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Abstract

This paper deals with the computation of sectional curvature for the manifolds of N land-
marks (or feature points) in D dimensions, endowed with the Riemannian metric induced by the
group action of diffeomorphisms. The inverse of the metric tensor for these manifolds (i.e. the
cometric), when written in coordinates, is such that each of its elements depends on at most 2D
of the ND coordinates. This makes the matrices of partial derivatives of the cometric very
sparse in nature, thus suggesting solving the highly non-trivial problem of developing a for-
mula that expresses sectional curvature in terms of the cometric and its first and second partial
derivatives (we call this Mario’s formula). We apply such formula to the manifolds of landmarks
and in particular we fully explore the case of geodesics on which only two points have non-zero
momenta and compute the sectional curvatures of 2-planes spanned by the tangents to such
geodesics. The latter example gives insight to the geometry of the full manifolds of landmarks.

1 Introduction

In the past few years there has been a growing interest, in diverse scientific communities, in modeling
shape spaces as Riemannian manifolds. The study of shapes and their similarities is in fact central
in computer vision and related fields (e.g. for object recognition, target detection and tracking,
classification of biometric data, and automated medical diagnostics), in that it allows one to recognize
and classify objects from their representation. In particular, a distance function between shapes
should express the meaning of similarity between them for the application that one has in mind. One
of the most mathematically sound and tractable methods for defining a distance on a manifold is to
measure infinitesimal distance by a Riemannian structure and global distance by the corresponding
lengths of geodesics.

Among the several ways of endowing a shape manifold with a Riemannian structure (see, for
example, [I7, I8 20, 25, 28, [30]), one of the most natural is inducing it through the action of



the infinite-dimensional Lie group of diffeomorphisms of the manifold ambient to the shapes being
studied. You start by putting a right-invariant metric on this diffeomorphism group, as described
in [27]. Then fixing a base point on the shape manifold, one gets a surjective map from the group of
diffeomorphisms to the shape manifold. The right-invariance of the metric “upstairs” implies that
we get a quotient metric on the shape manifold for which this map is a submersion (see below).
This approach can be used to define a metric on very many shape spaces, such as the manifolds
of curves [12] 26], surfaces [33], scalar images [4], vector fields [6], diffusion tensor images [5], mea-
sures [11] T3], and labeled landmarks (or “feature points”) [14] [I5]. The actual geometry of these
Riemannian manifolds has remained almost completely unknown until very recently, when certain
fundamental questions about their curvature have started being addressed [25] 26] [32].

Among all shape manifolds, the simplest case of the manifold of landmarks in Euclidean space
plays a central role. This is defined as

LN (RP) .= {(Pl,...,PN)|PaeRD, a:l,...,N}.

(typically we consider landmarks P*, a = 1,...,N that do not coincide pairwise). It is finite-
dimensional, albeit with high dimension n = ND, where N is the number of landmarks and D is
the dimension of the ambient space in which they live (e.g. D = 2 for the plane). Therefore its
metric tensor may be written, in any set of coordinates, as a finite-dimensional matrix. This space
is important in the study of all other shape manifolds because of a simple property of submersions:
for any submersive map f: X — Y, all geodesics on Y lift to geodesics on X and give you, in fact,
all geodesics on X which at one and hence all points are perpendicular to the fiber of f (so called
“horizontal” geodesics). This means that geodesics on the space of landmarks lift to geodesics on the
diffeomorphism group and then project down to geodesics on all other shape manifolds associated to
the same underlying ambient space R”. Thus geodesics of curves, surfaces, etc. in RP can be derived
from geodesics of landmark points. Technically, these are the geodesics on these shape manifolds
whose momentum has finite support. This efficient way of constructing geodesics on many shape
manifolds has been exploited in much recent work, e.g. [2] 8 29].

