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The derivation of a Hardy field induces on its value group aagerfunctiony. If a
Hardy field extends the real field and is closed under powees, its value group is also a
vector space oveR. Such “ordered vector spaces withfunction” are calledH -couples
We defineclosed H-couplesand show that everi-couple can be embedded into a closed
one. The key fact is that closdd-couples have an elimination theory: solvability of an
arbitrary system of equations and inequalities (built uprfrvector space operations, the
function «, parameters, and the unknowns to be solved for) is equivedean effective
condition on the parameters of the system. Hieouple of a maximal Hardy field is
closed, and this is also the case for tHecouple of the field of logarithmic-exponential
series ovelR. We analyse in detail finitely generated extensions of angifecouple.

INTRODUCTION

We describe here roughly the main result of the paper, anldiexfor non-experts
the role of model theory in its conception. Precise formiafed follow in section 1,
and sections 2—4 contain the proof of the main result.

We begin with motivating our subject via Hardy fields, andiass some famil-
iarity with its basic theory as developed by Bourbaki [3] &abenlicht [14], [15].
This theory is the modern incarnation of ideas on “Ordersfihity” originating
with Du Bois-Reymond [2] and put on a firm basis by Hardy [6].réiafields are
ordered differential fields of germs at>o of real valued differentiable functions
defined on half linega, +o0) with a € R. A Hardy field F' has valuation ring
O(F) := {f € F : |f| < r for some real number} with associated valuation
v: F* — V = o(F*). This valuation measures the growth of functions at
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infinity: given f, g € F’* we have

f(z)

v(f) > v(g) = mlg{)lo 7@ = 0.

A key fact [14] is thatw(f’) only depends om(f) for v(f) # 0, f € F*. Thus
the value group” comes equipped with a natural extra operatiord \ {0} — V/
given by

Y((f)) =o(f'/f) =v(f") —v(f) forv(f)#0.feF*.

The pair(V, ¢) is an “asymptotic couple of Hardy type” in the sense of Rasanl
[13] who studies especially the situation where the abgjianpV” has finite rank;

in that case) takes only finitely many different values. We focus on theaxite
situation wherdV, ¢) is large in a certain sense. In addition we include a scalar
multiplicationR x V' — V among the basic operations. Here is why.

Suppose our Hardy field" extendsR(x), and is closed under powers, that
is,0 < f e F = fr e Fforallr € R. (Al maximal Hardy fields have
these properties, see [3] or [14].) Théhbecomes an ordered vector space
overR by settingr - v(f) := v(f") for 0 < f € F. Consider the two-sorted
structure consisting of the ordered fiékd(first sort), the ordered abelian group
V equipped with the functiog: V' \ {0} — V as above (second sort), with the
scalar multiplicationR x V' — V relating them. This two-sorted structure is
completely determined by the structurefofis ordered differential fieldR is the
field of constants of’; the valuation ring, and hence the valuation, is defined in
terms ofR and the ordering as above; the scalar multiplication is tiieen by
r-v(f) =v(g) wheneveb < f,g € Fandrf’/f = g¢'/g. (The presence of this
scalar multiplication is a contrast to the situation withnselian valued fields of
equicharacteristi6, where no “definable interaction” between residue field and
value group can exist.)

The “asymptotic couples with scalar multiplication” asisted to Hardy fields
F as above belong to a certain elementary class, the clagsanfuples (the H”
of Hardy and Hahn). IF is a maximal Hardy field, its associatédcouple(V, v)
is evenclosed which implies that the seb := ¢ (V \ {0}) is closed downward
in V. (Precise definitions are in section 1.)

Our ultimate aim is to develop a model theory for orderededéhtial fields such
as maximal Hardy fields. At the most basic level this requihese differential
fields to have a common elimination theory for algebraicedéhtial equations
and inequalities. We do not yet know if such an eliminaticgotty exists, but our
main theorem goes in that direction: it says that the clasdasfed H-couples
with real closed scalar field has an elimination theory.

Roughly speaking, this means the following. L®tbe any finite system of
equations and inequalities built up from symbols for theteespace operations
and the function), and from variables, some ranging over scalars and thesother
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over vectors; in addition, some variables are considergohesmeters, and the
others as the unknowns to be solved for. Let the parametettseeaystem be
given values in a closeff -couple(V, v) with real closed scalar field. Then the
solvability of S in (V,4) is shown to be equivalent to tirarameterssatisfying a
certain finite systen$” of equations and inequalities (in which the unknowns do
not occur any longer, they have begliminated. Moreover,S’ only depends on
S, noton(V, ) or the particular values of the parameters. However, thigig
true if among the “inequalities” i®” we allow conditions of the form € ¥, and

t ¢ ¥, with & = ¢ (V \ {0}). (Such “inequalities” are also allowed #) That

is why we deal withH -triples, not justH-couples. (A closed?-couple(V, 1))
gives rise to the closeH-triple (V, ¢, ¥).)

One can express this more concisely (and accurately!) lsincpl terminology
where S and S’ become formulas in a certain language. Relevant here are the
notions ofquantifier elimination(Tarski) andmodel completiofA. Robinson),
which clarify the significance of “having an elimination tirg”. For these matters
we refer to the first half of [17] (or corresponding parts dietstandard texts in
model theory, like [9]). Indeed, by model-theoretic getites the class of closed
H-triples with real closed scalar field has an eliminatiorotliyas indicated above
if and only if any embedding of substructureof a closedH -triple (V, ¢, ¥) with
real closed scalar field into a “sufficiently saturated” eld&7-triple (V', ', ¥')
with real closed scalar field extends to an embeddirid/of, ¥) into (V’/, ¢', ).

Thus rather than directly constructing an elimination tigeave obtain its
existence by proving in section 4 an embedding theorem. Téiefdiur sections
are mostly algebraic, with model theory as our guide. Inisecd we address
issues of a more intrinsic nature, both algebraically anthfthe point of view of
model theory.

We hope the sketch above is helpful to readers not familiéin thie model-
theoretic background, which from now on will be assumed. drtipular, “C”
will be used for the substructure relation as defined in mtdry.

1. DEFINITIONS AND RESULTS
We now formally introduce the objects studied in this paper.

Notation. We putS~¢ := {s € S : s > a} for an element of a linearly

ordered seb; similarly for “>", “ <” or “ <" instead of “>".

Recall that an ordered vector space over an orderedKiedd vector spack”
overk equipped with a linear ordering such thabik v,w € V and0 < X € k,
then0 < v +w and0 < Av. We then define an equivalence relationiofy

1
vew = ek X|U| < Jw| < Ay).

The equivalence class of € V is written as[v] (or [v]g, if k is not clear from
context), and is called its-archimedean classWe let[V] (or [V]x) be the set of
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k-archimedean classes, and linearly ord&rby

[v] < [w] <= YA€k™: | < |w|
— [v] # [w] and|v| < |w].

Thus[0] = {0} is the smallesk-archimedean class. For ease of notation we put
V* =V \ {0}, and[V*] := {[v] : v € V*}.

DEerINITION 1.1. A Hahn spaceis an ordered vector spateover an ordered
field k such that for all vectors, w € V*

] =[w] = INek:[v-Iw] < [w].

Itis easy to see that any ordered vector spaceRusia Hahn space. We have
chosen the term “Hahn space” since these spaces satisfabgaa of the Hahn
embedding theorem, see section 2. There we also estatigiotid behaviour of
Hahn spaces under scalar extension.

DEFINITION 1.2. An H-coupleV = (V,4) consists of a Hahn spadé
over an ordered fiel&, a distinguished positive elemehte V, and a function
1: V* — V such that for alb, w € V*

1¢(1) =1,
2. 9(v) <Y(w) <= [v] = [w] (hencey(v) = ¥(w) <= [v] = [w]),
3. ¥(v) <¥(w) + |w.

We refer toV as an ‘H-couple ovelk” if we want to specify the scalar fielkl.

Figure 1 shows the qualitative behavior of the functignandid +v on V*.
(In section 3 we will see thatl +v is strictly increasing.) The picture is quite
rough: it cannot show thap is constant ork-archimedean classes. But it has
been a precious guide in our work.

ExampLE 1.1.  To every Hardy fieldF’ O R(z) closed under powers we
associate the correspondiifycoupleV = (V,1) overR, as indicated in the
introduction, withl := v(z~!). That we actually obtain af-couple in this way
is clear from remarks made above, and results in [12].

ExampPLE 1.2. Letk be a logarithmic-exponential ordered field, andAet
be a differential subfield ok((¢))'F containingk(z), and closed under powers,
thatis, if0 < f € F andr € k, thenf” € F. (See [5] for the construction of
k((t)“E, the field of logarithmic-exponential series ove) Letv be the valuation
on F with valuation ring{ f € F : | f| < r for somer € k}, and associate t&
an H-couple just as we did for the Hardy fields above, with= v(t) = v(z~1).
(In section 3 we show this gives indeed AERcouple ovelk.)
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v w=v+¢Y(v)

(1, 1)
ﬁ 1 . V

w = P(v)

FIG.1. v andid + onV*.

When dealing withi{ -couples) = (V, ¢)) as model-theoretic objects we construe
them asC g-structures, wherg g is the two-sorted language with

1. scalar variables ranging over the extended scalarfigld= k U {co},
2. vector variables ranging over the extended vector space= V U {o0},

and with the following non-logical symbols:

3.<,0,1,+4, —, -, interpreted as usual in the ordered fikldf scalars, witho
serving as a default value: the linear orderingide extended to a linear ordering
on k. by setting\ < oo for all A € k, and * p := oo for x € {+, —, -} and all
A 1 € koo With A = 0o Or pp = oo.

4. <,0,1, 4+, —, v, interpreted in the obvious way ¥ and withoo serving
as default value: the linear ordering dhis extended to a linear order 64, by
settinga < oo foralla € V,anda+oc =co+a=a — 00 = o0 — a = oo for
alla € Vo , andy(0) = 9(00) = o0,

5. a symbol for the mapk., x Vo, — V,, thatis the scalar multiplication on
k x V and withA - v = oo forall (A, v) € (ks X Voo) \ (k x V),

6. a symbot for the functionV2 — k., that assigns to eadl, b) € V2 with
[a] < [b] andb # 0 the unique scalat : b = A € k such thafa — A\b] < [b], and
that assigns to all other paifs, b) € V2 the default value : b = oco.

Remarks.

1. Despite overlap in how we write the symbols of (3), (4), éB)dwe actually
distinguish them: for example, the symbelin (3) is to be regarded as different
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from the symbok- in (4). Similarly, the elemento € k. is to be distinguished
from the elemento € V..

2. The defaultvalueso are included to make all basic operations totally defined,
so that no ambiguities arise in the interpretation of terms.

Itis easy to see that thé-couples in the model-theoretic sense are exactly the
models of auniversaltheory in the languag€ . Thus each substructure of an
H-couple is also aii/-couple, with possibly smaller scalar field. (That's why we
included the division operation of (6).) We will keep wrigit/ -couples agV, v),
and so on, even when we regard thenCasstructures.

Let (V,v) be anH-couple. Then clearly (v) < w+ 1 (w) forallv,w € V>°.
Thus(V, ¢) has an ‘H-cut” in the following sense.

DErFINITION 1.3.  An H-cutof (V, 1) is a setP C V such that:

1. Foralla,be V,ifa < b e P, thena € P.
2. % (v) € Pandw + (w) ¢ P forallv,w € V>°.

We then also callV, ¢, P) an H-triple, and we regardV, v, P) as anLy p-
structure, where&£ i p extends the languagéy by an extra unary predicate,
to be interpreted by the sét C V. Clearly theH-triples are then exactly the
models of a universal theory in the languagg p.

DEeFINITION 1.4.  The H-couple(V, ) is closedif (V*) has no largest
element, and

Y(V*)={aeV:ia<w+y(w)foralwe V>0}.

In that casel := (V™) is clearly the onlyH-cut of (V, ¢); we call (V, 4, ¥) a
closedH-triple .

In section 3 we prove that eaéh-triple can be embedded (&3;, p-structure)
into a closedH -triple with the same scalar field. We also show there that the
H-couples associated to maximal Hardy fields and to the odd#fierential field
R((t)F are closed.

We can now state the main result of this paper, to be estallishsection 4.

THEOREM 1.1. The theory of closedi-triples over real closed scalar fields
is complete, eliminates quantifiers, and is the model-cetigul of the theory of
H-triples.

We actually obtain a relative quantifier elimination whédre scalar field is not
assumed to be real closed.

In section 5 we show that no new structure is induced on thiarstiald in
closed H-triples and that the underlying ordered vector space it stples is
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locally o-minimal. We also determine there the definablsute of a substructure
in a closedH -triple, and study simple extensions Bftriples.

In section 6 we indicate a variant of the results above, wieree is no scalar
field. Here we have a model-completion that is even weaklyiraal.

Remarks on1 and P

The role of the distinguished positive eleméntvith (1) = 1 is to give a
convenient normalization. This role is hardly essentiat,dpes affect issues like
completeness as stated in the theorem above. To clarifgeimsfurther, consider
an “H-couple withoutl”, that is, a coupl€V, v) consisting of a non-trivial Hahn
spacel over an ordered fiel& and a function): V* — V satisfying axioms (2)
and (3) forH-couples. (We do not distinguish a positive elemeand omit the
axiom (1) = 1.) Then for each vectar € V the translatéV, a + v) is clearly
also anH -couple withoutl. Choose any vectdre V>, and puta := b — v(b).
Thena + 4(b) = b, so by takingb as our distinguished positive elementve
make(V, a + 1) into an H-couple ovelk.

Similarly, without the predicaté® for an H-cut we would not have quantifier
elimination: Using results from§3, it is easy to construct closeH-couples
(Vi,41), (Va,12) overR, with common substructur@’, ¢») containing a vector
v, such thab € 41 (V"), butv & 12 (V5).

Notational conventions

Let (S, <) be a linearly ordered set. When< bin S and(S, <) is clear from
context we use the following notations:

[a,b] = {ze€S:a<x<b},
(—00,b] == {weS:a<b},
la,00) = {x €8:2>a}.

AsetX C Sis calledconvex(in S) if [a,b] C X for all a,b € X with a < b.
For X C S anda € X, theconvex component of; in X is the (convex) set

{a:EXS“ : |z, a] QX}U{IGXZ“:[Q,:E] C X}

(This also depends ofi.) Theconvex components ofX are by definition the
convex components of the membersdin X. They form a partition ofX. The
convex hull of X (in S) is the smallest convex subset®$tontainingX. We call
a subsetX of S closed upward(in S) if a € S,a > b € X impliesa € X, and
closed downward(in S), or acutin S, if a € S,a < b € X impliesa € X. An
elementa in an ordered extension ¢f, <) is said torealize the cutX in S if
X<a<S\X.

