Uniqueness of the Fisher–Rao metric on the space of smooth densities

Peter W. Michor

University of Vienna, Austria
www.mat.univie.ac.at/~michor

CES-Seminar
April 6, 2018,
Brno

Devoted to the memory of Thomas Friedrich
(12. Oktober 1949 in Leipzig — 27. Februar 2018 in Marburg)
Based on:

The infinite dimensional geometry used here is based on:
Wikipedia [https://en.wikipedia.org/wiki/Convenient_vector_space]
For a smooth compact manifold M, any weak Riemannian metric on the space of smooth positive densities which is invariant under the right action of the diffeomorphism group $\text{Diff}(M)$ is of the form

$$G_\mu(\alpha, \beta) = C_1(\mu(M)) \int_M \alpha \beta \frac{\mu}{\mu} \mu + C_2(\mu(M)) \int_M \alpha \cdot \int_M \beta$$

for smooth functions C_1, C_2 of the total volume $\mu(M) = \int_M \mu$.

In this talk the result is extended to compact smooth manifolds with corners (for example, a simplex), and the full proof is given (keeping the (partial) tradition of naturality questions in CES).
The Fisher–Rao metric on the space \(\text{Prob}(M) \) of probability densities is of importance in the field of information geometry. Restricted to finite-dimensional submanifolds of \(\text{Prob}(M) \), so-called statistical manifolds, it is called Fisher’s information metric [Amari: Differential-geometrical methods in statistics, 1985]. The Fisher–Rao metric is invariant under the action of the diffeomorphism group. A uniqueness result was established [ˇCencov: Statistical decision rules and optimal inference, 1982, p. 156] for Fisher’s information metric on finite sample spaces and [Ay, Jost, Le, Schwachhöfer, 2014] extended it to infinite sample spaces.

See also [Ay, Jost, Le, Schwachhöfer: Information Geometry, 2017].

The Fisher–Rao metric on the infinite-dimensional manifold of all positive smooth probability densities was studied in [Friedrich: Die Fisher-Information und symplektische Strukturen, 1991], including the computation of its curvature.
A manifold with corners (recently also called a quadrantic manifold) M is a smooth manifold modelled on open subsets of $\mathbb{R}^m_{\geq 0}$. Assume it is connected and second countable; then it is paracompact and it admits smooth partitions of unity. Any manifold with corners M is a submanifold with corners of an open manifold \tilde{M} of the same dim. Restriction $C^\infty(\tilde{M}) \to C^\infty(M)$ is a surjective continuous linear map which admits a continuous linear section. Thus $C^\infty(M)$ is a topological direct summand in $C^\infty(\tilde{M})$ and the same holds for the dual spaces: The space of distributions $\mathcal{D}'(M)$, which we identity with $C^\infty(M)'$, is a direct summand in $\mathcal{D}'(\tilde{M})$. It consists of all distributions with support in M.

We do not assume that M is oriented, but eventually, that M is compact. Diffeomorphisms of M map the boundary ∂M to itself and map the boundary ∂^qM of corners of codimension q to itself; ∂^qM is a submanifold of codimension q in M; in general ∂^qM has finitely many connected components. We shall consider ∂M as stratified into the connected components of all ∂^qM for $q > 0$.

Manifolds with corners
The space of densities

Let M^m be a smooth manifold, possibly with corners. Let (U_α, u_α) be a smooth atlas for it. The *volume bundle* $(\text{Vol}(M), \pi_M, M)$ of M is the 1-dimensional vector bundle (line bundle) which is given by the following cocycle of transition functions:

$$
\psi_{\alpha \beta} : U_{\alpha \beta} = U_\alpha \cap U_\beta \to \mathbb{R} \setminus \{0\} = GL(1, \mathbb{R}),
$$

$$
\psi_{\alpha \beta}(x) = \left| \det d(u_\beta \circ u_\alpha^{-1})(u_\alpha(x)) \right| = \frac{1}{\left| \det d(u_\alpha \circ u_\beta^{-1})(u_\beta(x)) \right|}.
$$

$\text{Vol}(M)$ is a trivial line bundle over M. But there is no natural trivialization. There is a natural order on each fiber. Since $\text{Vol}(M)$ is a natural bundle of order 1 on M, there is a natural action of the group $\text{Diff}(M)$ on $\text{Vol}(M)$, given by

$$
\text{Vol}(M) \xrightarrow{|\det(T\varphi^{-1})| \circ \varphi} \text{Vol}(M).
$$
If M is orientable, then $\text{Vol}(M) = \Lambda^m T^* M$. If M is not orientable, let \tilde{M} be the orientable double cover of M with its deck-transformation $\tau: \tilde{M} \to \tilde{M}$. Then $\Gamma(\text{Vol}(M))$ is isomorphic to the space $\{ \omega \in \Omega^m(\tilde{M}) : \tau^* \omega = -\omega \}$. These are the ‘formes impaires’ of de Rham. See [M 2008, 13.1] for this.