What sort of metrics arise from submersions? Mathematically, the key point is that the inverse
of the metric tensor, the inner product on the cotangent space hence called the co-metric, behaves
simply in a submersion. Namely, for a submersion f : X — Y, the co-metric on Y is simply the
restriction of the co-metric on X to the pull-back 1-forms. Therefore, for the space of landmarks the
cometric has a simple structure. In our case, we will see that each of its elements depends only on
at most 2D of the ND coordinates. Hence the matrices obtained by taking first and second partial
derivatives of the cometric have a very sparse structure — that is, most of their entries are zero.
This suggests that for the purpose of calculating curvature (rather than following the “classical”
path of computing first and second partial derivatives of the metric tensor itself, the Christoffel
symbols, et cetera) it would be convenient to write sectional curvature in terms of the inverse of
the metric tensor and its derivatives. We have solved the highly non-trivial problem of developing
a formula (that we call “Mario’s formula”) precisely for this purpose: for a given pair of cotangent
vectors this formula expresses the corresponding sectional curvature as a function of the cometric
and its first and second partial derivatives except for one term which requires the metric (but not
its derivatives). This formula is closely connected to O’Neill’s formula which, for any submersion as
above, connects the curvatures of X and Y. Subtracting Mario’s formula on X and Y gives O’Neill’s
as a corollary.

This paper deals with the problem of computing geodesics and sectional curvature for landmark
spaces, and is based on results from the thesis of the first author [23]. The paper is organized as
follows. We first give a few more details about the manifold of landmarks, and describe the metric



induced by the action of the Lie group of diffeomorphisms. We then give a proof for the general
formula expressing sectional curvature in terms of the cometric. This formula is used in the following
section to compute the sectional curvature for the manifold of labeled landmarks. In the last section,
we analyze the case of geodesics on which only two points have non-zero momenta and the sectional
curvatures of 2-planes made up of the tangents to such geodesics. In this case, both the geodesics
and the curvature are much simpler and give insight into the geometry of the full landmark space.

2 Riemannian Manifolds of Landmarks

In this section we briefly summarize how the shape space of landmarks can be given the structure of
a Riemannian manifold. We refer the reader to [27, BI] for the general framework on how to endow
generic shape manifolds with a Riemannian metric via the action of Lie groups of diffeomorphisms.

2.1 Mathematical preliminaries

We will first define a distance function d : LV (RP) x LV (RP) — R* on landmark space which will
then turn out to be the geodesic distance with respect to a Riemannian metric. Let Q be the set of
differentiable landmark paths, that is:

Q= {q = (4., d) :[0,1] — LY (RD) ‘ g € C1((0,1],RP), 0 = 1,...,N}.
Following [31, Chapters 9, 12, 13], a Hilbert space (V,{ , )y ) of vector fields on Euclidean space

(which we consider as functions RP? — RP) is said to be admissible if (i) V is continuously embedded
in the space of C'-mappings on R” — R” which are bounded together with their derivatives, (i) V

is large enough: For any positive integer M, if x1,...,za € RP and ay,...,ay € RP are such
that, for all u € V, Zivil <aa,u(a:a)>]RD =0,thena; =...=apy =0.
The space (V,( , )v) admits a reproducing kernel: that is, for each a,x € RP there exists

K¢ € V with (K2, f)v = (o, f(z))ro for all f € V. Further, (K], K)y = (8, K3 (y))ro =
(a, K} (z))gp which is a bilinear form in (a, 8) € (RP)?, thus given by a D x D matrix K (z,y); the
symmetry of the inner product implies that K(y,z) = K(x,y)T (where T indicates the transpose).
In this paper we shall assume that K (x,y) is a multiple of the identity and is translation invariant:
we then write K(x,y) simply as K(z — y)Ip (where Ip is the D x D identity matrix); the scalar
reproducing kernel K : RP — R must be symmetric, and positive definite (see [31, §9.1] for details).

There are other very natural admissible norms on vector fields v whose kernels are not multiples
of the identity, e.g. one can add a multiple of div(v)? to any norm and then K will intertwine
different components of v. The most natural examples of the norms we will consider are given by
inner products

(u,v)y = (u,v) == /RD <Lu(x),v(x)>RD dz, (1)
where L is a self-adjoint elliptic scalar differential operator of order greater than D + 2 with constant
coefficients which is applied separately to each of the scalar components of the vector field v =
(u',...,u”). By the Sobolev embedding theorem then V consists of C''-functions on R” which
are bounded together with their derivatives. If K is a scalar fundamental solution (or Green’s
function [9]) so that L(K)(x) = §(x), then the reproducing kernel is given by K& = K( —z)a. A
possible choice of the operator is L = (1 — A2A)* (where A € R is a scaling factor, k € N and A is



the Laplacian operator), with & > % + 1, in which case becomes the Sobolev norm:

lullZ =/ ef:mf: ( )A%l(;mwa“éf dz, (2)

When L = (1 — A2A)¥ the scalar kernel K has the form K(z —y) = 'y(||x — yHRD)7 with:

_ 1 o\h-% 0
”(Q)‘zk%—lﬁr(k)AD(Z) Keg(3) >0, (3)

where K, (with v =k — £) is a modified Bessel function [I] of order v (not to be confused with the
symbol K we use for the kernel of V).

