Unbalanced Riemannian Metric Transport and
the Wasserstein-Ebin Metric

Peter W. Michor

University of Vienna, Austria
www.mat.univie.ac.at/~“michor

This talk is dedicated to Jan Slovdk on the occasion of his 65th
birthday celebration

Differential Geometry and its Applications
Brno, Czechia,
08 - 12 Sept 2025
Slides are available at:
https://www.mat.univie.ac.at/“michor/lectures.html



Unbalanced Riemannian Metric Transport

This is joint work with M. Bauer and FX Viallard: We present
weak Riemannian metrics on 6 different spaces related to the space
of all Riemannian metrics which fit together via Riemannian
submersions. Its geodesics are like the unbalanced version of the
Brenier-Otto optimal transport with the most interesting version
on the space of Riemannian metrics.
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The spaces

Let (M, go) be a compact manifold equipped with a background
Riemannian metric go with po = vol(gp). Then let
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C(M) = M x R, the cone over M.

Dens(M) = T'<o(JA9|(T*M)) the space of all positive
densities on M.

Diff(M) the diffeomorphism group of M.

Met(M) the space of all Riemannian metrics on M.
Gau(TM) = GL(TM) the gauge group of TM,; all vector
bundle automorphisms of TM over Id,.

Aut(TM) the automorphism group of TM. We have a

splitting exact sequence PG
{ld7m} — Gau(TM) ——= Aut(TM) ~ Diff(M) — {ldy}
To<—py

The semidirect product Diff(M) x Gau(TM) = Aut(TM) is
induced by (p,a) = Ty o a € Aut(TM) leading to

(@7 04)(90/7 O/) = (SO o (,0/, (—,_(,0/)71.0[.T(,ZJ/.O/)7
(p,a) = (o1, Tp.a L. T ™).



Theorem

Consider the projections m; defined via

{Aut(C(I\/I)) — Dens(M) _ {Met(/\/l) — Dens(M)
@M = 2u(320) e+ vol(g)
{Aut (TM) —>Aut(C(l\/I))

0 VI deta 1)

Aut(TM) — Met(l\/l)
™ {(cp = Putago = pu( Tgoa )

Aut(TM) — Diff(M) x Met(M)
" {(90 (¢, 80) = (9,0~ Tgoa™)

iff(M) x Met(M) — Met(M)

™ { (p.8) = peg = (Te) TgTe ™t



Then the following is a commutative diagram of Riemannian

submersions:

(Aut(TM), GAUEHTM))

3

T,

IS

(Diff(M) x Met(M), G W)

75 | (¢,8)— g
(¢ )= pxigo

T (Aut(C(M)), GAHCM)
(‘Paa)'—’(%ﬁ)

™o

(p,2)— (v, 80) (2= (A% p0) | T8

6

——— > (Diff(M) x Dens(M),GW*FR)
(¢.8)—(p,vol(g))

(p-p)—=@up | T
(2, \) 0. (Xpo)

et

gr—vol(g)

(Met(M), G'VF)

(Dens(M), GWFR)



where the corresponding Riemannian metrics are given as follows:
G M (8¢, 00, (B, 6ar)) =
= / (80(0p, 6¢) + dA Tr(goa *6agy *6aa™ ")) | det(a)| ™ vol(go)
G5 (o). (5o b)) = | (0o, 5¢)vollg) + 4 [ trlehe ) vo(e)
G (9e.58) = inf [ mo(v.v)vollg) + % [ g™ he h)vol(e)
subject to: dg=-L,g+h

Con 1 ((9:02), (3. 03)) = /M (We0(ip, 5) + A(5M)?) vol(go)
GAZ‘,/pXFR((&P»(SP)((SSO,(Sp)) = Aﬂgo(5¢75@)P+ de\/M <5£>2p

p
G;NFR(ép,ép):inf/ go(v, v)p+A/ 2p
vif Jm M

subject to:  dp=—L,p+ fp.



The second summand in the integral in the definition of the metric
GAU(TM) comes from the left invariant Riemannian metric on
GL(TxM) given by

G[fL(TxM),gO(X7x) _ tr(Aflxgo—l(Aflx)Tgo)
= tr(A ' Xgy ' XTA T ),
where A= = (A )T = (AT)" 1 TiM — T M.

Attention: We do not yet have a proof that the Wasserstein-Ebin
metric GVE on Met(M) induces a non-degenerate metric via the
infimum of length of curves connecting two points.



