Faithfully flat Lefschetz extensions

Matthias Aschenbrenner University of Illinois at Chicago

(joint with Hans Schoutens)

July 2004

Motivating question

We call a ring of characteristic zero a

Lefschetz ring

if it is isomorphic to an ultraproduct of rings of positive characteristic. (Always: "ring" = "commutative ring with unit 1.")

Examples:

- The field $\mathbb C$ of complex numbers;
- in general: any algebraically closed field K of char. zero of cardinality 2^{λ} with $\lambda > \aleph_0$ can be written as an ultraproduct of algebraically closed fields K_p of char. p.

Question: Given a Noetherian ring R of characteristic zero, can we find a *faithfully flat* ring extension D of R which is Lefschetz?

Fact: Every finitely generated algebra *A* over a field of characteristic zero admits a faithfully flat Lefschetz extension.

Enough to see this for

$$A = K[X], \quad X = (X_1, \dots, X_n).$$

Here and below K is an ultraproduct of alg. closed fields K_p of char. p. Take

 $D := K[X]_{\infty} :=$ ultraproduct of the $K_p[X]$.

The (images of the) indeterminates X_1, \ldots, X_n remain algebraically independent over K in $K[X]_{\infty}$ (by Łos' Theorem). Hence

$$K[X] \hookrightarrow K[X]_{\infty}$$

as K-algebras. This embedding is faithfully flat (van den Dries and Schmidt).

Theorem. Let (R, \mathfrak{m}) be a Noetherian local ring of equicharacteristic zero (i.e., $R \supseteq \mathbb{Q}$). There exists a local Lefschetz ring $\mathfrak{D}(R)$ and a faithfully flat embedding $\eta_R \colon R \to \mathfrak{D}(R)$.

Naive idea: For R = K[[X]] put

$$\mathfrak{D}(R) = K[[X]]_{\infty}$$

:= the ultraproduct of the $K_p[[X]]$.

Now K[X] is a subring of $K[[X]]_{\infty}$, and the local ring $K[[X]]_{\infty}$ is complete in the X-adic toplogy.

Might try

$$\eta_R(f) := \begin{cases} \text{limit in } K[[X]]_{\infty} \text{ of a Cauchy} \\ \text{sequence in } K[X] \text{ approximat-} \\ \text{ing } f. \end{cases}$$

But $K[[X]]_{\infty}$ not Hausdorff!

More subtle problem:

Let *L* be a field and $i \in \{1, ..., n\}$. Let us say that a power series $f \in L[[X]]$ does not involve the indeterminate X_i if

 $f \in L[[X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n]].$

An element of $K[[X]]_{\infty}$ does not involve X_i if it is the ultraproduct of power series in $K_p[[X]]$ not involving X_i .

Fact: There is no homomorphism

 $h: K[[X_1, \ldots, X_6]] \to K[[X_1, \ldots, X_6]]_{\infty}$

such that for i = 4, 5, 6, if $f \in K[[X]]$ does not involve the variable X_i , then neither does h(f). (Uses an example due to P. Roberts.)

Nevertheless, the construction in the theorem can be made *functorial* in a way. For this we need some definitions . . .

Define a category Coh_K :

- (1) objects are quadruples $\Lambda = (R, \mathbf{x}, k, u)$:
 - (a) (R, \mathfrak{m}) is a Noetherian local ring;
 - (b) \mathbf{x} is a finite tuple of generators of \mathfrak{m} ;
 - (c) k is a quasi-coefficient field of R (i.e., a subfield of R such that R/\mathfrak{m} is algebraic over the image of k under $R \to R/\mathfrak{m}$);
 - (d) $u: R \to K$ is a homom. with ker $\varphi = \mathfrak{m}$.
- (2) morphisms $\Lambda \to \Gamma = (S, \mathbf{y}, l, v)$ are local ring homomorphisms $\alpha \colon R \to S$ such that
 - (a) $\alpha(\mathbf{x})$ is an initial segment of y,
 - (b) $\alpha(k) \subseteq l$, and
 - (C) $v \circ \alpha = u$.

Example. (K[[X]], X, K, u) is an object in Coh_K , where u(f) = f(0).

On the other side, given an *ultraset* W (= infinite set equipped with a non-principal ultrafilter) let Lef_W be the category with:

- (1) objects: analytic Lefschetz rings with respect to \mathcal{W} , i.e., ultraproducts w.r.t. \mathcal{W} of complete Noetherian local rings (R, \mathfrak{m}) with algebraically closed residue field R/\mathfrak{m} of char $(R/\mathfrak{m}) = \operatorname{char}(R) > 0$;
- (2) morphisms: ultraproducts (with respect to \mathcal{W}) of local ring homomorphisms.