Throughout the paper, we let,n range over the sef = {0,1,2,...} of
natural numbers. If7 is an ordered abelian group agde G, we set|g| :=
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max{—g, g}, and letsgn(g) := —1if g < 0, sgn(0) := 0, andsgn(g) := 1 if
g>0.

2. HAHN SPACES

The notion of a Hahn space has been already defingt, isee Definition 1.1. In
this section we study embedding and scalar extension pgiepef Hahn spaces.
We also include a very useful lemma about functions on olabelian groups.
Throughout this section, lé be an ordered field and an ordered vector space
overk.

Properties ofk-archimedean classes. Letv, w € V and\ € k*. Then:

1. [v] ={0} <= v =0,
2. [v] = [Av],
3. v+ ]<max{v, [w]},
4. [v+w] = Inax{ v], w]}, if [v] # [w].
We say thal/ is k-archimedeanif [V*] is a singleton. For examplé,as an
ordered vector space over itselfisarchimedean.
Forv € [V*], we define the convex linear subspaces

Vi) ={veV:p <y}, v = {veV:[] <~}

Note that the ordered vector spdé€” / V., is k-archimedean.
Remarks. The following facts are easy consequences of the definitions

1. V is a Hahn space if and only if all the vector spadé@)/v(w have
dimensiont.

2. Any linear subspace of a Hahn space dves itself a Hahn space ovér
with respect to the induced ordering.

3. Any ordered vector space over the filaf real numbers is a Hahn space.

4. R as an ordered vector space o{is not a Hahn space.

Hahn products

LetI" be a totally ordered set anfif,, ) ,cr a System of ordered vector spaces over
k. For each element= (v, ),cr of the vector spacg]. .. V;, we let

suppv := {y € ' : v, # 0}

denote thesupport of v. The subsetH (T, (V;),er) of [ .V, consist-
ing of those elements with anti-wellordered support i&-Bnear subspace of
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]_[76r V.. It becomes an ordered vector space dvdsy setting, for non-zero
ve H(T,(Vy)yer),

0<v <= 0 <y,

whereu(v) := max (suppv). We call H(T', (V,),er) the Hahn product of
(Vy)yer. Note that if allV, are Hahn spaces ovér thenH (I, (V;),cr) is a
Hahn space ovek. If all V, are equal to/, we also writeH (T, V). If V' is
k-archimedean, and we p#t := H(T", V), then we have a well defined map

[v] — max (suppv): [H*] —T (ve H"),

and this map is an isomorphism of linearly ordered sets.

Hahn embedding theorem

Let V'’ be an ordered vector space over an ordered field extekSiohk. Then
by anembeddingV — V' we mean an injective order preservihginear map
V — V’. Suchanembedding V' — V' inducesamap] — [i(v)]: [V] — [V']
from the set ok-archimedean classes Bfinto the set ok’-archimedean classes
of V’. This induced map is clearly injectiveff= k’.

ProposITION 2.1. LetI' := [V*]. Then there exists an embedding
V= H:=H(T, (V7/V)))

of ordered vector spaces ovkiwith bijective induced mafy/| — [H].

Proof. The proofis an easy adaptation of Banaschewski's proofftheoHahn
embedding theorem as presented in [10], pp. 16-{L7.

CoROLLARY 2.1. (HahnEmbedding Theorem for Hahn Spadeg)is a Hahn
space, then there exists an embeddihg~ H := H(T, k), wherel' := [V*],
with bijective induced may/] — [H]. |

Thus up to isomorphism of ordered vector spaces bwbe Hahn spaces over
k are exactly the ordered linear subspaces of Hahn prodiidisk) for linearly
ordered set§'.

Scalar extension
Given a field extensiok’ D k, let V;,» beV @y k' viewed as a vector space over
k' in the usual way. We considéf ask-linear subspace dfy, by identifying
v € V withv ® 1 € V. The following fact will be used several times:
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LeEMMA 2.1. LetV be a Hahn space, ank’ O k a field extension. Then
every non-zero vectar € V, can be written as

u = Z il with scalars); € k' and vectora,; € V>0, (1)
=1
such thafu,] > [ug] > -+ > [uy,] in [V*].

Proof. Let0 #u =37, ujv; () € k',v; € V). One then shows by induc-
tion onn thatu can be rewritten asin (1), wifly;] < max{[v;]: j =1,...,n}. |

PrOPOSITION 2.2. LetV be a Hahn space, and lét C k' be an extension
of ordered fields. Then there is a unique linear orderinglgn extending the
ordering of VV, makingV; into an ordered vector space ovif, such that the
inclusionV — Vj is an embedding with injective induced maf — [Vi/].

Proof. Assume that we are given such an ordering@n We can write each
non-zerovecton € Vys asin (1), with\; # 0. Thenu > 0ifand only if A; > 0.
This shows uniqueness. Existence: By Corollary 2.1 aboechave an embed-
dingV — H(T', k) of ordered vector spaces overwherel’ := [V *],. Tensoring
with k" gives ak’-linear injective mag/,, — H(T', k’). This induces an ordering
onV,, making itinto an ordered vector space okewith the desired properties, as

one easily verifies.]

Remarks. Under the hypothesis of the proposition above we will comsid
Vi as being equipped with the unique linear ordering of the psdwn. Note
that thenV} is a Hahn space ovér', and that the mafl/] — [Vj] induced by
the embedding” — V} is a bijection.

COROLLARY 2.2. (Universal Property).etV be a Hahn space ankl C &k’
be an extension of ordered fields. Any embed#fing V'’ into an ordered vector
spaceV’ overk’ with injective induced mafi’] — [V'] extends uniquely to an
embeddind/; — V'. |

A lemma about functions on ordered abelian groups
We shall say that a functiofi: X — Y between linearly ordered se¥ andY
has thentermediate value property if for all z; < x5 in X and ally € Y with
flz1) <y < f(ze)or f(ze) <y < f(z1) thereisz € X suchthatr; < z < x2
andf(z) = y.
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Let G be an ordered abelian group, anddob € G write a = o(b) to indicate
thatn|a| < |b| for each positive integer.

LEMMA 2.2. LetC C G be a convex subset, and assume that the function
n: C'— G has the following properties:

1.9(z) — n(y) = o(x — y) for all distinctz,y € C,
2.n(y) = n(z) whenever:,y,z € Cwithz < y < zandz —y = o(z — z).

Then the functionr — = + n(z): C — G is strictly increasing and has the
intermediate value property.

Proof. Thatz + n(z) is strictly increasing is an easy consequence of (1). To
prove the intermediate value property, &b € C with a < b. Letc:=b—a
and define); : [0,¢] — G by ni(x) := n(a + x) — n(a). Then properties (1) and
(2) remain valid ifC' is replaced by0, ¢] andn by 7, and it suffices to prove the
intermediate value property for the corresponding fumctio— « + 7 (z). So
we can assum€ = [0, ¢] andn(0) = 0. Let0 < v < ¢+ n(c). It suffices to find
u € (0,¢) such thatu + n(u) = v. We distinguish two cases:

If ¢ — v = o(c), then we putu := v — n(c), 00 < u < ¢. By (1), we have
n(c) = o(c), hence—u = (c—v)+ (v—u) = (c—v)+n(c) = o(c). Therefore,
by (2), we havey(u) = n(c), thatis,u + n(u) = v.

If ¢ —v # o(c), then sincev < ¢ + n(c) andn(c) = o(c) by (1), we get
0 < v < ¢. Putu := v — n(v). Sincen(v) = o(v) by (1), we haved < u,v < ¢
andv —u = o(v), hencey(v) = n(u) by (2), thatisu + n(u) = v, as required.]

Remark. Lemma 2.2 remains of course valid when (2) is replaced by

2'. n(y) = n(z) whenever,y,z € Cwithz >y > zandz — y = o(z — z).

3. H-COUPLES: EXAMPLES, AND EMBEDDING PROPERTIES

We refer to§1 for various notions concerninfg-couples. In this sectiofV, v) is
an H-couple over the ordered fiekd ¥ := ¢ (V*), andP is anH-cut of (V, ).
So(V, 1, P) is an H-triple overk.

Basic properties ofp.  (See also [13].)

1. The map — ¢ (v): V — Vo (With 1(0) = oo > V) is a valuation on the
ordered groupy/, that is, (v + w) > min{t(v), ¥ (w)} forv,w € V.

2. (v —w) > min{v, w}, forallv,w € P. In particulary (¢ (v) — 1 (w)) >
min{¢(v), ¥ (w)}, forallv,w € V*.

3. [Y(v) — ¥(w)] < [v—w]forv,w e V*, v #w.
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4. The map — v + ¢¥(v): V* — V is strictly increasing.

Proof. Property (1) follows easily from axiom (2) abalitcouples. For (2), let
v,w € P,v < w. Themp(w—v)+(w—v) > w, hencap(v—w) > v. Property (3)
follows from (1), (2) and axiom (2). Property (4) is now an imdate consequence

of (3). 1I

Note that Lemma 2.2 and property (3) imply the intermediate& property for
the functionz — x + 1 (z) on V>?, and also the intermediate value property for
x — x +1¢(x) on V<. A consequence of this is:

LeEmMMA 3.1. The set
(id+)(V>0) ={z + ¢(z) 1 2 € V70}
is closed upward. The set
(—id+) (V) ={ -z +¢(z) 12 € V70}
is closed downward. Moreover,

(—id+4)(V=0) = (id+¢)(V<") = {a € V : a < bfor someb € V}.

Proof. Leta > 1inV. Thenjy(a) — 1| = |¢(a) — (1)| < a — 1 by basic
property (3), hencé&)(a)| < a. Thus2a + ¥(2a) = 2a + ¢(a) > a, showing
thatid -+« takes arbitrarily large values dn~°. Now use the intermediate value
property forid ++ on V> to deduce the first statement. For the second, note
that —2a + ¢ (2a) < —a, sincea > ¢(a). Since clearly(—id +v)(V>?) =
(id +v) (V<0) it follows as before that—id +v)(V>?) is closed downward.
Leta € V, a < ¢(z) for somez € V>0, Sety := min{xz,¢(z) —a} > 0;
thena < ¢(2)—y < Y(y)—y € (—id+v¢)(V>?). Thusa € (—id +4)(V>0). |

These facts will be tacitly used in the rest of the paper. Nextmake the
following easy but very useful observation.

ProprosITION 3.1. There is at most one elemant V such that
U <v<(id+y) (V7). (2)

Hence(V, ) has at most twd{-cuts, and(V, ¢) has exactly twd-cuts if and
only if there exist® such that(2) holds. If¥ has a largest element, the€, «)
has only oneé{ -cut.
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Proof. If v > v are two elements satisfying (2), choosing= v — v’ > 0
yieldsy(u) <v' =v—u < ((u) +u) —u = ¢(u), which is a contradiction. If
¥ has a largest elementt, andv is supposed to satisfy (2), then the same argument

leads to a contradiction]

ClosedH-couples have only on&-cut. In Lemma 3.3 we indicate a class of
H-couples with twaH -cuts. First a general fact that we shall use several times:

LemMA 3.2. Letk C k' be an ordered field extension, andV — V' be
an embedding of/ into a Hahn spacéd’’ over k', such that the induced map
[V] — [V'] is bijective. Then there is a unique functign: (V')* — V' such
that (V’,+") is an H-couple overk’, with 1 € V as its distinguished positive
element, and(y(v)) = ¢/ (i(v)) forall v € V*,

Proof. Definey’(v') := ¢(v) for o' € (V')* andv € V* such thatv’] =
[i(v)]. Theny' is well-defined, andV’,v’) is an H-couple. The main point
to check here is axiom (3) foF -couples, which follows from the bijectivity
of [V] — [V'] and property (3) for) stated at the beginning of this sectioj.

Consider now an embedding &f into the Hahn spacé& := H(T', k) overk
as in Corollary 2.1, witl® = [V*], and identifyV with its image inH via this
embedding. Then the lemma above tells us thaktends uniquely to a function
Yg: H* — H such that(H, ) is an H-couple overk with distinguished
elementl € V. The next result shows th&H, ¢i7) has always twd?-cuts ifI"
has no least element.

LEMMA 3.3. Let H = H(T, k) for some nonempty linearly ordered dét
without least element. Then eahcouple of the forn{H, ¢) has twoH-cuts.

Proof. Let x be the coinitality ofl" and (v, )a<x @ coinital sequence if.
Chooseu, € H>? with [u,] = 7, and setw,, := 1 (u,), for all a < k. Then
(Wa)a<x is cofinal iny(H*), and(wq + ta)a<x is coinitial in (id +v) (H>°).
Let v € T; takeay < & such thaty,, < 7. Thenay < a,8 < k iM-
plies [wo, — wg] < 7, that is, (wq)y = (wg), for all 4/ > ~. So for
eachy € I, the sequencé(w,),) _, is eventually constant. Let, € k
be this constant, and set := (v,),cr. One shows thav € H, and that
Wa < v < Wq + g forall a < k. Thereforep (H>0) < v < (id+)(H>?). 1

Examples of H-couples

ExampLE 3.1. Considerk as an ordered vector space over itself. Ttien))
with ¢(v) = 1 forallv € k™ and1 € k as distinguished positive element, is an
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H-couple ovek. It has a unique embedding (g -structure) into anyd -couple
overk. Here k=<' is the onlyH-cut of (k, ).

ExampPLE 3.2. Every finite dimensional Hahn space oveiis isomorphic
to the anti-lexicographically ordered vector sp&ce for somen. (A non-zero

vector(as, . .., o, ) € k™ is positive in the anti-lexicographic ordering if and only
if ; >0, wherei =max{j:1<j<n,a; #0}.)
Let us fix ann > 0, and some positive vectqi\y,...,\,) in the anti-

lexicographically ordered vector spak® overk. Let
e1 = (1,0,...,0),...,e, = (0,...,0,1)

be the standard basis vectorsif, sofe;] < --- < [e,] are the non-zerd-
archimedean classes bf' . Let (k",v) be anH-couple with(Aq,...,\,) as
distinguished positive element. Define thex n-matrix 4 = (a;;) € k"*" by

(i1, .-y aun) i=(e;) fori=1,... n.
Then A has the following properties:

L(11,.y00n) < - < (Qniy .oy Qnn);
2. Q5 = Qjj forall 1 S] <i1<nm;
3 (A, A) = (it - i) > 0,fori i=max{j: 1 < j <n,\; #0}.