Lemma

Let o(t) be a smooth curve of diffeomorphisms on a manifold M
locally defined for each t, with fy = Idy;. We consider the two time
dependent vector fields

X(£)(x) = (Tap(t) 1 0ep()(x),  Y(£)(x) = Qe (1)) (p(1) " (x))-
Then T(p(t)).X(t) = 0rp(t) = Y(t) o ¢(t), so X(t) and Y(t)
are p(t)-related. Moreover, for any tensor field K on M we have:
O0rp(t) K = @(t)" Ly)K = Lx) p(t) K.
Oep(t) K = 0e(p(t) 1) K = —p(t): Lx(yK = —Ly 1) (1)K .



mo iIs @ Riemannian submersion

Let (o, A) € Aut(C( )) with mo(, A) = w.(A2p0) = p, and let
Y :=dp o o1 € X(M). By the lemma we have:

T T0-(59,00) = =Ly @s(Apo) + ©x(27.5X.p0)
= —Lyp+0:(28).0.(Xpo)
=—Lyp+ 90*(267’\).p = —Lyp+ fp, where f = go*(257>‘).

For fixed (¢, \) € Aut(C(M)) with mo(p, A) = p«(A%p0) = p, i.e.,

po = 290 p, we have to find the infimum of the GAUt(C(M)) norm

of all (6(,0,5/\) € T(pn) Aut(C(M)) with

—Lyp+fp= T, \m0-(0p,6\) = dp  Continuity Equation

where f = cp*(Z%/\) € C*°(M,Rxy).



Fix (0, A) € Aut(C(M)) with mo(, A) = 0« (X%pg) = p, i.e.,

po = %gp*p. Search the inf over all (6p,d)) € T, ) Aut(C(M))
with —Lyp + fp = T, \)m0-(dp, 6A) = dp, where

Y :=6p o0l eX(M)and f =, (28) € C°(M,Rsy), of

G (5. 80). (5. 50) = [ (Ran(,59) + AGAR) o

=/ go(5807590)/\2po+/\/ 5X%po
M M

. N,
=/ go(dp, 0p)p p+/\/ 5 PP
M M A

. _ . Ao
:/ (20l 0 67200 0 ¢ 1)p)+4/ " (F2p)
M M
:/ g(Y, Y)p+/\/ f2p subject to — Lyp+fp=dp
M 4 M
= G,"™(p,0p)

This is independent of the choice of (¢, A) which satisfy
mo(, A) = ¢(\2po) = p.



Example Proof: 75 is a Riemannian submersion

It is obviously a submersion.

T5(p,8) =g =T 0 logoTp l=¢

T(so,g)775(5% = ’ —Lyp.g + psh ‘ where Y =dp 0 ¢! = p, X
5 1(&) = {(¢, g) € Diff(M) x Met(M) : p.g = g}
{(p,¢"8) : ¢ € Diff(M)}

{(Y o 0, 0"LyE): Y € X(M)}

Tw 8)Ts '(2)
Note the appearence of the continuity equation in TTs.
We do not have access to a horizontal bundle, thus we proceed as

follows. 75 : Diff(M) x Met(M) — Met(M) is a Riemannian

submersion in the sense that
T(o.g)Ts 1 T, Diff(M) x Tg Met(M) — T, o Met(M) is a
norm-quotient mapping independently of .



For g = ¢*g and k = T, 5)T5(6p, h) = —Lyp.g + pixh =
—Lyg + pih € Tz Met(M) we have

”kH%;gWE = EWE(k7 k) = Gt,g*vg(T(cp,g)ﬂ5(5907 h)7 T(cp,g)ﬂ'5(5§07 h))
= inf {/ go(Y,Y)vol(g) + (Z\/ tr(g_lﬁg_lﬁ) vol(g) :
M M
Y € X(M),h € T; Met(M) with k = —LyZ + /‘7}
= inf{/ go(Y o ¢, Y o p)vol(g) + d4/\/ tr(g—lhg—lh)vol(g) :
M M
Y € X(M), h = ¢*h € Ty Met(M) with k = —LyZ + /3}

where in the end we applied ¢* to both integrands.



This should be equal to
inf {10 © 0. R)aee (Y © 0, h) € T, DIfF(M) x Ty Met(M)
h e Ty Met(M), Y € X(M) with Ty, ooz 7s(Y o @, h) = k}
_inf{/Mgo(Y 65 Y o (p)vol(g)—l—%\/ (e hg lh)vol( )
he Ty Met(M), Y € X(M) with — Lyg + g h = k}

independently of ¢, which is the case since both integrals do not
change by applying ¥* for each fixed ¢ and g separately,
independently of (. Since squared norms are homogeneous of
order 2, that is, ||tk||?> = t2||k||?, it also follows that the induced
norm on the image by such a Riemannian submersion actually
comes from a Riemannian metric. Unfortunately, the horizontal
lifts for these Riemannian submersions are not simple: They may
lie in a completion of each fiber. []




Thank you for listening.



