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CHAPTER 1
Generating functions and Lagrange’s Inversion Formula

1.1. A short recap: formal power series

Recall that the set C[[z]] of formal power series (in some variable z) with com-
plex coefficients

Cl[z]] = {Z cn-z": cneC}

is a commutative algebra with unity over C.

The notion “formal” refers to the fact that we do not actually “compute the
infinite sum ¢ («)” for some concrete number &, but view c (z) as a convenient
notation for the sequence of coefficients (cy),~o. For some formal power series
c(z) = co+c1-z+cp 22 +---, however, we adopt the intuitive notation ¢ (0)
for the constant term ¢y, i.e.: ¢ (0) := cp.

THEOREM 1.1.1. The formal power series a (z) = ap +ay -z + ay - Z2 4 possesses
a multiplicative inverse if and only if a (0) = ag # 0.

This inverse (if existing) is unique. O]
DEFINITION 1.1.2. Let a(z) and b (z) be two formal power series, let b (z) = 0 (i.e.,

b(z) =by-z+by-z2+..., by = 0). Then the composition (aob)(z) of a and b is
defined by

(aob)(z) =D a;i(b(2)).

i=0

Note that the condition b (0) = 0 is necessary, since otherwise we could en-
counter infinite sums for the coefficients of the composition: we do not deal
with infinite sums in the calculus of formal power series.

THEOREM 1.1.3. Leta (z) = ay -z +ay -z> + - - - be a formal power series with a (0) =

0. Then there is a unique compositional inverse b (z) = by -z + by - 2> + - - -, i.e.
(@cb)(z) = (boa)(z) =z

if and only if a; # 0. O

1.2. Lagrange’s Inversion formula

Let f (z) be a formal power series with vanishing constant term (i.e., f (0) = 0):
By Theorem 1.1.3 we know that there is a (unique) compositional inverse F (z),
i.e.,

F(f(2) =f(E(z) =z

1



2 1. GENERATING FUNCTIONS AND LAGRANGE'S INVERSION FORMULA

But how can we find this inverse? In fact, there is a quite general and very useful
formula which we shall derive in the following: For that, we consider a slightly
more general problem, which involves an extension of the calculus of formal
power series.

DEFINITION 1.2.1. A formal Laurent series (in some variable z) is a (formal) sum
Z an ° Zn
n=N

with coefficients a,, € C, for some N € Z: N may be smaller than zero, i.e., there may
be negative powers of z.

We denote the set of all formal Laurent series by C((z))

Addition, multiplication and composition for formal Laurent series are defined
exactly as for formal power series.

THEOREM 1.2.2. A formal Laurent series a(z) possesses a (unique) multiplicative
inverse if and only if a (z) # 0. [

This implies that the algebra of formal Laurent series is, in fact, a field.

In the following we shall always assume that the formal power series f (z) (with
f (z) = 0) under consideration “starts with z!, i.e., is of the form

f@=fdtfor
f(z)

where f1 # 0 (we might express this as = # 0): The general case

Ly form>1

§(z) =gm- 2" +gmu1-2""
can be easily reduced to this case.

LEMMA 1.2.3. Consider some formal power series f (z) = f1-z + fo - 2> + - - - where
f1 = f(0) # 0. Then we have foralln € Z

=] (@ f @) ==
(Here, we made use of Iverson’s notation: | “some assertion”] equals 1 if “some asser-

tion” is true, otherwise it equals 0'.)

PROOF. Observe that for n # 0 we have n- (f""1(z) - f'(z)) = (f"(z))": For

n > 0, this is a formal power series; and since the coefficient of z71 equals 0 for
every formal power series, the assertion is true for all n > 0.

Ifn=-m<0,then f*(z) =c_y-z"+ - +c_1-z ' +cg+cy-z' +... and
(f" ) =(=m)-copm-z™ g p (=) ez 241+,

so the assertion is also true for all n < 0.

IIverson’s notation is a generalization of Kronecker’s delta: 6;j = [i = j].
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For n = 0, we simply compute:
AT ety ety o] S1E2foz
e re- st
T 1] 1f1_|_2.f2.z_|_...

- _Z Iz f1+f2‘Z+"'
1T 1 1+2'%'Z+"'
— |z =
| ;
1f<fjv...>.h()
z[[z1}]%(1+2%z+---)(1+h(z)+h(z)2+ )
=1

THEOREM 1.2.4. Let g (z) be a formal Laurent series and f (z) = f1-z+ fo - 2> + - -
be a formal power series with f (0) = 0, f1 # 0. Suppose there is an expansion of g (z)
in powers f (z), i.e.,

gz =D & f(2). (1.1)

k=N
Then the coefficients c,, are given by

Cn = 1 [[z’lﬂ ¢ (z) - f"(z) forn#0. (1.2)

n
An alternative expression for these coefficients is

Cp = [[z’l]] gz fl(z)- " (z) fornez. (1.3)
PROOF. For the first claim (1.2) we take the derivative of (1.1),which gives
g (z) = ijk-ck f@) f ).
Now we multiply both sides by f~" (z):
8@ f(z)= Zk:k'ck’f/ (2) f" 1 (2).

Taking the coefficients of z~! on both sides, by Lemma 1.2.3 we obtain 7 - ¢, on
the right-hand side and the claim follows immediately.

For the second claim we multiply (1.1) by f’ (z) - f~"~!(z), which gives
g@) [ @) fl2)= ) o fH) [ (2),

k=N

and the claim follows, again, by taking the coefficients of z~! on both sides. [

Now Lagrange’s inversion formula is the following special case of Theorem 1.2.4:
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COROLLARY 1.2.5 (Lagrange’s inversion formula). Let f (z) = f1-z+ fo 2%+ -
be a formal power series with f; # 0, let F (z) be the compositional inverse of f. Then
we have for every k € IN:

[z"] F¥ (z) = %[[zk]] F"(z) forn+0. (1.4)

An alternative expression for these coefficients is

"] F () = [z £ @ ). (15)

PROOF. Since F (z) is the compositional inverse of f (z), we have F¥ (f (z)) = 2z,
i.e. (writing F,gk) .= [2"] F*(2)):

YR f =2

By setting ¢ (z) = zF in Theorem 1.2.4 and applying (1.2), we obtain

® _ 11 4T k=1 pmnpy _ KT k] =
E! —n[[z ﬂkz f (z)_n[[z ﬂf (z),
which is equivalent to (1.4). In the same way, applying (1.3) gives (1.5). O]

EXAMPLE 1.2.6 (Catalan numbers). Let F, be the number of triangulations of an
(n + 1)—gon (with vertices labelled 1,2, ...,n successively): Setting F; = 1 (i.e., as-
suming that there is a single triangulation of a 2-gon), the sequence (F;),,~ starts like
this:

1,1,2,5,14,42,132,429,1430,4862, . ..

For n > 1 and any such triangulation, consider the triangle containing the edge which
connects the vertices 1 and 2: This triangle “cuts” the (n + 1)—gon in two parts, namely
a (k+1)—gon and an (n —k + 1)—gon, where 1 < k < n — 1. This leads to the recur-
sion

n—1

F, = Z F.-F, yforn>1,
k=1

which together with the initial condition F; = 1 implies the following functional equa-
tion for the generating function F(z) = F -z + Fy 2%+ -+ =%, 1 F, - 2™

(F(2))* = F(z) ~ =
This may be rewritten as

z=F(z) - F(2).

Stated otherwise: F (z) is the compositional inverse of the (quite short) formal power
series z — z2. Applying Lagrange’s Inversion formula (1.4) (fork = 1) to f (z) = z — 2>
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we obtain:

[z"] F (z) =

_z_l]] (z—22)"

:z_l]] z7"1-2z)""

T (n_—n1> =07
- % (2; _ 12)'

Clearly, F, = C,,_1, i.e., we get (once again) the well-known Catalan—-numbers.

R XIRPRI| PRI






CHAPTER 2
Species: Enumeration of combinatorial objects

The theory of species provides a general framework for labelled and unlabelled
combinatorial objects and their generating functions. One can tackle this theory
very abstractly; however here we would like to approach the theme by means
of a couple of illustrative examples. (Much more material than treated here can
be found in the textbook [1].)

2.1. Motivating Examples

EXAMPLE 2.1.1. The numbers
By, := # (partitions of [n])

are called Bell numbers. By considering the block which contains the largest element
n, one immediately obtains the recursion

L[ n
By = Z <n B k) By forn =0, (2.1)

k=0
with initial condition By = 1. The sequence (B;,), - starts like this:
1,1,2,5,15,52,203,877,4140,21147,115975, . ..

We consider the exponential generating function (see e.g. [4, Section 2.2]) of these

numbers
Z Bn * _.

n=0

If we multiply (2.1) with % and (formally®) sum over all n > 0 summieren, then we

obtain
Z" " n
ZBnH‘E:Z(Z(n_) ) ZZ K= Z”.
n=0 n=0 \k=0 n>0k 0
e -5

We can solve the differential equation

dB dlog B
Bdz  dz

very easily:
log (B) = @* +C — B (z) = ™ '€,
IDh.: The infinite sum is for the time being only a notation for the equations (2.1)! The

equation for the series simply says that the coefficients of z"* on the left- and right-hand sides
are equal for all n > 0.
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and from B (0) = By = 1 we immediately get C = —1, thus altogether
B(z) =" L. 2.2)

At this point one can make the following observation: The exponential function e*
emerges as the exponential generating function egf__, . of the number of all subsets of
[n] with n elements. Admittedly, this number is combinatorially not very interesting
(it is namly constantly equal to 1 for all n > 0), but of course we can then also interpret
® — 1 as the exponential generating function egf_. . of the number of all nonempty
subsets of [n] with n elements (this number is merely negligibly more complicated: 1 for
n > 0und 0 fiir n = 0, oder shorter mit Iverson’s notation: [n > 0]). The exponential

generating function egf ;.. thus satisfies

egfpartitions - egfsets (egfsets1) :
And partitions are indeed “sets of nonempty sets”! This certainly might only be an
accidental analogy — but we will see that there is a “system” behind this.

In a partition of [n] the ordering of the blocks does not matter — we can thus
assume that the blocks

e have their largest elements “marked”,
¢ and that they are ordered corresponding to their “markings”.

For instance, the blocks of the following partition appear in their “canonical”
order like this:
{13} U {256} U {9}u{7,10} U {4,8,11,12}

©]0)0]6]9) 0 v]0, CI0IO0]0,

Here one could have the idea to “forget the numbering”. One could imagine
this graphically for the above example like this:

2+ 3 +1+ 2 + 4

OOIPOOIPIPBBOOO

Without the numbering these “blocks of indistinguishable elements” only de-
pend on the following:

o the cardinality of the single blocks
e and the ordering of the blocks of different size

Very obviously we can interpret this as compositions of the natural number 7.

EXAMPLE 2.1.2. The same idea as in Example 2.1.1 readily leads to the recursion for
the number K,, of compositions of n:

n
Kys1= > 1-Ky fiirn=0, (2.3)
k=0

again with the initial condition Ky = 1. We consider now the (ordinary) generating
function of these numbers
K(z) := 2 K, -z".

n=0
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If we multiply (2.3) by z" and (formally) sum over all n > 0, then we obtain

2 Kner 2" =) <21-Kk) z”=1<<z>-1iz,

n=0 n=0 \k=0

_ K(Z)—KO
z

which apparently leads to the equation
z

K—-1=K
1—-z

for K (z); with the solution
-z z
T 1-22 :1+1—22'
The last equation leads immediately to the explicit (and well-known) representation

K, =2""1 forn>o.

Also here one can make the analogue observation to Example 2.1.1: The geometric series
1172 emerges as the (ordinary) generating function gf__, _ of the number of all multisets
with n elements, which are all equal to o (this number is again constantly equal to 1 for
alln = 0), and ﬁ — 1 emerges as the (ordinary) generating function gf_ . . of the
number of all nonempty sets with n elements, which are all equal to o (this number is
again [n > 0]).

Since the elements are not labelled here (and are therefore “identical”), we are actu-
ally not dealing with sets but with (very simple — after all there is only one element
which can occur arbitrarily often) multisets: To make the notation not too complicated,
we keep the term sets. Since the elements are all identical, their order is irrelevant:
(Multi-)sets of indistinguishable elements are thus the same “combinatorial objects”
as sequences! And for the (ordinary) generating function gf indeed again

K(z)

compositions

gfcompositions - gfsequences (gfsets1)
holds. And indeed, also compositions are “sequences of nonempty sets” (in the sense
that there is only one (multi-)set mit k indistinguishable elements, which we can con-
fidently identify with the number k). We thus see again the same “analogy” as in
Example 2.1.1.

2.2. Species, labelled and unlabelled

It is commonly known that generating functions can be thought of in the follow-
ing way: Given a family A of combinatorial objects, specify a weight function
w: A — R (Risaring, w(O) typically assumes the values z", where 7 is a
“characteristic value” of O, such as size, length, number of parts, etc.) and form
the formal sum

> w(0),

OeA
which we (also formally) can write out as follows:

DAL

XER
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where c, is the number of objects in A with assigned weight x: Of course, the
number c, should be defined for any particular (finite) x, in order that the sum
makes sense. This observation immediately leads to the following definition:

DEFINITION 2.2.1. We denote a family A of combinatorial objects, of which every
single object consists of a finite number n of “atoms” (and which moreover may possess
a more or less complicated “structure”), where the atoms

o either may be labelled by the first n natural numbers [see Example 2.1.1],
e or may be completely indistinguishable (“unlabelled”) [see Example 2.1.2],

as labelled species or as unlabelled species (generally: species). The number n of
atoms, an object A of a species consists of, is called the size of A: |A| = n.
This can be expressed a bit more abstractly as follows: To a species A belongs a size
function #4 : A — Ny, which is given by #4 (A) = | Al
For a species we always assume that the subfamilies
={AeA:|A| =n}

forall n € IN are finite, i.e.,

ay = |A,| < oo VnelN.

In particular is a species A always countable.
Of course, the size function delivers a weight function

wa (A) == 241 for unlabelled species,
ZlAl
wy (A) := ATl for labelled species.

The generating function of a (unlabelled or labelled) species A is then the formal

power series
gf 4 (z) = ZwA( ) = ZZHAH—Z%Z

AeA AeA n=0
Zu u
egf 4 (z ZwAA—Z Zan '
AcA AeA n=0 ’

2.3. Unlabelled species and the enumeration of trees

EXAMPLE 2.3.1. A totally simple species consists only of a single object, which itself
consists of a single atom:
Atom = {o}
the generating function is
gf o (2) =z
EXAMPLE 2.3.2. Another simple species is (multi-)sets (of atoms, which are indistin-
guishable as unlabelled objects):
sets = {(J, {0}, {o,0},...}

the generating function is

gfsets(z):1+z+z2+...:

—
|
N
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A simple “modification” would be the species sets; of nonempty sets (of atoms); the
generating function is then

oz 1

T1-z 1-z
REMARK 2.3.3. Since the atoms here are unlabelled (i.e., not distinguishable), their
ordering does not matter: Therefore the species sets (of atoms) is equal to the species
sequences (of atoms). This however depends on the indistinguishability of the el-

ements (atoms): sequences of distinguishable elements are of course not the same
combinatorial objects as (multi-)sets of these elements!

gfset51 (Z):Z+Z2+Z3+"' 1.

DEFINITION 2.3.4. A tree is a simply connected graph without circles.

A rooted tree is a tree with a special vertex, which is referred to as root. A rooted
tree always has a “natural orientation” (“from the root away”), it thus emerges as a
directed graph: Vertices with outgoing degree 0 are called leaves, all other vertices
are called inner vertices.

Every tree is of course planar (is embeddable in the plane such that two arbitrary em-
bedded edges intersect in at most one vertex): A rooted tree in a fixed embedding in
the plane, where the order of the subtrees is relevant, is called planar oder ordered
rooted tree.

The size of a tree (in the sense of Definition 2.2.1) can be given by the number of its
vertices: Trees are thus a further example of species.

For instance, there are the following 2 planar rooted trees with 3 vertices:

RV

With 4 vertices there are the following 5 planar rooted trees, although the sec-
ond and the third of them would be viewed as the same “normal” (i.e., “not-

planar”) rooted tree:

REMARK 2.3.5 (Here always: rooted trees!). Especially for computer sciences algo-
rithms (e.g., search algorithms) and data structures which can be “composed” of trees
are interesting objects. Since these trees often have a “distinguished vertex” (a root), we
will in the following always consider rooted trees (if not explicitly speficied otherwise)
but for simplicity talk about trees.

As we have seen in the introductory Example 2.1.2, the combinatorial construc-
tion “form finite sequences of objects” transfers to the algebraic construction
“insert the generating function of the objects into the geometric series”. We
shall examine this “transfer”

combinatorial construction — algebraic construction
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in further examples:

DEFINITION 2.3.6 (Disjoint union). Given two species A and B, we can consider
their disjoint union C = A U B; the corresponding size function is

_JHa(x) xe A,
fio (x) 1= {#B (x) xeB.

Apparently this construction transfers to generating functions as follows:

gfc = gf 4 + 8fp

DEFINITION 2.3.7 (Cartesian Product). Given two species A and BB, we can consider
their cartesisian product C = A x B; the corresponding size function is

o ((x,y)) = #a (x) +#5 (y) .-

Apparently this construction transfers to generating functions as follows:

gf. = gf 4 -8

We visualize this graphically by means of the objects of size 3 in the product sets x
planarrootedtrees:

i é ZI?:O My - Wy—k
(@/ /) (Here: n = 3.)

7% mo-wz=1-2=2
@,7577)
({O},L) ml-wzzl.lzl

({o,o},%) my-wp=1-1=1

({o,o,o},7777) my-wg=1-1=1

A special case is the k—fold cartesian product of a species A whose objects are sequences
of length k of objects from A:
AF = Ax Ax - x A gf = (gf 4"
—

k times

Ifk = 0, we obtain the single-element species A° = {€} which only contains the empty
sequence € = () with |e| = 0.

For instance, we can view the combinatorial objects “compositions of a number n with
exactly k parts” as species K (with size function n): This apparently corresponds to

k
IC = setslk, thus ng: = (gfsetsl)k = <1 i Z) )
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DEFINITION 2.3.8 (Sequences). Given a species A which does not contain any object
of size 0, we can consider arbitrarily long finite sequences of objects from A, i.e., the

species A*
A= AF
k=0
According to the previous examples this transfers to generating functions as follows:
1
k
gf o= ) (8f4) =77
g;) 1-gfy

We have already seen a concrete examples for this in Example 2.1.2:
compositions = sets].

REMARK 2.3.9. Why did we have to assume here that A contains no objects of size 0?
Because otherwise A* would contain infinitely many objects of size 0, in contradiction
to our assumption for species:

[01=1(e)l=l(ee)l=l(ee)]=--=0.

APPLICATION 2.3.10. If one removes the root from a nonempty rooted tree W, a
(possibly empty) “list” of connected components arises which themselves consist of
nonempty rooten trees: If the rooted tree W is

e ordered, then one should also view the “list” as ordered (i.e., as sequence) —
then from the (ordered) sequence one can of course again uniquely reconstruct
the original (ordered) rooted tree W,

o unordered, then one should also view the “list” as unordered (i.e., as multi-
set) — then from the (unordered) multiset one can of course again uniquely
reconstruct the original (unordered) rooted tree.

The following graphic illustrates this simple thought:

(VYY.Y)

planar rooted tree

(V.9.9.¥)

“normal” rooted tree

If we denote the number of planar rooted trees with n vertices with f,,, then we
obtain by definition the generating function of the species of planar rooted trees
with at least one vertex:

f(z)= an-z” —z+22+222 +528 + - -
n=1
From the Application 2.3.10 we first get
planarrootedtrees; = atom x planarrootedtrees]

and hence then the following functional equation:

f:Z'(f0+f1+f2+"'> :1if — fz—f—i-Z:O.
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This quadratic equation for f has two solutions of which the following has the
“right” (positive) coefficients:

o i (Zn")z”“- (24)
n=0

Before we start the next venturesome calculation, we remind ourselves of the

(Transfer principle for formal power series )

If an identity for analytic functions also makes sense for the corresponding for-
mal power series, then it is automatically also an identity for formal power
seriesn.

Conversely: If an identity for formal power series also makes sense for the cor-
responding analytic functions (this means that there exists a nontrivial common
radius of convergence for all involved series), then it is automatically also an
identity for analytic functions.

——

EXAMPLE 2.3.11 (Sets). Let A be a species which does not contain any object of size 0.
If we in sequences of A “forget about the order”, we obtain the species C = sets (A)
(as said: actually multisets — elements can occur repeatedly): the size function for an
object

{Al,Az,...,Ak} eC

is given (just as in sequences) by

k
#e ({All A, .., Ak}) = Z #a (Al) :
i=1

Thus we obtain for the generating function

ng (Z) = Z Z#C(C) «— C:{ﬁqlr ey Al,ﬁz, ey Az,...}

CeC kl k2
k k
- > (Z\\Alu) " 3 (ZHAZH) ?
k1=0 ko=0
k
:HEMW
AeAk=0
1 4
=11 (1 — zi) < ap=|{AeA:| A|=i}| <00
i>1
2 3 4 6
a(z+5+%5+- )+a 22+Z_+Z_+... 4+
= 1( 2 3 ) 2( 2 3 ) <—10g11TZ=Z%

= exp (ng (z) + ngz(Zz) + ng3(Z3) 4+ ) .
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For instance we obtain the species numberpartitions (i.e., “unordered” compositions)
as sets (setsy).

EXAMPLE 2.3.12 (Composition). Given two species A and B such that B contains
no empty object (of size zero; compare with Remark 2.3.9):

i1Be B:#3(B) =0.

Then we construct the composition of species A (B) as follows: We imagine all the
atoms of an object from A “blown up” and insert in each such atom an object from
B. The following graphic visualizes the construction for A = rootedtrees und B =
setsy:

However, unfortunately this construction does not translate to the composition of the
respective generating functions! Foir instance, we have:

sets (sets;) = numberpartitions,

but

1 1
+ .
1—% Hl—z’

(The problem is apparently: the construction as such is not unique — in the above visu-
alization we could also have distributed the objects from B differently among the atoms
of the objects from A. We would need to, say, first construct all possible “insertions
of objects in atoms”, and then figure out which of those are actually different!)

2.3.1. Enumeration of binary trees. We now want to show the usefulness
of the viewpoint of species on typical enumeration problems.

DEFINITION 2.3.13. A rooted tree with the property that every vertex has outdegree
<2 s called binary tree. With other words: On each vertex of a binary tree two subtrees
are hanging which may also be empty. (More generally, a rooted tree with the property
that evey vertex has outdegree < m is called an m—ary tree.) An ordered binary tree
is a binary tree where at every inner vertex the order of its two subtrees matters (i.e.,
there is always a left and a right subtree; even if one of the subtrees is empty! Note
that a binary ordered tree is not the same concept as a planar binary tree!)

A binary tree with the property that each inner vertex has outdegree = 2 is called
complete binary tree. (More generally, a rooted tree with the property that each inner
vertex has outdegree m is called a complete m—-ary tree.)
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We would like to determine the number of complete binary ordered trees with
n inner vertices: This is the same as the number of ordered binary trees with n
vertices. The following graphic shows the objects of this species B with size
(number of vertices) n = 3:

g S AL

The “combinatorial decomposition” of this species is simple: An ordered binary
tree is

6 0606 O

e either empty
e or consists of a root (an atom) and a pair of subtrees.

Formally thus:
—{e} U <atom x 32) .

This translates to the following equation for the generating function:
gfg=1+z (8fp)”.

This quadratic equation for gf; has again two solutions of which

1—-+v1—-4z 2n\ ,
o= 5 = X g ()’ @9)

n=0

is the “right” one.

This simple idea of course also works generally for the species of unordered
m—ary trees Tp,:

gty —1+z- <ngm)m. 2.6)

For m > 2 it is however simpler to determine the coefficients of the generating
function with the Lagrange inversion formula; see Corollary 1.2.5, which we
shall repeat here:

COROLLARY 2.3.14 (Lagrange—inversion formula). Let f (z) be a formal power se-
ries with vanishing constant term and F (z) the corresponding compositional inverse
series (i.e., F (f (z)) = f (F (z)) = z). Then one has

[2"] F*(z) = %[[z_k]] f"(z) forn#0, (2.7)
or

"] Fz) = [27] Faf ). 28)

After all, (2.6) just means that (gfﬁn — 1) is the compositional inverse of

(1+2)™
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According to (2.7) one thus has for n > 0

mn
[[Zn]] gfm = 1[[21]] (ﬁ) «—binomial theorem!

n zn
_ 1 m-n _ (mn)(m-n=1)---(m-n—n+2)
- n\n—1 = n-(n—1)!

:n-(mi1)+1<mn.n)'

Exercise 1: Show that the number of all unlabelled ordered nonempty rooted trees with n vertices,
where every inner vertex has 2 or 3 branches, equals

12(0)(, o)

Hint: Find an equation for the generating function and use Langrange’s inversion formula.

Exercise 2: How many ways are there to (properly) parenthesize n pairwise non-commuting elements
of a monoid? And how does this number change if the n elements are pairwise commuting?

For example, consider 6 non—commuting elements x1, X, ...,Xx¢. Two different ways to parenthesize
them properly would be

((x2x5)((x1(xax6))x3)) and ((x3(x1(x4%6)))(x5x2))-
However, these would be equivalent for commuting elements.

Hint: Translate parentheses to labelled binary trees: The outermost pair of parentheses corresponds
to the root, and the elements of the monoid correspond to the leaves.

2.4. Bijective combinatorics on rooted trees

It is noticeable that the generating functions for nonempty planar rooted trees
(2.4) and ordered binary trees (2.5) are equal up to factor z, and the numbers of
these objects with fixed size (number of vertices) is essentially a Catalan number

Cr = k-:‘yl-—]. (Zkk): This can also be shown using bijections.

2.4.1. Dyck paths of length 2n.

DEFINITION 2.4.1. The integer lattice is the infinite directed graph with vertex set
Z x Z and edge set (step set)

(y), (x+Ly+1): (v y) e ZxZ}
uillvy), (x+1y—-1)): (x,y)e ZxZ}.
(The directed edges hence always go either “one step right—up”: u or “one step right—
down”: d.)

A path in the integer lattice which starts in (0,0) and ends in (2n,0) and which never
comes below the x—axis, is called Dyck path of length 2n.
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0 1 2 3 4

7 8 9 10 11 12 13 14 15 16 17 18

It is a well known fact that the number of Dyck paths of length 2n is equal to the Catalan
number Cy, = 25 (%) (see e.g. [4, Anhang A.2.2]).

n

2.4.1.1. Planar trees <> Dyck paths. From the graphic it becomes apparent
that a Dyck path can be coded as as word of length 21 over the alphabet {1, d},
where

e the number of u’s is equal to the number of d’s, i.e. 1,
e and in each “initial part” of the word at least as many u’s occur as d’s.

For the above graphic this “code word” is:
uududuududuudduddd.

This immediately translates to a coding for ordered trees (plant louse coding).
Each tree on n + 1 vertices has exactly n edges: We imagine a “plant louse”
which sequentially walks along the edges of the ordered rooted tree (always
starting with the left subtree).

