3.20pt

Overview on geometries of shape spaces, diffeomorphism groups, and spaces of Riemannian metrics

Peter W. Michor

Norwegian Summer School on Analysis and Geometry Bergen, Norway

June 24-28, 2013 Based on collaborations with: D. Mumford, M. Bauer, M. Bruveris, P. Harms

The diagram

$$\begin{aligned} &\operatorname{Met}(M) = \Gamma(S_{+}^{2}T^{*}N) \\ & \bar{g} \\ & \operatorname{Diff}(M) \\ & \operatorname{Diff}_{\mathcal{A}}(N), \ \mathcal{A} \in \{H^{\infty}, \mathcal{S}, c\} \\ & \operatorname{Imm}(M, N) \\ & B_{i}(M, N) = \operatorname{Imm}/\operatorname{Diff}(M) \\ & \operatorname{Vol}_{+}^{1}(M) \subset \Gamma(\operatorname{vol}(M)) \end{aligned}$$

space of all Riemann metrics on Mone Riemann metric on NLie group of all diffeos on compact mf MLie group of diffeos of decay A to Id_N mf of all immersions $M \rightarrow N$ shape space space of positive smooth probability densities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\operatorname{Emb}(M, N) \to \operatorname{Emb}(M, N) / \operatorname{Diff}(M) = B(M, N)$

is a smooth principal fiber bundle with structure group Diff(M); B(M, N) is the smooth manifold of submanifolds of N of type M.

The right action of Diff(M) on Imm(M, N) is not free; each isotropy group is a finite group [Cervera, Mascaro, Michor, 1991] and thus the quotient Imm(M, N)/Diff(M) = $B_i(M, N)$ is an honest orbifold, albeit infinite dimensional.

The right action of Diff(M) on Met(M) is not free; each isotropy group is a finite dimensional Lie group (compact for compact M). The quotient Met(M)/Diff(M) is a stratified space, the 'true' phace space for Einstein's equation, sometimes called 'superspace', [Ebin] [Ebin,Marsden].

$$\begin{split} & \mathsf{Diff}(S^1) \\ & \mathsf{Diff}_{\mathcal{A}}(\mathbb{R}^2), \ \mathcal{A} \in \{\mathcal{B}, H^{\infty}, \mathcal{S}, c\} \\ & \mathsf{Imm}(S^1, \mathbb{R}^2) \\ & B_i(S^1, \mathbb{R}^2) = \mathsf{Imm}/\mathsf{Diff}(S^1) \\ & \mathsf{Vol}_+(S^1) = \Big\{ f \, d\theta : f \in C^{\infty}(S^1, \mathbb{R}_{>0}) \\ & \mathsf{Met}(S^1) = \Big\{ g \, d\theta^2 : g \in C^{\infty}(S^1, \mathbb{R}_{>0}) \end{split}$$

Lie group of all diffeos on compact mf S^1 Lie group of diffeos of decay $\mathcal A$ to $\operatorname{Id}_{\mathbb R^2}$ mf of all immersions $S^1\to \mathbb R^2$ shape space space of positive smooth probability densities

space of metrics on S^1

Inner versus Outer

The manifold of immersions

Let M be either S^1 or $[0, 2\pi]$. $\operatorname{Imm}(M, \mathbb{R}^2) := \{ c \in C^{\infty}(M, \mathbb{R}^2) : c'(\theta) \neq 0 \} \subset C^{\infty}(M, \mathbb{R}^2).$

The tangent space of $\text{Imm}(M, \mathbb{R}^2)$ at a curve *c* is the set of all vector fields along *c*:

$$T_{c}\operatorname{Imm}(M,\mathbb{R}^{2}) = \left\{ \begin{array}{cc} & T\mathbb{R}^{2} \\ h : & h \swarrow & \downarrow_{\pi} \\ & M \xrightarrow{c} & \mathbb{R}^{2} \end{array} \right\} \cong \{h \in C^{\infty}(M,\mathbb{R}^{2})\}$$

Some Notation:

$$v(heta) = rac{c'(heta)}{|c'(heta)|}, \quad n(heta) = iv(heta), \quad ds = |c'(heta)|d heta, \quad Ds = rac{1}{|c'(heta)|}\partial_ heta$$

Need for invariance

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Different parameterizations

$$\mathsf{Imm}(M,\mathbb{R}^2)$$
 \downarrow^{π}
 $B_i := \mathsf{Imm}(M,\mathbb{R}^2)/\mathsf{Diff}(M)$

Every Diff(M)-invariant metric "above" induces a unique metric "below" such that π is a Riemannian submersion.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The vertical and horizontal bundle

- $T \operatorname{Imm} = \operatorname{Vert} \bigoplus \operatorname{Hor}.$
- The vertical bundle is

Vert := ker
$$T\pi \subset T$$
 lmm .

The horizontal bundle is

Hor :=
$$(\ker T\pi)^{\perp,G} \subset T \operatorname{Imm}$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The vertical and horizontal bundle

Definition of a Riemannian metric

Imm(M, N) π $B_i(M, N)$

- 1. Define a Diff(*M*)-invariant metric *G* on Imm.
- 2. Then $T\pi$ restricted to the horizontal space yields an isomorphism

$$(\ker T_f \pi)^{\perp,G} \cong T_{\pi(f)}B_i.$$

3. Define a metric on B_i such that

$$(\ker T_f \pi)^{\perp,G} \cong T_{\pi(f)}B_i$$

is an isometry.

