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Abstract: For c ∈ Imm(S1,R3) the 2- form

ΩMW
c (h, k) =

∫
S1

det(Dsc , h, k)ds,

where ds = |c ′(θ)|dθ and Ds =
1

|c ′(θ)|∂θ, induces the

Marsden-Weinstein symplectic structure1 on the shape space
Imm(S1,R3)/Diff(S1), corresponding to a Kähler structure. The
Hamiltonian flow for the length functional is the binormal flow. In
this talk I will present other natural symplectic structures related
to this one.

1Marsden, J., and Weinstein, A. Coadjoint orbits, vortices, and Clebsch
variables for incompressible fluids. Physica D: Nonlinear Phenomena 7, 1
(1983), 305-323.



Infinite dim. symplectic manifolds

M be a manifold, infinite dimensional.
A 2-form ω ∈ Ω2(M) is called a weak symplectic structure on M if
the following three conditions holds:

1. ω is closed, dω = 0.

2. The associated vector bundle homomorphism ω̌ : TM → T ∗M
is injective.

3. The gradient of ω with respect to itself exists and is smooth;
in charts: so let M be open in a convenient vector space E .
Then for x ∈ M and X ,Y ,Z ∈ TxM = E we have
dω(x)(X )(Y ,Z ) = ω(Ωx(Y ,Z ),X ) = ω(Ω̃x(X ,Y ),Z ) for
smooth Ω, Ω̃ : M × E × E → E which are bilinear in E × E .

ω ∈ Ω2(M) is called a strong symplectic structure on M if it is
closed (dω = 0) and if ω̌ : TM → T ∗M is invertible with smooth
inverse. Then M turns out to be a Hilbert manifold.



Cotangent bundle (needs convenient calculus)

T ∗Q carries a canonical weak symplectic structure ωQ ∈ Ω2(T ∗Q),
which is defined as follows. Let π∗Q : T ∗Q → Q be the projection.
Then the Liouville form θQ ∈ Ω1(T ∗Q) is given by
θQ(X ) = ⟨πT∗Q(X ),T (π∗Q)(X )⟩ for X ∈ T (T ∗Q), where ⟨ , ⟩
denotes the duality pairing T ∗Q ×Q TQ → R. Then the symplectic
structure on T ∗Q is given by ωQ = −dθQ , which of course in a
local chart looks like ωE ((v , v

′), (w ,w ′)) = ⟨w ′, v⟩E − ⟨v ′,w⟩E .
The associated mapping ω̌ : T(0,0)(E × E ′) = E × E ′ → E ′ × E ′′ is
given by (v , v ′) 7→ (−v ′, iE (v)), where iE : E → E ′′ is the
embedding into the bidual. So the canonical symplectic structure
on T ∗Q is strong if and only if all model spaces of the manifold Q
are reflexive and Hilbert spaces.



Definition

For a weak symplectic manifold (M, ω) let
Tω
x M = Tω

x M = ω̌x(TxM) ⊂ T ∗xM = L(TxM,R), called the
ω-smooth cotangent space The convenient structure on Tω

x M is
the one from TxM. These vector spaces fit together to form a
subbundle of T ∗M which is isomorphic to the tangent bundle TM
via ω̌ : TM → TωM ⊆ T ∗M. It is in general not a splitting
subbundle.
For strong ω the mapping ω̌x : TxM → T ∗xM is a diffeomorphism
onto Tω

x M with the structure induced from T ∗xM.
For a weak symplectic manifold (M, ω) let

C∞ω (M,R) ⊂ C∞(M,R)

denote the subalgebra consisting of all smooth functions
f : M → R such that the differential df : M → T ∗M factors to a
smooth mapping M → TωM. These are exactly those smooth
functions on M which admit a smooth ω-gradient gradω f ∈ X(M).



Theorem Let (M, ω) be a weak symplectic manifold. The
Hamiltonian mapping gradω : C∞ω (M,R) → X(M, ω), which is
given by igradω f ω = df or gradω f := (ω̌)−1 ◦ df is well
defined. Also the Poisson bracket
{ , } : C∞ω (M,R)× C∞ω (M,R) → C∞ω (M,R)
{f , g} = ω(gradω g , gradω f ) = dg(gradω f ) = (gradω f )(g)
is well defined and gives a Lie algebra structure to the space
C∞ω (M,R), which also fulfills {f , gh} = {f , g}h + g{f , h}. We
equip C∞ω (M,R) with the initial structure with respect to:

C∞ω (M,R) ⊂−−→ C∞(M,R), C∞ω (M,R) gradω−−−−−→ X(M).

