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Motivating question

We call a ring of characteristic zero a

Lefschetz ring

if it is isomorphic to an ultraproduct of rings

of positive characteristic. (Always: “ring” =

“commutative ring with unit 1.”)

Examples:

• The field C of complex numbers;

• in general: any algebraically closed field K

of char. zero of cardinality 2λ with λ > ℵ0

can be written as an ultraproduct of alge-

braically closed fields Kp of char. p.

Question: Given a Noetherian ring R of char-

acteristic zero, can we find a faithfully flat ring

extension D of R which is Lefschetz?
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Fact: Every finitely generated algebra A over

a field of characteristic zero admits a faithfully

flat Lefschetz extension.

Enough to see this for

A = K[X], X = (X1, . . . , Xn).

Here and below K is an ultraproduct of alg.

closed fields Kp of char. p. Take

D := K[X]∞ := ultraproduct of the Kp[X].

The (images of the) indeterminates X1, . . . , Xn

remain algebraically independent over K in

K[X]∞ (by  Los’ Theorem). Hence

K[X] →֒ K[X]∞

as K-algebras. This embedding is faithfully flat

(van den Dries and Schmidt).
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Theorem. Let (R, m) be a Noetherian local

ring of equicharacteristic zero (i.e., R ⊇ Q).

There exists a local Lefschetz ring D(R) and a

faithfully flat embedding ηR : R → D(R).

Naive idea: For R = K[[X]] put

D(R) = K[[X]]∞

:= the ultraproduct of the Kp[[X]].

Now K[X] is a subring of K[[X]]∞, and the

local ring K[[X]]∞ is complete in the X-adic

toplogy.

Might try

ηR(f) :=











limit in K[[X]]∞ of a Cauchy

sequence in K[X] approximat-

ing f .

But K[[X]]∞ not Hausdorff!
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More subtle problem:

Let L be a field and i ∈ {1, . . . , n}. Let us say

that a power series f ∈ L[[X]] does not involve

the indeterminate Xi if

f ∈ L[[X1, . . . , Xi−1, Xi+1, . . . , Xn]].

An element of K[[X]]∞ does not involve Xi if

it is the ultraproduct of power series in Kp[[X]]

not involving Xi.

Fact: There is no homomorphism

h : K[[X1, . . . , X6]] → K[[X1, . . . , X6]]∞

such that for i = 4, 5, 6, if f ∈ K[[X]] does not

involve the variable Xi, then neither does h(f).

(Uses an example due to P. Roberts.)

Nevertheless, the construction in the theorem

can be made functorial in a way. For this we

need some definitions . . .
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Define a category CohK:

(1) objects are quadruples Λ = (R, x, k, u):

(a) (R, m) is a Noetherian local ring;

(b) x is a finite tuple of generators of m;

(c) k is a quasi-coefficient field of R (i.e., a

subfield of R such that R/m is algebraic

over the image of k under R → R/m);

(d) u : R → K is a homom. with ker ϕ = m.

(2) morphisms Λ → Γ = (S,y, l, v) are local ring

homomorphisms α : R → S such that

(a) α(x) is an initial segment of y,

(b) α(k) ⊆ l, and

(c) v ◦ α = u.
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Example.
(

K[[X]], X, K, u
)

is an object in

CohK, where u(f) = f(0).

On the other side, given an ultraset W (=

infinite set equipped with a non-principal ul-

trafilter) let LefW be the category with:

(1) objects: analytic Lefschetz rings with re-

spect to W, i.e., ultraproducts w.r.t. W

of complete Noetherian local rings (R, m)

with algebraically closed residue field R/m

of char(R/m) = char(R) > 0;

(2) morphisms: ultraproducts (with respect to

W) of local ring homomorphisms.

Example. K[[X]]∞ is an analytic Lefschetz

ring w.r.t. W = a non-principal ultrafilter on

the set of prime numbers.
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Theorem′. There exists an ultraset W and a

functor

D : CohK → LefW

with the following property: for every CohK-

object Λ as above there exists a faithfully flat

homomorphism ηΛ : R → D(Λ) such that for

any CohK-morphism Λ → Γ with underlying

homomorphism α : R → S the diagram

R α
//

ηΛ

��

S

ηΓ

��

D(Λ)
D(α)

// D(Γ)

of local homomorphisms commutes.

Ingredients in the proof of Theorem′.

1. A model-theoretic embedding criterion.

2. An approximation result.

3. A test for flatness.
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1. An embedding criterion.

A nested ring is a ring R together with a nest

of subrings:

R0 ⊆ R1 ⊆ · · · ⊆ Rn ⊆ · · · , R =
⋃

n
Rn.

A homomorphism ϕ : S → R between nested

rings R = (Rn) and S = (Sn) is a homomor-

phism of nested rings if ϕ(Sn) ⊆ Rn for all n.

A nested system S of equations over S:

P00(Z0) = · · · = P0k(Z0) = 0,
P10(Z0, Z1) = · · · = P1k(Z0, Z1) = 0,

... ...
Pn0(Z0, . . . , Zn) = · · · = Pnk(Z0, . . . , Zn) = 0,

where k, n ∈ N, Zi = (Zi1, . . . , Ziki
), ki ∈ N, and

Pij ∈ Si[Z0, . . . , Zi].

A tuple (a0, . . . , an) with ai ∈ (Ri)
ki is called a

nested solution of S in R if Pij(a0, . . . , ai) = 0

for all i, j.
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Let A and B be nested S-algebras. Given an

ultraset U consider the S-subalgebra B〈U〉 :=
⋃

n BU
n of the ultrapower BU as a nested S-

algebra with nest (BU
n ).