2.4.1.2. Ordered binary trees < Planar trees. The corresponding rotation corre-
spondence is best made clear in a graphic:

rotate by 45°: new root: new edges:

@]
OO OO
7 757 7
2.5. Unordered rooted trees

There are thg following 9 unordered rooted trees with 5 vertices:

Y PP Sl

According to Application 2.3.10, by “tearing out the root” from an unordered
nonempty rooted tree, a (multi—)set of rooted trees arises, i.e., for the species of
unordered rooted trees 7 one has:

T = {o} x sets (7). (2.9)
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This transfers as follows to the generating function (see Example 2.3.11):

1 \" 1 \" 1 \B
= () ()" ()" oy
—z exp (ng (2) + %ng <22> + %ng (23) - ) (Polya).

From the formula of Cayley the coefficients t; can be recursively computed:

ng( z) =tz + tzz + t3Z + - <—( —1yr(thy 1

e (f ) ) (NGO
Cengt (1) o) (027 i)

Concretely one obtains:

gl (2) = 2 + 2% + 22° + 42* 4+ 92° + 202° + 4877 + 11528
+2862° + 719210 + 184271 + ...

2.6. labelled species

EXAMPLE 2.6.1. The labelled species atom again only consists of a single element, for
which there is clearly just one labeling: “o is labelled by 1”. The generating function is
hence again

egfatom (Z) = F = Z.

EXAMPLE 2.6.2. A further species is sets (of atoms): In the labelled objects the atoms
are distinguishable but, since in a set the order does not matter, there is exactly one
labelled set with n elements:

sets = {J,{1},{1,2},...},

the (exponential) generating function thus is

z Z?
egfsets( ) 1+F+E+ —exp(z).

The (exponential) generating function of setsy then is

EXAMPLE 2.6.3. Since the atoms here are labelled, the (labelled) species sets (of
atoms) is not anymore equal to the (labelled) species sequences (of atoms): The lat-
ter is simply einfach equal to the (labelled) species permutations with the generating
function

1! 2!, 1

permutations ( ) I+ FZ + EZ + 1 —

egf >
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The species cycles of the cyclic permutations (i.e. of the permutations whose unique
cycle decomposition consists of a single cycle) apparently has the generating function
o 1, 24

egfcycles (Z) = EZ + EZ + 3—iZ 1_ Z‘

Just as with the unlabelled species there is also here a “transfer”

+--- =log

combinatorial construction — algebraic construction.

EXAMPLE 2.6.4 (Disjoint union). Given two labelled species A and B, we can (just
as with the unlabelled species) consider their disjoint union C = A U B, and also here
one has for the generating functions:

egf, = egf , + egfy.
EXAMPLE 2.6.5 (Product). Given two labelled species A and BB, we define their prod-
uct C = Ax B as follows: We first consider the cartesian product A x B. From a pair of

objects (A, B) € A x B (where |A| = m and |B| = n) we construct (" ") ddifferent
labelled objects according to the following rule:

o Consider all decompositions of the set [m + n| in two disjoint parts
[m+n] =XOYwith |X| =m,|Y| =n,
e For every such decomposition replace the numbers from A resp. B according
to the order-preserving bijections?

[m] — X
[n] =Y
We illustrate this by an example:

4900,

| A|+|B||=3+2=5:

@
{123}, (451 = yaf : §
{(1,2,4} {35}} — ol i,

@) (5)
{345} {12}} — o4 /

The size function is of course again given by
e (A, B)) := #4 (A) +#5 (B) .
This construction indeed transfers again to generating functions:

Lonlag b, Cn
e o Rt S

n=0 \k=0 n=0 "

Between any two finite ordered sets X and Y with |X| = |Y| there of course exists exactly
one order-preserving bijection.
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since ¢y = > _o (1) - Ak - bu—x by construction.
For instance:

e sets x sets = subsets_of_a given_set, which one could also interpret as
“functions to {0, 1}”. That the cardinality of the power set of an n—element set
equals 2" is now also readily seen from the generating function:

(e f (Z>>2 _ ((BZ)Z _ (BZZ _ Z gzn
8lsets n!=

n=0
e setsy * setsy are thus to be viewed as “surjective functions to {0,1}".
A special case is again the k—fold product of a (labelled) species A:
AF = Ax Ax-- A egf i = (eng)k.
k times

For instance:

e sets’ = ordered_decomposition_in_k_blocks, which one could also in-
terpret as “functions to [k]”.
o sets; are thus to be viewed as “surjective functions to [k]”.

EXAMPLE 2.6.6 (Sequences). Also for a labelled species A which contains no object
of size 0 we can consider arbitrary finite sequences of objects from A, i.e. the species A*

A= AR
k=0
Aguain this transfers to generating functions as follows:
k 1
egf 4. = go(eng) ~ T egf,
For instance, we obtain for the species of surjections T : [n] — [k] (with ||| = n)
surjections = sets;”.

It immediately follows: The exponential generating function of the numbers®

zn] Sy - k!
k=0

(where S, . denotes the Stirling numbers of the second kind) thus is
1 1

1—(ez—-1) 2—e*

EXAMPLE 2.6.7 (Sets). If in an object from A* we “forget about the order”, we obtain
the species

C =sets(A).

3These are the numbers of all surjections from [n] — [k], where k = 0,1, ..., n is arbitrary.
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By the labeling the k A-objects of an object from A¥ is anyway distinguishable (i.e.: a
multiset of labelled objects is always a set); for each set with k A-objects there are k!
ordered k—tuples of these objects in AX. Thus we obtain for the generating function

k
egfc (Z) — Z % p— eeng(z).
k=0 )

For instance we obtain the species
setpartitions = sets (setsy);

the exponential generating function of the Bell numbers hence is

(Bezfl

(see also the introductory Example 2.1.1).

REMARK 2.6.8. As we have seen, in many cases there is a clear difference between la-
belled and unlabelled species. But for ordered trees nothing new arises by the labeling,
because the vertices of ordered trees anyway have a “natural ordering” (root, successor
of the root from left to right, successor of the successor of the root from left to right, ... ),
such that therefore holds:

# (unlabelled ordered trees) - n! = # (labelled ordered trees)

(where n denotes the number of the vertices), i.e., the generating functions for unla-
belled and labelled ordered trees are equal.

EXAMPLE 2.6.9 (Composition). Given two species A and BB, such that B contains no
“empty object” (with size zero):

i1Be B:#3(B) =0.
Then we can construct the composition of species A (B) as follows:

o Take a k—tuple (By, By, . .., By) of objects from B
o Order the k—tuple by the smallest number in each component B;: De facto we
thus consider k—element sets (compare with Example 2.6.7)

{Bj, < Bj, <--- < Bj},
i.e. a species with the generating function

k
(egfy (2))
k! '

o Take an A-object A of size #4 (A) = k and imagine the atoms of A “blown
up”: In the labelled atoms now insert in the “canonical order” the objects
le, e Bjk (i.e., in the A—atom with number 1 one inserts le, in the A—atom
with number 2 one inserts sz, etc.).

e The size of the thus produced object from C € C := A(B) is then of course
given by

# (C) = #5 (By) + - +#5 (Bx) -
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Here the construction indeed translates to the composition of the generating functions:

ABjy I+ +[Bj

1
el w2 o UBjll+ -+ B!

k=0 AeA " (p. }
Ak (BB

k
= 20, BB O et (egty ().

Exercise 3: Develop a theory for weighted generating functions (for labelled and unlabelled species).
l.e., let A be some species with weight function w which assigns to every object A € A some element
in a ring R (for instance, R = Z [y], the ring of polynomials in y with coefficients in Z). So the
generating function to be considered is

Z 1Al w (A).

AeA

How should we define the weight function for sums, products and composition of species, so that the
corresponding assertions for generating functions remain valid?

Exercise 4: Let f (m,n) be the number of all paths from (0,0) to (m,n) inIN x IN, where each single
steps is either (1,0) (step to the right) or (0,1) (step upwards) or (1,1) (diagonal step upwards).
Use the language of species to show that

v
l-x—y—x-y

EXAMPLE 2.6.10 (Cayley’s theorem). Let T denote the species of nonempty unorderd
labelled rooted trees. With the same consideration as in Section 2.5 we obtain the same
“species equation” (2.9) also for the labelled rooted trees, thus

T = {o} xsets(T).
This equation here translates according to Example 2.6.7 resp. 2.6.9 to
egfr(z) =z- e°8f7(?),

hence egf - (z) is the compositional inverse of z - e~ *. We can very easily determine
their coefficients using the Lagrange inversion formula (Corollary 1.2.5: (2.7) for k =
1):

:z’l]] (z-e7®) "

Z_l]] P

"] gty (2) =

-Zn—lﬂ ez
-nn—l
n(n—1)!

for n > 0. This means, the number of labelled unordered rooted trees on n > 0 vertices
is

—_ XA RI| PRI

tn - Vln_l.
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If we “forget” about the root, we then obtain Cayley’s formula for the number of all
labelled trees (not rooted trees!):

# (labelled treeson n vertices) = n" 2. (2.10)
Exercise 5: Determine the number of all unlabelled ordered binary rooted trees with n vertices and
k leaves.

Hint: Consider the generating function in 2 variables z and y, where every rooted tree W with

n vertices and k leaves is assigned w (W) := z"yk. The following picture shows these trees for
n=12734:

S
IV e
NP VLY

...and these 7 trees, vertically reflected.

l.e., the first terms of the generating function are:
T (z,y) :=Zw(W) =z-y+z2-2y+2° (y2+4y) +z4 (6y2+8y) + e
144

Find an equation for this generating function T, from which the series expansion can be derived.

Exercise 6: Determine the number of all labelled unordered rooted trees with n vertices and k leaves.

Hint: Consider the exponential generating function in 2 variables z and y (as in Exercise 5) and use
Lagrange's inversion formula.

2.6.1. Combinatorial proof of Cayley’s theorem. The Priifer correspondence
delivers a bijection between

e unordered, labelled rooted trees with n vertices,
¢ and sequences of numbers of length n — 1 from [n].

For a given rooted tree this works as follows: Look for the leaf with the smallest
number (labeling), note down the number of the inner vertex, on which this leaf
is hanging, and remove the leaf: Repeat this until only the root is left. In a small
example:
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Conversely one recovers from the Priifer code

(p(©1),p(v2),---, p(Vn-1))

the corresponding rooted tree again by proceeding as follows: Let v; be the
smallest number from [n], which does not appear in the Priifer code. The num-
bers which do not appear in the Priifer code correspond to the leaves in the
original rooted tree; vy is thus the number of the first removed leaf. By con-
struction this leaf was hanging on the vertex with the number p (v1), we thus
note down
(v1,p (v1)) (v1 is hanging on p (v1))
and continue with the remaining Priifer code

(p(©2),p(v3),---, P (Vn-1))

recursively: Let v, be the smallest number in [1]\ {v1} which does not appear
in the remaining Priifer code; we thus note down

(02,p (02)) (02 is hanging on p (v2)),
etc. For the above example the following sequence of notations arises:
((1,10),(49),(5,3),(6,3),(7,10),(9,2),(10,8),(8,2),(11,3),(3,12),(12,2)),

and it is clear that the root has number 2: With this the rooted tree can be
uniquely reconstructed.

Exercise 7: Prove Cayley's formula (the number of labelled trees on n vertices equals n~2) as
follows: Take a labelled tree on n vertices and tag two vertices S and E. View S and E as the
starting point and ending point of the unique path p connecting S and E in the tree. Now orient
all edges belonging to p “from S to E"”, and all edges not belonging to p “towards p”. Now travel
along p from S to E and write down the labels of the vertices: Whenever a new maximal label is
encountered, close a cycle (by inserting an oriented edge from the vertex before this new maximum
to the start of the “current cycle”) and start a new cycle. Interpret the resulting directed graph as a
function [n] — [n] (i.e., a directed edge from a to b indicates that the function maps a to b).

Exercise 8: Show that the number of all graphs on n vertices, m edges and k components equals

the coefficient of u™a™ B*/n! in
m y p
(Z (1 + 0()(2) F)

n=0

Hint: Find a connection between the generating function of all labelled graphs (weight w (G) :=
u|V(G)|zx|E(G)|) and the generating function of all connected labelled graphs.

Exercise 9: Show that the number of labelled unicyclic graphs (i.e., connected graphs with exactly

one cycle) on n vertices equals
Lo (1) 1o
Z —1=J
2 (;)J e
j=3

Hint: Find a representation as a composition of species.
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Exercise 10: Let T (u) = >, o (n+ )" "L u/n!. Prove the identity

T/ (u) _ gul
1—uT (u) _g:‘)(l—H) I

Hint: For a bijective proof consider the species VV of labelled trees, where the vertex with the largest
label (i.e.: n, if the tree has n vertices) is tagged as the root, but this label is erased, and the root
does not contribute to the size of the tree (i.e: if t has n vertices (including the root), then we have
Itlyy = n —1): Obviously, T = gf,.

Now consider functions f :[I] — [l + j]. Visualize such function f as a directed graph with vertex

set [l + j] and directed edges (x, f (x)). The following graphic illlustrates this for the case I = 20,
j=2and

(f (n))l (2,6,2,5,2,7,8,5,4,4,7,21,21,18,16,18,22,15,15,15) :

n=17="

@

The components of this graph are rooted trees or unicyclic graphs; all vertices in [l + j]\ [!] appear
as roots of corresponding trees.

Exercise 11: The derivative A’ of a labelled species A is defined as follows: Objects of species A’
with size n — 1 are objects of A with size n, whose atoms are numbered from 1 ton — 1 (not from
1 to n), such that there is one atom without a label. A typical element of Sequences’ is

(3/ 1/ 2/ 5/ o, 4) 7
where o indicates the unlabelled atom.

Show: The generating function of A’ is precisely the derivative of the generating function of A.
Moreover, show:

(1) (A+B)=A+B.
(2) (AxB)' = A'«B+B'x A.
(3) (AoB) = (AoB) B

These equations are to be understood as size—preserving bijections.

Exercise 12: Show the following identities for labelled species (i.e., give a size—preserving bijection
between the families of combinatorial objects — this is more than an identity for the corresponding
generating functions):

(1) oPar’ = oPar? x Sets, where oPar denotes the species of ordered set partitions (i.e., the
order of the blocks of the partitions matters).
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(2) Polyp’ = Sequences (Atom)  Sequences (2Atom), where Polyp denotes the species
Cycles (Sequences>1) ;

i.e., an object of Polyp is a cycle, where there is a nonempty sequence attached to each
atom of the cycle.

Exercise 13: Let A be the (labelled) species of (unordered) rooted trees, U the (labelled) species
of trees (without root) and F the (labelled) species of rooted forests. Show the following equations
(i.e., give a size-preserving bijection between the families of combinatorial objects — this is more
than an identity for the corresponding generating functions):

(1) A'= F xSequences (A),
(2) Z/l//: ]:*A/,
(3) A”= (.A')2 + (A')2 * Sequences (\A).

Exercise 14: Compute all derivatives of Sets? and of Sequences.

2.7. Pélya’s theorem

We start with two motivating examples.

EXAMPLE 2.7.1. Given a cube, how many essentially different possibilities exist to
colour its sides with the colours red and blue? (“Essentially different” shall mean here:
We view two colourings, which turn into each other by a rotation, as equal.)

There are in total 10 possibilities: all sides red, all sides blue, one side red, one side blue,
2 opposite sides red, 2 opposite sides blue, 2 adjacent sides blue, 2 adjacent sides red, 3
in a corner colliding sides blue, 3 in a row connected sides blue.

EXAMPLE 2.7.2. Given pearles in k colours. How many possibilities exist to form a
necklace of length n, where 2 necklaces are viewed as equal ansehen, if they can be
turned into each other by a rotation (but not by a reflection!)?

JEIBINI8INI!
DININ BINimee

If we want to describe Example 2.7.2 “abstractly”, then we can do this as fol-
lows: Suppose an object on 7 (labelled) atoms is given. These atoms are mapped
into a set of values R = [k] of k colours (in the example: k = 2). We ask about the
number of such mappings, where we consider 2 mappings fi, f» as equivalent
if there exists a cyclic permutation o € &, of labelled atoms, such that

f1 OUZfz.

@03 GO
f10(1234)=fz.
O—2@ O—O

>3
I

=3
Il
NG N

For instance:
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This problem can be generalised as follows:

DEFINITION 2.7.3. Let a finite set [n] = {1,2,...,n} and a group G = &, of per-
mutations be given. The corresponding idea is: We have a (labelled) object O on n
atoms which we identify with the elements from [n], and G is the group of symmetry
mappings, i.e., the group of permutations of atomes of O, which leave O invariant; for

instance:
@ig & fPeaeaeonsse)
@ ©

Further, let R = [k| be a given set of k colours. We are interested in the number of all

nonequivalent mappings f : [n] — R, where fi ~ frif fiog = fp forany g € G.
With other words: We search for the number of all equivalence classes of mappings
under the equivalence relation

f1 ~f2 — ngclflongz.
We call these equivalence classes of “colourings” patterns.

Let each element r € R be assigned a weight w (r) (usually a monomial, e.g. simply
z"), the weight of a function be w (f) := [\ w (f (i)). It is clear: fi ~ fo =
w (f1) = w (f2); the weight of a pattern shall be w (f), where f is any representative
of the pattern (i.e. of the equivalence class).

As always we are interested in the generating function of all patterns, i.e. in the

> w(f).

pattern

EXAMPLE 2.7.4. We consider the example of the cube with w (read) = x, w (blue) = 1:
The weight of a pattern is hence x*("°2f2¢s)  The generating function is then:

et 2 2 p x4 1.

LEMMA 2.7.5 (Burnside’s Lemma, Theorem of Cauchy—Frobenius). Consider the
problem from Definition 2.7.3. Let 1, (g) be the number of all functions f with weight
w (f) =wand f og = f. Then the number of all patterns with weight w is equal to
1
@ Z Pa (8) -

geG

PROOF. Consider all pairs (g, f) with fog = f, w(f) = a: By double counting
one immediately has

2@ = > n(f),
8eG fro(f)=a
where 7 (f) denotes the number of all g with fog = f.
For fixed f, Gf:= {g€ G: fog = f}isasubgroup of G.
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Now consider all f oh with h € G: Considering this as sef, this is simply the
equivalence class f of f: How often does each element occur?

fom =fohy « fo(mohy') = f
— hlohz_ler — hlerth'

Le., for the elements of a fixed right coset of G one always gets the same func-
tions. Hence we have:

GI=f 161 = n(f) =67l =16l/]F].

Wir thus obtain:

DIRETHENED W= F R Y

fra ()= Fapa |F qupaf
=[Gl )] Z =1Gl- > 1
fro(f)=a fef ) frw(f)=a

# (pattern with weight «) - |G| .

O
DEFINITION 2.7.6. The cycle index of a group G < 6n is
PG (xl, X2,...,Xn) Z “1 xcz n 2 x|21| X|ZZ| )

geG |G| geG

where z1 - zp - - - = g denotes the disjoint cylce decomposition of the permutation g and

|z;| denotes the length of the cycle z;, and wehre (c1,ca, . .. ) denotes the cycle type of
g (i.e., c; is equal to the number of cycles of length i in g).

EXAMPLE 2.7.7. The rotation group of the cube can be described by permutations of
its faces:

o the identity delivers x$,

e rotation around the axis, which is determined by the midpoints of two opposite
faces, delivers 3 - xg_ . x% (for 180°) and 6 - x4 - x% (for £90°),
e rotation around the axis, which is determined by the midpoints of two diago-
nally apposite (parallel) edges, delivers (for 180°) 6 - x3,
o rotation around the spatial diagonals (for £120°) delivers 8 - x3.
In total thus:

P = <x1 +3x3x3 + 6x5xy + 635 + 8x3)

24
EXAMPLE 2.7.8. A rotation of a chain of length n corresponds to a permutation 7 with

m(i)=i+m (mod n).
A cycle of length d of 7t is a (minimal) sequence
l=(,i+m,...,i+(d—-1)m),

such thati+d-m =i (mod m), ie., d-m =0 (mod n) and because of the mini-
mality of |, we have d =

gcdm n'
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In 7 there are therefore only cycles of length d, and in fact exactly 7 many: The weight

is w (1) = xZ/ 4 The only question left is: How many m’s are there with gcd m,n =
n/d, 0 < m < n? From the numbersi- 2

Q

(0,13,2%,...,(01—1)%)

these are those where i and d are relative prime:

. nn .
gcdn,z-a—g < gcdd,i =1

Their number is ¢ (d), the Eulerian g—function:
1 1
d=pk.. g o :d<1——>---(1——>.
pioopl s ed) o o

1 n
Pg = - Dlo(d)x]. (2.11)
dln

Thus:

THEOREM 2.7.9 (Pélya’s theorem). Let G < &;. The generating function for all
patterns f, f : [n] — R, is

Z w(m) = Pg <Zw(r),Zw(r)z,Zw(r)3,...)

m pattern reR reR reR

PROOF. Consider & = w (f) for a function f : [n] — R. By Lemma 2.7.5 the
number of all patterns with weight a is equal to

EElptx(g),

1
Gl =2

where ¢, (g) =#({h:w (h) =aand ho g = h}).

We multiply this with « and sum over all a:

D w<m>:2%2w<g>a

m pattern n geG
1
- G| ZZ% (8)a
geG «

1
2@2 Z w (f)
8€G f: fog=f
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Think: If ¢ = z1 0 zp o - - - 0 z; denotes the disjoint cycle decomposition of g, then
fog=fifand only if the function f is constant on all cycles z1, zy, . . . z;. Thus:

Z 2 DA w(f @)= w (F )

ger

3 (2 o w) (2 o m) (2 o |z,|>
|G| geG \reR reR reR
=Pg (Z w (', Y w(r)?, .. ) Cex o (Srer )

reR reR
]

REMARK 2.7.10. If the set R of colours contains only one element which is simply
assigned the weight z, then there is of courses only one pattern, and the generating
function of this single pattern is simply z", where n is the size of the object — and

indeed also
Pg <z,zz,...) ="

EXAMPLE 2.7.11. For the cube we indeed obtain:

holds.

% <6 <x4+1> (x+1)2+8<x3+1>2+3<x2+1)2(x+1)2+
6<x2+1)3+(x+1)6) — 0+t o 2 x4 1

EXAMPLE 2.7.12. For a chain of length n which is coloured with k colours, we assign
the weight x; to the colour i and obtain:

n/d
—ng (xf+x§+---+x,‘f> .
dln

For the special case k = 2 this yields:

_Z ¢ (d (x1 + xz)n/d = Z 2 (n/d) n/d D e
d|n l

d|n
d
= mg xyay " E e (d) <n//d)‘

d|ged n,m

For k colours one more generally has:

n/d il il
_290 2 (11,...,lk>x11 kk_ —my=d-l;

dn Ii+..Iy=n/d

) . ” n/d
n DI/ 2 qO(d)<ml/dr~"mk/‘jl).

my+---Mmg=n d|ged n,my,...,my
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Exercise 15: How many different necklaces of n pearls in k colours are there? (This should be
understood “as in real life”, where rotations and reflections of necklaces are considered equal; in
contrast to the presentation in the lecture course.)

2.8. A generalisation

We can apparently generalise Definition 2.7.3, by considering also on the set of
colours R a permutation group H which acts on R: How many patterns are there
which under the action of H are yet different? I.e, we now consider two patterns
f1, f2 as equivalent if thereis a g € G (G is the perrmutation group on the atoms)
and a h € H (H is permutation group on the colours) such that

fi~fare= ficg=hofs

EXAMPLE 2.8.1. In Example 2.7.1 (colourings of the faces of the cube with colours
R = {blue,red}), let the group be H = Gg: Le., there are now only 6 possibilities for
“essentially different” patterns:

6 faces have the same colour,

exactly 5 faces have the same colour,

exactly 2 opposite faces have the same colour,

exactly 2 adjacent faces have the same colour,

exacly 3 in a corner colliding faces have the same colour,
eactly 3 faces in a row have the same colour.

If we define the weight of a pattern by x™ax(#(red) #(bluc))

is:

, then the generating function
x4+ + 2x 4 245,
THEOREM 2.8.2.

> w(m) Z dYw(f). (2.12)

m pattern gerfog hof

PROOF. Obviously there holds:

fogi=fog = §1€Gs &,
hlonhzof = hlehz-Hf.

3w Z w (f) Gl -[H|
f.ah }Gf‘ ‘Hf‘
fog=hof

=[GI-H]- Y, w(m).

w pattern
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2.9. Cycle index series

We now want to apply these considerations to labelled species: For that we
(essentially) “sum” the cycle indices for all objects.

DEFINITION 2.9.1. Let F be a labelled species: Then the symmetric group &, acts on
the subfamilies

Fn:={FeF :|F| =n}

“by permutation of the labeling of the atoms”. We denote the action of such a permu-
tation o on F with o (F); if such a permutation o fixes (leaves invariant) an object F,
then we write for it: o (F) = F. It is clear: For each object F € F,

symz (F):={ce&,:0(F)=F}
is a subgroup® of &,,: We refer to it as symmetry group of the object F.

EXAMPLE 2.9.2. The permutation o = (12) (3) (in cycle notation) obviously fixes the

following unordered rooted tree:
%@4@

The same object, viewed as ordered rooted tree, would however aber only be fixed by
the identity (compare also with Remark 2.6.8).

DEFINITION 2.9.3 (Cycle index series). Let F be a labelled species. For a permuta-
tion o € &, we define:

fixz (0) := {F e Fy: 0 (F) = F}.

\fix (0)| is hence the number of objects F in F for which o belongs to the symmetry
group of F.

The cycle type of a permutation o we denote by
c(o):=(c1,¢2,...,Cn).
(Le., c; is the number of cycles of length i in ¢.)

Further, for a sequence x := (x1, Xy, ... ) of infinitely many variables we define:

Cn

x(0) . xil -x? o xC

4‘algebraically: the stabilizer-subgroup of F.
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The cycle index series of a species F is then the formal power series (in infinitely
many variables)

x¢(@)

s

Zr(x) = ),
o,F
o(F)=F

2% D7 lfixr (0)] - x) (2.13)

n=0 " 0e6,

IEDIP IR

n=0 """ 0eS, FeFy:
o(F)=F

%Z 3 X, (2.14)

n=0 FeF, 0e6,:
o(F)=F

REMARK 2.9.4. Unordered labelled rooted trees differ from ordered labelled rooted trees
“only” by the property that the first have a nontrivial symmetry group (i.e..: not only
consisting of the identity), compare with Example 2.9.2. With other words: For the
species of ordered labelled rooted trees

Wi ~ Wy = “Wj and W, are identical as unordered objects”

is clearly an equivalence relation whose equivalence classes can be naturally identi-
fied with the unordered labelled rooted trees. “From the view of the unordered trees”
this equivalence relation is given by its symmetry group G (which consists of “rear-
rangements” of subtrees):

W1~W2:<:,> E|0’EG:U(W1)=W2.

This can be generalized as follows: Let F be a labelled specied which contains only

the trivial symmetry group (i.e., all n! relabelings of an object F € F are viewed as
different):

sym » (ﬁ) — {id} forall e F.
Let G be a “larger” (casually spoken) symmetry group for the objects from F;ie.,
{id}c G=Gz= GHforallfeﬁn c F.

