Higher order symplectic structures on shape
spaces of space curves

Peter W. Michor
Universitat Wien
www.mat.univie.ac.at/“michor

Conference " Geometric Sciences in Action”
CIRM, Luminy, Marseille, France

27 May - 31 May 2024
Based on collaborations with: Martin Bauer, Sadashige Ishiga
Paper unfinished



Abstract: For ¢ € Imm(S1,R3) the 2- form
QMW (h, k) = / det(Dsc, h, k)ds,
si

where ds = |c’(0)|d6 and D = EQ )|89, induces the

Marsden-Weinstein symplectic structure! on the shape space
Imm(S?, R3)/ Diff(S?), corresponding to a Kihler structure. The
Hamiltonian flow for the length functional is the binormal flow. In
this talk | will present other natural symplectic structures related
to this one.

"Marsden, J., and Weinstein, A. Coadjoint orbits, vortices, and Clebsch
variables for incompressible fluids. Physica D: Nonlinear Phenomena 7, 1
(1983), 305-323.



Infinite dim. symplectic manifolds

M be a manifold, infinite dimensional.
A 2-form w € Q2(M) is called a weak symplectic structure on M if
the following three conditions holds:

1. wis closed, dw = 0.

2. The associated vector bundle homomorphism & : TM — T*M
is injective.

3. The gradient of w with respect to itself exists and is smooth;
in charts: so let M be open in a convenient vector space E.
Then for x € M and X,Y,Z € T,M = E we have
dw(x)(X)(Y, 2Z) = w(Q(Y, 2),X) = w(Q(X, Y), Z) for
smooth Q,Q : M x E x E — E which are bilinear in E x E.

w € Q?(M) is called a strong symplectic structure on M if it is
closed (dw = 0) and if @ : TM — T*M is invertible with smooth
inverse. Then M turns out to be a Hilbert manifold.



Cotangent bundle (needs convenient calculus)

T*Q carries a canonical weak symplectic structure wq € Q2(T* Q),
which is defined as follows. Let 75 : T*Q — @ be the projection.
Then the Liouville form 0o € QY(T*Q) is given by

0o(X) = (r1+@(X), T(mp)(X)) for X € T(T*Q), where ( , )
denotes the duality pairing T*Q x o TQ — R. Then the symplectic
structure on T*Q is given by wg = —dfq, which of course in a
local chart looks like wg((v, V'), (w,w')) = (W, v)g — (V/,w)E.
The associated mapping & : Tgo)(E x E') = E x E' = E' x E" is
given by (v,v') — (=V/,ig(v)), where ig : E — E” is the
embedding into the bidual. So the canonical symplectic structure
on T*Q is strong if and only if all model spaces of the manifold
are reflexive and Hilbert spaces.



Definition

For a weak symplectic manifold (M, w) let

TEM =TEM =0 (TM) C TiM = L(T<M,R), called the
w-smooth cotangent space The convenient structure on T'’M is
the one from T, M. These vector spaces fit together to form a
subbundle of T*M which is isomorphic to the tangent bundle TM
viaw: TM — TYM C T*M. It is in general not a splitting
subbundle.

For strong w the mapping &y : TxM — T;M is a diffeomorphism
onto T’M with the structure induced from T} M.

For a weak symplectic manifold (M, w) let

CX(M,R) C C®(M,R)

denote the subalgebra consisting of all smooth functions

f : M — R such that the differential df : M — T*M factors to a
smooth mapping M — T“M. These are exactly those smooth
functions on M which admit a smooth w-gradient grad®” f € X(M).



Theorem Let (M,w) be a weak symplectic manifold. The
Hamiltonian mapping grad® : C3°(M,R) — X(M,w), which is
given by lgadw fw =df or grad’ f = (0)"todf s well
defined. Also the Poisson bracket

{ ., }:C®(M,R)x C(M,R) = C(M,R)

{f,g} = w(grad” g,grad” f) = dg(grad” f) = (grad® )(g)

is well defined and gives a Lie algebra structure to the space
C(M,R), which also fulfills {f,gh} = {f,g}h+ g{f, h}. We
equip CS°(M,R) with the initial structure with respect to:
C(M,R) —= C*(M,R),  C(M,R) 22 x(m).
Then the Poisson bracket is bounded bilinear on C5°(M,R).

