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For a compact manifold Mm equipped with a smooth fixed
background Riemannian metric ĝ we consider the space MetHs (M)
of all Riemannian metrics of Sobolev class Hs for real s < m

2 with
respect to ĝ . The L2-metric on MetC∞(M) was considered by
DeWitt, Ebin, Freed and Groisser, Gil-Medrano and Michor, Clarke.
Sobolev metrics of integer order on MetC∞(M) were considered in
[M.Bauer, P.Harms, and P.W. Michor: Sobolev metrics on the
manifold of all Riemannian metrics. J. Differential Geom.,
94(2):187-208, 2013.] In this talk we consider variants of these
Sobolev metrics which include Sobolev metrics of any positive real
(not integer) order s < m

2 . We derive the geodesic equations and
show that they are well-posed under some conditions and induce a
locally diffeomorphic geodesic exponential mapping.
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needs ḡxx
Vol1+(M) Met(M)

Diff(M) MetA(N)

M compact ,N possibly non-compact manifold

Met(N) = Γ(S2
+T∗N) space of all Riemann metrics on N

ḡ one Riemann metric on N

Diff(M) Lie group of all diffeos on compact mf M

DiffA(N), A ∈ {H∞,S, c} Lie group of diffeos of decay A to IdN

Imm(M,N) mf of all immersions M → N

Bi (M,N) = Imm/Diff(M) shape space

Vol1+(M) ⊂ Γ(vol(M)) space of positive smooth probability densities



Convenient calculus

We will convenient calculus as developed in [Frölicher-Kriegl 1988]
and [Kriegl-Michor 1997]. A locally convex vector space E is called
convenient if each Mackey Cauchy sequence has a limit;
equivalently, if for each smooth curve c : R→ E the Riemann
integral

∫ 1
0 c(t) dt converges. This property and those mentioned

below depend only on the system of bounded sets in E .
Mappings are smooth if they map smooth curves to smooth
curves. Smooth curves can be recognized by applying bounded
linear functionals in a subset of the dual which is large enough to
recognize bounded subsets. Smooth maps are real analytic if they
are real analytic along each affine line. Up to Fréchet spaces
convenient smoothness coincides with all other notions of C∞. Up
to Banach spaces convenient real analyticity coincides with all
other notions of Cω.



An aside about Met(M)

Let Met(M) = Γ(S2
+T
∗M) be the space of all smooth Riemannian

metrics on a compact manifold M.

Let MetHs (M) = ΓHs (S2
+T
∗M) the space of all Sobolev Hs

sections of the bundle of Riemannian metrics, where
s > m

2 = dim(M)
2 ; by the Sobolev inequality then it makes sense to

speak of positive definite metrics.



Weak Riemann metrics on Met(M)

All of them are Diff(M)-invariant; natural, tautological.

Gg (h, k) =

∫
M

g0
2 (h, k) vol(g) =

∫
Tr(g−1hg−1k) vol(g), L2-metr.

or = Φ(Vol(g))

∫
M

g0
2 (h, k) vol(g) conformal

or =

∫
M

Φ(Scalg ).g0
2 (h, k) vol(g) curvature modified

or =

∫
M

(
g0

2 (h, k) + g0
3 (∇gh,∇gk) + · · ·+ g0

p ((∇g )ph, (∇g )pk)
)

vol(g)

or =

∫
M

g0
2 ((1 + ∆g )ph, k) vol(g) Sobolev order p ∈ R>0

or =

∫
M

g0
2

(
f (1 + ∆g )h, k

)
vol(g)

where Φ : R>0 → R>0, Vol =
∫
M vol(g) is total volume of (M, g),

Scal is scalar curvature, and g0
2 is the induced metric on(0

2

)
-tensors. Here f is a suitable spectral function; see below.



∆gh := (∇g )∗,g∇gh = −Trg
−1

((∇g )2h) is the Bochner-Laplacian.
It can act on all tensor fields h, and it respects the degree of the
tensor field it is acting on.
We consider ∆g as an unbounded self-adjoint positive semidefinite
operator on the Hilbert space H0 with compact resolvent. The
domain of definition of ∆g is the space

H2 = H2,g := {h ∈ H0 : (1 + ∆g )h ∈ H0} = {h ∈ H0 : ∆gh ∈ H0}

which is again a Hilbert space with inner product∫
M
g0

2 ((1 + ∆g )h, k) vol(g).