Sections of the line bundle $\text{Vol}(M)$ are called densities. The space $\Gamma(\text{Vol}(M))$ of all smooth sections is a Fréchet space in its natural topology; see [Kriegl-M, 1997]. For each section α of $\text{Vol}(M)$ of compact support the integral $\int_M \alpha$ is invariantly defined as follows: Let (U_α, u_α) be an atlas on M with associated trivialization $\psi_\alpha : \text{Vol}(M)|_{U_\alpha} \to \mathbb{R}$, and let f_α be a partition of unity with $\text{supp}(f_\alpha) \subset U_\alpha$. Then we put

$$\int_M \mu = \sum_\alpha \int_{U_\alpha} f_\alpha \mu := \sum_\alpha \int_{u_\alpha(U_\alpha)} f_\alpha(u_\alpha^{-1}(y)).\psi_\alpha(\mu(u_\alpha^{-1}(y))) \, dy.$$

The integral is independent of the choice of the atlas and the partition of unity.
The Fisher–Rao metric

Let M^m be a smooth compact manifold without boundary. Let $\text{Dens}_+(M)$ be the space of smooth positive densities on M, i.e., $\text{Dens}_+(M) = \{\mu \in \Gamma(\text{Vol}(M)) : \mu(x) > 0 \ \forall x \in M\}$. Let $\text{Prob}(M)$ be the subspace of positive densities with integral 1. For $\mu \in \text{Dens}_+(M)$ we have $T_\mu \text{Dens}_+(M) = \Gamma(\text{Vol}(M))$ and for $\mu \in \text{Prob}(M)$ we have $T_\mu \text{Prob}(M) = \{\alpha \in \Gamma(\text{Vol}(M)) : \int_M \alpha = 0\}$.

The Fisher–Rao metric on $\text{Prob}(M)$ is defined as:

$$G_{\mu}^{\text{FR}}(\alpha, \beta) = \int_M \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu.$$

It is invariant for the action of $\text{Diff}(M)$ on $\text{Prob}(M)$:

$$\left((\varphi^*)^* G^{\text{FR}} \right)_\mu (\alpha, \beta) = G^{\text{FR}}_{\varphi^* \mu}(\varphi^* \alpha, \varphi^* \beta) = \int_M \left(\frac{\alpha}{\mu} \circ \varphi \right) \left(\frac{\beta}{\mu} \circ \varphi \right) \varphi^* \mu = \int_M \frac{\alpha \beta}{\mu \mu} \mu.$$
Main Theorem. [BBM, 2016] for M without boundary

Let M be a connected smooth compact manifold with corners, of dimension ≥ 2. Let G be a smooth (equivalently, bounded) bilinear form on $\text{Dens}_+(M)$ which is invariant under the action of $\text{Diff}(M)$. Then

$$G_\mu(\alpha, \beta) = C_1(\mu(M)) \int_M \frac{\alpha \beta}{\mu \mu} \mu + C_2(\mu(M)) \int_M \alpha \cdot \int_M \beta$$

for smooth functions C_1, C_2 of the total volume $\mu(M)$.