Riemannian submersions

$$\mathsf{Imm}(M,\mathbb{R}^2)$$
 \downarrow^{π}
 $B_i := \mathsf{Imm}(M,\mathbb{R}^2)/\mathsf{Diff}(M)$

- ► Horizontal geodesics on Imm(M, ℝ²) project down to geodesics in shape space.
- O'Neill's formula connects sectional curvature on $\text{Imm}(M, \mathbb{R}^2)$ and on B_i .

L^2 metric

$$G_c^0(h,k) = \int_M \langle h(heta), k(heta)
angle ds.$$

Problem: The induced geodesic distance vanishes.

[MichorMumford2005a,2005b], [BauerBruverisHarmsMichor2011,2012]

Metrics on the space of immersions of the form:

$$G_f^P(h,k) = \int_M \bar{g}(P^f h,k) \operatorname{vol}(f^* \bar{g})$$

where \bar{g} is some fixed metric on N, $g = f^*\bar{g}$ is the induced metric on M, $h, k \in \Gamma(f^*TN)$ are tangent vectors at f to Imm(M, N), and P^f is a positive, selfadjoint, bijective (scalar) pseudo differential operator of order 2p depending smoothly on f. Good example: $P^f = 1 + A(\Delta^g)^p$, where Δ^g is the Bochner-Laplacian on M induced by the metric $g = f^*\bar{g}$. Also P has to be Diff(M)-invariant: $\varphi^* \circ P_f = P_{f \circ \varphi} \circ \varphi^*$.

Here $M = S^1$ or $[0, 1\pi]$, $N = \mathbb{R}^2$. The elastic metrics on $\text{Imm}(M, \mathbb{R}^2)$ is

$$G_c^{a,b}(h,k) = \int_0^{2\pi} a^2 \langle D_s h, n \rangle \langle D_s k, n \rangle + b^2 \langle D_s h, v \rangle \langle D_s k, v \rangle \, ds,$$

with

$$\begin{aligned} P_c^{a,b}(h) &= -a^2 \langle D_s^2 h, n \rangle n - b^2 \langle D_s^2 h, v \rangle v \\ &+ (a^2 - b^2) \kappa \big(\langle D_s h, v \rangle n + \langle D_s h, n \rangle v \big) \\ &+ (\delta_{2\pi} - \delta_0) \big(a^2 \langle n, D_s h \rangle n + b^2 \langle v, D_s h \rangle v \big). \end{aligned}$$

Sobolev type metrics

Advantages of Sobolev type metrics:

- 1. Positive geodesic distance
- 2. Geodesic equations are well posed
- 3. Generalization to higher dimension

Problems:

- 1. Analytic solutions to the geodesic equation?
- 2. Curvature of shape space with respect to these metrics?
- 3. Numerics are in general computational expensive

Sobolev type metrics

Advantages of Sobolev type metrics:

- 1. Positive geodesic distance
- 2. Geodesic equations are well posed
- 3. Generalization to higher dimension

Problems:

- 1. Analytic solutions to the geodesic equation?
- 2. Curvature of shape space with respect to these metrics?
- 3. Numerics are in general computational expensive

Geodesic equation.

The geodesic equation for a Sobolev-type metric G^P on immersions is given by

$$\nabla_{\partial_t} f_t = \frac{1}{2} P^{-1} \Big(\operatorname{Adj}(\nabla P)(f_t, f_t)^{\perp} - 2.Tf.\bar{g}(Pf_t, \nabla f_t)^{\sharp} \\ - \bar{g}(Pf_t, f_t).\operatorname{Tr}^g(S) \Big) \\ - P^{-1} \Big((\nabla_{f_t} P)f_t + \operatorname{Tr}^g(\bar{g}(\nabla f_t, Tf))Pf_t \Big).$$

The geodesic equation written in terms of the momentum for a Sobolev-type metric G^P on Imm is given by:

$$\begin{cases} p = Pf_t \otimes \operatorname{vol}(g) \\ \nabla_{\partial_t} p = \frac{1}{2} (\operatorname{Adj}(\nabla P)(f_t, f_t)^{\perp} - 2Tf.\overline{g}(Pf_t, \nabla f_t)^{\sharp} \\ - \overline{g}(Pf_t, f_t)\operatorname{Tr}^g(S)) \otimes \operatorname{vol}(g) \end{cases}$$

Wellposedness

Assumption 1: $P, \nabla P$ and $\operatorname{Adj}(\nabla P)^{\perp}$ are smooth sections of the bundles

respectively. Viewed locally in trivializ. of these bundles,

 $P_f h$, $(\nabla P)_f(h, k)$, $(\operatorname{Adj}(\nabla P)_f(h, k))^{\perp}$ are pseudo-differential operators of order 2p in h, k separately. As mappings in f they are non-linear, and we assume they are a composition of operators of the following type:

(a) Local operators of order $l \leq 2p$, i.e., nonlinear differential operators $A(f)(x) = A(x, \hat{\nabla}^l f(x), \hat{\nabla}^{l-1} f(x), \dots, \hat{\nabla} f(x), f(x))$ (b) Linear pseudo-differential operators of degrees l_i ,

such that the total (top) order of the composition is $\leq 2p$.