Again H2 does not depend on the choice of g , but the inner
products for different g induce different but equivalent norms on
H2. Similarly we have

H2k = H2k,g : = {h ∈ H0 : (1 + ∆g )kh ∈ H0}
= {h ∈ H0 : ∆gh, (∆g )2, . . . (∆g )k ∈ H0}



The L2-metric on the space of all Riemann metrics

[DeWitt 1969]. [Ebin 1970]. Geodesics and curvature [Freed
Groisser 1989]. [Gil-Medrano Michor 1991] for non-compact M.
[Clarke 2009] showed that geodesic distance for the L2-metric is
positive, and he determined the metric completion of Met(M).
The geodesic equation is completely decoupled from space, it is an
ODE:

gtt = gtg
−1gt + 1

4 Tr(g−1gtg
−1gt) g − 1

2 Tr(g−1gt) gt



A = g−1a for a ∈ TgMet(M)

exp0(A) = 2
n log

(
(1 + 1

4 Tr(A))2 + n
16 Tr(A2

0)
)
Id

+
4√

nTr(A2
0)

arctan

(√
nTr(A2

0)

4 + Tr(A)

)
A0.



Back to the the general metric on Met(M).

We describe all these metrics uniformly as

GP
g (h, k) =

∫
M
g0

2 (Pgh, k) vol(g)

=

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where
Pg : Γ(S2T ∗M)→ Γ(S2T ∗M)

is a positive, symmetric, bijective pseudo-differential operator of
order 2p, p ≥ 0, depending smoothly on the metric g , and also
Diff(M)-equivariantly:

ϕ∗ ◦ Pg = Pϕ∗g ◦ ϕ∗



The geodesic equation in this notation:

gtt = P−1
[
(D(g ,.)Pgt)

∗(gt) +
1

4
.g .Tr(g−1.Pgt .g

−1.gt)

+
1

2
gt .g

−1.Pgt +
1

2
Pgt .g

−1.gt − (D(g ,gt)P)gt

− 1

2
Tr(g−1.gt).Pgt

]
We can rewrite this equation to get it in a slightly more compact

form:

(Pgt)t = (D(g ,gt)P)gt + Pgtt

= (D(g ,.)Pgt)
∗(gt) +

1

4
.g .Tr(g−1.Pgt .g

−1.gt)

+
1

2
gt .g

−1.Pgt +
1

2
Pgt .g

−1.gt −
1

2
Tr(g−1.gt).Pgt



Conserved Quantities on Met(M).

Right action of Diff(M) on Met(M) given by

(g , φ) 7→ φ∗g .

Fundamental vector field (infinitesimal action):

ζX (g) = LXg = −2 Sym∇(g(X )).

If metric GP is invariant, we have the following conserved
quantities

const = GP(gt , ζX (g))

= −2

∫
M
g0

1

(
∇∗ SymPgt , g(X )

)
vol(g)

= −2

∫
M
g
(
g−1∇∗Pgt ,X

)
vol(g)

Since this holds for all vector fields X ,

(∇∗Pgt) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) is const. in t.



On Rn: The pullback of the Ebin metric to DiffS(Rn)

We consider here the right action
r : MetA(Rn)× DiffA(Rn)→ MetA(Rn) which is given by
r(g , ϕ) = ϕ∗g , together with its partial mappings
r(g , ϕ) = rϕ(g) = rg (ϕ) = Pullg (ϕ).

Theorem.If n ≥ 2, the image of Pullḡ , i.e., the DiffA(Rn)-orbit
through ḡ , is the set Metflat

A (Rn) of all flat metrics in MetA(Rn).

