′) − v′ = bj+1 + aj+1 − v −
n∑

i=1

λibi,

henceλj = 0, a contradiction. We have now established (3). To obtain (2),
suppose thatψ′(v′) > maxΨ for somev′ ∈ (V ′)>0. By Lemma 3.1, there is
w ∈ (V ′)>0 with ψ′(w) − w = max Ψ. Sow is definable overV , hencew ∈ V
andψ(w) = max Ψ + w > max Ψ, which is impossible. This finishes the proof
of (2).

As to (4), given anyn > 0, we can choose by (2) ana ∈ V ∗ with |bn| > |a|.
By Lemma 5.3 above and basic property (3) ofψ listed at the beginning of§3, we
have

[bn+1] =
[
ψ′(bn) − an+1

]
≤

[
ψ′(bn) − ψ(a)

]
< [bn − a] = [bn],

as required.

Remark. In the situation of this proposition the sequence
{
[bn]

}
enumerates

the set[V ′]\ [V ] in strictly decreasing order. Thus the sequence
{
[bn]

}
is indepen-



44 ASCHENBRENNER AND VAN DEN DRIES

dent of the choice of the sequence{bn}. It also follows thatΨ′ \Ψ is enumerated
in strictly increasing order by the sequence

{
ψ′(bn)

}
.

Theorem 5.1. LetV ⊆ V ′ be a finitely generated extension ofH-couples over
the same scalar field, such thatΨ is well-ordered. ThenΨ′ is also well-ordered.

Proof. We first equipV ′ andV with suitableH-cuts so that we are dealing
with an extension ofH-triples. By induction on the number of generators ofV ′

overV we then reduce to the case thatV ⊆ V ′ is a simple extension.
Let V = (V , . . . ) be the definable closure ofV in anH-closure ofV ′, and

let W = (W, . . . ) be theH-triple with V ⊆ W ⊆ V ′ andW = V ′ ∩ V . By
Lemma 5.2,ψ′(W ∗) is well-ordered. Moreover,W is definably closed inV ′, and
W ⊆ V ′ is a simple extension. By Proposition 5.2 we then further reduce to the
case thatW ⊆ V ′ is a simple extension of one of the types (III), (IV) or (V). IfW ⊆
V ′ is of type (III) or type (IV),Ψ′ \ψ′(W ∗) has at most one element, soΨ′ is well-
ordered. IfW ⊆ V ′ is of type (V), it follows from the remark preceding the theo-

rem thatΨ′ is well-ordered.

Corollary 5.4. For anyH-couple(V, ψ) overk that is finitely generated
over its substructure with vector spacek · 1 ⊆ V , the setΨ = ψ(V ∗) is well-
ordered.

Another issue is whether in a finitely generatedH-couple(V, ψ) the setΨ =
ψ(V ∗) always has a supremum inV . This turns out to be false:

Example. We takeV =
⊕

n∈N ke−n as in the example preceding Lemma 5.3,
but defineψ : V ∗ → V by making it constant onk-archimedean classes ofV , and
setting

ψ(e0) := e0, ψ(e−n) := e0 + e−1 + · · · + e−n − e−n−1 if n > 0.

It is easy to check that(V, ψ) is anH-couple with distinguished positive element
1 = e0. It is generated over its substructure with vector spacek · 1 by its vector
e−1. The setΨ has no supremum inV , as is easily verified.

However, we note that ifV ⊆ V〈c〉 = V ′ is a simple extension ofH-triples of one
of the types (I)–(V), andsup Ψ exists, so doessup Ψ′. This is clear for simple
extensions of types (I)–(IV), while for type (V) extensions, it follows from part
(2) of Proposition 5.3.
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6. REMOVING SCALARS

The goal of this section is Proposition 6.2. It strengthens the local o-minimality
result Proposition 5.1 to a global weak o-minimality for sets whose definition
does not involve scalars. Another motive for this section isthat in attempting to
construct a model theory of Hardy fields, it appears useful tohave analogues of
the previous theorems in a setting where no scalar field is present.