Assumption 2: For each $f \in \text{Imm}(M, N)$, the operator P_f is an elliptic pseudo-differential operator of order 2p for p > 0 which is positive and symmetric with respect to the H^0 -metric on Imm, i.e.

$$\int_{M} \bar{g}(P_{f}h, k) \operatorname{vol}(g) = \int_{M} \bar{g}(h, P_{f}k) \operatorname{vol}(g) \quad \text{for } h, k \in T_{f} \operatorname{Imm.}$$

Theorem [Bauer, Harms, M, 2011] Let $p \ge 1$ and $k > \dim(M)/2 + 1$, and let P satisfy the assumptions.

Then the geodesic equation has unique local solutions in the Sobolev manifold $\operatorname{Imm}^{k+2p}$ of H^{k+2p} -immersions. The solutions depend smoothly on t and on the initial conditions f(0, .) and $f_t(0, .)$. The domain of existence (in t) is uniform in k and thus this also holds in Imm(M, N). Moreover, in each Sobolev completion Imm^{k+2p} , the Riemannian exponential mapping exp^P exists and is smooth on a neighborhood of the zero section in the tangent bundle, and (π, exp^P) is a diffeomorphism from a (smaller) neigbourhood of the zero section to a neighborhood of the diagonal in $\operatorname{Imm}^{k+2p} \times \operatorname{Imm}^{k+2p}$. All these neighborhoods are uniform in $k > \dim(M)/2 + 1$ and can be chosen H^{k_0+2p} -open, for $k_0 > \dim(M)/2 + 1$. Thus both properties of the exponential mapping continue to hold in Imm(M, N).

Sobolev completions of $\Gamma(E)$, where $E \to M$ is a VB

Fix (background) Riemannian metric \hat{g} on M and its covariant derivative ∇^M . Equip E with a (background) fiber Riemannian metric \hat{g}^E and a compatible covariant derivative $\hat{\nabla}^E$. Then Sobolev space $H^k(E)$ is the completion of $\Gamma(E)$ for the Sobolev norm

$$\|h\|_k^2 = \sum_{j=0}^k \int_M (\hat{g}^E \otimes \hat{g}_j^0) ((\hat{\nabla}^E)^j h, (\hat{\nabla}^E)^j h) \operatorname{vol}(\hat{g}).$$

This Sobolev space is independ of choices of \hat{g} , ∇^M , \hat{g}^E and $\hat{\nabla}^E$ since M is compact: The resulting norms are equivalent. **Sobolev lemma:** If $k > \dim(M)/2$ then the identy on $\Gamma(E)$ extends to a injective bounded linear map $H^{k+p}(E) \to C^p(E)$ where $C^p(E)$ carries the supremum norm of all derivatives up to order p.

Module property of Sobolev spaces: If $k > \dim(M)/2$ then pointwise evaluation $H^k(L(E, E)) \times H^k(E) \rightarrow H^k(E)$ is bounded bilinear. Likewise all other pointwise contraction operations are multilinear bounded operations.

Proof of well-posedness

By assumption 1 the mapping $P_f h$ is of order 2p in f and in h where f is the footpoint of h. Therefore $f \mapsto P_f$ extends to a smooth section of the smooth Sobolev bundle

$$L(T \operatorname{Imm}^{k+2p}; T \operatorname{Imm}^{k} | \operatorname{Imm}^{k+2p}) \to \operatorname{Imm}^{k+2p},$$

where $T \operatorname{Imm}^{k} | \operatorname{Imm}^{k+2p}$ denotes the space of all H^{k} tangent vectors with foot point a H^{k+2p} immersion, i.e., the restriction of the bundle $T \operatorname{Imm}^{k} \to \operatorname{Imm}^{k}$ to $\operatorname{Imm}^{k+2p} \subset \operatorname{Imm}^{k}$. This means that P_{f} is a bounded linear operator

$$P_f \in L(H^{k+2p}(f^*TN), H^k(f^*TN))$$
 for $f \in \operatorname{Imm}^{k+2p}$.

It is injective since it is positive. As an elliptic operator, it is an unbounded operator on the Hilbert completion of T_f lmm with respect to the H^0 -metric, and a Fredholm operator $H^{k+2p} \rightarrow H^k$ for each k. It is selfadjoint elliptic, so the index =0. Since it is injective, it is thus also surjective.

By the implicit function theorem on Banach spaces, $f \mapsto P_f^{-1}$ is then a smooth section of the smooth Sobolev bundle

$$L(T \operatorname{Imm}^{k} | \operatorname{Imm}^{k+2p}; T \operatorname{Imm}^{k+2p}) \to \operatorname{Imm}^{k+2p}$$

As an inverse of an elliptic pseudodifferential operator, P_f^{-1} is also an elliptic pseudo-differential operator of order -2p. By assumption 1 again, $(\nabla P)_f(m, h)$ and $(\operatorname{Adj}(\nabla P)_f(m, h))^{\perp}$ are of order 2p in f, m, h (locally). Therefore $f \mapsto P_f$ and $f \mapsto \operatorname{Adj}(\nabla P)^{\perp}$ extend to smooth sections of the Sobolev bundle

$$L^2ig({\mathcal T}{\mathsf{Imm}}^{k+2p} ; \, {\mathcal T}{\mathsf{Imm}}^k \mid {\mathsf{Imm}}^{k+2p} ig) o {\mathsf{Imm}}^{k+2p}$$

