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Abstract. Differentially algebraic Hardy field extensions of short Hardy fields

are short. This is proved in the more general setting of H-fields. As an

application we extend a theorem of Rosenlicht (1981) by showing that each
short asymptotic couple of Hardy type with small derivation is isomorphic to

the asymptotic couple of an analytic Hardy field.

Introduction

An ordered set—here and below “ordered” means “totally ordered”— is said to be
short if each ordered subset of it has countable cofinality and countable coinitiality.
Example: the real line. Shortness is a rather robust property, and [3, Section 5]
considers this property for Hardy fields (which are naturally ordered fields) and
the ordered differential field T of transseries. In fact, T is short [3, Corollary 5.20].
Left open in [3] is whether every differentially algebraic Hardy field extension of a
short Hardy field is short. Here we give an affirmative answer. We actually prove
something more general for H-fields.

An H-field is by definition an ordered field H with a derivation h 7→ h′ on it
that interacts with the ordering as follows: for the constant field C of H and the
convex subring O :=

{
h ∈ H : |h| ⩽ c for some c ∈ C

}
of H we have:

(H1) for all h ∈ H, if h > C, then h′ > 0;
(H2) O = C + O, where O is the maximal ideal of the valuation ring O of H.

Hardy fields that contain R as a subfield are H-fields with constant field R, as is T.
Theorem A. If E is a differentially algebraic H-field extension of a short H-field
and the constant field of E is short, then E is short.

This answers the above question from [3] for Hardy fields containing R. Let H
be any short Hardy field and E a differentially algebraic Hardy field extension
of H. Then the Hardy field H(R) is short, by Lemma 3.2 below, and E(R) is
a differentially algebraic Hardy field extension of H(R), so E(R) and thus E are
short. This answers the question for all Hardy fields.

We use Theorem A to realize short H-fields and short asymptotic couples in
the realm of Hardy fields. Some terminology: A Hardy field is said to be analytic
if each element of it has an analytic representative (a,+∞) → R (a ∈ R). An
analytic Hardy field not contained in any strictly larger analytic Hardy field is
called maximal. (By Zorn, each analytic Hardy field extends to a maximal one.
Every maximal analytic Hardy field contains R.) A valued differential field K is
said to have small derivation if O′ ⊆ O, where O is the maximal ideal of the valuation
ring of K. Hardy fields have small derivation, as has T. By [3, Corollary 7.9], T is
isomorphic to an analytic Hardy field. We improve this as follows:
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Corollary B. Every short H-field with small derivation and archimedean constant
field embeds into every maximal analytic Hardy field.

In statements like these, embeddings (and isomorphisms as a special case) are valued
field embeddings that respect the ordering and the derivation. As an application
of Corollary B and its proof we show that the H-field No(ω1) with the derivation
from [9] embeds into every maximal analytic Hardy field.

Let H be an H-field, and let h 7→ vh : H× → Γ = v(H×) be the valuation on H
with valuation ring O as above. Then the logarithmic derivative map

h 7→ h† := h′/h : H× → H

descends to Γ: there is a map ψ : Γ ̸= = Γ \ {0} → Γ such that ψ(vh) = v(h†) for
all h ∈ H× with vh ̸= 0, and such that for all α, β ∈ Γ ̸=:

(A1) α+ β ̸= 0 ⇒ ψ(α+ β) ⩾ min
(
ψ(α), ψ(β)

)
;

(A2) ψ(kα) = ψ(α) for k ∈ Z \ {0};
(A3) α > 0 ⇒ α+ ψ(α) > ψ(β).

The pair (Γ, ψ) is called the asymptotic couple of H. Any pair (Γ, ψ) where Γ is an
ordered abelian group and ψ : Γ ̸= → Γ satisfies (A1)–(A3) for all α, β ∈ Γ̸= is called
an asymptotic couple. Such an asymptotic couple (Γ, ψ) is said to be of Hardy type
if for all α, β ∈ Γ̸=: ψ(α) > ψ(β) iff n|α| < |β| for all n, to have small derivation
if for all α > 0 in Γ we have α + ψ(α) > 0, and to be short if the ordered set Γ
is short. The asymptotic couple of any Hardy field is of Hardy type with small
derivation (as is that of T). Rosenlicht [13, Theorem 3 and Remark 3 following it]
showed conversely that every asymptotic couple (Γ, ψ) of Hardy type with small
derivation and Γ of finite archimedean rank is isomorphic to the asymptotic couple
of an analytic Hardy field containing R. Using Corollary B we generalize this result:

Corollary C. LetM be a maximal analytic Hardy field. Then any short asymptotic
couple of Hardy type with small derivation is isomorphic to the asymptotic couple
of a spherically complete Hardy subfield of M containing R.

In the rest of this paper we freely use notation and terminology from [ADH] (and
its results!). For a summary of relevant material from [ADH], see Concepts and
Results from [ADH] in the introduction to [7]1.We also refer to various basic facts
on shortness from [3]. As in [3] we call an H-field closed if it is ω-free, Liouville
closed, and newtonian.

