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Abstract. Asymptotic couples (of H-type) try to capture the structure
induced by the derivation of a Hardy field K on the value group of the
natural valuation on K. In this note we continue the study of algebraic
and model-theoretic aspects of asymptotic couples undertaken in [1]. We
give a short exposition of some basic facts about asymptotic couples, and
address a few topics left out in that paper: the (non-) minimality of the
“closure” of an asymptotic couple of H-type, the Vapnik-Chernovenkis
property for sets definable in closed asymptotic couples of H-type, and
the relation of asymptotic couples of H-type to the “contraction groups”
of [6].

Introduction

Let K be a Hardy field, that is (see [3], [17]), an ordered differential field of
germs at 400 of real-valued differentiable functions defined on intervals (a, +00),
with @ € R. (So two such functions determine the same element of K if they coincide
on an interval (b, 4+00) on which they are both defined; we will use the same letter
for a function and its germ.) Every element f of K is ultimately monotonic, so
lim, o f(2) exists as an element of R U {+occ}. The valuation

v: K=K\ {0} =V =v(K*)

associated to the place f — lim, . f(z) (where we identify +o0o and —o0) has
the crucial property that v(f’) only depends on v(f), for f € K* with v(f) # 0.
(This is a consequence of L'Hospital’s Rule, see [17].) So we have a well-defined
map ¢: V* =V \ {0} — V given by

V(v(f)) =v(f'/f) for any f € K* such that v(f) # 0.
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The pair V = (V, 1)), called the asymptotic couple of K, is of key importance in
understanding the interaction of the ordering and the derivation of K. It has the
following fundamental properties: For all elements f,g € K* with a = v(f) # 0,
b=u(g) #0,

(A1) ¥(ra) =(a) for all r € Z, r £ 0,

(A2) ¢(a+b) >min{w(a),¥(b)}, where ¢(0) := 00 >V,

(A3) ¥(a) <(b) + [bl.
(See [14], Theorem 4.) Property (A2) expresses the fact that 1 is a valuation on
the ordered abelian group V' (taking values in V itself). In particular, it follows
that for a,b as above, ¥(a + b) = min{¢(a),¥(b)} if ¢(a) # ¥(b). Property (A3)
may be seen as a valuation-theoretic formulation of L’Hospital’s Rule, see [15].

Moreover, the map v is decreasing on the set of positive elements of V: For all

a,beV,

(H) 0<a<b= 1(a) > ().
(Hence by (A1), 1 is increasing on the set of negative elements of V.) Note that if
the Hardy field K contains the germ z of the identity function on R, then ¢(1) = 1,
where we put 1:=v(z~1) > 0.

By an asymptotic couple, we mean a pair V = (V1) consisting of an ordered
abelian group V and a map ¢: V* — V satisfying (A1)—(A3) above, for all a,b €
V*. As in [2], we say that an asymptotic couple V = (V 1) is of H-type if (H)
holds for all a,b € V. We will sometimes also say “V is an H-asymptotic couple”
instead of “V is an asymptotic couple of H-type.” Rosenlicht, in a series of papers
([14], [15], [16], [18]) studied in detail the asymptotic couples (V1) where the
ordered abelian group V has finite rank. The paper [1] contains an investigation
of the basic model-theoretic properties of H-asymptotic couples. In this note, we
want to supplement it by considering a few issues left open in that paper. Our hope
is that insight into algebraic and model-theoretic properties of asymptotic couples
will ultimately become useful in the recently initiated project of understanding the
model theory of Hardy fields and the field of LE-series. (See [2], [5].)

In section 1, we first review some basic facts about asymptotic couples. We only
give a few proofs, referring to [1] and [2] for a more detailed exposition. From results
of [1], it follows that the theory of H-asymptotic couples has a model companion (in
anatural language), the theory of “closed H-asymptotic couples.” (The definition of
a closed H-asymptotic couple, as well as the statement of the main theorem from [1],
can be found in section 2. See [12] for the notion “model companion”.) In particular,
each H-asymptotic couple V can be embedded into a closed one. In section 3, we
show that in general there is no closed H-asymptotic couple containing ¥V minimally.
Section 4 consists of a few remarks about another model-theoretic property of the
class of closed H-asymptotic couples, called the independence property. Finally, in
section 5 we discuss a connection to Kuhlmann’s “contraction groups” from [6].