The pullback of the Ebin metric to the diffeomorphism group is a
right invariant metric G given by

GId(X ,Y ) = 4

∫
Rn

Tr
(
(Sym dX ).(Sym dY )

)
dx =

∫
Rn

〈
X ,PY

〉
dx

Using the inertia operator P we can write the metric as∫
Rn

〈
X ,PY

〉
dx , with

P = −2(grad div +∆) .



The pullback of the general metric to DiffS(Rn)

We consider now a weak Riemannian metric on MetA(Rn) in its
general form

GP
g (h, k) =

∫
M
g0

2 (Pgh, k) vol(g) =

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where Pg : Γ(S2T ∗M)→ Γ(S2T ∗M) is as described above. If the
operator P is equivariant for the action of DiffA(Rn) on
MetA(Rn), then the induced pullback metric (Pullḡ )∗GP on
DiffA(Rn) is right invariant:

GId(X ,Y ) = −4

∫
Rn

∂j(Pḡ Sym dX )ij .Y
idx (1)

Thus we we get the following formula for the corresponding inertia
operator (P̃X )i =

∑
j ∂j(Pḡ Sym dX )ij . Note that the pullback

metric (Pullḡ )∗GP on DiffA(Rn) is always of one order higher then
the metric GP on MetA(Rn).



The Sobolev metric of order p ∈ N.

The Sobolev metric GP

GP
g (h, k) =

∫
Rn

Tr(g−1.((1 + ∆)ph).g−1.k) vol(g) .

The pullback of the Sobolev metric GP to the diffeomorphism
group is a right invariant metric G given by

GId(X ,Y ) = −2

∫
Rn

〈
(grad div +∆)(1−∆)pX ,Y

〉
dx .

Thus the inertia operator is given by

P̃ = −2(1−∆)p(∆ + grad div) = −2(1−∆)p(∆ + grad div) .

It is a linear isomorphism Hs(Rn)n → Hs−2p−2(Rn)n for every s.



Sobolev spaces of sections of vector bundles.
For s ∈ R let Hs(Rm,Rn) be the Sobolev space of order s
described via Fourier transform ‖f ‖Hs = ‖f̂ (ξ)(1 + |ξ|2)s/2‖L2 .
Let E → M be a vector bundle, M compact. Choose a finite
vector bundle atlas and a subordinate partition of unity in the
following way: Let (uα : Uα → uα(Uα) ⊆ Rm)α∈A be a finite atlas
for M, let (ϕα)α∈A be a smooth partition of unity subordinated to
(Uα)α∈A, and let ψα : E |Uα → Uα × Rn be vector bundle charts.
Choose open sets U◦α such that supp(ψα) ⊂ U◦α ⊂ U◦α ⊂ Uα such
that each uα(U◦α) is an open set in Rm with Lipschitz boundary.
Then we define for each s ∈ R and f ∈ ΓC∞(E )

‖f ‖2
ΓHs (E) :=

∑
α∈A
‖ prRn ◦ψα ◦ (ϕα · f ) ◦ u−1

α ‖2
Hs(Rm,Rn).

Then ‖ · ‖ΓHs (E) is a norm, which comes from a scalar product, and
we write ΓHs (E ) for the Hilbert completion of ΓC∞(E ) under the
norm. Then ΓHs (E ) is independent of the choice of atlas and
partition of unity, up to equivalence of norms.
C. Schneider and N. Grosse. Sobolev spaces on Riemannian manifolds with bounded geometry: General coordinates
and traces, 2013
H. Triebel. Theory of functions spaces II



Theorem. Module properties of Sobolev spaces. Let E1,E2 be
vector bundles over M, and let s1, s2, s ∈ R satisfy

(i) s1 + s2 ≥ 0, min(s1, s2) ≥ s, and s1 + s2 − s > m
2 , or

(ii) s ∈ N, min(s1, s2) > s, and s1 + s2 − s ≥ m
2 , or

(iii) −s1 ∈ N or −s2 ∈ N, s1 + s2 > 0, min(s1, s2) > s,
s1 + s2 − s ≥ m

2 .

Then the tensor product of smooth sections extends to a bounded
bilinear mapping

ΓHs1 (E1)× ΓHs2 (E2)→ ΓHs (E1 ⊗ E2).

