Some Remarks About Asymptotic Couples

Matthias Aschenbrenner

Department of Mathematics University of Illinois at Urbana-Champaign Urbana, IL 61801, U.S.A. Current address: Department of Mathematics University of California at Berkeley Berkeley, CA 94720, U.S.A. maschenb@math.uiuc.edu

Abstract. Asymptotic couples (of H-type) try to capture the structure induced by the derivation of a Hardy field K on the value group of the natural valuation on K. In this note we continue the study of algebraic and model-theoretic aspects of asymptotic couples undertaken in [1]. We give a short exposition of some basic facts about asymptotic couples, and address a few topics left out in that paper: the (non-) minimality of the "closure" of an asymptotic couple of H-type, the Vapnik-Chernovenkis property for sets definable in closed asymptotic couples of H-type, and the relation of asymptotic couples of H-type to the "contraction groups" of [6].

Introduction

Let K be a Hardy field, that is (see [3], [17]), an ordered differential field of germs at $+\infty$ of real-valued differentiable functions defined on intervals $(a, +\infty)$, with $a \in \mathbb{R}$. (So two such functions determine the same element of K if they coincide on an interval $(b, +\infty)$ on which they are both defined; we will use the same letter for a function and its germ.) Every element f of K is ultimately monotonic, so $\lim_{x\to\infty} f(x)$ exists as an element of $\mathbb{R} \cup \{\pm\infty\}$. The valuation

$$v: K^{\times} = K \setminus \{0\} \to V = v(K^{\times})$$

associated to the place $f \mapsto \lim_{x\to\infty} f(x)$ (where we identify $+\infty$ and $-\infty$) has the crucial property that v(f') only depends on v(f), for $f \in K^{\times}$ with $v(f) \neq 0$. (This is a consequence of L'Hospital's Rule, see [17].) So we have a well-defined map $\psi \colon V^* = V \setminus \{0\} \to V$ given by

$$\psi(v(f)) := v(f'/f)$$
 for any $f \in K^{\times}$ such that $v(f) \neq 0$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 03C10, 06F20; Secondary 26A12, 12H05. Key words and phrases. Asymptotic couples, Hardy fields.

The pair $\mathcal{V} = (V, \psi)$, called the **asymptotic couple of** K, is of key importance in understanding the interaction of the ordering and the derivation of K. It has the following fundamental properties: For all elements $f, g \in K^{\times}$ with $a = v(f) \neq 0$, $b = v(g) \neq 0$,

- (A1) $\psi(ra) = \psi(a)$ for all $r \in \mathbb{Z}, r \neq 0$,
- (A2) $\psi(a+b) \ge \min\{\psi(a), \psi(b)\}, \text{ where } \psi(0) := \infty > V,$
- (A3) $\psi(a) < \psi(b) + |b|$.

(See [14], Theorem 4.) Property (A2) expresses the fact that ψ is a valuation on the ordered abelian group V (taking values in V itself). In particular, it follows that for a, b as above, $\psi(a + b) = \min\{\psi(a), \psi(b)\}$ if $\psi(a) \neq \psi(b)$. Property (A3) may be seen as a valuation-theoretic formulation of L'Hospital's Rule, see [15].

Moreover, the map ψ is *decreasing* on the set of positive elements of V: For all $a, b \in V$,

(H) $0 < a \le b \Longrightarrow \psi(a) \ge \psi(b).$

(Hence by (A1), ψ is increasing on the set of negative elements of V.) Note that if the Hardy field K contains the germ x of the identity function on \mathbb{R} , then $\psi(1) = 1$, where we put $1 := v(x^{-1}) > 0$.

By an **asymptotic couple**, we mean a pair $\mathcal{V} = (V, \psi)$ consisting of an ordered abelian group V and a map $\psi: V^* \to V$ satisfying (A1)–(A3) above, for all $a, b \in V^*$. As in [2], we say that an asymptotic couple $\mathcal{V} = (V, \psi)$ is of H-type if (H)holds for all $a, b \in V$. We will sometimes also say " \mathcal{V} is an H-asymptotic couple" instead of " \mathcal{V} is an asymptotic couple of H-type." Rosenlicht, in a series of papers ([14], [15], [16], [18]) studied in detail the asymptotic couples (V, ψ) where the ordered abelian group V has finite rank. The paper [1] contains an investigation of the basic model-theoretic properties of H-asymptotic couples. In this note, we want to supplement it by considering a few issues left open in that paper. Our hope is that insight into algebraic and model-theoretic properties of asymptotic couples will ultimately become useful in the recently initiated project of understanding the model theory of Hardy fields and the field of LE-series. (See [2], [5].)

In section 1, we first review some basic facts about asymptotic couples. We only give a few proofs, referring to [1] and [2] for a more detailed exposition. From results of [1], it follows that the theory of *H*-asymptotic couples has a model companion (in a natural language), the theory of "closed *H*-asymptotic couples." (The definition of a closed *H*-asymptotic couple, as well as the statement of the main theorem from [1], can be found in section 2. See [12] for the notion "model companion".) In particular, each *H*-asymptotic couple \mathcal{V} can be embedded into a closed one. In section 3, we show that in general there is no closed *H*-asymptotic couple containing \mathcal{V} minimally. Section 4 consists of a few remarks about another model-theoretic property of the class of closed *H*-asymptotic couples, called the independence property. Finally, in section 5 we discuss a connection to Kuhlmann's "contraction groups" from [6].

In [1], we mainly worked in the setting of "*H*-couples": these are *H*-asymptotic couples (V, ψ) of a certain kind, where *V* has additional structure as an ordered vector space over an ordered field. In Section 6 of that paper, we showed how to adapt the results about *H*-couples to the case of *H*-asymptotic couples. Here, we right away restrict our attention to *H*-asymptotic couples, for convenience. We don't assume familiarity of the reader with [1]. In fact, sections 1–4 of the present note may serve as a quick overview of some of the results from that paper. However, we will freely use basic model-theoretic notions (see e.g. [12]).