In [1], we mainly worked in the setting of “H-couples”: these are H-asymptotic
couples (V) of a certain kind, where V' has additional structure as an ordered
vector space over an ordered field. In Section 6 of that paper, we showed how to
adapt the results about H-couples to the case of H-asymptotic couples. Here, we
right away restrict our attention to H-asymptotic couples, for convenience. We
don’t assume familiarity of the reader with [1]. In fact, sections 1-4 of the present
note may serve as a quick overview of some of the results from that paper. However,
we will freely use basic model-theoretic notions (see e.g. [12]).
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Notations. Throughout, m and n range over the set N={0,1,2,...} of nat-
ural numbers. Our notations concerning linearly ordered sets and ordered abelian
groups are fairly standard. (If in doubt, see [1], §1.) If V is an ordered abelian group,
we let V* =V \ {0}, and we put S>° ={v e S:v >0}, S<0={veS:v<0}
for a subset S of V. We define an equivalence relation ~ on V' by

ve~w = |v] <mjw| and |w| < nlv| for some m,n > 0.

The equivalence class of an element v € V is written as [v], and is called its
archimedean class. By [V] we denote the set of archimedean classes of V', and
we set [V*] := [V]\ {[0]}. We linearly order [V] by setting
[v] < [w] <= n|v| < |w| for all n
< [v] # [w] and |v| < |w|.

Some simple facts about archimedean classes: For v,w € V, r € Z \ {0}, we have

1. v] ={0} <= v =0,

2. [o] = [ra],

3. [v+w] < max{[v], [w]}, with [v+ w] = max{[v], [w]}, if [v] # [w].
If V' is an ordered abelian group containing V as ordered subgroup, the inclusion
map V — V' induces an embedding [V] — [V'] of linearly ordered sets. We identify
[V] with its image under this embedding.

We consider V' as a subgroup of the divisible abelian group QV = Q ®z V' by
means of the embedding v — 1 ® v. We equip QV with the unique linear ordering
extending the one on V' and making QV into an ordered abelian group. Note that

[QV] = [V]. We consider a divisible ordered abelian group as an ordered vector
space over the ordered field Q as usual.

1 Basic Properties

In this section, ¥V = (V, ) is an asymptotic couple. We set ¥ := ¢(V*), and
with id denoting the identity function on V', we let

(id+y)(V*) = {z +(z) : x € V*}.
Similarly, we define (id+1)(V>?) and (id +v)(V<°). Also, let Vi, := V U {oo},
with co > v forallv eV and v+ oo =00+v = —00 =00 forall v € V. It is
convenient to extend ¥ to a map Voo — Voo by 9¥(0) := 1(00) := oc.

Remark For a € V we define ¢ +a: V* — V by (¢ +a)(x) := ¢(z) +a. Then
clearly (V% + a) is also an asymptotic couple, with (¢ + a)(V*) = ¥ 4 a. Also,
(V, 1) satisfies (H) if and only if (V,4 + a) does.

For the next proposition, see also [1], §3, and [2], Proposition 2.3. Part (2.) is
Theorem 5 in [15]; we give here a much shorter proof.

Proposition 1.1 Letv,w € V.

L. Ifv,w #0, then n(¢(w) — ¢(v)) < |v|.

2. If v,w,v —w # 0, then [(v) — Y(w)] < [v—w].

3. The map x — x +¢Y(x): V* = V is strictly increasing.
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Proof For (1.), let v,w € V*, n € N. We may assume 9(w) > ¢ (v), v,w > 0,
and n > 0. By passing from 1 to ¥ — 1(v), if necessary, we can reduce to the case
that ¢ (v) = 0 < ¢ (w). We then have to show ni(w) < v. We proceed by induction
on n. In the case n = 1, ny(w) = ¢P(w) < v+ 1 (v) = v holds by axiom (A3) for
asymptotic couples. Now assume that niy(w) < v. If (n + 1)9(w) < ¢(u) for some
u € V*, we clearly have (n + 1)(w) < ¢¥(u) < v+ 9(v) = v, by axiom (A3) again.
So we can assume that (n + 1)y (w) > W. Note that 1?(w) > 0, since ¥(w) > 0, so
Y(w) < (w) + ¥ (¥(w)). Hence

’(/J(U —(n+ 1)w(w)) = min{w(v),z/)z(w)} =¢(v) =0,
by (A2), so we get
U < o= (n+Dp(w)| +9(v— (n+1)p(w) = v (n+ 1)p(w)].