Theorem. If each Sn is Noetherian, then the

following are equivalent:

(1) Every nested system of polynomial equa-

tions over S which has a nested solution in

A has one in B.

(2) There exists a homomorphism of nested S-

algebras η : A → B〈U〉, for some ultraset U .

9



2. An approximation result.

Define nested rings S, A, B and S∼ by

Sn := K[X1, . . . , Xn],

An := K[[X1, . . . , Xn]],

Bn := K[[X1, . . . , Xn]]∞,

S∼
n := algebraic closure of Sn in An.

Theorem. Every nested system of polynomial

equations over S which has a nested solution

in A has one in S∼, and hence in B.

Follows from the fact that rings of the form

K[[X1, . . . , Xn]][Xn+1, . . . , Xn+m](Xn+1,...,Xn+m)

are existentially closed in their completion

(C. Rotthaus, 1987).
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3. A test for flatness.

Let (R, m) be a Noetherian local ring, x =

(x1, . . . , xn) ∈ Rn. Recall: x is a system of
parameters (s.o.p.) for R if n = dim R and

dim R/(x) = 0, and R is regular if it has a

s.o.p. generating m. (E.g., R = K[[X]].)

Let M be an R-module. Then x is called an M-
regular sequence if M/(x1, . . . , xn)M 6= 0 and xi
is a non-zerodivisor on M/(x1, . . . , xi−1)M for

all i. If M is f.g., then every permutation of
an M-regular sequence is M-regular.

Fact. (Hochster & Huneke) If R is regular and

(1) there exists a s.o.p. for R which is M-

regular, and

(2) every permutation of an M-regular sequen-
ce is again M-regular,

then M is flat.
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Approximations.

Let Rw be the complete Noetherian local rings

of equicharacteristic p(w) > 0 whose ultraprod-

uct is D(Λ). We think of the Rw as approxi-

mations of R. They share many properties of

R, e.g.:

(1) Almost all Rw have the same Hilbert-Sa-

muel function as R. (Hence almost all Rw

have the same dimension, embedding di-

mension, multiplicity as R.)

(2) Almost all Rw have the same depth as R.

(3) Almost all Rw are regular (Cohen-Macau-

lay) if and only if R is regular (Cohen-

Macaulay, respectively).

(4) . . . and much more. (Sometimes need to

choose Λ carefully.)
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Applications.

The functor D( · ) can be used to

1. define a notion of tight closure, and

2. construct big Cohen-Macaulay algebras

in equicharacteristic zero.

Observation: D(R) = D(Λ) comes equipped

with the non-standard Frobenius F∞ = ultra-

product of the

Rw → Rw : a 7→ Fp(w)(a) = ap(w).

Notation: R◦ := R \ (minimal primes of R).

Definition. An element a ∈ R is in the non-

standard tight closure cl(I) = clΛ(I) of I if

∃c ∈ R◦ : ∀m ≫ 0 : cFm
∞(a) ∈ Fm

∞(I)D(R).

(Similar to a definition given by Hochster &

Huneke in positive char.)
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Theorem 1. If R is regular, then cl(I) = I for

every ideal I of R.

Proof. Easy to check: the image of an R-

regular sequence in R under Fm
∞ is D(R)-

regular. Hence by the Hochster-Huneke flat-

ness criterion,

R → D(R): a 7→ Fm
∞(a) (∗)

is flat. Suppose that a ∈ cl(I) \ I. For some

non-zero c ∈ R, we have

c Fm(a) ∈ Fm(I)D(R)

for m sufficiently large. Thus

c ∈ (Fm
∞(I)D(R) :D(R) Fm

∞(a)) =

Fm
∞(I :R a)D(R)

where we used flatness of (∗) for the last equal-

ity. Since a /∈ I, we have (I :R a) ⊆ m, hence

c ∈ Fm
∞(m)D(R) ∩ R = (0),

contradiction.
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The Briançon-Skoda Theorem.

The integral closure J of an ideal J ⊆ S in a

ring S is the ideal of all b ∈ S for which

bn + a1bn−1 + · · · + an−1b + an = 0

with ai ∈ J i for each i.

Lemma. (Huneke) Let S be a Noetherian local

ring, J an ideal of S, b ∈ S. Then

b ∈ J ⇐⇒























b ∈ JV for every local homo-

morphism S → V to a discrete

valuation ring V whose kernel

is a minimal prime of S.

Together with Theorem 1 and functoriality of

D this yields:

cl(I) ⊆ I for every ideal I of R.

(Hence “tight” closure.)
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Theorem 2. If I has positive height and is gen-

erated by n elements then In ⊆ cl(I).

(Follows from the definitions and  Los’ Theo-

rem. The assumption ht(I) > 0 is needed to

get Ik ∩ R◦ 6= ∅ for all k.)

Corollary. (Briançon-Skoda)

If f ∈ C[[X1, . . . , Xn]] with f(0) = 0, then

fn =
∂f

∂X1
g1 + · · · +

∂f

∂Xn
gn

for some g1, . . . , gn ∈ C[[X1, . . . , Xn]].

Proof. Let I := ideal generated by the ∂f/∂Xi.

Then f ∈ I. (By the lemma: may take V =

K[[t]] with K ⊇ C, use Chain Rule.) Hence

fn ∈ In ⊆
Thm. 2

cl(I) =
Thm. 1

I.
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