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Unbalanced Riemannian Metric Transport

This is joint work with M. Bauer and FX Viallard: We present
weak Riemannian metrics on 6 different spaces related to the space
of all Riemannian metrics which fit together via Riemannian
submersions. Its geodesics are like the unbalanced version of the
Brenier-Otto optimal transport with the most interesting version
on the space of Riemannian metrics.
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The spaces

Let (M, g0) be a compact manifold equipped with a background
Riemannian metric g0 with ρ0 = vol(g0). Then let
▶ C(M) = M × R>0, the cone over M.
▶ Dens(M) = Γ>0(|Λd |(T ∗M)) the space of all positive

densities on M.
▶ Diff(M) the diffeomorphism group of M.
▶ Met(M) the space of all Riemannian metrics on M.
▶ Gau(TM) = GL(TM) the gauge group of TM; all vector

bundle automorphisms of TM over IdM .
▶ Aut(TM) the automorphism group of TM. We have a

splitting exact sequence

{IdTM} // Gau(TM)
i // Aut(TM)

p:φ̄7→φ --
Diff(M)

Tφ←φ:j
mm // {IdM}

The semidirect product Diff(M)⋉ Gau(TM) = Aut(TM) is
induced by (φ, α) 7→ Tφ ◦ α ∈ Aut(TM) leading to

(φ, α)(φ′, α′) = (φ ◦ φ′, (Tφ′)−1.α.Tφ′.α′),

(φ, α)−1 = (φ−1,Tφ.α−1.Tφ−1) .



Theorem

Consider the projections πi defined via

π0 :

{
Aut(C(M)) → Dens(M)

(φ, λ) 7→ φ∗(λ
2ρ0)

π1 :

{
Met(M) → Dens(M)

g 7→ vol(g)

π2 :

{
Aut(TM) → Aut(C(M))

(φ, α) 7→ (φ,
√

| detα−1|)

π3 :

{
Aut(TM) → Met(M)

(φ, α) 7→ φ∗α∗g0 = φ∗(α
−Tg0α

−1)

π4 :

{
Aut(TM) → Diff(M)×Met(M)

(φ, α) 7→ (φ, α∗g0) = (φ, α−Tg0α
−1)

π5 :

{
Diff(M)×Met(M) → Met(M)

(φ, g) 7→ φ∗g = (Tφ)−TgTφ−1



Then the following is a commutative diagram of Riemannian
submersions:

(Aut(TM),GAut(TM))
π2

(φ,α)7→(φ, 1√
| detα−1|

)

//

π4 (φ,α)7→(φ,α∗g0)

��

π3

(φ,α)7→φ∗α∗g0

%%

(Aut(C(M)),GAut(C(M)))

π8(φ,λ)7→(φ,λ2ρ0)

��

π0

(φ,λ)7→φ∗(λ
2ρ0)

xx

(Diff(M)×Met(M),GW×E )

π5 (φ,g)7→φ∗g

��

π6

(φ,g)7→(φ,vol(g))
// (Diff(M)×Dens(M),GW×FR)

π7(φ.ρ)7→φ∗ρ

��
(Met(M),GWE)

π1

g 7→vol(g) // (Dens(M),GWFR)



where the corresponding Riemannian metrics are given as follows:

G
Aut(TM)
(φ,α) ((δφ, δα), (δφ, δα)) =

=

∫ (
g0(δφ, δφ) + dΛTr(g0α

−1δαg−10 δα⊤α−⊤)
)
| det(α)|−1 vol(g0)

GW×E
(φ,g) ((δφ, h), (δφ, h)) =

∫
M

g0(δφ, δφ) vol(g) +
dΛ
4

∫
M

tr(g−1hg−1h) vol(g)

GWE
g (δg , δg) = inf

v ,h

∫
M

g0(v , v) vol(g) +
dΛ
4

∫
M

tr(g−1hg−1h) vol(g)

subject to: δg = −Lvg + h

G
Aut(C(M))
φ,λ ((δφ, δλ), (δφ, δλ)) =

∫
M

(
λ2g0(δφ, δφ) + Λ(δλ)2

)
vol(g0)

