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Abstract. Asymptotic couples (of H-type) try to capture the structure
induced by the derivation of a Hardy field K on the value group of the
natural valuation on K. In this note we continue the study of algebraic
and model-theoretic aspects of asymptotic couples undertaken in [1]. We
give a short exposition of some basic facts about asymptotic couples, and
address a few topics left out in that paper: the (non-) minimality of the
“closure” of an asymptotic couple of H-type, the Vapnik-Chernovenkis
property for sets definable in closed asymptotic couples of H-type, and
the relation of asymptotic couples of H-type to the “contraction groups”
of [6].

Introduction

Let K be a Hardy field, that is (see [3], [17]), an ordered differential field of
germs at +∞ of real-valued differentiable functions defined on intervals (a,+∞),
with a ∈ R. (So two such functions determine the same element ofK if they coincide
on an interval (b,+∞) on which they are both defined; we will use the same letter
for a function and its germ.) Every element f of K is ultimately monotonic, so
limx→∞ f(x) exists as an element of R ∪ {±∞}. The valuation

v : K× = K \ {0} → V = v(K×)

associated to the place f 7→ limx→∞ f(x) (where we identify +∞ and −∞) has
the crucial property that v(f ′) only depends on v(f), for f ∈ K× with v(f) 6= 0.
(This is a consequence of L’Hospital’s Rule, see [17].) So we have a well-defined
map ψ : V ∗ = V \ {0} → V given by

ψ
(
v(f)

)
:= v(f ′/f) for any f ∈ K× such that v(f) 6= 0.
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The pair V = (V, ψ), called the asymptotic couple of K, is of key importance in
understanding the interaction of the ordering and the derivation of K. It has the
following fundamental properties: For all elements f, g ∈ K× with a = v(f) 6= 0,
b = v(g) 6= 0,

(A1) ψ(ra) = ψ(a) for all r ∈ Z, r 6= 0,
(A2) ψ(a+ b) ≥ min

{
ψ(a), ψ(b)

}
, where ψ(0) := ∞ > V ,

(A3) ψ(a) < ψ(b) + |b|.
(See [14], Theorem 4.) Property (A2) expresses the fact that ψ is a valuation on
the ordered abelian group V (taking values in V itself). In particular, it follows
that for a, b as above, ψ(a + b) = min

{
ψ(a), ψ(b)

}
if ψ(a) 6= ψ(b). Property (A3)

may be seen as a valuation-theoretic formulation of L’Hospital’s Rule, see [15].
Moreover, the map ψ is decreasing on the set of positive elements of V : For all

a, b ∈ V ,

(H) 0 < a ≤ b =⇒ ψ(a) ≥ ψ(b).

(Hence by (A1), ψ is increasing on the set of negative elements of V .) Note that if
the Hardy field K contains the germ x of the identity function on R, then ψ(1) = 1,
where we put 1 := v(x−1) > 0.

By an asymptotic couple, we mean a pair V = (V, ψ) consisting of an ordered
abelian group V and a map ψ : V ∗ → V satisfying (A1)–(A3) above, for all a, b ∈
V ∗. As in [2], we say that an asymptotic couple V = (V, ψ) is of H-type if (H)
holds for all a, b ∈ V . We will sometimes also say “V is an H-asymptotic couple”
instead of “V is an asymptotic couple of H-type.” Rosenlicht, in a series of papers
([14], [15], [16], [18]) studied in detail the asymptotic couples (V, ψ) where the
ordered abelian group V has finite rank. The paper [1] contains an investigation
of the basic model-theoretic properties of H-asymptotic couples. In this note, we
want to supplement it by considering a few issues left open in that paper. Our hope
is that insight into algebraic and model-theoretic properties of asymptotic couples
will ultimately become useful in the recently initiated project of understanding the
model theory of Hardy fields and the field of LE-series. (See [2], [5].)

In section 1, we first review some basic facts about asymptotic couples. We only
give a few proofs, referring to [1] and [2] for a more detailed exposition. From results
of [1], it follows that the theory of H-asymptotic couples has a model companion (in
a natural language), the theory of “closedH-asymptotic couples.” (The definition of
a closedH-asymptotic couple, as well as the statement of the main theorem from [1],
can be found in section 2. See [12] for the notion “model companion”.) In particular,
each H-asymptotic couple V can be embedded into a closed one. In section 3, we
show that in general there is no closedH-asymptotic couple containing V minimally.
Section 4 consists of a few remarks about another model-theoretic property of the
class of closed H-asymptotic couples, called the independence property. Finally, in
section 5 we discuss a connection to Kuhlmann’s “contraction groups” from [6].