To see that this theorem implies the uniqueness of the Fisher–Rao metric, note that if G is a $\text{Diff}(M)$-invariant Riemannian metric on $\text{Prob}(M)$, then we can equivariantly extend it to $\text{Dens}_+(M)$ via

$$G_\mu(\alpha, \beta) = G_{\frac{\mu}{\mu(M)}} \left(\alpha - \left(\int_M \alpha \right) \frac{\mu}{\mu(M)}, \beta - \left(\int_M \beta \right) \frac{\mu}{\mu(M)} \right).$$
Let $\mu_0 \in \text{Prob}(M)$ be a fixed smooth probability density. In [Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that the degenerate, H^1-metric $\frac{1}{2} \int_M \text{div}^\mu_0(X).\text{div}^\mu_0(X).\mu_0$ on $\mathfrak{X}(M)$ is invariant under the adjoint action of $\text{Diff}(M,\mu_0)$. Thus the induced degenerate right invariant metric on $\text{Diff}(M)$ descends to a metric on $\text{Prob}(M) \cong \text{Diff}(M,\mu_0) \setminus \text{Diff}(M)$ via

$$\text{Diff}(M) \ni \varphi \mapsto \varphi^*\mu_0 \in \text{Prob}(M)$$

which is invariant under the right action of $\text{Diff}(M)$. This is the Fisher–Rao metric on $\text{Prob}(M)$. In [Modin, 2014], the H^1-metric was extended to a non-degenerate metric on $\text{Diff}(M)$, also descending to the Fisher–Rao metric.
Corollary. Let $\dim(M) \geq 2$. If a weak right-invariant (possibly degenerate) Riemannian metric \tilde{G} on $\text{Diff}(M)$ descends to a metric G on $\text{Prob}(M)$ via the right action, i.e., the mapping $\varphi \mapsto \varphi^* \mu_0$ from $(\text{Diff}(M), \tilde{G})$ to $(\text{Prob}(M), G)$ is a Riemannian submersion, then G has to be a multiple of the Fisher–Rao metric.

Note that any right invariant metric \tilde{G} on $\text{Diff}(M)$ descends to a metric on $\text{Prob}(M)$ via $\varphi \mapsto \varphi_* \mu_0$; but this is not $\text{Diff}(M)$-invariant in general.
Invariant metrics on $\text{Dens}_+(S^1)$.

$\text{Dens}_+(S^1) = \Omega^1_+(S^1)$, and $\text{Dens}_+(S^1)$ is $\text{Diff}(S^1)$-equivariantly isomorphic to the space of all Riemannian metrics on S^1 via

$\Phi = (\cdot)^2 : \text{Dens}_+(S^1) \to \text{Met}(S^1)$, $\Phi(fd\theta) = f^2d\theta^2$.

On $\text{Met}(S^1)$ there are many $\text{Diff}(S^1)$-invariant metrics; see [Bauer, Harms, M, 2013]. For example Sobolev-type metrics. Write $g \in \text{Met}(S^1)$ in the form $g = \tilde{g} d\theta^2$ and $h = \tilde{h} d\theta^2$, $k = \tilde{k} d\theta^2$ with $\tilde{g}, \tilde{h}, \tilde{k} \in C^\infty(S^1)$. The following metrics are $\text{Diff}(S^1)$-invariant:

$$G^I_g(h, k) = \int_{S^1} \frac{\tilde{h}}{\tilde{g}}. (1 + \Delta^g)^n \left(\frac{\tilde{k}}{\tilde{g}}\right) \sqrt{\tilde{g}} \, d\theta;$$

here Δ^g is the Laplacian on S^1 with respect to the metric g. The pullback by Φ yields a $\text{Diff}(S^1)$-invariant metric on $\text{Dens}_+(M)$:

$$G_\mu(\alpha, \beta) = 4 \int_{S^1} \frac{\alpha}{\mu} \cdot (1 + \Delta^{\Phi(\mu)})^n \left(\frac{\beta}{\mu}\right) \mu.$$

For $n = 0$ this is 4 times the Fisher–Rao metric. For $n \geq 1$ we get many $\text{Diff}(S^1)$-invariant metrics on $\text{Dens}_+(S^1)$ and on $\text{Prob}(S^1)$.
Moser’s theorem for manifolds with corners
[BMPR18]

Let M be a compact smooth manifold with corners, possibly non-orientable. Let μ_0 and μ_1 be two smooth positive densities in $\text{Dens}_+(M)$ with $\int_M \mu_0 = \int_M \mu_1$. Then there exists a diffeomorphism $\varphi : M \to M$ such that $\mu_1 = \varphi^* \mu_0$. If and only if $\mu_0(x) = \mu_1(x)$ for each corner $x \in \partial^{\geq 2} M$ of codimension ≥ 2, then φ can be chosen to be the identity on ∂M.