A. Behzadan and M. Holst. On certain geometric operators between Sobolev spaces of sections of tensor bundles
on compact manifolds equipped with rough metrics, 2017.

Invariance under multiplication and adjoints. If
p(s1, s) = {s2 : (s1, s2, s) satisfies (i) or (ii) or (iii) above}
then for all r , s, t ∈ R:
I If α ∈ p(r , s) and β ∈ p(s, t), then min(α, β) ∈ p(r , t), and

the tensor product of smooth sections extends to a bounded
bilinear mapping ΓHα(E1)× ΓHβ (E2)→ ΓHmin(α,β)(E1 ⊗ E2).

I If β ∈ p(r , s), then β ∈ p(−s,−r).



A message from convenient analysis

Theorem. [4.1.19 and 4.1.23 of Frölicher Kriegl: Linear spaces and differentiation theory, 1988]

Let c : R→ E be a curve in a convenient vector space E. Let
V ⊂ E ′ be a subset of bounded linear functionals such that the
bornology of E has a basis of σ(E ,V)-closed sets. Then the
following are equivalent:

(i) c is smooth

(ii) For each k ∈ N there exists a locally bounded curve
ck : R→ E such that for each ` ∈ V the function ` ◦ c is
smooth R→ R with (` ◦ c)(k) = ` ◦ ck .

If E = F ′ is the dual of convenient vector space F , then for any
point separating subset V ⊂ F the bornology of E has a basis of
σ(E ,V)-closed subsets.



Theorem Let E be a vector bundle over M. Then for each
s ∈ (m/2,∞] the space C∞(R, ΓHs (E )) of smooth curves in
ΓHs (E ) consists of all continuous mappings c : R×M → E with
p ◦ c = pr2 : R×M → M such that:

I For each x ∈ M the curve t 7→ c(t, x) ∈ Ex is smooth; let
(∂pt c)(t, x) = ∂pt (c(t, x)), and

I For each p ∈ N≥0, the curve ∂pt c has values in ΓHs (E ) so that
∂pt c : R→ ΓHs (E ), and t 7→ ‖∂tc(t, )‖Hs is bounded,
locally in t.

the proof is based on [4.1.19 and 4.1.23 of Frölicher Kriegl: Linear spaces and differentiation theory, 1988]

Corollary Let E1,E2 be vector bundles over M, let U ⊂ E1 be an
open neighborhood of the image of a smooth section, let
F : U → E2 be a fiber preserving smooth mapping, and let
s ∈ (m/2,∞]. Then the set ΓHs (U) := {h ∈ ΓHs (E1) : h(M) ⊂ U}
is open in ΓHs (E1), and the mapping F∗ : ΓHs (U)→ ΓHs (E2) given
by h 7→ F ◦ h, is smooth. If the restriction of F to each fiber of E1

is real analytic, then F∗ is (conjecturally) real analytic.



Riemannian Metrics of Sobolev order

For any α ∈ ( dim(M)
2 ,∞], we define the space of Riemannian

metrics of Sobolev order α as

MetHα(M) := ΓHα(S2
+T
∗M).

Well-defined: α > m
2 =⇒ ΓHα(S2T ∗M) ⊂ ΓC0(S2T ∗M) .

Lemma. Let α ∈ ( dim(M)
2 ,∞]. Let E → M be a first order natural

bundle. Then:
(1) g ∈ MetHα(M) induces a canonical fiber metric of class Hα on
E (up to the choice of some constants).
(2) This gives a real analytic map MetHα(M)→ ΓHα(S2

+E
∗). In

particular, for E = T ∗M one obtains that g−1 is real analytic in g.
(3) If E is trivial, then the fiber metric is of class C∞ and does not
depend on g.