We have the following long exact sequence of Lie algebras and Lie
algebra homomorphisms:

0 — HY(M) — C°(M,R) X(M,w) L5 HY(M) =0,
where HO(M) is the space of locally constant functions, and

HL(M) = {‘pei;f%?i?l\’\jﬁ‘;f =0 s the first symplectic

grad®

cohomology space of (M,w), a linear subspace of the De Rham
cohomology space H'(M).



The space of regular space curves

Imm = Imm(S',R?) := {c € C®(S",R%) : || # 0} .
is open subset in C*°(S!,R3), a manifold with tangent space
Tmm = T mm(S1, R3) = C>(S, R3).

Consider the action of the reparametrization group
Diff = Diff*(S1) or = Diff(S!) by composition from the right and
the quotient (shape) space

B; = B;(S*,R3) := Imm(S*, R3)/Diff (S1),

which is an infinite dimensional orbifold; the isotropy groups are
finite cyclic groups.?

The vertical fibers consist exactly of all fields h that are tangent to
it's foot point c, i.e., h = a.c’ with a € C®(S?).

2\/.Cervera, F.Mascaro, PM: The action of the diffeomorphism group on the
space of immersions. Diff. Geom. Appl. 1 (1991), 391-401



Reparametrization invariant Riemannian metrics

on Imm are Riemannian metrics of the form:

GCL(h,k):/ <Lch,k>ds:/ (h, Lck)ds,  where
st St

ds = |cg|df, Ds=(1/|cp|)09, arc-lenght derivative,

L € T(End(TImm), Lc: Tdmm = C®(SY,R3) — T.Imm,
called inertia operator, is an elliptic, pseudo differential operator
that is equivariant under the right action of Diff(S') and also

under left action of SO(3) (or even the motion group R3 x SO(3)),
and which is also selfadjoint with respect to the L2-metric, i.e.,

Leop(ho @) = (Le(h)) oy and /(Lch, kyds = /(h, Lck)ds .

The class of Sobolev H*-metrics, where L = (1 — (—1)kKD2k). For
k =0 we have Gi(h, k) = [(h, k)ds.



The induced Liouville one form

corresponding to the metric G is the one-form:
OL(h) .= GL(cxDsc, h) = /(chsc, Lchyds = /det(c, Dsc, Lch)ds

for h € T.Imm, where x denotes the vector cross product on R3.
We have:

For any inertia operator L, that is equivariant under the right
action of Diff and the left action of SO(3), the induced Liouville
one-form O is invariant under the right action of Diff and the left
action of SO(3), i.e., for any ¢ € Imm, h € TcImm, ¢ € Diff and
O € SO(3) we have

eLOocogo)(O oho (,0)) = @lc_(h)



The induced pre-symplectic form on Imm is

QL(h, k) := —dOL(h, k) = —D. 4OL(k) + D xOL(h) + ©L([h, K]),

QL(h, k) :/((Dsc, Leh x k+ hx Lek) — (¢, Dsh x Lk — Dk x Leh)

— (¢ % Dsc, (DepLe)k — (DC,kLC)h>>ds.

QL is invariant under the actions of Diff and SO(3). For the
invariant L?-metric, i.e., L = id, one obtains three times the
Marsden-Weinstein pre-symplectic structure, i.e.,

QY(h, k) = 3/

(Dscxh, k)ds = 3/det(Dsc, h, k)ds =: 3QMW(h, k).
S

Its kernel consists exactly of all vector fields along ¢ which are
tangent to ¢, so by reduction it induces a pre-symplectic structure
on shape space Imm(St, R3)/Diff which is easily seen to be
non-degenerate and thus is a symplectic structure there.



Theorem

The form QL factors to a (pre)-symplectic form QL on B; if the
inertia operator L maps vertical tangent vectors to span{c, c'},
i.e., if for all c € Imm and a € C°°(S!) we have

Lc(a.c’) = aic’ + axc for some functions a; € C*(S?!).