This result is highly desirable even for M a simplex. The proof is essentially contained in [Banyaga1974], who proved it for manifolds with boundary.
Aside: Geometry of the Fisher-Rao metric

\[G_\mu(\alpha, \beta) = C_1(\mu(M)) \int_M \frac{\alpha \beta}{\mu \mu} \mu + C_2(\mu(M)) \int_M \alpha \cdot \int_M \beta \]

This metric will be studied in different representations.

\[
\text{Dens}_+(M) \xrightarrow{R} C^\infty(M, \mathbb{R}_{>0}) \xrightarrow{\Phi} \mathbb{R}_{>0} \times S \cap C^\infty_0 \xrightarrow{W \times \text{Id}} (W_-, W_+) \times S \cap C^\infty_0.
\]

We fix \(\mu_0 \in \text{Prob}(M) \) and consider the mapping

\[R : \text{Dens}_+(M) \to C^\infty(M, \mathbb{R}_{>0}) , \quad R(\mu) = f = \sqrt{\frac{\mu}{\mu_0}}. \]

The map \(R \) is a diffeomorphism and we will denote the induced metric by \(\tilde{G} = (R^{-1})^* G \); it is given by the formula

\[\tilde{G}_f(h, k) = 4C_1(\|f\|^2)\langle h, k \rangle + 4C_2(\|f\|^2)\langle f, h \rangle \langle f, k \rangle , \]

and this formula makes sense for \(f \in C^\infty(M, \mathbb{R}) \setminus \{0\} \).

Proof of the Main Theorem

Let us fix a basic probability density μ_0. By the Moser’s theorem for manifolds with corners, there exists for each $\mu \in \text{Dens}_+(M)$ a diffeomorphism $\varphi_\mu \in \text{Diff}(M)$ with $\varphi^*_\mu \mu = \mu(M) \mu_0 =: c.\mu_0$ where $c = \mu(M) = \int_M \mu > 0$. Then

$$(\varphi^*_\mu)^* G)_\mu (\alpha, \beta) = G_{\varphi^*_\mu \mu} (\varphi^*_\mu \alpha, \varphi^*_\mu \beta) = G_{c.\mu_0} (\varphi^*_\mu \alpha, \varphi^*_\mu \beta).$$

Thus it suffices to show that for any $c > 0$ we have

$$G_{c\mu_0} (\alpha, \beta) = C_1(c). \int_M \frac{\alpha}{\mu_0} \frac{\beta}{\mu_0} \mu_0 + C_2(c) \int_M \alpha \cdot \int_M \beta$$

for some functions C_1, C_2 of the total volume $c = \mu(M)$. Both bilinear forms are still invariant under the action of the group $\text{Diff}(M, c\mu_0) = \text{Diff}(M, \mu_0) = \{ \psi \in \text{Diff}(M) : \psi^* \mu_0 = \mu_0 \}$.

The bilinear form

$$T_{\mu_0} \text{Dens}_+(M) \times T_{\mu_0}(M) \text{Dens}_+ \ni (\alpha, \beta) \mapsto G_{c\mu_0} \left(\frac{\alpha}{\mu_0} \mu_0, \frac{\beta}{\mu_0} \mu_0 \right)$$

can be viewed as a bilinear form

$$C^\infty(M) \times C^\infty(M) \ni (f, g) \mapsto G_c(f, g).$$

We will consider now the associated bounded linear mapping

$$\tilde{G}_c : C^\infty(M) \to C^\infty(M)' = \mathcal{D}'(M).$$

(1) The Lie algebra $\mathfrak{X}(M, \partial M, \mu_0)$ of $\text{Diff}(M, \mu_0)$ consists of vector fields X which are tangent to each boundary component $\partial^q M$ with

$$0 = \text{div}^{\mu_0}(X) := \frac{\mathcal{L}_X \mu_0}{\mu_0}.$$
On an oriented open subset $U \subset M$, each density is an m-form, $m = \dim(M)$, and $\text{div}^{\mu_0}(X) = d i_X \mu_0$.

The mapping $\hat{\iota}_{\mu_0} : \mathfrak{X}(U) \to \Omega^{m-1}(U)$ given by $X \mapsto i_X \mu_0$ is an isomorphism, and also

$$\hat{\iota}_{\mu_0} : \mathfrak{X}(U, \partial U) \to \Omega^{m-1}(U, \partial U) = \{ \alpha \in \Omega^{m-1}(M) : j_{\partial q M}^* \alpha = 0 \text{ for all } q \geq 1 \}$$

is an isomorphism onto the space of differential forms that pull back to 0 on each boundary stratum. The Lie subalgebra $\mathfrak{X}(U, \partial U, \mu_0)$ of divergence free vector fields corresponds to the space of closed $(m - 1)$-forms.