Organization of the paper. Section 1 contains preliminary observations about
short ordered fields. The key point in the proof of Theorem A is the discussion in
Section 2 to the effect that a certain construction H 7→ H∗ for real closed ω-free
H-fields H preserves shortness. This is combined with a more economical way of
generating the Newton-Liouville closure of an ω-free H-field than in [ADH]. We also
need some more routine lemmas to reduce to the case of a real closed ω-free H-field.
These lemmas are in Section 3, where we complete the proof of Theorem A and
obtain Corollary B. In Section 4 we prove Corollary C; this requires Corollary B
and an extension of a construction from [2, Section 11].

1. Short Ordered Fields

This section we make two observations on short ordered fields, Lemmas 1.3 and 1.4,
to be used in the next two sections. First a reminder about composing valuations.
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Composing valuations. Let K be a field and OK be a valuation ring of K, and
let πK : OK → R be the residue map onto its residue field R. Let also OR be a
valuation ring of R. Then O := π−1

K (OR) is a subring of OK .

Claim: O is a valuation ring of K.

First, if a ∈ K and a /∈ OK , then a−1 is in the maximal ideal of OK , which is the
kernel of πK , and thus a−1 ∈ O. Next, let a ∈ OK and a /∈ O. Then a does not
lie in the maximal ideal of OK , so a−1 ∈ OK . Also πK(a) /∈ OR, so πK(a)−1 =
πK(a−1) ∈ OR, and thus a−1 ∈ O. A useful consequence of the claim is that the
maximal ideal of OK is a prime ideal of O.

Let πR : OR → k be the residue morphism onto the residue field k of OR, and

π := πR ◦ (πK |O) : O → OR → k.

We identify the surjective ring morphism π : O → k with the residue map of O onto
its residue field. (The place π is said to be the composition of the places πK and πR.)
Let now v : K× → Γ be a valuation on K with valuation ring O, let vK : K× → ΓK
be a valuation on K with valuation ring OK , and vR : R× → ΓR a valuation on R
with valuation ring OR.

It is routine to check that we have an order preserving group embedding ΓR → Γ
sending vR(πK(a)) to v(a) for a ∈ OK with πK(a) ̸= 0. We identify ΓR with its im-
age in Γ via this embedding. The surjective group morphism Γ → ΓK sending v(a)
to vK(a) for a ∈ K× is order preserving with kernel ΓR. It follows that ΓR is a
convex subgroup of Γ and Γ/ΓR ∼= ΓK as ordered abelian groups.

Observations on short ordered fields. From [3, Lemma 5.17] we recall that
an ordered abelian group Γ is short iff its ordered set [Γ] of archimedean classes is
short. From [3, Corollary 5.18] we also quote a basic fact about the preservation of
shortness under extensions of ordered abelian groups:

Lemma 1.1. Let ∆ ⊆ Γ be an extension of ordered abelian groups.

(i) If rankQ(Γ/∆) ⩽ ℵ0, then Γ is short iff ∆ is short;
(ii) if ∆ is convex, then Γ is short iff ∆ and Γ/∆ are short.

The following is [3, Lemma 5.19]:

Lemma 1.2. Let K be an ordered field equipped with a convex valuation whose
ordered residue field is archimedean. Then K is short iff its value group is short.

The next result extends this to nonarchimedean residue fields.

Lemma 1.3. Let K be an ordered field equipped with a convex valuation. Then K
is short iff its ordered residue field R and value group ΓK are short.

Proof. Suppose first that R and ΓK are short. Let vK : K× → ΓK be the given
convex valuation on K, with valuation ring OK and residue map π : OK → R.
Set OR :=

{
x ∈ R : |x| ⩽ n for some n

}
, the smallest convex subring of the ordered

field R. Then OR has archimedean ordered residue field k. Let vR : R× → ΓR be
a valuation on R with valuation ring OR.

The subring O := π−1(OR) of OK is convex. Let v : K× → Γ be a convex valua-
tion on K with O as valuation ring. The considerations in the previous subsection
show that we may consider k as the ordered residue field of O, and ΓR as a convex
subgroup of Γ with Γ/ΓR ∼= ΓK , as ordered abelian groups.
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Now R is short, hence so are ΓR and k by Lemma 1.2. Thus Γ is short by Lem-
ma 1.1(ii) and so is K, using the (convex) valuation v on K and again Lemma 1.2.

This shows the “if” direction. For the converse, suppose K is short. Then
the valuation ring of K and its maximal ideal are short convex ordered additive
subgroups of K, so R is short by Lemma 1.1(ii). The ordered subset K> of K is
also short, hence so is its image ΓK under the decreasing surjection vK . □

Lemma 1.4. Let K be a short ordered field and L an ordered field extension of
countable transcendence degree over K. Then L is short.