Some Remarks About Asymptotic Couples

Acknowledgements. The author would like to thank Lou van den Dries for numerous discussions around the topics of this paper, and Franz-Viktor Kuhlmann, Salma Kuhlmann, and Murray Marshall for organizing the Valuation Theory Conference 1999, where some of the results of this paper were first presented.

Notations. Throughout, m and n range over the set $\mathbb{N} = \{0, 1, 2, ...\}$ of natural numbers. Our notations concerning linearly ordered sets and ordered abelian groups are fairly standard. (If in doubt, see [1], §1.) If V is an ordered abelian group, we let $V^* = V \setminus \{0\}$, and we put $S^{>0} = \{v \in S : v > 0\}$, $S^{<0} = \{v \in S : v < 0\}$, for a subset S of V. We define an equivalence relation \sim on V by

$$v \sim w \quad :\iff \quad |v| \leq m|w| \text{ and } |w| \leq n|v| \text{ for some } m, n > 0.$$

The equivalence class of an element $v \in V$ is written as [v], and is called its **archimedean class.** By [V] we denote the set of archimedean classes of V, and we set $[V^*] := [V] \setminus \{[0]\}$. We linearly order [V] by setting

$$\begin{split} [v] < [w] &: \Longleftrightarrow \ n |v| < |w| \text{ for all } n \\ & \Longleftrightarrow \ [v] \neq [w] \text{ and } |v| < |w| \end{split}$$

Some simple facts about archimedean classes: For $v, w \in V, r \in \mathbb{Z} \setminus \{0\}$, we have

 $1. \ [v] = \{0\} \Longleftrightarrow v = 0,$

2. [v] = [rv],

3. $[v+w] \le \max\{[v], [w]\}, \text{ with } [v+w] = \max\{[v], [w]\}, \text{ if } [v] \ne [w].$

If V' is an ordered abelian group containing V as ordered subgroup, the inclusion map $V \hookrightarrow V'$ induces an embedding $[V] \to [V']$ of linearly ordered sets. We identify [V] with its image under this embedding.

We consider V as a subgroup of the divisible abelian group $\mathbb{Q}V = \mathbb{Q} \otimes_{\mathbb{Z}} V$ by means of the embedding $v \mapsto 1 \otimes v$. We equip $\mathbb{Q}V$ with the unique linear ordering extending the one on V and making $\mathbb{Q}V$ into an ordered abelian group. Note that $[\mathbb{Q}V] = [V]$. We consider a divisible ordered abelian group as an ordered vector space over the ordered field \mathbb{Q} as usual.

1 Basic Properties

In this section, $\mathcal{V} = (V, \psi)$ is an asymptotic couple. We set $\Psi := \psi(V^*)$, and with id denoting the identity function on V, we let

$$(\mathrm{id} + \psi)(V^*) = \{ x + \psi(x) : x \in V^* \}.$$

Similarly, we define $(\operatorname{id} + \psi)(V^{>0})$ and $(\operatorname{id} + \psi)(V^{<0})$. Also, let $V_{\infty} := V \cup \{\infty\}$, with $\infty > v$ for all $v \in V$ and $v + \infty = \infty + v = -\infty = \infty$ for all $v \in V_{\infty}$. It is convenient to extend ψ to a map $V_{\infty} \to V_{\infty}$ by $\psi(0) := \psi(\infty) := \infty$.

Remark For $a \in V$ we define $\psi + a \colon V^* \to V$ by $(\psi + a)(x) := \psi(x) + a$. Then clearly $(V, \psi + a)$ is also an asymptotic couple, with $(\psi + a)(V^*) = \Psi + a$. Also, (V, ψ) satisfies (H) if and only if $(V, \psi + a)$ does.

For the next proposition, see also [1], §3, and [2], Proposition 2.3. Part (2.) is Theorem 5 in [15]; we give here a much shorter proof.

Proposition 1.1 Let $v, w \in V$.

- 1. If $v, w \neq 0$, then $n(\psi(w) \psi(v)) < |v|$.
- 2. If $v, w, v w \neq 0$, then $[\psi(v) \psi(w)] < [v w]$.
- 3. The map $x \mapsto x + \psi(x) \colon V^* \to V$ is strictly increasing.

Matthias Aschenbrenner

Proof For (1.), let $v, w \in V^*$, $n \in \mathbb{N}$. We may assume $\psi(w) > \psi(v)$, v, w > 0, and n > 0. By passing from ψ to $\psi - \psi(v)$, if necessary, we can reduce to the case that $\psi(v) = 0 < \psi(w)$. We then have to show $n\psi(w) < v$. We proceed by induction on n. In the case n = 1, $n\psi(w) = \psi(w) < v + \psi(v) = v$ holds by axiom (A3) for asymptotic couples. Now assume that $n\psi(w) < v$. If $(n+1)\psi(w) \le \psi(u)$ for some $u \in V^*$, we clearly have $(n+1)\psi(w) \le \psi(u) < v + \psi(v) = v$, by axiom (A3) again. So we can assume that $(n+1)\psi(w) > \Psi$. Note that $\psi^2(w) > 0$, since $\psi(w) > 0$, so $\psi(w) < \psi(w) + \psi(\psi(w))$. Hence

$$\psi(v - (n+1)\psi(w)) = \min\{\psi(v), \psi^2(w)\} = \psi(v) = 0,$$

by (A2), so we get

$$\Psi < |v - (n+1)\psi(w)| + \psi(v - (n+1)\psi(w)) = |v - (n+1)\psi(w)|.$$

Suppose $v \leq (n+1)\psi(w)$. Then, in particular, $\psi(w) < (n+1)\psi(w) - v$, hence $v < n\psi(w)$, contradicting the induction hypothesis. Therefore $(n+1)\psi(w) < v$, completing the induction step.— For (2.), let $v, w \neq 0$ with $d := v - w \neq 0$. We have to show $n|\psi(v) - \psi(w)| < |d|$ for all n. If $\psi(d) > \psi(w)$, then $\psi(v) = \psi(w)$, since ψ is a valuation on the ordered abelian group V. Suppose $\psi(d) \leq \psi(w)$. Then we have $\psi(d) \leq \psi(v)$, hence by (1.):

$$n\psi(d) \le n\psi(w) < n\psi(d) + |d|, \quad n\psi(d) \le n\psi(v) < n\psi(d) + |d|.$$

Thus $n|\psi(v) - \psi(w)| < |d|$ in all cases.— Property (3.) follows easily from (2.). \Box

By (A1) and part (1.) of the proposition above, ψ extends uniquely to a map $(\mathbb{Q}V)^* \to V$, also denoted by ψ , such that $(\mathbb{Q}V, \psi)$ is an asymptotic couple. Note that $\psi((\mathbb{Q}V)^*) = \Psi$.