Suppose v < (n + 1)y(w). Then, in particular, ¢(w) < (n + 1)¥p(w) — v, hence
v < ny(w), contradicting the induction hypothesis. Therefore (n + 1)y(w) < v,
completing the induction step.— For (2.), let v,w # 0 with d := v —w # 0. We
have to show n|yY(v) — ¥(w)| < |d| for all n. If ¥(d) > P (w), then P(v) = Y(w),
since 1) is a valuation on the ordered abelian group V. Suppose ¥ (d) < 1(w). Then
we have ¥(d) < 9(v), hence by (1.):

nip(d) < np(w) <map(d) + |d],  nyp(d) < np(v) < nep(d) +|d].
Thus n|y(v) — ¢ (w)| < |d| in all cases.— Property (3.) follows easily from (2.). O

By (A1) and part (1.) of the proposition above, ¢ extends uniquely to a map
(QV)* — V, also denoted by 1, such that (QV, ) is an asymptotic couple. Note
that ¢ ((QV)*) = V.

Some properties of H-asymptotic couples. From now on, we want to
concentrate on H-asymptotic couples. So suppose that V = (V,4) is of H-type.
Note that by axioms (A1) and (H), we have

] <w] = Y()>p(w) for all v,w € V*. (1.1)

In particular, @ is constant on archimedean classes of V, i.e., for all v,w € V
with [v] = [w], we have 9(v) = ¢)(w). The argument used for making QV into an
asymptotic couple extending (V, 1) may be generalized, using (1.1), to show:

Corollary 1.2 Let V' be an ordered abelian group containing V as ordered
subgroup such that [V] = [V']. Then there is a unique extension of ¥ to a function
' (VY* = V7 such that (V') is an H-asymptotic couple. O

Lemma 1.3 Let w € V*. If [(w)] > [w], then [¢(¢(w))] = [¢(w)].

Proof By (1.1), we may suppose that [¢)(w)] > [w]. By Proposition 1.1,
(2.), and property (3.) of archimedean classes listed in the introduction, we have

[Y(w) =¥ ((w))] < [w—v(w)] = [(w)] and hence [$(p(w))] = [Y(w)]. O

Remark The lemma and (1.1) imply that if w € V* satisfies [w] < [1(w)],
then y + 1(y) = 0 for y = —p(w) or y = = (Y(w)).

The following facts about id +¢ are fundamental (see also [1], Section 3):
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Corollary 1.4 The set (id +v)(V>?) is closed upward. The set (id +1)(V<?)
is closed downward, and

(—id —H/))(V>O) = (id —H/))(V<O) ={a€V:a<y(x) for somexecV*}. (12)

There is at most one element v € V such that ¥ < v < (id+¢)(V>°). If ¥ has a
largest element, then there is no v € V with ¥ < v < (id+v)(V>?).

Proof Let a > z + ¢(z) for some z > 0; we want to show a € (id +¢)(V>0).
Passing from (V,4) to (V,9 — a) if necessary, we reduce to the case a = 0. Then
[z] < [¢(2)], hence a = 0 € (id+v)(V>?) by the previous remark and Propo-
sition 1.1, (3.). So (id+¢)(V>?) is closed upward, and similarly one shows that
(id +¢) (V<9) is closed downward.

The equalities in (1.2) are clear except for the inclusion “O” in the last equa-
tion. For this, let a,z € V, ¢ < 0, with a < ¥(z); we want to show that
a € (id+¢)(V<"). As above, we may assume that a = 0. If [z] < [¥(z)], it
follows as before that 0 € (id +v)(V<°). If [¢(z)] < [z], then 0 < @ + 1)(z), hence
0 € (id+v)(V<?), since (id+v)(V<?) is closed downward.

If u,v € V satisfy ¥(w) < u < v < w+ P(w) for all w € V>0, then v <
(v—u)+¢(v—u) <(v—u)+u=wv, acontradiction. This shows the rest. O

As a consequence of the last corollary, V'\ (id +)(V*) has at most one element,
and (id+)(V*) # V if and only if ¥ has a supremum in V, and in this case
V\ (id+9)(V*) = {sup ¥}. We refer the reader to [1], Figure 1, for a picture of
the behavior of the maps ¢ and id +v on V*.