Proof. We equip K and L with their standard convex valuation whose ordered
residue fields are archimedean. Then the value group of L has countable rational
rank over the value group of K, and the latter being short, so is the former by
Lemma 1.1(i). Hence L is short by Lemma 1.2. □

2. Alternative Construction of Newton-Liouville Closures

In this section H is an H-field with asymptotic couple (Γ, ψ). For s ∈ H we set

Γs :=
{
v(s− h†) : h ∈ H×} ⊆ Γ∞.

In particular, ∞ ∈ Γs iff s ∈ H† := {h† : h ∈ H×}.

Lemma 2.1. The following are equivalent:

(i) H is closed;
(ii) H is ω-free, real closed, newtonian, and there is no s ∈ H with Γs ⊆ Ψ↓.

Proof. If H is closed, then H† = H, so (ii) holds. Now assume (ii). To derive (i), it
suffices to show that H is Liouville closed. Now H is newtonian, so is closed under
integration. Let s ∈ H; it is enough to show that then s ∈ H†. Now Γs ̸⊆ Ψ↓, so
we have h ∈ H× with s − h† ∈ I(H), so s − h† ∈ (1 + O)† by [ADH, 14.2.5], and
thus s ∈ H†. □

Next a part of [ADH, 10.5.20] (replacing s, f there by −s, f−1 if necessary):

Lemma 2.2. Suppose Γ ̸= {0}, H is real closed, s ∈ H, and Γs ⊆ Ψ↓. Then there
exists an f in an H-field extension of H such that:

(i) f is transcendental over H and f† = s;
(ii) the pre-H-field extension H(f) of H is an H-field with the same constant

field as H; and
(iii) for the asymptotic couple (Γf , ψf ) of H(f), viewed as an extension of (Γ, ψ),

we have vf ∈ Γf \ Γ, Γf = Γ⊕ Zvf , with Ψf cofinal in Ψ.

Suppose H is real closed with Γ ̸= {0}. Transfinitely iterating the extension proce-
dure of the lemma above, alternating it with taking real closures, and taking unions
at limit stages, we obtain a real closed d-algebraic H-field extension H∗ of H with
asymptotic couple (Γ∗, ψ∗) of H∗ extending (Γ, ψ), such that:

(1) H∗ has the same constant field as H, and Ψ is cofinal in Ψ∗;
(2) for all s ∈ H we have Γ∗

s ̸⊆ Ψ∗↓; and
(3) Γ∗ = Γ⊕

⊕
i∈I Qvfi (internal direct sum) where (fi) is a family of nonzero

elements of H∗ with f†i ∈ H for all i ∈ I.
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Given any archimedean class [γ∗] with 0 ̸= γ∗ ∈ Γ∗ we choose a ∈ H×, dis-
tinct i1, . . . , in ∈ I, and k1, . . . , kn ∈ Z̸=, such that

afk1i1 · · · fknin ≻ 1, v
(
afk1i1 · · · fknin

)
∈ [γ∗].

Associating to [γ∗] the element (afk1i1 · · · fknin )† = a† + k1f
†
i1
+ · · · + knf

†
in

of H>,

we obtain a strictly increasing map [(Γ∗) ̸=] → H>, by [ADH, 10.5.2]. Recall that
the ordered residue field of H is isomorphic to the ordered constant field of H. It
follows that if H is short, then so are the ordered residue field of H and the ordered
set [Γ∗], hence Γ∗ is short as well by the remark before Lemma 1.1. Thus if H is
short, then so is H∗ by Lemma 1.3.

The process leading from H to H∗ can now be applied to H∗ instead of H, and
iterating this process ω times, and taking a union gives us a real closed H-field
extension H# of H with asymptotic couple

(
Γ#, ψ#

)
extending (Γ, ψ) such that:

(4) H# has the same constant field as H, and Ψ is cofinal in Ψ#;
(5) there is no s ∈ H# with Γ#

s ⊆ Ψ#↓; and
(6) if H is short, then so is H#.

Let now H be ω-free and real closed. We build a sequence (Hn) of ω-free real closed
d-algebraic H-field extensions of H, with Hn+1 extending Hn for all n:

• H0 := H,
• for even n, Hn+1 := H#

n ,
• for odd n, Hn+1 is a maximal immediate d-algebraicH-field extension ofHn

(so Hn+1 is newtonian by [ADH, 10.5.8, 14.0.1]).

Then H∞ :=
⋃
nHn is closed by Lemma 2.1, in view of (5) above. Since H∞ is

also d-algebraic over H and has the same constant field as H, it follows that H∞
is a Newton-Liouville closure of H, by [ADH, pp. 669, 685].

Now shortness is inherited by immediate extensions of H-fields, so if H is short,
then so is H∞ in view of (6) above. This leads to:

Corollary 2.3. Suppose H is ω-free, real closed, and short, and E is a differentially
algebraic H-field extension of H with the same constant field as H. Then E is short.