Covariant derivative

Lemma.
Let α ∈ (dim(M)/2,∞) and s ∈ [1− α, α]. Then:
(1) For each g ∈ MetHα(M) and natural first order vector bundle
E over M, there is a unique bounded linear mapping

ΓHs (E ) 3 h 7→ ∇gh ∈ ΓHs−1(T ∗M ⊗ E )

which acts as a derivation with respect to tensor products,
commutes with each symmetrization operator, and coincides with
the Levi-Civita covariant derivative in the cases E = TM and
E = T ∗M.
(2) The covariant derivative is real analytic as a mapping

MetHα(M) 3 g 7→ ∇g ∈ L(ΓHs (E ), ΓHs−1(T ∗M ⊗ E )).

for all s ∈ [1− α, α].
(3) If E is trivial, then this holds for all s ∈ R.



Remarks to the proof of the lemma

Using the Levi-Civita covariant derivative ∇ĝ for a smooth
background Riemannian metrig ĝ , we express the Levi-Civita
connection of g ∈ MetHα(M) as

∇g
X = ∇ĝ

X + Ag (X , )

for a suitable
Ag ∈ ΓHα−1(T ∗M ⊗ T ∗M ⊗ TM) = ΓHα−1(T ∗M ⊗ L(TM,TM)).
This tensor field A has to satisfy the following conditions (for
smooth vector fields X , Y , Z ):

(∇ĝ
Xg)(Y ,Z ) = g(A(X ,Y ),Z ) + g(Y ,A(X ,Z )) ⇐⇒ ∇g

Xg = 0,

A(X ,Y ) = A(Y ,X ) ⇐⇒ ∇g is torsionfree.

We take the cyclic permutations of the first equation, sum them
with signs +,+,−, and use symmetry of A to obtain

2g(A(X ,Y ),Z ) = (∇ĝ
Xg)(Y ,Z ) + (∇ĝ

Y g)(Z ,X )− (∇ĝ
Zg)(X ,Y ) ;

this equation determines A uniquely as a Hα−1-tensor field. It is
easy checked that it satisfies the two requirements above.



Remark on geodesics

The Christoffel symbols are of class Hα−1. They transform as the
last part in the second tangent bundle, and the associated spray
Sg is an Hα−1-section of both πTM : T 2M → TM and
T (πM) : T 2M → TM.

If α > dim(M)
2 + 1, then the spray Sg is continuous and we have

local existence (but not uniqueness) of geodesics in each chart
separately, by Peano’s theorem.

If α > dim(M)
2 + 2, then Sg is C 1 and there is existence and

uniqueness of geodesics by Picard-Lindelöf.



Bochner Laplacian

Theorem. Let α ∈ (dim(M)/2,∞), let s ∈ [2− α, α], and let E
be a natural first order vector bundle over M. Then:
(1) For each g ∈ MetHα(M), the Bochner Laplacian is a bounded
Fredholm operator of index zero

∆g : ΓHs (E ) 3 h 7→ −Trg
−1

(∇g∇gh) ∈ ΓHs−2(E ).

which is self-adjoint as an unbounded linear operator on the space
ΓHs−2(E ) with the Hs−2(g) inner product.
(2) The Laplacian depends real analytically on the metric, i.e., the
following mapping is real analytic:

MetHα(M) 3 g 7→ ∆g ∈ L(ΓHs (E ), ΓHs−2(E )).

(3) If E is trivial then these statements hold for all
s ∈ [2− α, α + 1].



Derivative of the Laplacian with respect to the metric

This is an essential step of later proofs, and is not obvious.

Lemma. Let α ∈ (dim(M)/2,∞) and let E be a natural first order
vector bundle over M. Then the real analytic mapping

d∆ : g 7→ (m 7→ Dg ,m∆g )

MetHα(M)→ L(ΓHα(S2T ∗M), L(ΓHα(E ), ΓHα−2(E )))

extends to a real analytic mapping

MetHα(M)→ L(ΓH2−α(S2T ∗M), L(ΓHα(E ), ΓH−α(E )))



Functional calculus of the Laplacian

Let α ∈ (dim(M)/2,∞) with α ≥ 1, let g ∈ MetHα(M) and let E
be a natural first order vector bundle over M. Then:
(1) Let ΓH−1(g)(E ) be ΓH−1(E ) with scalar product

〈h, k, 〉H−1(g) = 〈(1 + ∆g )−1h, k〉H0(g).
(2) 1 + ∆g , with domain ΓH1(E ), is unbounded self-adjoint on
ΓH−1(g)(E ) and has a compact resolvent. Thus, there exists an

H−1(g)-orthonormal basis of eigenvectors (ei )i∈N in ΓH−1(g)(E )
and eigenvalues (λi )i∈N in (1,∞) such that

∀i ∈ N : ei ∈ ΓH1(E ), (1 + ∆g )ei = λiei .