Then one can consider the species F of the equivalence classes of F with respect to
this symmetry group, whose objects F € F are determined by the prpoerty that for any

two representatives F,F, e F < F
F~FKh:w<«= JoceG:0(F)=h (2.15)
holds. Fora F e ]?n let
Sy (f) = {(7 (f) 1o € Gn} (all “relabelings” ofl?),
Sy (F) := {0 (F) : 0 € &y} (all equivalence classes w.r.t. (2.15).
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Then “permutation of the labelings from [n]” delivers a group action from &, to
S, <13> which induces an action on the equivalence classes &, (F). Clearly, Gr is
the stabilizer® of F:

Gr =symg (F),
those there holds (see also the proof of Lemma 2.7.5):

n! n!
&, (F)| = ==
€ (F) symyz) (F)  [Gr|

For Fi,F, € &, (1?) there holds (by definition) F, = T (Fy) fora T € &,,. Then there
holds® for any such T € &,:

T (symy (F1)) 7! = symz (B>).

Algebraically this means: For two elements in the same orbit the corresponding stabi-
lizers are conjugated subgroups; in particular they are isomorphic. Combinatorially
this means that the symmetries do not depend on the concrete labeling of the atoms (for
our rooted trees this is obviously clear).

Then we can also consider the species F of the corresponding unlabelled structures

whose objects are the equivalence classes of F under the equivalence relation “is
obtained by an EMarbitrary relabeling of”, i.e. with the symmetry group equal to the
tull symmetric group.

Graphical illustration of the general situation (Gp := sym r (F)):
Tz(F)=(TzGFT;1) (Tz (f)) Tm(F)= (TmGFT,;l) (Tm (ﬁ))

s (P

T

@0 N\ «—

s
I
@
=
—
T
~
Il
—— e

F=Gr(F)  m(F)=(usGrr5 ") (s(F))

Casually spoken: Generally labelled species F appear “in the middle between the cor-
responding unlabelled species F and the corresponding totally unsymmetric species
F; expressed by the corresponding symmetry groups:

sym 2 <1?> = {id} = Gr = symy (F) = &, = sym > <1?> .

EXAMPLE 2.9.5. To make this completely concrete, we consider again the unordered
labelled rooted tree from Example 2.9.2:

SBecause Gr fixes by definition the equivalence class F.
6By definition of a group action.
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“Fix numbering of F”:
N =N
7 7
Gr = {id, (3) (12)} ~ Z,.
Consider Gq (1? ), i.e., all reorderings of F:

e 0=(123) o T=(1)(23) | id |

1 7| 7| )
Ge (f) - 37 57 37
1 7|1 7T )
/
3 3 3
o (F) 7 (F) F

With this considerations in the background we can now formulate:

LEMMA 2.9.6. With the notation introduced in Remark 2.9.4 there holds: The cycle
indikator series of a labelled species F is the sum over the cycle indices of all objects of

the corresponding unlabelled species F. This means:
> P, (x) = Zr (x). (2.16)
FeF

PROOF. The proof consists only of a longer transformation:

2 Pg, (x 2 2 «—Definition 2.7.6

FeF 'YEGF

= 2 Z Z <—”regr0uping of terms”

n=0ve6G, Fe ]T-
YeGr

= 2 p Z Z |GF| <—Gpisstabilizer0fF

n=0 €6y e _7:
YeGr

D YD MR e}

n=0 v€S, FeFy:

v(F)=F
2
n=0
Zr

2 | =

Z fixr (y

'YGGn
X) . O

/\ :

THEOREM 2.9.7. There holds:
Zr(z,0,0,...) = egfr (2), (2.17)

Zr (z 22,2%,. ) =gfz(z), (2.18)
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where F is the unlabelled species associated to F (with the same symmetries).

PROOF. Equation (2.17) is obtained by a simple calculation from Definition (2.13):

1
Zr(z,0,0,...) = ), — D7 [fixg (o) - 210209 -

n=0 " 0e6,

1 . .
= 3 lfixr (idy)| 2"

n=0 "

N

n=0"""

Equation (2.18) is a direct corollary from Lemma 2.9.6, since Pg, (z, z22, .. ) is
simply equal to z" fory any F € F,.
O

EXAMPLE 2.9.8. For the species atom we obtain Zagon = X1.
For the species sets we obtain according to (2.13)

Zsets = Z % Z XC(U)/

n=0 " 0eB,
because there is exactly one set on n elements which (of course) is fixed by any permu-
tation o of its atoms:
fiXsets (0-) = 1.

It is well-known that the number of all permutations of &, of cycle type (c1,¢2, ..., Cn)
is exactly’
n!
161 ¢q!- 262 . ¢pl - pln - gy’
Therefore we further obtain:

1 2 Cn
Zes=Y 3,
sets —
11 . ¢cq!- 22 ¢yl -mn - ¢!
n=01-c1+2-Co+-+n-cyp=n 1 2 n
X1\ (X2)\©2
_ ()" &)

cq! cp!

(2.19)

l-c14+2:cp+--<0
R R
Combined with (2.18) thsi yields again the (ordinary) generating function of the (un-
labelled) species sets:

1

Zsets (z,zz,...) =1 5= gf ... (2).

7Simple counting argument: Consider an arbitrary permutation 7 as a cycle decomposition
(the first c; elemente are the fixpoints, the following 2 - c; elements are the 2-cycles, etc.): In
how many ways is one and the same permutation ¢ of cycle type (cy, ..., c) obtained in this
manner?
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For the species cycles we obtain (compare with Observation 2.9.4):

chcles = Z % Z Z XC(U) —(2.14)

n=1 " Aecycles, 0€Gy:

c(A)=A
= l' (n — 1)! 2 XC(U) «—Def. cycle index
n=1 n e,
o(A)=A
1 ) /4
= > EZQU( ) xly " @)
n=1l " dln
! ¢ (d)x k-d
= _— 4 <n=
d>1k>1 k-d
_\ 9@ 1
B d 1Og 1-— X4

For the species permutations we think: Let ¢ € &, be of cycle type (c1,c2,...,Cn).
How does a permutation 7t look like which is fixed by o?

i 2 o (i)
(i) —— o (r(i)) = 7 (o (i)

This means: 7t is fixed by o, if and only if

1 1 1 1

TT=0 OJlo0 <= 7T ~ =0 OJl OQF <= 7JloU =0 OoTl.

Suppose i and 7t (i) = | belong to cycles of different length in o: W.l.0.g. let the o—cycle
of i be the shorter one (otherwise consider 7" instaed of 71); let k be its length:

i o) 4 - L o@) =i

oA |

j—— () — — " (j) #]
Hence in 7t always only those numbers are permuted which in o belong to cycles of
equal length! Hoe many possibilities are there? We consider the cy cycles of length k

of o:

(i1..) (2o ) (i) -
k k k

Let i be the smallest number in these ci k—cycles: The permutation 7t can map i to ¢ - k
numbers: Thereby, at the same time, also the images

(i), (o @),..., T <ak—1 (i))

are already determined! For the next smaller number j there are thus only (cx —1) - k
possibilities leftn, etc.: It is clear that in this manner all permutations 7, which are
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fixed by o, are correctly counted; the number of these permutations thus is in total
Cl!'lcl 'CZ!'ZCZ"’
On the other side there are exactly
n!
14 'Cl! .02 'CZ!"'

permutations o € &, of cycle type (c1,ca, ... ) (see (2.19)). Thus we obtain:

1
Zpermutations = Z E Z }ﬁxpermutations (‘7)} : xc(o)

n=0" " 0e6,

C C
:Zl Z n!.(cll.ll...cn!.nn)'xcl.nxcn
n'( ) 14 -Cl!...cn!.ncn 1 n

n=0 C1---/Cn
1
= Z xil.xsz...zl_[ .
111 - X
(c1,02,...) i=1

The following theorems are concerned with product and composition of species
with symmetries: We actually would first need to define the symmetries for

these constructions — but how these symmetries are to be meant®, will become
clear in the proofs.

THEOREM 2.9.9. Let A and B be two species. Then there hold:

Zoaog=2p+21p, (2.20)
ZaixB =24 2B (2.21)
If A contains no object of size zero, then there also holds:
1
Z s = . 222
A =107, (2.22)

PROOF. Equation (2.20) immediately follows from Definition (2.13).

For (2.21) we consider an element C = (A,B) € (}) - (A x B), where n =
|A| + |B| and k = |A|. A permutation ¢ which leaves such a pair invariant,
decomposes’ in o = (07, 07) with

o ((A,B)) = (01 (A),02(B)).
Therefore
fixe )] = () o o) i 2]
and the cycle type of o of course satisfies
c(o)=c(oy)+c(om).
For (2.22) we only need to remember
A = | im0 At
The claim then follows from (2.20) and (2.21). ]

8The interpretations being dealt with are anyway the most obvious ones.
9Le.: This is how the action on the product is meant!
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THEOREM 2.9.10. Let A, B be two species, let B contain no object of size 0. With the
short notation
Xm = (X, Xom, X3, - - - )
we have:

Zp) (X) =Za(Zp(x1),Z5 (x2),ZB (X3),---) -

PROOF. By Definition (2.14) there holds:

1
Z ) (x1,%2,%3,...) = > . > x°(),
n=0 """ (C,0):

CeA(B): ||C||l=n
0e6y,: 0(C)=C
Indeed, each object C € A (B) by construction “consists”

e of an A-object A of size k
e and of k B-objects By, ..., By;

is thus, so to say, “of the form”

C= (A,'Bl,Bz,...,Bk).

A permutation o, which fixes this object, can be described as follows:

e 0 corresponds “macroscopically” to a permutation p € &, which fixes
A fixiert (notation: [p | 7)),

e Each cycle (iy, . ..,1;) of p induces a cycle of ¢ which maps the atoms of
B;,, to the ataoms of B; ,, (the subindices are of course considered mod-
ulo the cykle length It): In particular the objects (Bj,...,B;), which
correspond to this cycle, are identical as unlabelled objects (“structures”,
compare with the considerations in Observation 2.9.4).

Each pair (C,0) € A(B) x &, from the region of smmation defines an ordered
set partition of [n] = By U By --- U By: We can achieve by a relabeling 7 of the
atoms of C — C’ another arbitrary ordered set partition (with the same sequence
of block sizes, of course) and we obtaine another pair

(C’,a’ =To0oo T_1>
from the region of summation, which delivers the same cycle type:
c(o)=c(c).
There are (independent from the order of the blocks B;)
n!
[Ba]lt- - [ B!

such ordered set partitions. Of these — up to relabeling — identical objects we
of course always only need to consider one; e.g. the one with the “canonical”
set partition

(L2, B} AIBr + 1, [Bal + [Bal, -}
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On the other hand, each relabeling v of the Atome from A — A’ first induces a
permutation p’ = v o pov~! for which also p’ (A’) = A’ holds, and if we reorder
the blocks B; accordingly

B; — By (i),
we obtain in this way again simply the same object C (with the same permutation
o which fixes it): Clearly there are k! such relabelings.
Therefor we first obtain:

1 n! 1
7 x) = - X
am ) =20 X 2 TR B R

n=0 """ (C,0): e:[olo]
C=(A;B1,Bz,...,Bk)
(B1,-.,By) “canonically”
0e6y,: 0(C)=C

vl U o R S
NI IED) Y, 2 Taiten <

AeA  o:[plo] B1:0y
p(A)=A
=01902.-Lm

Two things are to be made clear:
e How many “completed” permutations ¢ belong to a fixed p?

e How does the cycle type c (o) of the “completed” permutation ¢ arise
from the permutation p or its cycles?

For this we consider a fixed cycle { of p with ¢ ({) = [ which “sends around in
a circle” the B-object B:

B

This cycle is “completed” by the maps (“relabeling of the original object B”)
T, T, ..., T to cycles of the “full” permutation ¢. Here it should be observed
that

T =TO0T T (223)
gives a permutation which fixes B. For instance, in the following schematic
graphic the cycle length is [ = 4 and the permutation (in cycle notation) is

T = (12) (3):
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From the graphic it is immediately clear: If the cycle decomposition of T is given

by
T=G10G62Cs,
then the corresponding cycles of the “composed permutation” ¢ have the lengths

(C(E) 1L L,...).

Further is follows: For a fixed permutation T which fixes B, there are
I-1
(1B]!)

“completions” (71, T2, ..., 7). For the first (I — 1) 7;'s can be chosen arbitrarily;
T7; is then uniquely determined by (2.23).

In total we can thus continue the calculation in the following way:

Z Z Z xlllele --)C(Tl) Z (xlm,x2lm,...)C(Trn)
=k iz Bieg |Ba! Bacl | B!
k 1 1 m<S6m
p(A)=A  £({1)=I (Cm)=Im
0=01°02--Cm Tl(Bl):Bl Tin (B )=Bm

=7Z4(Zp(x1,x2,...),Z5 (X2, X4, ...),...).

EXAMPLE 2.9.11. We have

Zpermutations = Zsets (chcles (xlr X2, ... ) chcles (x2/ X4y ) /)

Zn>1 L log T—xn xn +2 Zn>1 ) log - x2 e

(BZn;l log ﬁ

Exercise 16: Determine the cycle index series of the species Fixfree of permutations without fixed
points.

) @
‘_Zd|n (PT =1

l_x”

Hint: Show the relation Sets - Fixfree = Permutations.
Exercise 17: Determine the cycle index series for the species “set partitions”.

Exercise 18: Given some arbitrary species A, show the formula

0
ZA’ (Xl,XZ,...) = (6_xle) (xl,xz,...).

Exercise 19: Show:

Hint: Permutations = Sets(Cycles).



CHAPTER 3
Partially ordered sets

3.1. Definition and Examples
DEFINITION 3.1.1. A partially ordered set (or short poset) is a set P together with
a relation < (“less than or equal to”) that satisfies the following conditions:

(1) Vx € P: x < x (reflexivity)
(2) Vx,ye P:x<yandy < x = x =y (antisymmetry)
@) Vx,y,ze P:x <yandy < z = x < z (transitivity)

The following notation is commonly used (“strictly less than”):
X<y x<yandx #y.
In addition, we use the following notation:
x>ye= x>yandiz: x>z >y
We say: “x covers y”.

Two elements x and y are said to be comparable if x < y or y < x, otherwise they are
said to be incomparable.

In case two posets P, Q are considered, we denote the

e order relation on P by <p,
e while the order relation on Q is denoted by <q,

in order to avoid confusions. (However, we simply use < for the usual order on IN.)

For finite posets P (to be more precise: if P does not have too many elements ;-),
Hasse—diagrams are a useful description of the poset, where the order relations
are represented as the edges of a graph with vertex set P. The following fig-

ure illustrates this for P = {a,b,c,d, ¢, f} with the following covering relations
(which of course uniquely determine a finite poset!)

b<ac<be<ae<d f<cf<e

@

EXAMPLE 3.1.2. Examples of posets:

(1) P = [n] linearly ordered: An order relation is said to be linear, if any two
elements x,y are comparable (the Hasse—diagram looks like a line then):

43



44 3. POSETS

(2) P = 20" (Power set of [n]) ordered by set inclusion: This poset is said to be
the Boolean algebra B,. E.g., forn = 3

{1,2,3}

/I

{12y {13) {23}

| X XI

2 8

N

(3) P = S, with weak order: ¢ < 7 if and only if the permutation 7 is ob-
tained from the permutation o by interchanging two adjacent elements and
the number of inversions is increased by this transposition.

7'[:...7'(1-+1>7Ti...
321
7 N\
231 312
I I
213 132
\ 7/
123

(4) P=T,:={deN :d|n}, ordered by a < b :<= a | b: This poset is said to
be the divisor lattice. E.g., n = 30:

/I\
|>< ><|
N4

(5) P =Py, the family of all (set—)partitions of n], ordered by “refinement”: For
two partitions 7T, T we have 7 < T, if every block of 7 is fully contained in
some block of T (i.e., “7t is constructed from T by subdividing blocks”). E.g.,
forn = 3:
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{{1.23}}

71X

{1234 {{25{181  {{8}1.{1.2}}

N |7

{1}1.{2},{3}}

(6) P = Vi q, the family of subspaces of a finite vectorspace (GF (q))" over a finite
field GF (q), ordered by “subspace—relation” (that is set inclusion).

DEFINITION 3.1.3. Given two posets P, Q with order relation <p (for P) and <g (for
Q). Amap ¢ : P — Q is said to be order-preserving, if, for all x,y € P, we have:

x<py = ¢(x) <Q ().
The posets P and Q are said to be isomorphic if there exists a bijective map ¢ : P — Q

such that ¢ and ¢~ both are order-preserving (such a map ¢ is said to be an order
isomorphism), that is

x<py = ¢(¥) <)
EXAMPLE 3.1.4. Let P = {0, 1}" be the set of all {0, 1}—vectors of length n, ordered by
(V1,...,0n) < (W1,..., Wy) = v; <wjfori=1,2,...,n.

The interpretation of these vectors as characteristic functions of subsets induces an
order-preserving bijection P — B,, on the Boolean algebra B, (see example 3.1.2).

Exercise 20: Let P be some finite poset and f : P — P an order-preserving bijection. Show that
f~1 s also order—preserving.
Show that this is not true in general for infinite posets.

DEFINITION 3.1.5. Let P be a poset: A partially ordered subset Q < P is said to be

e aweak subposet of Pif x <gy = x <pyforallx,yeQ,
e an induced subposet of Pif x <oy <= x <pyforallx,y e Q.

There is an analogy to the difference between subgraphs and induced subgraphs;
the following figure illustrates the difference:

Q={ae f} =P ={ab,cde f}

(@) @ (@) @

o Q induziert
(o) ©
0 0 © D

DEFINITION 3.1.6. Let P be a poset and x,y € P with x < y: An induced subset
[yl :={z:x<z<y}

is said to be an interval (in particular: [x, x| = {x}).
A poset that has only intervals of finite cardinality is said to be locally finite.
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DEFINITION 3.1.7 (Chains and Antichains). Let P be a poset: An element x € P
with

lyeP:y<x
is said to be a minimal element of P, while an element x € P with

dyeP:y>«x

is said to be a maximal element of P.

An element x € P with x < y (resp. x > y) for all y € P is said to be the minimum
(resp. maximum). If P has a minimum (maximum), then it is of course uniquely
determined: We denote it by 0 (resp. 1).

If P contains a minimum 0, then we refer to an element that covers 0 as atom of P.

If P contains a maximum 1, then we refer to an element that is covered by 1 as coatom
of P.

A subset C of P that is linearly ordered as induced subposet is said to be a chain in

P. A subset A of P where any two elements are incomparable is said to be an antichain
(or Sperner family) of P.
If a chain C = {x1 < xp < -+ < xy,} is finite, then ¢ (C) := |C| — 1 is the length of
C.
A (finite) chain is said to be saturated, if “its elements cover each other (in P)”, that is
if

C={x1<xp<- - <xy}.

A saturated chain C is said to be maximal, if there exists no saturated chain D with
C<cDand? (D) > ¢(C).

Exercise 21: (a) Find a (finite) poset P where

e the length of a longest chain is [,
e every element of P belongs to a chain of length I,

which nevertheless has a maximal chain of length < I.

(b) Let P be a (finite) poset with connected Hasse-diagram, where the longest chain has length |
(there might be several longest chains). Moreover, assume that for all x,y € P such that y > x (y
covers x), x and y belong to a chain of length 1: Show that under this assumption all maximal chains
have length 1.

DEFINITION 3.1.8 (Order ideal). A subset I = P with the property
xelandye Pwithy<x =— yel
is said to be an order ideal of P. For an arbitrary subset S < P, the set
(S):={yeP:3xeS:y < x}

is always an order ideal; it is the order ideal generated by S. If S consists of a single
element x, then (S) = {{x}) is the principal order ideal generated by x.

A subset I < P with the property
xelandye Pwithy>x — yel

is said to be a dual order ideal of P (dual principal order ideal is defined in a similar
manner).



3.1. DEFINITION AND EXAMPLES 47

The set of all order ideals of P, ordered by inclusion, is itself a poset, which is denoted
by J (P) in this text: Such a poset always has a minimum 0 (the empty set) and always
has a maximum 1 (P itself),

PROPOSITION 3.1.9. Let P bea poset, I € J (P) be a order ideal of P, and x a maximal
element in I.

Then also I\ {x} is an order ideal of P.

In case that P is finite, there is a bijection between order ideals I and antichains
A:

[ — A :={x:xmaximalin [}

A—-T=(A) :={y:IxeA:y<x}

DEFINITION 3.1.10 (Linear extension). An order-preserving bijection from a finite
poset P with |P| = n to [n] is said to be a linear extension of P.

PROPOSITION 3.1.11. The number of linear extensions of a finite poset P equals the
number of maximal chains in J (P).

PROOF. Let ¢ : P — [n] be a linear extension. Set I := ¢ and I; := o' ([k])
fork =1,2,...,n. Then the subset Iy < P is always an order ideal of P (since ¢ is
order-preserving) with || = k (as o is bijective); this implies in J (P):

0=I)<L<---<I,=P=1.

This means the following: Every linear extension ¢ of P is associated with a
maximal chain in J (P).

Conversely, let C be a maximal chain in J (P): The length of such a chain is
obviously 7n; indeed, one can obtain each such maximal chain algorithmically
as follows: Start with Iy = &J; if Iy_1 # P has already been constructed, choose
a minimal element x; from P\I;_; and set I} := [;_1 U {x;}. For this chain C, we
defineo : P — [n]:

o (x) =k
The map ¢ is of course bijective; in addition, the map is order-preserving, since
X; <p x]' = i < ]
(ASZ >j = Xj $p x])

In summary, we observe the following: There exists a bijection between the
linear extensions of P and the maximal chains in 7 (P). 0

DEFINITION 3.1.12. A (finite) poset is said to be graded of rank n, if each maximal
chain has the same length n. For such a poset P, there exists a uniquely determined
rank function p : P — {0,1, ..., n} such that

(x) = 0, if x is a minimal element of P,

*p
e p(y)=p(x)+1ify>x
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In case p (x) = i, we say: x has rank i. For such a poset P, let p; be the number of
elements of rank i: Then the polynomial

n
F(P,q):= ) piq
i=0
is said to be the rank generating function of P.

Exercise 22: Consider the ‘zigzag—poset” Z, with elements x1,x»,...,X, and cover relations
Xoj_1 < Xpj fori >1,2i <n and xp; > xpjy1 fori > 1,2i+1<n

a) How many order ideals are there in Z,,?
b) Let W, (q) be the rank generating function of the lattice of order ideals | (Z,) of Z,,.. For instance,
Wo(q) =1, Wi(g) =1+q Wa(q) =1+q+q% Ws(q) = 1429 +4"+q°. Show:
1+ (1+q)z—q%28
—(1+q+94%)z2% + g?z*

W(qz) =D, Walg)z" = 5
n=0

c) Let e, be the number of all linear extensions of Z,,. Show:

Lo 1

Z ey— = tanz + .
n! Ccosz

n=0

3.2. Construction of posets

Given two posets, there are several possibilities to construct new posets from
them. The simplest poset (disregarding the empty poset), which consists of a
single element, is denoted by o in the following.

DEFINITION 3.2.1. Let P and Q be posets, and suppose that P and Q are disjoint as
sets. The direct sum direct sum of P and Q is denoted by P + Q: It is the poset on the
union P U Q such that x <y if (and only if)

e x,yePandx <py
eorx,yeQandx <qy.

Moreover, we denote the ordinal sum of P and Q by P@® Q: It is the poset on the union
P U Q such that x < y if (and only if)

e x,yePandx <py
eorx,yeQandx <qy
erxePandye Q.

Using Hasse diagrams, the direct sum and the ordinal sum can be illustrated as

follows:
P l

P+Q \|/ c@ PeQ

@)
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We obviously have
P+Q~Q+P,
however, in general,
POQ#Q@®P.
Both, the direct sum and the ordinal sum, are associative.
An antichain with 7 elements is obviously isomorphic to the n-fold direct sum

n.o::o+o+...o,
——— ——
n times

and a chain with n elements is isomorphic to the n-fold ordinal sum

O@O@---O,
—
n times

DEFINITION 3.2.2. Let P and Q be posets.

We denote the direct product of P and Q by P x Q, which is defined as the poset on
the cartesian product P x Q such that (x,y) < (x',y) if (and only if)

x<pxandy <qy'.

Moreover, we denote the ordinal product of P and Q by P ® Q, which is defined as
the poset on the cartesian product P x Q such that (x,y) < (x,y') if (and only if)

x=x"andy <qy', oder x <p x'.

Using Hasse diagrams, the direct sum and the ordinal sum can be illustrated as
follows:

ry
O
PxQ P®Q
N N N

Again, we have

PxQ~QxP,
but, in general,
PRQ #*Q®P.

The direct product is associative.

Exercise 23: Let P, Q be graded posets, let r and s be the maximal ranks of P and Q, respectively,
and let F (P,q) and F (Q,q) be the corresponding rank generating functions. Show:

a) If r = s (otherwise maximal chains would be of different lengths), then F (P + Q,q) = F (P, q) +
F(Q ).

b) F(P®Q,q) = F(P,q) +q"'F(Q,9).

) F(PxQ,q)=F(Pq) F(Qq)

d) F(P®Q,q) = F(P,q°") - F(Q9)-
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DEFINITION 3.2.3. Let P and Q be posets.
Then QF denotes the set of all order-preserving maps f : P — Q with order relation

f<g iff(x) <gg(x) forall x € P.
EXAMPLE 3.2.4. The Boolean lattice can also be obtained as follows, see Example 3.1.4:

B, ~{0,1}"°.

Exercise 24: Let P,Q, R be posets. Find order isomorphisms for the following relations:
3) Px (Q+R) ~ (P x Q)+ (PxR).

b) RP+Q ~ RP x RC.

c) (RQ)" ~ RO*P.

Exercise 25: Let P be a finite poset and define Gp (q,t) := ., q!"lt"(1) where the summation range
is the set of all order ideals I of P, and where m (I) denotes the number of maximal elements of I.
(For instance: Gp (q,1) is the rank generating function of J (P).)

a) Let Q be a poset with n elements. Show:

Greo(a,t) = Gp (q",97 " (Go (q,1) = 1)),
where P ® Q denotes the ordinal product.
b) Let P be a poset with p elements. Show:

—1
e (a757) = 0"

3.3. Lattices

DEFINITION 3.3.1 (Lattice). Let P be a poset, and let x,y € P: An element z with
zzxandz >y

is said to be an upper bound of x and y; z is said to be the least upper bound or
supremum of x and y, if, for every upper bound w of x and y, we have

w >z
If there exists a least upper bound z of x and y, then it is of course unique; we write
x v yandsay “xsupy”.
Analogously, we define the greatest lower bound or infimum (if it exists): We write
x Ay and say “x infy”.
A poset in which each pair (x,y) of elements has a least upper bound as well as a
greatest lower bound is said to be a lattice.
A finite lattice has a (unique) minimum 0 and a (unique) maximum 1.
An element x in a lattice that covers 0 is said to be an atom.
An element x in a lattice that is covered by 1 is said to be a coatom.

EXAMPLE 3.3.2. Examples of finite lattices are as follows:

(1) [n] with the usual linear order.