Proof. Take a Newton-Liouville closure of E. This is also a Newton-Liouville closure
of H and isomorphic to the H∞ above, by [ADH, 16.2.1]. So this Newton-Liouville
closure of E is short, and thus E is short. □

3. Proof of the Main Theorem

We still need a few generalities about preserving shortness:

From pre-H-fields to ω-free H-fields. By [ADH, p. 445], a pre-H-field K has a
“smallest” H-field extension, the H-field hull H(K) of K, whose underlying valued
differential field is the pre-d-valued hull dv(K) of K.

Lemma 3.1. Let K be a short pre-H-field. Then H(K) is short.

Proof. By [ADH, 10.3.2] and Lemma 1.1(i), the value group of H(K) is short, and
by [ADH, remarks preceding 10.3.2] its ordered residue field equals that of K, and
so is short as well. Hence H(K) is short by Lemma 1.3. □

The next lemma has almost the same proof as [3, Corollary 2.18]. It is used for
Hardy fields that do not contain R and might therefore not be H-fields.
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Lemma 3.2. If the Hardy field H is short, then so is the Hardy field H(R).

Proof. This is clear ifH ⊆ R. AssumeH is a short Hardy field andH ̸⊆ R. Let E be
theH-field hull ofH, taken as anH-subfield of the Hardy field extensionH(R) ofH.
Then E is short by Lemma 3.1. Now use that H(R) = E(R) and ΓE(R) = ΓE ̸= {0}
by [ADH, 10.5.15 and remark preceding 4.6.16]. □

Elaborating the proof of [ADH, 11.5.15] we now show:

Lemma 3.3. Let K be a short H-field and L a Schwarz closed H-field extension
of K. Then there exists a short ω-free H-subfield of L containing K.

Proof. If K is grounded, this follows from [ADH, 11.7.17] and Lemma 1.4. Sup-
pose K is ungrounded. Then K has a gap or has asymptotic integration by [ADH,
9.2.16]. If K has a gap vs with s ∈ K, then we take y ∈ L with y ̸≍ 1 and y′ = s,
so that by [ADH, 10.2.1, 10.2.2 and subsequent remarks], K(y) is a grounded H-
subfield of L, and we are back to the grounded case. In general we arrange, by
passing to the real closure of K in L, that the value group ΓK of the valued field K
is divisible. For such K it remains to consider the case that K has asymptotic
integration (and thus rational asymptotic integration) and is not ω-free. Assume
we are in this case. We distinguish two subcases:

Subcase 1: K is not λ-free.

Then [ADH, 11.5.14] yields s ∈ K creating a gap over K, with S :=
{
v(s − a†) :

a ∈ K×} a cofinal subset of Ψ↓
K and s ̸= 0 by [ADH, 11.5.13]. Taking f ∈ L×

with f† = s, K(f) has a gap by [ADH, remark preceding 11.5.15]. Moreover, K(f)
is an H-subfield of L by [ADH, 10.4.5(iv)], so K(f) falls under the “gap” case
treated earlier.

Subcase 2: K is λ-free.

As in [ADH, 11.5, 11.7] we have the pc-sequence (ωρ) in K. Now K is not ω-free, so
we can take ω ∈ K such that ωρ ⇝ ω. The Schwarz closed H-field L has a unique
expansion to a ΛΩ-field L, and we let K = (K, I,Λ,Ω) be the ΛΩ-field expansion
of K such that K ⊆ L. We are now in the situation of [ADH, 16.4.6], whose proof
gives two possibilities:

(a): Ω = ω(K)↓. As in the proof of that lemma for Case 1 this yields a pre-H-
field extension K⟨γ⟩ of K with a gap that embeds over K into L. The residue field
of K⟨γ⟩ equals that of K, and so K⟨γ⟩ is an H-field by [ADH, 9.1.2]. Moreover,
K⟨γ⟩ is short by Lemma 1.4, so K⟨γ⟩ falls under the “gap” case treated earlier.

(b): Ω = K \ σ
(
Γ(K)

)↑. As in Case 2 in the proof of [ADH, 16.4.6] this yields
an immediate pre-H-field extension K(λ) of K that is not λ-free and that embeds
over K into L. Then K(λ) is an H-field by [ADH, 9.1.2] and is short, so K(λ) falls
under Subcase 1. □

Finishing the proof. The following is a bit more general than Theorem A:

Theorem 3.4. Let H be a short pre-H-field and E a pre-H-field extension of H
and d-algebraic over H with short ordered residue field. Then E is short.