GW×FR
φ,ρ ((δφ, δρ)(δφ, δρ)) =

∫
M

g0(δφ, δφ)ρ+
dΛ
4

∫
M

(δρ
ρ

)2

ρ

GWFR
ρ (δρ, δρ) = inf

v ,f

∫
M

g0(v , v)ρ+ Λ

∫
M

f 2ρ

subject to: δρ = −Lvρ+ f ρ.



The second summand in the integral in the definition of the metric
GAut(TM) comes from the left invariant Riemannian metric on
GL(TxM) given by

G
GL(TxM),g0
A (X ,X ) = tr(A−1Xg−1

0 (A−1X )Tg0)

= tr(A−1Xg−1
0 XTA−Tg0),

where A−T = (A−1)T = (AT )−1 : T ∗
xM → T ∗

xM.

Attention: We do not yet have a proof that the Wasserstein-Ebin
metric GWE on Met(M) induces a non-degenerate metric via the
infimum of length of curves connecting two points.



Lemma

Let φ(t) be a smooth curve of diffeomorphisms on a manifold M
locally defined for each t, with f0 = IdM . We consider the two time
dependent vector fields

X (t)(x) := (Txφ(t))
−1∂tφ(t)(x), Y (t)(x) := (∂tφ(t))(φ(t)

−1(x)).

Then T (φ(t)).X (t) = ∂tφ(t) = Y (t) ◦ φ(t), so X (t) and Y (t)
are φ(t)-related. Moreover, for any tensor field K on M we have:

∂tφ(t)
∗K = φ(t)∗LY (t)K = LX (t) φ(t)

∗K .

∂tφ(t)∗K = ∂t(φ(t)
−1)∗K = −φ(t)∗LX (t)K = −LY (t) φ(t)∗K .



π0 is a Riemannian submersion

Let (φ, λ) ∈ Aut(C(M)) with π0(φ, λ) = φ∗(λ
2ρ0) = ρ, and let

Y := δφ ◦ φ−1 ∈ X(M). By the lemma we have:

T(φ,λ)π0.(δφ, δλ) = −LYφ∗(λ
2ρ0) + φ∗(2λ.δλ.ρ0)

= −LY ρ+ φ∗(2
δλ
λ ).φ∗(λ

2ρ0)

= −LY ρ+ φ∗(2
δλ
λ ).ρ = −LY ρ+ f ρ, where f = φ∗(2

δλ
λ ).

For fixed (φ, λ) ∈ Aut(C(M)) with π0(φ, λ) = φ∗(λ
2ρ0) = ρ, i.e.,

ρ0 =
1
λ2φ

∗ρ, we have to find the infimum of the G
Aut(C(M))
φ,λ -norm

of all (δφ, δλ) ∈ T(φ,λ) Aut(C(M)) with

−LY ρ+ f ρ = T(φ,λ)π0.(δφ, δλ) = δρ Continuity Equation

where f = φ∗(2
δλ
λ ) ∈ C∞(M,R>0).



Fix (φ, λ) ∈ Aut(C(M)) with π0(φ, λ) = φ∗(λ
2ρ0) = ρ, i.e.,

ρ0 =
1
λ2φ

∗ρ. Search the inf over all (δφ, δλ) ∈ T(φ,λ) Aut(C(M))
with −LY ρ+ f ρ = T(φ,λ)π0.(δφ, δλ) = δρ, where