Denote by $\mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0)$ the set (not a vector space) of ‘exact’ divergence free vector fields $X = \hat{\iota}_{\mu_0}^{-1}(d\omega)$, where $\omega \in \Omega_{c}^{m-2}(U, \partial U)$ for an oriented open subset $U \subset M$.
(2) If for \(f \in C^\infty(M) \) and a connected open set \(U \subseteq M \) we have \((\mathcal{L}_X f)|U = 0\) for all \(X \in \mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0)\), then \(f|U \) is constant.

Since we shall need some details later on, we prove this well-known fact. Let \(x \in U \setminus \partial U \). For every tangent vector \(X_x \in T_x M \) we can find a vector field \(X \in \mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0) \) such that \(X(x) = X_x \); to see this, choose a chart \((U_x, u)\) near \(x \) such that \(U_x \subseteq U \setminus \partial U \) and \(\mu_0|U_x = du^1 \wedge \cdots \wedge du^m \), and choose \(g \in C^\infty(U_x) \), such that \(g = 1 \) near \(x \). Then \(X := \hat{\iota}_{\mu_0}^{-1} d(g \cdot u^2 \cdot du^3 \wedge \cdots \wedge du^m) \in \mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0) \) and \(X = \partial_{u^1} \) near \(x \). So we can produce a basis for \(T_x M \) and even a local frame near \(x \).

Thus \(\mathcal{L}_X f|U = 0 \) for all \(X \in \mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0) \) implies \(df|U \setminus \partial U = 0 \), thus \(df = 0 \) and \(f \) is constant on \(U \).

(2\partial) Similarly, if \(x \in \partial^q M \) and \(X_x \in T_x(\partial^q M) \) we can find \(X \in \mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0) \) with \(X(x) = X_x \).
If for a distribution $A \in \mathcal{D}'(M)$ and a connected open set $U \subseteq M$ we have $L_X A|U = 0$ for all $X \in \mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0)$, then $A|U = C\mu_0|U$ for some constant C, meaning $\langle A, f \rangle = C \int_M f \mu_0$ for all $f \in C_c^\infty(U)$.

Because $\langle L_X A, f \rangle = -\langle A, L_X f \rangle$, the invariance $L_X A|U = 0$ implies $\langle A, L_X f \rangle = 0$ for all $f \in C_c^\infty(U)$. Clearly, $\int_M (L_X f) \mu_0 = 0$.

For each $x \in U$ let $U_x \subset U$ be an open oriented chart which is diffeomorphic to $\mathbb{R}_{\geq 0}^q \times \mathbb{R}^{m-q}$. Let $g \in C_c^\infty(U_x)$ satisfy $\int_M g \mu_0 = 0$; we will show that $\langle A, g \rangle = 0$. The integral over $g \mu_0$ is zero, so the compact cohom. class $[g \mu_0] \in H_c^m(U_x, \partial U_x) \cong \mathbb{R}$ vanishes; see [BMPR2018, section 8]. Thus there exists $\alpha \in \Omega_c^{m-1}(U_x, \partial U_x) \subset \Omega^{m-1}(M, \partial M)$ with $d\alpha = g \mu_0$. Since U_x is diffeomorphic to $\mathbb{R}_{\geq 0}^q \times \mathbb{R}^{m-q}$, we can write $\alpha = \sum_j f_j d\beta_j$ with $\beta_j \in \Omega^{m-2}(U_x, \partial U_x)$ and $f_j \in C_c^\infty(U_x)$. Choose $h \in C_c^\infty(U_x)$ with $h = 1$ on $\bigcup_j \text{supp}(f_j)$, so that $\alpha = \sum_j f_j d(h\beta_j)$ and $h\beta_j \in \Omega^{m-2}(M, \partial M)$. Then the vector fields $X_j = i_{\mu_0}^{-1} d(h\beta_j)$ lie in $\mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0)$ and we have the identity $\sum_j f_j . i_{X_j} \mu_0 = \alpha$.
This means \(\sum_j (\mathcal{L} x_j f_j) \mu_0 = \sum_j \mathcal{L} x_j (f_j \mu_0) = \sum_j d i x_j (f_j \mu_0) = d \left(\sum_j f_j . i x_j \mu_0 \right) = d \alpha = g \mu_0 \) or \(\sum_j \mathcal{L} x_j f_j = g \), leading to

\[
\langle A, g \rangle = \sum_j \langle A, \mathcal{L} x_j f_j \rangle = - \sum_j \langle \mathcal{L} x_j A, f_j \rangle = 0.
\]