Proof. Expand E to a pre-ΛΩ-field E. The proof of [ADH, 16.4.9] yields a Newton-
Liouville closure L = (L, . . . ) of E such that L is d-algebraic over E and thus
over H, and the ordered residue field of L is a real closure of the ordered residue
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field of E. In particular, the ordered constant field D of L, being isomorphic to the
ordered residue field of L, is short. It is enough to prove that L is short. Let K
be the H-field hull of H in L. Then K is short by Lemma 3.1, and so Lemma 3.3
yields a short ω-free H-subfield F ⊇ K of L. Now F (D) is an H-subfield of L
and has the same (short) value group as F , by [ADH, 10.5.15], and short constant
field D. So F (D) is short by Lemma 1.3. Hence the real closure of F (D) in L is
short and ω-free. Thus L is short by Corollary 2.3. □

Embeddings into closed η1-ordered H-fields. Maximal Hardy fields, maximal
smooth Hardy fields, and maximal analytic Hardy fields are closed H-fields, and are
η1-ordered by [6, Theorem A] and [3, Theorem A and subsequent remark]. More
generally, in this subsection L is a closed η1-ordered H-field. Using Theorem A
from the introduction we generalize [3, Proposition 7.6]:

Proposition 3.5. Let E be an ω-free pre-H-field and K be a short pre-H-field
extending E such that res(E) = res(K). Then any embedding E → L extends to an
embedding K → L.

Proof. By Lemma 3.1 and [3, remark after Lemma 5.19], the real closure H(K)rc

of the H-field hull of K is short. Moreover, the H-field H(E)rc is ω-free by [ADH,
13.6.1], and each embedding E → L extends to an embedding H(E)rc → L. The
ordered residue field of H(E)rc and of H(K)rc is the real closure of res(E) =
res(K), cf. [ADH, remark before 10.3.2]. Hence replacing K by H(K)rc and then E
by H(E)rc, taken inside H(K)rc, we arrange E, K to be H-fields with real closed
constant fields CE = CK .

Next expand K to a ΛΩ-field K, and let M = (M, . . . ) be a Newton-Liouville
closure of K such that M is d-algebraic over K and CM = CK . (See the proof of
Theorem 3.4.) ThenM is closed, and short by Theorem A, so by [3, Proposition 7.6]
any embedding E → L extends to an embedding M → L. □

Next a generalization of [3, Lemma 7.8], where we recall that a valued differential
field is said to have very small derivation if O′ ⊆ O (with O and O as usual).

Lemma 3.6. Suppose L has small derivation and CL = R. Then any short pre-
H-field with very small derivation and archimedean residue field embeds into L.

Proof. Let E be a short pre-H-field with very small derivation and archimedean
residue field. To embed E into L we pass to H(E)rc to arrange that E is a real
closed H-field with small derivation. Now Theorem A yields a closed short H-field
extension K of E with CE = CK . Then [3, Lemma 7.8] yields an embedding of K
(and thus of E) into L. □

By [8, Proposition 13.11] the universal part of the theory of Hardy fields, viewed as
structures in the language (specified there) of ordered valued differential fields, is
the theory of pre-H-fields with very small derivation. The following complements
this result and includes Corollary B from the introduction:

Corollary 3.7. Any short pre-H-field with very small derivation and archimedean
residue field embeds into every maximal Hardy field. Likewise with “maximal”
replaced by “maximal smooth”, respectively “maximal analytic”.

This is a consequence of Lemma 3.6. We finish this section with an application
to the H-field No(ω1) of surreal numbers of countable length equipped with the
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Berarducci-Mantova derivation [9]. (Note, however, that the Continuum Hypothesis
gives isomorphism results [3, 6] stronger than Corollary 3.8.)

Corollary 3.8. Let M be a maximal Hardy field. Then No(ω1) embeds into M .
Likewise with “maximal smooth” and “maximal analytic” in place of “maximal”.

Proof. The H-field No(ω1) is exhibited in [4, Remark after Corollary 4.5] as the
increasing union of grounded and short H-subfields Kε, with ε ranging over the
countable ε-numbers. Let α, β range over countable infinite limit ordinals, and set

Eα :=
⋃
ε<εα

Kε.

Then Eα is a short H-subfield of No(ω1) with constant field R, and is ω-free
by [ADH, 11.7.15]. Thus Eω embeds intoM by Corollary 3.7. Transfinite recursion
on α using Proposition 3.5 then yields for all α an embedding hα : Eα → M such
that hα = hβ |Eα

for α ⩽ β. It follows that the common extension of the hα
embeds No(ω1) into M as required. □

4. Constructing Hardy Fields with Given Asymptotic Couple

In this section k is an ordered field, and we consider H-couples (Γ, ψ) over k as
defined in [5]. We revisit a construction from [2, Section 11]2 which associates to
each H-couple (Γ, ψ) of Hahn type over k satisfying (+) a spherically complete
H-field with constant field k and H-couple (Γ, ψ) over k, and closed under powers.
Here (+) is the condition that ψ(γ) = γ for some γ > 0 in Γ, and that Γ admits
a valuation basis for its k-valuation. In the first subsection we carry out this
construction without assuming (+): Corollary 4.7. This leads to Corollary C from
the introduction. The construction involves equipping suitable Hahn fields with the
“right” derivation. Other explorations of derivations on Hahn fields are in [12, 14].