Then the Poisson bracket is bounded bilinear on C∞ω (M,R).
We have the following long exact sequence of Lie algebras and Lie
algebra homomorphisms:

0 → H0(M) → C∞ω (M,R) gradω−−−−−→ X(M, ω)
γ−−→ H1

ω(M) → 0,

where H0(M) is the space of locally constant functions, and

H1
ω(M) = {φ∈C∞(M←TωM):dφ=0}

{df :f ∈C∞
ω (M,R)} is the first symplectic

cohomology space of (M, ω), a linear subspace of the De Rham
cohomology space H1(M).



The space of regular space curves

Imm = Imm(S1,R3) :=
{
c ∈ C∞(S1,R3) : |c ′| ≠ 0

}
.

is open subset in C∞(S1,R3), a manifold with tangent space

Tc Imm = Tc Imm(S1,R3) = C∞(S1,R3).

Consider the action of the reparametrization group
Diff = Diff+(S1) or = Diff(S1) by composition from the right and
the quotient (shape) space

Bi = Bi (S
1,R3) := Imm(S1,R3)/Diff(S1),

which is an infinite dimensional orbifold; the isotropy groups are
finite cyclic groups.2

The vertical fibers consist exactly of all fields h that are tangent to
it’s foot point c, i.e., h = a.c ′ with a ∈ C∞(S1).

2V.Cervera, F.Mascaro, PM: The action of the diffeomorphism group on the
space of immersions. Diff. Geom. Appl. 1 (1991), 391–401



Reparametrization invariant Riemannian metrics

on Imm are Riemannian metrics of the form:

GL
c (h, k) =

∫
S1

⟨Lch, k⟩ds =
∫
S1

⟨h, Lck⟩ds, where

ds = |cθ|dθ, Ds = (1/|cθ|)∂θ, arc-lenght derivative,

L ∈ Γ(End(T Imm), Lc : Tc Imm = C∞(S1,R3) → Tc Imm ,

called inertia operator, is an elliptic, pseudo differential operator
that is equivariant under the right action of Diff(S1) and also
under left action of SO(3) (or even the motion group R3 ⋊ SO(3)),
and which is also selfadjoint with respect to the L2-metric, i.e.,

Lc◦φ(h ◦ φ) = (Lc(h)) ◦ φ and

∫
⟨Lch, k⟩ds =

∫
⟨h, Lck⟩ds .

The class of Sobolev Hk -metrics, where L = (1− (−1)kD2k
s ). For

k = 0 we have G id
c (h, k) =

∫
⟨h, k⟩ds.



The induced Liouville one form

corresponding to the metric GL is the one-form:

ΘL
c (h) := GL

c (c×Dsc , h) =

∫
⟨c×Dsc , Lch⟩ds =

∫
det(c ,Dsc , Lch)ds

for h ∈ Tc Imm, where × denotes the vector cross product on R3.
We have:
For any inertia operator L, that is equivariant under the right
action of Diff and the left action of SO(3), the induced Liouville
one-form ΘL is invariant under the right action of Diff and the left
action of SO(3), i.e., for any c ∈ Imm, h ∈ Tc Imm, φ ∈ Diff and
O ∈ SO(3) we have

ΘL
O◦c◦φ)(O ◦ h ◦ φ)) = ΘL

c (h).



The induced pre-symplectic form on Imm is

ΩL
c (h, k) := −dΘL

c (h, k) = −Dc,hΘ
L
c (k) + Dc,kΘ

L
c (h) + ΘL

c ([h, k]) ,

ΩL
c (h, k) =

∫ (
⟨Dsc, Lch × k + h × Lck⟩ − ⟨c ,Dsh × Lck − Dsk × Lch⟩

− ⟨c × Dsc, (Dc,hLc)k − (Dc,kLc)h⟩
)
ds .

ΩL is invariant under the actions of Diff and SO(3). For the
invariant L2-metric, i.e., L = id, one obtains three times the
Marsden-Weinstein pre-symplectic structure, i.e.,

Ωid
c (h, k) = 3

∫
S1

⟨Dsc×h, k⟩ds = 3

∫
det(Dsc, h, k)ds =: 3ΩMW

c (h, k).

Its kernel consists exactly of all vector fields along c which are
tangent to c , so by reduction it induces a pre-symplectic structure
on shape space Imm(S1,R3)/Diff which is easily seen to be
non-degenerate and thus is a symplectic structure there.



Theorem

The form ΩL factors to a (pre)-symplectic form Ω̄L on Bi if the
inertia operator L maps vertical tangent vectors to span{c, c ′},
i.e., if for all c ∈ Imm and a ∈ C∞(S1) we have
Lc(a.c

′) = a1c
′ + a2c for some functions ai ∈ C∞(S1).

Proof. The 1-form ΘL on Imm factors to a 1-form Θ̄L on shape
space Bi with ΘL = π∗Θ̄L if and only if ΘL is invariant under
under Diff and is horizontal in the sense that it vanishes on each
vertical tangent vector h = a.c ′ for a in C∞(S1,R).
The condition on L such that ΘL vanishes on all vertical h is

ΘL
c (ac

′) =

∫
⟨c × Dsc , Lc(ac

′)⟩ds = 0.