Some properties of *H*-asymptotic couples. From now on, we want to concentrate on *H*-asymptotic couples. So suppose that $\mathcal{V} = (V, \psi)$ is of *H*-type. Note that by axioms (A1) and (*H*), we have

$$[v] \le [w] \implies \psi(v) \ge \psi(w) \quad \text{for all } v, w \in V^*.$$
 (1.1)

In particular, ψ is constant on archimedean classes of V, i.e., for all $v, w \in V$ with [v] = [w], we have $\psi(v) = \psi(w)$. The argument used for making $\mathbb{Q}V$ into an asymptotic couple extending (V, ψ) may be generalized, using (1.1), to show:

Corollary 1.2 Let V' be an ordered abelian group containing V as ordered subgroup such that [V] = [V']. Then there is a unique extension of ψ to a function $\psi' : (V')^* \to V'$ such that (V', ψ') is an H-asymptotic couple.

Lemma 1.3 Let
$$w \in V^*$$
. If $[\psi(w)] \ge [w]$, then $[\psi(\psi(w))] = [\psi(w)]$

Proof By (1.1), we may suppose that $[\psi(w)] > [w]$. By Proposition 1.1, (2.), and property (3.) of archimedean classes listed in the introduction, we have $[\psi(w) - \psi(\psi(w))] < [w - \psi(w)] = [\psi(w)]$ and hence $[\psi(\psi(w))] = [\psi(w)]$. \Box

Remark The lemma and (1.1) imply that if $w \in V^*$ satisfies $[w] \leq [\psi(w)]$, then $y + \psi(y) = 0$ for $y = -\psi(w)$ or $y = -\psi(\psi(w))$.

The following facts about $id + \psi$ are fundamental (see also [1], Section 3):

Corollary 1.4 The set $(id + \psi)(V^{>0})$ is closed upward. The set $(id + \psi)(V^{<0})$ is closed downward, and

$$(-\mathrm{id} + \psi)(V^{>0}) = (\mathrm{id} + \psi)(V^{<0}) = \{a \in V : a < \psi(x) \text{ for some } x \in V^*\}.$$
 (1.2)

There is at most one element $v \in V$ such that $\Psi < v < (\mathrm{id} + \psi)(V^{>0})$. If Ψ has a largest element, then there is no $v \in V$ with $\Psi < v < (\mathrm{id} + \psi)(V^{>0})$.

Proof Let $a > x + \psi(x)$ for some x > 0; we want to show $a \in (\mathrm{id} + \psi)(V^{>0})$. Passing from (V, ψ) to $(V, \psi - a)$ if necessary, we reduce to the case a = 0. Then $[x] \leq [\psi(x)]$, hence $a = 0 \in (\mathrm{id} + \psi)(V^{>0})$ by the previous remark and Proposition 1.1, (3.). So $(\mathrm{id} + \psi)(V^{>0})$ is closed upward, and similarly one shows that $(\mathrm{id} + \psi)(V^{<0})$ is closed downward.

The equalities in (1.2) are clear except for the inclusion " \supseteq " in the last equation. For this, let $a, x \in V$, x < 0, with $a < \psi(x)$; we want to show that $a \in (\mathrm{id} + \psi)(V^{<0})$. As above, we may assume that a = 0. If $[x] \leq [\psi(x)]$, it follows as before that $0 \in (\mathrm{id} + \psi)(V^{<0})$. If $[\psi(x)] < [x]$, then $0 < x + \psi(x)$, hence $0 \in (\mathrm{id} + \psi)(V^{<0})$, since $(\mathrm{id} + \psi)(V^{<0})$ is closed downward.

If $u, v \in V$ satisfy $\psi(w) \leq u < v < w + \psi(w)$ for all $w \in V^{>0}$, then $v < (v-u) + \psi(v-u) \leq (v-u) + u = v$, a contradiction. This shows the rest. \Box

As a consequence of the last corollary, $V \setminus (\mathrm{id} + \psi)(V^*)$ has at most one element, and $(\mathrm{id} + \psi)(V^*) \neq V$ if and only if Ψ has a supremum in V, and in this case $V \setminus (\mathrm{id} + \psi)(V^*) = \{\sup \Psi\}$. We refer the reader to [1], Figure 1, for a picture of the behavior of the maps ψ and $\mathrm{id} + \psi$ on V^* .

2 Closed *H*-Asymptotic Couples

A **cut** of an *H*-asymptotic couple (V, ψ) is a set $P \subseteq V$ which is closed downward, contains Ψ , and is disjoint from $(\mathrm{id} + \psi)(V^{>0})$. (So $P < (\mathrm{id} + \psi)(V^{>0})$.) By Corollary 1.4, an *H*-asymptotic couple (V, ψ) has at most two cuts, and it has two cuts if and only if $\Psi < v < (\mathrm{id} + \psi)(V^{>0})$ for some $v \in V$. If Ψ has a maximum, then (V, ψ) has exactly one cut $P = \{a \in V : a \leq \psi(x) \text{ for some } x \in V^*\}$.

Definition 2.1 An *H*-asymptotic couple $\mathcal{V} = (V, \psi)$ is closed if

- 1. V is divisible (as an abelian group),
- 2. $(id + \psi)(V^*) = V$, and
- 3. $\Psi = (\mathrm{id} + \psi) (V^{<0}).$

(In this case, $P = \Psi$ is the only cut of \mathcal{V} .)

Example 1 Let K be a Hardy field containing \mathbb{R} and closed under exponentiation (that is, $f \in K \Rightarrow \exp f \in K$) and integration (i.e. $f \in K \Rightarrow \exists g \in K : g' = f$). Then the asymptotic couple of K (as defined in the introduction) is a closed H-asymptotic couple.