2 Closed H-Asymptotic Couples

A cut of an H-asymptotic couple (V, 1) is a set P C V which is closed down-
ward, contains ¥, and is disjoint from (id +v)(V>?). (So P < (id+v)(V>?).) By
Corollary 1.4, an H-asymptotic couple (V1) has at most two cuts, and it has two
cuts if and only if ¥ < v < (id+¢)(V>?) for some v € V. If ¥ has a maximum,
then (V, ) has exactly one cut P = {a € V : a < ¢(z) for some z € V*}.

Definition 2.1 An H-asymptotic couple V = (V, ) is closed if
1. V is divisible (as an abelian group),
2. (id+y)(V*) =V, and
3.0 = (id+¢) (V<).
(In this case, P = ¥ is the only cut of V.)

Example 1 Let K be a Hardy field containing R and closed under exponentia-
tion (that is, f € K = exp f € K) and integration (i.e. fe K =3g€ K : ¢’ = f).
Then the asymptotic couple of K (as defined in the introduction) is a closed H-
asymptotic couple.

In [1], Definition 6.2, we also introduced the following notion, under the some-
what technical name “Hj-triple”:

Definition 2.2 An asymptotic triple of H-type, or H-asymptotic triple
for short, is a triple (V, 1, P), where (V, ) is an H-asymptotic couple and P a cut
of (V,4), such that

1. V is divisible, and



6 Matthias Aschenbrenner

2. there exists a positive element 1 of V' with ¢(1) = 1. (Equivalently, 0 €
(id +¢)(V=0).)
By Proposition 1.1, (2.), the element 1 in (2.) is uniquely determined. If (V, 4, P)
is an H-asymptotic triple such that (V,1) is a closed H-asymptotic couple, then
P =V, and (V,¢,¥) is called a closed H-asymptotic triple.

We can naturally consider asymptotic couples (V1) as model-theoretic struc-
tures (Vio, ) in the first-order language £ = {0,+, —, 1, 00}. The H-asymptotic
couples are then the models of a universal theory in £. Similarly, when dealing
with H-asymptotic triples (V, P) as model-theoretic objects, we construe them
as Lp-structures (Vo, ¥, 1, P), where Lp is the extension of £ by

1. a constant symbol 1 for the distinguished element 1 € V>0 with (1) =1,

2. a unary predicate symbol for P, and

3. unary function symbols §,, for each n > 0, to be interpreted on V as the
scalar multiplication by 1/n (and §,(c0) := 00).

The H-asymptotic triples are models of a universal theory in Lp. Let T be the
theory of closed H-asymptotic couples, in the language £, and let Tp be the theory
of closed H-asymptotic triples, in the language Lp. One of the main results from
[1] (Corollary 6.2) is:

Theorem 2.3 The theory Tp is complete, decidable, and has elimination of
quantifiers. It is the model completion of the theory of H-asymptotic triples.

From this we get immediately:

Corollary 2.4 The theory T is the model companion of the theory of H-
asymptotic couples. O

Remark The division symbols §,, are included in the language Lp in order
to guarantee quantifier elimination for 7». Here is an instructive example to show
that if we omit them, then in the resulting smaller language the theory of closed
H-asymptotic triples would not eliminate quantifiers.

Let (W,1) be a closed H-asymptotic couple. Choose an element b ¢ W in an
ordered vector space W' := W @ Qb over Q extending W, such that ¥ < g <
(id +v)(W=>?). Then, by Lemma 4.5 in [1], [W] = [W’], hence 1 extends uniquely
to a map ¢': (W')* — W such that W = (W' ¢’) is an H-asymptotic couple
(Corollary 1.2). Note that [W] = [W'] implies

V=" < g < (id+y") (W)>0).