Here, (1) and (3) follow from axiom (2) and (1) fdif-couples, respectively,
whereas (2) is derived from(e;) — ¢ (e;) < e-e; foralle > 0andl < j < i < n,
which holds by axiom (3). Conversely, given a matix= («;;) € k™" with
properties (1)—(3), defing by setting

u}(ﬂlv s 7/’Ln) = (ailv AR ain)v wherei := max{j 01 < .] < n, Ky # O}?

for (p1,...,un) # 0in k™, thus obtaining arff-couple (k", ) with distin-
guished positive elemerff\,,..., ;). In this way, we get a one-to-one cor-
respondence betweeH-couples(k™, ) with distinguished positive element
(M, ..., ) and matricesA € k™™ with the three properties above.

ExamMmPLE 3.3. Suppose the Hahn spakeoverk has countable dimension.
Then by Brown’s argument in [4] there is an embedding— H (T, k) with
I' = [V*] as in Corollary 2.1, whose image is the direct sum

k") = {v e k" : suppu finite}.
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For any linearly ordered sdt # () we can give a description aff-couples
(k(r), 1/1) with distinguished positive elemef., ), cr in terms of certain matrices
in k%1 similar to the previous example. As an example, consider Z,
V= k" = @,_, ke, with e, > 0 and[e,] < [es41], for all s € Z. Define
: V* — V by makingy constant on eack-archimedean class, and setting

U(en) ::—(61+-~-+en,1) ifn>0
(hencey(e;) = 0), and
Yie_p)i=e_p+e_pt1+--+e ifn>0.

Then(V, ), with distinguished positive elemeag, is an H-couple. In fact, if

k =R, itis the H-couple associated to the smallest Hardy field which is dose
under powers and contaiffy. . ., e”, z,log ,loglog z, . .. ). (See [11], p. 263,
[16], Cor. 2.) Note thal’ has no smallest element, but ti{&t ¢)) has only one
H-cut. Modifying the definition of) above by letting

Yle_p):i=ey+e_1 —e_p_1 forn>0,

we get an example of aff-couple with distinguished positive elemenyt, and
with two H-cuts, since in this caseip ¥ exists and equals) + e_; ¢ V.

ExamPLE 3.4. The H-couple associated with a maximal Hardy field is
closed. More generally: Ldt be a Hardy field containing (z) and closed under
exponentiation (i.ef € K = e/ € K) and integration (i.ef € K = 3g € K :

g = f). ThenK is also closed under powers, and tHecouple associated with
K is closed.

Proof. Note that if f € K>°, thenlog f € K, since(logf) = f'/f €
K. The ordered sefw(K *)*] has no least element since for afiye K>°
with v(f) > 0, we have0 < r-v(1/logf) < v(f) for all r € R>?. It
remains to show that fof € K*: eitherv(f) = v(¢’/g) for someg € K*,
v(g) > 0, oru(f) = v(g') for someg € K*, v(g) > 0. Takeg € K* with
g = f. If v(g) > 0, then by subtracting a real constant frgnif necessary,
we may assume(g) > 0, and we are done. l§(g) < 0, then, changing
f to —f andg to —g if necessary, we may assurges negative infinite, i.e.

g < R. ThenG := 9 satisfiesf = G'/G, sov(f) = v(G'/G) andv(G) > 0. 1

In the next examples, we assume familiarity with [5].

ExamMmPLE 3.5. Letk be an ordered logarithmic-exponential field, @nény
differential subfield ofk((¢))“ containingk(z) and closed under powers. Then
with V' := v(F*) andy defined as in the introduction, we get Brcouple(V, v)
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with distinguished positive elemeht= v(t). Moreover, ifF' is also closed under
exponentiation and integration, théW, ) is closed.

Proof. The valuationy onk((t))‘E is defined in terms of the leading monomial
mapLm via v(f) = —log(Lm(f)) for f € k((t)'E, f # 0, see [5], (2.9). In
particular, the orderel-linear spacé’ (the value group) is an orderddlinear
subspace ok ((¢))‘E itself. Itis easy to see that the ordetedinear spacé ((t))-E
is a Hahn space, and thds is a Hahn space. It is clear that axiom (1) for
H-couples holds, while axiom (2) is (4.5) in [5]. Axiom (3) iscansequence
of Theorem 4, (c) in [12], since is a differential valuation by [5], (4.1). The
last part of the statement follows by adapting the proof eyghevious example]

ExaMPLE 3.6. Let k be as in the previous example, afid= k((t)F the
differential subfield of exponential seriesk{(t))"E. One shows easily that is
closed under powers. In the correspondifigouple(V, i), whereV := v(F*),
the element = v(t) = ¢ (z) is the largest element of(V*) = U, see (2.2) in
[5]. It follows from results in [5],85, that for eachf € F*, if v(f) > 1, then
f = ¢ forsomeg € F withv(g) > 0, whileif v(f) < 1,thenf = ¢'/g for some
g € F* with v(g) > 0. Thus¥ = V=1 and(id ++)(V>0) = V>1.

Embedding into closedH -triples

Besides thefH -triple (V, ¢, P) over k we now let(V' ', P') denote a second
H-triple with ordered scalar fiel#t’. Since we are dealing here with (two-sorted)
Ly p-structures there is a well-defined notion of embeddingV, ¢, P) —
(V’,4', P"). Such an embeddingis uniquely determined by itscalar part

is: kK — k', an ordered field embedding, and vtsctor part i,: V — V', an
ordered group embedding between the underlying ordereithaddroups ofl/
andV’. Conversely, given an ordered field embeddingk — k' and an ordered
group embedding,: V' — V' between the underlying ordered additive groups
of V andV”’ there is an embedding (V, vy, P) — (V’,4’, P") with is = ¢; and

iy = iz if and only if i; andis satisfy the compatibility conditions

ig(Au) = i1(N)iz(u), i2(¢(v)) = ¢/ (i2(v)), d2(ly) = 1y,
forallu,v € V,v #0, X € k, and
P niy(V) =ia(P).

Herely, 1y are the distinguished positive element$\dfy, P) and(V', ¢, P'),
respectively. Given an embeddings above we usually writg ) for is(\) when

A € k, andi(a) for iy(a) whena € V. Note thati induces an embedding
[v] = [i(v)]: [V] — [V’] of linearly ordered sets.
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We will now show that eacH -triple (V, ¢, P) has anf{ -closure(V¢, ¢, P°)in
the following sense(V¢, ¢)¢, P%) is a closedH -triple overk extendingV, ¢, P)
such that any embeddiriyy, v, P) — (V’,+’, P') into a closed{ -triple (not nec-
essarily ovek) extends to an embeddifg©, ©¢, P°) — (V', ¢/, P"). (We do not
require uniqueness.) Later, we will see that any fxelosures ol = (V, v, P)
are isomorphic ovey, that is, isomorphic by an isomorphism whose vector part
is the identity orl” and whose scalar part is the identitylen(See Corollary 5.3.)
Towards the existence proof we show three basic extensiomés:

LeEMMA 3.4. Supposer € V, P < a < (id+)(V>?). Then(V,¢, P)
extends to ari -triple (V' @ ke, ¢, P¢) overk such that:

l.e>0,a=c¢c+9(e).

2. Given any embedding: (V,v, P) — (V’/,4¢', P") of H-triples and any
e’ € V'withe’ > 0 andi(a) = &’ + ¢’ (¢’), there is a unique extension ofo an
embedding: (V @ ke, y=, P?) — (V',¢', P") with j(e) = €'

Proof. Take an ordered vector spated ke over k extending the ordered
vector spacé’, such thad < ¢ < V>0, One verifies immediately thaf @ ke is
a Hahn space. For a non-zero veaio= v + e (v € V, A € k), we put

) = {wm, ifv#0

a — e, otherwise.

Also let P* := {w € V @ ke : w < a — £}. One verifies easily thafl” @
ke, %, P?) is an H-triple extendingV, ¢, P). Leti: (V ¢, P) — (V' ¢, P")

be an embedding dff-triples, and=’ € V', ¢’ > 0, with i(a) = &’ + ¢/(¢’). By
making the usual identifications we may assume thaw, P) C (V’,4’, P’),
and thati is the natural inclusion. Thef < ¢ < V> hence the inclu-
sion V — V'’ extends to an embedding & k¢ — V’ of ordered vector
spaces ovek sendinge to £’. It is easy to check that this embedding is the

vector part of an embeddind” ¢ ke, ¢°, P¢) — (V' ¢/, P') that extends. |

Note thatP¢ as in Lemma 3.4 has a maximum. In this situation we can apply th
next lemma.

LEMMA 3.5. Supposeé’ has a largest element. ThéW, ¢, P) extends to an
H-triple (V @ ke, y°, P¢) overk such that:

l.e > 0,9°(e) = (max P) +¢.

2.Given any embedding: (V,v, P) — (V' ¢/, P') of H-triples and any
g’ € V' withe’ > 0 andy’(¢') = i(max P) + ¢/, there is a unique extension of
to an embedding: (V & ke, ¢°, P¢) — (V' ¢/, P') with j(e) = ¢’
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Proof. We proceed exactly as in the proof of the previous lemma,Ebtbat
in the definitions of¢ and P¢ we put

w%w%:{wwx it o0

(max P) +¢, otherwise,
for non-zerow = v+ e (v € V, XA € k), and
Pi={weVdke:w< (maxP)+e}.

Thenyc(e) = (max P) + ¢ > max P. |

We remark thaf® as in Lemma 3.5 still has a largest element (though larger tha
max P), so that this lemma can be applied again to the exter{§i@nke, ¢, P*)
of (V.4), P).

LEMMA 3.6. Suppose € P\ ¥. Then(V,v, P) can be extended to an
H-triple (V & ka,y*, P*) overk such that:

l.a>0,¢%a)=0.

2.Given any embedding: (V,¢, P) — (V’,4/, P") of H-triples and any
elementa’ > 0 in V’ with ¢/(a’) = i(b), there is a unique extension oo an
embedding : (V @ ka,y®, P*) — (V',4’', P") with j(a) = '

Proof. By Corollary 2.1, we may regard as an ordered linear subspace of
H([V*],k). We take an object ¢ [V*] and extend the linear ordering ¢¥i*]
to a linear ordering of’ := [V*] U {~} by settingy < [v] :<= b > ¥(v), for
allv € V*. Next we viewH ([V*], k) as an ordered linear subspacefdfT’, k)
by identifying each functiorf: [V*] — kin H ([V*], k) with its extension td"
obtained by setting(y) := 0. ThusV C H(T', k). Choosex > 0in H(T, k)
with max(suppa) = 7. Note thatV @ ka is a Hahn space, as an ordered linear
subspace of the Hahn spaléT’, k). For non-zerav = v + Xa (v € V, X € k),

we set
w%wk{wm it [w] = [0

b, otherwise, i.e. ifw] = [a].

Also setP® := {w € V @ ka : w < v for somev € P}. We have to check
that then(V @ ka,¢*, P*) is an H-triple overk, and that(V,¢, P) C (V @
ka,v®, P*). Itis immediate that axioms (1) and (2) féf-couples are satisfied.
The main pointis axiom (3): Lab = v+ Aa, w’ = v’ + X a be positive elements
of V@ ka (v,v' € V, A\, N € k), we have to show thap®(w') < % (w) + w.
We can assumgy’] < [w], since otherwise®(w’) < ¥%(w) < Y% (w) +w. We
distinguish the following cases:
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1. [w'] = [v], [w] = [v]. Then [1/)(1/) — 1/)(1))} < [v" —v] = [v] = [w], hence
Pt (w') = P(v') < P(v) +w =P (w) + w.

2. [w'] = [a], [w] = [v]. By basic properties (1) and (2) stated at the beginning
of this section, we geb — ¢(v)] < [a —v] = [v] = [w], hencey®(w') = b <
b(v) +w = 9o (w) +w.

3. [w] = [v'], [w] = [a]. Similar to the second casg)(v') —b] < [v' —a] =
[a] = [w], hencey®(w') =Y (v') < b+ w = P*(w) + w.

Moreover,P* is the uniquef -cut of (V @ ka,®) such thatP* NV = P. To

see this, letP§ be anyH-cut of (V & ka,®) with P§ NV = P. Assume we
are givenv € V and\ € k. To determine whem + \a € P§, we distinguish
several cases:

1. A>0,v>0b. Thenv + Aa > ¢*(\a) + Aa, hencev + \a ¢ PS.

2.0>0,b—v > a. Theny®(a) > v + Aa, hencev 4+ \a € F§.

3.A0>0,0<b—v < a. Choosé) < < A. Thenb— v < (A — u)a, hence
v+ Aa > b+ pa = YP*(ua) + pa, implyingv + Aa ¢ P§.

4. X<0,v—>b>a. Thenv —b > (1 — Na, hencev + Aa > ¥*(\a) + Aa,
so we geb + \a ¢ Fy.

50 <0,v—0b < a. Thenv —b < —Aag, hencev + Aa < 9?%(a), SO
v+ Aa € Ff.

Thereforev + A\a € Py if and only if either\ > 0 andb — v > a, or A < 0 and
v —b < a. HenceP® = Fy.

Now leti: (V, ¢, P) — (V' ¢’, P') be an embedding df -triples and:’ a pos-
itive element of’ with ¢)'(a’) = b. We can assume th@¥, ¢, P) C (V',4’, P’),
and thati is the inclusion. Note that’ ¢ V determines the same cutinasa.
Hence the inclusioly — V'’ extends to a unique embeddivigb ka — V' of or-
dered vector spaces ovemappingz toa’. Thisembedding is the vector part of an
embedding(V & ka, ¥, P*) — (V' ¢', P"), by uniqueness of"® proved
above. |

Remark. Assume that in the last lemma there is no elememrt V' with
P < v < (id+)(V>?), and thatP has no maximum. Then there is also no
w €V @ kawith P* < w < (id+¢*)((V & ka)>°), and P* has no largest
element.

Starting with(V, ¢, P) and suitably iterating and alternating the constructions
oflemmas 3.4, 3.5 and 3.6 (possibly transfinitely often)ces build an increasing
chain of H-triples overk whose union is aii/-closure of(V, ¢, P):

CoOROLLARY 3.1. EveryH-triple has anH-closure. |

Behavior under scalar extension
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LEMMA 3.7. Letk’ D k be an extension of ordered fields. Then there are
uniquey, and Py such that(Vy, ¥/, Pr/) is an H-triple over k" extending
(V,, P).

Proof. Let := 7' asin Lemma 3.2 (wheré: V' — V. is the natural
inclusion). We have to show that there is a unidiieut Py for (Vy, 1) with
P, NV = P. If ¥ has a largest element, this is clear sifce= (V*) =
Vi (Vy). So assum@ has no largest element. Suppase V. satisfies

e (Vig?) < v < (id+4w) (V).