In [1], we mainly worked in the setting of “H-couples”: these are H-asymptotic
couples (V, ψ) of a certain kind, where V has additional structure as an ordered
vector space over an ordered field. In Section 6 of that paper, we showed how to
adapt the results about H-couples to the case of H-asymptotic couples. Here, we
right away restrict our attention to H-asymptotic couples, for convenience. We
don’t assume familiarity of the reader with [1]. In fact, sections 1–4 of the present
note may serve as a quick overview of some of the results from that paper. However,
we will freely use basic model-theoretic notions (see e.g. [12]).
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Notations. Throughout, m and n range over the set N = {0, 1, 2, . . . } of nat-
ural numbers. Our notations concerning linearly ordered sets and ordered abelian
groups are fairly standard. (If in doubt, see [1], §1.) If V is an ordered abelian group,
we let V ∗ = V \ {0}, and we put S>0 = {v ∈ S : v > 0}, S<0 = {v ∈ S : v < 0},
for a subset S of V . We define an equivalence relation ∼ on V by

v ∼ w :⇐⇒ |v| ≤ m|w| and |w| ≤ n|v| for some m,n > 0.

The equivalence class of an element v ∈ V is written as [v], and is called its
archimedean class. By [V ] we denote the set of archimedean classes of V , and
we set [V ∗] := [V ] \

{
[0]

}
. We linearly order [V ] by setting

[v] < [w] :⇐⇒ n|v| < |w| for all n

⇐⇒ [v] 6= [w] and |v| < |w|.
Some simple facts about archimedean classes: For v, w ∈ V , r ∈ Z \ {0}, we have

1. [v] = {0} ⇐⇒ v = 0,
2. [v] = [rv],
3. [v + w] ≤ max

{
[v], [w]

}
, with [v + w] = max

{
[v], [w]

}
, if [v] 6= [w].

If V ′ is an ordered abelian group containing V as ordered subgroup, the inclusion
map V ↪→ V ′ induces an embedding [V ] → [V ′] of linearly ordered sets. We identify
[V ] with its image under this embedding.

We consider V as a subgroup of the divisible abelian group QV = Q ⊗Z V by
means of the embedding v 7→ 1⊗ v. We equip QV with the unique linear ordering
extending the one on V and making QV into an ordered abelian group. Note that
[QV ] = [V ]. We consider a divisible ordered abelian group as an ordered vector
space over the ordered field Q as usual.

1 Basic Properties

In this section, V = (V, ψ) is an asymptotic couple. We set Ψ := ψ(V ∗), and
with id denoting the identity function on V , we let

(id+ψ)(V ∗) =
{
x+ ψ(x) : x ∈ V ∗

}
.

Similarly, we define (id+ψ)
(
V >0

)
and (id +ψ)

(
V <0

)
. Also, let V∞ := V ∪ {∞},

with ∞ > v for all v ∈ V and v + ∞ = ∞ + v = −∞ = ∞ for all v ∈ V∞. It is
convenient to extend ψ to a map V∞ → V∞ by ψ(0) := ψ(∞) := ∞.

Remark For a ∈ V we define ψ+a : V ∗ → V by (ψ+a)(x) := ψ(x)+a. Then
clearly (V, ψ + a) is also an asymptotic couple, with (ψ + a)(V ∗) = Ψ + a. Also,
(V, ψ) satisfies (H) if and only if (V, ψ + a) does.

For the next proposition, see also [1], §3, and [2], Proposition 2.3. Part (2.) is
Theorem 5 in [15]; we give here a much shorter proof.

Proposition 1.1 Let v, w ∈ V .
1. If v, w 6= 0, then n

(
ψ(w)− ψ(v)

)
< |v|.

2. If v, w, v − w 6= 0, then
[
ψ(v)− ψ(w)

]
< [v − w].

3. The map x 7→ x+ ψ(x) : V ∗ → V is strictly increasing.
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Proof For (1.), let v, w ∈ V ∗, n ∈ N. We may assume ψ(w) > ψ(v), v, w > 0,
and n > 0. By passing from ψ to ψ − ψ(v), if necessary, we can reduce to the case
that ψ(v) = 0 < ψ(w). We then have to show nψ(w) < v. We proceed by induction
on n. In the case n = 1, nψ(w) = ψ(w) < v + ψ(v) = v holds by axiom (A3) for
asymptotic couples. Now assume that nψ(w) < v. If (n+ 1)ψ(w) ≤ ψ(u) for some
u ∈ V ∗, we clearly have (n+ 1)ψ(w) ≤ ψ(u) < v + ψ(v) = v, by axiom (A3) again.
So we can assume that (n+ 1)ψ(w) > Ψ. Note that ψ2(w) > 0, since ψ(w) > 0, so
ψ(w) < ψ(w) + ψ

(
ψ(w)

)
. Hence

ψ
(
v − (n+ 1)ψ(w)

)
= min

{
ψ(v), ψ2(w)

}
= ψ(v) = 0,

by (A2), so we get

Ψ < |v − (n+ 1)ψ(w)|+ ψ
(
v − (n+ 1)ψ(w)

)
= |v − (n+ 1)ψ(w)|.