Hence (W’,4’) has two cuts. Now consider the ordered abelian group V :=
W e Zb CW'. Since ¥/ =¥ C W, (V,¢'|[V*) is an H-asymptotic couple with
(V,'|V*) C (W', 4"). One checks easily that the two distinct cuts of (W’ 4") have
the same intersection with V', namely {v €V :v <y(w) for some w € W}

3 Non-Minimality of Closures

According to Theorem 2.3, every H-asymptotic triple can be embedded into a
closed H-asymptotic triple. In fact, in the course of the proof of this theorem, we
showed a more precise statement:
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Proposition 3.1 Every H-asymptotic triple V = (V,4, P) has a closure,
that is, a closed H-asymptotic triple V¢ = (V¢ ¢ P¢) extending V, such that any
embedding ¥V — V' into a closed H-asymptotic triple V' extends to an embedding
Ve — V' Any two closures of V are isomorphic over V.

(See [1], Corollaries 5.3 and 6.1.) A natural question is if the closure V¢ of
an H-asymptotic triple V is always minimal over V, i.e. there exists no closed H-
asymptotic triple W D V strictly contained in V¢ as an Lp-substructure. This
turns out to be false, in a very strong way:

Proposition 3.2 Let V = (V,¢, P) be an H-asymptotic triple which is not
closed. Then the closure V¢ of V is not minimal over V.

(This is similar, e.g., to the situation encountered with differential fields and
differential closures, [13].)

Before we give a proof of Proposition 3.2, we outline how V¢ is constructed
from V. One first shows the following embedding statements (see [1], Lemmas 3.5,
3.6 and 3.7 for a proof):

Lemma 3.3 Let V = (V,4, P) be an H-asymptotic triple.

1. Suppose P has a largest element, and let V¢ := V & Qe be an extension
of the Q-vector space V. Then there exists a unique linear ordering of V=,
a unique map ¥=: (VE)* — Ve, and a unique subset P¢ of VE such that
(Ve 4%, P?) is an H-asymptotic triple extending (V,4, P) with € > 0 and
max P = —¢ 4+ ¢°(e).

2. Suppose there exists b € V with P < b < (id+¢)(V>?). Let Ve :=V ® Qe
be an extension of the Q-vector space V.. Then there exists a unique linear
ordering of VE, a unique map ¢°: (V)* — V¢, and a unique subset P* C V©
such that (Ve ¢, P?) is an H-asymptotic triple extending (V,, P) with
e >0 and b=+ 9% (e).

3. Supposeb € P\VU. Let V® := V®Qa be an extension of the Q-vector space V.
There exists a unique linear ordering of V*, a unique map ¢*: (V*)* — Ve,
and a unique P* C V' such that (V4% P%) is an H-asymptotic triple
extending (V, 4, P) with a > 0 and ¥®(a) = b.

Note that (V¢,4°) as in (1.) or (2.) of the lemma has the property that
1/)5((‘/5)*) has a maximum. So part (1.) applies to (V4% P°) in place of
(V,4, P). Also, if (id+4)(V*) =V, then (id +¢*)((V*)*) = V. Therefore, iter-
ating (1.)—(3.), if necessary transfinitely often, we can obtain an increasing chain of
H-asymptotic triples extending (V,, P) whose union is a closure of (V,, P).

Proof of Proposition 3.2. Let V = (V,4¢, P) be an H-asymptotic triple
which is not closed. We have to find a closed H-asymptotic triple W with YV C W
which is strictly contained (as a substructure) in a closure of V. Let us first consider
a special case:

Lemma 3.4 Suppose that P does not have a supremum in V, and P\ ¥ con-
tains a strictly increasing sequence (ay)nen. Then the closure of V is not minimal
over V.

Proof Using Lemma 3.3, (3.), we construct a strictly increasing sequence of
H-asymptotic triples (V,,)nen such that

1. VO =V = (V7¢7P)7
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2. Vo1 = Vo ® Qup, Yg1(vy) = ap, for all n.
We let
Vo=Va@PQu,=|JVu, P.:=JP,

neN n<w n<w
and 1, the common extension of all v, to V,,. Now construct another strictly in-
creasing sequence of H-asymptotic triples (V) )nen, contained in the H-asymptotic
triple V,, = (V,, ¥w, P.,), with the following properties:
1. Vi=V,
2. Vy 1=V, ®Quj, with v], := vy, + vpp1, V)1 (v),) = ay, for all n.