Using the module property of Sobolev spaces, one obtains that the "Christoffel symbols"

$$\Gamma_{f}(h,h) = \frac{1}{2}P^{-1} \Big(\operatorname{Adj}(\nabla P)(h,h)^{\perp} - 2.Tf.\overline{g}(Ph,\nabla h)^{\sharp} \\ - \overline{g}(Ph,h).\operatorname{Tr}^{g}(S) - (\nabla_{h}P)h - \operatorname{Tr}^{g}\left(\overline{g}(\nabla h,Tf)\right)Ph \Big)$$

extend to a smooth (C^{∞}) section of the smooth Sobolev bundle $L^{2}_{sym}(TImm^{k+2p}; TImm^{k+2p}) \rightarrow Imm^{k+2p}$ Thus $h \mapsto \Gamma_f(h, h)$ is a smooth quadratic mapping $T \operatorname{Imm} \to T \operatorname{Imm}$ which extends to smooth quadratic mappings $T \operatorname{Imm}^{k+2p} \to T \operatorname{Imm}^{k+2p}$ for each $k \ge \frac{\dim(2)}{2} + 1$. The geodesic equation $\boxed{\nabla_{\partial_t}^{\overline{g}} f_t = \Gamma_f(f_t, f_t)}$ can be reformulated using the linear connection $C^g : TN \times_N TN \to TTN$ (horizontal lift mapping) of $\nabla^{\overline{g}}$:

$$\partial_t f_t = C\Big(\frac{1}{2}H_f(f_t,f_t) - K_f(f_t,f_t),f_t\Big).$$

The right-hand side is a smooth vector field on $T \operatorname{Imm}^{k+2p}$, the geodesic spray. Note that the restriction to $T \operatorname{Imm}^{k+1+2p}$ of the geodesic spray on $T \operatorname{Imm}^{k+2p}$ equals the geodesic spray there. By the theory of smooth ODE's on Banach spaces, the flow of this vector field exists in $T \operatorname{Imm}^{k+2p}$ and is smooth in time and in the initial condition, for all $k \ge \frac{\dim(2)}{2} + 1$. It remains to show that the domein of existence is independent of k. I omit this. QED

The elastic metric

$$G_c^{a,b}(h,k) = \int_0^{2\pi} a^2 \langle D_s h, n \rangle \langle D_s k, n \rangle + b^2 \langle D_s h, v \rangle \langle D_s k, v \rangle \, ds,$$

$$c_t = u \in C^{\infty}(\mathbb{R}_{>0} \times M, \mathbb{R}^2)$$

$$L(u_t) = L(\frac{1}{2}H_c(u, u) - K_c(u, u))$$

$$= \frac{1}{2}(\delta_0 - \delta_{2\pi})(\langle D_s u, D_s u \rangle v + \frac{3}{4}\langle v, D_s u \rangle^2 v$$

$$- 2\langle D_s u, v \rangle D_s u - \frac{3}{2}\langle n, D_s u \rangle^2 v)$$

$$+ D_s(\langle D_s u, D_s u \rangle v + \frac{3}{4}\langle v, D_s u \rangle^2 v$$

$$- 2\langle D_s u, v \rangle D_s u - \frac{3}{2}\langle n, D_s u \rangle^2 v)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Note: Only a metric on Imm/transl.

Aim: Represent the class of elastic metrics as the pullback metric of a flat metric on $C^{\infty}(M, \mathbb{R}^2)$, i.e.: find a map

$$R: \operatorname{Imm}(M, \mathbb{R}^2) \mapsto C^\infty(M, \mathbb{R}^n)$$

such that

$$G_c^{a,b}(h,k) = R^* \langle h,k \rangle_{L^2} = \langle T_c R.h, T_c R.k \rangle_{L^2}.$$

[YounesMichorShahMumford2008] [SrivastavaKlassenJoshiJermyn2011]

Theorem

The metric $G^{a,b}$ is the pullback of the flat L^2 metric via the transform R:

$$R^{a,b}: \operatorname{Imm}([0,2\pi], \mathbb{R}^2) \to C^{\infty}([0,2\pi], \mathbb{R}^3)$$
$$R^{a,b}(c) = |c'|^{1/2} \left(a \begin{pmatrix} v \\ 0 \end{pmatrix} + \sqrt{4b^2 - a^2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right)$$

The metric $G^{a,b}$ is flat on open curves, geodesics are the preimages under the R-transform of geodesics on the flat space im R and the geodesic distance between $c, \overline{c} \in \text{Imm}([0, 2\pi], \mathbb{R}^2)/\text{trans}$ is given by the integral over the pointwise distance in the image Im(R). The curvature on $B([0, 2\pi], \mathbb{R}^2)$ is non-negative.