Suppose v ≤ (n + 1)ψ(w). Then, in particular, ψ(w) < (n + 1)ψ(w) − v, hence
v < nψ(w), contradicting the induction hypothesis. Therefore (n + 1)ψ(w) < v,
completing the induction step.— For (2.), let v, w 6= 0 with d := v − w 6= 0. We
have to show n|ψ(v) − ψ(w)| < |d| for all n. If ψ(d) > ψ(w), then ψ(v) = ψ(w),
since ψ is a valuation on the ordered abelian group V . Suppose ψ(d) ≤ ψ(w). Then
we have ψ(d) ≤ ψ(v), hence by (1.):

nψ(d) ≤ nψ(w) < nψ(d) + |d|, nψ(d) ≤ nψ(v) < nψ(d) + |d|.

Thus n|ψ(v)−ψ(w)| < |d| in all cases.— Property (3.) follows easily from (2.).

By (A1) and part (1.) of the proposition above, ψ extends uniquely to a map
(QV )∗ → V , also denoted by ψ, such that (QV, ψ) is an asymptotic couple. Note
that ψ

(
(QV )∗

)
= Ψ.

Some properties of H-asymptotic couples. From now on, we want to
concentrate on H-asymptotic couples. So suppose that V = (V, ψ) is of H-type.
Note that by axioms (A1) and (H), we have

[v] ≤ [w] =⇒ ψ(v) ≥ ψ(w) for all v, w ∈ V ∗. (1.1)

In particular, ψ is constant on archimedean classes of V , i.e., for all v, w ∈ V
with [v] = [w], we have ψ(v) = ψ(w). The argument used for making QV into an
asymptotic couple extending (V, ψ) may be generalized, using (1.1), to show:

Corollary 1.2 Let V ′ be an ordered abelian group containing V as ordered
subgroup such that [V ] = [V ′]. Then there is a unique extension of ψ to a function
ψ′ : (V ′)∗ → V ′ such that (V ′, ψ′) is an H-asymptotic couple.

Lemma 1.3 Let w ∈ V ∗. If
[
ψ(w)

]
≥ [w], then

[
ψ

(
ψ(w)

)]
=

[
ψ(w)

]
.

Proof By (1.1), we may suppose that
[
ψ(w)

]
> [w]. By Proposition 1.1,

(2.), and property (3.) of archimedean classes listed in the introduction, we have[
ψ(w)− ψ

(
ψ(w)

)]
<

[
w − ψ(w)

]
=

[
ψ(w)

]
and hence

[
ψ

(
ψ(w)

)]
=

[
ψ(w)

]
.

Remark The lemma and (1.1) imply that if w ∈ V ∗ satisfies [w] ≤
[
ψ(w)

]
,

then y + ψ(y) = 0 for y = −ψ(w) or y = −ψ
(
ψ(w)

)
.

The following facts about id+ψ are fundamental (see also [1], Section 3):
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Corollary 1.4 The set (id+ψ)
(
V >0

)
is closed upward. The set (id+ψ)

(
V <0

)
is closed downward, and

(− id+ψ)
(
V >0

)
= (id+ψ)

(
V <0

)
=

{
a ∈ V : a < ψ(x) for some x ∈ V ∗

}
. (1.2)

There is at most one element v ∈ V such that Ψ < v < (id+ψ)
(
V >0

)
. If Ψ has a

largest element, then there is no v ∈ V with Ψ < v < (id+ψ)
(
V >0

)
.

Proof Let a > x + ψ(x) for some x > 0; we want to show a ∈ (id+ψ)
(
V >0

)
.

Passing from (V, ψ) to (V, ψ − a) if necessary, we reduce to the case a = 0. Then
[x] ≤

[
ψ(x)

]
, hence a = 0 ∈ (id+ψ)

(
V >0

)
by the previous remark and Propo-

sition 1.1, (3.). So (id +ψ)
(
V >0

)
is closed upward, and similarly one shows that

(id+ψ)
(
V <0

)
is closed downward.

The equalities in (1.2) are clear except for the inclusion “⊇” in the last equa-
tion. For this, let a, x ∈ V , x < 0, with a < ψ(x); we want to show that
a ∈ (id+ψ)

(
V <0

)
. As above, we may assume that a = 0. If [x] ≤

[
ψ(x)

]
, it

follows as before that 0 ∈ (id+ψ)
(
V <0

)
. If

[
ψ(x)

]
< [x], then 0 < x+ ψ(x), hence

0 ∈ (id+ψ)
(
V <0

)
, since (id+ψ)

(
V <0

)
is closed downward.

If u, v ∈ V satisfy ψ(w) ≤ u < v < w + ψ(w) for all w ∈ V >0, then v <
(v − u) + ψ(v − u) ≤ (v − u) + u = v, a contradiction. This shows the rest.

As a consequence of the last corollary, V \(id+ψ)(V ∗) has at most one element,
and (id+ψ)(V ∗) 6= V if and only if Ψ has a supremum in V , and in this case
V \ (id+ψ)(V ∗) = {supΨ}. We refer the reader to [1], Figure 1, for a picture of
the behavior of the maps ψ and id+ψ on V ∗.

