Stochastische Recovery:

Ein Wasserfallmodell mit minimaler Entropie

Peter Schaller Risk Methodology, UC Bank Austria

Contents

- Stochastische recovery im Kontext von FRTB und DRC
- Entropie
- Das Wasserfallmodell
- Entropiemaximierung

FRTB

- Banken müssen Kapital zur Abdeckung von möglichen Verlusten aus dem Handel mit Finanzinsturmenten halten
- Die Vorschriften werden derzeit von der Bankenaufsicht überarbeitet (Fundamental review of the trading book FRTB; c.f. Vortrag von M. Morgenbesser, OENB)
- Ebenso wie die gültige Vorschrift erlaubt das neue Regelwerk die Verwendung interner Modelle, die potentielle Verluste mit statistischen Methoden berechnen
- Schon im gültigen Regelwerk sind mögliche Verluste durch Ausfälle von Emittenten von Finanzinstrumenten in die Berechnung des Kapitalerfordernisses einzubeziehen (Incremental risk charge IRC)
- Auch in diesem Bereich wird das Regelwerk adaptiert: (default risk charge DRC)

Instrumente

- Beim Ausfall des Emittenten verlieren
 - Schuldverschreibungen
 - Aktien

an Wert

- Auch Derivate auf solche Finanzinstrumente sind betroffen
- Bei Schuldverschreibungen wird im allgemeinen ein Teil der Schulden getilgt (Recovery)
- Aktien verlieren i.a. im Zuge der Liquidierung oder durch Übernahme des Unternehmens durch die Gläubiger ihren Wert.

$IRC \rightarrow DRC$

- Neben Ausfällen berücksichtigt die IRC auch Verluste durch Ratingänderungen
- Das entfällt in der DRC
- Dadurch vereinfacht sich die Modellierung
- Allerdings schreibt das neue Modell die Erfassung der Wertverluste von Aktien zwingend vor
- Außerdem legt die Vorschrift Wert auf die Abdeckung von Basisrisiken (Risiken aus Long-Short Positionen)

Beispiel Basisrisiken

- Bank besitze eine Schuldverschreibung des Emittenten A im Wert von 100 EUR
- Sie habe (über ein Derivat) eine short position (Lieferverpflichtung) in Aktien des Emittenten im Wert von 60 EUR
- Ein Modell, das mit einer Recovery von 40% rechnet, würde in der Position kein Ausfallsrisiko sehen
- Tatsächlich hat die Bank das Risiko, daß beim Ausfall die Recovery von 40% abweicht
- Es erscheint als zweckmässig, dieses Risiko durch eine stochastische Modellierung der Recovery darzustellen

Sicherheiten und Seniorität

- Schuldverschreibungen können unterschiedliche Senioritäten haben
- Beim Ausfall werden Schulden mit höherer Seniorität zuerst zurückgezahlt
- Schulden mit niedrigerer Seniorität werden erst danach bedient
- Auch dadurch können Basisrisiken entstehen (Schuldverschreibung mit niedriger Bonität vs. Derivat auf Schulden höherer Bonität)
- Die Recoveries für Schulden des selben Emittenten mit unterschiedlicher Bonität können nicht unabhängig modelliert werden

Parameter

- Stochastische Recovery folgt einer Wahrscheinlichkeitsverteilung auf dem Intervall [0,1]
- Gemäss der Regulierung sollte derselbe Wert verwendet werden, der als (nicht stochastische) Recovery im Kreditrisikomodell für nicht gehandelte Assets zur Anwendung kommt.
- Wir nehmen an, daß die Verwendung der Recovery aus dem Kreditrisikomodell als Mittelwert der stochastischen DRC Recovery den Intentionen der Reulierung entsprechen würde
- In [Brunel, 2004] wird ein Modell vorgeschlagen, das auf dem Prinzip der Entropiemaximierung beruht und mit dem Mittelwert als einzigem Parameter zur Bestimmung der Verteilung auskommt
- Die Hinzunahme weiterer Parameter ist möglich

Entropie in der Informationstheorie

- Antworten auf Fragen erzeugen Informationsgewinn
- Die Informationstheorie weist der Antwort auf eine Frage mit 2 gleich wahrscheinlichen Antwortmöglichkeiten den Informationsgehalt ln(2) zu.
- Eine Frage mit $N=2^n$ (gleich wahrscheinlichen) Antworten hat dann den gleichen Informationsgehalt wie n Ja/Nein Fragen
- ullet Daher ist der Informationsgehalt (Entropie) I einer Frage mit N gleich wahrscheinlichen Antwortmöglichkeiten $I=\ln(N)$
- ullet Jede Antwortmöglichkeit hat die Wahrscheinlichkeit p=1/N
- Das erlaubt I auch als $I = -\sum p \ln(p)$ zu schreiben.