Proof. The 1-form ©F on Imm factors to a 1-form ©L on shape
space B; with ©L = 7*OL if and only if © is invariant under
under Diff and is horizontal in the sense that it vanishes on each
vertical tangent vector h = a.c’ for a in C*°(S%, R).

The condition on L such that @ vanishes on all vertical h is

CHERE /(c x Dgc, Lc(ac’))ds = 0.

From here it is clear that this holds if L.(a.c’) = aic’ + axc for
some functions a; € C®(S1).
In that case also its exterior derivative satisfies

QL = —dolt = —dr*0OL = —7*d0L = 7*QL

for the presymplectic form QF = —dOL on B;.



Inertia operators that satisfy these conditions are

Lc(h) = F(c).h for F € C*°(Imm,Rs), for example

Le(h) = A(c)  for A Ilmm — Ry

Lc(h) = ®(L)h, or Le(h) = (1+K2)h, or Lc(h) = ¢(|c|)h,
Sobolev metrics do not satisfy the conditions. By using a

projection in the definiton one can, however, modify them to still
respect the vertical bundle:

Leh = (pre(1 = (~1)¥DZ¢) pre +(1 = pre)(1 — (~1)D2¢)(1  pr) ) .

where pr. h = (Dsc, h)Dsc is the L?-orthogonal projection to the
vertical bundle; see [Bauer, Harms, 2015], where metrics of this
form were studied.



Horizontal Qt-Hamiltonian vector fields.

If the inertia operator L € ['(End(TImm(S!,R3)) induces a weak
symplectic structure on B;, and is weakly non-degenerate in the
sense that QL : TB; — T*B; is injective then the kernel of

QL : T.mm — TXIlmm equals T(c o Diff) for all c. Thus QL
restricted to the GL-orthogonal complement (if it is a complement)
of T¢(c o Diff) is injective. Let us suppose that H is a
Diff-invariant smooth function on Imm. The 2-form QF on Imm is
still only presymplectic, but if each dH. lies in the image of

QL : TImm — T*Imm, then a unique smooth horizontal
Hamiltonian vector field X € X(Imm) is determined by

dH = ixQt = QL(X, ), GL(X.,Y)=0 VY. e ker(Q2h)
which we will denote by hgradQL(H). Obviously we then have

gradQL(Fl) omr=Trmo hgradQL(H)7 where Hor = H.



Momentum mappings

Since ©F is invariant for the action of group G with infinites.
action ¢ : g — X(Imm(S!,R3?)), the momentum mapping is given,
for Y € g, by

((e). ¥) = O4Gr)e = [ (e x Duci LY o c)ds,
where we denote the duality as ( , ) :g" x g — R. Namely,
dO(Cy) = dig, O = £¢,0F — i, dOt =0 — i, QL.
Thus we have for X = a.05 € X(S!) = C>°(S§1)0s and Y € s0(3)
C2.9y(c) = Dcac, as derivation at ¢ on C*°(Imm, R)
= a.cp = a.|¢y|Dsc € Tclmm = COO(SI,R3)
Leop(ho @) = (Lch)op = (Dcacolc)(h) + Le(a-hg) = a.(Lch)o

<JDifF(c),a.89> - @é(Ca.Bg(C)) =0a.qp) = /<C x Dsc, Lc(a.cp))ds

= /<C X DSC, a.(LCC)g - (Dc,a.chC)(C)>ds



For Y € s0(3) the angular momentum is
(JOB)(c), vy = OL(Y o c) = /<c % Dsc, L(Y o c))ds
- /<c % Dac,y o Le(c) — (De.yocle(c))ds
For a correct interpretation of the angular momentum recall that
the action of Y € R3 2 50(3) 2 Lyew(R3, R3) on R3 is given by
X —=2Y x X.

If L is also invariant under translations, then the linear momentum,
for y € R3, is

(JF(c),y) = OL(y) = / (c x Dac, Le(y))ds.

Note that the above also furnishes conserved quantities on B;, if
QL is non-degenerate.