Definition 6.1. AnH0-coupleis a pairV = (V, ψ), consisting of a divisible
ordered abelian groupV , a distinguished positive element1 ∈ V , and a function
ψ : V ∗ → V , such that for allv, w ∈ V ∗

1. ψ(1) = 1,
2. ψ(nv) = ψ(v) for all n > 0,
3. ψ(v) < ψ(w) + |w|,
4. |v| ≤ |w| =⇒ ψ(v) ≥ ψ(w) (henceψ(v) = ψ(−v)).

We consider a divisible ordered abelian group as an ordered vector space over
Q in the usual way.

Examples.

1. EachH-couple becomes anH0-couple by “forgetting” the scalar field.
2. If F ⊇ R(x) is a real closed Hardy field,V := v(F×) its value group,

1 := v(x−1), andψ : V ∗ → V is defined as in the introduction, then(V, ψ) is an
H0-couple, with distinguished positive element1.

Definition 6.2. An H0-cut of anH0-couple(V, ψ) is a setP ⊆ V which
is closed downward, containsΨ := ψ(V ∗), and is disjoint from(id +ψ)

(
V >0

)
.

We then call(V, ψ, P ) anH0-triple. An H0-couple(V, ψ) is closedif Ψ has no
maximum, and

ψ(V ∗) =
{
a ∈ V : a < w + ψ(w) for all w ∈ V >0

}
.

In that caseΨ = ψ(V ∗) is the onlyH0-cut of (V, ψ), and we call(V, ψ,Ψ) a
closedH0-triple. Note that a closedH-couple (closedH-triple) becomes a closed
H0-couple (closedH0-triple) by forgetting the scalar field.

When dealing withH0-couplesV = (V, ψ) as model-theoretic objects we
construe them asLH0 -structures, whereLH0 is the (one-sorted) language with
(vector) variables ranging over the extended vector spaceV∞ := V ∪ {∞}. The
non-logical symbols ofLH0 are:

1. those listed under part (4) of the description ofLH in section 1, to be
interpreted as relations and functions onV∞, as indicated there;
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2. a unary function symbolδn for eachn > 0, to be interpreted onV as the
scalar multiplication by1/n (andδn(∞) := ∞).

Adding toLH0 a unary predicate symbolP we obtain the languageLH0,P , and
H0-triples(V, ψ, P ) are then construed asLH0,P -structures. TheH0-couples are
easily seen to be the models of a universal theory inLH0 , and the same is true for
theH0-triples with respect to the languageLH0,P .

Remark. The division symbolsδn are included to guarantee quantifier elimi-
nation for the theory ofH0-triples, see Corollary 6.2 below. (There is an example
which shows that if we omit them, then in the resulting smaller language the theory
of H0-triples would not eliminate quantifiers.)

Notation. If V = (V, ψ) is anH0-couple, we set

[v] :=
{
w ∈ V : ψ(w) = ψ(v)

}
, for v ∈ V .

We let [V ] :=
{
[v] : v ∈ V

}
and make it into a linearly ordered set by defining

[v] < [w] :⇐⇒ [v] 6= [w] and|v| < |w|

⇐⇒ ψ(v) > ψ(w).

In the case thatV is obtained from anH-couple overk by “forgetting the scalar
field”, [v] (or [v]k) also denotes thek-archimedean class of a vectorv ∈ V .
Fortunately, this agrees with[v] as just defined. Note also that the four properties
of k-archimedean classes stated in the beginning of§2 go through for the classes
[v] ⊆ V of anH0-coupleV as above, withλ ∈ Q× in property (2). For any
H0-coupleV and vectorsv, w ∈ V ∗, [v]Q ≤ [w]Q implies[v] ≤ [w].

Basic properties
The beginning of section 3 up to and including Proposition 3.1 goes through for
H0-triples (V, ψ, P ), with [v] interpreted according to the definition just given,
and withH0-cuts instead ofH-cuts in Proposition 3.1. The proofs are the same.