(3) For each function f : {λ1, λ2, . . . } → R the following is a
densely defined self-adjoint linear operator on ΓH−1(g)(E ):

f (1 + ∆g ) : Dom(f (1 + ∆g )) 3 h 7→
∑
i∈N
〈hi , ei 〉f (λi )ei ∈ ΓH−1(E ),

Dom(f (1 + ∆g )) =

{
h ∈ ΓH−1(g)(E );

∑
i∈N
〈hi , ei 〉2f (λi )

2 <∞

}
.



(4) Let Sω := {z ∈ C : z 6= 0 and | arg z | < ω} be a sector of angle
ω ∈ (0, π), let © be a closed centered ball contained in the
resolvent set of 1 + ∆g , and let f be a holomorphic function on Sω
such that supλ∈∂Sω |λ

s f (λ)| <∞ for some s ∈ (0,∞). Then the
operator f (1 + ∆g ) ∈ L(ΓH−1(g)(E )) can be represented as

f (1+∆g ) = − 1

2πi

∫
∂(Sω\©)

f (λ)(1+∆g−λ)−1dλ ∈ L(ΓḢ−1(g)(E )),

where the resolvent integral converges in L(ΓH−1(g)(E )).

The above result is based on a functional calculus using 1 + ∆g

viewed as an operator from ΓH1(E ) to ΓH−1(E ). Note, that we
would obtain the same result using a functional calculus based on
the operator 1 + ∆g : L(ΓH2(E ), ΓH0(E )). This would, however,
require the more stringent condition 2 ≤ α ∈ dim(M)/2,∞).



Fractional domain spaces

Let g ∈ MetHα(M) with α ∈ (m/2,∞) satisfying α ≥ 1. Using
1 + ∆g : L(ΓH1(E ), ΓH−1(E )) we let ΓHs(g)(E ) be the space

ΓHs (E ) with inner product 〈h, k〉Hs(g) = 〈(1 + ∆g )s/2h, k〉H0(g).
For all s ∈ [−1,∞) we define the following Hilbert spaces:

ΓHs(g)(E ) : = Dom((1 + ∆g )
s+1

2 ) ⊆ ΓH−1(E ) with norm

‖h‖Ds(g) := ‖(1 + ∆g )
s+1

2 h‖ΓH−1(g)(E)

ΓHs(g)(E ) : = the completion of ΓH−1(g)(E ) with respect to the norm

‖h‖D−s(g) := ‖(1 + ∆g )−
s+1

2 h‖ΓH−1(g)(E)

We will show that the identity map extends to an isomorphism
ΓHs(g)(E )→ ΓHs (E ) for all s ∈ [−α, α].



Proposition. Fractional Laplacian. Let α ∈ (dim(M)/2,∞) with
α ≥ 1, let g ∈ MetHα(M) and let E be a natural first order vector
bundle over M. Then:
(1) For all r , s ∈ R, the map (1 + ∆g )

s−r
2 : ΓHs(g)(E )→ ΓHr (g)(E )

is an isometry with the same eigenfunctions (ei ) ∈ ΓHα(E ) as

1 + ∆g and with eigenvalues (λ
(s−r)/2
i ).

(2) For all s ∈ [−α, α], the identity on Γ(E ) extends to a bounded
linear map ΓHs(g)(E )→ ΓHs (E ) with bounded inverse such that
the following function is locally bounded:

MetHα(M) 3 g 7→ ‖ Id ‖L(ΓHs (g)(E),ΓHs (E))+‖ Id ‖L(ΓHs (E),ΓHs (g)(E)) ∈ R.

(3) If E = R, then this holds for all s ∈ [−α, α + 1], and the
eigenfunctions ei belong to ΓHα+1(E ).