(2) the power set 2™, ordered by set inclusion.
(3) &, with the weak order.
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(4) Theset T, = {d € N : d | n} of (positive) divisors of a number n € IN, ordered
by divisibility (dy < dy .= dy | d2).

(5) The set 11, of (set=)partitions of [n|, ordered by “refinement of partitions”.

(6) The set V4 of subspaces of an n—dimensional vector space over a finite field,
ordered by the subset relation (which is again set inclusion).

COROLLARY 3.3.3. In each lattice, we have the following basic rules:

(1) A and v are commutative and associative operations in L.

(2) VxeL:xvx=xAx=x(Aand v are idempotent operations in L).
B)xAry=x < xvy=y < x<y.

4) x A (x vy) = x = x v (x A y) (rule of absorption).

PROOF. (1): Commutativity is of course obvious.
Associativity for v can be shown as follows: x v (y v z) is greater than or equal

toxandy v z,

and therefore also to x, y and z,
and therefore also to x v y and z,
and therefore also to (x vy) v z;

this implies x v (y v z) > (x vy) v z, and the same is true also for the other
direction of the inequality sign.

The argument is the same for A.

(2) This is trivial.

(3) Using x < y, we conclude x vy = y, and x vy = y implies y > x. The
argument is the same for A.

(4) This follows immediately from (3). ]

COROLLARY 3.3.4. Let L be a lattice, and let a' < a in L. Then we have following for
allbe L

adAb<anb (3.1)
advb<avb. (3.2)
PROOF. The statement is an immediate consequence of
b b
a Ab< resp.avb >
a<a az=a
O

COROLLARY 3.3.5 (Modular inequality). Let L be a lattice, and let x,y,z € L. Then
we have

x<z = xv({yArz)<(xvy) Az (3.3)

PROOF. Using the definition, we can immediately conclude:
x<xvyandx<z = x<(xvy) Az
yrz<y<xvyandynrz<z — yrz<(xvy) Az

The two inequalities yield (3.3). O
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It is possible to give an axiomatic characterization of lattices that is based on the
operations A and v.

THEOREM 3.3.6. Let P be a set with binary operations v and A that satisfy items 1, 2
and 4 from Corollary 3.3.3. Then P is a lattice, where < is defined by

X<Y: = XAY=X.

PROOF. First we show the following: The relation defined above is indeed a
partial order.

e Reflexivity follows from item 2 in Corollary 3.3.3:
XAX=Xx — x <X

o Antisymmetry follows directly from the definition (and from item 1 in
Corollary 3.3.3: commutativity):

x<yandy<x < xAy=xandyax=y = x=y.
¢ Transitivity: Using
y<yandy<z < xaAy=xandyArz=y,
we can conclude (employ item 1 in Corollary 3.3.3: associativity)
XAzZ=XAY)AZ=XA(YAZ)=XAY =X,
thatis x < z.

Next we show: For each x, y € P, there exists an infimum. The notation already
suggests the right claim: x A y is the infimum, since

e x Ay < x: This follows directly from Corollary 3.3.3, item 1+2:
XA(XAY)=(XAX)AY=XAY.
e For z with z < x and z < y, we have (Corollary 3.3.3: associativity):
ZAXAY)=ZAX)AY=2ZAY=2 = Z<XAY.
Finally, we show the symmetry relation
XAY=X < XVy=y.
Both directions follow from item 4 in Corollary 3.3.3:

exvy=(xAy)vy=y,

exAny=xnA(xvy)=nx

Using this symmetry relation it becomes evident that (as expected) also x v v is
the supremum. This concludes the proof. O]

PROPOSITION 3.3.7. Let P be a finite poset with 1 such that there exists the infimum
x Ay forall x,y € P. Then P is already a lattice.
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PROOF. It suffices to show that supremum x v y exists for all x,y € P. For this
purpose, it makes sense to define

XVy:i= /\z.

ZZX,Y

The set over which the infimum is taken is not empty (as 1 > x,y) and also
finite, which guarantees that x v y is well-defined. It also has the property of
a supremum: Asa,b > x,y = x,y < a A b, it can be proven (induction)
that x,y < /\Z>x,y z, and, for every upper bound a > x,y, we obviously have

AV O

REMARK 3.3.8. Let P and Q be lattices. Then the direct product P x Q is also a lattice,
and we have

(x1,y1) v (x2,42) = (%1 Vv xX2,41 v ¥2),
(x1,y1) A (x2,¥2) = (X1 A X2, Y1 A Y2) -
Similarly, QT is a lattice with
(fve)(x)=f(x)vg(x),
(frg)x)=f(x)rg(x).

Exercise 26: Let L be a finite lattice. Show that the following three conditions are equivalent for all
x,y€L:
(a) L is graded (i.e.: all maximal chains have in L the same length), and for the rank function rk of
L there holds
rk(x)+rk(y) 2rtk(x Ay)+rk(x vy).
(b) If y covers the element x Ay, then x v y covers the element x.
(c) If x and y both cover element x Ay, then x v y covers both elements x and y.
(A lattice L obeying one of these conditions is called semimodular.)

Hint: Employ an indirect proof for (c) = (a): For the first assertion in (a), if there are intervals
which are not graded, then we may choose an interval [u, v] among them which is minimal with respect
to set—inclusion (i.e., every sub—interval is graded). Then there are two elements x1, x, € [u,v], which
both cover u, and the length of all maximal chains in [x;,v] is £;, such that £1 # {. Now apply (b)
or (c) to x1,x3.
For the second assertion in (a), take a pair x,y € L with

rk (x)+rk(y) <rk(x Ay)+rk(xvy), (3.4)
such that the length of the interval [x A y,x v y] is minimal, and under all such pairs, also rk (x) +
rk (y) is minimal. Since it is impossible that both x and y cover x Ay (why?), w.l.o.g. there is an
element x" with x Ay < x’ < x. Show that X = x,Y = x’ v y is a pair such that tk (X) + tk (Y) <
rk (X AY) +1k (X v Y), but where the length of the interval [X A'Y, X v Y] is less than the length
of [x Ay, x vyl.

Exercise 27: Let L be a finite semimodular lattice. Show that the following two conditions are
equivalent:

a) For all elements x,y,z € L with z € [x,y] (i.e., x < y) there is an element u € [x,y], such that
zAu=xandzvu=y (uisa “complement” of z in the interval [x,y]).

b) L is atomic, i.e.: Every element can be represented as the supremum of atoms.

(A finite semimodular lattice obeying one of these conditions is called geometric.)
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Exercise 28: Let G be a (labelled) graph on n vertices. A partition of the vertex—set V (G) is called
connected if every block of the partition corresponds to a connected induced subgraph of G. The set
of all connected partitions is a subposet of the poset of partitions of V (G), and thus a poset itself.
(If G is the complete graph, the poset of connected partitions of V (G) is the same as the poset of
all partitions of V (G).)

Show that the poset of connected partitions of G is a geometric lattice.

Exercise 29: A lattice L is called modular if it is graded and for all x,y € L there holds:
rk(x)+rk(y) =rk(x Ay)+rk(xvy). (3.5)

(In particular, the lattice L (V') of subspaces of a finite vector space is modular.)

Show: A finite lattice L is modular if and only if for all x,y,z € L with x < z there holds:

xvynrz)=(xvy) Az (3.6)

Hint: Show that (3.6) implies the Diamond Property: The mappings
p:lyval—lyazzl, ¢(x) =x Az
¢:lynrzzl=lyyvz, o) =xvy

are order preserving bijections with ¢ o 1p = id, see the following picture:

Exercise 30: Show: The lattice I1,, of all partitions of an n—element set is not modular.

3.3.1. Distributive lattices. A particularly important class of lattices are the
distributive lattices.

DEFINITION 3.3.9. A lattice L is said to be distributive, if, for all a,b,c € L, we have
the following laws of distributivity:

anbve)=(@nb)v(anc),
av(barc)=(avb)a(avc).
REMARK 3.3.10. It suffices to require either of these laws as the other then follows. We
show how to deduce the second law from the first law:
(avbyan(ave)=((avb)ra)v ((avb)c) «1distl
=av ((avb)Ac) <absorption
=av((anc)v(bac)) <1distl

=av (b A C) «—ass.l. and absorption
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REMARK 3.3.11. Let Ly and Ly be two distributive lattices. Then also the direct prod-
uct Ly x Ly is a distributive lattice.

EXAMPLE 3.3.12. Examples for distributive lattices are:

(1) Linear order
(2) Boolean lattice B,,: Here we have Av B = AuBand AAB = A n B; the
laws of distributivity are the set theoretic identities

An(BuC)=(AnB)u(AnC)
Au(BnC)=(AuB)n(AuC)
(3) Divisor lattice T, = {d € N : d | n}: Indeed, let n = pll(l e plf* be the unique
prime factor decomposition of n, then
Ty ~ [0,k1] x ---[0, k] .
(4) Foran arbitrary poset P, the lattice of order ideals J (P) is always distributive.
On the other hand, simple examples of lattices that are not distributive are the following
(given by their Hasse diagram):

TORTE

an(bve)#(anb)v(anc) av(bac)#(avb)a(ave)

THEOREM 3.3.13 (Structure theorem for finite distributive lattices, Birkhoff’s
Theorem). Let L be a finite distributive lattice. Then there exists a poset P such that
L~J(P).
DEFINITION 3.3.14. Let L be lattice. An element x # 0 € L is said to be supremum-
irreducible, if x cannot be represented as follows
X=Yvz
wherey < x and z < x.
LEMMA 3.3.15. Let L be distributive lattice, and let a € L be supremum—irreducible.

Then we have
a<xvy = (a<xodera<y).

PROOF. Asa =a A (xvy) = (arx)v(anry),itfollows from the assumption
that
anx=aoderany=a,

which impliesa < x ora < y. [

PROOF OF 3.3.13. Let P be the set of supremum-irreducible elements of L, in-
terpreted as a poset with the order relation “inherited” from L.

We defineamap ¢ : L — J (P) by

9(0) = ¢(x):=1(x):={x'eP:x <x} forx 0. (3.7)
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Claim: ¢ is bijective with inverse map

p:l—=\/y
yel
for I # & € J (P) (Special case: ¢ (&) = 0).
For the special case x = 0 resp. y = & we have ¢ (x) = yand ¢ (y) = x. It
remains to show:
VxeLx#0: (pog)(x)=x, (3.8)
Vye T (P),y+D: (pop)(y) = . (39)

We first show (3.8). For this purpose, we observe that x # 0 is always repre-
sentable as supremum of supremum-irreducible elements: In case x is itself
supremum-irreducible, this is of course trivial:

X = \/y.
y=x

Therefore suppose that x is not supremum-irreducible, then, by definition, there
exist elements X’ < x and ¥” < x with x = x’ v x”. The same considera-
tions can also be applied to x” and x”, etc.: Since L is finite, the algorithm must
stop at some point, and we obtain the required decomposition into supremum-
irreducible elements

X=x1vxyv--vxwithxy, <xfori=1,...,k
This implies
(1.0 S @ (x) = 1(x),
that is
X=X1VX2V- VX< \/ y<x,
yel(x)
and we can conclude \/,¢j,) ¥ = x, and so (3.8) is proven.

Now we prove (3.9): Suppose y = {x1,x2...,x¢} € J (P). Letx = ¢ (y) =
X1V X2 V- Vv Xg. Itis obvious that y < ¢ (x); it remains to show ¢ (x) < y, that
is that each supremum-irreducible element x’ with x” < x is included in y:

X =xAx=(x"Ax) vV (F Axg),

and, since x’ is supremum-irreducible, there is an i with x’ = x’ A x;: However,
this means that x’ < x;, and thus (3.9) is proven.
Claim: ¢ is order preserving, i.e.:

X1 <xp = I(x1) € I(x2).

Consider for x; < xp an arbitrary element ' € I (x1): ¥’ <% = ¥’ <x =
x" € I(xy), therefore I (x1) < I (x3). Conversely, I (x1) < I (x3) implies

Vi<s{ Vvl V v]=Vur
yel(x2)

yel(x) yel(x) yel(x)\I(x1)
The two claims imply Theorem 3.3.13. O

EXAMPLE 3.3.16. The following example illustrates the situation:
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THEOREM 3.3.17. Let L be a finite distributive lattice. Then L has a rank function rk;
it is given by

rk (x) = [I (x)[,
where I (x) is the ideal defined in (3.7) (of the poset of supremum-irreducible elements
of L). In particular, it follows that the rank rk (L) of L is equal to the number of
supremum-irreducible elements of L.

PROOF. By Birkhoff’s Theorem (Theorem 3.3.13), we have
L~J(P),

where P is the poset of supremume-irreducible elements in L. Consequently, it
suffices to show that all maximal chains in J (P) have the same length.
Let

0=gpg=-<L<---<L,=1=P
be a maximal chain in P. We claim: || = |I;_1| + 1. Indeed, if S := [[\[;_1 =
{x1,...,xm}, then, using S # ¥, there exists a maximal element x; (with respect
to the order of P) in S. But then i\ {x;} is also an order ideal of P (see Corol-
lary 3.1.9), and, since Iy > I;_1, we can conclude [ _; = I\ {x;}. Hence all
maximal chains in 7 (P) have the same length |P|.

3.4. Incidence algebra and Mobius inversion

Let A, B and C be three sets with
AnB=AnC=BnC=AnBnC=:D.

Ay

Obviously (following the inclusion-exclusion principle) we have:
JAUBuUC|=1-|A|+1-|B|+1-|C|+(-2)-|D|.

Evidently, the coefficients that can occur (in our case 1,1,1, —2) only depend on
the order relation (set inclusion) of the involved sets A uBu C, A, B, C and
D: Indeed, it is possible to compute these coefficients quite elegantly from the
order relation as we will see in the following.
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3.4.1. The incidence algebra of locally finite posets.

DEFINITION 3.4.1. Let P be a locally finite poset (recall that this means that for all
x,y € P with x < y the interval |x,y] is finite). We consider the set T (P) of all
functions

f:PxP—-C
with the property

f(x,y)=0ifx <y (3.10)
(that is to say that the function f is only “defined on intervals”) with the ordinary
addition and scalar multiplication of functions

f:8eZ(P):(f+8)(xy):=flxy)+g(xy),
feZP),AeC:(A-f)(xy):=A-(f(xy)
and the following (non-commutative) multiplication (convolution):

(f*8) (x,y) = > f(x,2)g(

zeP

The range of summation is finite (!), as P is assumed to be locally finite, and, by (3.10),
the sum can also be written as:

Y fx2gEy) = > f(xz)g(zy).

zeP X<zZSY

Evidently, T (P) is a vector space over C under the addition and scalar multiplication.
As for the multiplication (convolution), it satisfies the law of associativity:

(f*x8)*h) (x,y) = > (f*8) (x,2) h(zy)

zeP

—z(zfxu )h<zy>

zeP \ueP

- Z Zf(x,u)g(u,Z)h(Zzl/)

ueP zeP

= 3 F o) (g #h) ()

ueP
= (f*(g*m)(xy).

Furthermore, we have the laws of distributivity

fr(g+th)=fxg+fxh
(f+8)*h=frxh+gxh

(as can be shown easily). Finally, with

1 :x=y,
0 otherwise’

5EI(P):5(x,y)={

we obviously have

Sef=fed=f,
that is, T (P) is a (non-commutative) algebra with unit 6: We refer to it as the inci-
dence algebra of P.
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EXAMPLE 3.4.2. For P = [n], Z (P) is equal to the algebra of n x n upper triangular
matrices over C: Indeed, each value f (x,y) of an element f € I (P) can be interpreted
as the entry in row x and columns y of a corresponding triangular matrix M, and,
conversely, each such matrix defines uniquely a function f € I (P). It can also be seen
easily that the multiplication in Z (P) corresponds to matrix multiplication.

THEOREM 3.4.3. Let P be a locally finite poset. An element f € I (P) has an inverse
element f~! (ie: 3 f e Z(P)with fxf~' = f~ 1« f =0)ifand only if f (x,x) #
0 Vx € P. If an inverse exists, then it is uniquely determined.

PROOF. One implication (= ) is obvious:
L= (' f) (ex) = Y fx2)f T zx) = f(xx) #0.
X<zZ<X

As for the other implication ( <= ), we consider an f with f (x,x) # 0 Vx €
P. We define g (x,x) := }%, and, for x < y, recursively (“inductively with
respect to the length of the intervals [x, y]”):

foz ,y) =0,

¥<z<y

Le,g(xy)f(x,x) = = .o, f (x,2)§ (z,y) and, therefore,

xefxz L Y).

The so constructed g satisfies f x ¢ = §; analogously, we can also find an & with
g*h = 6: Then we have

f=fxé=fx(g*xh)=(fxg)*h=56xh=h,

and so we also have ¢« f = §,and f~! := ¢ is the inverse. O]

g(xy) =

3.4.2. The zeta function of locally finite posets.
DEFINITION 3.4.4. Let P be a locally finite poset. The function { € I (P):

_J1 forx<y
g(x’y)_{o sonst

is said to be the zeta function of P.

£":_ 7

REMARK 3.4.5. From an abstract point of view, the zeta function of a poset “is” es-
sentially the order relation of the poset: Indeed, each relation ~ on P “is” a subset of
the cartesian product P x P (namely, the set of all pairs (x,y) with x ~ y), and the
zeta function is from this point of view simply the characteristic function of the order
relation.

For P = [n] (see Example 3.4.2), the zeta function corresponds to the upper triangular
matrix that has only 1’s above the main diagonal.
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The following functions are useful: For instance,

2y = Y {(02)(zy) = #(clementsin [x,y]),
(S

x<z<y Y

and, more general,

¢ (x,y) = > g (x,x1) (x1,%2) - - T (1, 1),

. J/
XO=XSX S SN SX =Y 1

this is the number of “multichains” of length k from x to y. In order to count
“ordinary” chains of length k from x to v, it is useful to consider ( — J):

1 firx<y
0 otherwise

(€—=0) (v y) = {

The number of interest in then (¢ — )k (x,y).

REMARK 3.4.6. Although the algebra is not commutative, each element of course com-
mutes with the unit 6. This implies the following special case of the Binomial Theo-
rem:

k

k .

(SRNEAEDY () (=1 & (xy).
j=0

This identity is also a special case of the inclusion-exclusion principle: Indeed, if we

delete precisely j of those elements in a “multichain”

(x =x0,X1,.-., Xk =Y)
of length k from x to y that are repeated after their first appearance, then we are
left with a “multichain” of length (k — j), and, conversely, there are (’]‘) possibilities
to construct a “multichain” of length k from a “multichain” of length (k — j): Each
“multichain” of length (k — j) consists of k + 1 — j elements, and each of these elements
can be repeated (also multiple times!): Since we need to add a total of j “repetitions”,

this corresponds to a multiset with j elements selected from a set of with (k+1 — j)
elements, and therefore we have

)= 6)

An additional example is (26 — (),

1 ifx=y,
(20-0)=<-1 ifx<y,
0 otherwise.

According to Theorem 3.4.3, this function is invertible.
Now we aim at counting all chains (of any length) from x to y. Let ] be the length
of the interval [x, y], then, according to considerations above, the number is

I

Y- (xy),

k=0
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and, using a well-known trick (telescoping series) for the geometric series, we
have

and so the number is given by (26 — ¢ )L (x,y).

3.4.3. Mobius inversion.
DEFINITION 3.4.7. The zeta function { of a locally finite poset P is according to The-

orem 3.4.3 invertible: u := {~" is said to be the Mobiusfunction of P. By definition,
we have:

Z § x,z)u(z,y) = 2 u(z,y) =0forallx <y, (3.11)

x<z<y x<z<yY
2 wix,z)-C(zy) = 2 w(x,z)=0forallx <y (3.12)
x<z<yY R’—/ x<z<y

and u (x,x) = 1.

THEOREM 3.4.8 (Mobius inversion). Let P be a locally finite poset such that every
principal order ideal is finite. Let f,g : P — C be functions on P with values in C.
Then the following assertions are equivalent:

x)= > f(y) ¥xeP (3.13)
y<x
- > 8y ) Vx e P. (3.14)
ysx

REMARK 3.4.9. This is a generalisation of Mobius inversion in number theory: The
natural numbers, ordered by the divisor relation, is a locally finite poset such that every
principal ideal (the principal ideal of n is the set of divisors of n) is finite:

=Y fld) — fm=Yu(5)eM

din din

(the interval [d, n] in this poset is isomorphic to [1,n/d|, thatis y (d,n) = u (1,n/d) =
p(1/d)).
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PROOF OF THE MOBIUS INVERSION. For the proof, we only need to perform
two simple calculations:

Z §W) uy x)= Z Zf(z)-y (y,x) <by(3.13)

y<x ysxzsy

— 2 1y, x) 2 f(z)-C(z,y) «definition¢
y<x z<y

=2, /@ Dty )
zeP ZSYSX

= Ef 6 (z,x)
zeP

= f(x),

and, conversely:

D@ =>>8W) pulyx) by

X<S XSS Y<X

- Z 4 (x,s) 2 g (]/) U (]/, X) «definition
xss y<x

=38y D ryx) L(xs)
yeP Y<x<s

=280
yeP

=38(s).

0]

REMARK 3.4.10. From an abstract point of view, the key observation is that the equa-
tions (3.13) and (3.14) are equivalent to the ”symmetric” equations

Zf ) Vxe P,
yeP
Zg ) Vxe P,
yeP

and that T (P) acts on the vector space C* of all functions P — C as algebra of linear
mappings (from the right) with

}jf x) fiir fe CF,Ee Z(P).

yeP
Mobius inversion is then nothing else but
fl=8 <= f=3pu
We have the following dual version of Theorem 3.4.8:

THEOREM 3.4.11. Let P be a locally finite poset such that every dual principal order
ideal is finite. Let f,g : P — C be functions on P with values in C. Then the following



3.4. INCIDENCE ALGEBRA AND MOBIUS INVERSION 63

assertions are equivalent:

g(x)=> fy) vxeP (3.15)
y=x

fx) = nlxy)gly) vxeP. (3.16)
y=x

EXAMPLE 3.4.12. Let 51,52, ..., Sy be sets. Consider the poset that consists of all in-
tersections of selections of these sets, ordered by inclusion. Here the empty intersection

is defined as

(1Si=51uSu-us, =1

ied
We aim at deriving a formula for |S1 U Sy U - - - U S| and define for this purpose func-
tions g, f : P — Cas g(T) := |T|and f(T) := |T\ (Up-rT")| (in words: f (T) is
the number of elements in T that are not contained in any T' € P with T' & T).
First we observe that in general we have the following (think for a moment!):

g(M = > f(T).
T'cT
Using Mobius inversion, we obtain
F(T) = >, ¢(T)-u(T,T).
T'cT
In particular, we have

0=F(1) =2 g(T) u(T' 1) = 3, u(T. 1T

7' 7'

4

we leads us to the following formulation of the inclusion-exclusion principle:

I == > u(T1)|T|

yd=s1

ISTUSy U US| =

In the introductory example (see the beginning of Abschnitt 3.4) we then have
the following:

@ u(ii) =1
m<®>© i(,1) =1
© u(0,1) =2

3.4.4. Calculation of Mobius functions of several concrete posets. Mobius
inversion is of course only useful if we can compute the Mobius function.

EXAMPLE 3.4.13. Let P = IN (with the natural order). It follows immediately from
the defining equation (3.11) that
1 x=y,

p(oy)=4-1 y=x+1,
0 otherwise.
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The Mobius inversion implies the “discrete analogue of the fundamental theorem of

calculus”
) o (g forn =1,
g(n)—i;f(l) Vn=1 (:)f(n)_{g(n)—g(”—l) forn > 1.

From an abstract point of view, this means that the summation operator

(Zc) (n) = Zc(i)

i=1
and the difference operator
c(1) n=1

() (n) = {c(n)—c(n—l) n>1

are inverse operators on the vector space CN of all functions ¢ : N — C.

THEOREM 3.4.14. Let P and Q be locally finite posets. For the direct product P x Q,
we have

upx ((X1,41), (x2,y2)) = pp (x1,y1) - B (X2,2) -
PROOF. Recall that in the direct product P x Q we have
(x1,y1) < (x2,y2) == x1 < xp and y; < Y.

We check whether the given function has the defining property of the Mobius
function:

> pup (x3,%2) - pg (Y3, ¥2) =

(xl Y1 ) < (x?)r]/3)< (x21y2)

up (x3,x2) - po (Y3, y2) = op (x1,x2) - 6g (Y1, 2)

X1 <X3<Xp Y1<Y3<Y2

= pxo ((¥1,y1), (x2,42)) -
(]

EXAMPLE 3.4.15 (Classical Mobius function). The divisor lattice Ty, := {d : d | n}

(order relation = divisor relation) for n with prime factor decomposition n = pll<1 : pgz :

pﬁ,’” is isomorphic to the product of linear posets
Tn x>~ [O,kl] X oo X [O,km] .
By Theorem 3.4.14, we obtain:

ur, (y) = pir, (PPl o )

= K0k ] (a1, B1) - “H[0,km) (&, Bm)
_ {(_1)2”&“") if (Bi — o) € 0,1} Vi,

0 otherwise.

Since we have the following isomorphy

- 1]
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in the divisor lattice, the Mobius function satisfies
pldd-k)=p k)= pk),
and we obtain the classical Mobius function appearing in number theory

y(@:{(—l)’” k=pipm(i#j = pi#p),

0 sonst.

EXAMPLE 3.4.16 (Euler’s ¢—function). Euler’s ¢g—function, which also appears in
number theory, is defined as

¢ (n) == |[{xen]:ggT (x,n) =1}|.
(In words: ¢ (n) is the number of positive x no greater than n that are coprime to n.
For instance, if n = 12 these numbers are 1,5,7,11, and so we have ¢ (12) = 4.)

Now the following holds
n=>¢(d).

This is because [n] is the disjoint union

[n] = Udln {y-g ry <dand ggT (y,d) = 1}'

. /

Numb:;: @(d)
Using Mobius inversion (set g (n) = nand f (n) = ¢ (n)), we obtain

¢ ()= p(dn)d

dn
SICHE
= Yn(Ld) ]
dln
—n Y ) 5
dln
1
=n 1——
NEH

The last step can be justified as follows: Let n = p’l(1 . plﬁ;”, then the penultimate sum
ranges over all d that are products of distinct primes, that is d = pj, - - - pj; (the Mobius

function is O for all other divisors) with u (d) = (=1).
For example, we have ¢ (12) = 12 - (1 — %) : (1 — %) =4

EXAMPLE 3.4.17 (Boolean lattice). The power set 21" of [n] can be interpreted as
family of characteristic functions (see Example 3.1.4):

A< n] o fa:ln] = {01}, fa(x) = [xe A]L

1Iversons notation.
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This implies that the following posets are isomorphic:
~ {0,1}".
The Mobius function of the (linearly order) poset {0, 1} is obviously

1(0,0) = u(1,1) = 1; 1 (0,1) = —1.
This implies for T < S < [n]| immediately

w(T,S) =] ullie Tl lies]) = (-1
i=1

The inclusion-exclusion principle can also be formulated as follows: Let E be a
set of properties that might or might not be fulfilled for individual elements
of a ground set A (e.g., A could be the set of permutations of [n], and E =
{Eq, ..., En} could consist of the following n properties

E; := "“hasi as fixpoint”,i = 1,2,...,n.)
For an arbitrary subset S < E, let
f=(S) := #(x € A, that have precisely the properties in S)

(that is these elements have no properties “outside” of S), and, for an arbitrary
subset T < E, let

f=(T) :=#(x € A, that have at least the properties in T)

(that is these elements can also have properties “outside” of T; e.g., the number
of permutations in &, that have at least the k different fixpoints iy, 1y, ..., i, is
equal to (n — k)!). Evidently, we have

=2, /(5
SoT
Using Mdbius inversion, we have:
f= (1) = 3 ()T £ (S).
SoT
For the special case T = ¢J, we have:
f= (@)= 2 DF £ s). (3.17)
5

E.g., the number of permutations in &, without fixpoint (i.e., the well-known
number of derangements) is:

i() (n— k'—n'Z k'

From this point of view, (3.17) is indeed the inclusion-exclusion principle:
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COROLLARY 3.4.18 (Inklusion—exclusion). Let A1, A», ..., A, be n (not necessarily
disjoint!) sets. Then we have:
|Aju--UA,| = A1+ 4+ |Au| = |[A1 " Ap| — -+
—|An,1f\An|+|A1mA2mA3|_|_..._...
+ (=D)AL A Ar A0 Ay

PROOF. In the context of Example 3.4.17: Let A = A U - -- U A, be sets, and let
E = {E4, ..., E,} be the following n properties

E; := “is contained in A;”,i =1,2,...,n.