In [1], Definition 6.2, we also introduced the following notion, under the somewhat technical name " H_0 -triple":

Definition 2.2 An asymptotic triple of *H*-type, or *H*-asymptotic triple for short, is a triple (V, ψ, P) , where (V, ψ) is an *H*-asymptotic couple and *P* a cut of (V, ψ) , such that

1. V is divisible, and

2. there exists a positive element 1 of V with $\psi(1) = 1$. (Equivalently, $0 \in (\mathrm{id} + \psi)(V^{<0})$.)

By Proposition 1.1, (2.), the element 1 in (2.) is uniquely determined. If (V, ψ, P) is an *H*-asymptotic triple such that (V, ψ) is a closed *H*-asymptotic couple, then $P = \Psi$, and (V, ψ, Ψ) is called a **closed** *H*-asymptotic **triple**.

We can naturally consider asymptotic couples (V, ψ) as model-theoretic structures (V_{∞}, ψ) in the first-order language $\mathcal{L} = \{0, +, -, \psi, \infty\}$. The *H*-asymptotic couples are then the models of a universal theory in \mathcal{L} . Similarly, when dealing with *H*-asymptotic triples (V, ψ, P) as model-theoretic objects, we construe them as \mathcal{L}_P -structures $(V_{\infty}, \psi, 1, P)$, where \mathcal{L}_P is the extension of \mathcal{L} by

- 1. a constant symbol 1 for the distinguished element $1 \in V^{>0}$ with $\psi(1) = 1$,
- 2. a unary predicate symbol for P, and
- 3. unary function symbols δ_n for each n > 0, to be interpreted on V as the scalar multiplication by 1/n (and $\delta_n(\infty) := \infty$).

The *H*-asymptotic triples are models of a universal theory in \mathcal{L}_P . Let *T* be the theory of closed *H*-asymptotic couples, in the language \mathcal{L} , and let T_P be the theory of closed *H*-asymptotic triples, in the language \mathcal{L}_P . One of the main results from [1] (Corollary 6.2) is:

Theorem 2.3 The theory T_P is complete, decidable, and has elimination of quantifiers. It is the model completion of the theory of H-asymptotic triples.

From this we get immediately:

Corollary 2.4 The theory T is the model companion of the theory of H-asymptotic couples. \Box

Remark The division symbols δ_n are included in the language \mathcal{L}_P in order to guarantee quantifier elimination for T_P . Here is an instructive example to show that if we omit them, then in the resulting smaller language the theory of closed *H*-asymptotic triples would not eliminate quantifiers.

Let (W, ψ) be a closed *H*-asymptotic couple. Choose an element $b \notin W$ in an ordered vector space $W' := W \oplus \mathbb{Q}b$ over \mathbb{Q} extending *W*, such that $\Psi < \frac{b}{2} < (\mathrm{id} + \psi)(W^{>0})$. Then, by Lemma 4.5 in [1], [W] = [W'], hence ψ extends uniquely to a map $\psi' : (W')^* \to W$ such that $\mathcal{W}' = (W', \psi')$ is an *H*-asymptotic couple (Corollary 1.2). Note that [W] = [W'] implies

$$\Psi' = \Psi < \frac{b}{2} < (\mathrm{id} + \psi') \big((W')^{>0} \big)$$

Hence (W', ψ') has two cuts. Now consider the ordered abelian group $V := W \oplus \mathbb{Z}b \subseteq W'$. Since $\Psi' = \Psi \subseteq W$, $(V, \psi'|V^*)$ is an *H*-asymptotic couple with $(V, \psi'|V^*) \subseteq (W', \psi')$. One checks easily that the two distinct cuts of (W', ψ') have the same intersection with V, namely $\{v \in V : v \leq \psi(w) \text{ for some } w \in W\}$.

3 Non-Minimality of Closures

According to Theorem 2.3, every H-asymptotic triple can be embedded into a closed H-asymptotic triple. In fact, in the course of the proof of this theorem, we showed a more precise statement:

Proposition 3.1 Every H-asymptotic triple $\mathcal{V} = (V, \psi, P)$ has a closure, that is, a closed H-asymptotic triple $\mathcal{V}^c = (V^c, \psi^c, P^c)$ extending \mathcal{V} , such that any embedding $\mathcal{V} \to \mathcal{V}'$ into a closed H-asymptotic triple \mathcal{V}' extends to an embedding $\mathcal{V}^c \to \mathcal{V}'$. Any two closures of \mathcal{V} are isomorphic over \mathcal{V} .

(See [1], Corollaries 5.3 and 6.1.) A natural question is if the closure \mathcal{V}^c of an *H*-asymptotic triple \mathcal{V} is always *minimal over* \mathcal{V} , i.e. there exists no closed *H*asymptotic triple $\mathcal{W} \supseteq \mathcal{V}$ strictly contained in \mathcal{V}^c as an \mathcal{L}_P -substructure. This turns out to be false, in a very strong way:

Proposition 3.2 Let $\mathcal{V} = (V, \psi, P)$ be an *H*-asymptotic triple which is not closed. Then the closure \mathcal{V}^c of \mathcal{V} is not minimal over \mathcal{V} .

(This is similar, e.g., to the situation encountered with differential fields and differential closures, [13].)

Before we give a proof of Proposition 3.2, we outline how \mathcal{V}^c is constructed from \mathcal{V} . One first shows the following embedding statements (see [1], Lemmas 3.5, 3.6 and 3.7 for a proof):

Lemma 3.3 Let $\mathcal{V} = (V, \psi, P)$ be an *H*-asymptotic triple.