From here it is clear that this holds if Lc(a.c
′) = a1c

′ + a2c for
some functions ai ∈ C∞(S1).
In that case also its exterior derivative satisfies

ΩL = −dΘL = −dπ∗Θ̄L = −π∗dΘ̄L =: π∗Ω̄L

for the presymplectic form Ω̄L = −dΘ̄L on Bi .



Inertia operators that satisfy these conditions are

Lc(h) = F (c).h for F ∈ C∞(Imm,R>0), for example

Lc(h) = λ(c) for λ : Imm → R>0

Lc(h) = Φ(ℓc)h, or Lc(h) = (1 + κ2c)h, or Lc(h) = φ(|c |)h,

Sobolev metrics do not satisfy the conditions. By using a
projection in the definiton one can, however, modify them to still
respect the vertical bundle:

Lch =
(
prc(1− (−1)kD2k

s ) prc +(1− prc)(1− (−1)kD2k
s )(1− prc)

)
h, where

where prc h = ⟨Dsc , h⟩Dsc is the L2-orthogonal projection to the
vertical bundle; see [Bauer, Harms, 2015], where metrics of this
form were studied.



Horizontal ΩL-Hamiltonian vector fields.

If the inertia operator L ∈ Γ(End(T Imm(S1,R3)) induces a weak
symplectic structure on Bi , and is weakly non-degenerate in the
sense that Ω̄L : TBi → T ∗Bi is injective then the kernel of
ΩL
c : Tc Imm → T ∗c Imm equals Tc(c ◦ Diff) for all c . Thus ΩL

c

restricted to the GL-orthogonal complement (if it is a complement)
of Tc(c ◦ Diff) is injective. Let us suppose that H is a
Diff-invariant smooth function on Imm. The 2-form ΩL on Imm is
still only presymplectic, but if each dHc lies in the image of
ΩL : T Imm → T ∗Imm, then a unique smooth horizontal
Hamiltonian vector field X ∈ X(Imm) is determined by

dH = iXΩ
L = ΩL(X , ), GL

c (Xc ,Yc) = 0 ∀Yc ∈ ker(ΩL
c )

which we will denote by hgradΩ
L
(H). Obviously we then have

gradΩ̄
L
(H̄) ◦ π = Tπ ◦ hgradΩL

(H), where H̄ ◦ π = H .



Momentum mappings

Since ΘL is invariant for the action of group G with infinites.
action ζ : g → X(Imm(S1,R3)), the momentum mapping is given,
for Y ∈ g, by

⟨J(c),Y ⟩ = ΘL(ζY )c =

∫
⟨c × Dsc, Lc(Y ◦ c)⟩ds,

where we denote the duality as ⟨ , ⟩ : g∗ × g → R. Namely,

dΘL(ζY ) = diζYΘ
L = LζYΘ

L − iζY dΘ
L = 0− iζYΩ

L.

Thus we have for X = a.∂s ∈ X(S1) = C∞(S1)∂s and Y ∈ so(3)

ζa.∂θ(c) = Dc,a.cθ as derivation at c on C∞(Imm,R)
= a.cθ = a.|cθ|Dsc ∈ Tc Imm = C∞(S1,R3)

Lc◦φ(h ◦ φ) = (Lch) ◦ φ =⇒ (Dc,a.cθLc)(h) + Lc(a.hθ) = a.(Lch)θ

⟨JDiff(c), a.∂θ⟩ = ΘL
c (ζa.∂θ(c)) = ΘL

c (a.cθ) =

∫
⟨c × Dsc , Lc(a.cθ)⟩ds

=

∫
⟨c × Dsc , a.(Lcc)θ − (Dc,a.cθLc)(c)⟩ds



For Y ∈ so(3) the angular momentum is

⟨JSO(3)(c),Y ⟩ = ΘL(Y ◦ c) =
∫
⟨c × Dsc , Lc(Y ◦ c)⟩ds

=

∫
⟨c × Dsc , y ◦ Lc(c)− (Dc,Y ◦cLc(c)⟩ds

For a correct interpretation of the angular momentum recall that
the action of Y ∈ R3 ∼= so(3) ∼= Lskew(R3,R3) on R3 is given by
X 7→ 2Y × X .
If L is also invariant under translations, then the linear momentum,
for y ∈ R3, is

⟨JR3
(c), y⟩ = ΘL

c (y) =

∫
⟨c × Dsc , Lc(y)⟩ds .

Note that the above also furnishes conserved quantities on Bi , if
Ω̄L is non-degenerate.



Theorem [Conformal factors] Let Lc = λ(c) id. Then the induced
(pre)symplectic structure on Imm(S1,R3) is given by

Ωλ = λΩid +Θid ∧ dλ.