Smoothness and real analycity of the fractional Laplacian

Theorem. Let α ∈ ( dim(M)
2 ,∞) with α ≥ 1, let E → M be a

natural first order vector bundle, let ω ∈ (0, π) and let
r , s ∈ [−α, α] with s − 2 > −α or s + 2 ≤ α. Then:
(1) Let f be a holomorphic function on Sω such that

sup
λ∈Sω

|λ
r−s

2
+εf (λ)| <∞

for some ε > 0. Then the mapping g 7→ f (1 + ∆g ) is real analytic:
MetHα(M)→ L(ΓHs (E ), ΓHr (E )).
(2) Let f be a holomorphic function on Sω such that

sup
λ∈Sω

|λ
r−s

2 f (λ)| <∞.

Then the map g 7→ f (1 + ∆g ) is smooth
MetHα(M)→ L(ΓHs (E ), ΓHr (E )).
If E = R then this holds also for r , s ∈ [−α, α+ 1]. The condition
that s − 2 ≥ −α or s + 2 ≤ α is there to ensure that either ∆ or
∆−1 takes values in some Sobolev space ΓHv (E ) with v ∈ [−α, α].
This is always satisfied if α ≥ 2.



Assumptions for Wellposedness

Assumption 1: For each g ∈ Met(M), the operator Pg is an elliptic
pseudo-differential operator of order 2p for p > 0 which is positive and
symmetric with respect to the H0(g)-metric on Γ(S2T ∗M), i.e.,∫

M

g0
2 (Pgh, k) vol(g) =

∫
M

g0
2 (h,Pgk) vol(g) for h, k ∈ Γ(S2T ∗M).

Assumption 2: P : Met(M)→ L(Γ(S2T ∗M), Γ(S2T ∗M)) and

g 7→
(
(h, k) 7→ (D(g ,h)Ph)∗(k)

)
Met(M)→ L2(Γ(S2T ∗M), Γ(S2T ∗M); Γ(S2T ∗M))

are smooth and extend to smooth mappings between Sobolev completions

MetHα(M)→ L(ΓHα(S2T ∗M), ΓHα−2p (S2T ∗M))

MetHα(M)→ L2(ΓHα(S2T ∗M), ΓHα(S2T ∗M); ΓHα−2p (S2T ∗M))

for α ∈ (dim(M)/2,∞].



Corollary. If g ∈ MetHα(M) for α ∈ (dim(M)/2,∞], then
Pg = (1 + ∆g )p satisfies the assumptions for p ∈ [0, α/2].

Also f (1 + ∆g ) satisfies the assumptions for any real analytic
function f : R>0 → R>0 satisfying (for p as above)

C1.λ
p
i ≤ f (λi ) ≤ C2λ

p
i for all i



Theorem. Let the assumptions above hold. Then for (real) α > dim(M)
2 ,

the initial value problem for the geodesic equation has unique local

solutions in the Sobolev manifold Metα(M) of Hα-metrics. The solutions

depend C∞ on t and on the initial conditions g(0, . ) ∈ Metα(M) and

gt(0, . ) ∈ Hα(S2T ∗M).

If the initial conditions are smooth, then the domain of existence (in t) is

uniform in α > dim(M)
2 and thus this also holds in Met(M).

Moreover, in each Sobolev completion Metα(M), the Riemannian

exponential mapping expP exists and is smooth on a neighborhood of the

zero section in the tangent bundle, and (π, expP) is a diffeomorphism

from a (smaller) neighborhood of the zero section to a neighborhood of

the diagonal in Metα(M)×Metα(M). All these neighborhoods are

uniform in α > dim(M)
2 and can be chosen Hα0 -open for some fixed

α0 >
dim(M)

2 . Thus all properties of the exponential mapping continue to

hold in Met(M).

This theorem is more general that the result in [Bauer, Harms, M.
2011], and the proof is now complete.