In summary, the scalar kernels that we consider in this paper will always have the properties:
(K1) K is positive definite;
(K2) K is symmetric, i.e. K(z) = K(—x), z € RP.
In addition, in certain sections we will introduce the following simplifying assumptions:
(K3) K is twice continuously differentiable, K € C%(RP);
(K4) K is rotationally invariant, i.e. K(z) = (||z||zp), € RP, for some v € C2([0,00)).
Note that if (K4) holds then v(0) > |y(p)| for all p > 0 by (K1) and (K2). Also, the bell-shaped
Bessel kernels of the type satisfy all of the above when k > % + 1.

Now fix any admissible Hilbert space of vector fields. The space L?([0, 1], V) is the set of func-
tions v : [0,1] = V such that:

1 1
Iollorgonyy = ([ lote I de)” <o

The space L2([0,1],V) is a subset of L'([0,1],V) and is in fact a Hilbert space with inner product
(u,v) 12(j0,1),v) = fol (u,v)y dt. It is well known from the theory of ordinary differential equations [7]
that for any v € L'([0,1], V), the D-dimensional non-autonomous dynamical system 2 = v;(z), with
initial condition z(tg) = x, has a unique solution of the type z(t) = ¥(t,t0,2). Let ¢l (x) =
P(t, s, x); fixing t =1 and s = 0 we get " := p};, which is the diffeomorphism generated by v. For
an admissible Hilbert space we will call the set

Gv = {¢" v e L'(0,1],V)}

the group of diffeomorphisms generated by V; by [31, Chapter 12] it is a metric space and a topo-
logical group. But, in the language of manifolds, Gy is not an infinite-dimensional Lie group [19].
V' is not a Lie algebra, but is the completion of the Lie algebra of C*°-vector fields with compact
support with respect to || ||y

2.2 Definition of the distance function

For velocity vector fields v € L?([0,1],V) and landmark trajectories ¢ € Q define the energy

E\[v,q] = E[v,q] :== /01 (Hv(t7 HV —l—)\ZH dt ) —v(t,q (t))H;D) dt, (4)



where X\ € (0,00] is a fixed smoothing parameter (soon to be described). We claim that a dis-

tance function d on LN (RP) between two landmark sets (or shapes) I = (z!,22,...,2") and
I' = (y*, 9%, ...,y") can be defined as
d(1,1') := inf{ Elv,q :ve L2([0,1),V), g € Q with (0) = I, g(1) = 1/}; (5)
v,

in the next subsection we will argue that the above function is in fact a geodesic distance with respect
to a Riemannian metric. We treat the minimization of as our starting point; it is the “energy of
a metamorphosis” as formulated in [31, Chapter 13].

The above infimum is computed over all differentiable landmark paths ¢ € Q that satisfy the
boundary conditions (¢*(0) = z® and ¢*(1) = y*, a = 1,..., N), and vector fields v € L?([0, 1], V).
The resulting landmark trajectories {¢*(¢),t € [0,1]}4=1,... n follow the minimizing velocity field
more or less exactly, depending on the value of the smoothing parameter A € (0, co]; it is a weight
between the first term, that measures the smoothness of the vector field that generates the diffeo-
morphism, and the second term, that measures how closely the landmark trajectories actually follow
the vector field.