Y := δφ ◦ φ−1 ∈ X(M) and f = φ∗(2
δλ
λ ) ∈ C∞(M,R>0), of

G
Aut(C(M))
φ,λ ((δφ, δλ), (δφ, δλ)) =

∫
M

(
λ2g0(δφ, δφ) + Λ(δλ)2

)
ρ0

=

∫
M
g0(δφ, δφ)λ

2ρ0 + Λ

∫
M
δλ2ρ0

=

∫
M
g0(δφ, δφ)φ

∗ρ+ Λ

∫
M

δλ2

λ2
φ∗ρ

=

∫
M
φ∗

(
g0(δφ ◦ φ−1, δφ ◦ φ−1)ρ

)
+

Λ

4

∫
M
φ∗(f 2ρ)

=

∫
M
g0(Y ,Y )ρ+

Λ

4

∫
M
f 2ρ subject to − LY ρ+ f ρ = δρ

= GWFR
ρ (δρ, δρ)

This is independent of the choice of (φ, λ) which satisfy
π0(φ, λ) = φ∗(λ

2ρ0) = ρ.



Example Proof: π5 is a Riemannian submersion

It is obviously a submersion.

π5(φ, g) = φ∗g = T ∗φ−1 ◦ g ◦ Tφ−1 =: ḡ

T(φ,g)π5(δφ, h) = −LYφ∗g + φ∗h where Y = δφ ◦ φ−1 = φ∗X

π−1
5 (ḡ) = {(φ, g) ∈ Diff(M)×Met(M) : φ∗g = ḡ}

= {(φ,φ∗ḡ) : φ ∈ Diff(M)}
T(φ,φ∗ḡ)π

−1
5 (ḡ) = {(Y ◦ φ,φ∗LY ḡ) : Y ∈ X(M)}

Note the appearence of the continuity equation in Tπ5.

We do not have access to a horizontal bundle, thus we proceed as
follows. π5 : Diff(M)×Met(M) → Met(M) is a Riemannian
submersion in the sense that
T(φ,g)π5 : TφDiff(M)× Tg Met(M) → Tφ∗g Met(M) is a
norm-quotient mapping independently of φ.



For g = φ∗ḡ and k = T(φ,g)π5(δφ, h) = −LYφ∗g + φ∗h =
−LY ḡ + φ∗h ∈ Tḡ Met(M) we have

∥k∥2
GWE
ḡ

= GWE
ḡ (k, k) = GWE

φ∗g (T(φ,g)π5(δφ, h),T(φ,g)π5(δφ, h))

= inf
{∫

M
g0(Y ,Y ) vol(ḡ) + dΛ

4

∫
M
tr(ḡ−1h̄ḡ−1h̄) vol(ḡ) :

Y ∈ X(M), h̄ ∈ Tḡ Met(M) with k = −LY ḡ + h̄
}

= inf
{∫

M
g0(Y ◦ φ,Y ◦ φ) vol(g) + dΛ

4

∫
M
tr(g−1hg−1h) vol(g) :

Y ∈ X(M), h = φ∗h̄ ∈ Tg Met(M) with k = −LY ḡ + h̄
}

where in the end we applied φ∗ to both integrands.



This should be equal to

inf
{
∥(Y ◦ φ, h)∥2

GW×E
(φ,g)

: (Y ◦ φ, h) ∈ TφDiff(M)× Tg Met(M)

h ∈ Tg Met(M),Y ∈ X(M) with T(φ,φ∗ḡ)π5(Y ◦ φ, h) = k
}

= inf
{∫

M
g0(Y ◦ φ,Y ◦ φ) vol(g) + dΛ

16

∫
M
tr(g−1hg−1h) vol(g) :

h ∈ Tg Met(M),Y ∈ X(M) with − LY ḡ + φ∗h = k
}

independently of φ, which is the case since both integrals do not
change by applying ψ∗ for each fixed φ and g separately,
independently of φ. Since squared norms are homogeneous of
order 2, that is, ∥tk∥2 = t2∥k∥2, it also follows that the induced
norm on the image by such a Riemannian submersion actually
comes from a Riemannian metric. Unfortunately, the horizontal
lifts for these Riemannian submersions are not simple: They may
lie in a completion of each fiber.



Thank you for listening.