Then we obviously have f_ (J) = 0, and the assertion follows immediately
from (3.17). (]

COROLLARY 3.4.19. Let L be a finite distributive lattice. The rank function on L
satisfies
rk(x; v vax,) =rk(x))+- - +rk(x,) —rk(xg Axp)—---
—rk(x,,,l /\xn)+rk(x1 /\xz/\x3)+..._...
(1) ek (g A A X))

PROOF. According to Birkhoft’s Theorem (Theorem 3.3.13), there exists a poset
P such that

L~J(P).
In the isomorphy, each x € L corresponds to an order ideal I of P, and rk (x) =

|I¢|. In addition I, ., = Iy N I,: This follows immediately from Corollary 3.4.18.
O

3.4.5. Mobius algebra of a locally finite lattice.

DEFINITION 3.4.20. Let L be a locally finite poset. We consider the complex vector
space of the formal linear combinations ), .; cxx with coefficients cy € C. With the
bilinear (that is: “extended distributively”) multiplication

Xy =xAyvx,yel,

this vector space becomes a commutative algebra A (L). The algebra is frequently called
Mobiusalgebra. If L is finite, then L is obviously a basis of the vector space of idempo-
tent elements (x - x = x A x = x).

For each x € L, we define the vector dx € A (L) as linear combination:
Oxi= ) nyx)y.
O<y<x

For the special vectors 6 € A (L), Mobius inversion gives

Doy = nlsys=27s 3 plsy) =x (3.18)

Y<Xx Y<KX SKY SKX  SKYSX

In other words: The elements {J, : y € L} span the vector space A (L); under the as-
sumption that L is finite, they are also a basis.
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LEMMA 3.4.21. Let L be a locally finite lattice. In A (L) we have:
PROOF. First we note that

(2 V(Zlfx)ﬁ) | 2 H(zy)

Z1<X ZzSy

Z Z i (z1,x) p(z2,Y) 21 A 22

21<x 2o <Y

53{5]/

By (3.18), z1 A 22 = D 5<; £z, 05, this is further equal to

2 | D mE) Y H(zy) | =[x =yl

SSXAY SKZ1sX S<Zp<Y
~[s=1] ~[s=y]
O
COROLLARY 3.4.22. Let L be a finite lattice with at least 2 elements, and let 1#ael.
Then we have X
dou(xd)=o. (3.20)

x:xAa=0

PROOF. According to (3.18) and (3.19), we have on the one hand:

a-éiz (Z(Sb> -(SiZOEA(L) ifa # 1.

b<a
On the other hand, by definition of Jy, we have
a-dp=a- Y puxl)x=>Ypuxi)xnra
xeL xeLl
Now a - é; can be expanded (as any other element) in the basis L:
a-o0; = Z CxX,
xeL
and, as a - 6; = 0 (zero vector in A (L)), we have in particular ¢y = 0:
0O=cp= > u(xi).
X XA a:f)
(This sum is similar to the defining relation ), i (x, i) = 0, however, it contains
less terms in general.) O

EXAMPLE 3.4.23 (Mobius function of the partition lattice). For two partitions o,
7t of |n], we have 0 < 7 :<= “all blocks of o are contained in blocks of t”. For
instance:

mo=14567/28910|3
oo = 114 5/6 72|18 9 10|3
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In this example, it can be seen immediately that: [0, 79| ~ I3 x Iy x IT;.

More generally: Let m = {B1,B,,..., By}, and let precisely A; blocks of o be con-
tained in B;, then we have [0, ] ~ II, xIIy, x --- x I, ; here we have o ~

<(A)HA1,...,(A)HAk> and 7T ~ (iml,...,imk). We conclude that

p(o,m =pu <OHA111HA1> U (OH/\zlin/\z) . <0HAk’iHAk) :
It follows that we can compute the Mobius function of I1,, in general, if we can deter-

mine y (Ory,,, 111,,) for all m € IN. We use Corollary 3.4.22. Leta =12 ... (m —1)|m.

Ifx na = Ory,,, then we either have x = Ory,, or x = m i| (remainder in blocks with 1 element)
forani=1,2,...,m—1. According to (3.20), we have

pm = (On,,, Im,) = — Z w(x,m,) = —(m—1) pp_1.
x=m i|(remainder)
With the initial condition p; = 1, we have
wm = # (0m,,, 1m,,) = (=)™ (m — 1) (3.21)
For our concrete example, we obtain
1 (00, m0) = (—1)22!1 (1) 111 = —2.
COROLLARY 3.4.24. Let L be finite lattice, and let X < L be such that

b iL ¢ X, R
eyelandy #1; — 3Ixe Xwithy < x.
(That is, X contains all coatoms of L.) Then we have
p(0,1L) =) (-1)* N,
k
where Ny the number of all k—subsets of X with infimum 0.

PROOF. For x € L, we have in A (L)
f—x= 30028 =20
ygiL ygx y$x
On the one hand, this implies
H (I, —x) = Z Sy by (3.19)
xeX yiy$x VxeX
. 5iL' « by assumption

On the other hand, we can also simply expand the product in order to obtain
an expansion in terms of the basis L:

=Y x+ > xany—+-=>pu(xd)x.
xeX x,yeX xeL

| ——

51L

As comparison of the coefficients of x = 0; yields the assertion. O
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REMARK 3.4.25. In Corollary 3.4.24, it is of course natural to let X be the set of
coatoms of L. In particular, we have the following: If Oy is not representable as the
infimum of coatoms, then we have y (0r,1;) = 0.

COROLLARY 3.4.26. Let L be a finite lattice. Suppose Oy is not representable as the
infimum of coatoms or 11 is not representable as the supremum of atoms, then we have

U (OL, iL) = 0.

EXAMPLE 3.4.27 (Mobiusfunction of a finite distributive lattice). For a finite dis-
tributive lattice L, Birkhoff’s Theorem (Theorem 3.3.13) implies:

L~J(P).
Let 1 = I' € J (P), then we have

w(LI) = (—1)‘11\1| if [I,1I'] ~ Boolean lattice,
’ 0 otherwise.

Indeed, let I' = T U {x1,...,Xn, ..., Xm}, where I U {x1},...,1 U {x,} are the atoms
in [I,I']. Then there are only two possibilities:

Case 1: I U {x1,...,x,} = I, then we have [I,1'] ~ 2",
Case2: I u{xy,...,xn} # I, then we have [I,1'] # 20" because in the Boolean lattice
1 is always representable as the supremum of atoms.

(See also the paper of Rota and Stanley [6] regarding Mobiusfunctions.)

EXAMPLE 3.4.28 (Mébiusfunction of V;, () = GF (¢9)"). Let V,W < V,, (q) be two
subspaces with V.< W. Then the interval [V, W] is isomorphic to [{6} S W/ V], where
the latter interval only depends on the dimension dim (V /W) = dim (V) — dim (W).
Therefore, it suffices to compute y, := p ({6} , Vi (q)). For this purpose, we use the
dualised version of Corollary 3.4.22:

> u(0,x) =0 (3.22)

x:xva=1
Let a be an atom: From x v a = 1, we conclude that

o cithera<x — x=1,
eorafx = anrx=0.

In V,, (q) we have in general
rk (x) +rk(c) =rk (x Ac) +rk(x v ¢)
Therefore, a A x = 0 implies immediately rk (x) + 1 = 0 + n, and so: If x is a coatom,

then (3.22) implies
pO) == > ().

a<x,x coatom
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Let a be a fixed atom in V, (q), i.e., a subspace of dimension 1. V,, (q) has [nﬁl]q =
[n], = "'+ q" 2+ -+ g + 1 coatoms, that is subspaces * of dimension n — 1,
among these [/~ , = =1y = q""2 + - +q+ 1include the subspace a. Moreover,
we have

1= pvy(q) (0,1) = =",

This implies, using the initial condition yy = —1, that

pn = (—1)" El(g)
As a small application, we compute the number of spanning sets in V,, (q). Let f (W)

be the number of subsets that span W, and let g (W) be the number of non-empty
subspaces of W. Evidently, we have:

gW)= > f(T).

T<W

Using Mobius inversion, we obtain:

in particular

Fh @) = Suva@gm = X [1] gt (2 1),
q

T k=0

Exercise 31: Prove the “NBC—Theorem” (“Non—broken circuit theorem”) of G.—C. Rota: Let L be
geometric lattice. We assume that the atoms of L are labelled (with natural numbers 1,2,...). A
set B of atoms is called independent, if rk (\/ B) = |B|, otherwise it is called dependent. A set C
of atoms is called a circuit, if C is a minimal dependent set. A broken circuit is a set corresponding
to a circuit from which its largest atom (with respect to the labeling of atoms) was removed. A
non—broken circuit is a set B of atoms which does not contain a broken circuit. Then Rota’s Theorem
states:

p (0,%) = (=1)™) - # (non—broken circuits B with \/ B = x).

Exercise 32: Show: The Mobius function y (x,y) of a semimodular lattice is alternating, i.e.
(_1)length of [X,y] n (x, y) > 0.

Moreover, show that the Mobius function of a geometric lattice is strictly alternating, i.e.

(71)length of [x,y] 1 (x,y) > 0.

Direct counting argument: There are [n], = q;%ll subspaces of dimension 1 in V, (g).

A Dasis of a k-dimensional subspace W can be extended to a basis of V}, (g) by adding n — k
vectors; the span of these n — k vectors is isomorphic to V,,_, (g). An arbitrary k-dimensional
subspace of V;, (q) canbe written in [n], - [n — 1], -- - [n — k + 1], ways as an (ordered) direct sum
of 1-dimensional subspaces; this observation leads directly to the number of k—dimensional

[n],-[n—1],-[n—k+1]
subspaces: [Z]q = ”[k]q.[k_"l]q___[l]q 1
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Hint: Use the following formula for the Mobius function of a lattice:

> u(0,x)=0forallacL. (3.23)
XZX\/ﬂ=i
Show that if a is an atom, then there follows:
p(01) == > u(0x). (3.24)
Xx coatom

x}a



CHAPTER 4
Asymptotic enumeration

So far, we used formal power series in an entirely algebraic way, retrieving
informations about their coefficients — either explicit formulae or recursions
— by elementary computations.

In this chapter we will see, that we can obtain even more information by ana-
lytical methods (a lot more about these methods can be found in [3].)

EXAMPLE 4.0.1. We already computed the exponential generating function of the
Bell-numbers B,,, which enumerate all (set—)partitions of an n—element set (2.2):

B - R ora = o = B (et = 3 () (o,

m,j
which immediately yields the formula:

Ba=Y (T) (~1)" .

m,j

Now we may ask: What is the “order of magnitude” of the number B,, for
n large? The analogous question “what is the order of magnitude of n!?” is
answered by Stirling’s Formula

n! ~+2mn (g)n for n — oo. 4.1)

We want to find similar “asymptotic” results also in other cases.

4.1. Landau’s notation

DEFINITION 4.1.1. Let S be an arbitrary set and let f,g be real— or complex—valued
functions S — R (or S — C). Then the meaning of the O—notation “f is a Big—O of
gon S”is:

f(z)=0(g(z)) = IC>0:VzeS: [f(2)|<C-|g(2)]. 4.2)
In many cases, the set of interest S is an “appropriately chosen” (but not necessarily
fixed) neighbourhood of some point { ({ = oo is also possible): If, for instance, f, g are
actually sequences (i.e., functions N — C), then

f(n)=0(g(n) forn —ox

means that there is a neighbourhood S of w (i.e., S = {n € IN : n > a} for some a), for
which (4.2) holds.

Similarly, the meaning of the o-notation “f is a Small-O of g for z — (" is:

= — e il’n@:
f(2)=0(g(2) forz = e lim: 5 =0 (43)

73
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Moreover, we shall use the following notation for asymptotic equivalence:

~ — (= im@ =
f(z) ~g(z) forz—(: i—»gg(z) 1. (4.4)

REMARK 4.1.2. The O-notation and o—notation must not be misunderstood as “equa-
tion”: For instance, the meaning of

n3+2n2—1=0<n3)

is “n3 + 2n? — 1 belongs to the class of all functions f : N — C, for which there is
some C > 0 such that |f (n)| < C |n3|. In spoken language this misunderstanding is
avoided by saying “...is a Big—=O of ... " and not “...is equal to Big—O of ...”. But
since O—notation and o—notation are commonly used, we stick to it.

REMARK 4.1.3. The “~"—notation for asymptotic equivalence basically is superfluous,
since it can be replaced by the o—notation:

f@)~g) = f0)=g®A+0(1) = f(x) =eD.g(x).
But, again, this notation is commonly used, so we stick to it.
EXAMPLE 4.1.4. O—Notation:
n® +2n* -1 =O<n3) (n — o0)
2=0(z) (z—0)
z=O(zZ> (z —> )
(logz)’ = O (vz) (z — )

zZ

EXAMPLE 4.1.5. o—Notation:

n3+2n2—1=0(n4) (n — o0)
? (
(

z°=0(z) (z—0)
%zo(l) n— o)
n! = v2mn (%)n(lJro(l)) (n — o0)

0(f(2)-8(2) = f(2)-0(8(2) (z—7)

The meaning of the last “equation” is (cf. Remark 4.1.2): The class of functions ¢, for

which
92
lim ————— =0
==¢ f(2) - 8(2)
holds, is contained in the class of functions f -, for which
lim 212 _ g
= 8(2)

holds (simply set ¢ (z) := %).
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EXAMPLE 4.1.6. Asymptotic equivalence:
z+1~2z(z— o)
. 1 z
sinhz ~ o (z —> o)
n! ~e "n"\2mrn (n — o)

T(z) ~ —

log (z)
The idea behind these notations is, of course, to replace a complicated function by a
simpler one, which is asymptotically equivalent.

(z = )

Exercise 33: Let f,g : N — R™ be two functions (from the natural numbers to the nonnegative
reals). Which of the following rules is valid for n — oo (under which preconditions)?

O(f(m) +0(g(n) =O(f (n) +g(n)) O(f () =0(g(n) =0(f (n) —g(n))

O(f (1)-0(g(m) = O (f (n) -g () G ~ O () /5
O (f (m)°8) = O (f (mp™) exp (O (f (m))) = O (exp (f (n)))
0 (m) =0 (y/7m) $(O(F (1)) = O (f ()
W OHOGOD) o) (140 (g(n)  log (f () +g (n)) = log (£ (n)
O (g (n) /f (n)).

(The “equations” should be interpreted as follows: O (f (n)) + O (g (n )) is the class of all functions
of the form f* (n) + ¢* (n), where f*(n) = O (f (n)) and g* (n) = O(g(n)), the first “equation”
means, that this class is contained in the class O (f (n) + g (n)).)

Exercise 34: Same question as in the preceding exercise, where O (.) is replaced by o (.).

Exercise 35: Let f1, f2,§1,82 be functions N — C, such that f1 (n) ~ f,(n) and g1 (n) ~ g2 (n)
for n — oo. Which of the following rules are valid for n — oo (under which preconditions)?

fi (n) + g1 (n) ~ fa(n) + g () fi () — g1 (n) ~ fa(n) — g2 ()
Fi ()81 00) ~ fo () -2 () flini Lo
fi (m)8 1 (n) ~ fo (m)%2 exp (f1 (1)) ~ exp (f2 (n)))
fi (1) ~ A/ fa (n) 1 (fi () ~ g2 (f2 (m))

log (f1 (1)) ~ log (f2 (1))

EXAMPLE 4.1.7. Here are some typical generating functions that we want to examine
in the following:

o Derangements: 3, Dy = e - 11,

e Catalan numbers: Y, C,z" = 1-+/1-4z

2z /
n
e Bell-numbers: ) B, %7 = e® 1,
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For the Derangements (i.e., the number of fixed—point—free permutations) we obtained
an exact formula by the principle of inclusion—exclusion (cf. the presentation preceding
Corollary 3.4.18), from which we may directly derive an asmyptotic formula:

1 1 1 S1\ !

For the Catalan numbers, we may easily derive an asmyptotic formula by Stirling’s
formula (4.1):

v 2n 2
c, - 2wt (21 (f)%_L_:4m_;Li
(n+1)n!? e n/ nymn \/7Tn3/2

The asymptotics for the Catalan numbers shows the typical feature: If a gen-
erating function f has singularities, let p be a singularity of minimal absolute
value. Then the coefficients of f show the following asymptotic behaviour:

e~ (o) e

with lim,, ., {/©® (n) = 1; the type of the singularity determines © (n). This
kind of asymptotic analysis is called singularity analysis (cf. Abschnitt 4.3). If
there are no (or no “simple”) singularities, then the saddle point method proves to
be useful in many cases (cf. Abschnitt 4.4).

~ —

o .

4.2. Recapitulation: Elements of complex analysis

We will quickly recapitulate some basic concepts from complex analysis, which
we shall need in the following:

DEFINITION 4.2.1. A domain G is an open connected subset of the complex num-
bers C: G < C. A function f : G — C is called analytic at zy € G if there is a
neighbourhood U < G of zg in which the series expansion

f@) =) en(z—2)"
n=0

holds (for certain coefficients c,, € C). A function f : G — C is called analytic (on G)
if f is analytic for all z € G.

For a function f, which is analytic at zp, we have:

e There is a positive radius of convergence R, such that the series con-
verges for every point in the interior of the disk

D(zg,R) :={ze C: |z —2zy| < R}

with center zy and radius R.

¢ f(z) is analytic in the interior {z € C : |z — zp| < R} of this disk of conver-
gence.

e The series diverges for all z with |z — zg| > R.
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DEFINITION 4.2.2. A function f : G — C is called (complex!) differentiable at zy, if

the limit
i G0+ )~ f (z0)
6—0 )

exists; f is called differentiable on G if f is differentiable for all z € G.

THEOREM 4.2.3. A function f : G — C is analytic on G if and only if f is differen-
tiable on G.

Let f and g be two analytic functions, let A € C. Then f + g, A - f and f (g) are also
analytic; and Jgf is analytic at all points ¢ with g ({) # 0. O

(6 is a complex number!)

DEFINITION 4.2.4. A function h : G — C is called meromorphic at zg if h (z) can
be written as a quotient of two analytic functions f, g in a neighbourhood U of zy:

Vze U\{zo}: g(z) #0and h(z) = (Jg%

In this case we also have

h(z) = Z cn (z—z)"
n=z-—m
forall z # zg in the disk centered at zq. If m is the largest natural number, for which
c_m # 0 in this series expansion, then zq is called a pole of order m. The coefficient

c_1 0f (z—z9) " in this series expansion is called the residue of h at the point zg, we
also denote it as Res (h, zp):

Res (1, zg) = [[(z - zo)*l]] h(z).

DEFINITION 4.2.5. Let ¢ : [0,1] — G be a differentiable function which determines
a contour I in the domain G (with starting point ¢ (0) and end point ¢ (1)); let f :
G — C be a function. Then the contour integral .. f (z) d (z) is defined as

1
| r@mne o
The contour T is called closed if ¢ (0) = ¢ (1).

REMARK 4.2.6. The contour integral only depends on the contour I, not on the con-
crete parametrization ¢ (t).

THEOREM 4.2.7 (Cauchy’s Theorem). Let f : G — C be analytic on G, and let T be
an arbitray closed contour in G. Then we have

Lf(z)dz=0.

THEOREM 4.2.8 (Residue Theorem). Let h (z) be meromorphic on G, let I be a closed
contour in G. Then we have
1

27i

Lh(z) dz zgns Res (h,s),
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where the sum runs over all poles s of h, and ns denotes the winding number® of T
with respect to s.

COROLLARY 4.2.9 (Cauchy’s integral formula). Let f (z) = >, fuz" be analytic
in a disk centered at 0, and let I be a contour in the interior of this disk, which winds
around 0 exactly once (in positive orientation) (i.e., the winding number with respect
to 0is 1), then we have

] £ (&) = fu = 5 | Ltz 5)

7-(']1 r Zl’l+1 '

DEFINITION 4.2.10. Let f (z) = 3,20 ¢n (z — 20)" be an analytic function with ra-
dius of convergence R; let { be a point in the boundary

dD(zg,R) ={zeC:|z—zy| = R}

of the disk of convergence. If there is a neighbourhood U of { and an analytic function
f on U, such that

f UnD(zo,R) = f|UmD(z0,R) 4
then this f is called an analytic continuation of f in {. If there is such analytic
continuation, then it is unique.
( is called a singularity of f, if there is no analytic continuation of f in { f.

We denote the set of singularities of f by Sing (f). Sing (f) n 0D(zo, R) is always
closed; the case

Sing (f) = dD(zp, R)
is possible: Then dD(zy, R) is called the natural boundary of f.

EXAMPLE 4.2.11. The function

1 1
Vitz=(1+2)2 = Z <2)zk
k
k=0
has no analytic continuation at { = —1, so —1 is a singularity of this function.

The functions ﬁ and % both have a singularity (more precisely: a pole) at = 1.

Exercise 36: Let f, g be complex functions which are analytic on some given domain. Which of the
following rules are valid (under which preconditions)?

Sing (f + g) < Sing (f) U Sing () Sing (f - ) < Sing (f) v Sing (g)
Sing (f/g) < Sing (f) U Sing () UNull(g) ~ Sing(fog) < Sing(g) v g~V (Sing (f))
Sing (\/7) < Sing (f) u Null (f) Sing (log f) < Sing () U Null (f)

Sing (1)) < f (Sing (f)) v f (Null ("))

Here, Sing (f) denotes the set of singular points of f, and Null (f) denotes the set of zeroes of f.

1Loosely speaking, the winding number enumerates how often the contour I' “winds
around” s: In the examples we consider here, the winding number will always be equal to
1.
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THEOREM 4.2.12. Let f (z) = >, fu - 2" be analytic at O with radius of convergence
R < 0. Then there exists a singularity ¢ in the boundary of the disk of convergence

(ie., |Z| = R).

PROOF. Indirect: Suppose not; then there exists an analytic continuation of f at
all points with |z| = R. Therefore, for all z with |z| = R there is a neighbourhood
Uz, such that f has an analytic continuation on U. Now [ J,.;;|_g U: is an open
cover of D(0, R): since the boundary of the disk is compact, there exists a finite
subcover. But this implies that f is analytic on D(0, R;) with R; > R, and for
some Ry with R < Ry < R; we have, according to (4.5):

fia),,

n _ b
=" £ (2) ‘L

27

We may parametrize the circle with center 0 and radius Ry as follows: z (6) =
Rp - ¥ and %z (0) = 1z (0). Then we obtain for this contour:

1 znf(Ro-(BﬁG)

= — ———=db.
fu= 3z o Ri-emif
From this we get immediately the upper bound
ful < - max [ (2) (4.6)
n| = Rg |Z|:RO 4 .

ie, fu = O(Ry") (n — ). Let g with R < g < Ry, then f(z) = Y fuz"
converges for |z| < g according to the well-known root test?, a contradiction
(since g > R). O

THEOREM 4.2.13 (Pringsheim). Let f (z) = >, fuz" be analytic at 0 with radius of
convergence R. Assume that f, > 0 for all n = 0. Then the (real) number R is a

singularity of f.

PROOF. Indirect: Suppose, f (z) is analytic at { = R. Then there is a radius of
convergence  such that f (z) is analytic for all z with |z — R| < r. Seth = 7 and
zop = R — h. Then we have

f2) =2 gm(z—z)"

for certain coefficients ¢, and all z with |z — zg| < 2h.

2From Iful < R% we get for |z| < g < Ro: /|faz" < Riox"f, in particular
limsup,,_, ., {/|fuz"| <1 (since Rio <1).
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al-
N

Equivalently, we have:
= 2™ f <2h = —
f(zo+2z) mg gm -z for |z| 3

and therefore

w= TG m) = o (52) FE+a)keo

:Wan (n=1)---(m—m+1)z§™™

I

=
WV
i ng
/_\
3
v

;rx

So we have

UGREDRDY (Z (Z)f -z’&"“) (2h)"

m n=zm
=R+h

The right-hand side is a converging double sum (since R + h lies in the inte-
rior of D(R, r)) and has only non-negative summands: Therefore it is absolutely
convergent, and we may reorder the summands arbitrarily.

(R +h) an 2 ( ) zg =™ (2h)™

_an (zo +2h)" an R+h)"

a contradiction, since R +h > R. O

4.3. Singularity analysis

EXAMPLE 4.3.1. Most of the power series we are interested in are generating func-
tions stemming from some enumeration problem and thus cleary having non-negative
coefficients: So Pringsheim’s Theorem is applicable in these cases.
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(1) For the Derangement-numbers D,, we know

D, , e
> 5 -
n! 1-z
1

and % ~ =, therefore the radius of convergence is 1 — and { = 1is, indeed,

a singularity.
(2) Let Sy, be the number of surjections [n] — [k] (k < n arbitrary): From the

combinatoriel point of view it is clear that we encounter the species sequences (setn)

(cf. Example 2.6.6), therefore we have the generating function

Snn 1 1
=t = = :
n! 1—(e*—1) 2—¢?

The singularities of this function obviously are log 2 + 27tik, k € Z; the only
real singularity is log 2, which is, indeed, the radius of convergence.
(8) The generating function for the Catalan numbers is

1-+v1—-4z
2z
with singularity { = 411 ; hence the radius of convergence is 411' too.
(4) The generating function for the species cycles ist

1 22 7
logl_zzz+§+§+---

with singularity { = 1; hence the radius of convergence is 1, too.

4.3.1. The Exponential Growth Formula.

DEFINITION 4.3.2. A singularity { of f of minimal absolute value is called domi-
nant singularity.