Embedding into closedH0-triples
An H0-closure of theH0-triple V = (V, ψ, P ) is any closedH0-triple Vc =
(V c, ψc, P c) extendingV , such that any embeddingV → V ′ into a closedH0-
tripleV ′ extends to an embeddingVc → V ′. We want to show that eachH0-triple
V = (V, ψ, P ) has anH0-closure. This will follow, just as forH-triples,by iterated
application of three basic extension lemmas. These are exactly the Lemmas 3.4,
3.5 and 3.6, modified as follows:H-triples becomeH0-triples,V ⊕ kε becomes
V ⊕Qε, and the phrase “overk” should be omitted. The proofs go through, with
similar trivial changes. We get:
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Corollary 6.1. EveryH0-triple has anH0-closure.

Elimination of quantifiers
We have the following counterpart of Proposition 4.1:

Proposition 6.1. Let V = (V, ψ, P ) andV ′ = (V ′, ψ′, P ′) be closedH0-
triples, whereV ′ isκ-saturated,κ := |V |+. LetV0 = (V0, ψ0, P0) be a substruc-
ture ofV , so again anH0-triple. Any embeddingi0 ofV0 intoV ′ can be extended
to an embedding ofV into V ′.

Proof. One can basically copy the proof in§4, changingk to Q, and making

other obvious modifications.

Let TH0,P be the theory of closedH0-triples, in the languageLH0,P .

Corollary 6.2. The theoryTH0,P is complete, decidable, and has elimina-
tion of quantifiers. It is the model completion of the theory of H0-triples.

Proof. Elimination of quantifiers follows from Proposition 6.1 anda variant
of the well-known Robinson-Shoenfield-Blum criterion for quantifier elimination
(see e.g. [17], Theorem 17.2). TheH0-triple (V0, ψ0, P0), with V0 := Q, P0 :=
Q≤1, ψ0(x) := 1 for all x ∈ Q∗, and1 ∈ Q>0 as distinguished element, can be
embedded into anyH0-triple. This implies completeness ofTH0,P . The rest now

follows from Corollary 6.1.

Definable closure. Uniqueness ofH0-closure. Analysis of simple extensions.
Well-orderedness ofΨ

The correspondingly named subsections of§5 go through forH0-triples and
H0-closures with the following changes:H-triples (overk) becomeH0-triples,
LH,P -formulas becomeLH0,P -formulas (without scalar variablesx1, . . . , xm),
k-linear spaceskw becomeQ-linear spacesQw, more generally, vector spaces
overk become vector spaces overQ, scalars fromk (as in the proofs of lemmas
5.1 and 5.2) become scalars fromQ, and, finally,k-linear independence (as in
property (V) of the analysis of simple extensions) becomesQ-linear independence.
Also, the equivalence classes[v] of vectorsv should of course be interpreted in
the sense of the present section.

Weak o-minimality
We now use theH0-version of Proposition 5.2 to show:

Proposition 6.2. The theory of closedH0-triples is weakly o-minimal,
i.e. each closedH0-triple is weakly o-minimal.
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(Compare with Proposition 5.1.) In the proof we also need thefollowing.

A criterion for weak o-minimality
Let L be a language containing a binary relation symbol<, and let A =
(A,<, . . . ) be anL-structure expanding a nonempty linearly ordered set(A,<),
dense without endpoints. Acut in A is just a downward closed setC ⊆ A. To
such a cutC we associate the set

ΦC(y) :=
{
c < y : c ∈ C

}
∪

{
y < d : d ∈ A \ C

}

of LA-formulas in the variabley.

Lemma 6.1. (Kulpeshov, [7])An L-structureA = (A,<, . . . ) as above is
weakly o-minimal if and only if for all cutsC inA there exist at most two complete
y-types overA extendingΦC(y), and for each of these types, its set of realizations
in any elementary extensionB = (B,<, . . . ) of A is convex inB.