Entropie – diskrete Verteilung

- In einem System von N Zuständen mit Wahrscheinlichkeiten $\{p_i, i=1,...,N\}$ benötigt man im Druchschnitt $I=-\sum_i p_i \ln(p_i)$ Frageeinheiten um den zutreffenden Zustand zu finden, wenn man eine optimale Fragestrategie verwendet.
- Die Entropie misst den im System vorhandenen Informationsmangel
- Die Gleichverteilung hat die höchste Entropie

Entropie – kontinuierliche Verteilung

- Wenn für p die Wahrscheinlichkeitsdichte verwendet wird, hängt das Ergebnis von der Parametrisierung des Ereignisraumes ab
- Durch ein Volumsmaß ω auf dem Ereignisraum wird die Entropie eindeutig: $I=-\int \ln(p/\omega)\,p$
- Beipiel Thermodynamik:
 - In System mit einer großen Zahl wechselwirkender Einzelteilchen lässt sich die Bewegung eines einzelnen Teilchens nicht beobachten oder vorhersagen ⇒ Statistische Beschreibung
 - Der Raum der physikalischen Zustände repräsentiert die Lösungen einer Bewegungsgleichung
 - Die Struktur derselben induziert auf diesem eine kanonische symplektische Form, die eine Volumsform ω definiert
 - Das System nimmt jene Verteilung an, die die Entropie maximiert

Nebenbedingungen

- Ohne zusätzliche Bedingungen hat die Gleichverteilung maximale Entropie
- Die Verteilung kann durch Bedingungen eingeschränkt sein (z.B. Im System enthaltene Energie in der Thermodynamik)
- Die Maximierung der Entropie erfolgt dann unter Berücksichtigung der Nebenbedingungen
- Nebenbedingungen sind nötig, wenn der Raum ein nicht endliches Volumen hat

Stochastische Recovery – einfacher Fall

- Eine "kanonische" Volumsform existiert im Raum der möglichen Recoveries nicht
- ullet Wahl einer Referenzverteilung ω
- Die Referenzverteilung sollte als plausibel erscheinen, wenn keine empirischen Daten oder schuldnerspezifischen Informationen in Bezug auf die zu erwartende Recovery vorhanden sind.
- Entropiemaximierung erlaubt dann die Anpassung an vorhandene Informationen (z.B. den Mittelwert aus dem Kreditrisikomodell)
- Im Folgenden verwenden wir die uniforme Verteilung als Referenzverteilung

Maximierung mit Nebenbedingungen

- Suche Maximum von $E = -\int \ln[p(x)] p(x) dx$ (mit p = p(x) dx und $\omega = dx$)
- 2 Nebenbedingungen:
 - $C_0 = \int p(x) \, dx 1 = 0$
 - $C_1 = \int x p(x) dx \mu = 0 \quad (\mu \dots \text{Mittelwert})$
- Führe 2 Lagrangemultiplikatoren λ_0 , λ_1 ein und suche Extremwerte von $F = E + \lambda_0 C_0 + \lambda_1 C_1$
- Differenzieren nach p(x) liefert die Lösung $p(x) = c \exp(\lambda_1 x)$
- \bullet Differenzieren nach den λ_i erzeugt die Nebenbedingungen \Rightarrow
- \bullet c und λ_1 sind so zu bestimmen sind, daß die Nebenbedingungen erfüllt sind
- Die Lösung ist also eine Exponentialverteilung mit dem Lagrangemultiplikator für den Mittelwert als Wachstumsparameter

Standardabweichung??