Generalizing [2, Section 11]. Let Γ be an ordered vector space over k and suppose
it is a spherically complete Hahn space over k; see [ADH, 2.4] for the definitions.
Using [ADH, 2.3.2, 2.4.23] we identify Γ with the Hahn product H[I,k] where I :=(
[Γ̸=]k with reversed ordering

)
, and we let i, j range over I. The elements of Γ are

thus the γ = (γi) ∈ kI whose support supp γ = {i : γi ̸= 0} is a well-ordered subset
of I. Let ei = (eij) ∈ Γ be given by eij = 0 if i ̸= j and eii = 1. Then ei > 0 for
each i, and the map i 7→ [ei]k : I → [Γ ̸=]k is decreasing and bijective (so {ei : i ∈ I}
is valuation-independent with respect to the k-valuation on the ordered k-vector
space Γ). We think of each γ = (γi) ∈ Γ as an infinite sum

γ =
∑
i

γiei.

Let α, β, γ range over Γ. We say that ei occurs in γ if i ∈ supp γ. Thus the set
of “Hahn basis elements” ei that occur in γ is reverse well-ordered, and for γ ̸= 0
and i0 = min supp γ (so ei0 is the largest Hahn basis element occurring in γ), we
have [γ]k = [ei0 ]k, and the equivalence γ > 0 ⇔ γi0 > 0. Note: i = [ei]k.

Let also ψ : Γ̸= → Γ be such that (Γ, ψ) is an H-couple over k, and assume
it is of Hahn type, that is, for all α, β ̸= 0 with ψ(α) = ψ(β) there is a c ∈ k×

with ψ(α− cβ) > ψ(α); see [5] or [6, Section 8], also for the fact that then

ψ(α) ⩽ ψ(β) ⇐⇒ [α]k ⩾ [β]k (α, β ̸= 0),
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and thus i < j ⇔ ψ(ei) < ψ(ej). Let tΓ be a multiplicative copy of the (additive)
ordered abelian group Γ, ordered such that γ 7→ tγ : Γ → tΓ is an order-reversing
isomorphism, and consider the valued ordered Hahn field K := k((tΓ)) over k,
cf. [ADH, 3.1, 3.5]. Its elements are the formal series

f =
∑
γ

fγt
γ (fγ ∈ k)

whose support supp f = {γ : fγ ̸= 0} is a well-ordered subset of Γ. Recall that a
family (fλ)λ∈Λ of elements of K is said to be summable if

⋃
λ supp fλ is well-ordered

and for each γ there are only finitely many λ ∈ Λ such that fλ,γ ̸= 0; in this case we
define

∑
λ fλ to be the series f ∈ K with fγ =

∑
λ fλ,γ for each γ [ADH, p. 712].

Also recall from [ADH, p. 713] that a map Φ: K → K is said to be strongly additive
if for every summable family (fλ) in K the family

(
Φ(fλ)

)
is summable and

Φ

(∑
λ

fλ

)
=
∑
λ

Φ(fλ).

Lemma 4.1. Let S ⊆ Γ be well-ordered. Then

(i) for each γ there are only finitely many α ∈ S such that γ = α + ψ(ei) for
some ei occurring in α;

(ii) the set of all α+ ψ(ei) with α ∈ S and ei occurring in α is well-ordered.

Proof. For (i), suppose γ = α+ψ(ei) = β+ψ(ej) for elements α < β in S, with ei, ej
occurring in α, β, respectively. Then ψ(ei) − ψ(ej) = β − α > 0, so [ei]k < [ej ]k
and [β −α]k =

[
ψ(ei)−ψ(ej)

]
k
< [ei− ej ]k = [ej ]k. Hence ej occurs in α. Thus if

we have a strictly increasing sequence (αn) in S and a sequence (in) in I such that
ein occurs in αn and αn+ψ(ein) = αn+1 +ψ(ein+1), for all n, then all ein occur in
α0 and (ein) is strictly increasing, contradicting that the set of ei occurring in α0

is reverse well-ordered.
For (ii), suppose towards a contradiction that (in) is a sequence in I and (αn)

is a sequence in S such that ein occurs in αn and αn + ψ(ein) > αn+1 + ψ(ein+1
)

for all n. Passing to a subsequence and using the well-orderedness of S we arrange
that αn ⩽ αn+1 for all n. Then 0 ⩽ αn+1 − α0 < ψ(ei0)− ψ(ein+1), so

[αn+1 − α0]k ⩽
[
ψ(ei0)− ψ(ein+1

)
]
k
< [ei0 − ein+1

]k = [ein+1
]k.

Thus all ein occur in α0. Also ψ(ein+1
) < ψ(ein) + (αn − αn+1) ⩽ ψ(ein) and

so ein+1
> ein for all n, contradicting that the set of ei occurring in α0 is reverse

well-ordered. □

For α =
∑
i αiei (αi ∈ k) the set of ei with αi ̸= 0 is reverse well-ordered, so

the subset
{
α + ψ(ei) : ei occurs in α

}
of Γ is well-ordered and is the support

of (tα)′ := −
∑
i αi t

α+ψ(ei) ∈ K. Let f =
∑
α fαt

α range over K. Then the

family
(
fα(t

α)′
)
is summable by Lemma 4.1, and we put

f ′ :=
∑
α

fα(t
α)′ ∈ K (so f ′ = 0 for f ∈ k).