2 Closed H-Asymptotic Couples

A cut of an H-asymptotic couple (V, ψ) is a set P ⊆ V which is closed down-
ward, contains Ψ, and is disjoint from (id +ψ)

(
V >0

)
. (So P < (id+ψ)

(
V >0

)
.) By

Corollary 1.4, an H-asymptotic couple (V, ψ) has at most two cuts, and it has two
cuts if and only if Ψ < v < (id+ψ)

(
V >0

)
for some v ∈ V . If Ψ has a maximum,

then (V, ψ) has exactly one cut P =
{
a ∈ V : a ≤ ψ(x) for some x ∈ V ∗

}
.

Definition 2.1 An H-asymptotic couple V = (V, ψ) is closed if
1. V is divisible (as an abelian group),
2. (id +ψ)(V ∗) = V , and
3. Ψ = (id +ψ)

(
V <0

)
.

(In this case, P = Ψ is the only cut of V.)

Example 1 Let K be a Hardy field containing R and closed under exponentia-
tion (that is, f ∈ K ⇒ exp f ∈ K) and integration (i.e. f ∈ K ⇒ ∃g ∈ K : g′ = f).
Then the asymptotic couple of K (as defined in the introduction) is a closed H-
asymptotic couple.

In [1], Definition 6.2, we also introduced the following notion, under the some-
what technical name “H0-triple”:

Definition 2.2 An asymptotic triple of H-type, or H-asymptotic triple
for short, is a triple (V, ψ, P ), where (V, ψ) is an H-asymptotic couple and P a cut
of (V, ψ), such that

1. V is divisible, and
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2. there exists a positive element 1 of V with ψ(1) = 1. (Equivalently, 0 ∈
(id+ψ)

(
V <0

)
.)

By Proposition 1.1, (2.), the element 1 in (2.) is uniquely determined. If (V, ψ, P )
is an H-asymptotic triple such that (V, ψ) is a closed H-asymptotic couple, then
P = Ψ, and (V, ψ,Ψ) is called a closed H-asymptotic triple.

We can naturally consider asymptotic couples (V, ψ) as model-theoretic struc-
tures (V∞, ψ) in the first-order language L = {0,+,−, ψ,∞}. The H-asymptotic
couples are then the models of a universal theory in L. Similarly, when dealing
with H-asymptotic triples (V, ψ, P ) as model-theoretic objects, we construe them
as LP -structures (V∞, ψ, 1, P ), where LP is the extension of L by

1. a constant symbol 1 for the distinguished element 1 ∈ V >0 with ψ(1) = 1,
2. a unary predicate symbol for P , and
3. unary function symbols δn for each n > 0, to be interpreted on V as the

scalar multiplication by 1/n (and δn(∞) := ∞).

The H-asymptotic triples are models of a universal theory in LP . Let T be the
theory of closed H-asymptotic couples, in the language L, and let TP be the theory
of closed H-asymptotic triples, in the language LP . One of the main results from
[1] (Corollary 6.2) is:

Theorem 2.3 The theory TP is complete, decidable, and has elimination of
quantifiers. It is the model completion of the theory of H-asymptotic triples.

From this we get immediately:

Corollary 2.4 The theory T is the model companion of the theory of H-
asymptotic couples.

Remark The division symbols δn are included in the language LP in order
to guarantee quantifier elimination for TP . Here is an instructive example to show
that if we omit them, then in the resulting smaller language the theory of closed
H-asymptotic triples would not eliminate quantifiers.

Let (W,ψ) be a closed H-asymptotic couple. Choose an element b /∈ W in an
ordered vector space W ′ := W ⊕ Qb over Q extending W , such that Ψ < b

2 <

(id+ψ)
(
W>0

)
. Then, by Lemma 4.5 in [1], [W ] = [W ′], hence ψ extends uniquely

to a map ψ′ : (W ′)∗ → W such that W ′ = (W ′, ψ′) is an H-asymptotic couple
(Corollary 1.2). Note that [W ] = [W ′] implies

Ψ′ = Ψ <
b

2
< (id+ψ′)

(
(W ′)>0

)
.

Hence (W ′, ψ′) has two cuts. Now consider the ordered abelian group V :=
W ⊕ Zb ⊆ W ′. Since Ψ′ = Ψ ⊆ W , (V, ψ′|V ∗) is an H-asymptotic couple with
(V, ψ′|V ∗) ⊆ (W ′, ψ′). One checks easily that the two distinct cuts of (W ′, ψ′) have
the same intersection with V , namely

{
v ∈ V : v ≤ ψ(w) for some w ∈W

}
.

3 Non-Minimality of Closures

According to Theorem 2.3, every H-asymptotic triple can be embedded into a
closed H-asymptotic triple. In fact, in the course of the proof of this theorem, we
showed a more precise statement:
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Proposition 3.1 Every H-asymptotic triple V = (V, ψ, P ) has a closure,
that is, a closed H-asymptotic triple Vc = (V c, ψc, P c) extending V, such that any
embedding V → V ′ into a closed H-asymptotic triple V ′ extends to an embedding
Vc → V ′. Any two closures of V are isomorphic over V.