It suffices to show that then € V. LetH := H(T,k), H = H(T,k'),
I' := [V*]. Consider the following commutative diagram of orderedoespaces
overk and embeddings between them:

Vk’ Pp®id Hk" 1% H'
1% ¢ H

Here,¢ is given by Corollary 2.1, the maps — V,, andH — H,, are obtained
from Proposition 2.2, is the natural inclusio (T, k) — H(T', k'), andpu is
uniquely determined as an embeddingdty © \) = A\h, for\ € k', h € H (using
Corollary 2.2). After identifying thed-couples(V,v), (Vi/, g ) and (H, ¢p)
via these embeddings withy -substructures ofH’, ) we havel, NH = V.
By Lemma3.3(H, vy ) and(H’, vy ) have twoH-cuts, hence € H. Thusv €

V', as desired.]

In the next section we apply this last result as follows. Let (V,«, P) and
V' = (V',9', P') be H-triples over ordered fieldk andk’, respectively. Let
Vo = (Vo, 1o, Py) be a substructure of. ThusV, is an H-triple over an ordered
subfieldk, of k. Letan embedding,: Vy, — V'’ be given, and also an embedding
e: k — k' of ordered fields, such thatk, = (ig)s.

By the last lemma the Hahn spa@é )« := Vb ®&, k overk expands uniquely
to anH-triple (V)% overk such thady C (V). With these notations we have:

LeMMaA 3.8. The embedding, — V extends uniquely to an embedding
(Vo)r — V with scalar partidi. The embedding,: Vy; — V' extends uniquely
to an embedding,), — V' with scalar parte.

Proof. By Corollary 2.2 the inclusiofy — V' extends uniquely to an embed-
ding(Vh)r — V of Hahn spaces ovér Thisis actually an embeddiri®o)r — V
of H-triples with scalar paridg, by the uniqueness property in the last proposi-
tion. |
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4. ELIMINATION OF QUANTIFIERS

In this section we obtain the main results of this paper.ILg{ denote the theory
of closedH-triples in the languag€y p. By “formula” we shall mean £ p-
formula”. Letx = (z4,...,z,,) denote a tuple of distinct scalar variablgs+
(y1,--.,yn)atuple of distinct vector variables. We call a formyla;, y) ascalar
formula if it is of the form {(s1(z,y),...,sn(z,y)) where((z1,...,zy) isa
formula in the language of ordered rings (as specified in(@uf the description
of Ly in §1), wherezy, ..., zy are scalar variables, and(x,y), ..., sy (z,y)
are scalar valued terms 8fy p.

THEOREM 4.1. Every formulay(z,y) is equivalent inTy p to a boolean
combination of scalar formulag(x, ) and of atomic formulas(z, y).

This elimination theorem says in particular that every folans equivalent
in T, p to a formula that is free of quantifiers over vector variabliswill be
derived from the following embedding result:

ProposiTION 4.1. Let(V,4, P)and(V’' v¢’, P') be closedH-triples overk
andk’, respectively. Assume th@t’,«’, P’) is x-saturated, where: := |V|*.
Let (Vo, %o, Po) be a substructure ofV,, P), and thus anH-triple over a
subfieldk, of k. Let an embedding: (Vo, v, Py) — (V', ', P’) be given, and
also an embedding: k — k' of ordered fields, such thatk, = (io)s. Thenig
can be extended to an embeddindV, ¥, P) — (V',¢’, P') such that = is.

We postpone the proof of this proposition and first deduceofidra 4.1 from
it. To this end we use the following consequence of Propmsidil.

LEmMA 4.1. Let (V ¢, P) C (V' ¢, P') be closedH-triples overk and
k', respectively. Thek =< k' (as ordered fieldsif and only if (V,v, P) =<
(V' ¢, P").

Proof. One direction being trivial, we assunmie < k', and shall derive
(V,, P) 2 (V' ¢/, P"). Lety(z,y) be a formula. By induction on the com-
plexity of ¢, one shows, for al{V, ¢, P) and(V', ', P’) as in the hypothesis of
thelemma,and all € k™, v € V™

V., P) = e\ v) <= (V¥ P) oA 0)

For the inductive step, lep = 326, wheref(x,y,z) is a formula andz a
single variable of the vector or scalar sort. Sinttés of lower complexity
than ¢ the direction “=" follows from the induction hypothesis. So assume
(V' 4, P") = (A, v). Choose &-saturated elementary extensigf’, ¢, P")
of (V,4, P), wherex := |V'|. Letk” be the scalar field of’”’, 1", P"). Then
there is an elementary embedding of ordered fields’ — k" with e|k = id.
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By Proposition 4.1, there is an embedding(V',v', P") — (V" 4", P")
with i = e andi,|V = id. Using the induction hypothesis ah it fol-
lows that(V", 4", P") = ¢(A,v). We conclude thatV, ¢, P) = (A, v). |

Proof (of Theorem 4.1, assuming Proposition 4.1). Suppd4e), P) and
(V',4', P") are closedH -triples overk and k', respectively, and let), v) €
E™ x V™ and(N,v') € (k')™ x (V)" satisfy the same scalar formulas and the
same atomic formulas iV, ¢, P) and(V’,+’, P’), respectively. By a standard
model-theoretic argument, it suffices to derive from thesseimptions thath, v)
and(\',v") satisfy the same formulas iV, v, P) and(V"’, ', P’), respectively.
We may assuméV’, ¢, P') is k-saturated, where := |V|*. Let (Vo, 1o, P),
with scalar fieldk,, be the substructure ¢V, ¢, P) generated by, v). Since
(A, v) and (XN, v’) satisfy the same atomic formulas, there exists an embedding
io: (Vo, %0, Po) — (V',¢', P’) such thatio(\;) = X, fori = 1,...,m and
io(vj) = v} forj=1,...,n. Since(\, v) andand\',v') satisfy the same scalar
formulas, there exists an elementary embedding of ordegletséi: £ — k' such
thatelky = (ip)s. By Proposition 4.1, there is an embeddingV, ¢, P) —
(V',4', P") extendingiy such thate = is. By the previous lemma is an
elementary embedding. Ths v) and()\, v') satisfy the samé€ ; p-formulas. ||

LetTy prer 2 T, p be the theory of closefl -triples over real closed scalar
fields. The following result was announced in section 1:

THEOREM 4.2. The theory['y p rcr is complete, decidable, and admits elim-
ination of quantifiers. It is the model-completion of thedtyeof H-triples.

The proof uses the following consequence of Proposition 4.1

LEmma 4.2. Let(V, ¢, P) and (V' ', P’) be closedH -triples over scalar
fieldsk andk’, respectively. Thek = k' if and only if (V, 4, P) = (V' 4, P').

Proof. One direction being trivial, we assunie = k', and shall derive
(V,o, P) = (V' 4/, P"). We can assume th&V’,¢’, P’) is k-saturated, where
k = |V|T. We may further assume, by Example 3.1, tli&t«, P) and
(V’,4', P") have as common substructuredrtriple (Vy, vg, Py) over the scalar
field kg := Q. Sincek = k' andk’ is |k|T-saturated, there is an elementary
embedding of ordered fields k — k’. Since necessarily|k, = id, Proposi-
tion 4.1 implies that is the scalar part of an embeddifig ¢, P) — (V', ¢/, P').

Thisis an elementary embedding by Lemma4.1. Thig, P) = (V',4', P’). 1

Proof (of Theorem 4.2). The completeness of the theé®GF of real closed
ordered fields, together with Lemma 4.2, implies the conepiess ofl 'y p rce-
By Corollary 3.1, everyH -triple can be embedded into a closHdtriple over a
real closed field. Thafy prcre @admits quantifier elimination follows from Theo-
rem 4.1 and the fact th&CF admits quantifier elimination]
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Remark. By Examples 3.4 and 3.5, thé-triples of maximal Hardy fields
and theH-triple of the field of LE-series oveR are models of 'y prcr. Thus,
by Theorem 4.2, a certain fragment of the elementary theafiehese ordered
differential fields has been fully analyzed at the most basidel-theoretic level.

The rest of this section is devoted to proving Propositidn 4.

The functions v,

We need a generalization of the intermediate value propsriyg 4+ on V>0
andV <, Below, letV = (V, %) be anH-couple (not necessarily closed) over
the scalar fieldk. Fora = (a1,...,a,) € V", n > 0, we define a function
Vg : Voo — Vso. We proceed by induction:

1. Forn =1 (with a € V) we putiy,(v) := (v — a).

2. Forn > 1, we puty, (v) := ¥ (¢ (v) — an), wherea’ := (ay,...,ap—1).

We letD, := {v € V : ¢(v) # oo}. ThusD, = V \ {a} for n = 1, and
Do ={v € Dy : thar (v) # ay} forn > 1. So givenay, az, as, ... in V, we get

z/J(al,ag)(/U) = w(l/i(U - al) - a2)7
1/](a1,a2,a3)(U) = w(dj(w(v - al) - a2) - a3)7

and so on. One verifies easily by inductionsethat if v, v € D, with v # v/,
then [wa(v) - %(U/)] < [U - U/]'
LEMMA 4.3. Leta = (a1,...,a,) € V", A,..., A\, € k, n > 0. The
function
V= 0+ AMta, (V) + A2W(ay,a0) (V) + -+ Antha(v): Dy — V

is strictly increasing, and has the intermediate value gy on each convex
component oD,

Proof. Letn: D, — V be the function given by

77(”) = M%a, (U) + /\2w(a1,a2)(v) +F /\nwa(v)-

Thenv — v+ n(v): D, — V is strictly increasing, since for distinetv’ € D,
we haven(v) — n(v')] < [v —v']. LetC be a convex component @, with
a1 < C,andletr <y < zbeinC,with z —y <y —x. Then

y—a1<z—a1=(z—-y)+{y—a) <2y —a1),

soy(y—a1) = ¥ (z—ay); thusn(y) = n(z), sincen(v) depends only ogh(v—ay).
By Lemma 2.2 the function|C' has the intermediate value property. For the con-
vex components: a; of D, we verify instead conditiof2’) of the remark follow-

ing Lemma 2.2. ]
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LEMMA 4.4. Suppose’ is closed, and let = (a1,...,a,) € V™, n > 0.
ThenD, has at mosk™ convex components ¥, and on each of these)}, is
monotone and has the intermediate value property.

Proof. We proceed by induction om. Forn = 1, the two convex components
of D, areV <2, on whichy, is increasing, and"~¢, on which+, is decreasing;
on each of thesey, has the intermediate value property, siriéds closed.
Suppose the lemma holds for a certain= (ai,...,a,) € V", and leta =
(ai,...,an,ans1) € VL. Consider a convex componefitof D,. Theni,
is monotone oD, say increasing otY, and has the intermediate value property
onC'. Put

Cy = {’U eC: Zba(v) < an+1}7
Cy = {’U eC: Zba(v) = an+1}7
Cs:= {U € C :Yy(v) > an+1}-

ThusC is the disjoint union of its convex subséts, Cy; andC3, andC; < Cs <

Cs. Also 15 is clearly increasing oy, and decreasing ofi;. If both C; and

C5 are nonempty, then alsg, is nonempty (because of the intermediate value
property ofi, on C), and thusC; and Cs are the convex components 6f;
that are contained i¥. OtherwiseC' only contributes one convex component to

D3, or none at all, depending on whether one or botb'paindC5 are empty. ||

Archimedean classes and coinitiality

LeMmMa 4.5. LetV C V' be an extension of ordered vector spaces over the
ordered fieldk, and letb € V' \ V be such that

1.for eache € V> there area,c € V witha < b < candc —a < ¢,
2.{a € V : a < b} has no maximum, angt € V : ¢ > b} has no minimum.

Then[V] = [V @ kb] (as subsets dV"']).

Proof. Assume not. Then there is€ V with [b — v] ¢ [V]. Changingb
to —b andv to —uv, if necessary, we may assurhe- v. Lete € V> be such
thatv + ¢ < b, by (2), anda,c € Vwithv +e <a < b < candc—a < ¢,
by (1). Thenb—a < ¢—a < e < a—wv, hencelb —a] < [a —v]. But
b—v=(b—a)+ (a—v)andthuda —v] < [b—v] = [b— a], a contradiction.|

For the proof of Proposition 4.1, and also§h, we shall need the following
easy consequence of the lemma above:

CoroLLARY 4.1. Let(V,v) C (V’/,4’) be an extension aoff-couples over
k and overk’ D k respectively, such thd¥’*] has no minimum. I € V'



CLOSED ASYMPTOTIC COUPLES 25

and0 < z < V>0, then[V], = [V & ky/(x)], inside[V']x. In particular, if
[V]k # [V @ kylg forall y € V' \ V, thenV >0 is coinitial in (V/)>°.

Proof. Let0 <z < V> z € V'. Thenb := ¢/(z) satisfies the hypothesis
of the previous lemma, whefi¢’ is considered as an ordered vector space bver

Thus we havgV ], = [V @ kb]k. |

Properties (A) and (B)
Given an extensioriV, ) C (V’,¢’) of H-couples (not necessarily over the
same scalar field), and = (a1,...,a,) € V™, n > 0, we have functions
Ya: Voo — Voo, With D, = {U eV iy (v) # oo}, andy’ : V., — VZ , with
D, = {v € V' : ¢, (v)) # oco}. Clearly, is the restriction ofy, to Vi,
and thusD/, NV = D,. Consider the following two properties of an extension
(V,4) C (V',4') of closedH-couples:

(A) Foralla € V™, n > 0, and convex component® of D!, C' NV # (.
(B) Forallz e V',a = (a1,...,a,) €V, b€V, \1,...; A\n €k, n > 0:

T+ Mg, () + Aoy () 4+ (z)=b = zeV.

ai,az)
(By Lemma 4.3 and Lemma 4.4 these conditions (A) and (B) aarhf satisfied
for elementanextensions of closeff -couples.)

Remark. Let(V,)beaclosedi-couplea € V™, n > 0,andFE acutinthe
ordered seV’. Then there exists a convex componéhtf D, ande € {—1,1}
such that for any extensidiv’, ¢’) 2 (V, ) of closedH-couples satisfying (A)
and (B) and any’ € D/, \ D, realizing the cuf: if C’ is the convex component
of v’ in D}, thenC’ NV = C, andsgn (v’ — ¢/, (v')) = e. (This follows by an
easy induction om as in the proof of Lemma 4.4.)

Proof of Proposition 4.1 using (A) and (B)

The hardest part of the proof of Proposition 4.1 consistshiowsng that all
extensions of closedl-couples satisfy (A) and (B). This was the last difficulty
we overcame, and accordingly we postpone this part. Thussrstibsection we
assume:

All extensions of closeH -couples satisfyA) and (B).