- Risikomanager neigen dazu, die Kenntnis von Mittelwert und Standardabweichung als minimales Erfordernis für die Festlegung einer Verteilung anzusehen
- Ursache: Auf der reelen Achse lässt sich jede Verteilung durch eine affine Transformation an vorgegebenen Mittelwert und vorgegebene Standardverteilung anpassen
- Das gilt nicht für Verteilungen auf dem Intervall [0, 1]
- Entropiemaximierung erfordert hier die Vorgabe einer Standardabweichung nicht
- Eine vorgebene Standardabweichung kann aber als zusätzliche Nebenbedingung in der Maximierung der Entropie berücksichtigt werden

Cons

- Mittelwert und Standardabweichung können nicht unabgängig voneinander gewählt werden. Beispiel:
 - Der Mittelwert strebt einem der Limitwerte 0 oder 1 zu. \Rightarrow
 - Standardabweichung $\rightarrow 0$
- Ein historisches Sample enthält Unternhemen, die im Risikomodell der Bank eine unterschiedliche erwartete Recovery gehabt hätten; ⇒
 - Wir beobachten ein Gemisch von Verteilungen mit unterschiedlichen Mittelwerten
 - Unser Modell würde aber die Standardabweichung bedingt auf einen vorgegebenen Mittelwert erfordern
 - Die für das Modell relevante Standardabweichung läßt sich also nicht einfach aus einem historischen Sample von beobachteten Recoveries ermittlen

Alternativer Ansatz

- In der Literatur werden Verteilungen auf dem Intervall [0,1] gerne mit β -Verteilungen modelliert: $p(x) = C x^{\alpha-1} (1-x)^{\beta-1}$
- Diese Familie von Verteilungen hat 2 freie Parameter (α, β)
- \bullet Für eine vorgegebene Kombination von Mittelwert und Standardabweichung sieht die entsprechend angepaßte β Verteilung ähnlich aus, wie die Verteilung mit minimaler Entropie
- Das Verhalten an den Rändern ist unterschiedlich: Für die β -Verteilung wird dort p(x) (außer für $\alpha=1$ bzw. $\beta=1$) entweder 0 oder strebt gegen ∞

Recovery Wasserfall

- Derselbe Issuer kann Instrumente mit unterschiedlicher Seniorität begeben. Das wird in [Brunel, 2004] nicht adressiert
- In [Schaller, 2017] wird ein Modell für folgende Senioritäten betrachtet
 - 1. besicherte Schulden
 - 2. unbesicherte nicht nachrangige Schulden
 - 3. nachrangige Schulden
 - 4. Kapital

Verknüpfung

- Zugeordenete Sicherheiten werden zur Rückzahlung der besicherten Schulden verwendet
- Die restlichen besicherten Schulden werden den unbesicherten nicht nachrangigen Schulden zugeordnet
- Verbleibende Vermögenswerte des Schuldners werden dann zur Rückzahlung der nachrangigen Schulden verwendet
- Danach noch verbleibende Vermögenswerte fallen den Kapitalseignern zu.

Vereinfachtes Modell

- Im Gegensatz zu [Schaller 2017] lassen wir besicherte Schulden im Folgenden außer acht.
- ullet Es gibt nur eine Abstufung in der Rangordnung der Instrumente \Rightarrow
- Nachrangige Schulden werden nur bedient, wenn nicht nachrangige Schulden voll zurückgezahlt werden
- Kapital wird wertlos

Bestimmende Parameter

- Vorgegebene Werte:
 - $-R_{sen}$... erwartete Recovery für nicht nachrangige Schulden
 - $-R_{sub}$... erwartete Recovery für nachrangige Schulden
- Nicht bekannt:
 - der Anteil a der Schulden, der in der Liquidierung erlöst wird
 - Anteil d der nicht nachrangigen Schulden an den Gesamtschulden

Heuristik

- Wären a und d bekannt, dann gäbe es 2 Fälle für die Berechnung der realisierten Recoveries r_{sen} und r_{sub} :
 - 1. $r_{sen} = a/d$ und $r_{sub} = 0$ falls a < d
 - 2. $r_{sen} = 1$ und $r_{sub} = (a d)/(1 d)$ falls a > d
- Bezeichnung
 - P_{sen} ... Mittelwert der bedingten Verteilung von r_{sen} im Fall 1
 - P_{sub} ... Mittelwert der bedingten Verteilung von r_{sub} im Fall 2
 - -q ... Wahrscheinlichkeit für Fall 2
- Dann gilt:
 - $R_{sen} = (1 q) P_{sen} + q$
 - $R_{sub} = q P_{sub}$
- ullet Das ergibt 2 Gleichungen fuer die 3 Unbekannten P_{sen}, P_{sub} und q