(See [1], Corollaries 5.3 and 6.1.) A natural question is if the closure Vc of
an H-asymptotic triple V is always minimal over V, i.e. there exists no closed H-
asymptotic triple W ⊇ V strictly contained in Vc as an LP -substructure. This
turns out to be false, in a very strong way:

Proposition 3.2 Let V = (V, ψ, P ) be an H-asymptotic triple which is not
closed. Then the closure Vc of V is not minimal over V.

(This is similar, e.g., to the situation encountered with differential fields and
differential closures, [13].)

Before we give a proof of Proposition 3.2, we outline how Vc is constructed
from V. One first shows the following embedding statements (see [1], Lemmas 3.5,
3.6 and 3.7 for a proof):

Lemma 3.3 Let V = (V, ψ, P ) be an H-asymptotic triple.
1. Suppose P has a largest element, and let V ε := V ⊕ Qε be an extension

of the Q-vector space V . Then there exists a unique linear ordering of V ε,
a unique map ψε : (V ε)∗ → V ε, and a unique subset P ε of V ε such that
(V ε, ψε, P ε) is an H-asymptotic triple extending (V, ψ, P ) with ε > 0 and
maxP = −ε+ ψε(ε).

2. Suppose there exists b ∈ V with P < b < (id+ψ)
(
V >0

)
. Let V ε := V ⊕Qε

be an extension of the Q-vector space V . Then there exists a unique linear
ordering of V ε, a unique map ψε : (V ε)∗ → V ε, and a unique subset P ε ⊆ V ε

such that (V ε, ψε, P ε) is an H-asymptotic triple extending (V, ψ, P ) with
ε > 0 and b = ε+ ψε(ε).

3. Suppose b ∈ P\Ψ. Let V a := V ⊕Qa be an extension of the Q-vector space V .
There exists a unique linear ordering of V a, a unique map ψa : (V a)∗ → V a,
and a unique P a ⊆ V a, such that (V a, ψa, P a) is an H-asymptotic triple
extending (V, ψ, P ) with a > 0 and ψa(a) = b.

Note that (V ε, ψε) as in (1.) or (2.) of the lemma has the property that
ψε

(
(V ε)∗

)
has a maximum. So part (1.) applies to (V ε, ψε, P ε) in place of

(V, ψ, P ). Also, if (id +ψ)(V ∗) = V , then (id+ψa)
(
(V a)∗

)
= V a. Therefore, iter-

ating (1.)–(3.), if necessary transfinitely often, we can obtain an increasing chain of
H-asymptotic triples extending (V, ψ, P ) whose union is a closure of (V, ψ, P ).

Proof of Proposition 3.2. Let V = (V, ψ, P ) be an H-asymptotic triple
which is not closed. We have to find a closed H-asymptotic triple W with V ⊆ W
which is strictly contained (as a substructure) in a closure of V. Let us first consider
a special case:

Lemma 3.4 Suppose that P does not have a supremum in V , and P \Ψ con-
tains a strictly increasing sequence (an)n∈N. Then the closure of V is not minimal
over V.

Proof Using Lemma 3.3, (3.), we construct a strictly increasing sequence of
H-asymptotic triples (Vn)n∈N such that

1. V0 = V = (V, ψ, P ),
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2. Vn+1 = Vn ⊕Qvn, ψn+1(vn) = an, for all n.

We let

Vω := V ⊕
⊕
n∈N

Qvn =
⋃

n<ω

Vn, Pω :=
⋃

n<ω

Pn,

and ψω the common extension of all ψn to Vω. Now construct another strictly in-
creasing sequence of H-asymptotic triples (V ′n)n∈N, contained in the H-asymptotic
triple Vω = (Vω, ψω, Pω), with the following properties:

1. V ′0 = V,
2. V ′n+1 = V ′n ⊕Qv′n with v′n := vn + vn+1, ψ′n+1(v

′
n) = an, for all n.

Note that [Vn] = [V ′n] for all n < ω. Again we let

V ′ω :=
⋃

n<ω

V ′n ⊆ Vω, P ′ω := Pω ∩ V ′ω,

and ψ′ω the common extension of all ψ′n to V ′ω. Then V ′ω = (V ′ω, ψ
′
ω, P

′
ω) is an

asymptotic couple such that V ⊆ V ′ω ⊆ Vω, [V ′ω] = [Vω], and one easily verifies that
vn /∈ V ′ω for all n. Fix a closure Vc = (V c, ψc, P c) of Vω. (So Vc is also a closure
of V.) Now using Lemma 3.3, (3.) repeatedly again, starting from V ′ω, we obtain
a strictly increasing sequence (V ′α)ω≤α<µ of H-asymptotic triples (for some ordinal
µ) such that

1. V ′ω ⊆ V ′α ⊆ Vc for all α < µ,
2. V ′α+1 = V ′α ⊕Qv′α with ψ′α+1(v

′
α) ∈ P ′α \ ψ′α

(
(V ′α)∗

)
for all α < α+ 1 < µ,

3. V ′λ =
⋃

α<λ V ′α for all limit ordinals λ < µ, and
4. (V ′)c :=

⋃
α<λ V ′α is closed.