So \(\langle A, g \rangle = 0 \) for all \(g \in C_c^\infty(U_x) \) with \(\int_M g \mu_0 = 0 \). Finally, choose a function \(\varphi \) with support in \(U_x \) and \(\int_M \varphi \mu_0 = 1 \). Then for any \(f \in C_c^\infty(U_x) \), the function defined by \(g = f - (\int_M f \mu_0) \cdot \varphi \) in \(C^\infty(M) \) satisfies \(\int_M g \mu_0 = 0 \) and so

\[
\langle A, f \rangle = \langle A, g \rangle + \langle A, \varphi \rangle \int_M f \mu_0 = C_x \int_M f \mu_0,
\]

with \(C_x = \langle A, \varphi \rangle \). Thus \(A|U_x = C_x \mu_0|U_x \). Since \(U \) is connected, the constants \(C_x \) are all equal: Choose \(\varphi \in C_c^\infty(U_x \cap U_y) \) with \(\int \varphi \mu_0 = 1 \). Thus (3) is proved.
(4) The operator $\tilde{G}_c : C^\infty(M) \to D'(M)$ has the following property: If for $f \in C^\infty(M)$ and a connected open $U \subseteq M$ the restriction $f|U$ is constant, then we have $\tilde{G}(f)|U = C_U(f)\mu_0|U$ for some constant $C_U(f)$.

For $x \in U$ choose $g \in C^\infty(M)$ with $g = 1$ near $M \setminus U$ and $g = 0$ on a neighborhood V of x. Then for any $X \in \mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0)$, that is $X = \hat{\iota}^{-1}_{\mu_0}(d\omega)$ for some $\omega \in \Omega_c^{m-2}(W, \partial W)$ where $W \subset M$ is an oriented open set, let $Y = \hat{\iota}^{-1}_{\mu_0}(d(g\omega))$. The vector field $Y \in \mathfrak{X}_{\text{exact}}(M, \partial M, \mu_0)$ equals X near $M \setminus U$ and vanishes on V. Since f is constant on U, $\mathcal{L}_X f = \mathcal{L}_Y f$. For all $h \in C^\infty(M)$ we have $\langle \mathcal{L}_X \tilde{G}_c(f), h \rangle = \langle \tilde{G}_c(f), -\mathcal{L}_X h \rangle = -G_c(f, \mathcal{L}_X h) = G_c(\mathcal{L}_X f, h) = \langle \tilde{G}_c(\mathcal{L}_X f), h \rangle$, since G_c is invariant. Thus also

$$\mathcal{L}_X \tilde{G}_c(f) = \tilde{G}_c(\mathcal{L}_X f) = \tilde{G}_c(\mathcal{L}_Y f) = \mathcal{L}_Y \tilde{G}_c(f).$$

Now Y vanishes on V and therefore so does $\mathcal{L}_X \tilde{G}_c(f)$. By (3) we have $\tilde{G}_c(f)|V = C_V(f)\mu_0|V$ for some $C_V(f) \in \mathbb{R}$. Since U is connected, all the constants $C_V(f)$ have to agree, giving a constant $C_U(f)$, depending only on U and f. Thus (4) follows.
By the Schwartz kernel theorem, \(\mathcal{G}_c \) has a kernel \(\hat{\mathcal{G}}_c \), which is a distribution (generalized function) in

\[
\hat{\mathcal{G}}_c \in \mathcal{D}'(M \times M) = (\mathcal{D}(M) \hat{\otimes} \mathcal{D}(M))' = (\mathcal{D}(M) \hat{\otimes} \mathcal{D}(M))' = L(\mathcal{D}(M), \mathcal{D}'(M)) \ni \hat{\mathcal{G}}_c
\]

where one needs first the completed inductive or \(\epsilon \)-tensor product, and then the projective one. Note the defining relations

\[
\mathcal{G}_c(f, g) = \langle \hat{\mathcal{G}}_c(f), g \rangle = \langle \hat{\mathcal{G}}_c, f \otimes g \rangle.
\]