DEFINITION 4.3.3. We say that a sequence of numbers (a,),_, is of exponential
order K" and introduce the short notation a,, =< K":

ap < K" .= limsup {/|a,| = K, 4.7)
n—aoo
i.e., Ve > 0 we have
lay| > (K —¢€)" for infinitely many n, (4.8)
lay| < (K +€)" for fast all n. (4.9)
Stated otherwise:
a, =K' O (n),

where O is subexponential, i.e.

limsup /|© (n)| = 1.

n—oo

Typical examples for subexponential sequences are

2 T
1,13, n_3/2,1og n,(-1)", eV @log™n p2gin sy
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THEOREM 4.3.4. Let f (z) = Y., fu - 2" be analytic at 0, let R be the absolute value of
a dominant singularity. Then we have:

1 n
PROOF. This follows immediately from Cauchy-Hadamard’s formula for the ra-
dius of convergence R of a power series ., f,z":

1
limsup,, ., {/Ifal

(For the absolute value of a dominant singularity clearly equals the radius of
convergence.) O

R (4.10)

Exercise 37: Let p (n) be the number of (integer) partitions of n. We know that

<1

nzz]op(n)Z” =l

i=1

What are the (dominant) singular points of this generating function? What does this imply for the
asymptotic behaviour of p (n) forn — co?

We sum up these results:

PRINCIPLE 4.3.5 (First principle of singularity analysis). The (absolute values of)
singularities of f (z) = ), fu - 2" determine the exponential growth of the coefficients

n-.

As examples illustrating this principle, we already considered the Derangement-
numbers D,,, the number of surjections S, and the Catalan numbers C,,.

DEFINITION 4.3.6. Let G be a domain, let zg € G. Let f : G\zo — C be an analytic
function. Then the point z is called an isolated singularity of f. There are precisely
three possibilities: The singularity zo may be:

e aremovable singularity, if there is an analytic continuation of f on the whole
of G,

e apole, if zg is not a removable singularity is and there is some natural number
m, such that (z —zo)" - f (z) has a removable singularity at zo. If m is the
minimal such number, then z is called a pole of m—th order.

e an essential singularity, if zg is neither removable nor a pole.

EXAMPLE 4.3.7. The following functions C\ {0} — C have an isolated singularity at
0:

e For Si%z, 0 is a removable singularity,
o for Zim, 0 is a pole of m—th order,

e for e, 0 is an essential singularity.

3Accoriding to Riemann’s Theorem this is possible, if f is bounded in a neighbourhood of zy.
Analytic continuations are always unique.
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REMARK 4.3.8. The logarithm is a covering map which is not analytic on any domain
containing 0, so 0 is not an isolated singularity of the logarithm (and thus of the root

unction V/z = zV/" = exp L log z).
p ;108

PROPOSITION 4.3.9. Let f (z) be analytic on |z| < R with 0 < R < co. Then we have
for arbitrary r € (0, R):
< maxXiz|=r f (2)]

|f7’1|\ s

rn

ie.

’fn’ < inf maX|z|=r ’f(Z)‘

0<r<R rh

If f (z) only has non-negative coefficients, then we have

fngmzfn< f&

rn T 0<r<R 1

PROOF. The fundamental bound is derived from Cauchy’s integral formula
(4.5) (see the proof of Theorem 4.2.12): Setting z (8) = r - ¥ and %z (0) =1z (0),
we obtain

fro () g, - L [ Lre)

27 )y, 2T 2wy et
O

REMARK 4.3.10. If f (z) has only non—negative coefficients, then the inf is assumed

at
/ ! /
FON g FO f0) o f0)
n n pn+l f (i’)
We shall make use of this simple observation when we will deal with the saddle point
method.

Now we want to explain the following principle:

PRINCIPLE 4.3.11 (Second principle of singularity analysis). The nature of the
dominant singularities determines the subexponential part ® (n) in

fo~ K" ©(n).

4.3.2. Rational functions. From the well-known partial fraction decomposi-
tion of a rational function f (expressed as the quotient of two polynomials p
and g, which do not have a common root)

_p@) _ p(2) B S i
f& -0 "t e T RE LA

polynomial

together with the binomial Theorem

ot g () () - g ()

n=0
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we immediately obtain the following exact formula for the coefficients f, =

[z"] f (z), n > deg (R):
k n+l-1\ _,_
fnZZle(—l)l%‘,l( 11 )Zi :
k e;
—n : I n+l—1\ _
ZZZZ- Zl:(—l) ')’i,l( 1 )Zil

>

polynomial in n

From this, we derive immediately the asymptotics:

THEOREM 4.3.12. Let 1,...,a,, be the dominant singularities (poles) of the rational
function f (z); let eq, ..., e be the corresponding orders of these poles. Then we have:

m
fa = a; " polynomial; (n) +O (b™")

1 — v

i=1 of degree e;—1
where b is a non—dominant singularity of minimal absolute value.
EXAMPLE 4.3.13. The generating function of the Fibonacci-numbers F, is

1
no_

n=0

The singularities of this rational function are _1%@ The partial fraction decomposi-

tion is
1 1++/5 1 1-4/5 1

from which we immediately obtain the asymptotics:

n+1

n+1
&:1(HM3 L0 1-+5

N _2
~0.618034

Further simple examples:

% = Z (n+ 1) 2"z" (one pole of second order),
(1-2z) =0
1 _122 =2 % ()" + (=1)") 2" (two dominant poles).

n=0

4.3.3. Meromorphic functions. Meromorphic functions can be treated in
much the same way as rational functions:
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THEOREM 4.3.14. Let f (z) be meromorphic for |z| < R with poles at ay, ..., ay; let
e1, ..., ey be the orders of these poles. Let f be analytic at 0 and for all z with |z| = R.
Then we have:

m
fn = Z a;" polynomial; (n) +O (R™")
— —_—————
=1 of degree e;—1
PROOF. The proof proceeds by “subtraction of singularities”.

Consider the pole a;. In a neighbourhood of 2; we may expand f (z) int a Lau-
rent series:

f(z) = Cey (z—a) "+ cq(z— al)_i + Z cn(z—m)".
50, (2) e
=:Hy, (z)

Here S, (z) is the “singular part” at a;, while Hy, (z) is analytic at a;. This
“subtraction of singular parts” can, of course, be repeated for all the remaining
poles, whence we obtain

S a; (Z ) ) s

f(z) =25 (2)+ <f(Z)—Z
i=1 i

. / o
=:5(z)

m
=1
H(z)
where S (z) is a rational function with poles a5, ...,4,, and H (z) is an analytic
function in the disk |z| < R + € for some € > 0 (since f is analytic for all z with
z| = R, the “usual” compactness argument yields the claim). Since we have for
the coefficients h, of H (2)

(cf. (4.6)), the assertion follows. (]

EXAMPLE 4.3.15. We already computed the exponential generating function of the
numbers S,, of all surjections [n] — [k| (arbitrary k):

f@) =5

— ez’
This function has poles at log2 + k - 271, k € Z; by “subtracting” the singular part at
log 2 we obtain

1 1 1 1
f&) =73 (@)*H@:zmgz <1—(+ >+H<Z>

(since lim, 1062 2511%2 = —1, by de L'Hospital’s rule), where H (z) is analytic for all

z with |z| < 27. Hence we get from Theorem 4.3.14

fo=3 (10362)“1 1O (2m)™),

which implies for the numbers S,;:

nl 1 n+1 ' —n
Sy = > <10g2) +0O (n!(2m)™") (4.11)
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EXAMPLE 4.3.16. The (exponential) generating function of cycles™ (i.e., sequences (cycles))
is

1
Z) = ———.
f ( ) 1- log 112
Obviously there is one pole at z = 1 and another at
1 1 -1 1
log—— =1 « e = z= o =1 -~ 0632121,
1-2z 1-2z e e

hence the dominant singularity is { = 1 — e~ 1. Again, by de L'Hospital’s rule, we get

- 1
lim —— gl =lim—=0-1=-¢ Y
el —log s #0 —
ie.,
o1

H (z) is analytic in the (closed!) disk with radius R = 1 —€ (e > 0), therefore we
obtain the asympotics

1 1 n+1 1
fo== (1 - @1) +0((1-¢)™") ~ ~158198"" + O (1.0001").

EXAMPLE 4.3.17. The number C,,  of surjections [n] — [k] can be expressed in terms
of the Stirling-numbers of the second kind:

Cox=k!'-Sp

We want to investigate the following question: If we assume uniform probability
distribution on the set of all surjections [n| — [k| (n fixed, k arbitray), what is the ex-
pected value of the cardinality of the surjection’s image? Our approach is to consider
the generating function in two variables

z" 1
ZZan—tk Ztke—l m

k=0n=0 k=0

2 e —1
(S oo
t=1 >0 \k=0 (2 — )

The poles (order: 2) of this function are log2 + k - 271, k € Z, and the Laurent—series
expansion is

Then we have

dt

S S S,y
2—e2)?  4(z—log2)? 4(z—log2) '

where H (z) = —% + % (z—1log2)+ O <(z — log 2)2> is analytic in the (closed!)

disk of radius R = \/47'57- + (log2)? — e (e > 0; we may choose R ~ 6.3213). From
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this we obtain immediutely

—1 n+1 1\" 1 1\"
n _ . —n
'] ( —e7)?  4(log2)? <log2> 4log?2 <log2> +OR™)

—1(n+1—1 2) b n+2+O(R‘”)
4 08 log 2 )

We must combine this result with (4.11)...

1 1 1 n+1 B
5 5 (gz) OE),

log 2
since the expected value we are interested is the quotient of coefficients:

1 (n+1-1og2) -
1 ) (w2 ) )—”+1—1+0(R—”).

n+1 - 2log2 2
(oh2) +OR™ i

(Since log2 ~ 0.693147 < 1; cf (4.16) in the following Lemma.)

The following Lemma states some “typical manipulations” concerning the O-
notation; in particular the transformation from the preceding example:

LEMMA 4.3.18. Let f (n) and h (n) be arbitratry sequences (i.e., functions N — C).
Then we have

O(f(n)-h(n)=0(f(n)-h(n). (4.12)
If in particular h (n) = O (1), then we simply have
O(f(n)-h(n)=0(f (n). (4.13)
Letr : N — C with lim,_, v (n) = 0 (i.e., ¥ = 0 (1)). Then we have:
1
1200 (m) =1+0(r(n)) forn — oo. (4.14)
Moreover, let ¢ : N — C, such that ﬁ = O (1). Then we have:
1 O (r(n))

Finally, let f : N — C with (;((Tn)))z = O (1). Then we have

f(n)+0(r(n)  f(n) i
cmTorm) gm Orm) (4.16)

PROOF. (4.12): Let ¢ (n) € O (f (n)) be some fixed (but arbitrarily chosen) ele-
ment from O (f (n)). Then we have by definition

¢ (n) -k (n)| =g (n)] - |1 (n)]
< K-|f ()] - | (n)]
= K- |f (n) -k (n)].

(4.13): Simply continue the above chain of inequalities with “< K-K' - |f (n)|”,
which holds by definition.
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(4.14): By definition of the limit and of O, respectively, there is some C > 0
and some 1y € IN, such that for a fixed (but arbitrarily chosen) element (1) €
O (r (n)) in the denominator of (4.14) there holds:

@mﬂscvmns;mmm>n@

But this implies that for all n > n
‘ 1 1 _ 1
1+Z(m)|  +Z(m)] ~1-[C(n)
1
ST-C. |1’ (n)| —1-C|r(n)|<1-g(n)
=1+ ¢ ’1’ (TZ)‘ —1-C-|r(n)|=}

which proves (4.14).
(4.15): By assumption there is some € > 0, such that |g (n)| > € for n > N. Let
¢ (n) be as above, but now choose 1y such that

IC(n)| < C-|r(n)] < gfor all n = ny.
Then we have |C - |r (n)| /g (n)| < 1/2 for all n > max (19, N), and

L R T 1
| ST _Zml S 7 Clrm
I+3m| 1=t 1 oo
C-lr(n)|/|g(n)|
1+ —C-lr(n)|/|g(n)|<}
1—C-[r(n)]/lg(m)] — V&=
7 (n)]
<1+(2-C)- ,
2O e
which proves (4.15).
(4.16): Finally, we have
f(n)+0O(r(n) f(n) N O (r(n))

g(m)+0(r(m) gn)+0(r(m) g(n)+O(r(m)
For the first term on the right-hand side we have

f(n) _f(n) 1
R0 +0G ) g |1 00
_ f(n) O (r(n))
-0 (1 %) e
_fm)  fm)O(r(m)
T (g
f(i’l) (r (n)) « by assumption and (4.13).

OQ
E
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For the second term on the right-hand side we have according to (4.13)

O (r(n))
=0 (r(n)),
g +0(rmy O
since also |g (n) + O (v (n))| > €/2 for n “large enough”, so m =0(1).
Of course we have O (r (n)) + O (r (n)) = O (r (n)), so also (4.16) is proved. [

4.3.4. Several dominant singularities.

EXAMPLE 4.3.19 (Cancellation). Consider the sum of rational functions 14%22 and
1.
1-z3"
1 N 1 2422-2 2-Z22428 420+ 8420 -0
1+22 1-23 (1+z2)(1-28) 1-—z12 '

The coefficients of z" vanish forn =1,5,6,7,11 (mod 12).

EXAMPLE 4.3.20 (Nonperiodic fluctuations). Consider the rational function

1 14 éz N Ezz 84 S 77924 B 257425
1-%+4+22 5 257 1257 625 3125
with partial fraction decomposition

1 1 1
_ 2 2
6, 122 5 _am) . 3., 4i) .
l1-3z+z 1—(5—311)2 1—<5+§n)z
The roots of the denominators have absolute value 1 and are inverses of one another, i.e.
3 4 4, 3 4 .
Sr - —elland = - = =7
5 5 5 5
So the coefficient of z"* may be written as
eﬁnﬁ + (B—imé) 3 eﬁnﬁ . (B—imé)
+ — .
2 4 2i

=cos(n-9)+%sin(n-9)

sin
sin((n+1)-6)
sin 6 '

= cos (n-0) + €95 sin (n-0)

4.3.5. “Standardized” singularity analysis. We shall now present the “(quasi-
) mechanical algorithm” of (standard) singularity analysis for determining the
asymptotics of the coefficients of some generating function f (z), as developped
by Philippe Flajolet and Andrew Odlyzko. It consists of the following steps:
Normalization of the singularity: If p is the “relevant singularity” of f (z),
consider f (z) := f (0 - z): then 1 is the “relevant singularity” of f (z).
Asymptotics for “standard functions”: For “standard functions” of the

form ;
o (Lig
(1—-2) <z log 1 z)

there is a general result describing the asymptotics of the coefficients.
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Transfer-Theorems: If we know some asymptotic bound for a function,
we may immediately derive an asymptotic bound for its coefficients:

f(z)=0 ((1 —z) (1og : . Z)ﬁ> — ['] f(z) = O (n"~" (log )"

4.3.5.1. The Gamma—function.

DEFINITION 4.3.21 (Gamma—function). The Gamma-function I' (s) is defined by
Euler’s Integral Representation

I(s) = LOO ST 13 (4.17)

for % (s) > 0. The Gamma—function fulfils the functional equation
I'(s+1)=s-T(s). (4.18)

It follows that T (s) has an analytic continuation to C\ {0, —1,—2,...}: We have for
all m € INg

(D" 1 fors — —m. 4.19)

r ~
(s) m! s+m

For the Gamma—function we also have Euler’s Reflection Formula:

s

Fs)r1-s)= sin (715" (4.20)
From the functional equation (4.18) we immediately obtain
T(s+n)=s"T(s)=s5-(s+1)---(s+n—1)-T(s). (4.21)

In particular, from (4.17) we see immediately I' (1) = 1,sowe haveforn > 0e Z

I'(n+1)=n!
and likewise with T’ (%) = /7T
1\ (1\" ~ (@nyr

For the Gamma—function, Stirling’s formula gives an asymptotic approximation:

11 139
(s+1) ~ e vams (1+ — - ). 423
(5+1) ~ eV ( T 125 T 2882~ 518408° ) (4.23)

REMARK 4.3.22 (Y—function). The Y—function is defined as the logarithmic deriva-
tive of the Gamma—function:

Y (z) = %logf(z) =
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The following formula gives evaluations of the Y—function at rational numbers z = g ;
cf. [2, section 1.7.3, equation (29)]:

P) B T Tp
Y(=)=—y-1o ——cot(—)
<q 8973 q

1y

+ i cos <2n%) log (2 —2cos (27'(%)) , (4.24)

n=1
where the prime (1) in the upper bound of the summation means that for even q the

last summand (with index n = 1) is multiplied by % (Here, v denotes the Euler—
Mascheroni constant.) For example:

1 T T 1
Y <§) = —y—log2— Ecot <§> + 5 Cos rtlog (2 —2cos (7))

= —y—2log2, (4.25)
since cot (5) =0, cos 7w = —1 and log4 = 2log 2.

REMARK 4.3.23. For the following Theorem it is useful is to recall the polar coordi-
nates for complex numbers: Let z € C with % (z) = x and F (z) =y, i.e.,, z = x + iy.
Then we may express z in polar coordinates (r, ), i.e. z = r-(cos ¢ + isin¢) with
r = |zl and ¢ = ¢po + 27tk for k € Z, where Py denotes the main value (in the interval
—7m < arg(z) < m)of the argument arg (z). (for r = 0 we may choose the angle ¢
arbitrarily.) We have:

etV = ¢ . (cosy + isiny), (4.26)

log (x +1y) = log |x + 1y| + 1arg (x + 1y) . (4.27)

In particular, this means that the (complex) logarithm (the inverse function of the ex-

ponential function) is a multi-valued function, which might be “forced” to be single—

valued by constraining its range (for instance, by considering only the main values of
the arqument).

Moreover, we have the following connection of the trigonometricn functions with the
exponential function:

(BﬁG + efﬁé‘
cosO = —
- 0 e—ﬁﬂ
sinf = -

21

THEOREM 4.3.24 (Presentation with Hankel-contour integral). For the Gamma—

function we have
1 1 —s —t
T(s) ~ 271 Joy (—t)" e 'dt, (4.28)
where H = H~ + H° + H* is a contour which cosists of the following parts
e H™ ={w—1:w >0},
CH = {-e: - <g< g,
e H ={w+1:w >0}

See the following graphical illustration:
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Q

PROOF. Let D be a contour, starting at a point p > 0 on the real axis, winding
once around zero in the anti—clockwise orientation and returning zu p.

y

| D

For z e C\IN with ¥ (z) > 0, consider the integral

f (-t Le~tdt, (4.29)
D

The factor
(_t)zfl — plz=D)dog(=t) _ o(z—1)log(|—t|)+arg(—t)

in the integrand is unique if we require log (—t) € R for t < 0: Le., for all points
t e D we have —7t < arg (z) < 7.

The integrand is not analytic in the interior of D (since the logarithm is analytic
only in the slitted complex plane, i.e., in no neighbourhood of 0), but according to
Cauchy’s Theorem 4.2.7 we may “deform” the contour D to another contour D’
without changing the value of the integral:

#; D .

In the first (straight) part of this new contour D’ we have arg (—t) = —, i.e.,

(_t>z—1 _ e(zfl)(logtfim),
and in the last (straight) part we have arg (—t) = 7, i.e,,
(_t)zfl — plz=D(logt+in)

(For both parts we have logt € R.) Parametrizing the small circle as —t () =
se* we obtain:

g o
J (_t)z—l e tdt = J efﬁn(zfl)tzfleft +J eﬁn(zfl)tzfleft
D 0 )

+i F ((seﬁf’)Z_l 29 50100 —

—7T
— 2isin (71z) J Fle tdr + ﬁézf e e dg.
) -7
(Since sin (7t (z — 1)) = sin (7z — 1) = —sin (71z).)
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This equality holds for all positive real numbers 6 < p: for 6 — 0 we have
6 — 0 (since R (z) > 0) and {" 0o qg " _e'%df (since the integrand
converges uniformly); so we obtain:

1 (3
J (—t) e tdt = 21 sin(ﬂz)J - le~tdt.
D 0
This holds for all positive real numbers p: H is obviously the “limiting case of
the contour” D for p — o0, so there holds

Q0
J (- Le~tdr = —2i sin(nz)f Fle7tdt,
H 0
i.e.,
1

z—1 —t
The contour H is not close to 0, therefore we do not need the assumption & (z) >
0 any more*: The integral in (4.30) is a (single—valued) analytic function, which
equals I' (z) for R (z) > 0; so Hankel’s formula (4.30) for the Gamma-function

holds for all z € C\Z. Replacing z by 1 — z and applying Euler’s Reflection
Formula (4.20), we obtain the assertion. O]

I'(z) =

4.3.5.2. Asymptotics for “standard functions”. According to the binomial the-
orem, for the “standard function” (1 —z)™* (where a € C is arbitrary) we obtain

1 a-a - () - (),

If « € {0,—1,-2,...}, then the asymptotics of these coefficients is trivial (since
in that case (1 —z) " is a polynomial, and the coefficients are all 0 for n > —a).
Otherwise, we can write

n+a—1\ a-(a+1)---(a+n—-1)  TI'(n+a)
)

n! ST ()T (n+1)

Hence, we could determine the asymptotics by means of Stirling’s formula for
the gamma function (4.23)

I'(s+1)=s’e"*V2ms <1+O G)) .

However, it is more convenient to apply Cauchy’s integral formula (4.5):

THEOREM 4.3.25 (Asymptotics for coefficients of standard functions, 1). Let « €
C\{0,—1,-2,...}. We consider the “standard function”

flz)=00-2"
Then, asymptotically as n — oo, we have
[[Zn]] f (Z) nuil <1 n i €k (0()) (4 31)
T () =k

*An analytic continuation for the logarithm exists only in the slitted complex plane!
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where ey () is a polynomial of degree 2k in w, which is divisible by a**1 = « -
(¢ —1)---(a —k). The first terms read:
T -(a—1) a-(a—1)-(a—2)-(3a—1)
') =27~ (1 o T 2n?
a2 (w—1)% (a—2)- (a —3) 1
+ 18173 +0 (F) . (4.32)
PROOF. Due to Cauchy’s integral formula (4.5), we have
_ 1 1-2z)7"
n . x_
] (1-2)" = 5 L e (4.33)

where C is an arbitrary closed contour (with winding number 1) around 0, which
avoids the ray of real numbers > 1. Concretely, we choose the contour Cr ,, that
is described in the following figure:

For all n > R (—a), the integral becomes arbitrarily small along the “circle
piece” of Cr , if we let R — o0°, so that “only” the “Hankel-like piece” H, =
H, + H; + H,;' of Cr , plays a role, which consists of the subpieces

Performing the substitution,

t 1
z=1+4—,dz=—dt
n n

we obtain
N nﬂc—l N ¢ —n—1
n — _
z 1-2z = — —t 1+~ dt, 4.34
-7 = 5 [ o (1) 434
where H is the Hankel contour from Theorem 4.3.24.
5The reason is that the modulus of the integrand can be estimated from above as (1;,?; ‘<

R®(=%)=7=1 and hence the integral is less than or equal to 2rR*(—%)—7.
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For |t| < n the power series expansion of log (1 + 1) converges, hence we ob-
tain

¢ —n—1
(1 + _) _ (Bf(n+1)log(1+t/n)
n

t 2P
= exp —(Vl-f-l) E—ﬁ'f—%—ﬁ-"'

2 -2t 31228
= exp —f+ + + - «sortn—k

2n 612
ot oy ﬂ—ﬂ+3ﬂ—2ﬂ+
=@ .
p 2n 612

2 — 2t 3t — 203 + 24+2
_ ot
=e (1+ o + a2 + ). (4.35)

That s, for [t| < R (R < o arbitrary but fixed) the integrand of (4.34) converges
for n — oo uniformly to (—t)”" e~!. “ Asymptotically”, we therefore have

AN 1
(1+—) =@_t(1+O(—)> for n — oo.
n n

“Formally”, by substitution in (4.34), we obtain

[z"] 1—2z)""% = e f (-t e ' (1+0 1 dt
20 Yy n
nel 1
T 7o)
That was admittedly somewhat bold, and it needs justification. To this end, we
split the Hankel contour H

e into the part with ¥ (t) > 1og2 n: we shall show that this part is “negli-
gible”;
e and into the part with R (t) < log®n: in that case, for n large enough

2
we have % ~ bng < 1 (because |t| < 4/R (t)* + 1 and logz < /z for

all z > 0) and the expansion (4.35) “works”.

To see that the first part is negligible, some finer work is required for the esti-
mation of the integral. The subparts of the integrals over H* and H~ can be
dealt with “in once” because, to start with, we have

© —t+1)" © t+ 1"
fz —Ljréﬂdtgf 2—i7f%ﬁdt
log”n (1 + 71) log™n }1 + J“l‘

n

From

o _ (Bleogz _ ~(R(a)+1S(a))(log|z|+1arg z)

(]

_ e?R(tx) log|z| - («) arg z eﬁ(%(zx) log|z|+R(«) arg z)
it follows that

|sz | _ e?R(tx) log|z| - (a) arg z
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thus here concretely
}(t + ]'1)“} _ ’t + ]-1‘3?(06) _efi?(tx)arg(tﬂi) <C. ‘t‘%(zx)

since arg (t + 1) — 0 for t — o0 and

V241 241
lim =4/ lim —— = 1.
t—o0 t t—0o0 t2

Furthermore, we have

41 t
1420 >(1+—),
n n

hence we may continue the estimation of the integral (we put &’ = R («)):

/

* o (—t+1)" * 1o
fl —tﬂ)mdt <C- J 7£‘n+1dt.
n

og*n (1-|—T log?n ‘1—1—

Here, the integration variable ¢ > log?n is real, which we assume always in
what follows. Then we have

2
>1+10g n,
n

14—
n

t 7"< 1+log2n -
h n

I
n

‘ t

from which we may infer

for all n € IN.
From real analysis, we know (see for example [5, Satz 26.1]): for a sequence

(xy)p with limy,_, o, x, = 0, and with x,, # 0 and x, > —1 for all n, we have
lim (1 4 x,)Y* = e.

n—oo

6 logzn

n

1 ) n/logzn
lim <1+ 08 n) = e,

We choose the special sequence and obtain

n—0o0 n
or, equivalently (the real logarithm is continuous):

- nlog (1 + IOg:n) .

n—0 log? n

This implies that, at least, for € > 0 we have

log? n

nlog (1 + ) > (1-¢)log?n, (4.36)

if n is large enough.

log?n
n

2logn
n

6Apply de I'Hospital’s rule twice: limy ¢ =limy o = lim,— o0 % =0.
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Now we claim: for fixed k, we may choose ann such that for ¢ > log? # we have

/

t* 1

(4.37)

For, if we take the logarithm on both sides of this claim, then we obtain the
equivalent inequality

(&' +2)logt— (n+1)log (1 + %) < —klogn (4.38)

(since the real logarithm is a monotone increasing function), and if we substi-
tute for t — log®n, then it is obvious that the following inequality holds for n
large:

2
(' +2) loglog®n — (n +1)log <1 + loi n) < —klogn

(. J
N~

>(1—€) log? 1 by (4.36)

(since log® 11 grows faster than log log® n and log ). If we consider the deriva-
tive of (4.38), then we see that

2+ n+1 1 244 n+1<
t n 1+tn  t n+t

n(2+tx’)

fort > T—a—17

and since the right-hand side of this inequality converges to

2 + &, for n large enough we have also log?n > % Thus, the inequality

(4.37) is established, and we may now complete our estimation:

0 _+'DC 0
J Adtgcj 1 . C
I I

og’n (1 + t%—ﬁ)n+1 og’n nkt2 nk logz n

By (4.35), for large n the integral (4.34) equals a sum of terms of the form
Ck f (—H) etk dt,
H:R(t)<log?n
“except for the above error term”. We would of course like to argue that these
integrals “essentially” are equal to

_ _ 27 2ri- (w—k) - (a—k+1)---(a—1)
Jy oot )
(by Hankel’s formula (4.28) and the functional equation (4.21), respectively). In

order to see this, we argue that the “cut-off remaining integral” (using the same
manipulations as in the proof of Theorem 4.3.24) leads to the real integral

o0
2i sin (7tar) J et (=) dt,
log2 n

whose integrand clearly becomes very small if  becomes large:

_ _ _ 1
}(B t(_t) a} <e tt§R(tx) <W
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(since limy_, e % ®)+2 — (). Hence, we can bound the error as before.
If we put everything together, we arrive at the claim. [

EXAMPLE 4.3.26 (Catalan numbers). Applying (4.32) to the generating function of

the Catalan numbers,
1—-+v1—-4-z
2 Cp-2" = =T 5

we have o = —%. Setting y = 4 - z, we obtain:
4” n -
Cp1 = —fﬂy ] A-y)
-3 3 25 105
~grt Dy 2 o (n)).
NG < 50+ Tos 102w HO ()

REMARK 4.3.27. For the coefficients ey in (4.31) we have
2k

o= Agr(w—=1)-(a=2)--(a—1)

1=k
with Ay = [oFt] et - (1 + ot) 17,

THEOREM 4.3.28 (Asymptotics for coefficients of standard functions, 2). Let « €
C\{0,—1,-2,...}. We consider the “standard function”

fiz)=(1-2"" 11o Y (4.39)
a 2 812 - '
Then, asymptotically as n — oo, we have
z" (logn)” [ 1+ 4.40
"] £ (z) ~ () g ( Zlogn> (4.40)
k
where Cj = (/2)1" (a) %ﬁ .