So (V ′)c is a closure of V ′ω, and hence a closure of V, contained in the closure Vc of
V. One verifies easily that vn /∈ (V ′)c for all n. Hence Vc is not minimal over V, as
claimed.

We now turn to the general case. Since V is assumed to be non-closed, one of
the parts of Lemma 3.3 is applicable. The following three possibilities arise:

Case 1: The cut P has a maximum. Let (V ε, ψε, P ε) be as in Lemma 3.3, (1.);
then P ε \Ψε is the union of P \Ψ and the set{
v + λε : v ∈ V , λ ∈ Q×, and v < maxP or v = maxP & λ < 1

}
.

Hence P ε \ Ψε certainly contains a strictly increasing sequence (an)n∈N.
If (V ′, ψ′, P ′) is obtained from (V ε, ψε, P ε) by ω many applications of
Lemma 3.3, (1.), then P ′ \Ψ′ also contains the sequence (an), and P ′ does
not have a supremum in V ′.

Case 2: We have P < b < (id+ψ)
(
V >0

)
for some (uniquely determined)

element b ∈ V . Then we let (V ε, ψε, P ε) be as in Lemma 3.3, (2.). The set
P ε \Ψε is the union of P \Ψ and{

v + λε : v ∈ V , λ ∈ Q×, and v < b or v = b & λ < −1
}
,

so contains a strictly increasing sequence (an). If (V ′, ψ′, P ′) ⊇ (V ε, ψε, P ε)
is obtained from (V ε, ψε, P ε) by ω many applications of Lemma 3.3, (1.),
then P ′ \Ψ′ also contains the sequence (an), and P ′ does not have a supre-
mum in V ′.
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Case 3: The cut P does not have a supremum in V , and there exists b ∈ P \Ψ.
Let (V a, ψa, P a) be as in Lemma 3.3, (2.). Then one readily verifies (see
proof of Lemma 3.7 in [1]) that P a \ Ψa equals the union of P \ (Ψ ∪ {b})
and{

v + λa : v ∈ V , λ ∈ Q×, λ > 0, b− v > a or λ < 0, v − b < a
}
.

In particular, P a \Ψa contains a strictly increasing sequence (an).
Hence in all three situations, we can reduce to the special case treated in the lemma,
and thus finish the proof of the proposition.

4 The Independence Property for Closed H-Asymptotic Couples

Let L be a language (in the sense of first-order logic) and ϕ(x, y) an L-formula,
where x = (x1, . . . , xm) and y = (y1, . . . , yn). We say that the formula ϕ(x, y) has
the independence property with respect to an L-structure A = (A, . . . ) if for
every k ∈ N there is a sequence (a1, . . . , ak) of elements of Am such that for all
subsets I of {1, . . . , k}, there exists bI ∈ An with

A |= ϕ(ai, bI) ⇐⇒ i ∈ I,
for all i = 1, . . . , k. A theory T in the language L is said to have the independence
property if all formulas ϕ(x, y) as above have the independence property with re-
spect to all A |= T . A theory T not having the independence property signifies
a certain well-behavedness of T , on a model-theoretic level: in this case, T shares
many properties with stable theories (see [12]). There is an intriguing connection
between the independence property and the notion of a Vapnik-Chernovenkis (VC)
class from probability theory: A collection C of subsets of a set X is called a VC
class if fC(n) < 2n for some n, where

fC(n) := max
{
|C ∩ F | : F is an n-element subset of X

}
.

(In this case, fC : N → N is in fact of polynomial growth; see [4], Chapter 5, for
this and some other properties of VC classes.) Laskowski [9] proved that a formula
ϕ(x, y) does not have the independence property with respect to A if and only if the
collection Cϕ =

{
ϕA(a, y) : a ∈ Am

}
, where ϕA(a, y) :=

{
b ∈ An : A |= ϕ(a, b)

}
, is

a VC class.
Suppose now that L contains a binary relation symbol <, and that T is a

complete theory with quantifier elimination, all of whose models A = (A,<, . . . )
are expansions of a dense linear ordering (A,<) without endpoints. A cut in (A,<)
is a downward closed subset C ⊆ A. The following is a special case of a criterion
due to Poizat [11]:

Lemma 4.1 The theory T does not have the independence property if for all
models A and B of T with A � B and all cuts C of A, there exist at most 2|A|

simple extensions A ⊆ A〈c〉 ⊆ B with C < c < A \ C, up to isomorphism over A.