Moreover, \(\hat{\mathcal{G}}_c \) is invariant under the diagonal action of \(\text{Diff}(M, \mu_0) \) on \(M \times M \). In view of the tensor product in the defining relations, the infinitesimal version of this invariance is: \(\mathcal{L}_{X \times 0+0\times X} \hat{\mathcal{G}}_c = 0 \) for all \(X \in \mathfrak{X}(M, \partial M, \mu_0) \).
(5) There exists a constant $C_2 = C_2(c)$ such that the distribution $\hat{G}_c - C_2 \mu_0 \otimes \mu_0$ is supported on the diagonal of $M \times M$.

Namely, if $(x, y) \in M \times M$ is not on the diagonal, then there exist open neighborhoods U_x of x and U_y of y in M such that $\overline{U_x} \times \overline{U_y}$ is disjoint to the diagonal, or $\overline{U_x} \cap \overline{U_y} = \emptyset$. Choose any functions $f, g \in C^\infty(M)$ with $\operatorname{supp}(f) \subset U_x$ and $\operatorname{supp}(g) \subset U_y$. Then $f \big| (M \setminus \overline{U_x}) = 0$, so by (4), $\hat{G}_c(f) \big| (M \setminus \overline{U_x}) = C\cdot \frac{\mu_0}{\overline{U_x}}$. Therefore,

$$G_c(f, g) = \langle \hat{G}_c, f \otimes g \rangle = \langle \hat{G}_c(f), g \rangle = \langle \hat{G}_c(f) \big| (M \setminus \overline{U_x}), g \big| (M \setminus \overline{U_x}) \rangle, \quad \text{since } \operatorname{supp}(g) \subset U_y \subset M \setminus \overline{U_x},$$

$$= C\cdot \frac{\mu_0}{\overline{U_x}} \cdot \int_M g \mu_0$$

By applying the argument for the transposed bilinear form $G_c^T(g, f) = G_c(f, g)$, which is also $\operatorname{Diff}(M, \mu_0)$-invariant, we get

$$G_c(f, g) = G_c^T(g, f) = C' \cdot \frac{\mu_0}{\overline{U_y}} \cdot \int_M f \mu_0.$$
Fix two functions f_0, g_0 with the same properties as f, g and additionally $\int_M f_0\mu_0 = 1$ and $\int_M g_0\mu_0 = 1$. Then we get $C_{M\setminus U_x}(f) = C'_{M\setminus U_y}(g_0) \int_M f\mu_0$, and so

$$G_c(f, g) = C'_{M\setminus U_y}(g_0) \int_M f\mu_0 \cdot \int_M g\mu_0$$

$$= C_{M\setminus U_x}(f_0) \int_M f\mu_0 \cdot \int_M g\mu_0.$$

Since $\dim(M) \geq 2$ and M is connected, the complement of the diagonal in $M \times M$ is also connected, and thus the constants $C_{M\setminus U_x}(f_0)$ and $C'_{M\setminus U_y}(g_0)$ cannot depend on the functions f_0, g_0 or the open sets U_x and U_y as long as the latter are disjoint. Thus there exists a constant $C_2(c)$ such that for all $f, g \in C^\infty(M)$ with disjoint supports we have