- Suppose P has a largest element, and let V^ε := V ⊕ Qε be an extension of the Q-vector space V. Then there exists a unique linear ordering of V^ε, a unique map ψ^ε: (V^ε)^{*} → V^ε, and a unique subset P^ε of V^ε such that (V^ε, ψ^ε, P^ε) is an H-asymptotic triple extending (V, ψ, P) with ε > 0 and max P = -ε + ψ^ε(ε).
- 2. Suppose there exists $b \in V$ with $P < b < (id + \psi)(V^{>0})$. Let $V^{\varepsilon} := V \oplus \mathbb{Q}\varepsilon$ be an extension of the \mathbb{Q} -vector space V. Then there exists a unique linear ordering of V^{ε} , a unique map $\psi^{\varepsilon} : (V^{\varepsilon})^* \to V^{\varepsilon}$, and a unique subset $P^{\varepsilon} \subseteq V^{\varepsilon}$ such that $(V^{\varepsilon}, \psi^{\varepsilon}, P^{\varepsilon})$ is an H-asymptotic triple extending (V, ψ, P) with $\varepsilon > 0$ and $b = \varepsilon + \psi^{\varepsilon}(\varepsilon)$.
- 3. Suppose $b \in P \setminus \Psi$. Let $V^a := V \oplus \mathbb{Q}a$ be an extension of the \mathbb{Q} -vector space V. There exists a unique linear ordering of V^a , a unique map $\psi^a : (V^a)^* \to V^a$, and a unique $P^a \subseteq V^a$, such that (V^a, ψ^a, P^a) is an H-asymptotic triple extending (V, ψ, P) with a > 0 and $\psi^a(a) = b$.

Note that $(V^{\varepsilon}, \psi^{\varepsilon})$ as in (1.) or (2.) of the lemma has the property that $\psi^{\varepsilon}((V^{\varepsilon})^*)$ has a maximum. So part (1.) applies to $(V^{\varepsilon}, \psi^{\varepsilon}, P^{\varepsilon})$ in place of (V, ψ, P) . Also, if $(\operatorname{id} + \psi)(V^*) = V$, then $(\operatorname{id} + \psi^a)((V^a)^*) = V^a$. Therefore, iterating (1.)–(3.), if necessary transfinitely often, we can obtain an increasing chain of *H*-asymptotic triples extending (V, ψ, P) whose union is a closure of (V, ψ, P) .

Proof of Proposition 3.2. Let $\mathcal{V} = (V, \psi, P)$ be an *H*-asymptotic triple which is *not* closed. We have to find a closed *H*-asymptotic triple \mathcal{W} with $\mathcal{V} \subseteq \mathcal{W}$ which is strictly contained (as a substructure) in a closure of \mathcal{V} . Let us first consider a special case:

Lemma 3.4 Suppose that P does not have a supremum in V, and $P \setminus \Psi$ contains a strictly increasing sequence $(a_n)_{n \in \mathbb{N}}$. Then the closure of \mathcal{V} is not minimal over \mathcal{V} .

Proof Using Lemma 3.3, (3.), we construct a strictly increasing sequence of H-asymptotic triples $(\mathcal{V}_n)_{n \in \mathbb{N}}$ such that

1. $\mathcal{V}_0 = \mathcal{V} = (V, \psi, P),$

2. $V_{n+1} = V_n \oplus \mathbb{Q}v_n$, $\psi_{n+1}(v_n) = a_n$, for all n.

We let

$$V_{\omega} := V \oplus \bigoplus_{n \in \mathbb{N}} \mathbb{Q}v_n = \bigcup_{n < \omega} V_n, \quad P_{\omega} := \bigcup_{n < \omega} P_n$$

and ψ_{ω} the common extension of all ψ_n to V_{ω} . Now construct another strictly increasing sequence of *H*-asymptotic triples $(\mathcal{V}'_n)_{n\in\mathbb{N}}$, contained in the *H*-asymptotic triple $\mathcal{V}_{\omega} = (V_{\omega}, \psi_{\omega}, P_{\omega})$, with the following properties:

1. $\mathcal{V}_0' = \mathcal{V},$

2.
$$V'_{n+1} = V'_n \oplus \mathbb{Q}v'_n$$
 with $v'_n := v_n + v_{n+1}$, $\psi'_{n+1}(v'_n) = a_n$, for all n .

Note that $[V_n] = [V'_n]$ for all $n < \omega$. Again we let

$$V'_{\omega} := \bigcup_{n < \omega} V'_n \subseteq V_{\omega}, \quad P'_{\omega} := P_{\omega} \cap V'_{\omega},$$

and ψ'_{ω} the common extension of all ψ'_n to V'_{ω} . Then $\mathcal{V}'_{\omega} = (V'_{\omega}, \psi'_{\omega}, P'_{\omega})$ is an asymptotic couple such that $\mathcal{V} \subseteq \mathcal{V}'_{\omega} \subseteq \mathcal{V}_{\omega}, [V'_{\omega}] = [V_{\omega}]$, and one easily verifies that $v_n \notin V'_{\omega}$ for all *n*. Fix a closure $\mathcal{V}^c = (V^c, \psi^c, P^c)$ of \mathcal{V}_{ω} . (So \mathcal{V}^c is also a closure of \mathcal{V} .) Now using Lemma 3.3, (3.) repeatedly again, starting from \mathcal{V}'_{ω} , we obtain a strictly increasing sequence $(\mathcal{V}'_{\alpha})_{\omega < \alpha < \mu}$ of *H*-asymptotic triples (for some ordinal μ) such that

- 1. $\mathcal{V}'_{\omega} \subseteq \mathcal{V}'_{\alpha} \subseteq \mathcal{V}^{c}$ for all $\alpha < \mu$, 2. $V'_{\alpha+1} = V'_{\alpha} \oplus \mathbb{Q}v'_{\alpha}$ with $\psi'_{\alpha+1}(v'_{\alpha}) \in P'_{\alpha} \setminus \psi'_{\alpha}((V'_{\alpha})^{*})$ for all $\alpha < \alpha + 1 < \mu$, 3. $\mathcal{V}'_{\lambda} = \bigcup_{\alpha < \lambda} \mathcal{V}'_{\alpha}$ for all limit ordinals $\lambda < \mu$, and 4. $(\mathcal{V}')^{c} := \bigcup_{\alpha < \lambda} \mathcal{V}'_{\alpha}$ is closed.

So $(\mathcal{V}')^c$ is a closure of \mathcal{V}'_{ω} , and hence a closure of \mathcal{V} , contained in the closure \mathcal{V}^c of \mathcal{V} . One verifies easily that $v_n \notin (V')^c$ for all n. Hence \mathcal{V}^c is not minimal over \mathcal{V} , as claimed.