Let the hypothesis in the statement of Proposition 4.1 htddsimplify notation,
we may as well assume th@ty, v, Py) is @a common substructure OV, ¢, P)
and(V',4’, P'), and thatk is an ordered subfield &f, with i, ande the natural
inclusions. We want to exteng to an embedding: (V,v, P) — (V' ¢/, P’)
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such thati;, = e. By scalar extension (Lemma 3.8), we can reduce to the case
ko = k. By Corollary 3.1, we can further reduce to the case thatyo, Py) is
closed. We may also assume that4 V;. By a familiar Zorn’s Lemma argument,

it suffices to show that there is sonig-triple (V1,1, P1) C (V, 4, P) strictly
containing(Vp, v, Py) as a substructure, such thgtextends to an embedding
(Vi,91, Pr) — (V' 9", P).

Case 1. Assume that we have € V' \ 1, with [V @ kv] = [Vp]. Then
(Vo @ kv) = ¢o(Vp), in particular,

(Vi,11, P1) i= (Vo @ kv, 9| (Vo @ kv)*, PN (Vo @ ko))

is a substructure ofV, ¢, P). We claim that there is an embedding of this
substructure intdV’, ¢’, P’) overV,. To see this, we distinguish two subcases:

1. Nou € Vp @ kv satisfiesPy < u < Vy\ Po. (Thus(Vo @ kv, ¥|(Vo D kv)*)
has only one cut, namely? N (V;, ® kv).) By saturation, we can find' € V'
realizing the same cut iy aswv. It follows that we have an isomorphism
Vo ® kv — Vy @ kv’ of ordered vector spaces ovethat sends to v’ and is the
identity onV;. Hencey(vo+Av) = ¢ (vg+ '), forallvg € Vg, A € k, and there
isnou’ € Vo@kv' with Py < v’ < Vy\ Py. (Thusalsq Vo ko', ¢ |(Vo @ kv')*)
has only one cut.) So we have an embeddingaf ¢, P;) into (V’,¢', P') as
desired.

2. Thereisu € Vp @ kv with Py < u < Vo \ Py. If w € Vy @ kv also satisfies
Py < w < W\ P, theny(§) < u,w < ¥(8) + 4, henceju — w| < 4, for
all § € V57U, Thereforeu = w because ofVy @ kv] = [Vy]. After renaming,
we may also assume = v. By saturation, we can find’ € V’ such that
Py <v' < Vy\ Pyandsuchthat € P < o' € P'. It follows as before that we
get an embedding @f;, ¢4, P1) into (V/,¢’, P’) as desired.

Case 2. Assume that for every € V \ ¥, we have[V, & kv] # [Vo.
Fix somev € V \ V,. Then there is some; € V; such thafv — a1] ¢ [Vo],
hencey(v — a1) ¢ Vo. So for somews € Vo, [¢p(v — a1) — az| ¢ [Vo], hence
Y (¢(v—ar) —az) ¢ Vo. Continuing this way, we obtain elements as, as, . . .
in Vo suchthatforalh > 1,%(q, .4, (v) ¢ Vo. (We use the notation introduced
earlier in this section.) Let

b1 :=v —ay, by, :=Y(bp—1) —a, forn>1.
Then[b,] ¢ [Vo] andv(bn) = tY(a,,....a,)(v), foralln > 1. We claim that

{bn}n>1 is a family of vectors linearly independent ovej. Otherwise, we
would have a linear relation among theand elements df. By changing from
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{an}n>110{anr}n>1 @andfromwtod,, . 4, (v), forsomek > 1,if necessary,
we can assume it to be of the form

v+ )‘lwal (U) + )\21/1(a1,a2)(v) +oot )\n’l/Ja(’U) = "o

for somen > 0, a = (a1,...,an), M1,...,\n € k, andvg € V. But then
condition (B) would implyv € V;, contrary to our assumption. Thus in particular,

[bn] # [bm] forallm >n > 1, (3)

since otherwisé,, ;1 — byyr1 = Gma1 — ant1 € Vo.
By saturation we can find € V' \ V; realizing the same cut in the ordered set
Vo asv. Put

L= —as, b = (b, 1) —a, forn>1.

We now show by induction on > 1 that

1.7 € D(a1,...,an) andb; 75 0,

2. the cutC(b,,) determined by, in 1}, is the same as the ct(b/,) determined
by b, in Vy (hencelb,] ¢ [Vo)).
This is clear forn = 1, by choice ofv’. Suppose (1) and (2) hold for a certain
n > 1. Then we obtain fromd)] ¢ [Vp] thatv, (v') = ¢'(b),) ¢ Vb, with
a = (a1,...,a,). Inparticulary’ (v') # an+1, hence (1) holds for + 1 in place
of n. Let

C1 := {tho(vo) : vo € Vo, [vo] > [bn]},
Cy == {uo € Vo : ug = o (vo) for someuvy € Vo with [vg] < [b,]}.

ThenCy < ¢(b,) < Cy andCy < /(b)) < Cq, C1 U Cy = V. Hence
Cl — apy1 < bn+1 < CQ — Gp+1, Cl —apy1 < b;lJrl < CQ — Gp+1, thus
C(bnt1) = C(b},41). So (2) holds withw 4 1 instead ofr, finishing the inductive
step.

Now condition (B) implies just as withy, bs, ... that{d],},>1 is a family of
linearly independent vectors ovig. From (2), we get

sgn(b,) =sgn(b),) foralln > 1, 4)
and, by the remark preceding this proof,
[bn] < [bm] < [b,] < [b},], forallnm,m > 1. (5)

We set

Vi =Voo @ kb, CV, ¢1:=9[Vy, Pr:=PNW.

n=1
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Clearly (V1,1, P1) is the L p-substructure of V, v, P) generated by over
(Vo, o, Po). Consider the (injectivel-linear mapV; — V' that is the identity
on ¥, and sends each, to b/,. Using the fact thafb,,] ¢ [Vo], [b.] ¢ [Vol,
and C(b,) = C(b))), for all n > 1, together with (3)—(5), one sees that this
map is also order-preserving. Moreover it is easily showhddhe vector part
of an embeddindVy, 1) — (V',¢’) of Ly-structures with the identity ok
as scalar part. To show that we even have an embeddingqf-structures
(Vi,41, Pr) — (V' ', P"), it suffices to prove thatV;, ;) has only oneH-
cut. For a contradiction, assume that there existss V; with ¢, (V;79) <
v1 < (id+41) (V770). Butey (Vi) is cofinal iny (V>?), and(id +v) (V5™°)
is coinitial in (id ++)(V>°), by Corollary 4.1. This implies)(V>?) < v; <
(id +¢)(V>?),i.e.(V, ¢) has twoH-cuts, contradicting the closednesg b ).
This finishes the proof of Proposition 4.1, except that wi Istive to prove

properties (A) and (B) for all extensioi®, ) C (V’,4’) of closedH-couples.
The remainder of this section is devoted to this tagk.

Proof of (A) and (B)

We first make a more detailed study of the behavior of the fanst), on the
convex components db,, in the case of a closeH-couple. In the remainder of
this section we lev = (V, ) be a closed?-couple.

LEMMA 4.6. Letp € V. Then there isx € V such thaty(x) = w for all
sufficiently larger € ¥ + p. Moreover, if(V’, ') is a closedH -couple extending
(V,4), the same: € V has the property that'(z) = w for all sufficiently large
x € U + p, wherel’ := ' ((V')*).

Proof. First assume-p € ¥, soy(xz) + p > 0 for all sufficiently small
x > 0. Now takezq > 0in V such that)(xg) +p > 0 and[zo] < [¢(z0) + p|-
(Decreasingry makesy(zo) + p increase, so this is indeed possible.) We claim
that

[Y(xo) +p] =[¢'(a") +p] forall0 <a’ <zoinV’.
Otherwise,

[¢(x0) +p] <[¢'(z') +p] < [¥(x0) + 20 +p] = [¢(x0) +p],

a contradiction. Thus, := t(¢(zo) + p) works. Now assume-p ¢ ¥. Then
—p = Y(xg) + 2o for somezy > 0in V. We claim that

[zo] = [¢'(2') +p] forall0 <z’ <aginV’.
Otherwise,

[zo] = [¥(w0) +p] < [¢'(2) + p] = [¢(x0) + z0 — ¥’ (2")] < [w0],
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a contradiction. Sa := ¢ (x) works in this case.]

Notation. We will denote the element in Lemma 4.6 bylim,cy4p ¢ ().
(Hencelimgewyp ¥(x) = limgew 4y, ¥ (2).)

We fix some terminology. Lef: V., — V, be a function, and le€’ be
a non-empty convex subset &f on which f does not take the valus. Let

p,q € V,and letS C V be downward closed. (We only use this fbe ¢, C
is a convex component db,, andS = V.)

1. fincreases onC from pto ¢ if f|C is increasingp < ¢, and

F(C)=1Ip,gd={veV:p<v<gq}

(We allow f|C constant angh = q.)
2. fincreases onC from —oo to ¢ if f|C is increasing and

f(C) = (~00,q) ={veV:v<q}
3. fincreases onC' from p to S if f|C is increasing, and
fiC)y=4{vesS:v>p}

4. fincreases onC from —oo to S if f|C is increasing, and(C) = S.

Similarly, one defines what it means thAtdecreases onC' from p to q, f
decreases o’ from pto —co, f decreases o’ from S to ¢, andf decreases
on C from S to —oo.

Let now a second closeH-coupleV’ = (V’,4’) extendingV = (V) be
given, and let = (a1,...,a,) € V", n > 0.

Below, we write “component” instead of “convex component”.

LEMMA 4.7.

1. Each componert® of D,, is contained in gnecessarily unigyecomponent
C’ of D!, and the mag” — C’ is a hijection between the set of components of
D, and the set of componentsBf,, with C' NV = C for each componer' of
D,.

2. D, has a(necessarily unigyecomponent’,, > a; thatis unbounded ii’;
the corresponding componefif of D/, is unbounded iV”.

3.Let C be a bounded component Bf,. Then there ar@, ¢ € V such that
one of the following holds:

(a) v, increases or” fromp to ¢, andy’, increases o’ fromp to q.
(b) ¥, decreases of¥’ fromp to ¢, andv, decreases o’ fromp to q.
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(c) ¥, increases o’ fromp to ¥, ¢/, increases o’ fromp to ¥'.
(d) ¢, decreases oty from ¥ to ¢, ¢/, decreases o from ¥’ to q.

4.Let C, be the unbounded componenta; of D,, C’_ the corresponding
component oD’,. Then one of the following holds:

(a) v, decreases o'y, from ¥ to —oo, 1/, decreases od”_ from ¥’ to
—OQ.

(b) There isp € V such thaty,, decreases o', from p to —co, and)),
decreases o6 fromp to —oc.

Proof. We proceed by induction on. The casen = 1 is easy to verify.
Suppose the lemma holds for a certain= (a1,...,a,) € V". Leta =
(ai,...,an,ans1) € VL. Since the components a; of D, are obtained
from the components- a; of D, by reflection at the point = a;, about
which the functionsy, and+/, are symmetric, we only need to consider the
case of components a;. So letC > a; be a component 0D, andC’ the
corresponding component &f,. Define

Cy = {’U eC: Z[Ja(v) < an+1}7
Cy = {U eC: Z[Ja(v) = an+1}7
Cs:= {U eC: ’l/Ja(’U) > an-i—l}a

and define the setS] for i = 1,2, 3 in the same way, by replacing by C’ and
e by .. HenceC/ NV = C;, fori = 1,2,3. The components oD; that
are contained irC are the nonempty sets amo6g and Cs, and similarly, the
components oD~ that are contained i6” are the nonempty sets amo@g and
Ci.

Assume firstC' is bounded inl” (and henc&’’ is bounded inl’’). We shall
assumay), is increasing orC' (hencey, increasing orC”). The case that, is
decreasing o' is similar and left to the reader. We distinguish severagsas

1. There existp,q € V such thaty, increases orC' from p to ¢, and,,
increases o’ frompto q.

() ¢ < any1. ThenCs, Cf = 0. If ¢ < apt1,thenCy, C) # 0, Ca, Ch = 0,
and; increases orC; from ¥ (p — an41) 10 ¥(q — ant1), ¥% increases on
C; from (p — ani1) 10 Y(q — any1). f ant1 = q¢ > p, thenCy, C) # 0,
Cs, C% # (), andy; increases o'y from ¢ (p — an41) to ¥, andy% increases on
Ci fromy(p — ant1) 0. If a1 = p = g, thenCy, C] = 0.

(i) an+1 <p,q# ant1. ThenCy,Cf = B andCs, Ch # 0. If apt1 < p,
thenCy, C4 = ), andy; decreases o6 from ¢ (p — an+1) 10 ¥(q — ant1),



CLOSED ASYMPTOTIC COUPLES 31

ande, decreases 06’5 from ¢ (p — an41) 10 (¢ — ant1). If anyr = p, then
Cs, C) # (), andy); decreases 0@’ from ¥ to ¢)(¢ — an41), andyy’, decreases
onC4 from ¥’ to ¢ (q — an+t1).

(i) p < ant1 < ¢. ThenCy,Cp # 0, Ca, Cy # 0, Cs,C% # 0. Here, g
increases oy from)(p—a,41) to ¥, andy’ increases o6’} from«(p— an41)
to ¥'. Similarly, 1/; decreases o€@’s from V¥ to (¢ — a,+1), andy; decreases
onCY from U’ to (g — ant1)-

2. Thereexistg € V such that), increases ot frompto ¥, andy, increases
onC’ frompto V. (Thusp € W.) This case is essentially treated as the first one,
using Lemma 4.6. If, for example,,.1 < p, sothat”’;,C; =0, Cy,Cy = P and
Cs,Cy # 0, theny; decreases 0€'s from ¢ (p — an41) t0limgey—q, , ¥(x),
andy’. decreases ofi; from)(p — an41) t0limycw—q, ., ¥'(x), which equals
limyew—_a,., ¥(x). We leave the details to the reader.

Now suppose’ = C is the unbounded componext a; of D,, and hence
C’ = C!_ the unbounded componenta; of D/,. We have two cases again:

1. ¢, decreases ofi from ¥ to —oo, andy, decreases ofi’ from ¥’ to —oo. If
an+1 > U, we haveC, C] # 0 andCy, C4, Cs, C = (. Hencey; decreases on
Cy fromlim,ey—q, ., ¥ () to —oo, 9% decreases ofi] fromlim,cy—q, ., ¥ ()
to —co. In this case( is the unbounded component a; of Dz, Cj is the
unbounded component a; of D. If, on the other handg,; € ¥, then
C1,C1 # 0, C3,C5 # (. Sotp; decreases of; from ¥ to —oo, 7. decreases
onCj from ¥’ to —oo, andy; increases od’s fromlim,ey—q, ., ¥(x) OV, Y%
increases ol’; fromlim,cy—q,,, ¥ (x) to ¥'. The unbounded componenta,
of D; is C1, and the unbounded component:; of D~ is C1.

