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Motivating question
We call a ring of characteristic zero a
L_efschetz ring

if it is isomorphic to an ultraproduct of rings
of positive characteristic. (Always: ‘“ring”’ =
“commutative ring with unit 1.”)

Examples:
e T he field C of complex numbers;

e in general: any algebraically closed field K
of char. zero of cardinality 2* with A > X
can be written as an ultraproduct of alge-
braically closed fields K, of char. p.

Question: Given a Noetherian ring R of char-
acteristic zero, can we find a faithfully flat ring
extension D of R which is Lefschetz?



Fact: Every finitely generated algebra A over
a field of characteristic zero admits a faithfully
flat Lefschetz extension.

Enough to see this for
A=K[X], X=(Xq1,...,Xn).

Here and below K is an ultraproduct of alg.
closed fields K, of char. p. Take

D := K[X]x := ultraproduct of the K,[X].

The (images of the) indeterminates X1,..., X,
remain algebraically independent over K in
K[X]so (by tos’ Theorem). Hence

K[X] — K[X]oo

as K-algebras. This embedding is faithfully flat
(van den Dries and Schmidt).



Theorem. Let (R,m) be a Noetherian local
ring of equicharacteristic zero (i.e., R O Q).
There exists a local Lefschetz ring ©®(R) and a
faithfully flat embedding np: R — D(R).

Naive idea: For R = K[[X]] put

@(R) — K[[X]]oo
= the ultraproduct of the Kp[[X]].

Now K[X] is a subring of K[[X]]so, and the
local ring K[[X]]x is complete in the X-adic

toplogy.

Might try
limit in K[[X]]oo of a Cauchy
nr(f) = sequence in K[X] approximat-
ing f.
But K[[X]]eo Nnot Hausdorff!



More subtle problem:

Let L be a field and ¢ € {1,...,n}. Let us say
that a power series f € L[[X]] does not involve
the indeterminate X; if

feL[[Xy,..., X1, X41,..., Xn]].

An element of K[[X]]co does not involve X; if
it is the ultraproduct of power series in Kp[[X]]
not involving Xj;.

Fact: There is no homomorphism

h: K[[X]_,...,X6]] —>K[[X1,...,X6]]oo

such that for i = 4,5,6, if f € K[[X]] does not
involve the variable X;, then neither does h(f).
(Uses an example due to P. Roberts.)

Nevertheless, the construction in the theorem
can be made functorial in a way. For this we
need some definitions . ..



Define a category Cohy:

(1) objects are quadruples A = (R, x,k,u):
(a) (R,m) is a Noetherian local ring;
(b) x is a finite tuple of generators of m;

(c) k is a quasi-coefficient field of R (i.e., a
subfield of R such that R/m is algebraic
over the image of k£ under R — R/m);

(d) u: R — K is a homom. with ker o = m.

(2) morphisms A — I = (S,y,l,v) are local ring
homomorphisms «: R — S such that

(a) a(x) is an initial segment of y,
(b) a(k) C I, and

(Cc) voa = u.



Example. (K[[X]],X,K,u) is an object in
Cohy, where u(f) = f(0).

On the other side, given an ultraset W (=
infinite set equipped with a non-principal ul-
trafilter) let Lefyy be the category with:

(1) objects: analytic Lefschetz rings with re-
spect to W, i.e., ultraproducts w.r.t. W
of complete Noetherian local rings (R, m)
with algebraically closed residue field R/m
of char(R/m) = char(R) > 0O;

(2) morphisms: ultraproducts (with respect to
W) of local ring homomorphisms.

Example. K[[X]]e is an analytic Lefschetz
ring w.r.t. YW — a non-principal ultrafilter on
the set of prime numbers.



Theorem. There exists an ultraset YV and a
functor

9 COhK —> LefW

with the following property: for every Cohp-
object N\ as above there exists a faithfully flat
homomorphism na: R — ©(A) such that for
any Cohg-morphism N — ' with underlying
homomorphism o: R — S the diagram

R a S
"IN nr
T I GO Y

of local homomorphisms commutes.
Ingredients in the proof of Theorem'.

1. A model-theoretic embedding criterion.
2. An approximation result.
3. A test for flatness.



1. An embedding criterion.

A nested ring is a ring R together with a nest
of subrings:

RoCR; C---CRyC---, R =|JRn
n

A homomorphism ¢: S — R between nested
rings R = (Rp) and S = (Sp) is a homomor-
phism of nested rings if ©(Sp) C Ry, for all n.

A nested system S of equations over S:

Poo(Zo) = .- = Pou(Zo) = 0,
P1o(Zo, Z1) = .- = P(Z,7Z1) = 0,
Po(Zo,.... Z0) = -+ = Pu(Zo,..., %) = O,

where k,n € N, Z; = (Z;1,...,Z,), ki €N, and
Pij e S;[Zo,...,2Z;.

A tuple (ag,...,an) with a;, € (R;)% is called a
nested solution of S in R if P;;(ag,...,a;) =0
for all 7, 7.