REMARK 4.3.29. The factor 1 in (4.39) is “just” there, in order that f (z) is a power
series, also in the case where B ¢ Z (the logarithm is analytic in a neighbourhood of

z=1):
1 1\ 1 1
(Elogl—z) = exp </310g <210g1_z>>
=exp | Blog >3 1

=exp<ﬁ<;+52i4 §+)>

REMARK 4.3.30. The formulae in Theorems 4.3.25 and 4.3.28 actually remain valid
also in the case a € {0, —1,—2,...} if we interpret them as limit cases, i.e., if we set
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In (4.40), the limit should be taken after cancelling the Gamma—factors I (), so only
the first term vanishes: For instance, we have

z 1 2. 1
z"] — = — — + — +tO | — |-
log (1 —2z) n-logn n-log’n n-log*n
SKETCH OF PROOF. In analogy to the proof of Theorem 4.3.25, we choose a

“Hankel-type” contour in Cauchy’s integral formula. After the substitution

z — 1+ L, we obtain an integral over the “ordinary” Hankel contour H with
integrand

1 t AN 1 £\ n\\B t —p-n—1
nl (1 * a) (1 * ;) “ (7) (log (~)) (1 * a)
1 — log(—t) \ P
~ 0 () (logn)P | — 18" ) e,
For |t| < logn, we have

<1+£)ﬁ=1§(_]f)i—i=1+o<b§n>.

1
ogk n

Hence, these terms are negligible in our o, eXpansion. Consequently, we

may simplify further:

o (105) (5) et (1 552)"

and expand the part which is independent of ¢ by the binomial theorem:

o ()" (1 _plsh)  FE- ) <1°8<—f>)2 . ) .

logn 2! logn

Analogously to the proof of Theorem 4.3.25, we must show that this expansion
is correct “up to an asymptotically negligible rest”; this allows us to integrate
termwise, where we interchange differentiation

(7 = S exp(slog (1)) = ~ log (~t)exp (~slog (1))

and integration:

1 stk _ pdo/1 f s ¢
o H( e ' log (—t)dt = (1) 3 L5 H( £) e tdt
dc 1
= (_1)k @F—(s)' by (4.28)
This establishes the claim. O

EXAMPLE 4.3.31. A typical application of Theorem 4.3.28 is (v = %, g=-1):

! 1 | 7+2log2 1
1—2%10gﬁ Vnmlogn logn logzn !

©)
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since T <%> = /7, (F (z)1>/ = —Té)) and ¥ (%) = —y —2log 2 (see (4.25)).

4.3.5.3. Transfer theorems.

DEFINITION 4.3.32. For two real numbers ¢, R with R > 1and 0 < ¢ < 7, we define
the open domain

A(p,R):={zeC:|z| <R,z #1,larg(z—1)| > ¢}.

We call such a domain a A-domain.” The left part in the following figure illustrates
this.

THEOREM 4.3.33. Let a, B € R (not C!) be arbitrary, and let f (z) be a function that
is analytic on a A-domain. If f in the intersection of a neighbourhood of 1 and the
A-domain satisfies

o the property that, if

fz)=0 ((1 -2 (log; 1Z)ﬁ) ,

"] f(z) = O (an (log n)ﬁ) ; (4.41)
o the property that, if

flz)=o ((1—2 <log1 ! )ﬁ>
’).

"]  (z) = o (n*~* (log )"

then

then
(4.42)

PROOF. As usual, we use Cauchy’s integral formula

o= 10 = g | T

7Philippe Flajolet, in line with his cultural background, used to call these domains
“Camembert domains”.
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for a contour <y in the A-domain, which encircles the origin once in positive
direction. Concretely, we choose (see the right part of the above figure) the
contour y = 1 U 2 U 3 U 4 which consists of the following parts:

T = {zeC:|z—1|=%,|arg(z—1)|29},

’yzz{zeC:l lz—1],|z] < r\arg(z—l)]:@},

v3={z€C:|z| =7, |arg(z—1)| = 6},
e = {zeczl<|z—1|,|z|<r,|arg(z—1)|:—e};

where 1 <7 < Rand ¢ < 0 < 7. We treat each of the individual corresponding
parts of the integral separately:

R iCP

- : n+1
271 7i z

j=1,2,3,4. Then we have:

#=0(3) 0 ((3) " wesn?) -0 (een)).

since f = O <n”‘ (log n)P ) along 1 by assumption, the length of the integration
pathis O (%), and z7"~! = O (1) along 7;.

Furthermore, for ' := n - r we have

net —n—1
2l < 27m 1 ‘log t) ‘ dt —logZ<logn
. —n—1
1 a—1 B — ené‘ !
< > (logn) L 1+ - )1+ ( )
1 o tcosf| "}
< —n""(log n)ﬁf 1+ dt.
27 1 n
Since
o tcos@| "1 o
lim 1+ dt = f t2ptcosbgy 00, <« because 0<6<%
n=m g n 1

it follows that
f2 =0 (n* " (logm)?),
and completely analogously this also holds for f;.

Along 3, the function f (z) is bounded, but z=" = O (r™"); consequently f3 is
“exponentially small”.

The estimation with o (instead of O) works in an analogous fashion. (It is how-
ever slightly more complicated: the straight pieces must be “decomposed” in a
similar way as in the proof of Theorem 4.3.25....) ]
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In the following examples, the well-known Gauf$ian integral

0 2
f e 2ds = 2. (4.43)

—0
appears again and again.

EXAMPLE 4.3.34 (Unary-binary trees). We consider the species T of (unlabelled non-
empty) planar unary-binary trees (i.e., each internal node has either one or two “de-
scendants”). The following figure illustrates schematically the decomposition of this

species:
T =0 +%+ § %

This decomposition can be directly translated into the following functional equation for
the (ordinary) generating function T (z):

T (2) =z<1+T(z)+T2(z)).

Its solution is

T(2) = 1—2—\/(1232)(1—32).

The dominant singularity is visibly z = %, and the function is analytic in a A-domain,
cf. the following figure:

With the substitution
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we obtain

1—u
2557

24+u—-3 %u(4—u)

—2+u=2(1—u)+3u

2(1—u)
3u—+3yu24/(1 -4
=1+ ( 4) «—2 binom. th. “trivial”
2(1—u)

:1+3u—2\/§\/g(1+0(u))

zl—\/gx/ﬂ+37u+0<u3/2>.

(1+0(u)

Altogether, this leads to the expansion (now again in z):
T(z)=1-v3V1-3z+ % (1-32)+0 ((1 —32)3/2) :

By (4.31) (with a = —%), we have

|
N—=
N———

[s"] V1—s ~ nr

A

\—/ NIUJ
/\
" Ms

and by (441) (with « = —3 and B = 0), we see that the coefficient of the rest
O <(1 - 5)3/2) is of the order

@) <n’%) .
Altogether, we obtain

for the coefficient Ty, of 2" in T (z).

EXAMPLE 4.3.35 (2-regular graphs). The labelled species of 2-regular graphs can be
interpreted as sets of cycles of length at least 3 (= cycles in the sense of graph theory),
where we identify cycles if they differ only by a reflection. Hence, the corresponding
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exponential generating function equals

ﬂﬂze@(%C§+§+n>>

1 1 z  Z2
—explzlosT 7577

Z Z2

e 24

 V1-z

We do the substitution u = 1 — z:
—u —2uU uz Mz
@7177% @7%+”7T
u — —
flw == -

~ o (i)

(1-2) 24+ei(1-2)2+0 ((1 —z)%) .

=

L[eS)

=@

We basically proceed as in the previous example and apply Theorem 4.3.25 to the stan-
dard functions

o (1— z)_l/ 2, where we use two terms of the asymptotic expansion in (4.31),
e and fo (1 — z)l/ 2, where we use only the dominant term in (4.31).

This gives

1 5 5
—e¢ i——+0(n"2).

VT 8V tnd ( )

Hence, the number of 2-regular graphs is asymptotically equal to n! - f,,.

fn = @_% _%

EXAMPLE 4.3.36 (Children’s rounds). The labelled species “children’s rounds” is a
partition of the set of children into several “individual rounds”, in each of which one
child sits in the centre; see the following illustration:

There are exactly n”—ll different such “rounds” with n children (since cyclic permuta-
tions of the children that sit around in a circle are identified); the exponential generating
function of such “single rounds” is therefore

£+?+ﬁ+
2 3 ’
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and “children’s rounds” are simply sets of such “single rounds”. Consequently, the
corresponding generating function equals

3 4
f(z)zexp(zer%Jr%Jr---)

1
= exp (zlog 1 _Z>

e

_ 1izexp((1—2)10g(1—z))'

This function is analytic in C\R>1, and it has a singularity at { = 1. We expand the
exponential function about zy = 0:

1+log(1—z) (1—z) + {80202

fiz) - o
1 1— nq_ n—1
- (1_Z>+§2<og< 2 (12

1 1 1 (1
=1 log1 E-(l—z)-log (E)

+ O ((1 —2)? - log® (%Z)) (see [3, p. 397]).

The part 1 —log == contributes 1 — 1 to the coefficient. After application of Re-
mark 4.3. 30 we obtam an estimation for the rest from (4.41) (witha = =1 and g = 2,
respectively &« = —2 and B = 3). Thus, altogether we have

fn=1- % —n2 (logn)- (1 +0 (10:;”)) +0 (n’3 -log? n)

:1—%—n_2-logn+0<n_2).

4.4. Saddle point method

Singularity analysis turned out to be extremely useful for the determination of
asymptotics. However, what do we do if the generating function

2
e either has no singularities at all, such as e.g. * (sets), e*t7 (involutions)
or ¢® ~1 (Bell numbers),
e or cannot be approximated by our “standard functions” about the dom-

inant singularities, such as e.g. eT (sets of non-empty permutations)?

4.4.1. Heuristics: contour through saddle point. In such cases, the follow-
ing heuristic argument may help. Starting point is again Cauchy’s integral for-
mula:

[z"] f (z) = f( )dz. (4.44)

c Zn+1
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The idea is to deform the contour C around 0 with winding number 1 inside the
domain G where the function f is analytic such that

e the integrand Zn(i)l is so small on a part C’ of the contour C such that the

part 5 (-, Z n(f)l dz of the integral is negligible in the asymptotic consid-

erations,

e so that the asymptotically relevant part of the integral is the one coming
from the “rest” C” of the contour C (wWhere moreover this rest should
be easily computable, at least asymptotically).

This sounds somewhat unclear and vague, so that one cannot imagine how
this is going to work in practice. As a matter of fact, this vague idea can be
successfully carried through in so many cases such that it acquired a name:

saddle point method.®
So, to begin with, we have to estimate the modulus of the integrand in (4.44),

f(2)

This real valued function appears graphically as a “mountain landscape” over
the complex plane; according to the above vague requirement, the path de-
scribed by the contour C should “almost always be close to the plane, and only
once lead through a mountain pass”. (See the following figure.)

f(z)

So, let us consider the function g (z) := 551. By Taylor’s theorem, we have

¢(z) = g(z0)+(z—20) ¢ (z0) + % (z — z0)? ¢" (z0)+0O ((z — zo)3> for z — zp.

We write |g| in a neighbourhood of zy:

Case 1: g (z9) = 0. In this case, the function |g| has a global minimum in zy, see
the following figure:

8Recall that a trick that works at least three times becomes a method . ..
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Case 2: ¢ (z9) # 0 and g’ (z9) # 0. Then we write % = Ae'? in polar coordi-

nates, and we see that
8 (2)| = I8 (20)] - 1+r-A-eﬁ("’*9)+O<r2>“

For small r along a line segment through zy with angle 6, we have in first ap-
proximation:

o for @ = —¢ + 7, the function |g (z)| grows, from a minimum ~ |g (zo)| (1 —rA)
to a maximum ~ [g (zo)| (1 +7A);

o for0 = —¢p+ %, wehave 1 +7Ai| = vVI+7r2A2 =140 (r*) =1+o0(r),
so that the function g (z) is “essentially constant”.

Case 3: ¢ (z9) # O and g’ (z9) = 0. Let 187G _ )eit in polar coordinates. Then

18 (2)| = |8 (z0)| |1 + Ar2ei(20+¢) 4 o (,,3)) .

For angle 6 equal to

o0 = —%, we have ¢!(2+9) — 1; the function |g (z)| behaves along this
direction “essentially” like a U-shaped parabola;
o 0 = —% + %, we have e!(®+9) = —1; the function |g (z)| behaves along

this direction “essentially” like a n-shaped parabola.

In other words, the point zg is a saddle point of |g(z)|. The “strategy” of the
saddle point method consists is to deform the the contour I' for Cauchy’s integral
formula such that

e it passes through the saddle point

e in the direction of “steepest descent”” (i.e., in direction —% + 7, with
the above notation in polar coordinates);

hoping that the contour integral can be split into two parts:

e into one (small) part about the saddle point, which provides the “dom-
inant” contribution to the integral;
¢ and in a remaining part, which is “negligible”.

9This explains that the saddle point method is alternatively also called “method of steepest
descent”.
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REMARK 4.4.1 (Fundamental theorem of algebra). Each polynomial p (z) of degree

n > 0 over the field C has a root in C. For, suppose not, then f (z) := ﬁ would be

bounded,
|f (z)| < Cforall z€C,

and then, by Cauchy’s integral formula, for all Taylor coefficients of f we would get

C 1
I[2"] f (2)] < Eﬁforall R >0,
that is, |[z"] f (z)| = 0 for n > 0, a contradiction.
Let us see how the saddle point method works in a familiar example.

EXAMPLE 4.4.2 (Stirling’s formula). Let f (z) = & = ), ~z". We want to find
a “good” contour of integration I" for Cauchy’s integral formula

LR
n!  2mi Jpzitl T

So we look for a saddle point: the equation

e\’ e* e*
(W) =0 = W—(Tl—i—l)ﬁzo
has clearly the solution z = n + 1 — however, we do not need to stick strictly to our
“saddle point heuristic”, we may equally well tryz = n(n ~n+1forn — ow; nis
so-to-speak an “asymptotic saddle point”). For g (z) := (Z;‘%), the values g (n) and
g" (n) are real, thus the angle ¢ (see the preceding considerations: “Case 3”) is 0, and

as contour that cuts the real axis in the point n orthogonally we simply choose the circle
with radius r = n:

z(0) = n - & with derivativez’ (0) =1-n-¢e¥ = 1.z (4.45)
We consider the contour integral
1 2 pz(0) ) 1 27T en-ew . B
27T]1J0 (Z(9>)n+1'z (9)(19:% 0 W’H'H'GB do

- 27T
n" ;.
_ 5 f e nn@de
7T Jo
27T

<g)_”ﬁ 0 on(e0-1-10) 4.

We split this integral now “skilfully”:
1 27T 1 6 1 27t—6

7

_ —_ + —
27T Jo 27T J_s 27 Js
—

where we choose § = n—2/°,

We first consider I1: || = eR(ne)

= — phcost jg

e decreasing on the interval (6, 1), the maximum is attained at 6,
e increasing on the interval (71,27t — J), the maximum is attained at 27t — 6.
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Consequently, we may bound the integrand I} from above as follows:

en(ei"flfﬁe)‘ _ oR(n(e¥—1-16))

_ (Bn(cos 0—1)

Now we consider 19:

0 . 0 2
J en(ew—l—ﬁﬂ) do = J (Bn <_97+O<93>>d9 —e?=Y ZrTn'
"y -0

We make small a computation on the side:

o0] 2 o0]
0 _n (52 2
f e "zdl = J e 2 (62+20t+t )dt —O=t+0
) 0

71(52 o 5
<e 2 J e Mt qt
0

no? 1
— ' |~ —ndt

1 _ ns?

5e 7 :O(@”

oe]

=
N—
>,
Il
:\
[618)

Hence, we have

) 2 0 2
f e T de = f e "5do+ 0 <e_”1/5) N
)

—00
2 Q0
[ a0 ()
nJ o
—
N

_ \/? +0 (w4 oo

If we put all this together, then we obtain the following variant of Stirling’s formula:

- () (o)

n! e
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EXAMPLE 4.4.3. Let uy, be the number of ordered set partitions; these are like ordinary
(set) partitions except that the order of the elements in each block is relevant. In the
language of species, these are

sets (permutationens),
from which we directly read off the (exponential) generating function:

z" z
Zunazexp(l_Z).

n=0

For Cauchy’s integral formula, we have to deal with the integrand

f- 22)

Its derivative is

exp (%) z :
f/ (Z) = Zn_|:_l2 = <<1 . Z)Z - (n + 1)) : (_<12TZ) :(1iz)+(1fz)2=(1jz)2

If we equate f' (z) to zero, we are led to the equation

Zm+1)—zQn+1)+1)+n+1=0,

Its roots are

r1a = 2n + 3 + /4n? +25n++1)9—4n2 S Y =
2n+3++/4n+5
~ 2(n+1)
We choose the smaller root
=14 o 4(n+1)+1’

2(n+1) 2(n+1)
and, from the series expansion
z 22 72 57
Vidz=1+2-2 42 2= o(5> 1
tz=l+5 -t e tOL2 (|z] < 1)
of the square root about z = 0, we obtain

and, for z = (n + 1), we get

2 =1 55 vt (0 (amrn)) 0 )

By the series expansion

1,z s e

5
oz 1
112 2778 16+128+O(Z) (2] <1)
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about z = 0, we now obtain
1 1 1 1 1
= —— =—|1+0| - n— ).
G o)) e

Altogether, we have

—
S|

1
a0l
Z1 ﬁ+2(n+1)+0n
Aguain, we approach the situation “generously”. We choose the “asymptotic saddle
point”
1
=1-—

T
on the real axis, which is at the same time the radius of the circle about 0 that we choose
as integration contour (see the preceding example, in particular (4.45)). Then Cauchy’s
integral formula yields

u, 1 (?7° retf N\,
P . exp <1—reﬁ9 —nif | r"dé.

As in the preceding example, we split this integral “skilfully”:

27T 271—05 ) 27T—08
0 -0 -0 o
—_—— =
=10

=1}

where we choose 6 = n~"/10,
Sincer =1 — %, we have
retf 10 10 10 2
T om0 =" elf 412 @20 3. e300 1 et 40— 4 0(6)
—re
=1|r+r 477+ |+i0 | r+2r" +3° + .-
_r _ _ r —n_
= n—1 P n—/n
92
-y 1:+22r2+32r3+--;

r(1+r) _ _ 3/2
o /n—3n+42n3/

+O(63> 1:+23r2+33r3+--; (n — o0).

r(1+4V+V2>=O( 1 ):O(ﬂz)

a-n* a-n*
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For the part 19, we have |0]> < & = n=2Y1%, hence O (6°) O (n?) = O (n_l/m).
Consequently, we get

12 - zi Jé @ﬁﬂe(ajr)z —n) _g2 V((11+:))3 +O((193”4)d9
TJ-s
% 5 e (Vi-1-i0vin—6 (n2+0(m) +0 (n/10)) a0
% ¢ exp (Vi —1-02n¥2 40 (n=1/10) ) o,

where the last simpliﬁcation follows from

0vn =0 (n_z/lo) , 020 (n) =0 <n_4/10> :

As in the preceding example, we have

0 0
2,,3/2 2 2Y,,3/2
J 0 qp — J o (PG g5
)

322 3/2
125 f o202 g

//\

_n3252

n3/252

® _,1/10
:7=o<e Sy
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For the remaining part of the integral, which we denoted by I, we collect the following
facts: we have (of course) ez — ellfz_l and (equally obviously) ﬁ = %;

from this, it follows immediately that

1 1—re 0 1 1—rcos 6
P AT 2rcos0 172 )| e P \1 -2rcos0+12)°
The derivative of the function —>"2 (z € [-1,1], 0 < r < 1), with respect to z

e

) 1-2rz+12
1- o . , . .
ﬁ > 0. Consequently, it is (strictly) monotone increasing. However, this
—2rZ+r
implies that, for z = rei? and 6 < 0 < 27 — 5, we have

<o lex 1—rcosd
b P 1—2rcosé+1r2)’

_z_
el-z

is

z

el-—z

and
-7/10

1—rcosn
ex
Pl1 2 cosn=7/10 4 2

) = exp (\/ﬁ—nl/lo—kO(l)).

(This is seen — after the substitutionsr = 1 — ﬁ and n = z71° — from the Laurent
series expansion

(z°—1)cos (z7) +1 11 3
710 — 2754 2(z5 —1)cos (z7) +2  2° Z+O<Z>’

and the “backward substitution” z = n—Y/10.) Furthermore,
Il < z_nr—neﬁ—nl/10®0(1) ~0 <®2\/ﬁ—nl/10)
"o !

with the expansion of r~" as before. This may not look very spectacular: however,
asymptotically, I} is “much smaller” than 10:

I

1/10
o < C‘n3/4®—n/
I?’l

4

hence
1} =o<12> (n — o).

REMARK 4.4.4 (Longer asymptotic expansion). We may take more terms in the
Taylor series expansion in @ — for €* (see Example 4.4.2) we get for instance

o0 . 0 2 .3 4 . g5
J @n(ew*l*ﬁe)de = f ®n<7%7n%+g—4+n1€70+0(96)>d9 <—®Z=1+Z+O<ZZ)!

—0 —00

0 02 93 94 95
_ 7717 o .Y v - Y 6
fooe (1 i +n24+m1120+n0<9 ))de

\/27T 3 n 0 4 _p2n
—\/ﬁ—nnO(...)ﬁ—ﬂf_wG@ 2d6

=0, see below.

0 2n
+0 <n f 9%e—"? 2d6> .
—o0
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Here, the imaginary part is zero since %=1 is an odd function.
With the integrals
o0
f gloide — V2T
0
J o025 4o — 15\/271’
" 17/2
we obtain

V27T L1 1271 L0 <n’5/2) ‘
N L

4.4.2. Hayman's theorem. Our typical situation is the following: let f (z) =
D >0 fnz" be analytic about z = 0; we want to express the coefficient f,, by using

Cauchy’s integral formula, where we integrate along a circle z () = ref:

The subsequent steps follow the general pattern:

¢ show that the “tails” of the integral (i.e., 6 ¢ (—J,)) are “asymptotically
negligible in comparison to the main part”;

e show that, for the main part of the integral (i.e., 6 € (-4, 9)), there exists
an approximation of the integrand of the type e

e show that the tails of these “new, approximative integrals” (i.e., the

integration domains 0 < —¢ and 6 > J) are again asymptotically negli-

gible;
see the following schematic illustration.
ignore tails
I:
-7 =6 ) T
approximate by e~
1I: in the centre
—) 5
add tails
I1I:
+00

We now make situations in which this “general pattern” works more precise.

For v > 0 in the circle of convergence with f (r) > 0 and small 6, we have the
series expansion in 6

log (f (re®®) ) = log (f i

(4.46)
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Of particular interest for our purposes are the first two terms, which, using the
notation & (r) := log (f (r)), we write

a(r):=wa1(r) =1k (r) = rj;((:)) (4.47)
b(r):=ay(r) = W' (r) + vl (1)

SO L () (F0N

T (f(r> (567 ) (449

DEFINITION 4.4.5. Let f (z) be analytic about 0 with radius of convergence 0 < R <
o, and assume furthermore that f (z) > 0 for z € (Rg, R) for some 0 < Ry < R.
The function f (z) is called Hayman-admissible, if it satisfies the following three
conditions:

e H1: lim, ,gra(r) = +ooand lim, ,gr b (r) = +0;
e H2: there is a function J (r) on (Ro, R) with 0 < 6 (r) < 7t such that we have
uniformly for [0] < J ():
f (1,@1‘19) — () oi0a(r)—(67b(r)) /2+0(1) (r - R);

e H3: we have uniformly for 6 (r) < 0| < 7

f(reﬁg) =0< fb(2)> (r - R).

In practice, the first thing to do is to find the function J (r): with the notation
from (4.46), by H2 and H3 we should for r — R on the one hand have

1%} (V) 0 (1”)2 — 00, <« (follows from the combination of H2 and H3),
and on the other hand
o3 (i’) ) (1’)3 — (0. « (follows from H2 since the error term in the exponent is of the order o (1))
Altogether, this leads to the necessary condition

2
lim 2 (1) =
r=Rp; (r)

3
For the “saddle point Ansatz”, we need
a2 ()7 =0 (6(r) and 6 (r) = o (a5 (1)), (4.49)
that is, e.g.
5(r) = (r)" V% az (r)"V°.

z 22 . _z .
REMARK 4.4.6. For example, ¢, e® 1 and e** 2 (with R = o) or eT=2 (with R =

1) are Hayman-admissible functions. Not Hayman-admissible is for example e
(becomes “too large” about v and violates H3).
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THEOREM 4.4.7 (Hayman). Let f (z) = >, fuz" be Hayman-admissible. For n €
IN, let { = ( (n) be the largest (and, thus, unique) solution of the equation

_ f=)

a(z) = Zf @ =

in the interval (Ro, R). Then, for n — o0, we have
f(0)

LN =Tk

where b (z) = 22;—; log f (z) + z% log f (z).