[BauerBruverisCotterMarslandMichor2012]

Image of R is characterized by the condition:

$$(4b^2 - a^2)(R_1^2(c) + R_2^2(c)) = a^2 R_3^2(c)$$

Define the flat cone

$$C^{a,b} = \{q \in \mathbb{R}^3 : (4b^2 - a^2)(q_1^2 + q_2^2) = a^2q_3^2, q_3 > 0\}.$$

Then Im $R = C^{\infty}(S^1, C^{a,b})$. The inverse of R is given by:

$$egin{aligned} R^{-1} &: ext{im} \ R o ext{Imm}([0,2\pi],\mathbb{R}^2)/ ext{ trans} \ R^{-1}(q)(heta) &= p_0 + rac{1}{2ab} \int_0^ heta |q(heta)| igg(rac{q_1(heta)}{q_2(heta)} igg) \, d heta \,. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Characterize image using the inverse:

$$R^{-1}(q)(heta) = p_0 + rac{1}{2ab}\int_0^ heta |q(heta)| egin{pmatrix} q_1(heta) \ q_2(heta) \end{pmatrix} d heta\,.$$

 $R^{-1}(q)(\theta)$ is closed iff

$${\mathcal F}(q) = \int_0^{2\pi} |q(heta)| igg({q_1(heta) \over q_2(heta)} igg) \, d heta = 0$$

A basis of the orthogonal complement $(T_q \mathscr{C}^{a,b})^{\perp}$ is given by the two gradients $\operatorname{grad}^{L^2} F_i(q)$

Theorem

The image $\mathscr{C}^{a,b}$ of the manifold of closed curves under the *R*-transform is a codimension 2 submanifold of the flat space $\operatorname{Im}(R)_{open}$. A basis of the orthogonal complement $(T_q \mathscr{C}^{a,b})^{\perp}$ is given by the two vectors

$$egin{aligned} &U_1(q)=rac{1}{\sqrt{q_1^2+q_2^2}}\,egin{pmatrix} 2q_1^2+q_2^2\ q_1q_2\ 0 \end{pmatrix}+rac{2}{a}\sqrt{4b^2-a^2}egin{pmatrix} 0\ 0\ q_1\end{pmatrix},\ &U_2(q)=rac{1}{\sqrt{q_1^2+q_2^2}}\,egin{pmatrix} q_1q_2\ q_1^2+2q_2^2\ 0 \end{pmatrix}+rac{2}{a}\sqrt{4b^2-a^2}egin{pmatrix} 0\ 0\ q_2\end{pmatrix}. \end{aligned}$$

[BauerBruverisCotterMarslandMichor2012]

compress and stretch

A geodesic Rectangle

Non-symmetric distances

1		$I_1 \rightarrow I_2$			$I_2 \rightarrow I_1$			
I1	I ₂	# iterations	# points	distance	# iterations	# points	distance	%diff
cat	COW	28	456	7.339	33	462	8.729	15.9
cat	dog	36	475	8.027	102	455	10.060	20.2
cat	donkey	73	476	12.620	102	482	12.010	4.8
cow	donkey	32	452	7.959	26	511	7.915	0.6
dog	donkey	15	457	8.299	10	476	8.901	6.8
shark	airplane	63	491	13.741	40	487	13.453	2.1

An example of a metric space with strongly negatively curved regions

[BauerHarmsMichor2012]

The pathlength metric on shape space induced by G^{Φ} separates points if one of the following holds:

- $\Phi \geq C_1 + C_2 \|\operatorname{Tr}^g(S)\|^2$ with $C_1, C_2 > 0$ or
- $\Phi \ge C_3 \operatorname{Vol}$

This leads us to consider $\Phi = \Phi(Vol, ||Tr^{g}(S)||^{2})$. Special cases:

- G^A -metric: $\Phi = 1 + A \| \operatorname{Tr}^g(S) \|^2$
- Conformal metrics: $\Phi = \Phi(Vol)$

Geodesic equation on shape space $B_i(M, \mathbb{R}^n)$, with $\Phi = \Phi(\text{Vol}, \text{Tr}(L))$

$$\begin{split} f_t &= a.\nu, \\ a_t &= \frac{1}{\Phi} \Big[\frac{\Phi}{2} a^2 \operatorname{Tr}(L) - \frac{1}{2} \operatorname{Tr}(L) \int_M (\partial_1 \Phi) a^2 \operatorname{vol}(g) - \frac{1}{2} a^2 \Delta(\partial_2 \Phi) \\ &\quad + 2ag^{-1} (d(\partial_2 \Phi), da) + (\partial_2 \Phi) \| da \|_{g^{-1}}^2 \\ &\quad + (\partial_1 \Phi) a \int_M \operatorname{Tr}(L) . a \operatorname{vol}(g) - \frac{1}{2} (\partial_2 \Phi) \operatorname{Tr}(L^2) a^2 \Big] \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Sectional curvature on B_i

Chart for B_i centered at $\pi(f_0)$ so that $\pi(f_0) = 0$ in this chart:

$$a \in C^{\infty}(M) \longleftrightarrow \pi(f_0 + a.\nu^{f_0}).$$

For a linear 2-dim. subspace $P \subset T_{\pi(f_0)}B_i$ spanned by a_1, a_1 , the sectional curvature is defined as:

$$k(P) = -\frac{G^{\Phi}_{\pi(f_0)}(\mathcal{R}_{\pi(f_0)}(a_1, a_2)a_1, a_2)}{\|a_1\|^2 \|a_2\|^2 - G^{\Phi}_{\pi(f_0)}(a_1, a_2)^2} , \text{ where}$$

$$\begin{split} R_0(a_1,a_2,a_1,a_2) &= G_0^{\Phi}(R_0(a_1,a_2)a_1,a_2) = \\ &\frac{1}{2}d^2G_0^{\Phi}(a_1,a_1)(a_2,a_2) + \frac{1}{2}d^2G_0^{\Phi}(a_2,a_2)(a_1,a_1) \\ &- d^2G_0^{\Phi}(a_1,a_2)(a_1,a_2) \\ &+ G_0^{\Phi}(\Gamma_0(a_1,a_1),\Gamma_0(a_2,a_2)) - G_0^{\Phi}(\Gamma_0(a_1,a_2),\Gamma_0(a_1,a_2)). \end{split}$$