Example. $K[[X]]_{\infty}$ is an analytic Lefschetz ring w.r.t. $\mathcal{W} = a$ non-principal ultrafilter on the set of prime numbers.

Theorem'. There exists an ultraset W and a functor

 $\mathfrak{D}\colon \operatorname{\mathbf{Coh}}_K \to \operatorname{\mathbf{Lef}}_W$

with the following property: for every Coh_{K} object Λ as above there exists a faithfully flat homomorphism $\eta_{\Lambda} \colon R \to \mathfrak{D}(\Lambda)$ such that for any Coh_{K} -morphism $\Lambda \to \Gamma$ with underlying homomorphism $\alpha \colon R \to S$ the diagram

of local homomorphisms commutes.

Ingredients in the proof of Theorem'.

- 1. A model-theoretic embedding criterion.
- 2. An approximation result.
- 3. A test for flatness.

1. An embedding criterion.

A *nested ring* is a ring R together with a *nest* of subrings:

$$R_0 \subseteq R_1 \subseteq \cdots \subseteq R_n \subseteq \cdots, \qquad R = \bigcup_n R_n.$$

A homomorphism $\varphi \colon S \to R$ between nested rings $R = (R_n)$ and $S = (S_n)$ is a homomorphism of nested rings if $\varphi(S_n) \subseteq R_n$ for all n.

A nested system S of equations over S:

$$P_{00}(Z_0) = \cdots = P_{0k}(Z_0) = 0,$$

$$P_{10}(Z_0, Z_1) = \cdots = P_{1k}(Z_0, Z_1) = 0,$$

$$\vdots$$

$$P_{n0}(Z_0, \dots, Z_n) = \cdots = P_{nk}(Z_0, \dots, Z_n) = 0,$$

where $k, n \in \mathbb{N}$, $Z_i = (Z_{i1}, \ldots, Z_{ik_i})$, $k_i \in \mathbb{N}$, and $P_{ij} \in S_i[Z_0, \ldots, Z_i]$.

A tuple $(\mathbf{a}_0, \ldots, \mathbf{a}_n)$ with $\mathbf{a}_i \in (R_i)^{k_i}$ is called a *nested solution of* S in R if $P_{ij}(\mathbf{a}_0, \ldots, \mathbf{a}_i) = 0$ for all i, j.

8

Let A and B be nested S-algebras. Given an ultraset \mathcal{U} consider the S-subalgebra $B^{\langle \mathcal{U} \rangle} := \bigcup_n B_n^{\mathcal{U}}$ of the ultrapower $B^{\mathcal{U}}$ as a nested S-algebra with nest $(B_n^{\mathcal{U}})$.

Theorem. If each S_n is Noetherian, then the following are equivalent:

- (1) Every nested system of polynomial equations over S which has a nested solution in A has one in B.
- (2) There exists a homomorphism of nested Salgebras $\eta: A \to B^{\langle U \rangle}$, for some ultraset \mathcal{U} .

2. An approximation result.

Define nested rings $S,\ A,\ B$ and S^{\sim} by

$$S_n := K[X_1, \dots, X_n],$$

$$A_n := K[[X_1, \dots, X_n]],$$

$$B_n := K[[X_1, \dots, X_n]]_{\infty},$$

$$S_n^{\sim} := \text{algebraic closure of } S_n \text{ in } A_n.$$

Theorem. Every nested system of polynomial equations over S which has a nested solution in A has one in S^{\sim} , and hence in B.

Follows from the fact that rings of the form

 $K[[X_1, \ldots, X_n]][X_{n+1}, \ldots, X_{n+m}]_{(X_{n+1}, \ldots, X_{n+m})}$ are existentially closed in their completion (C. Rotthaus, 1987).

3. A test for flatness.

Let (R, \mathfrak{m}) be a Noetherian local ring, $\mathbf{x} = (x_1, \ldots, x_n) \in R^n$. Recall: \mathbf{x} is a system of parameters (s.o.p.) for R if $n = \dim R$ and $\dim R/(\mathbf{x}) = 0$, and R is regular if it has a s.o.p. generating \mathfrak{m} . (E.g., R = K[[X]].)

Let M be an R-module. Then \mathbf{x} is called an Mregular sequence if $M/(x_1, \ldots, x_n)M \neq 0$ and x_i is a non-zerodivisor on $M/(x_1, \ldots, x_{i-1})M$ for all i. If M is f.g., then every permutation of an M-regular sequence is M-regular.

Fact. (Hochster & Huneke) If *R* is regular and

- (1) there exists a s.o.p. for R which is M-regular, and
- (2) every permutation of an M-regular sequence is again M-regular,

then M is flat.

Approximations.