$$G_c(f, g) = C_2(c) \int_M f\mu_0 \cdot \int_M g\mu_0$$

Since $C_\infty_c(U_x \times U_y) = C_\infty(U_x) \otimes C_\infty(U_y)$, this implies claim (5).
Now we can finish the proof. We may replace $\hat{G}_c \in \mathcal{D}'(M \times M)$ by $\hat{G}_c - C_2 \mu_0 \otimes \mu_0$ and thus assume without loss that the constant C_2 in (5) is 0. Let (U, u) be an oriented chart on M such that $\mu_0|U = du^1 \wedge \cdots \wedge du^m$, and let \tilde{U} be an extension of U to a smooth manifold without boundary with an extension of the chart mapping u. The distribution $\hat{G}_c|U \times U \in \mathcal{D}'(U \times U) \subset \mathcal{D}'(\tilde{U} \times \tilde{U})$ has support contained in the diagonal and is of finite order k. By [Hörmander I, 1983, Theorem 5.2.3], the corresponding operator $\tilde{G}_c : C_c^\infty(U) \to \mathcal{D}'(U)$ is of the form $\hat{G}_c(f) = \sum_{|\alpha| \leq k} A_\alpha \cdot \partial^\alpha f$ for $A_\alpha \in \mathcal{D}'(U)$, so that $G(f, g) = \langle \tilde{G}_c(f), g \rangle = \sum_\alpha \langle A_\alpha, (\partial^\alpha f).g \rangle$. Moreover, the A_α in this representation are uniquely given, as is seen by a look at [Hörmander I, 1983, Theorem 2.3.5].
For $x \in U$ choose an open set U_x with $x \in U_x \subset \overline{U_x} \subset U$, and choose $X \in \mathcal{X}_{\text{exact}}(M, \partial M, \mu_0)$ with $X|U_x = \partial_{u^i}$ (tangential to the boundary), as in (2\partial). For functions $f, g \in C_c^\infty(U_x)$ we then have, by the invariance of G_c,

$$0 = G_c(\mathcal{L}_X f, g) + G_c(f, \mathcal{L}_X g) = \langle \hat{G}_c|U \times U, \mathcal{L}_X f \otimes g + f \otimes \mathcal{L}_X g \rangle$$

$$= \sum_\alpha \langle A_\alpha, (\partial^\alpha \partial_{u^i} f).g + (\partial^\alpha f)(\partial_{u^i} g) \rangle$$

$$= \sum_\alpha \langle A_\alpha, \partial_{u^i}((\partial^\alpha f).g) \rangle = \sum_\alpha \langle -\partial_{u^i} A_\alpha, (\partial^\alpha f).g \rangle.$$

Since the corresponding operator has again a kernel distribution which is supported on the diagonal, and since the distributions in the representation are unique, we can conclude that $\partial_{u^i} A_\alpha|U_x = 0$ for each α, and each i such that ∂_{u^i} is tangential to the boundary.
To see that this implies that $A_\alpha|_{U_x} = C_\alpha\mu_0|_{U_x}$, let $f \in C_c^\infty(U_x)$ with $\int_M f \mu_0 = 0$. Then, as in (3), there exists $\omega \in \Omega_c^{m-1}(U_x, \partial U_x)$ with $d\omega = f \mu_0$. We have $\omega = \sum_i \omega_i \cdot du^1 \wedge \cdots \wedge \hat{du}^i \wedge du^m$ (only those i with ∂_u^i tangential to the boundary have $\omega_i \neq 0$), and so $f = \sum_i (-1)^{i+1} \partial_u^i \omega_i$ with $\omega_i \in C_c^\infty(U_x)$. Thus

$$\langle A_\alpha, f \rangle = \sum_i (-1)^{i+1} \langle A_\alpha, \partial_u^i \omega_i \rangle = \sum_i (-1)^i \langle \partial_u^i A_\alpha, \omega_i \rangle = 0.$$

Hence $\langle A_\alpha, f \rangle = 0$ for all $f \in C_c^\infty(U_x)$ with zero integral and as in the proof of (3) we can conclude that $A_\alpha|_{U_x} = C_\alpha\mu_0|_{U_x}$.
But then $G_c(f, g) = \int_{U_x} (Lf).g \mu_0$ for the differential operator $L = \sum |\alpha| \leq k C_\alpha \partial^\alpha$ with constant coefficients on U_x. Now we choose $g \in C^\infty_c(U_x)$ such that $g = 1$ on the support of f. By the invariance of G_c we have again

$$0 = G_c(\mathcal{L}_X f, g) + G_c(f, \mathcal{L}_X g) = \int_{U_x} L(\mathcal{L}_X f).g \mu_0 + \int_{U_x} L(f).\mathcal{L}_X g.\mu_0 = \int_{U_x} L(\mathcal{L}_X f)\mu_0 + 0$$

for each $X \in \mathfrak{X}(M, \partial M, \mu_0)$. Thus the distribution $f \mapsto \int_{U_x} L(f)\mu_0$ vanishes on all functions of the form $\mathcal{L}_X f$, and by (3) we conclude that $L(\quad).\mu_0 = C_x.\mu_0$ in $\mathcal{D}'(U_x)$, or $L = C_x \text{Id}$. By covering M with open sets U_x, we see that all the constants C_x are the same. This concludes the proof of the Main Theorem. □
Thank you for listening.