Let A and B be nested S-algebras. Given an
ultraset U consider the S-subalgebra B{) :=
U, BY of the ultrapower BY as a nested S-
algebra with nest (BY).

Theorem. If each S, is Noetherian, then the
following are equivalent:

(1) Every nested system of polynomial equa-
tions over S which has a nested solution in

A has one in B.

(2) There exists a homomorphism of nested S-
algebras n: A — B, for some ultraset U.



2. An approximation result.

Define nested rings S, A, B and S~ by

Sn = K[Xq,...,Xn],

An = K[[Xq,...,Xn]l],

Bn = K[[X1,...,Xn]l]oo,

S, := algebraic closure of Sy in Ap.

Theorem. Every nested system of polynomial
equations over S which has a nested solution
in A has one in S™, and hence in B.

Follows from the fact that rings of the form

K[[X1, o Xnll Xt 15 Xkl (X4 10 X t)

are existentially closed in their completion
(C. Rotthaus, 1987).
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3. A test for flatnhess.

Let (R,m) be a Noetherian local ring, x =
(z1,...,zn) € R". Recall: x is a system of
parameters (s.0.p.) for R if n = dim R and
dimR/(x) = 0, and R is regular if it has a
s.0.p. generating m. (E.g., R = K|[[X]].)

Let M be an R-module. Then x is called an M-
regular sequence if M/(x1,...,zn)M # 0 and x;
is @ non-zerodivisor on M/(xq,...,x;—1)M for
all 2. If M is f.g., then every permutation of
an M-regular sequence is M-regular.

Fact. (Hochster & Huneke) If R is regular and

(1) there exists a s.o.p. for R which is M-
regular, and

(2) every permutation of an M-regular sequen-
ce is again M-regular,

then M is flat.
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Approximations.

Let Ry be the complete Noetherian local rings
of equicharacteristic p(w) > 0 whose ultraprod-
uct is ®(A). We think of the Ry, as approxi-
mations of R. They share many properties of

R, e.q.:

(1) Almost all R, have the same Hilbert-Sa-
muel function as R. (Hence almost all Ry
have the same dimension, embedding di-
mension, multiplicity as R.)

(2) Almost all Ry have the same depth as R.

(3) Almost all Ry are regular (Cohen-Macau-
lay) if and only if R is regular (Cohen-
Macaulay, respectively).

(4) ...and much more. (Sometimes need to
choose A carefully.)
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Applications.

The functor ®(-) can be used to

1. define a notion of tight closure, and

2. construct big Cohen-Macaulay algebras
in equicharacteristic zero.

Observation: D(R) = ©(A\) comes equipped
with the non-standard Frobenius F~ = ultra-
product of the

Ry — Ruw:aw—F,y(a) = aP(W).

Notation: R°:= R\ (minimal primes of R).

Definition. An element a € R is in the non-

standard tight closure cl(I) = cla(I) of I if
dce R°:Vm > 0:cF2%(a) e FX(I)D(R).

(Similar to a definition given by Hochster &
Huneke in positive char.)
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Theorem 1. If R is regular, then cl(I) = I for
every ideal I of R.

Proof. Easy to check: the image of an R-
regular sequence in R under FT% is D(R)-
regular. Hence by the Hochster-Huneke flat-
ness criterion,

R—9(R): a— F(a) (%)

is flat. Suppose that a € cI(I) \ I. For some
non-zero c € R, we have

cF"(a) e F*(I)D(R)
for m sufficiently large. Thus
c € (FIL(DD(R) 1p(py FL(a) =
FL(I:pa)D(R)

where we used flatness of (x) for the last equal-
ity. Since a ¢ I, we have (I :ga) Cm, hence

ce FZ(m)D(R)N R = (0),
contradiction. [ ]
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The Briancon-Skoda Theorem.

The integral closure J of an ideal J C S in a
ring S is the ideal of all b € S for which

"+ a1+ - +a, 1b+an=0

with a; € J* for each i.

Lemma. (Huneke) Let S be a Noetherian local
ring, J an ideal of S, b€ S. Then

(

b e JV for every local homo-

— morphism S — V' to a discrete
be J<— | . .
valuation ring V- whose kernel

. /s a minimal prime of S.

Together with Theorem 1 and functoriality of
® this yields:

cl(I)C1I for every ideal I of R.

(Hence “tight” closure.)
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Theorem 2. If I has positive height and is gen-
erated by n elements then I C cl(I).

(Follows from the definitions and t.os’ Theo-
rem. The assumption ht(I) > 0 is needed to
get I¥ N R° # ¢ for all k.)

Corollary. (Briancon-Skoda)
If f € C[[X1,...,Xn]] with f(O) =0, then

n 9f o ., 9f
I = 8Xlgl + +6Xngn

for some g1, ...,9n € C[[X1,...,Xn]].

Proof. Let I := ideal generated by the 9f/0X;.
Then f € I. (By the lemma: may take V =
KI[[t]] with K D C, use Chain Rule.) Hence

nem  C o ocl(I = .
! Thm. 2 ()Thm-l
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