Proof of Proposition 6.2
Let V = (V, ψ, P ) be a closedH0-triple,V ′ = (V ′, ψ′, P ′) an elementary exten-
sion ofV , andC a cut inV . By quantifier elimination, the completey-types overV
extendingΦC(y) correspond bijectively to isomorphism classes overV of simple
extensionsV〈c〉 of V with distinguished generatorc such thatC < c < V \ C.
We claim:

1. Up to isomorphism overV , there exist at most two simple extensionsV〈c〉
of V with distinguished generatorc such thatC < c < V \ C.

2. If c is an element ofV ′ with C < c < V \C, then the set of alld ∈ V ′ such
thatV〈c〉 ∼= V〈d〉 by an isomorphism overV that mapsc to d, is a convex subset
of V ′.

By Kulpeshov’s criterion it will then follow thatV is weakly o-minimal. So
assumeV ⊆ V〈c〉 is a simple extension withC < c < V \ C. We may (for our
purpose) assume thatc ∈ V ′. By our analysis of simple extensions, either

1. V ⊆ V〈c〉 is of type (IV) or type (V), or
2. there aren ≥ 1, a1, . . . , an ∈ V , and non-zerob1, . . . , bn ∈ V ′ such that

b1 = c− a1, bj+1 = ψ′(bj)− aj+1 for 1 ≤ j < n, the vectorsψ′(bn), b1, . . . , bn
areQ-linearly independent overV , [bj] /∈ [V ] for 1 ≤ j < n, [bi] 6= [bj ] for
1 ≤ i < j ≤ n andV 〈c〉 = V ⊕ Qψ′(bn) ⊕

⊕n
j=1 Qbj.

In all three cases, an argument as in the proof of Proposition4.1 shows that
then for any simple extensionV〈d〉 of V with C < d < V \ C, theH0-couples(
V 〈c〉, ψ′|V 〈c〉∗

)
and

(
V 〈d〉, ψ′|V 〈d〉∗

)
are isomorphic over(V, ψ) by an iso-

morphism mappingc to d. Also,
(
V 〈c〉, ψ′|V 〈c〉∗

)
has at most twoH0-cuts, and
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hence can be expanded in at most two ways to anH0-triple. This proves the first
part of the claim.

For the second part we need some notation: Letn ∈ N, b ∈ V , a =
(a1, . . . , an) ∈ V n, andλ = (λ0, . . . , λn) ∈ Qn+1. Consider the map

y 7→ θb,a,λ(y) := b+ λ0y +

n∑

j=1

λjψ
′
(a1,...,aj)

(y) : D′
a → V ′.

It is monotone on each convex component ofD′
a. (By the analogues of Lemmas 4.3

and 4.4 forH0-couples.) In particular, for each convex componentD of D′
a, the

setD ∩ θ−1
b,a,λ(P

′) is downward or upward closed inD.
Now assume first that

(
V 〈c〉, ψ′|V 〈c〉∗

)
has only oneH0-cut. Then eachH0-

triple V〈d〉, whereC < d < V \ C, is isomorphic toV〈c〉 by an isomorphism
overV mappingc to d. So assume that

(
V 〈c〉, ψ′|V 〈c〉∗

)
has twoH0-cuts. This

means that there existsw ∈ V 〈c〉 such that

ψ′
(
V 〈c〉∗

)
< w < (id +ψ′)

(
V 〈c〉>0

)
.

In all three cases forV ⊆ V〈c〉, we findn ∈ N, b ∈ V , a ∈ V n andλ ∈ Qn+1

such thatw = θb,a,λ(c). Observe that for anyd ∈ V ′ with C < d < V \ C,
d lies inD′

a. In fact, it lies in the same convex componentD of D′
a asc, and

V〈c〉 ∼= V〈d〉 by an isomorphism overV with c 7→ d if and only if either bothc
andd are inD ∩ θ−1

b,a,λ(P
′), or both are not inD ∩ θ−1

b,a,λ(P
′). Thus also in this

case, the second part of the claim follows.
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