Let R_w be the complete Noetherian local rings of equicharacteristic p(w) > 0 whose ultraproduct is $\mathfrak{D}(\Lambda)$. We think of the R_w as *approximations* of R. They share many properties of R, e.g.:

- (1) Almost all R_w have the same Hilbert-Samuel function as R. (Hence almost all R_w have the same dimension, embedding dimension, multiplicity as R.)
- (2) Almost all R_w have the same depth as R.
- (3) Almost all R_w are regular (Cohen-Macaulay) if and only if R is regular (Cohen-Macaulay, respectively).
- (4) ... and much more. (Sometimes need to choose Λ carefully.)

Applications.

The functor $\mathfrak{D}(\cdot)$ can be used to 1. define a notion of tight closure, and 2. construct big Cohen-Macaulay algebras in equicharacteristic zero.

Observation: $\mathfrak{D}(R) = \mathfrak{D}(\Lambda)$ comes equipped with the *non-standard Frobenius* $\mathbf{F}_{\infty} =$ ultraproduct of the

$$R_w \to R_w \colon a \mapsto \mathbf{F}_{p(w)}(a) = a^{p(w)}$$

Notation: $R^{\circ} := R \setminus (\text{minimal primes of } R).$

Definition. An element $a \in R$ is in the *non*standard tight closure $cl(I) = cl_{\Lambda}(I)$ of I if

$$\exists c \in R^{\circ} : \forall m \gg 0 : c \operatorname{F}_{\infty}^{m}(a) \in \operatorname{F}_{\infty}^{m}(I)\mathfrak{D}(R).$$

(Similar to a definition given by Hochster & Huneke in positive char.)

Theorem 1. If R is regular, then cl(I) = I for every ideal I of R.

Proof. Easy to check: the image of an R-regular sequence in R under \mathbf{F}_{∞}^m is $\mathfrak{D}(R)$ -regular. Hence by the Hochster-Huneke flatness criterion,

$$R \to \mathfrak{D}(R) \colon a \mapsto \mathbf{F}_{\infty}^{m}(a)$$
 (*)

is flat. Suppose that $a \in cl(I) \setminus I$. For some non-zero $c \in R$, we have

$$c \mathbf{F}^m(a) \in \mathbf{F}^m(I)\mathfrak{D}(R)$$

for m sufficiently large. Thus

$$c \in (\mathbf{F}_{\infty}^{m}(I)\mathfrak{D}(R) :_{\mathfrak{D}(R)} \mathbf{F}_{\infty}^{m}(a)) = \mathbf{F}_{\infty}^{m}(I :_{R} a)\mathfrak{D}(R)$$

where we used flatness of (*) for the last equality. Since $a \notin I$, we have $(I :_R a) \subseteq \mathfrak{m}$, hence

$$c \in \mathbf{F}_{\infty}^{m}(\mathfrak{m})\mathfrak{D}(R) \cap R = (0),$$

contradiction.

The Briancon-Skoda Theorem.

The *integral closure* \overline{J} of an ideal $J \subseteq S$ in a ring S is the ideal of all $b \in S$ for which

$$b^n + a_1 b^{n-1} + \dots + a_{n-1} b + a_n = 0$$

with $a_i \in J^i$ for each *i*.

Lemma. (Huneke) Let S be a Noetherian local ring, J an ideal of S, $b \in S$. Then

 $b \in \overline{J} \iff \begin{cases} b \in JV \text{ for every local homo-}\\ morphism \ S \to V \text{ to a discrete}\\ valuation \ ring \ V \text{ whose kernel}\\ \text{ is a minimal prime of } S. \end{cases}$

Together with Theorem 1 and functoriality of \mathfrak{D} this yields:

 $cl(I) \subseteq \overline{I}$ for every ideal I of R. (Hence "tight" closure.)

Theorem 2. If I has positive height and is generated by n elements then $\overline{I^n} \subseteq cl(I)$.

(Follows from the definitions and Łos' Theorem. The assumption ht(I) > 0 is needed to get $I^k \cap R^\circ \neq \emptyset$ for all k.)

Corollary. (Briançon-Skoda) If $f \in \mathbb{C}[[X_1, \dots, X_n]]$ with f(0) = 0, then

$$f^n = \frac{\partial f}{\partial X_1} g_1 + \dots + \frac{\partial f}{\partial X_n} g_n$$

for some $g_1, \ldots, g_n \in \mathbb{C}[[X_1, \ldots, X_n]]$.

Proof. Let I := ideal generated by the $\partial f / \partial X_i$. Then $f \in \overline{I}$. (By the lemma: may take V = K[[t]] with $K \supseteq \mathbb{C}$, use Chain Rule.) Hence

$$f^n \in \overline{I^n} \subseteq \operatorname{Cl}(I) = I.$$

Thm. 2 Thm. 1

16