Sectional curvature on B_i for $\Phi = Vol$

$$\begin{split} k(P) &= -\frac{\mathcal{R}_{0}(a_{1}, a_{2}, a_{1}, a_{2})}{\|a_{1}\|^{2}\|a_{2}\|^{2} - G_{\pi(f_{0})}^{\Phi}(a_{1}, a_{2})^{2}} , \text{ where} \\ R_{0}(a_{1}, a_{2}, a_{1}, a_{2}) &= -\frac{1}{2} \operatorname{Vol} \int_{M} \|a_{1}da_{2} - a_{2}da_{1}\|_{g^{-1}}^{2} \operatorname{vol}(g) \\ &+ \frac{1}{4 \operatorname{Vol}} \overline{\operatorname{Tr}(L)^{2}} \Big(\overline{a_{1}^{2}} \cdot \overline{a_{2}^{2}} - \overline{a_{1} \cdot a_{2}}^{2} \Big) \\ &+ \frac{1}{4} \Big(\overline{a_{1}^{2}} \cdot \overline{\operatorname{Tr}(L)^{2}} a_{2}^{2} - 2\overline{a_{1} \cdot a_{2}} \cdot \overline{\operatorname{Tr}(L)^{2}} a_{1} \cdot a_{2} + \overline{a_{2}^{2}} \cdot \overline{\operatorname{Tr}(L)^{2}} a_{1}^{2} \Big) \\ &- \frac{3}{4 \operatorname{Vol}} \Big(\overline{a_{1}^{2}} \cdot \overline{\operatorname{Tr}(L)} a_{2}^{2} - 2\overline{a_{1} \cdot a_{2}} \cdot \overline{\operatorname{Tr}(L)} a_{1} \cdot \overline{\operatorname{Tr}(L)} a_{2} + \overline{a_{2}^{2}} \cdot \overline{\operatorname{Tr}(L)} a_{1}^{2} \Big) \\ &+ \frac{1}{2} \Big(\overline{a_{1}^{2}} \cdot \overline{\operatorname{Tr}^{g}}((da_{2})^{2}) - 2\overline{a_{1} \cdot a_{2}} \cdot \overline{\operatorname{Tr}^{g}}(da_{1} \cdot da_{2}) + \overline{a_{2}^{2}} \cdot \overline{\operatorname{Tr}(L)} \Big) \\ &- \frac{1}{2} \Big(\overline{a_{1}^{2}} \cdot \overline{a_{2}^{2}} \cdot \operatorname{Tr}(L^{2}) - 2 \cdot \overline{a_{1} \cdot a_{2}} \cdot \overline{\operatorname{Tr}(L^{2})} + \overline{a_{2}^{2}} \cdot \overline{\operatorname{a}_{1}^{2}} \cdot \overline{\operatorname{Tr}(L^{2})} \Big). \end{split}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Sectional curvature on B_i for $\Phi = 1 + A \operatorname{Tr}(L)^2$

$$\begin{aligned} k(P) &= -\frac{\mathcal{R}_{0}(a_{1}, a_{2}, a_{1}, a_{2})}{\|a_{1}\|^{2}\|a_{2}\|^{2} - G_{\pi(f_{0})}^{\Phi}(a_{1}, a_{2})^{2}}, \text{ where} \\ R_{0}(a_{1}, a_{2}, a_{1}, a_{2}) &= \int_{M} A(a_{1}\Delta a_{2} - a_{2}\Delta a_{1})^{2} \operatorname{vol}(g) \\ &+ \int_{M} 2A \operatorname{Tr}(L)g_{2}^{0}((a_{1}da_{2} - a_{2}da_{1}) \otimes (a_{1}da_{2} - a_{2}da_{1}), s) \operatorname{vol}(g) \\ &+ \int_{M} \frac{1}{1 + A \operatorname{Tr}(L)^{2}} \left[-4A^{2}g^{-1}(d\operatorname{Tr}(L), a_{1}da_{2} - a_{2}da_{1})^{2} \\ &- \left(\frac{1}{2} (1 + A\operatorname{Tr}(L)^{2})^{2} + 2A^{2}\operatorname{Tr}(L)\Delta(\operatorname{Tr}(L)) + 2A^{2}\operatorname{Tr}(L^{2})\operatorname{Tr}(L)^{2} \right) \cdot \\ &\quad \cdot \|a_{1}da_{2} - a_{2}da_{1}\|_{g^{-1}}^{2} + (2A^{2}\operatorname{Tr}(L)^{2})\|da_{1}\wedge da_{2}\|_{g^{0}}^{2} \\ &+ (8A^{2}\operatorname{Tr}(L))g_{2}^{0}(d\operatorname{Tr}(L) \otimes (a_{1}da_{2} - a_{2}da_{1}), da_{1}\wedge da_{2}) \right] \operatorname{vol}(g) \end{aligned}$$

Negative Curvature: A toy example

Ex1: $\Phi = 1 + .4 \operatorname{Tr}(L)^2$ Ex2: $\Phi = e^{Vol}$ Ex3: $\Phi = e^{Vol}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

Another toy example

[BauerBruveris2011]

э

(日) (同) (日) (日)

Special case: Diffeomorphism groups.