Using (tα+β)′ = −
∑
i(αi+βi)t

α+β+ψ(ei) = (tα)′tβ + tα(tβ)′ and [11, Corollary 3.9]
one verifies that the map f 7→ f ′ : K → K is a strongly additive k-linear derivation
on K. For α ̸= 0 we set α′ := α+ ψ(α).



10 ASCHENBRENNER AND VAN DEN DRIES

Lemma 4.2. If 0 ̸= f ≺ 1, then

f ′ ∼ −αifαtα
′

where α := vf , i := [α]k.

Hence if 0 ̸= f ̸≍ 1, then v(f ′) = (vf)′.

Proof. For α ̸= 0 and i := [α]k we have i = [ei]k, hence (tα)′ ∼ −αitα+ψ(ei) =

−αitα
′
. If 0 < α < β, then α′ < β′ and thus (tα)′ ≻ (tβ)′. This yields the first

implication. For the second, let 0 ̸= f ̸≍ 1, arrange f ≺ 1 by replacing f with 1/f
if necessary, and use the first part of the lemma. □

Lemma 4.3. The derivation f 7→ f ′ makes K into an H-field with constant field k
and asymptotic couple (Γ, ψ).

Proof. Let f ∈ K \ k. Then f ′ ̸= 0: arranging 0 ̸= f ̸≍ 1 by subtracting f0 ∈ k
from f in case f ≍ 1, we have v(f ′) = (vf)′ by Lemma 4.2, in particular, f ′ ̸= 0.
Thus the constant field of our derivation is k. The valuation ring O of K is the con-
vex hull of k in K, and O = k+ O. Finally, suppose 0 < f ≺ 1. Then α := vf > 0,
so αi > 0 for i := [α]k. Also fα > 0 and f ′ ∼ −αifαtα

′
and thus f ′ < 0. □

An H-field H with constant field C is said to be closed under powers if H† is a
C-linear subspace of H. In that case, the asymptotic couple of H is an H-couple
over C of Hahn type in a natural way, by [2, Lemma 7.4, Proposition 7.5]. See [2,
Sections 7, 8] for other basic facts about H-fields closed under powers.

Proposition 4.4. The H-field K is closed under powers, and its associated H-
couple over k is (Γ, ψ).

This follows from Lemma 4.3 using the strong additivity of the derivation f 7→ f ′

of K and the fact that (tcα)† = c(tα)† for all α and all c ∈ k, just like in [2],
Proposition 11.4 followed from Lemmas 11.1, 11.2.

Remark 4.5. Let Γ0 be a subgroup of Γ with Ψ = ψ(Γ ̸=) ⊆ Γ0. Then K0 := k((tΓ0))
is an H-subfield of K with constant field k and asymptotic couple (Γ0, ψ|Γ̸=

0
). If Γ0

is a k-linear subspace of Γ, then K0 is closed under powers, and its associated
H-couple over k is (Γ0, ψ|Γ̸=

0
).

The construction above generalizes that of the derivation defined in [10] on the
H-field of logarithmic hyperseries:

Example. With k = R, let I be an ordinal and Γ := H[I,R] = RI . Let i range over I
and take ψ : Γ ̸= → Γ to be constant on archimedean classes with ψ(ei) =

∑
j⩽i ej

for all i. Then (Γ, ψ) is an H-couple over R of Hahn type. Note that ψ(e0) = e0
is the smallest element of Ψ = ψ(Γ ̸=), and (Γ, ψ) has gap

∑
i ei. The construction

above yields the H-field K := R((tΓ)) with constant field R. This K is closed under
powers and has associated H-couple (Γ, ψ) over R. Changing notation, let I be the
ordinal α and L<α = R[[L<α]] the H-field of logarithmic hyperseries defined in [10,
Sections 1, 3]. Then the unique strongly additive field isomorphism h : K → L<α
over R with h(tγ) =

∏
i ℓ

−γi
i for γ =

∑
i γiei is an isomorphism of H-fields.

So far the ordered vector space Γ over k was a spherically complete Hahn space
over k and (Γ, ψ) an H-couple over k of Hahn type. We now relax this: for the rest
of this subsection (Γ, ψ) is an arbitrary H-couple over k. We shall need a variant
of [1, Lemma 3.2]:
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Lemma 4.6. Let Γ1 be an ordered vector space over k extending Γ with [Γ]k =

[Γ1]k. Then there is a unique map ψ1 : Γ
̸=
1 → Γ1 such that (Γ1, ψ1) is an H-couple

over k extending (Γ, ψ). If (Γ, ψ) is of Hahn type and Γ1 is a Hahn space over k,
then (Γ1, ψ1) is of Hahn type.