Furthermore we have
(a) If 3λc + icdλc = 3λ(c) + Dc,cλ ̸= 0 on any open subset of
Imm, then Ωλ induces a non-degenerate two-form on Bi (S

1,R3),
which is thus symplectic.
(b) Assume in addition, that X := hgradΩ

id
λ exists and that

3λc + icdλc = 0 for all c. Denote by F the involutive
2-dimensional vector sub-bundle spanned by Ic = c and gradΩ̄

id
λ̄.

Then Ωλ induces a non-degenerate two-form on
Imm/(Diff ×F) ≃ {c̄ ∈ Bi (S

1,R3) : λ̄c̄ = 1}/ span(gradΩ̄id
λ̄),

where it agrees with a multiple of the Marsden-Weinstein
symplectic structure. It is also non-degenerate on
{c̄ ∈ Bi (S

1,R3) : ℓ̄c̄ = 1}/ span(gradΩ̄id
λ̄).



Theorem (a)) Consider a -invariant Hamiltonian
H : Imm(S1,R3) → R3. If 3λc + icdλc = 3λ(c) + Dc,cλ ̸= 0 on
any open subset of Imm then

hgradΩ
λ
H = − 1

3λc

{
Dsc × gradG

id
H +

1

3λc + Dc,cλ

[
⟨gradG id

c λ,Dsc × gradG
id
H⟩L2ds(S1)Dsc × (Dsc × c)

− ⟨c , gradG id
H⟩L2ds(S1)Dsc × gradG

id

c λ
]}

.

(b) Consider a Hamiltonian H : Imm(S1,R3) → R3 invariant under

and the flows of Ic = c and hgradΩ
id

c λ = −Dsc × gradG
id
λ. If

3λc + icdλc = 0 for all c then hgradΩ
λ

c H is the orthonormal
projection of

Y H
c = − 1

3λc
Dsc × gradG

id

c H

to the G id
c -orthogonal complement of the kernel of Ωλ, which is

spanned by Ic = c, hgradΩ
id

c λ, and {a.Dsc | a ∈ C∞(S1)}.



Example: Length (here λ(c) = Φ(ℓc))

Suppose H(c) = f ◦ ℓ for some function f . Then:

dHc(k) = f ′(ℓc)

∫
⟨Dsk,Dsc⟩ds = −f ′(ℓc)

∫
⟨D2

s c , k⟩ds,

gradG
id
H = −f ′(ℓc)D

2
s c .

hgradΩ
Φ(ℓ)

H =
f ′(ℓc)

3Φ(ℓc)

(
1 +

Φ′(ℓc)ℓc
3Φ(ℓc) + Φ′(ℓc)ℓc

)
Dsc × D2

s c .

If f ′(ℓc) = 0 then c is a fixed point of the Hamitonian flow. If
f ′(ℓc) ̸= 0, then the length ℓc is conserved along the flow as

H = f ◦ ℓ is conserved. Note that hgradΩ
Φ(ℓ)

H is a constant
multiple of the binormal equation (also known as the vortex
filament equation),

hgradΩ
MW

ℓ = Dsc × D2
s c

using the Marsden-Weinstein symplectic structure.



Example: Kinetic energy as a Hamiltonian function:

E (c) = 1
2

∫
|c |2ds, Using gradG

id
E = c , the horizontal

Hamiltonian field is:

hgradΩ
Φ(ℓ)

E =
1

3Φ(ℓc)

{
− Dsc × c +

1

2
|c |2Dsc × D2

s c

+
Φ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc

[
−Θid

c (D
2
s c)Dsc × (Dsc × c)

−
(
∥Dsc × c∥2L2ds(S1) −

1

2
⟨c , |c |2D2

s c⟩L2ds(S1)

)
Dsc × D2

s c
]}

=
1

3Φ(ℓc)

{
− Dsc × c +

1

2
|c |2Dsc × D2

s c

+
Φ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc

[
Θid

c (D
2
s c)(1− prc)c

−
(
∥Dsc × c∥2L2ds(S1) + E (c)

)
Dsc × D2

s c
]}

.



Squared curvature as Hamiltonian function

H(c) =
1

2

∫
κ2ds.

We have

hgradΩ
Φ(ℓ)

H =
1

3Φ(ℓc)

{
− Dsc × D4

s c − 3

2
κ2Dsc × D2

s c

+
HΦ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc
Dsc × D2

s c
}

=
1

3Φ(ℓc)

{
hgradΩ

id
H +

HΦ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc
hgradΩ

id
ℓ

}
.

Since both H and ℓ are again constants in motion along both

hgradΩ
id
ℓ and hgradΩ

id
H, hgradΩ

Φ(ℓ)
H is also realized as a

Hamiltonian vector field on Ωid.



Thank you for your attention