We now turn to the general case. Since \mathcal{V} is assumed to be non-closed, one of the parts of Lemma 3.3 is applicable. The following three possibilities arise:

- **Case 1:** The cut P has a maximum. Let $(V^{\varepsilon}, \psi^{\varepsilon}, P^{\varepsilon})$ be as in Lemma 3.3, (1.); then $P^{\varepsilon} \setminus \Psi^{\varepsilon}$ is the union of $P \setminus \Psi$ and the set
 - $\{v + \lambda \varepsilon : v \in V, \lambda \in \mathbb{Q}^{\times}, \text{ and } v < \max P \text{ or } v = \max P \& \lambda < 1\}.$

Hence $P^{\varepsilon} \setminus \Psi^{\varepsilon}$ certainly contains a strictly increasing sequence $(a_n)_{n \in \mathbb{N}}$. If (V', ψ', P') is obtained from $(V^{\varepsilon}, \psi^{\varepsilon}, P^{\varepsilon})$ by ω many applications of Lemma 3.3, (1.), then $P' \setminus \Psi'$ also contains the sequence (a_n) , and P' does not have a supremum in V'.

Case 2: We have $P < b < (id + \psi)(V^{>0})$ for some (uniquely determined) element $b \in V$. Then we let $(V^{\varepsilon}, \psi^{\varepsilon}, P^{\varepsilon})$ be as in Lemma 3.3, (2.). The set $P^{\varepsilon} \setminus \Psi^{\varepsilon}$ is the union of $P \setminus \Psi$ and

$$\{v + \lambda \varepsilon : v \in V, \lambda \in \mathbb{Q}^{\times}, \text{ and } v < b \text{ or } v = b \& \lambda < -1\},\$$

so contains a strictly increasing sequence (a_n) . If $(V', \psi', P') \supseteq (V^{\varepsilon}, \psi^{\varepsilon}, P^{\varepsilon})$ is obtained from $(V^{\varepsilon}, \psi^{\varepsilon}, P^{\varepsilon})$ by ω many applications of Lemma 3.3, (1.), then $P' \setminus \Psi'$ also contains the sequence (a_n) , and P' does not have a supremum in V'.

Case 3: The cut P does not have a supremum in V, and there exists $b \in P \setminus \Psi$. Let (V^a, ψ^a, P^a) be as in Lemma 3.3, (2.). Then one readily verifies (see proof of Lemma 3.7 in [1]) that $P^a \setminus \Psi^a$ equals the union of $P \setminus (\Psi \cup \{b\})$ and

$$\{v + \lambda a : v \in V, \lambda \in \mathbb{Q}^{\times}, \lambda > 0, b - v > a \text{ or } \lambda < 0, v - b < a\}.$$

In particular, $P^a \setminus \Psi^a$ contains a strictly increasing sequence (a_n) .

Hence in all three situations, we can reduce to the special case treated in the lemma, and thus finish the proof of the proposition.

4 The Independence Property for Closed H-Asymptotic Couples

Let \mathcal{L} be a language (in the sense of first-order logic) and $\varphi(x, y)$ an \mathcal{L} -formula, where $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_n)$. We say that the formula $\varphi(x, y)$ has the independence property with respect to an \mathcal{L} -structure $\mathbf{A} = (A, \ldots)$ if for every $k \in \mathbb{N}$ there is a sequence (a_1, \ldots, a_k) of elements of A^m such that for all subsets I of $\{1, \ldots, k\}$, there exists $b_I \in A^n$ with

$$\mathbf{A} \models \varphi(a_i, b_I) \qquad \Longleftrightarrow \quad i \in I,$$

for all i = 1, ..., k. A theory T in the language \mathcal{L} is said to have the independence property if all formulas $\varphi(x, y)$ as above have the independence property with respect to all $\mathbf{A} \models T$. A theory T not having the independence property signifies a certain well-behavedness of T, on a model-theoretic level: in this case, T shares many properties with stable theories (see [12]). There is an intriguing connection between the independence property and the notion of a Vapnik-Chernovenkis (VC) class from probability theory: A collection \mathcal{C} of subsets of a set X is called a **VC** class if $f_{\mathcal{C}}(n) < 2^n$ for some n, where

$$f_{\mathcal{C}}(n) := \max\{|\mathcal{C} \cap F| : F \text{ is an } n \text{-element subset of } X\}.$$

(In this case, $f_{\mathcal{C}} \colon \mathbb{N} \to \mathbb{N}$ is in fact of polynomial growth; see [4], Chapter 5, for this and some other properties of VC classes.) Laskowski [9] proved that a formula $\varphi(x, y)$ does not have the independence property with respect to **A** if and only if the collection $\mathcal{C}_{\varphi} = \{\varphi^{\mathbf{A}}(a, y) : a \in A^m\}$, where $\varphi^{\mathbf{A}}(a, y) := \{b \in A^n : \mathbf{A} \models \varphi(a, b)\}$, is a VC class.

Suppose now that \mathcal{L} contains a binary relation symbol <, and that T is a complete theory with quantifier elimination, all of whose models $\mathbf{A} = (A, <, ...)$ are expansions of a dense linear ordering (A, <) without endpoints. A **cut in** (A, <) is a downward closed subset $C \subseteq A$. The following is a special case of a criterion due to Poizat [11]:

Lemma 4.1 The theory T does not have the independence property if for all models \mathbf{A} and \mathbf{B} of T with $\mathbf{A} \preceq \mathbf{B}$ and all cuts C of A, there exist at most $2^{|A|}$ simple extensions $\mathbf{A} \subseteq \mathbf{A}\langle c \rangle \subseteq \mathbf{B}$ with $C < c < A \setminus C$, up to isomorphism over \mathbf{A} .

In [1], §6, we proved that given closed *H*-asymptotic triples $(V, \psi, P) \subseteq (V', \psi', P')$ and a cut *C* in *V*, there exist at most two simple extensions of (V, ψ, P) inside (V', ψ', P') with generator $c \in V'$ such that $C < c < V \setminus C$, up to isomorphism over *V*. This implies:

Corollary 4.2 The theory T_P of closed H-asymptotic triples does not have the independence property. (Hence the theory T of closed H-asymptotic couples also does not have the independence property.)