2. Thereigp € V such that), decreases ofi from p to —oco, andy, decreases
on C from p to —co. This case is treated similarly to the previous one, except
that we now have three subcases, according to whether > p, a,+1 = p, Oor

Apt1 < P.

This finishes the inductive step, hence the proof of the lemjpa
COROLLARY 4.2. ¢, (C"YNV =1,(C), for each componerd of D,. |
We now also fix scalarsy, ..., A\, € k, so that we have functiols D, — V'

and¢’: D!, — V given by

0 U) =+ MY, (v) + )‘21/)(@,@2)(”) +ee 4+ )\M/)a(v),
9/(’0/) = + )\1%1 (U/) + /\21/12111,112)(’0/) + )‘nw:z(vl)v

forv € D, andv’ € D). Note that) = 6’| D,,.

Remark. LetC,, be the unbounded componenta; of D,. Thend is not
bounded from above o€, that is, for anyb € V there existsr € C., with
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6(z) > b. To see this, note that(z) — 0(y)] = [z — y] for all z,y € D,, and
that [V] has no maximum, by closedness(®f ). Now choose any € C..,
andz > y such thafz] > [y], [b— 6(y)]. Then[0(z) — 6(y)] > [b—6(y)], in
particularf(xz) > b. Similarly, 6 is not bounded from below on the unbounded
componenk a; of D,.

LEMMA 4.8. LetC be a componentdd,, with corresponding componegit
of D. Ifde C"\ C,thent'(d) e V' \ V.

Proof. We proceed by induction on. The casen = 1 is easily checked
using Lemma 3.1. Assume the lemma holds for a cettain(aq,...,a,) € V"
and certain scalarsy, ..., \, € k. Leta = (a1,...,an,a,41) € V" and
let a further scalah, 1 € k be given. Then we have corresponding functions
9: D; — V andd': DL — V given by

-~

O(v) == 0(v) + Anr1va(v),
0/ (v) =0 (') + Ang195 (V).

Let C be a component b, with corresponding compone@t of D/,. We define
C; andC! (for i = 1,2, 3) as in the proof of Lemma 4.7. Then the components
of D; that are contained i are the nonempty sets amo6@g andC;, and the
components oD’ that are contained i6” are the nonempty sets amo@y and
C}. We assumd € C! \ C; fori =1 ori = 3, and have to show that(d) ¢ V.
If d lies in the convex hull of”; in C/, that is, if there are, g € C; such that
p < d < q, then the injectivity ofd’ and intermediate value property af[p, q]
already guarantee that(d) e V’'\ V, without use of the induction hypothesis.
So from now on, we assume thatloes not lie in the convex hull f; in C.
Suppose there exists an elememt V' lying strictly betweend anda,, and set
e := z|c—a1| > 0. Theny), is constant on the segment

I=I:={zeV :d—e<z<d+e},

since[r — a1] = [d — aq] for all z € I. By an easy induction oh, one shows
thatl € Df, . andthat), yis constantod, forallk =1,...,n+1.

(a1,...,
In particular,/ C C;, andv is constant o, andé’(z) = 6'(d) + x — d for all
xel. fINC; #0,saye € INC;, then

0'(d) = 0'(d) + Mnr195(d) = 0'(d) + Ans1¥a(e) ¢ V,

sinced’(d) ¢ V, by induction hypothesis. Thus for the rest of the proof wallsh
assume that whenevee V lies strictly betweer anday, andl = I is defined
as above, theh N C; = 0.

»»»»» ak
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Next we observe that the situation is symmetric akquthat is, the reflection
a1 +x +— a; —x: V' — V' mapsDL onto itself, and?’ is invariant under this
reflection. Therefore we shall assume in addition that andC’ are all> a;.

We now first consider the case th@tis bounded in/, ¢, is increasing or”'
(hencey,, increasingor’), andi = 1. ThenC; < Cy < Cs3andCy < C4 < C5.
The following possibilities arise (see proof of Lemma 4.7):

1. 95 increases o, fromp to ¥, andv increases o] fromp to ¥’ for
somep € V. By the proof of Lemma 4.7, this impligS,; # 0. Sinced is not in
the convex hull o in C1, eitherd > C; ord < Ch.

(i) d > Cy. Then there exists an element V with a; < ¢ < d (take any
c € C1), and thug’; < I < Cy, wherel = I, as defined above. We can choose
b € C4 so large thata,, 11 — 1¥4(b)| < &, withe € V> as above. Hence, iiv’],

[¥5(d) = ¢a(®)] < [¥5(d) = $a(d)] < [ant1 —¥a ()] < [e]-

Let f(x) := 6'(x) + Any19a(b), forz € I. Then

Od)— fld—e)=e+0(d—c)— f(d—¢)
=&+ Mo (¥5(d) — va(b)),

thusf’(d) > f(d—e), and similarlyd’(d) < f(d+¢). Hence, by the intermediate
value property forf on I (Lemma 4.3), there exists € I with f(z) = 9A’(d).
SinceI N C; = B, we havex ¢ V, hencef(z) ¢ V by induction hypothesis.
Therefored'(d) ¢ V, as required.

i) d < Cy. Thenyl(z) = pforalld < z < C. In particular®’ (d) =
i) d < Cy. Theny’ f Il d Cy. | icular¢’(d
0'(d) + Any1p € V, by induction hypothesis.

2. ¢ increases ort; from p to ¢, and; increases o] from p to g, for
certainp, ¢ € V. Again eitherd < Cy ord > C;. Both subcases are treated as in

1), (b).

Next we consider the case thdtis bounded inl/, v, is increasing o' (hence
! increasing orC’), andi = 3. Then either); decreases ofis from ¥ to ¢, and
Y decreases o@; from ¥’ to ¢, for someg € V, or«; decreases o@'; from p
to ¢, andy), decreases ofi from p to ¢, for somep, ¢ € V.. The latter subcase is
treated as in (2) above. In the first subcase, supposé thaf’s. ThenCy # 0,
hence there existse V with a1 < ¢ < d, and thus’s < I < Cs, wherel = I,
as previously defined. Now for anyc V>?, in particular fors = £ (c — a1), we
can choosé € C5 so small thata,,+1 — ¥4 (b)| < e. Now continue as in (1), (a)
above. Ifd > C3, argue as in (1), (b).

The case thaf’ is bounded i/ and, is decreasing o’ can be handled in
a similar way, and is left to the reader.
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Now assume” is unbounded i/, andi = 1. Then we have the following
possibilities:

1. 95 decreases o@'; fromp to —oco, andy’, decreases o€’ fromp to —oo,
for somep € V. Again, eitherd < C; ord > C;. The first option is treated as
in (1), (b) above, whereas in the second cﬁé(el,) ¢ V follows from the remark
preceding this lemma, and Lemma 4.3.

2. 15 decreases of; from ¥ to —oo, andv’, decreases o] from ¥’ to
—o0. If d < C4, we see, by inspection of the proof of Lemma 4.7, that necibssa
Cy # ). Hence there existse V with a; < ¢ < d. Now adopt the argument in
1, (a) above. Il > C4, we again apply the remark preceding the lemma.

Finally, consider the case thét is unbounded and = 3. Thent; increases
on C3 from p to ¥, andv increases orC'; from p to ¥’, for somep € V.
If d > C3, note that anye € Cs will satisfy a; < ¢ < d, and continue

asin i, (a). Ifd < Cs, argue as in 1, (b). This finishes the inductioh.

Remark. Property (A) now follows from Lemma 4.7, (1), and property (B
from the previous lemma.

5. MODEL-THEORETIC PROPERTIES

The results of the previous section constitute a modelrttmoanalysis of closed
H-couples on the most basic level, namely that of “elimimatioeory”. In this
section we deal with more intrinsic propertiesifcouples to which this analysis
gives access. This concerns in the first place the shape afefireable sets in
a closedH-couple, see Corollary 5.1 and Proposition 5.1 below. He ia
the rest of the paper “definable” will mean “definable withgraeters”. We also
determine the definable closure of &htriple in a closed extension, and prove
uniqueness off-closures. Finally, we analyse simple extensiongi/efouples,
and use it to show that in a finitely generatéecouple the se¥ is well ordered.

Induced structure on the scalar field

We first show that in a closeH -couple, no new structure is induced on the scalar
field. More precisely:

CoroLLARY 5.1. Let(V ) be a closed?-couple overk, and letS C k™ be
definable in(V,+). ThenS is already definable in the ordered fietd

Proof. LettheH-couplegV, 1) overk; and(Va, ¢2) overks be elementary
extensions ofV, ¢). (In particular, the ordered fields, andk, are elementary
extensions of the ordered field) Suppose thakh = (\,...,)\,) € k7 and
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w=(p1,...,un) € ki realize the same type ovkrin k; andk,, respectively.
It suffices to show that then they realize the same type Ovey) in (V1,11)
and (Va, 1), respectively. We may assume th&k, ¢)2) is x-saturated, where
k= |V4|T. It follows that there is an elementary embeddinde; — k- that is
the identity onk and that sends eacl to i;. By Proposition 4.1 and Lemma 4.1,
e is the scalar part of an elementary embeddivig ¢, ) — (V2,v2) over(V, ).

Hence)\ andy realize the same type ové¥, ¢) in (V1,1) and(Va,¢2). 1

Induced structure on the vector space
Let (V, %) be a closed?-couple over the scalar field. To discuss the induced
structure on the underlying vector spdcave introduce the one-sorted language
Ly, that extends the languagé, +, —, <} of ordered abelian groups by an
ary relation symboR), , for every\ € k™ andLg-formulay = ¢(z,y), where
x = (x1,...,2y,) is atuple of scalar variables apd= (y1, ..., y») is a tuple of
vector variables. We makeé into an.y, . -structure by interpreting, +, —, < as
usual, andR) ,, as

{U eV (Vo) E cp()\,v)}.

Thus a setS C V" is definable in the one-sortel), ,-structurel” if and only if
it is definable in the two-sorted -structure(V, ¢).

Let A = (A, <,...) be astructure (in some one-sorted languégentaining
a binary relation symbaot) that expands a linearly ordered nonempty(skt<),
dense without endpoints. Following Marker and SteinhorsayethatA islocally
o-minimal if for each definable sef C A and each: € A there existi1, a0 € A
such thata; < a < a9, and(ay,a) is either disjoint fromS or contained in
S, and(a, az) is either disjoint fromS or contained inS. The structureA is
calledweakly o-minimal if every definable subset of is a finite union of convex
subsets, see [8]. Clearly, X is weakly o-minimal, then it is locally o-minimal.

For a closed?-couple(V, v), the Ly, -structurel” is never weakly o-minimal:
Consider the definable subdet 1 of V; it is not a finite union of convex subsets.
However, we have:

ProposITION 5.1. Let(V, ) be a closedd-couple ovek. ThenV is locally
o-minimal as anCy, ,-structure.

Proof. Below we consideV asly, .-structure. Take a-saturated elementary
extension(V’,¢’) of (V%) wherex = |V|T. ThusV’ is then naturally a:-
saturated’y, -structure elementary extending Below we considel’’ as an
L -Structure in this way.

By familiar model-theoretic reasoning, it now suffices tmwhthat, given
v € V, any two vectore,ve € V' such thaty < v; < v+eforalle > 0
in V, i = 1,2, realize the same type ovéf in V’. By translation over—v
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we reduce to the case = 0. Then¥ < ¢/(v;) < (id+¢)(V>?), hence
Ve Im/)’(vi)}k = [V]g inside [V']g, for i = 1,2, by Corollary 4.1. After
embeddingV, ¢) into (H,¢y) with H = H([V*], k), cf. Lemma 3.3, we see
that insomeH-couple overk extending(V, ¢), there is an element such that
U <u< (id+y)(V>0). ButV @ ku andV @ ky/'(v;) are isomorphic over
V' as ordered vector spaces over SinceV & ku is a Hahn space ovek,
soisV; := V @ ky/(v;), fori = 1,2. Let P, := Vfw/(”), fori = 1,2.
Since[V;] = [V], we havey’(V;*) C V; letv; := ¢/|V;*. As in the first part
of the proof of Proposition 4.1 above, we obtain an isomapt{ivy, ¢, P1) —
(Va, 12, P2) over(V, 4, ¥), mapping)’(v1) toy’ (ve). Sincelv;] < [V*] = [V*],
the cut inV; realized byv; corresponds, under this isomorphism, to the cutin
realized byv,. Hence we can extend the vector part of this isomorphism to an
isomorphisml{ := V; @ kv, — Va @ kve =: V3 of ordered vector spaces over
k, mappingv; to v,. Note that the imag& U {¢'(v;)} of ¢ := ¢'|(V/)* has

a largest element’(v;); hence(V}/, ¢}) has only oned-cut. Therefore the map
under consideration is the vector part of an isomorph{3fh ¢, ¥’ N V{) —
(V4, ¢4, 9'NVY) of Ly, p-structures, whose scalar part s the identityorThus

by relative quantifier eliminationy; andvy have the same type overin V'. |

Remark. The £y -structureV is even “o-minimal at infinity”: For any
definable sef C V there exists € V suchthateithev>* C SorV>2nNS = §.
This can be verified easily along the lines of the precedingfpr

Definable closure
LetV = (V, 4, P) be anH-triple with scalar fielde, and lety’ = (V’, ', P’) be
aclosedH -triple extending), with the same scalar field. An element’ € V'
is said to bedefinable overV if there is anLy, p-formula ¢(z,y, z), where
x = (x1,...,2n,)is atuple of scalar variableg,= (v1, ..., y,) atuple of vector
variables and a vector variable, and there axes k™, v € V™, such that’ is the
unique element iV’ with V' = ¢(\, v,v’). Thedefinable closure ofV in V' is
the substructure of’ that extendd’ and whose underlying vector space consists
of allv’ € V' that are definable ovét. If V' D V is another closed -triple over
k, the definable closure af in V' is isomorphic to the definable closureWfin
V", by a unique isomorphism that is the identitynWe say thaV’ is definably
closedin V' if every v’ € V' definable ovelV belongs toV. In that case) is
definably closed ireveryclosed H-triple overk extending), and we also just
say then thaV is definably closed.More generally, iW = (W,...) D Visany
H-triple overk, we say that’ is definably closed inW if W NV = V, where
V = (V,...)is the definable closure of in an H-closure of/V.
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LeEmmA 5.1. Suppose there is no € V with P < a < (id+v)(V>?), and
P has no largest element. Théhis definably closed iw’.