PROOF. As always, we use Cauchy’s integral formula in the “split” Version

fur" = giﬂ f(:f <r®ﬁ9) e_”ﬁed? + 8% J:N(sf <reﬁ9) e‘”ﬁed?,

~— ~—

1
1;9 I

where we set § = & (r). The part I} can be immediately approximated by as-

sumption H3:
2m b(r)

For the main part I9, we want to show:

DAY
#- L0 (exp (_%) +o<1>) PR @0

(independent of ). To achieve this, we use assumption H2:

I

)
10— %J_(sf(r)exp (ﬁ(a (r)—n)@—%b(r)92+o(1)) do
£ 0

T J @) =m=206 (1 | 5 (1)) dO —eo®=140(1)
-0

7T
) )
_f@ J 01~ 3 g0 1, J R LCL T ) R
2t \Jos 6

5
_f (1) (J ei0@(-m-3b(6* 39 1 o <b (r)_1/2)> L o ar
-5

<

271
The assumptions H2 and H3 both hold for 8 = § (r). Together, they yield

b (r)e 0002 0 — (52D (r) — o0 for r — R
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We perform the substitution t = 4/ @9 (i.e., df = \/%dt), and we obtain for
r— R:

b(r)
0 __ f(i’) ) J(S z 2 *tzﬂlt b(y)( (r)—n) -1/2
=52 (5 i\ 5)° dt+o<b(r) )
b(r)

_ f(r) 7 —t2+nt o)
= m » b(r) dt +0 ) «—form a square

© (. ) a)=n)?
_ & J o (t ‘/Zb(f (a(r) n)) 20 dt 40 (1) | —o,/b(r)/2—%
7T4/2b (r) \J-oo

o0o—1

0,
7TA/2b (1)

Zb(r

e ds +0 (1)

)—1)

N

Thus, we established (4.50), and the claim of the theorem follows immediately:
for, by H1, we have lim, ,g a (r) = +, and hence

lim ¢ (n) =R;

n—aoo

/

we simply put r = ¢ (n). O

The convenient feature of the concept of Hayman-admissibility is that there
hold the following “closure properties”: “Large classes of functions are Hayman-
admissible”.

THEOREM 4.4.8. Let f (z) and g (z) be Hayman-admissible functions, and let p (z) be
a polynomial with real coefficients. Then:

e f(2)-g(z) and /@ are also Hayman-admissible;
e f(z) + p (z) is Hayman-admissible; if the leading coefficient of p (z) is posi-
tive, then also f (z) p (z) and p (f (z)) are Hayman-admissible;

e Ifalmost all Taylor coefficients of eP?) are positive, then also e?®) is Hayman-
admissible.

SKETCH. In the first place, one has to find the function J (r): to this end, one
uses (4.49). O]

We give some examples in order to illustrate the concept of Hayman-admissibility.

EXAMPLE 4.4.9. For f (z) = @, we have the expansion
f <r®ﬁ6) _ o trif—r5 +0(r8°)
— f(r): erﬁ@—r%+0(r93).

Hence, a (r) = b(r) = r, and thus H1 is of course satisfied.
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For H2 we must choose 6 = 6 (r) such that

lim 6% = 0.
r—R

Thus, § = o (rfl/ 3) , and for H3 to hold we must achieve

0| _ 2o (2
’f(re )’— —0(\/;).
Since rcos @ = r — ,,62_2 +O (r0%) and \/r = 21987 these conditions will be satisfied

for

6
re'
€

— |plos 0

logr =o <r92) ,

so, for example, for & = r=2/°,

EXAMPLE 4.4.10. For f (z) = 1 , we consider the Taylor series expansion of log 1— reﬂf
about t = 0:

1 1 5, i g4 —r ’ r-(r+1) 3
log1 r@ﬂt_logl—r t +1—r t +(1—r)2 t+O<(1_r)3 .

We obtain the expansion

: 1 i . 1
f<ren9)=1_rexp<1_rr-9 11/) 92+O<%-93>>

(
) = 1 r)z, and H1 is satisfied (R = 1). In
order to satisfy H2, we should have 6 = o (1 —r). For H3 to hold we must achieve

()] = o ( f b“(i)) ,

Clearly, here we have a (r) = 1= and b (r

that is,
1 121 é _, i
1—retf V) T\
—r
However,
1 B 1
_ yeif|
1= ref| \/(1 — rcos)* + (rsin6)?

1

N V1 —2rcos@ + r?

and for r — R = 1 we have 0 — 0 (since 6 must be of order 8 = o (1 —r)); more
precisely,

, <«sin?+cos? f=1

0> 4 2
C059—1—7+O<9>=1—0(1—r) .

Hence,
1 _ 1

[1—re??] \/(1—r)2+2r-0(1—r)

4
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and for r — 1 this tends to oo: consequently f (z) is not Hayman-admissible.

EXAMPLE 4.4.11. For f (z) = o7, we have
. . 02
0) _ 2210 _ 2 2:0 4,2 293
logf(roa)—re = 1"+ 2r°i6 4r2+O<r6>,

thus a (r) = 2r? and b (r) = 4r>. However, H3 cannot be achieved. For, if we would
assume that condition, then, for § < |0| < 7, we would need

. 7’2
‘f (rew)‘ — @ cos20 77, <2_r> (r > R =),

which is of course wrong for 6 = 7.

EXAMPLE 4.4.12. Let f, be the number of permutations of [n], which have only cycle
lengths 2 and 3 in their disjoint cycle decomposition. In the language of species, we
consider the composition sets (cycles,):

2z

fl@)=>] J%z” ez T,

w

n=0 """
We have
. 1 . 1 .
9\ _ ~ 2102 , ~ 3103
logf<r® )—ze rtger
o 2, .3\ 2 3\ 3
- (5+5)+ (Per)io- (22430) S0 (#)
—_— —_—
a(r) b(r)
This function is Hayman-admissible, and hence
asn — oo, (4.51)

N Ik

where ¢ = { (n) is a solution of

a(l)=0"(1+0) =m; (4.52)

ie, {(n) ~ n'3. However, since { appears in the exponential in (4.51), this first
approximation for { is not good enough for getting an asymptotic formula for f, in
terms of familiar functions; we need more terms in the asymptotic expansion for . How
this is done is explained below. It illustrates another important concept in asymptotic

analysis, the so-called “bootstrap method”. ™

In (4.52), we make the Ansatz { = n'/3 + p, with p of smaller asymptotic order than
n'/3. We expand the product and obtain

n+ 1?3 (1+3p) + nl/® <2p +3p2> +0*+p’ =n,

10The name comes from the idea to pull oneself out of one’s boots, similar to Miinch-
hausen’s famous story where he pulls himself out of a swamp. This is somehow how the
method works.
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or, equivalently,
n?3 (14 30) + n'/3 (20 + 30%) + o2 + p* = 0. (4.53)

Now we suppose that p is of larger asymptotic order than a constant. In that case, the
term 3n%/3p is asymptotically larger than all other terms on the left-hand side of (4.53).
This is a contradiction because then the left-hand side cannot be zero. Hence, p must be
asymptotically constant. In that case, the asymptotically largest terms on the left-hand
side of (4.53) are n*3 (1 + 3p). They must (asymptotically) “cancel” each other, by
which we mean that p must be chosen such that they actually are of smaller order. We
infer that p = —% + o0 (1).

We need to continue since, by our findings so far, the term (> (which appears in the
exponential in (4.51)) is still not approximated to an order that would tend to zero. So,

we let { = n'/3 — 1+ p, with p of smaller (asymptotic) order than a constant.'! If we
substitute this Ansatz in (4.53), then we obtain

1/3

1 1 2
2/3 2_ 153, 3 1 _
3n“"p+3n'"p 3" +p 3P + 5 0. (4.54)

By arquments that are analogous to the previous ones, here we find that p must be of
the order O <n*1/ 3 ) In that case, the asymptotically largest terms in (4.54) are 3n*/3p
and —%nl/ 3. They must (asymptotically) cancel each other, and therefore we see that
o= dn P40 (n1?).

This is still not good enough. Another round of “bootstrap” reveals that

7 =n"?— % + %n_1/3 — 82—171_2/3 +0 (n_2/3> .

If this is substituted in (4.51), we obtain

1 1.2/3 _1,.1/3, 1
egn—s—zn/—gn/—kﬁ
fn ~ n! — , asn — oo.
Vérn3it2

Here we used that
gn _ nn/3 (gn—1/3)”

n
L <1 - %n‘m + én_m - %”_1 o <”_1>)

1 1 2
_ n/3 R Ve e J B R | -1
n"’> exp <nlog (1 3" +3" 51" +0<n )))

— n"Bexp (—%nz/3 + 11—8711/3 +o0 (1)> s A5 — 0.

we allow ourselves the liberty of using the same symbol again although the p here has
nothing to do with the earlier p.
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4.4.3. A saddle point theorem for large powers.

EXAMPLE 4.4.13. If we consider power series F and f which are compositional inverses
of each other, that is,
F(f(2) =z

then the coefficients of F (z) can be determined by the use of Lagrange inversion:

G =[] f0.
We write f as

f(Z)ZM'

Then we obtain the following contour integral for the coeﬁicients of F (z):

n 9" (z)
'] Fz n27rnJ z” %

EXAMPLE 4.4.14. Let W,, denote the number of all paths in the lattice Z. x Z. that
consist of right steps (1,0), diagonal up-steps (1,1), and diagonal down-steps (1, —1),
and which start at (0,0) and end at (n,0). We have

107 (1 "o J(1+Z+22)n
Wn—[{zﬂ (Z+1+z) =2 ); ) dz.

These two examples motivate to consider a more general problem: determine

NI A(z)B(2)" = L A<Z>B(Z>ndz
[la@ser -5

forn — coand N — .

THEOREM 4.4.15. Let A(z) = i a]-zj and B(z) = i~ b]-zj be two functions
analytic about 0 and satisfying the following properties:

L1: A and B have non-negative coefficients and B (0) # 0.

L2: B (z) is aperiodic, i.e., ged ({j : bj > 0}) =1.

L3: The radius of convergence R of B (z) is < oo, the radius of convergence of A (z) is
> R.

Let T be the (left) limit

. B'(s)
T= I sBi)
Then, for A := =, we have: if A € (0, T), then
B (0)"

[[ZNH A@)BE@)" = A(@Q) T (1+0(1), (4.55)

where ( is the largest solution of the equation

B Q) =5 =

(cf. (4.47)), and
d?
¢ = 32 (log B (s) — Alogs)l,_ -
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This holds uniformly for A in an arbitrary compact subinterval of (0, T).

For the proof we need the following simple lemma.

LEMMA 4.4.16. Let f (z) = >}, fuz" be analytic about O for |z| < R with non-
negative coefficients, of which at least two are positive. If there is a non-real z with
z| < r, for which

f @)= f(l2]),
then
e this z must be of the form

27
z=r-e 1,

where 0 < p < gand ged (p,q) =1,
e and there must exist an a € Z such that f, # 0 only forn = a (mod q).

PROOF OF THE LEMMA. Of course, we have

2, fu"

n=0

10

< D a2l = D) falZ"] —fuz0

n=0 n=0

Equality for a z = re'? can only hold if all powers z" = r"e" (interpreted as
vectors in IR?) point in the same direction. So let two arbitrary coefficients be
non-zero, say fu,, fu, # 0. Then we must have

enlﬁé‘ — n2ﬁ9

e < |ny —ny|0 = 2k,

and thus = 271X where we may of course choose k < |n; —ny|. Let

[nq—ny|”
g = ﬁ be the reduced fraction. Then we have
q | ny —ny,
or, equivalently, n; = n, (mod g). O

PROOF OF THE THEOREM. For fixed r with 0 < r < R, by assumption L2 (ape-
riodicity of B) and Lemma 4.4.16, the function ‘B (reﬁe) } attains its unique maxi-
mum at 6 = 0. Therefore there exists a (small) 6; € (0, 7r) such that

o |B (re')| < |B (re'®)| for 6 € [0, 7t];
e |B (ret?)| is (strictly) monotone decreasing on [0, 6;].
? y gon [0,6]

Consequently, if we integrate along the contour z = {e!?, then we obtain the
desired coefficient as | (7r), where

and where for n — oo the difference | (7r) — J (61) is exponentially small (be-
cause of the above estimation for |B (re'?)|). If we expand as in (4.46), we obtain
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for the integrand the approximation (N = An)

AQ)B(Q)" exp(id | af () +n | af () - A
_
=0 by assumpt.

2

L (2@ + b @) <0 (n-0)),

for a4 (¢) and af (¢) are O (1) for n — oo since { does not depend on 7. Now let
0y := n~2/>. Then, for 6y < 6 < 6;, we have (of course)

ef%(a§(§)+na§(§))+0(71-93) -0 <®_n1/5) -(Bo(n_l/S) _0 <®—n1/5)

7

for n — . Hence also | (61) — ] (6p) = O <@*”1/5) for n — o, that is, exponen-
tially small. The desired coefficient is therefore asymptotically | (6p): for 6 < 6y
we have however (of course) 92—2 as (Q) = O (n_"‘/ 5) (n — o) — that is, the
desired coefficient is (after “appending” the asymptotically negligible integral
ends) asymptotically equal to

A@Q)BE)" f@ b0y ALBE)"

27N — ¢NAy/2mn - ab (g)'

The coefficient a5 is the third Taylor coefficient in the expansion of log B (re'?),
hence

d? ;
o (r) = — @logB <r® 9)

B' (1 zB”(”)_r2<B/(”))2,

o B B0 B (r)

and we have

d2
¢ = P (log B (s) — Alogs) )

B'(Q) (B(QY A a5
_<B(C)> o

S
This establishes our claim. 0
EXAMPLE 4.4.17. Let f (z) be given by the equation

f2)=z2-¢/® — f(z)e /G =2

Le., f is the compositional inverse of z - e ~*. By Lagrange inversion, we get

I _
fnZE_z ﬂ(ze’z)
_1-71 (an
-2l =
_l—nfl zZ\Nn
=== @
1
n
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In the notation of Theorem 4.4.15, we have A (z) = zand B (z) = *,aswellasn = N
(hence A = 1). By the theorem, we obtain
nh—1 1 el
nl n” gt 2mng
where A = ¢ = { = 1, thus (not very surprisingly, see (4.1)):
nh—1 1 "
n! - E 2’

EXAMPLE 4.4.18. We consider the trinomial coefficients
n
Ty := [Z"] <1 +z +zz) :

In the notation of Theorem 4.4.15, we have A (z) = 1and B (z) = (1+z + zz), as well
as n = N (hence A = 1). By the theorem, we get

(1+7+20)"
ona/2mné

Tn’\"

where ( is determined by the equation

1+27
— 7 =)A=1,
Cl+§+?
thatis, { =1, and

d2
¢ = a2 (log B (s) — Alogs)|;_r_y

Cd /142 1
S ds \1+s+s2 s

1-2s—2s2 1
T a2 a2
(1+s+s2)" S

—A=1
s=1

2
-

s=1

Thus, we obtain
3n+1/2

NG
EXAMPLE 4.4.19 (Asymptotics for unary-binary trees). In Example 4.3.34, we had
already considered the number of unary-binary planar rooted trees with n > 0 vertices,

which we denoted by T,. The corresponding generating function T (z) = >, T,z"
satisfies the equation

Ty

T (z) =z<1+T(z)+T(z)2).

T
T+T?

In other words, T is the compositional inverse of 1——: 1= =z

By Lagrange inversion, we obtain
1 1+z+2%)"
M, = 2] ( )
n z"
1 n
= E[[z”]] z <1+z+zz) :
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Completely analogously as in the preceding example, here we obtain
3n+1/2
2v/rn3’

in agreement with our finding in Example 4.3.34.

Tn ~

4.5. Asymptotics of combinatorial sums

The idea that we successfully applied in the saddle point method, can also be
applied to sums (instead of to integrals). We illustrate this by considering an
example.

EXAMPLE 4.5.1 (Motzkin numbers). The number of all paths in the lattice Z x Z.
which

e run from (0,0) to (n,0);

e consist of right steps (1,0), diagonal up-steps (1, 1), and diagonal down-steps

(1,-1);

e never pass below the x-axis;
is called n-th Motzkin number, and is denoted by M,,. If, in such a Motzkin path,
we delete the horizontal steps, then what remains is evidently a Dyck path that consists
of 2k < n diagonal steps. This leads us straightforwardly to the formula

n/2
1 [2k n
My = k+1<k><n—2k)' (4.56)
k=0 ‘- )
=:5(n,k)

The summands s (n, k) in this sum “optically” show a similar behaviour as the function

o~ that strongly decreases away from zero, see the following plot for the summands
s (100, k):
1 1044i Summands for the 100-th Motzkin-Number

1.0x10% [

8.0x 10%

6.0x10% [
40x104 [

20x10% [

10 20 30 40 50

For the determination of the place of the “peak” of these summands, we look for the k,
for which s (n,k+ 1) /s (n,k) = 1. This leads to the equation

k+1(n—2k)(n—2k—1)
k+2 (k+1)?

7

respectively equivalently
(n—=2k)(n—2k—-1)=(k+1)(k+2).
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Again, we are not necessarily interested in the “exact” location of the peak. With the
“approximate” Ansatz k ~ An, we are “approximatively” led to the quadratic equation

(1-210)% = A%,
with obvious solutions Ay = 1 and Ay = % Therefore, we set ko = 5, and approximate
s (n,n/3 — kq) with the help of Stirling’s formula (4. 1) in logarithmic form:
logn! ~ —n + ( ;) logn + = (log27r)

We have
n!

(k+ D) (k)! (n — 2k)!

= exp<<n+ %) logn+1—log2m

s(n,k) =

<n—2k+ 1) log (1 — 2k)

1 3

Now we substitute k = n/3 — ki and use

log <—z 3) logn—log3+log( )

(for z = ky and z = ky — 1) together with

log k+1>

1og(1—z)=z+22—2+0(z3)

to obtain (after some computation):

n

—log(2m) + 5102g(3) +0 (i—i))

31+s 2—1(9k2 -3k, +3 ki’
= W@ ”< 1 1 ) 1 + O ﬁ .

(The expression becomes so simple because many terms can be “subsumed” in the error

9k% —3k1 +3
s (n,k) = exp (1—1+ —2log(n) + nlog(3) + 2

3
term O (k ) .) computations ok, ﬁx this??? Consequently, we have

2 Z 9k2 3k+3) 1+0 k_3 (4 57)
27m7- n%) )" '
We split this sum as follows.

M, = Z () + Z (+-).

k| <n3/5 |k|>n3/5
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For |k| > n®° (ie, k = + ([n3/5] + k1) with k; > 0), the summand for |k| = n®?
dominates the other summands, provided n is large enough:

-1 (9(n3/5+k1)2i3(n3/5+k1)+3) _ o (5 2y /) O (n725)
Consequently, we can bound that part of the sum by
>, ()|=0 <n ~3”n_2e_9”1/5) .
|k|>n3/5

This is exponentially small in comparison with 3" /n3/2. The other part of the sum is

I (10 (u0%)).

|k|<n3/5

If we extend the domain of summation of this sum to all of Z, then we introduce an
error, which however is exponentially small. Thus we arrive at

nZ —e_9< ) ,

3n+5/2

272

and the sum can be identified as Riemann sum for §*__ e 9dt = 1\/m. Hence, we
get
3n+5/2 ) 3n+3/2

T =¢@€

My ~e? =~ -
" © 27'[1’13/23 2/ 71113

Exercise 38: Let w, be the number of possibilities of paying an amount of n Euro using 1-Euro—
coins, 2—Euro—coins and 5—Euro—notes (the order of the coins and notes is irrelevant).

(1) Determine the generating function ), -, wnz".
(2) Determine the asymptotic behaviour of wy, for n — 0.

Exercise 39: Let D, be the number of permutations of [n], whose disjoint cycle decomposition
does not contain any cycle of length < k. (So D,,1 is the number of fixed—point—free permutations

of [n].)
(1) Show:

D JREE - &
Z wkon _ )

n=0
(2) For k fixed, what is the asymptotic behaviour of D,y forn — co?

Exercise 40: Let w, ; be the number of possibilities of paying an amount of n Euro using 1-Euro—
coins, 2—Euro—coins and 5—-Euro—notes, where exactly k coins or notes are used (again, the order of
the coins and notes is irrelevant).

(1) Determine the generating function ., 1~ wn/kz"tk.

(2) If we assume that all possibilities which are enumerated by w, = Y w, ; have the same
probability: What is the asymptotic behaviour of the expected value for the number of
coins and notes which are used to pay an amount of n Euro, forn — o0?
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Exercise 41: Let R, be the number of possibilities of (completely) tiling a 2 x n rectangle by 1 x 1
squares and 1 x 2 rectangles (dominoes).

(1) Determine the generating function »,,~q Ruz"
(2) Determine the asymptotic behaviour of Ry, forn — o0?

Hint: The fact that the dominant singularity can not be calculated explicitly is not an obstacle. One
has to continue to calculate with the dominant singularity symbolically.

Exercise 42: Let p (n,k) be the number of all (integer) partitions of n with at most k summands.
Show:

. 1
2, p(n k)= A-2)(1-29)-- (1—28)

n=0
Determine the asymptotic behaviour of p(n, k) for fixed k and n — co.

Exercise 43: The exponential generating function of the Bernoulli numbers by, is

Z buz" = ez —1

n=0

Determine the asymptotic behaviour of b,, for — 0.

Exercise 44: The fraction E) is an entire function with zeroes 0,—1,—2,.... Show WeierstraB3’

g == (2

where 7y denotes Eulers constant

product representation:

v = nlgl;@ (Hy —logn)

H-3;

and

\|,_‘

denotes the n—th harmonic number.

Exercise 45: Show the reflection formula for the gamma function:

T)Tr(1-z) = -~

. 4.58
sin 71z ( )

Hint: Use the product representation of the sine:

sinz =z n < n27'c2) (4.59)

Exercise 46: Show the duplication formula for the gamma function:
1
['(z)T (z + 5) — 21722737 (2z)

and its generalisation

[Ir <z+ >—mz—m2(2n)"’z‘1r(mz).

j=0
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Exercise 47: Show using Stirling’s Formula for the T—Function
-1 a—1 1
n+u _n 1+0(L
n T (a) n

Hint: Here is Stirling’s Formula:

T(s+1)~se*\V2ms (1+O (%))

Exercise 48: A Motzkin path is a lattice path, where every step is of the form (1,0), (1,1), (1,1)
(horizontal, up— and down-steps), which starts at the origin, returns to the x—axis and never goes
below the x—axis. Let M, be the number of all Motzkin paths of length (i.e., number of steps) n.
Show that the generating function for Motzkin paths is given by

ZM i 1—z—+v1-2z—-322
n - .

272

n=0

Derive an explizit formula for M,,. Use the generating function to determine the asymptotic behaviour
of M, forn — oo.

Exercise 49: A Schroder path of length n is a lattice path consisting of steps (2,0), (1,1) and
(1,-1) (i.e., double horizontal, upward and downward steps) which starts at the origin, ends in (n,0)
but never falls below the x—axis. If we assume that all Schréder paths of length n have the same
probability: What is the asymptotics of the expected value of the number of steps for a Schroder
path of length n forn — o0?

Exercise 50: Consider the number of cycles in the disjoint cycle decomposition of permutations of
[n] on average: What is the asymptotics for this average for n — o0?

Exercise 51: Let H, = Z;’zl j~! be the n—th harmonic number. Show that

1 1
Z H,z" = 1—log 1 ,
n=0 -z -z

and use this result together with singularity analysis to obtain an asymptotic expansion of Hy, for
n— oo.

Exercise 52: Let u, be the number of permutations of [n], which only have cycles of odd length in
their decomposition into disjoint cycles. Determine the asymptotic behaviour of u, for n — 0.

Hint: Observe that the generating function is analytic in a “Double-Delta—Domain” (i.e., in a disk
with two “dents” at the two singularities), so we have two contributions according to the Transfer
Theorem.

Exercise 53: Determine the asymptotic behaviour of the sum

=2 ()0)

for n — 0.
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Hint: Compute the generating function of these sums, i.e., multiply the above expression by z" and
sum over all n = 0, apply the binomial theorem for simplifying the double sum thus obtained.

Exercise 54: Denote by I, the number of all involutions (an involution is a self-inverse bijection) on
[n].
(1) Show

z" 2
Z In_ = ®Z+Z7.
n!

n=0

(2) Use the saddle point method to determine the asymptotic behaviour of I, for n — oo.

Exercise 55: The exponential generating function of the Bell-numbers B,, (B, is the number of all
partitions of [n]) is
z" z
Z Bn_ = ®(B _1.
n!

n=0
Use the saddle point method to determine the asymptotic behaviour of B, for n — 0.
Exercise 56: Determine the asymptotic behaviour of the sum

3 (S

Hint: Determine the generating function for this sum!

for n — 0.

Exercise 57: The saddle point method can also be used for the asymptotics of the Motzkin numbers
M,, (see exercise 48) for n — 0:

Show
M, = [[ZO]] <z+ 1 +z_1)n — HZZH <z+ 1 +z_1)n

and obtain a complex contour integral for M;,, which can be dealt with using the saddle point method.

4.6. Exp-log scheme

As another application, we mention the following (without proof):

DEFINITION 4.6.1. A function G (z) which is analytic at 0, has only non-negative
coefficients and finite radius of convergence p, is said to be of logarithmic type with
parameters (x, A), where x, A € R, x # O, if the following conditions hold:

(1) the number p is the unique singularity of G (z) on |z| = p,
(2) G (z) is continuable to a A—domain at p,
(3) G (z) satisfies

1
(log (1 - z/p))*

G(z)=x-logi+/\+0 asz — pinA. (4.60)
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DEFINITION 4.6.2. The labelled construction
F = Sets (G)

is called a (labelled) exp—log—scheme if the exponential generating function G (z) of G
is of logarithmic type.
The unlabelled construction

F = Multisets (G)
is called an (unlabelled) exp—log—scheme if the ordinary generating function G (z) of G
is of logarithmic type, with p < 1.
In both cases (labelled and unlabelled), the quantities (x, A) from (4.60) are called the
parameters of the scheme.

THEOREM 4.6.3 (Exp-log scheme). Consider an exp-log scheme with parameters
(r, A).
Then we have

"] G (z) - - _"pn (1+0((0gm)?)),
[z"] F(z) = q;)»(:; n*h o <1 + 0 <(1og n)*2)> ,

where ry = 0 in the labelled case and ro = Z]->2 @ in the unlabelled case.

If we consider the number X of G—components in a (randomly chosen) F—object of size
n, then the expected value of X is

k-(logn—Y (x))+A+r+0 <(logn)*1) (where ¥ (s) = %F (s)),

where 11 = 0 in the labelled case and ro = 3,;=, G (o) in the unlabelled case. The
variance of X is O (logn).

Exercise 58: Determine the asymptotic behaviour of expected value and variance of the number of
connected components of 2—regular labelled graphs with n vertices for n — 0.






Bibliography

[1] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and tree—like Structures, vol-
ume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1998.

[2] A.Erdélyi, editor. Higher Transcendental Functions, volume 1. McGraw-Hill, 1953.

[3] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[4] M. Fulmek and C. Krattenthaler. Diskrete Mathematik. Vorlesungsskriptum.

[5] H. Heuser. Lehrbuch der Analysis. B.T. Teubner, 12. edition, 1998.

[6] G. C.Rota and R. Stanley. Theory of Mobiusfunction. Z. Wahrsch. Theorie, 2:340-368, 1964.

[7] R. Stanley. Enumerative Combinatorics, volume 1. Wadsworth & Brooks/Cole, 1986.

133