In [1], §6, we proved that given closed H-asymptotic triples (V, ψ, P ) ⊆
(V ′, ψ′, P ′) and a cut C in V , there exist at most two simple extensions of (V, ψ, P )
inside (V ′, ψ′, P ′) with generator c ∈ V ′ such that C < c < V \C, up to isomorphism
over V . This implies:

Corollary 4.2 The theory TP of closed H-asymptotic triples does not have the
independence property. (Hence the theory T of closed H-asymptotic couples also
does not have the independence property.)
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In fact, in [1] (Proposition 6.2) we showed something more: the theory TP

is weakly o-minimal, that is, for every closed H-asymptotic triple V = (V, ψ, P ),
every LP -formula ϕ(x, y) with x = (x1, . . . , xm) and a single variable y, and every
v ∈ V m, the set ϕV(v, y) is a boolean combination of cuts in (V,<). This also
implies the corollary above, by Proposition 7.3 in [10]. We want to remark that the
argument indicated here also works in the two-sorted setting of “closedH-triples” as
defined in [1], thus giving a natural example of a locally o-minimal (but not weakly
o-minimal) theory without the independence property. (See [1], Proposition 5.1 for
the definition of “locally o-minimal” and a proof of the local o-minimality of the
theory of closed H-triples.) Unlike in the weakly o-minimal case, it seems not to be
known whether every locally o-minimal theory extending the theory of dense linear
orders does not have the independence property.

5 Relation to Contraction Groups

Our couples resemble the contraction groups of Kuhlmann [6], [7], and there
is indeed a formal connection as indicated below. (A difference is that contraction
groups have nothing like our cut P .)

Contraction groups arise as follows: let K be a Hardy field closed under taking
logarithms (i.e. f ∈ K>0 ⇒ log f ∈ K), with its valuation v : K× → V = v(K×).
The logarithm map then induces a so-called contraction map χ : V <0 → V <0 by

χ
(
v(f)

)
:= v(log f) for all f ∈ K>0 with v(f) < 0,

which we extend to a map V → V by requiring χ(−y) = −χ(y). If K is also closed
under exponentiation, then V is divisible, and χ is surjective (χ(V ) = V ). This
means that the pair (V, χ) (ordered group with contraction map) is a divisible
centripetal contraction group, as axiomatized in [6], where it was shown that
the elementary theory of non-trivial divisible centripetal contraction groups is com-
plete and has quantifier elimination in its natural language. (See the appendix of
[8] for an exposition of these results.)

In the example above, we have for f ∈ K>0, with y = v(f) < 0:

ψ(y) = v
(
(log f)′

)
= v

(
(log f)′/ log f

)
+ v(log f) = ψ

(
χ(y)

)
+ χ(y)

Let now (V, ψ) be any closed H-asymptotic couple. For y < 0 in V , let χ(y) = z
be the unique solution in V ∗ of the equation

z + ψ(z) = ψ(y). (5.1)

For y > 0, set χ(y) := −χ(−y), and χ(0) := 0. It is easily seen that then (V, χ) is
a non-trivial divisible centripetal contraction group; clearly χ is definable (without
parameters) in (V, ψ). Hence in particular, (V, χ) is weakly o-minimal, by Propo-
sition 6.2 in [1]. We want to point out that the weak o-minimality of the theory of
non-trivial divisible centripetal contraction groups (proved in [7]; see also [8], The-
orem A.34) is a consequence of its completeness and the preceding observation: any
model of this theory can be elementarily embedded into one of the form (V, χ) with
χ definable in a closed H-asymptotic couple (V, ψ) (by choosing (V, ψ) sufficiently
saturated), and hence is weakly o-minimal. (As the theory of closed H-asymptotic
couples, the theory of non-trivial divisible centripetal contraction groups does not
have the Steinitz exchange property for the definable closure operation.)

However, we cannot definably reconstruct ψ in (V, χ):
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Proposition 5.1 In no divisible centripetal contraction group (V, χ) can one
define, even allowing parameters, a function ψ : V ∗ → V such that (V, ψ) is a closed
H-asymptotic couple and χ+ ψ ◦ χ = ψ on V <0.

Before we can prove this we need some preparations. We let (V, ψ) denote a
closed H-asymptotic couple. We also assume that 0 ∈ Ψ, so there exists 1 ∈ V ∗

such that ψ(1) = 1 > 0.

Iterates of ψ. For n > 0, let ψn : V∞ → V∞ be the n-fold functional compo-
sition ψ ◦ ψ ◦ · · · ◦ ψ. Put

Dn :=
{
v ∈ V : ψn(v) 6= ∞

}
.

For example D1 = V ∗, D2 = V ∗ \ ψ−1(0), etc. By induction on n one shows easily
that ψn(Dn) = Ψ.

Lemma 5.2 Let v ∈ V ∗ and n > 0 such that ψn(v) < 0. Then ψi(v) < 0 for
all i = 1, . . . , n, and[

ψn(v)
]
<

[
ψn−1(v)

]
< · · · <

[
ψ(v)

]
< [v].