Note that [V,,] = [V,] for all n < w. Again we let

V=)V, CV., P,:=P,nV,

n<w

and v/, the common extension of all ¥/, to V). Then V, = (V/, 4., P)) is an
asymptotic couple such that V C V) CV,,, [V/] = [V.], and one easily verifies that
v, € V! for all n. Fix a closure V¢ = (V°,¢°, P°) of V,,. (So V° is also a closure
of V.) Now using Lemma 3.3, (3.) repeatedly again, starting from V!, we obtain
a strictly increasing sequence (V),)w<a<, of H-asymptotic triples (for some ordinal
1) such that

1.V, CV,CVyeforala<ypy,

2. Vi =V, ®Qu, with ¢, (v)) € PL\¢L((V))*) forall a < a+1<p,

3. V§ = Ugen Vs for all limit ordinals A < p, and

4. (V)¢ = Uqyen Ve is closed.
So (V)¢ is a closure of V/,, and hence a closure of V, contained in the closure V¢ of
V. One verifies easily that v, ¢ (V')° for all n. Hence V° is not minimal over V, as
claimed. 0

We now turn to the general case. Since V is assumed to be non-closed, one of
the parts of Lemma 3.3 is applicable. The following three possibilities arise:

Case 1: The cut P has a maximum. Let (V¢,°, P?) be as in Lemma 3.3, (1.);
then P¢\ W€ is the union of P\ ¥ and the set

{v+Ae:veV, AeQ”, and v < maxP or v =max P & A < 1}.

Hence P¢ \ U¢ certainly contains a strictly increasing sequence (ap)nen.
If (V',4',P") is obtained from (V= 9% P*) by w many applications of
Lemma 3.3, (1.), then P’ \ ¥’ also contains the sequence (a,,), and P’ does
not have a supremum in V’.

Case 2: We have P < b < (id+)(V>?) for some (uniquely determined)
element b € V. Then we let (V¢,1°, P¢) be as in Lemma 3.3, (2.). The set
Pe \ ¥¢ is the union of P\ ¥ and

{v+re:veV, xeQ, andv<borv=>b& X< -1},

so contains a strictly increasing sequence (a,). If (V' ¢, P') D (V¢ 4=, P¢)
is obtained from (V¢,1°, P?) by w many applications of Lemma 3.3, (1.),
then P’ \ ¥’ also contains the sequence (a,), and P’ does not have a supre-
mum in V.
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Case 3: The cut P does not have a supremum in V', and there exists b € P\ ¥.
Let (V% 4* P%) be as in Lemma 3.3, (2.). Then one readily verifies (see
proof of Lemma 3.7 in [1]) that P®\ ¥® equals the union of P\ (¥ U {b})
and

{fv+Xa:veV, AeQ, A>0,b—v>ao0r A<0,v—b<a}.
In particular, P*\ ¥® contains a strictly increasing sequence (a,,).

Hence in all three situations, we can reduce to the special case treated in the lemma,
and thus finish the proof of the proposition.

4 The Independence Property for Closed H-Asymptotic Couples

Let £ be a language (in the sense of first-order logic) and ¢(x,y) an L-formula,
where z = (x1,...,2,) and y = (y1,-..,Yn). We say that the formula ¢(z,y) has
the independence property with respect to an L-structure A = (A,...) if for
every k € N there is a sequence (ay,...,ax) of elements of A™ such that for all
subsets I of {1,...,k}, there exists by € A™ with

AEglanb) < el

foralli=1,...,k. A theory T in the language L is said to have the independence
property if all formulas ¢(z,y) as above have the independence property with re-
spect to all A = T. A theory T not having the independence property signifies
a certain well-behavedness of T', on a model-theoretic level: in this case, T" shares
many properties with stable theories (see [12]). There is an intriguing connection
between the independence property and the notion of a Vapnik-Chernovenkis (VC)
class from probability theory: A collection C of subsets of a set X is called a VC
class if fc(n) < 2™ for some n, where

fe(n) := max{|C N F|: F is an n-element subset of X }.

(In this case, fe: N — N is in fact of polynomial growth; see [4], Chapter 5, for
this and some other properties of VC classes.) Laskowski [9] proved that a formula
(z,y) does not have the independence property with respect to A if and only if the
collection C, = {¢*(a,y) : a € A™}, where p*(a,y) == {be€ A" : A = ¢(a,b)}, is
a VC class.