The exact matching problem is the following: given two sets of landmarks I = (z!',22,... 2")
and I' = (y%, 9%, ...,y") with 2 # 2 and y® # y° for any a # b, minimize the energy

Eoolt] = / lott, )13 dt

among all v € L?([0,1],V) such that ¢°(z%) = y*, a = 1,...,N. In this case the landmark
trajectories are defined as the solutions to the ordinary differential equations ¢* = v(t, ¢%), a =
1,...,N. Note that this is equivalent to solving for A = oo, since such equations are obtained by
setting the integrands of the second term in the right-hand side of equal to zero. When \ < oo
in we have regularized matching, i.e. the landmark trajectories “almost” satisfy such set of
ordinary differential equations; this allows for the time varying vector field to be smoother. For
this reason the second term in the right-hand side of is often referred to as smoothing term;
by allowing smoother vector fields the distance d is made tolerant to small diffeomorphisms and
therefore more robust to object variations due to noise in the data.

2.3 Minimizing velocity fields and Riemannian formulation

By manipulating expression we will now show that it is equivalent to the energy of a path ¢ € Q
with respect to a Riemannian metric.

Notation. Consider a landmark ¢ = (¢*,...,¢") in LV (RP). The D scalar components in Eu-
clidean coordinates of the N landmark trajectories ¢* = (¢*!,...,¢*”), a=1,..., N can be ordered
either into an N x D matrix or in a tall concatenated column vector. We shall always use indices
a,b,c,... € {1,...,N} as landmark indices, and i, j, k,... € {1,..., D} as space coordinates in RP.
We will associate to each of the N landmarks ¢* € R*P a momentum p, € R1*P (defined in the
next proposition) which we will write, in coordinates, as p, = (pa1,---,Pan), for each a =1,..., N.
The components of momenta can also be ordered into an N X D matrix or in a long row vector. We
chose superscript indices for landmark coordinates and subscript indices for momenta.

For a given set of landmarks (¢!,...,¢") € LV (RP) we will define the symmetric N x N matrix

K(q) := (K(q“ — qb))a p—1_ - The matrix K(g) is positive definite by property (K1) of the kernel.



Proposition 1. For a fixed landmark path § = {q [0,1] — RD} | € Q there exists a unique
minimizer with respect to v € L?([0,1],V) of the energy E[v,q), namely

N
x) = Zpa(t) K(z—q"(t)), te[0,1], z € RP, (6)

where the components of the momenta are given by:

N

Pl = Y0 (K@) + ) " Lq0, e, (7
b=1

a=1,...,N,i=1,...,D (here Iy indicates the N x N identity matriz).

Remark. What the above proposition essentially says is that the vector field of minimum energy
that transports the N landmarks along fixed trajectories is, at any point of time, the linear combi-
nation of N lumps of velocity, each centered at a landmark point. The directions and amplitudes of
the summands are determined precisely by the momenta.

Proof of Proposition[1. Using property (ii) of the admissible Hilbert space V, [31, Lemma 9.5] shows
that for given ¢ = (¢*,...,¢") € LN (RP) we have the orthogonal decomposition

V= {v eV:v(g*)=0,a= 1,...N} &) {v:ZivzlaaK( —q%) : g ERD}. (8)
Thus the minimizer must have the form

N
I):Zaa(t)K(qua(t)), te [Ov 1}7 xGRDa (9)

a=1

for some coefficients a, € C([0,1],R?), a =1,..., N, to be computed. For velocities of the type @D
the energy can be rewritten as

Elv,q) = / ZZ K (@ —7")ani + MawK(@* ") 7"} a. (10)
i=1 a,b=1

Setting the first variation of with respect to coefficients «a,; to zero yields the momenta . O

It is convenient, at this point, to introduce the ND x N D, block-diagonal matrix

(K(q)+ %) " 0 0
Ivy=t .
o= 0 KOrRT T (1)
0 0 (K@)

where the N x N block (K(q) + HTN)_I is repeated D times; the choice of symbol g is justified by

the fact that is, as we shall see soon, precisely the Riemannian metric tensor with which we are
endowing the manifold of landmarks, written in coordinates.



Thus for a fixed path § € Q the minimizer of Efv,q] with respect to v € L2([0,1],V) is given
by (@ since it depends on § we will write it, with an abuse of notation, as v*(g). We can define

Elq) = E[v*(9),q, (12)

which depends only on the arbitrary path § € Q. The energy is “equivalent” to the en-
ergy Flv,q|, in that:

(a) if (9,§) minimizes E[v, q] then ¢ minimizes E[q], and E[0, 4] = E[4];
(b) if ¢ minimizes E[q] then (v*(§),q) minimizes E[v, q], and E[v*(4),d] = E[4].