For M = N the space Emb(M, M) equals the diffeomorphism group of M. An operator $P \in \Gamma(L(T \text{ Emb}; T \text{ Emb}))$ that is invariant under reparametrizations induces a right-invariant Riemannian metric on this space. Thus one gets the geodesic equation for right-invariant Sobolev metrics on diffeomorphism groups and well-posedness of this equation. The geodesic equation on Diff(M) in terms of the momentum p is given by

$$\begin{cases} p = Pf_t \otimes \operatorname{vol}(g), \\ \nabla_{\partial_t} p = -Tf.\bar{g}(Pf_t, \nabla f_t)^{\sharp} \otimes \operatorname{vol}(g). \end{cases}$$

Note that this equation is not right-trivialized, in contrast to the equation given in [Arnold 1966]. The special case of theorem now reads as follows:

Theorem. [Bauer, Harms, M, 2011] Let $p \ge 1$ and $k > \frac{\dim(M)}{2} + 1$ and let *P* satisfy the assumptions.

The initial value problem for the geodesic equation has unique local solutions in the Sobolev manifold Diff^{k+2p} of H^{k+2p} -diffeomorphisms. The solutions depend smoothly on t and on the initial conditions f(0, .) and $f_t(0, .)$. The domain of existence (in t) is uniform in k and thus this also holds in Diff(M).

Moreover, in each Sobolev completion $\operatorname{Diff}^{k+2p}$, the Riemannian exponential mapping \exp^P exists and is smooth on a neighborhood of the zero section in the tangent bundle, and (π, \exp^P) is a diffeomorphism from a (smaller) neigbourhood of the zero section to a neighborhood of the diagonal in $\operatorname{Diff}^{k+2p} \times \operatorname{Diff}^{k+2p}$. All these neighborhoods are uniform in $k > \dim(M)/2 + 1$ and can be chosen H^{k_0+2p} -open, for $k_0 > \dim(M)/2 + 1$. Thus both properties of the exponential mapping continue to hold in $\operatorname{Diff}(M)$.

・ロト ・聞ト ・ヨト ・ヨト

æ

Weak Riemann metrics on Met(M)

All of them are Diff(M)-invariant; natural, tautological.

$$\begin{aligned} G_g(h,k) &= \int_M g_2^0(h,k) \operatorname{vol}(g) = \int \operatorname{Tr}(g^{-1}hg^{-1}k) \operatorname{vol}(g), \quad L^2 \text{-metr.} \\ \text{or} &= \Phi(\operatorname{Vol}(g)) \int_M g_2^0(h,k) \operatorname{vol}(g) \quad \text{conformal} \\ \text{or} &= \int_M \Phi(\operatorname{Scal}^g).g_2^0(h,k) \operatorname{vol}(g) \quad \text{curvature modified} \\ \text{or} &= \int_M g_2^0((1+\Delta^g)^p h,k) \operatorname{vol}(g) \quad \text{Sobolev order } p \\ \text{or} &= \int_M \left(g_2^0(h,k) + g_3^0(\nabla^g h, \nabla^g k) + \dots \\ &+ g_p^0((\nabla^g)^p h, (\nabla^g)^p k)\right) \operatorname{vol}(g) \end{aligned}$$

where Φ is a suitable real-valued function, $\text{Vol} = \int_M \text{vol}(g)$ is the total volume of (M, g), Scal is the scalar curvature of (M, g), and where g_2^0 is the induced metric on $\binom{0}{2}$ -tensors.

[Ebin 1970]. Geodesics and curvature [Freed Groisser 1989]. [Gil-Medrano Michor 1991] for non-compact M. [Clarke 2009] showed that geodesic distance for the L^2 -metric is positive, and he determined the metric completion of Met(M).

The geodesic equation is completely decoupled from space, it is an ODE:

$$g_{tt} = g_t g^{-1} g_t + \frac{1}{4} \operatorname{Tr}(g^{-1} g_t g^{-1} g_t) g - \frac{1}{2} \operatorname{Tr}(g^{-1} g_t) g_t$$

$$\begin{split} \exp_0(A) &= \frac{2}{n} \log \left((1 + \frac{1}{4} \operatorname{Tr}(A))^2 + \frac{n}{16} \operatorname{Tr}(A_0^2) \right) Id \\ &+ \frac{4}{\sqrt{n \operatorname{Tr}(A_0^2)}} \arctan \left(\frac{\sqrt{n \operatorname{Tr}(A_0^2)}}{4 + \operatorname{Tr}(A)} \right) A_0. \end{split}$$

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

n = 3

Back to the the general metric on Met(M).