Proof. By iterating the construction of Lemma 3.6 we obtain an iasheg
continuous chaid (Va, %a, Pa)}a@ (u an ordinal) ofH -triples contained in’

as substructures, wittVy, o, Po) = (V, %, P), such that the union

Vc = (Vc,l/ic, PC) - U (Vaawaap(!)7

a<p

is H-closed. The reference to Lemma 3.6 means thatfara + 1 < p we have
Vat1 = Vo ® kaq with a, > 0 andy,(as) € Py \ ¥o (V). That the chain
is continuous means th@Vs, v, Ps) = Ua<5(Va,¢a,Pa) for limit ordinals
6 < p. SinceV® < V', it suffices to show: For any € V¢ \ V there exists
an elementv # v in V¢ and an automorphism af°¢ that is the identity orv

and sends to w. Now, given sucly, takea with 0 < a < a+1 < p and

v € Vg1 \ V. Write

V="Vq+Aaqg Withvy, € Vg, A € KX,

Leta € ijl be any element a,, with the samek-archimedean class as,,
and letw := v, + Aa. By Lemma 3.6, there is a unique automorphisnof
(Vat1, Yat1, Pat1) that is the identity on(V,, v, P,) and satisfieg (a,) =
a; hencec(v) = w. Applying once more Lemma 3.6 iteratively, we can

extendos to an automorphism dfV’¢, ¢, P¢) that sends to w, as desired.|

In general we define afl-triple V = (V, 4, P) with  C V C V' as follows,
distinguishing three mutually exclusive cases:

1. Thereisz € V with P < a < (id +v)(V>"). This element determines a
sequencée,, } of positive elements o, with

V] > [eo] > [ea] > [e2] > -+
and a corresponding sequerdé, } of linear subspaces &f’ with
Vo=V &kegd--- P ke,

by requiringa = ¢ + ¥'(g9) and ¢’ (ep41) = max(P’' N V,) + en41 (cf.
Lemma 3.4 and 3.5). Theli := | J,, V., sothat[ V| = [V] U {[e,] : n > 0}.

2. P has a largest element. Proceeding as in case 1, except thastniet to
n > 1, we define a sequende,, },>1 of positive elements oV’ with [V*] >
[e1] > [e2] > - - -, and a corresponding sequer{d§, },,>1 of linear subspaces of
V'withV,, =V @ ke @@ key,, byt (1) = (max P) +e1, andyy’ (e,,41) =
max(P'NV;,)+enq1. ThenV := 5, Vi, sothatl V| = [V]U{[e,] : n > 1}.
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3. There is now € V with P < a < (id+%)(V>°?) and P has no largest
element. Then we pat := V.

The previous lemma now easily implies:

COROLLARY 5.2. The definable closure ofin V' is V. |

In the next lemma we continue to use the notation introducelea definition
of V above.

LEMMA 5.2. The onlyH-triples W withY C W C VareV,V and

1.(Va, |V, PN V,) forn > 0, in casel above,
2.(Va, ¥|V,r, PN V,,) for n > 1, in case2 above.

Proof. First assume we are in case 1. Dat be an H-triple such that
Y C W C V and letiW denote the underlying ordered vector space\af Let
w € W\ V. After subtracting fromw a vector inV we have

W= AmEm -+ AnEn WIth 7 > 1, Ay vy A €Ky A 7 0, An 2 0.

By induction oni we shall obtaire; € W for i = 0,...,n, which immediately
implies the lemmain case 1. Note thatw) = (em) =a—co+e1+---+em €

W, hencesq = a — ¥ (¢(b) — a) € W, which proves our claim fof = 0. So
assumé < i < n,andeg,...,g; € W.

1. Supposé < m. Then
citit o Fem=Pw)—(a—eo+er+--+e) €W,
hence
cirt=Y(cip1+ - +em)—(a—eot+er+-+¢) €W
2. Supposeé > m. Takej minimal such that < j < n andX; # 0. Then
NjgjF ot Angn =w — (Amem + -+ Nigg) €W,

hence

cipi e =1p(Nej -+ dnen) —(a—ecoter+--+ei) €W,
and therefore

€it+1 :E(Ei+1+"'—|—€j)—(a—80+€1+"'+€i)EW.
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This finishes the induction step, and thus the proof of therlerim case 1. For case
2 one argues similarly]

Uniqueness ofH -closure

Let £ be a one-sorted language afid= (4, ... ) anL-structure. Aconstruction
of A is an enumeratiofia, } o<~ Of A (v @an ordinal), such that, witd,, := {ags :

B8 < a}, the type ofa,, over 4, in A is isolated, for eaclx < ~. Let such a
construction ofA be given. Choose for each < v an £-formula ¢, (ya, 2),
With o = (Ya1,- - -, Yan(a)) @ tuple of variables and a single variable, and a
tupleb, € AMY | such thatp,, (b., 2) isolates the type of,, over A,. We also
choose by recursion om a finite setD,, C A,, as follows: D, := {ao}, and for
0 < a<7,putD, :={a.} UDg, U-- -UDgn(a),Whereba = (agl, ceey aﬁn(a))
for certaingy, ..., B,(.) < @ Anelementary substructuf@ = (C,...) of A'is
said to beclosed in A (relative to the given construction and the further choices
made) if for alla < ~, a, € C impliesD, C C. In that case a theorem of
Ressayre ([9], Lemme 10.15, &breme 10.18) implies thaA = C.

COROLLARY 5.3. LetV be anH-triple overk. Then any twadH -closures of
V are isomorphic oveb.

Proof. We may assume that is definably closed. Then we build &f-
closureV® of V as in the proof of Lemma 5.1. L&V O V be another/-closure
of V. We have to show thav® = W over V. By the defining property of
H-closure we can assumeé C W C V¢ Write V¢ = Ua@(Va,zpa,Pa) as
in the proof of Lemma 5.1. We now consider the underlying @espacedV
andV°¢ of W andV* as structures for the languagg (V') obtained fromCy
by adding names for the vectors In, see Proposition 5.1. By Lemma 3.6,
the type ofa, overV, in V¢ (for o < a+ 1 < p) is isolated by the formula
¢(talaa), z), Wherep(y,z) is “y = ¥(z) & z > 0". It follows easily that
V¢ has a construction. By Lemma 4.1 we hdve< VC lfa<a+1<ypu
anda, € W, theniy,(a,) € W, soW is closed inV*® (relative to a suit-
able construction of’¢ and associated choices of isolating formulas and so

on). Thus by Ressayre’s Theordni = W, which impliesV° = W overV. |

Remark. We don’'t know whether thdi-closureV¢ of an H-triple V is
always minimal over), i.e. whether or not for som¥ there exists a closed
H-triple W D V strictly contained if° as a substructure.
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Analysis of simple extensions

LetanH-tripleV = (V, ¢, P) with scalar fieldk be given, and aimple extension
of V, that is, anH-triple V' = (V’,4’, P") over the same scalar field and
extendingV for which there exists a vectere V'’ such thaf)’ is generated as
L, p-structure over) by c¢. (This state of affairs is also indicated by writing
V' = V(c), and we pul”’ = V{c) for the underlying ordered vector spaces in
that case.)

Consider the following five properties that this simple esien with its distin-
guished generatermay or may not have:

(1) 0<e<V>%andc+y'(c) € V.

() 0<e<V>%and—c+'(c) € V.

() ¢'(c) € P\ 0.

(IV) ¢ ¢ V and[V @ kc] = [V].

V) V' =V e, kb, for vectorsh, € V' that arek-linearly independent
overV, with [b,] ¢ [V] for all n, and such that there are vectars € V with
b1 = c—ay andb, 11 = ¢¥'(by) — apyq foralln > 1.

Remarks. If (1), respectively (1) holds, then’ = (V @ ke, yF, PE), asin
Lemma 3.4, respectively Lemma 3.5, by an isomorphism thaeisdentity ony
and sends to . If (Ill) holds, then)’ = (V @ ka,?, P“), as in Lemma 3.6,
by an isomorphism that is the identity dhand sends to a. If (IV) holds, then
V' =V @& ke. Note that if (V) holds, theifb,,] # [b,,] for all n £ m. (Otherwise
brnt1 — byl = am+1 — ang1 € 'V, contradicting the linear independence of
{bi}i>1 overV.)

One sees easily that those properties are mutually exelugie call C V(c)
asimple extension of type (l) respectively (11), (1), (IV), (V), if (1), respectively
(I, (1, (Iv), (V) hold. Here the generator figuring in the definition of these
properties has been specified. If we do not want to specifg¢nerator we simply
say thaf)’ is asimple extension of type (l),respectively (II), (Il1), (1V), (V), to
mean that fosome: € V’ we have)’ = V(c) andV C V(c) is a simple extension
of type (1), respectively (I1), (ll1), (1V), (V).

We now show that ify is definably closed in”’, then we can obtaiv’ by a
finite number of simple extensions of types (1)-(V). Moregisely:

PROPOSITION 5.2. Suppos® is definably closed in its simple extensidn=
V{c), withc ¢ V. Then either

1.V C V{c) is a simple extension of tyf§¥), or
2.there is a finite chain off -triples

VZV()gvlg"'gVn:V/ (nZl)

such thatV; is a simple extension df; of type(lll) or type(lV), and each); ,
is a simple extension of; of type(lll),fori =1,...,n — 1.
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Proof. If ¥V C V{c) is of type (IV), we are done. Suppo3e C V(c) is
not of type (V). Then there is; € V such that, withh; := ¢ — a; we have
[b1] ¢ [V]. This is the starting point for an inductive constructionetéments
a; € V andb; € V'. Suppose we have already construaied .., a, € V and
non-zero vector$,,...,b, € V' with n > 1, wherea; andb; are as above,
biv1 =¢'(b;)) —aip1 fori=1,...,n—1,such thafp;] ¢ [V]fori=1,...,n.

We claim that thend;] # [b;] for 1 < ¢ < j < n (hencebs,...,b, are
linearly independent over). Otherwiselb;] = [b;], for certainl < i < j < n,
so ' (bj) = ¢'(b;). But alsoy/(b;) = wzam,...,aj)(ﬂ/(bi)) (see§4), hence
(b)) = Yaiiran) (¢'(b;)). Thus by Lemma 4.3 the vectgr(b;) is definable
overV. Therefore; 1 € V, contradicting; 1 ¢ [V].

If [/ (bn) — an+1] ¢ [V] for somea,, 41 € V, we take such a vectar, , ; and
putb, 1 := ¢’ (b,) — an41. If thereis no such, 1, the construction breaks off,
with a,, andb,, as the last vectors.

First assume that the construction goes on indefinitelyjshae obtain infinite
sequences$a; };>1 inV and{b;};>1 in V' suchthat; = c—ay, bi11 = ¢’ (b;) —
a;+1 and(b;] ¢ [V]foralli > 1. Then one easily sees thiat = V & @;°, kb,
and thaty C V(c) is of type (V).

Now suppose our construction stops after the vectgrand b,, have been
obtained. There are two ways in which this could happen:

1.9/ (b,) €V,
2.9 (by) ¢ V., but[V @ ky/(b,)] = [V],

In the first case we puf, := V, and fori = 1, ..., n we letV; be the substructure
of V" with underlying vector space

Vi=Ve P kb
j=n—i+1

ThenV,; is a simple extension of type (lll) of;, fori = 0,...,n — 1, and
V., =V'. Inthe second case, takg := V,and fori = 1,...,n + 1 letV; be the
substructure o’ with underlying vector space

Vi=Vakd(b)e P kb
j=n—i+2

Then), C V; is a simple extension of type (IV), whereds C V,;,,, for
i =1,...,n,is a simple extension of type (lll), and,;1 = V @ k¢/(b,) ®

iy kb =V |
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Remark. In the previous proposition, ¥ is aclosedH-triple andy C V'
is not of type (V), the extensiory C V; will be of type (IV), sinceV admits no
simple extensions of type (lII).

Suppose thap C V' is a simple extension such thetis not definably closed
in V'. To reduce to a situation where we can apply the last prapaositve
let V = (V,...) be the definable closure of in an H-closure of)’, and let
W = (W,...) be theH-triple withY c W C V' andW =V'NV.

ThenW is definably closed in’, so that Proposition 5.2 is applicable to the
simple extensioV C V'. The possibilities for the proper extensivnc W are
described by Lemma 4.5, but can it actually happenYhiat V? The following
example shows that this case indeed occurs, and also shatihéne are simple
extensions that cannot be obtained by a finite number of sieyiensions of types
(D=(W).

Example. LetV = (V,«, P) the H-triple overk with V' := keg (eg > 0),
distinguished positive element= ¢y, andmax P = ¢3. (See Example 3.1.)
Let V' = (V',4/, P") be the H-triple overk, with V! = @, . ke_,, and
V'(e_p) :=ept+e_1—e_,_1foralln € NyandP’ := {U/ cV' v < eo+e_1},
as in§3, end of Example 3.3. Note th&¥ = V(e_;). LetV = (V,...) be the
definable closure of in an H-closure of)’. Putes,, :=e_,, —e_,,_1 forn > 1.
One sees easily (using Corollary 5.2) that the@ V(e_) with

V i=key @ é ke,,.
n=1

It can be shown tha¥’ = V(e_;) cannotbe obtained from) by finitely many
simple extensions of type (I)—(V). One proves that whenéker (V1,v1, Pr)
is anH-triple withV C V; € Vandc € V{e_1) \ Vi, thenV; C V,{c) is not of
type (I11), (IV) or (V). We leave the details to the reader.

Well-orderedness of¥
We now use our analysis of simple extensions to show that imitalff generated
H-couple(V, ), the setl = (V*) is always well-ordered. We first need to
take a closer look at type (V) extensions.

LemMmaA 5.3. LetV C V be ordered vector spaces over the ordered field
andv € V'\ V; suchthafv] ¢ [Vo]. Then[Vp @ kv] = [Vo]U{[v]} and[v] < [w]
forall w e (Vy @ kv) \ Vb.

This follows easily from the properties &farchimedean classes listed in the
beginning of§2, especially property (4).
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ProrosITION 5.3. LetV C V(c) = V' be a simple extension &f-triples of
type(V), with vV’ = V @ @, kb,, as in the definition of typéV) extensions.
Then

LV =[V]U{ba]:n=123,..}.
2.V>%is coinitial in (V")>°.

3.V is definably closed iw’.

4.The sequencé(b,] } is strictly decreasing.

Proof. Using the lemma above, and the fact tfiat # [b,] for i # j, one
shows by induction om that [V & @', kb;] = [VIU {[b;] : i =1,...,n}.
This proves (1).