Proof. To verify axiom (A3) of asymptotic couples, use that for distinct α, β ̸= 0
we have

[
ψ(α)− ψ(β)

]
k
< [α− β]k, by [5, p. 536]. □

Now assume (Γ, ψ) is of Hahn type. By the Hahn Embedding Theorem for Hahn
spaces [ADH, 2.4.23] we may view Γ as an ordered k-linear subspace of the or-

dered vector space Γ̂ := H[I,k] over k, where I :=
(
[Γ̸=] with reversed ordering

)
.

Lemma 4.6 yields a unique map ψ̂ : Γ̂ ̸= → Γ̂ making (Γ̂, ψ̂) an H-couple over k

extending (Γ, ψ). Then (Γ̂, ψ̂) is of Hahn type. Let K̂ := k((tΓ̂)) be the H-field

with constant field k and H-couple (Γ̂, ψ̂) over k and closed under powers that was

constructed above, with K̂, (Γ̂, ψ̂) in the roles of K, (Γ, ψ), respectively. Then K̂
has the H-subfield K := k((tΓ)) which is closed under powers and has (Γ, ψ) as its
H-couple over k, by Remark 4.5. This shows:

Corollary 4.7. Every H-couple over k of Hahn type is the H-couple of a spherically
complete H-field with constant field k and closed under powers.

Proof of Corollary C. In this subsection L is a closed η1-ordered H-field with
small derivation and constant field R. Every ordered vector space over R is a Hahn
space over R, so an H-couple (Γ, ψ) over R is of Hahn type iff it is of Hardy type.
Thus by Lemma 3.6 and Corollary 4.7:

Lemma 4.8. If (Γ, ψ) is a short H-couple over R of Hardy type with small deriva-
tion, then (Γ, ψ) is isomorphic to the H-couple over R of a spherically complete
H-subfield of L containing R and closed under powers.

In the same way that Lemma 3.6 gave rise to Corollary 3.7, Lemma 4.8 yields:

Corollary 4.9. IfM is a maximal Hardy field, then every short H-couple over R of
Hardy type with small derivation is isomorphic to the H-couple over R of a spher-
ically complete H-subfield of M containing R and closed under powers. Likewise
with “maximal smooth” (respectively,“maximal analytic”) in place of “maximal”.

The following is clear from [ADH, 9.8.1].

Lemma 4.10. Let (Γ, ψ) be an H-asymptotic couple and Γ∗ be an ordered vector
space over R containing Γ as an ordered subgroup with [Γ] = [Γ∗]. Then there is a
unique map ψ∗ : (Γ∗)̸= → Γ∗ extending ψ which makes (Γ∗, ψ∗) an H-asymptotic
couple. Moreover, (Γ∗, ψ∗) is an H-couple over R, and (Γ∗, ψ∗) is of Hahn type
iff (Γ, ψ) is of Hardy type.

Lemma 4.11. Let (Γ, ψ) be a short asymptotic couple of Hardy type with small
derivation. Then (Γ, ψ) is isomorphic to the asymptotic couple of a spherically
complete H-subfield of L containing R.

Proof. The Hahn product Γ∗ := H[I,R], with I :=
(
[Γ̸=] with reversed ordering

)
is an ordered vector space over R; see [ADH, p. 98]. The Hahn Embedding The-
orem [ADH, 2.3.4, 2.4.18, 2.4.19] yields an ordered group embedding ι : Γ → Γ∗

such that
[
ι(Γ)

]
= [Γ∗]. Identify Γ with its image in Γ∗ via ι. Lemma 4.10 gives
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a unique extension ψ∗ : (Γ∗)̸= → Γ∗ of ψ such that (Γ∗, ψ∗) is an H-asymptotic
couple. Then (Γ∗, ψ∗) is an H-couple over R of Hahn type, and is short by [3,
Lemma 5.16]. Let K∗ := R((tΓ∗

)) be the H-field closed under powers with constant
field R and H-couple (Γ∗, ψ∗) over R constructed in the previous subsection. Then
by Remark 4.5, K := R((tΓ)) is an H-subfield of K∗ with constant field R and
asymptotic couple (Γ, ψ) and K has small derivation. Since K is short, it embeds
into L by Lemma 3.6. □

Lemma 4.11 now yields Corollary C from the introduction:

Corollary 4.12. Let M be a maximal Hardy field. Then every short asymptotic
couple of Hardy type with small derivation is isomorphic to the asymptotic couple
of a spherically complete H-subfield of M containing R. Likewise with “maximal
smooth” (respectively, “maximal analytic”) in place of “maximal”.

Notes

1. As a consequence of Corollary C, each asymptotic couple of Hardy type with small derivation and
countable rank is isomorphic to the asymptotic couple of a Hardy field extending R.

2. For a list of errata to [ADH], see [7].

3. In [1, 2] an H-couple (Γ, ψ) satisfies additional requirements: ψ(γ) = γ for some γ > 0 in Γ,

and (Γ, ψ) is of Hahn type.
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