Strategie

- Wir wollen das Prinzip der Entropiemaximierung analog zum einfachen Fall (ohne nachrangige Schulden) anwenden, um den Anteil a der Liquidierungerlöse an den Schulden zu modellieren
- Wir werden Folgendes sehen:
 - $-P_{sen} + P_{sub} = 1$; das erlaubt die Berechnung von P_{sen} , P_{sub} und q aus den obigen 2 Gleichungen
 - die bedingten Verteilungen von r_{sen} im Fall a < d und r_{sub} im Fall a > d sind Exponentialverteilungen (wie im einfachen Fall)

Zufallvariablen

- Die Modellierung der Verteilung gelingt dann durch 3 Zufallsvariablen:
 - Eine bivariate Variable B, die mit Wahrscheinlichkeit q den Wert 1 annimmt, sonst 0
 - Eine exponentiell verteilte Variable v_1 auf [0,1] mit Mittlewert P_{sen}
 - Eine exponentiell verteilte Variable v_2 auf [0,1] mit Mittlewert $P_{sub} = 1 P_{sen}$
- Wir haben dann

$$-r_{sub} = B v_2$$

$$-r_{sen} = B + (1 - B)v_1$$

Entropiemaximierung im Wasserfallmodell

• Verteilung von a habe die Dichte $p(x) \Rightarrow$

$$I = -\int_0^1 \ln[p(x)] p(x) dx$$

• Nebenbedingungen:

$$F_0 = \int_0^1 p(x) dx - 1 = 0$$

$$F_1 = \int_0^d x \, p(x) \, dx + d \int_d^1 p(x) \, dx - d \, R_{sen} = 0$$

$$F_2 = \int_d^1 (x - d) \, p(x) \, dx - (1 - d) \, R_{sub}$$

• Zu bestimmen ist der Externwert von $I + \sum_{i} \lambda_{i} F_{i}$

Ergebnis

- Die Ableitung nach p(x) ergibt, dass
 - stückweise eine Exponentialfunktion für p(x) auf den Intervallen [0,d] und [d,1] mit den Wachstumsparametern λ_1 bzw. λ_2
 - Stetigkeit am Punkt d
- Die Ableitungen nach den λ_i ergeben die Nebenbedingnunge und fixieren die Werte für die λ_i in Abhängigkeit von d
- Die Ableitung nach d ergibt eine Integralgleichung, die sich mit den Nebenbedignungen durch die Identifikation $\lambda_1 d = \lambda_2 (d-1)$ lösen läßt.

Interpretation

- Die bedingte Verteilung für r_{sen} im Falle a < d ergibt sich aus der Identifikation $r_{sen} = a/d \Rightarrow$ Exponentialverteilung mit Wachstumsparameter $\hat{\lambda}_1 = d \lambda_1$
- Analog: Die bedinge Verteilung für R_{sub} im Fall a > d ist eine Exponentialveteilung $\hat{\lambda}_2 = (1 d) \lambda_1$
- Mithin ist $\hat{\lambda}_1 = -\hat{\lambda}_2$
- Eine Transformation $x \to 1-x$ auf dem Intervall [0, 1], auf der eine Exponentialverteilung mit Mittelwert μ definiert ist, impliziert
 - Wachstumsparameter $\lambda \to -\lambda$
 - Mittelwert $\mu \to 1 \mu$
- Damit ergibt sich für die Mittelwerte der bedingten Verteilungen von r_{sen} und r_{sub} die Relation $P_{sen} + P_{sub} = 1$
- Rest wie oben beschrieben

See also

- In [Schaller 2017] wird ein etwas allgemeineres Modell, das auch besicherte Schulden beinhaltet, beschrieben.
- Der Einbau dieses Recovery Modells in ein DRC Modell wird in [Bertagna et al. 2018] beschrieben

Literatur

- Vivien Brunel; Minimal models for credit risk: An information theory approach (2004, http://vivienbrunel.free.fr/WorkingPapers/Entropy.pdf)
- Schaller; Debt Recovery Waterfall via Maximum Entropy (2017, https://papers.ssrn.com/abstract=3100979)
- Bertagna et al.; Internal Default Risk Model: Simulation of Default Times And Recovery Rates within the New FRTB Framework (2018, https://papers.ssrn.com/abstract=3143731)