In fact, in [1] (Proposition 6.2) we showed something more: the theory T_P is weakly o-minimal, that is, for every closed *H*-asymptotic triple $\mathcal{V} = (V, \psi, P)$, every \mathcal{L}_P -formula $\varphi(x, y)$ with $x = (x_1, \ldots, x_m)$ and a single variable y, and every $v \in V^m$, the set $\varphi^{\mathcal{V}}(v, y)$ is a boolean combination of cuts in (V, <). This also implies the corollary above, by Proposition 7.3 in [10]. We want to remark that the argument indicated here also works in the two-sorted setting of "closed *H*-triples" as defined in [1], thus giving a natural example of a *locally o-minimal* (but not weakly o-minimal) theory without the independence property. (See [1], Proposition 5.1 for the definition of "locally o-minimal" and a proof of the local o-minimality of the theory of closed *H*-triples.) Unlike in the weakly o-minimal case, it seems not to be known whether every locally o-minimal theory extending the theory of dense linear orders does not have the independence property.

5 Relation to Contraction Groups

Our couples resemble the contraction groups of Kuhlmann [6], [7], and there is indeed a formal connection as indicated below. (A difference is that contraction groups have nothing like our cut P.)

Contraction groups arise as follows: let K be a Hardy field closed under taking logarithms (i.e. $f \in K^{>0} \Rightarrow \log f \in K$), with its valuation $v: K^{\times} \to V = v(K^{\times})$. The logarithm map then induces a so-called contraction map $\chi: V^{<0} \to V^{<0}$ by

$$\chi(v(f)) := v(\log f)$$
 for all $f \in K^{>0}$ with $v(f) < 0$,

which we extend to a map $V \to V$ by requiring $\chi(-y) = -\chi(y)$. If K is also closed under exponentiation, then V is divisible, and χ is surjective ($\chi(V) = V$). This means that the pair (V, χ) (ordered group with contraction map) is a **divisible centripetal contraction group**, as axiomatized in [6], where it was shown that the elementary theory of non-trivial divisible centripetal contraction groups is complete and has quantifier elimination in its natural language. (See the appendix of [8] for an exposition of these results.)

In the example above, we have for $f \in K^{>0}$, with y = v(f) < 0:

$$\psi(y) = v\big((\log f)'\big) = v\big((\log f)'/\log f\big) + v(\log f) = \psi\big(\chi(y)\big) + \chi(y)$$

Let now (V, ψ) be any closed *H*-asymptotic couple. For y < 0 in V, let $\chi(y) = z$ be the unique solution in V^* of the equation

$$z + \psi(z) = \psi(y). \tag{5.1}$$

For y > 0, set $\chi(y) := -\chi(-y)$, and $\chi(0) := 0$. It is easily seen that then (V, χ) is a non-trivial divisible centripetal contraction group; clearly χ is definable (without parameters) in (V, ψ) . Hence in particular, (V, χ) is weakly o-minimal, by Proposition 6.2 in [1]. We want to point out that the weak o-minimality of the theory of non-trivial divisible centripetal contraction groups (proved in [7]; see also [8], Theorem A.34) is a consequence of its completeness and the preceding observation: any model of this theory can be elementarily embedded into one of the form (V, χ) with χ definable in a closed *H*-asymptotic couple (V, ψ) (by choosing (V, ψ) sufficiently saturated), and hence is weakly o-minimal. (As the theory of closed *H*-asymptotic couples, the theory of non-trivial divisible centripetal contraction groups does not have the Steinitz exchange property for the definable closure operation.)

However, we cannot definably reconstruct ψ in (V, χ) :

Proposition 5.1 In no divisible centripetal contraction group (V, χ) can one define, even allowing parameters, a function $\psi: V^* \to V$ such that (V, ψ) is a closed *H*-asymptotic couple and $\chi + \psi \circ \chi = \psi$ on $V^{<0}$.

Before we can prove this we need some preparations. We let (V, ψ) denote a closed *H*-asymptotic couple. We also assume that $0 \in \Psi$, so there exists $1 \in V^*$ such that $\psi(1) = 1 > 0$.

Iterates of ψ . For n > 0, let $\psi^n \colon V_{\infty} \to V_{\infty}$ be the *n*-fold functional composition $\psi \circ \psi \circ \cdots \circ \psi$. Put

$$D_n := \left\{ v \in V : \psi^n(v) \neq \infty \right\}$$

For example $D_1 = V^*$, $D_2 = V^* \setminus \psi^{-1}(0)$, etc. By induction on *n* one shows easily that $\psi^n(D_n) = \Psi$.

Lemma 5.2 Let $v \in V^*$ and n > 0 such that $\psi^n(v) < 0$. Then $\psi^i(v) < 0$ for all i = 1, ..., n, and

$$\left[\psi^n(v)\right] < \left[\psi^{n-1}(v)\right] < \dots < \left[\psi(v)\right] < [v]$$

Proof For n = 1, note that $[v] \leq [\psi(v)]$ and (1.1) imply $\psi(v) \geq \psi(\psi(v))$, hence $-\psi(v) + \psi(-\psi(v)) \leq 0 < (\operatorname{id} + \psi)(V^{>0})$. Thus $\psi(v) > 0$, a contradiction.

Assume inductively that the lemma holds for a certain n > 0. Let $v \in D_{n+1}$ with $\psi^{n+1}(v) < 0$. Applying the case n = 1 to $\psi^n(v)$ instead of v gives $[\psi^{n+1}(v)] < [\psi^n(v)]$. By the inductive assumption the remaining inequalities will follow from $\psi^n(v) < 0$. Suppose $\psi^n(v) \ge 0$. Then $\psi^n(v) \in \Psi^{>0}$, thus $[\psi^n(v)] \le [1]$ by (A3). Hence $0 > \psi^{n+1}(v) \ge \psi(1) = 1$ by (1.1), a contradiction.