Suppose now that £ contains a binary relation symbol <, and that T is a
complete theory with quantifier elimination, all of whose models A = (A, <,...)
are expansions of a dense linear ordering (A, <) without endpoints. A cut in (4, <)
is a downward closed subset C' C A. The following is a special case of a criterion
due to Poizat [11]:

Lemma 4.1 The theory T does not have the independence property if for all
models A and B of T with A < B and all cuts C' of A, there exist at most 2|4l
simple extensions A C A(c) C B with C < c < A\ C, up to isomorphism over A.

In [1], §6, we proved that given closed H-asymptotic triples (V,¢,P) C
(V' 4/, P") and a cut C in V, there exist at most two simple extensions of (V,, P)
inside (V', ¢/, P') with generator ¢ € V' such that C' < ¢ < V\C, up to isomorphism
over V. This implies:

Corollary 4.2 The theory Tp of closed H-asymptotic triples does not have the
independence property. (Hence the theory T of closed H-asymptotic couples also
does not have the independence property.) O
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In fact, in [1] (Proposition 6.2) we showed something more: the theory Tp
is weakly o-minimal, that is, for every closed H-asymptotic triple V = (V, 4, P),
every Lp-formula ¢(x,y) with = (x1,...,2,,) and a single variable y, and every
v € V™, the set ¢Y(v,y) is a boolean combination of cuts in (V,<). This also
implies the corollary above, by Proposition 7.3 in [10]. We want to remark that the
argument indicated here also works in the two-sorted setting of “closed H-triples” as
defined in [1], thus giving a natural example of a locally o-minimal (but not weakly
o-minimal) theory without the independence property. (See [1], Proposition 5.1 for
the definition of “locally o-minimal” and a proof of the local o-minimality of the
theory of closed H-triples.) Unlike in the weakly o-minimal case, it seems not to be
known whether every locally o-minimal theory extending the theory of dense linear
orders does not have the independence property.

5 Relation to Contraction Groups

Our couples resemble the contraction groups of Kuhlmann [6], [7], and there
is indeed a formal connection as indicated below. (A difference is that contraction
groups have nothing like our cut P.)

Contraction groups arise as follows: let K be a Hardy field closed under taking
logarithms (i.e. f € K>° = log f € K), with its valuation v: KX — V = v(K*).
The logarithm map then induces a so-called contraction map x: V<0 — V<0 by

x(v(f)) =v(log f) forall f € K”° with v(f) <0,

which we extend to a map V' — V by requiring x(—y) = —x(y). If K is also closed
under exponentiation, then V' is divisible, and x is surjective (x(V) = V). This
means that the pair (V,x) (ordered group with contraction map) is a divisible
centripetal contraction group, as axiomatized in [6], where it was shown that
the elementary theory of non-trivial divisible centripetal contraction groups is com-
plete and has quantifier elimination in its natural language. (See the appendix of
[8] for an exposition of these results.)
In the example above, we have for f € K>°, with y = v(f) < 0:

P(y) = v((og f)') = v((log f)/1og f) +v(log f) = ¥ (x(y)) + x(v)

Let now (V,4) be any closed H-asymptotic couple. For y < 0 in V, let x(y) = z
be the unique solution in V* of the equation

2+ 9(2) = ¥(y). (5.1)

For y > 0, set x(y) := —x(—v), and x(0) := 0. It is easily seen that then (V] x) is
a non-trivial divisible centripetal contraction group; clearly x is definable (without
parameters) in (V). Hence in particular, (V,x) is weakly o-minimal, by Propo-
sition 6.2 in [1]. We want to point out that the weak o-minimality of the theory of
non-trivial divisible centripetal contraction groups (proved in [7]; see also [8], The-
orem A.34) is a consequence of its completeness and the preceding observation: any
model of this theory can be elementarily embedded into one of the form (V, y) with
X definable in a closed H-asymptotic couple (V) (by choosing (V) sufficiently
saturated), and hence is weakly o-minimal. (As the theory of closed H-asymptotic
couples, the theory of non-trivial divisible centripetal contraction groups does not
have the Steinitz exchange property for the definable closure operation.)
However, we cannot definably reconstruct ¢ in (V, x):
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Proposition 5.1 In no divisible centripetal contraction group (V,x) can one
define, even allowing parameters, a function : V* — V such that (V, ) is a closed
H -asymptotic couple and x + 1o x =1 on V<0,

Before we can prove this we need some preparations. We let (V1) denote a
closed H-asymptotic couple. We also assume that 0 € ¥, so there exists 1 € V*
such that (1) =1 > 0.