Proof For n = 1, note that [v] ≤
[
ψ(v)

]
and (1.1) imply ψ(v) ≥ ψ

(
ψ(v)

)
,

hence −ψ(v) + ψ
(
−ψ(v)

)
≤ 0 < (id+ψ)

(
V >0

)
. Thus ψ(v) > 0, a contradiction.

Assume inductively that the lemma holds for a certain n > 0. Let v ∈ Dn+1

with ψn+1(v) < 0. Applying the case n = 1 to ψn(v) instead of v gives
[
ψn+1(v)

]
<[

ψn(v)
]
. By the inductive assumption the remaining inequalities will follow from

ψn(v) < 0. Suppose ψn(v) ≥ 0. Then ψn(v) ∈ Ψ>0, thus
[
ψn(v)

]
≤ [1] by (A3).

Hence 0 > ψn+1(v) ≥ ψ(1) = 1 by (1.1), a contradiction.

Let D∞ :=
⋂

n>0Dn and

Vinf :=
{
v ∈ D∞ : ψn(v) < 0 for all n > 0

}
,

Vfin := V \ Vinf.

Note that [v0] < [v] for all v ∈ Vinf, and that Vinf ∩ V >0 is closed upward and
Vinf ∩ V <0 is closed downward.

Remark The previous lemma, together with ψn(Dn) = Ψ, implies that for all
n > 0, we can find an element v ∈ Dn such that all iterates

ψ(v), ψ2(v), . . . , ψn(v)

are negative. Hence if (V, ψ) is ℵ0-saturated, then Vinf 6= ∅.

The proof of the next lemma is easy and left to the reader.

Lemma 5.3 Vfin is a convex subspace of V , and (Vfin, ψ|V ∗fin) is a closed H-
asymptotic couple. Moreover, ψ(Vinf) = Vinf ∩ V <0.

Let χ be the contraction map defined by ψ(v) = χ(v) + ψ
(
χ(v)

)
for all v < 0.

Lemma 5.4 Let v ∈ V <0 and ψ3(v) < 0. Then χ(v) = ψ(v)− ψ2(v).

Proof We have [v] >
[
ψ(v)

]
, so ψ(v)− ψ2(v) < 0. We compute:(

ψ(v)− ψ2(v)
)

+ ψ
(
ψ(v)− ψ2(v)

)
=

(
ψ(v)− ψ2(v)

)
+ ψ2(v) = ψ(v).

By the defining equation (5.1) of χ, it follows that χ(v) = ψ(v)− ψ2(v).
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Proof of Proposition 5.1. Suppose (V, ψ) is a closed H-asymptotic couple
such that we can define ψ in (V, χ). We may assume that (V, ψ) is ℵ0-saturated. For
ease of notation we shall also assume that ψ is actually defined without parameters
in (V, χ). (In the general case the role of Vfin below is taken over by the convex
hull in V of a closure inside (V, ψ) of the substructure of (V, ψ) generated by the
finitely many parameters used to define ψ.) If 0 ∈ (id+ψ)

(
V <0

)
, then (V, ψ,Ψ) is

a closed H-asymptotic triple. Otherwise, we let 1 ∈ V >0 be the unique solution to
the equation x+ψ(x) = 0, and pass from (V, ψ) to (V, ψ0), where ψ0 := ψ+1−ψ(1),
so that ψ0(1) = 1 > 0. We see that we may in fact assume that (V, ψ,Ψ) is a closed
H-asymptotic triple, with a distinguished positive element 1.

We now modify ψ to a function ψ̃ : V ∗ → V by putting

ψ̃(v) :=

{
ψ(v), if v ∈ V ∗fin

ψ(v) + 1, if v ∈ Vinf.

Then (V, ψ̃) is still an H-asymptotic couple, and ψ̃(Vinf) = ψ(Vinf), as is easily
checked. Thus Ψ = ψ̃(V ∗), so (V, ψ̃) is even a closed H-asymptotic couple. Let
χ̃ be the contraction map associated to (V, ψ̃). By completeness of the theory of
closed H-asymptotic triples, the same formula that defines ψ in (V, χ) will define
ψ̃ in (V, χ̃). By Lemma 5.4, χ = χ̃, hence ψ = ψ̃, contradiction.
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12. , Cours de Théorie des Modèles, Nur al-Mantiq wal-Ma’rifah, Lyon (1985).
13. M. Rosenlicht, The nonminimality of the differential closure, Pacific J. Math. 52 (1974),

529–537.
14. , On the value group of a differential valuation, Amer. J. Math. 101 (1979), 258–266.

15. , Differential valuations, Pacific J. Math. 86 (1980), 301–319.

16. , On the value group of a differential valuation, II, Amer. J. Math. 103 (1981), 977–
996.

17. , Hardy fields, J. Math. Analysis and Appl. 93 (1983), 297–311.

18. , The rank of a Hardy field, Trans. Amer. Math. Soc. 280 (1983), 659–671.