Theorem [Conformal factors| Let L. = A(c)id. Then the induced
(pre)symplectic structure on Imm(St, R3) is given by

O = \Q9 + 09 A d.

Furthermore we have

(a) If 3Ac + icdAc = 3X(c) + Dc.cA # 0 on any open subset of
Imm, then Q induces a non-degenerate two-form on B;(S,R3),
which is thus symplectic. _

(b) Assume in addition, that X := hgrad®” X exists and that
3Xc + icdAc =0 for all c. Denote by F the involutive
2-dimensional vector sub-bundle spanned by I = ¢ and gradQ .
Then Q* induces a non-degenerate two-form on

Imm/(Diff x F) ~ {¢ € B{(S*,R3) : \z =1}/ span(gradQ A),
where it agrees with a multiple of the Marsden-Weinstein
symplectic structure. It is also non- degenerate on

{2 € B;i(S!,R3) : Iz = 1}/ span(grad®” }).



Theorem (a)) Consider a -invariant Hamiltonian
H: Imm(SY, R3) — R3. If3Ac + icdAc = 3A\(c) + Dc.cA # 0 on
any open subset of Imm then

1
hgrad® H = — S
gr 3hc 3hc + Dech [

(gradCGid A\, Dyc x grad®” H)Lg (styDsc x (Dsc x ¢)

{Dsc X gradGid H+

— (c.grad®" H) 2 (1) Dsc x grad®” A} } .

(b) Consider a Hamiltonian H: Imm(S*, R3) — R3 invariant under
and the flows of I = ¢ and hgradf:2id A= —Dsc x gradGid A If
3X¢ + icdAe = 0 for all ¢ then hgradsc2A H is the orthonormal
projection of

1 id
yH = —KDSC x grad®” H

to the G-orthogonal complement of the kernel of Q. which is
spanned by I. = c, hgrad?'d A, and {a.Dsc | a € C®(S)}.



Example: Length (here A(c) = ®(4.))
Suppose H(c) = f o £ for some function f. Then:

dH(k) = f'(£.) /(Dsk, Dsc)ds = —f'(£,) /<D§c, k)ds,

grad® H = —f/(¢.)D2c.

F(0c) &'(00)1
h dQ‘D(Z) H— c 1 c)tc
gr 30(0.) 30(00) + &/(00)!

) Dsc x D2c.
Cc

If f'(¢.) = 0 then c is a fixed point of the Hamitonian flow. If
f'(¢c) # 0, then the length ¢, is conserved along the flow as
H = f o £ is conserved. Note that hgraon(z) H is a constant
multiple of the binormal equation (also known as the vortex

filament equation),
hgradQMW { = Dsc x DSQC

using the Marsden-Weinstein symplectic structure.



Example: Kinetic energy as a Hamiltonian function:

E(c) = 3 [ |c[?ds, Using grad®” E = ¢, the horizontal
Hamiltonian field is:

1 1
hgradmm E= W{ — Dsc x ¢+ 5\c\zDsc x D?c
c
o'(¢c)

600+ i O

1
_ <|]Dsc < cll?2 (s = 5 (c yc\2D§c>L55(51)> Dsc x ch”

1 1
= 3¢(£C){ — Dsc x ¢+ §\c|2Dsc x D3¢
d'(4e)

30(0c) + O/(C.)!
- (HDSC x el (51 + E(c)) Dsc x Dgc} }

+ D2c)Dsc x (Dsc x c)

~[©¢(D2e)(1 —pre)e



Squared curvature as Hamiltonian function

1
H(c) = //{st
2
We have
® 1 3
hgrad®™" H = 3¢(£C){ — Dsc x Dfe — Z#?Dsc x Dic
HP'(£,) )
D.c x D
30(00) + ML)l sc}
1 id H(D/(E ) id
= hgrad?®“ H < hgrad®“ ¢} .
3¢(ec){ gra AR I }

Since both H and / are again constants in motion along both
hg;radQld £ and hg;radQld H, hgradmm H is also realized as a
Hamiltonian vector field on Q9.



Thank you for your attention