Ideas of proof. We consider the geodesic equation as the flow
equation of a smooth (C∞) vector field X on the open set

MetHα × ΓHα−2p(S2T ∗M) ⊂ ΓHα(S2T ∗M)× ΓHα−2p(S2T ∗M).

as follows, using the geodesic equation:

gt = (Pg )−1h =: X1(g , h)

ht =
1

2

(
(D(g ,.)Pg )(Pg )−1h

)∗
((Pg )−1h) +

1

4
.g .Tr(g−1.h.g−1.(Pg )−1h)

+
1

2
(Pg )−1h.g−1.h +

1

2
h.g−1.(Pg )−1h − 1

2
Tr(g−1.(Pg )−1h).h

=: X2(g , h)

For (g , h) ∈ MetHα × ΓHα−2p we have (Pg )−1h ∈ ΓHα . A term by
term investigation of X2(g , h), using the assumptions on the orders
and the module properties of Sobolev spaces, shows that X2(g , h)
is smooth in (g , h) ∈ MetHα × ΓHα−2p with values in ΓHα−2p .
Likewise X1(g , h) is smooth in (g , h) ∈ Metk+2p × Hk with values
in Hk+2p. Now use the theory of smooth ODE’s on Banach spaces.



Proofs are based on Sectorial operators

For each ω ∈ [0, π], the sector Sω of angle ±ω is defined as

Sω :=

{
{z ∈ C : z 6= 0 and | arg(z)| < ω} if ω ∈ (0, π]

(0,∞) if ω = 0.

For ω ∈ (0, π], let H∞(Sω) be the Banach algebra of bounded
holomorphic functions on Sω with supremum norm.
Let A be a (possibly unbounded) closed linear operator on a
Banach space X . Its resolvent set ρ(A) is the set of λ ∈ C such
that A− λ has a bounded inverse. The resolvent is
Rλ(A) = (A− λ)−1 for λ ∈ ρ(A). Then A is called sectorial of
angle ω ∈ [0, π) if the spectrum of A is contained in Sω and for all
ω′ ∈ (ω, π), the function C \ Sω′ 3 λ 7→ λRλ(A) ∈ L(X ) is
bounded [Haase 2006].



Sectorial operators admit a holomorphic functional calculus: let
0 < ω < ϕ < π, let r > 0, let A be an invertible sectorial operator
of angle strictly less than ω, let © be a closed centered ball
contained in ρ(A), and let f be a holomorphic function on Sϕ
satisfying

sup
λ∈∂(Sω\©)

|λr f (λ)| <∞.

Then the following Bochner integral is well-defined by the
sectoriality of A:

f (A) :=
−1

2πi

∫
∂(Sω\©)

f (λ)Rλ(A)dλ ∈ L(X ).

This primary functional calculus can be extended to larger classes
of functions as described in [Haase 2006]. For any z ∈ C, the
fractional power Az is well-defined as an invertible sectorial
operator. The homogeneous fractional domain space Ẋr of A is
defined for any r ∈ R as the completion of the domain of Ar with
respect to the norm ‖x‖Ẋr

:= ‖Arx‖X .



Theorem. Let ω ∈ (0, π), let A be an invertible sectorial operator
of angle < ω on a real Banach space X , let (Ẋr )r∈R be the
homogeneous fractional domain spaces associated to A, and let ©
be a closed centered ball ⊂ ρ(A). Then there exists an
L(Ẋ1,X )-open neighbhd. U of A such that:
(1) All operators in U are sectorial of angle < ω, and their
resolvent sets contain the ball ©.
(2) For each r ∈ (−∞, 1], the following map is well-defined and
real analytic:

U 3 B 7→ (λ 7→ λ1−rArRλ(B)) ∈ Cb(∂(Sω \©), L(X )).

(3) For each 0 ≤ s < r ≤ 1, ϕ ∈ (ω, π), and holomorphic function
f : Sϕ → C satisfying

sup
λ∈Sϕ\©

|λr f (λ)| <∞,

the following map is well-defined and real analytic,

U 3 B 7→ f (B) =
−1

2πi

∫
∂(Sω\©)

f (λ)Rλ(B)dλ ∈ L(X , Ẋs),

where the integral is a Bochner integral in L(X , Ẋs).



Thank you for your attention