Iterates of ¢. For n > 0, let 9" : Voo — Vi be the n-fold functional compo-
sition Y ot o--- 0. Put

D, :={v eV :¢"(v) # oo}

For example Dy = V*, Dy = V*\ ¢71(0), etc. By induction on n one shows easily
that ¢¥™(D,,) = V.

Lemma 5.2 Let v € V* and n > 0 such that ¥"(v) < 0. Then ¢*(v) < 0 for
alli=1,...,n, and

[ ()] < [¥" 7 v)] <o < [$(v)] < [v].
Proof For n = 1, note that [v] < [¢(v)] and (1.1) imply ¥(v) > ¥ (¥ (v)),
hence —¢(v) + ¢ (= (v)) <0 < (id+¢)(V>?). Thus ¢(v) > 0, a contradiction.
Assume inductively that the lemma holds for a certain n > 0. Let v € Dy, 41
with ¢ (v) < 0. Applying the case n = 1 to ¢"(v) instead of v gives [¢" T (v)] <
[w”(v)]. By the inductive assumption the remaining inequalities will follow from
Y™ (v) < 0. Suppose ¢"(v) > 0. Then ¢"(v) € U0, thus [¢"(v)] < [1] by (A3).
Hence 0 > 4" "1 (v) > 4(1) =1 by (1.1), a contradiction. O
Let Do := (50 Dn and
Vi 1= {v € Do : Y™ (v) < 0 for all n > 0},
Vﬁn =V \ Vvinf'

Note that [vg] < [v] for all v € Viy, and that Viye N V>0 is closed upward and
Ving N V<0 is closed downward.

Remark The previous lemma, together with ™ (D,,) = ¥, implies that for all
n > 0, we can find an element v € D,, such that all iterates

V() P2 (), ..., " (v)
are negative. Hence if (V) is No-saturated, then Vips # 0.
The proof of the next lemma is easy and left to the reader.

Lemma 5.3 Vi, is a convex subspace of V', and (Van, ¥|V5,) is a closed H-
asymptotic couple. Moreover, 1)(Ving) = Ving NV <0. O

Let x be the contraction map defined by 1(v) = x(v) + ¥ (x(v)) for all v < 0.
Lemma 5.4 Let v € V<0 and ¢3(v) < 0. Then x(v) = ¥(v) — ?(v).
Proof We have [v] > [¢(v)], so 1(v) — ¢*(v) < 0. We compute:
(¥(v) = 9*(v) + ¥ (¥(v) = ¥*(v) = ((v) = ¥*(v)) +¥*(v) = ¥(v).
By the defining equation (5.1) of ¥, it follows that x(v) = 1 (v) — ¥?(v). O
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Proof of Proposition 5.1. Suppose (V,) is a closed H-asymptotic couple
such that we can define ¥ in (V] x). We may assume that (V1) is Rp-saturated. For
ease of notation we shall also assume that v is actually defined without parameters
in (V,x). (In the general case the role of V4, below is taken over by the convex
hull in V' of a closure inside (V, 1) of the substructure of (V,%) generated by the
finitely many parameters used to define ¥.) If 0 € (id +¢)(V<"), then (V,, ¥) is
a closed H-asymptotic triple. Otherwise, we let 1 € V>9 be the unique solution to
the equation z+1(z) = 0, and pass from (V, ¢) to (V, o), where 1 := »+1—1(1),
so that 1p(1) =1 > 0. We see that we may in fact assume that (V, ¢, ¥) is a closed
H-asymptotic triple, with a distinguished positive element 1.

We now modify ¢ to a function ¢: V* — V by putting

~ (v, ifve Vg
()= ) +1, ifveE Vi

Then (V, J) is still an H-asymptotic couple, and J(Vinf) = ¢Y(Vint), as is easily
checked. Thus ¥ = ¢(V*), so (V,) is even a closed H-asymptotic couple. Let

X be the contraction map associated to (V,1). By completeness of the theory of
closed H-asymptotic triples, the same formula that defines ¢ in (V,x) will define

¥ in (V,X). By Lemma 5.4, x = X, hence 1 = ¢, contradiction. O
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