For (2) we first note that ify € V' \ V, then[V] # [V @ ky|: write y =
v+ A1by + -+ Ay Witho € V, Aq, ...\, € k, and some\; # 0; hence
[y —v] = [bi] € [V]\ [V @ ky] for somei, by (1). Thus by the last part of
Corollary 4.1, if[V*] has no minimum, then (2) holds, hence (3) holds as well,
by Lemma 5.2. We now prove (2) and (3) in the remaining case[tig has a
minimum. Equivalently, we assumiehas a maximum. We first show that then (3)
holds. If it didn’t, then by Lemma 5.2, there avec V', A1,..., A\, € k (n > 0)
such that' := v + Y7 | A\;b; > 0 andmax ¥ = ¢/(v') — o', If [v] > [b;] for
alli € {1,...,n} with \; # 0, theny)'(v') = 9(v), sSomax ¥ = (v) —v' <
max ¥, a contradiction. Now assunje] < [b;] for somei € {1,...,n} with
Ai #0,andletj € {1,...,n} besuchthalb;] = max{[b;] : 1 <i < n,\; #0}.
Then

max V¥ = U)/(U/) - 1)/ = bj+1 + aji1 — U — Z Albl,
=1

hence); = 0, a contradiction. We have now established (3). To obtain (2)
suppose that'’(v') > max ¥ for somev’ € (V/)>°. By Lemma 3.1, there is
w € (V')>% with ¢/ (w) — w = max ¥. Sow is definable ovel’, hencew € V/
andy(w) = max ¥ + w > max ¥, which is impossible. This finishes the proof
of (2).

As to (4), given anyr > 0, we can choose by (2) ane V* with |b,,| > |al.
By Lemma 5.3 above and basic property (3)/dfsted at the beginning df3, we
have

[anrl] - [U/(bn) - anJrl} S [U/(bn) - 1/)(0,)} < [bn - a] = [bn]v
as required. |l

Remark. In the situation of this proposition the sequer{@@]} enumerates
the sefV’]\ [V]in strictly decreasing order. Thus the sequefig] } is indepen-



44 ASCHENBRENNER AND VAN DEN DRIES

dent of the choice of the sequeni@g, }. It also follows thatl’ \ ¥ is enumerated
in strictly increasing order by the sequer{eg/ (b,,) }.

THEOREM 5.1. LetV C V' be afinitely generated extensionffcouples over
the same scalar field, such thétis well-ordered. Ther' is also well-ordered.

Proof. We first equip)’ andV with suitable H-cuts so that we are dealing
with an extension off -triples. By induction on the number of generatorg6f
over) we then reduce to the case that- V'’ is a simple extension.

LetV = (V,...) be the definable closure of in an H-closure of)’, and
let W = (W,...) be theH-triple with YV C W C V' andW = V' NV. By
Lemma 5.2y’ (W*) is well-ordered. Moreovet) is definably closed i, and
W C V' is a simple extension. By Proposition 5.2 we then furtheucedo the
casethary C V' is a simple extension of one of the types (lll), (V) or (V)W C
V' is of type (Ill) or type (IV), ¥’ \ /' (W*) has at most one element, §bis well-
ordered. IfWW C V' is of type (V), it follows from the remark preceding the theo-

rem that¥’ is well-ordered. |

CoroLLARY 5.4. For any H-couple(V, ) overk that is finitely generated
over its substructure with vector spake 1 C V, the set? = (V*) is well-
ordered. |

Another issue is whether in a finitely generaféecouple(V, ¢) the setV =
(V™) always has a supremumn. This turns out to be false:

Example. WetakeV = @, . ke_, asinthe example preceding Lemma5.3,
but definey: V* — V by making it constant ok-archimedean classesdf and
setting

¥(eg) := eo, Yle_n) =eot+e1+-+e_p,—€e_pnq ifn>0.

It is easy to check thdl/, ) is an H-couple with distinguished positive element
1 = eg. Itis generated over its substructure with vector spgacé by its vector
e_1. The set¥ has no supremum i1, as is easily verified.

However, we note that i C V(c) = V' is a simple extension df -triples of one

of the types (I)-(V), andup V¥ exists, so doesup ¥'. This is clear for simple
extensions of types (I)—(1V), while for type (V) extensigiitsfollows from part

(2) of Proposition 5.3.



CLOSED ASYMPTOTIC COUPLES 45

6. REMOVING SCALARS

The goal of this section is Proposition 6.2. It strengthdrsldcal o-minimality

result Proposition 5.1 to a global weak o-minimality forssethose definition

does not involve scalars. Another motive for this sectioth# in attempting to
construct a model theory of Hardy fields, it appears usefhlaee analogues of
the previous theorems in a setting where no scalar field septe

DEFINITION 6.1.  An Hy-coupleis a pairV = (V, ¢), consisting of a divisible
ordered abelian group, a distinguished positive elemehte V, and a function
¥: V* — V,such that for alb, w € V*

1y(1) =

2. w(nv): (v) foralln > 0,

3. Y(v) < P(w) + |wl,

4. o] < |w] = ¢(v) = Y(w) (hencep(v) = P (—v)).

We consider a divisible ordered abelian group as an ordereirvspace over
Q in the usual way.

Examples.

1. EachH-couple becomes aH-couple by “forgetting” the scalar field.

2. If F O R(z) is a real closed Hardy field,/ := v(F*) its value group,
1:=wv(z7 1), andy: V* — V is defined as in the introduction, théWw, +/) is an
Hjy-couple, with distinguished positive elemdnt

DEFINITION 6.2.  An Hy-cut of an Hy-couple(V, v) is a setP C V which
is closed downward, containg := (V' *), and is disjoint from(id +¢) (V>°).
We then call(V, ¢, P) an Hy-triple. An Hy-couple(V, ) is closedif ¥ has no
maximum, and

YV )={a€eV:ia<w+y(w)forallwe V>O}.

In that casel = (V*) is the only Hy-cut of (V, ), and we call(V,y, ¥) a
closedHy-triple. Note thata closed/-couple (closed{-triple) becomes a closed
Hy-couple (closedd-triple) by forgetting the scalar field.

When dealing withH,-couplesY = (V, ) as model-theoretic objects we
construe them ag y,-structures, wher& , is the (one-sorted) language with
(vector) variables ranging over the extended vector space= V U {oo}. The
non-logical symbols of 7, are:

1. those listed under part (4) of the description&f in section 1, to be
interpreted as relations and functionsldg, as indicated there;
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2. a unary function symbal,, for eachn > 0, to be interpreted ofr” as the
scalar multiplication byl /n (andé,, (co) := 00).

Adding to L, a unary predicate symbdét we obtain the languagéy, », and
Hy-triples(V, +, P) are then construed a;, p-structures. Thél,-couples are
easily seen to be the models of a universal theown, and the same is true for
the Hy-triples with respect to the languagey, p.

Remark. The division symbols,, are included to guarantee quantifier elimi-
nation for the theory ofiy-triples, see Corollary 6.2 below. (There is an example
which shows that if we omit them, then in the resulting smrddleguage the theory
of Hy-triples would not eliminate quantifiers.)

Notation. If V = (V,4) is anHy-couple, we set
W :={weV:¢pw) =9}, forveV.
We let[V] := {[v] : v € V'} and make it into a linearly ordered set by defining

[v] < [w] = [v] # [w] and]v] < [w]|
= () > P(w).

In the case thaV is obtained from arf{-couple overk by “forgetting the scalar
field”, [v] (or [v]g) also denotes th&-archimedean class of a vectore V.
Fortunately, this agrees with] as just defined. Note also that the four properties
of k-archimedean classes stated in the beginnirfi@afo through for the classes
[v] € V of an Hy-coupleV as above, withh € Q* in property (2). For any
Hy-coupleV and vectors, w € V*, [v]g < [w]g implies[v] < [w].

Basic properties
The beginning of section 3 up to and including Propositidhgoes through for
Hy-triples (V, ¢, P), with [v] interpreted according to the definition just given,
and with Hy-cuts instead off -cuts in Proposition 3.1. The proofs are the same.

Embedding into closedH-triples
An Hy-closure of the Hy-triple V = (V, 4, P) is any closedH-triple V¢ =
(V€ yC, P°) extendingV, such that any embedding — )’ into a closedH,-
triple V' extends to an embedding — V', We want to show that eadt-triple
V = (V, 4, P) hasan-closure. This will follow, just as fo -triples, by iterated
application of three basic extension lemmas. These ardlgxhe Lemmas 3.4,
3.5 and 3.6, modified as followd?-triples becomed-triples,V & ke becomes
V @ Qe, and the phrase “oveéd” should be omitted. The proofs go through, with
similar trivial changes. We get:



CLOSED ASYMPTOTIC COUPLES 47

COROLLARY 6.1. EveryHy-triple has anHy-closure. |

Elimination of quantifiers
We have the following counterpart of Proposition 4.1:

ProposiTION 6.1. LetV = (V,4¢, P) andV’ = (V' ¢, P') be closedH,-
triples, where)’ is k-saturatedy := |V|. LetVy = (Vo, 10, Py) be a substruc-
ture ofV, so again anH,-triple. Any embedding, of }, into V' can be extended
to an embedding of into V',

Proof. One can basically copy the proofid, changingk to Q, and making
other obvious modifications]

Let Ty, p be the theory of closedy-triples, in the languag€ g, p.

CoroLLARY 6.2. The theoryl'y, p is complete, decidable, and has elimina-
tion of quantifiers. It is the model completion of the thedryig-triples.

Proof. Elimination of quantifiers follows from Proposition 6.1 aad/ariant
of the well-known Robinson-Shoenfield-Blum criterion farantifier elimination
(see e.g. [17], Theorem 17.2). THh&-triple (Vo, 1o, Fo), with V := Q, Py :=
Q=!, o(z) := 1 forall z € Q*, and1l € Q>° as distinguished element, can be
embedded into an¥,-triple. This implies completeness ©§;, p. The rest now

follows from Corollary 6.1. |

Definable closure. Uniqueness affy-closure. Analysis of simple extensions.
Well-orderedness of¥

The correspondingly named subsections§bfgo through forHy-triples and
Hy-closures with the following changegi-triples (overk) becomeH-triples,
Ly p-formulas become 7, p-formulas (without scalar variables, . .., z,,),
k-linear space&w becomeQ-linear space§)w, more generally, vector spaces
overk become vector spaces ov@r scalars fronk (as in the proofs of lemmas
5.1 and 5.2) become scalars frdd and, finally,k-linear independence (as in
property (V) of the analysis of simple extensions) beco@éisear independence.
Also, the equivalence classgg of vectorsv should of course be interpreted in
the sense of the present section.

Weak o-minimality
We now use théi,-version of Proposition 5.2 to show:

ProprosITION 6.2. The theory of closediy-triples is weakly o-minimal,
i.e. each closedi-triple is weakly o-minimal.
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(Compare with Proposition 5.1.) In the proof we also needdhiewing.

A criterion for weak o-minimality

Let £ be a language containing a binary relation symbkgl and letA =
(A, <,...) be ant-structure expanding a nonempty linearly ordered dek),
dense without endpoints. &ut in A is just a downward closed sét C A. To
such a cuC we associate the set

Po(y) i={c<y:ceClu{y<d:de A\C}

of £ 4-formulas in the variablg.

LEmMA 6.1. (Kulpeshov, [7])An L-structure A = (A, <,...) as above is
weakly o-minimal if and only if for all cut§' in A there exist at most two complete
y-types overd extendingb« (y), and for each of these types, its set of realizations
in any elementary extensid@ = (B, <,...) of A is convex inB.

Proof of Proposition 6.2
LetV = (V, ¢, P) be a closedd,-triple, V' = (V’,4’, P’) an elementary exten-
sion ofV, andC a cutinV. By quantifier elimination, the completetypes ovel
extending®(y) correspond bijectively to isomorphism classes averf simple
extensions/(c) of V with distinguished generatersuch that” < ¢ < V' \ C.
We claim:

1. Up to isomorphism ovey, there exist at most two simple extensidng:)
of V with distinguished generatersuch thatC' < ¢ < V' \ C.

2. If cis an element oV’ with C' < ¢ < V'\ C, then the set of alf € V’ such
thatV(c) = V(d) by an isomorphism ovey that maps: to d, is a convex subset
of V.

By Kulpeshov's criterion it will then follow thad’ is weakly o-minimal. So
assume’ C V(c) is a simple extension with’ < ¢ < V'\ C. We may (for our
purpose) assume thae V’. By our analysis of simple extensions, either

1.V C V{c) is of type (IV) or type (V), or

2. there arev > 1, ay,...,a, € V, and non-zerd,,...,b, € V' such that
by =c—aq, bj_*_l = wl(bj) — Q41 forl1 < 7 <mn, the vector /(bn), bi,...,b,
are Q-linearly independent ove¥’, [b;] ¢ [V]for1 < j < n, [b;] # [b;] for
1<i<j<nandV(c)=V®Qy (b, ® P, Qbj.

In all three cases, an argument as in the proof of Proposttidnshows that
then for any simple extension(d) of V with C' < d < V' \ C, the Hy-couples
(V{e),v'|V{(c)*) and (V(d),¢'|V(d)*) are isomorphic ove(V,) by an iso-
morphism mapping to d. Also, (V(c), 4’|V (c)*) has at most twd{,-cuts, and
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hence can be expanded in at most two ways téigsiriple. This proves the first
part of the claim.

For the second part we need some notation: heE N, b € V, a =
(ai,...,a,) € V", and\ = (\g,...,\,) € QL. Consider the map

Y= Opar(¥) = b+ Aoy + Y N, o) D — V.

j=1

Itis monotone on each convex componenbyf (By the analogues of Lemmas 4.3
and 4.4 forHy-couples.) In particular, for each convex componerdf D, the
setD N6, . ,(P')is downward or upward closed if.

Now assume first thatl’ (c), 7’|V (c)*) has only oneHy-cut. Then eactt,-
triple V(d), whereC' < d < V' \ C, is isomorphic toV(c) by an isomorphism
over) mappinge to d. So assume thdt/ (c), ¢'|V (c)*) has twoH,-cuts. This
means that there exists € V' (c) such that

1//(V<c>*) <w < (id+y") (V<c>>0).

In all three cases fov C V(c), we findn € N, b € V,a € V"* and) € Q"*!
such thatw = 6, ,.1(c). Observe that for any € V' with C < d < V' \ C,
d lies in D/,. In fact, it lies in the same convex componédntof D/, asc¢, and
V{c) = V(d) by an isomorphism ovey with ¢ — d if and only if either bothc
andd are inD N6, (P'), or both are notinD N6, ! , (P’). Thus also in this
case, the second part of the claim follow. o
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