Proposition 2. For an arbitrary landmark trajectory q € Q the energy E[q] 18 gien by:

EM:/;d(ﬂ 9(a(0)) 4(t) dt = /ZZq‘“ 0 (Ko@) + ) Tar )

a,b=11=1

In the above equation q(t) is mtended as an N D-dimensional column vector obtained by stack-
ing the column vectors (¢ (t),...,¢"N (t))T, i = 1,..., D (again, the superscript 7 indicates the
transpose of a vector).

Proof. Following definition (12)), formulae (/7] . ) for the momenta are inserted into the modified expres—
sion . for energy Ev, q]. Slmple matrix manipulations finally yield the right-hand side of .

Remarks. Expresswn 13)) has exactly the form of the energy of a path ¢ with respect to Riemannian
metric tensor Whence given two landmark configurations I and I’ in £V (R”) we have that
if ¢ minimizes among all paths in ¢ € Q such that ¢(0) = I and (1) = I’ then (E[g])*/? is the
geodesic distance between I and I’. By point (b) above we also have that (v*(§),§) is a minimum
of energy Efv,q|, so d(I,I') defined in coincides with (E[q])!/? and is the geodesic distance
between I and I’ with respect to the metric tensor g.

The Lagrangian function that corresponds to the energy is:

L(q,q) = %q 9(q Z Zq‘“ l"( Hj\v);. (14)

ab 1:i=1

In Hamiltonian mechanics [3, p. 60] the “momenta” are defined as p,; = 9L/0¢*, or, in vector
notation, pg) = OL/2¢D (for i = 1,...,D). Applying such definition to yields precisely
equations of Proposition |[II Whence the use of the term momenta is justified.

Note that for small values of the parameter A the metric tensor g, written in coordinates, gets
close (up to a multiplicative constant) to the ND x ND identity matrix; in other words, for A — 0,
g converges to a Fuclidean metric and the geodesic curves become straight lines. On the other
hand, for A — oo (exact matching) the metric converges to [diag{K(q),...,K(q)}]~! (block K(q)
is repeated D times). In general, the block-diagonal form of the metric tensor g given by
follows from the fact that the operator L in is applied separately to each of the components of
the velocity field; however the dynamics of the D dimensions of ¢ are not decoupled since all ND
components of ¢ appear in each diagonal block of g.

In the case of exact matching landmarks “never collide” (their trajectories are precisely defined by
diffeomorphisms of RP): it takes an infinite amount of energy to make any two landmarks coincide.
So under the condition A = co the manifold of landmarks can actually be taken as the set:

EN(RD):{(Pl,...,PN)|P“eIR<D,P“7éPb ifayéb}. (15)
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Figure 1: Two trajectories in £2(R?). Bullets (o) and circles (o) are the initial and final sets of
landmarks, respectively. The grids represents the two corresponding diffeomorphisms ;.

Figure [1] shows the qualitative behavior of geodesics in £2(R?), with A\ = oco. In the case
illustrated on the left-hand side both landmarks travel in the same direction (from left to right, as
indicated by the arrows): the two arcs of the geodesic “attract” each other, or in other words the
two landmarks tend to “carpool” by using a velocity field with the smallest possible support so to
minimize the L? part (i.e. the first term) of the Sobolev norm of the velocity field. On the other
hand when the two landmarks travel in opposite directions (as illustrated on the right-hand side of
Figure[1) they try to avoid each other so that the higher order terms of the Sobolev norm are kept
small; we shall return on the issue of obstacle avoidance at the end of this paper. A typical geodesic
in £4(R?) (again with A = 00) is shown in Figure

Conclusion. We have shown that distance d(I,I’), I,I' € LN (RP) defined in is in fact the
geodesic distance with respect to a Riemannian metric. In coordinates, the corresponding Rieman-
nian metric tensor is given by (L1)), which is such that each element of its inverse (the cometric)
depends on at most 2D of the ND coordinates. Whence the first and second partial derivatives of
the cometric have a very sparse structure. This gives us motivation for deriving a general formula
for computing sectional curvature in terms of the cometric and its derivatives in lieu of the metric
and its derivatives, which will be done in the next section.