We describe all these metrics uniformly as

$$egin{aligned} G_g^P(h,k) &= \int_M g_2^0(P_gh,k) \operatorname{vol}(g) \ &= \int_M \operatorname{Tr}(g^{-1}.P_g(h).g^{-1}.k) \operatorname{vol}(g), \end{aligned}$$

where

$$P_g: \Gamma(S^2T^*M) \to \Gamma(S^2T^*M)$$

is a positive, symmetric, bijective pseudo-differential operator of order $2p, p \ge 0$, depending smoothly on the metric g, and also Diff(M)-equivariantly:

$$\varphi^* \circ P_g = P_{\varphi^*g} \circ \varphi^*$$

The geodesic equation in this notation:

$$g_{tt} = P^{-1} \Big[(D_{(g,.)} Pg_t)^* (g_t) + \frac{1}{4} \cdot g_t \cdot \operatorname{Tr}(g^{-1} \cdot Pg_t \cdot g^{-1} \cdot g_t) \\ + \frac{1}{2} g_t \cdot g^{-1} \cdot Pg_t + \frac{1}{2} Pg_t \cdot g^{-1} \cdot g_t - (D_{(g,g_t)} P)g_t \\ - \frac{1}{2} \operatorname{Tr}(g^{-1} \cdot g_t) \cdot Pg_t \Big]$$

We can rewrite this equation to get it in a slightly more compact form:

$$(Pg_t)_t = (D_{(g,g_t)}P)g_t + Pg_{tt}$$

= $(D_{(g,..)}Pg_t)^*(g_t) + \frac{1}{4}g_t \cdot \mathbf{r}(g^{-1} \cdot Pg_t \cdot g^{-1} \cdot g_t)$
+ $\frac{1}{2}g_t \cdot g^{-1} \cdot Pg_t + \frac{1}{2}Pg_t \cdot g^{-1} \cdot g_t - \frac{1}{2}\operatorname{Tr}(g^{-1} \cdot g_t) \cdot Pg_t$

Well posedness of geodesic equation.

Assumptions Let $P_g(h)$, $P_g^{-1}(k)$ and $(D_{(g,.)}Ph)^*(m)$ be linear pseudo-differential operators of order 2p in m, h and of order -2p in k for some $p \ge 0$.

As mappings in the foot point g, we assume that all mappings are non-linear, and that they are a composition of operators of the following type:

(a) Non-linear differential operators of order $l \leq 2p$, i.e.,

$$A(g)(x) = A(x,g(x),(\hat{\nabla}g)(x),\ldots,(\hat{\nabla}^{\prime}g)(x)),$$

(b) Linear pseudo-differential operators of order $\leq 2p$, such that the total (top) order of the composition is $\leq 2p$. Since $h \mapsto P_g h$ induces a weak inner product, it is a symmetric and injective pseudodifferential operator. We assume that it is elliptic and selfadjoint. Then it is Fredholm and has vanishing index. Thus it is invertible and $g \mapsto P_g^{-1}$ is smooth $H^k(S^2_+T^*M) \to L(H^k(S^2T^*M), H^{k+2p}(S^2T^*M))$ by the implicit function theorem on Banach spaces. **Theorem.** [Bauer, Harms, M. 2011] Let the assumptions above hold. Then for $k > \frac{\dim(M)}{2}$, the initial value problem for the geodesic equation has unique local solutions in the Sobolev manifold $\operatorname{Met}^{k+2p}(M)$ of H^{k+2p} -metrics. The solutions depend C^{∞} on t and on the initial conditions $g(0, ...) \in \operatorname{Met}^{k+2p}(M)$ and $g_t(0, ...) \in H^{k+2p}(S^2T^*M)$. The domain of existence (in t) is uniform in k and thus this also holds in $\operatorname{Met}(M)$.

Moreover, in each Sobolev completion $\operatorname{Met}^{k+2p}(M)$, the Riemannian exponential mapping \exp^P exists and is smooth on a neighborhood of the zero section in the tangent bundle, and (π, \exp^P) is a diffeomorphism from a (smaller) neighborhood of the zero section to a neighborhood of the diagonal in $\operatorname{Met}^{k+2p}(M) \times \operatorname{Met}^{k+2p}(M)$. All these neighborhoods are uniform in $k > \frac{\dim(M)}{2}$ and can be chosen H^{k_0+2p} -open, where $k_0 > \frac{\dim(M)}{2}$. Thus all properties of the exponential mapping continue to hold in $\operatorname{Met}(M)$.

Conserved Quantities on Met(M).

Right action of Diff(M) on Met(M) given by

 $(g, \phi) \mapsto \phi^* g.$

Fundamental vector field (infinitesimal action):

$$\zeta_X(g) = \mathcal{L}_X g = -2 \operatorname{Sym} \nabla(g(X)).$$

If metric G^P is invariant, we have the following conserved quantities

$$const = G^{P}(g_{t}, \zeta_{X}(g))$$
$$= -2 \int_{M} g_{1}^{0}(\nabla^{*} \operatorname{Sym} Pg_{t}, g(X)) \operatorname{vol}(g)$$
$$= -2 \int_{M} g(g^{-1}\nabla^{*} Pg_{t}, X) \operatorname{vol}(g)$$

Since this holds for all vector fields X,

 $(\nabla^* Pg_t) \operatorname{vol}(g) \in \Gamma(T^* M \otimes_M \operatorname{vol}(M))$ is const. in t.

◆□ > < @ > < E > < E > E のQ@

Thank you for your attention

<□ > < @ > < E > < E > E のQ @