Let $D_{\infty} := \bigcap_{n>0} D_n$ and

$$V_{\inf} := \left\{ v \in D_{\infty} : \psi^n(v) < 0 \text{ for all } n > 0 \right\}.$$

$$V_{\inf} := V \setminus V_{\inf}.$$

Note that $[v_0] < [v]$ for all $v \in V_{inf}$, and that $V_{inf} \cap V^{>0}$ is closed upward and $V_{inf} \cap V^{<0}$ is closed downward.

Remark The previous lemma, together with $\psi^n(D_n) = \Psi$, implies that for all n > 0, we can find an element $v \in D_n$ such that all iterates

$$\psi(v), \psi^2(v), \dots, \psi^n(v)$$

are negative. Hence if (V, ψ) is \aleph_0 -saturated, then $V_{inf} \neq \emptyset$.

The proof of the next lemma is easy and left to the reader.

Lemma 5.3 V_{fin} is a convex subspace of V, and $(V_{\text{fin}}, \psi | V_{\text{fin}}^*)$ is a closed H-asymptotic couple. Moreover, $\psi(V_{\text{inf}}) = V_{\text{inf}} \cap V^{<0}$.

Let χ be the contraction map defined by $\psi(v) = \chi(v) + \psi(\chi(v))$ for all v < 0.

Lemma 5.4 Let $v \in V^{<0}$ and $\psi^3(v) < 0$. Then $\chi(v) = \psi(v) - \psi^2(v)$.

Proof We have $[v] > [\psi(v)]$, so $\psi(v) - \psi^2(v) < 0$. We compute:

$$(\psi(v) - \psi^2(v)) + \psi(\psi(v) - \psi^2(v)) = (\psi(v) - \psi^2(v)) + \psi^2(v) = \psi(v).$$

By the defining equation (5.1) of χ , it follows that $\chi(v) = \psi(v) - \psi^2(v)$.

Proof of Proposition 5.1. Suppose (V, ψ) is a closed *H*-asymptotic couple such that we can define ψ in (V, χ) . We may assume that (V, ψ) is \aleph_0 -saturated. For ease of notation we shall also assume that ψ is actually defined without parameters in (V, χ) . (In the general case the role of V_{fin} below is taken over by the convex hull in *V* of a closure inside (V, ψ) of the substructure of (V, ψ) generated by the finitely many parameters used to define ψ .) If $0 \in (\text{id} + \psi)(V^{<0})$, then (V, ψ, Ψ) is a closed *H*-asymptotic triple. Otherwise, we let $1 \in V^{>0}$ be the unique solution to the equation $x + \psi(x) = 0$, and pass from (V, ψ) to (V, ψ_0) , where $\psi_0 := \psi + 1 - \psi(1)$, so that $\psi_0(1) = 1 > 0$. We see that we may in fact assume that (V, ψ, Ψ) is a closed *H*-asymptotic triple, with a distinguished positive element 1.

We now modify ψ to a function $\psi: V^* \to V$ by putting

$$\widetilde{\psi}(v) := \begin{cases} \psi(v), & \text{if } v \in V_{\text{fin}}^* \\ \psi(v) + 1, & \text{if } v \in V_{\text{inf}} \end{cases}$$

Then $(V, \tilde{\psi})$ is still an *H*-asymptotic couple, and $\tilde{\psi}(V_{inf}) = \psi(V_{inf})$, as is easily checked. Thus $\Psi = \tilde{\psi}(V^*)$, so $(V, \tilde{\psi})$ is even a *closed H*-asymptotic couple. Let $\tilde{\chi}$ be the contraction map associated to $(V, \tilde{\psi})$. By completeness of the theory of closed *H*-asymptotic triples, the same formula that defines ψ in (V, χ) will define $\tilde{\psi}$ in $(V, \tilde{\chi})$. By Lemma 5.4, $\chi = \tilde{\chi}$, hence $\psi = \tilde{\psi}$, contradiction.

References

- 1. M. Aschenbrenner, L. van den Dries, Closed asymptotic couples, J. Algebra **225** (2000), 309–358.
- 2. ____, H-fields and their Liouville extensions, Math. Z. 242 (2002), 543-588.
- N. Bourbaki, Fonctions d'une Variable Réelle, Chapitre V, Appendice Corps de Hardy. Fonctions (H), Hermann, Paris (1976).
- L. van den Dries, Tame Topology and O-Minimal Structures, London Mathematical Society Lecture Note Series 248, Cambridge University Press, Cambridge (1998).
- L. van den Dries, D. Marker, A. Macintyre, *Logarithmic-exponential series*, Ann. Pure Appl. Logic 111 (2001), 61–113.
- 6. F.-V. Kuhlmann, Abelian groups with contractions, I, Contemp. Math. 171 (1994), 217–241.
- _____, Abelian groups with contractions, II: Weak o-minimality, in: A. Facchini, C. Menini (eds.): Abelian Groups and Modules, Kluwer, Dordrecht (1995), 323–342.
- S. Kuhlmann, Ordered Exponential Fields, Fields Institute Monographs 12, American Mathematical Society, Providence, RI (2000).
- M. C. Laskowski, Vapnik-Chernovenkis classes of definable sets, J. London Math. Soc. (2) 45 (1992), 377–384.
- D. Macpherson, D. Marker, C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc. 352 (2000), 5435–5483 (electronic).
- 11. B. Poizat, Théories instables, J. Symbolic Logic 46 (1981), 513-522.
- 12. _____, Cours de Théorie des Modèles, Nur al-Mantiq wal-Ma'rifah, Lyon (1985).
- M. Rosenlicht, The nonminimality of the differential closure, Pacific J. Math. 52 (1974), 529–537.
- 14. _____, On the value group of a differential valuation, Amer. J. Math. 101 (1979), 258–266.
- 15. _____, Differential valuations, Pacific J. Math. 86 (1980), 301-319.
- _____, On the value group of a differential valuation, II, Amer. J. Math. 103 (1981), 977– 996.
- 17. _____, Hardy fields, J. Math. Analysis and Appl. 93 (1983), 297–311.
- 18. _____, The rank of a Hardy field, Trans. Amer. Math. Soc. 280 (1983), 659-671.