3 Sectional Curvature in terms of the Cometric

3.1 Generalities and notation on sectional curvature

Let M be an n-dimensional Riemannian manifold. If we consider a local chart (U, ) on the manifold
with coordinates (x!,...,2"), we have the induced 1-forms dx!, ..., d2z™ and coordinate vector fields
{0y := %, ceyOp = %}. The metric tensor g : TM x o TM — R can be represented as g|y =
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Figure 2: A typical geodesic trajectory in £4(IR?). Bullets (o) and circles (o) are the initial and final
sets of landmarks, respectively. The grid represents the corresponding diffeomorphism ¢, .

9(8;,0;) dz* @ dx? =: g;; dz' @ dx? (here, as in the rest of the current section, we are using Einstein’s
summation convention). For each p € M we get a positive definite matrix with elements g;;(p) =
9p(8;,0;). With an abuse of notation we will write g;;(z) instead of (g;; 0 o~ 1) (), x € p(U) C R™.

Notation. We shall denote the partial derivatives of the elements of the metric tensor g as g;; x(z) =
a%kgij(a:) = Okgi; and g;jke(x) = am‘?i;zkgij(x) = 0y0kgij. Also, we will indicate the cometric
as ¢ v = ¢ 9; ® 9; (so that gg;, = &%) and their partial derivatives with ¢" , (z) := %g” (x)

and g”,ke(x) = %g”(w).

For a tangent vectors X = X'0; we consider the 1-form X° := X’g;;dv? =: X;d2? (indices
lowered), and for a 1-form o = a;dz’ we have the tangent vector of := a;9/9; (indices lifted).

Indicating with X' (M) the space of smooth vector fields on the manifold M, let V : X(M) x
X(M) = X (M) be the Levi-Civita connection [I6, 2I] of the Riemannian manifold. The Christof-
fel symbols Ffj are defined by Vp,0; = Ffj(?k, and it is well known that they have the form:
T¥ = 39" (gie; + gjei — gije). The Riemannian curvature endomorphism is the map R : X (M) x
X (M) x X (M) = X(M) given by R(X,Y)Z = VxVyZ — VyVxZ — V(xy)Z. In local coordi-
nates R(9;,0;)0r = R{;,.00, and Rijim := (R(0;,0;)0k, Om)y = gngfjk. The Riemannian curvature
tensor acts on vector fields as follows:

R(X,Y, Z,W) = (R(X,Y)Z,W), (16)
and in coordinates it is written as R = Rijkmdl‘i ® dz! ® dz* @ de™. The Riemannian curvature

tensor has a number of symmetries: (i) Rijre = —Rjike; (i) Rijwe = —Rijer; (iil) Rijke = Ruieij;
and (iv) Rijke + Rjkie + Rygije = 0 (first Bianchi identity). With such conventions, the sectional



curvature associated to a pair of non-parallel tangent vectors X and Y is computed by:

R(X,Y,Y, X) Rijim XYYk X™
K(X,Y) = = K : (17)
X2V 15 — (X, Y)3 IXI21Y]7 — (X, Y)7

In order to express the numerator of sectional curvature in terms of the elements of the
cometric and its derivatives (i.e. g/, g* > and g% ;) we consider the covariant expression of the
Riemannian curvature tensor:

RUTSY . — Rijk:m giugjrgksgmv’ (18)
which we call the dual Riemannian curvature tensor. Similarly we consider the covariant or dual
Christoffel symbols

L= g"¢" grul'ly,

(19)
which are symmetric in the indices r and s.

To achieve notational compactness we will use the following symbols:
gt i=gY gt and g =gV gt (20)

Using that g = Q! implies drg = —Q ' - 0xQ - Q! one immediately sees that

1
FZS — _5 gu¢(98¢7r + grap,s _ grs,gp).

Proposition 3. The following expression holds for the Riemannian curvature tensor:
2Rijkm = Yik,jm + Gjm,ik — Gjk,im — Yim,jk + QF?kF?mgaﬁ — 20T} gap. (21)
For a proof see [24, §24.9)].

3.2 Mario’s formula
Proposition 4. The following expression holds for the dual Riemannian curvature tensor:
QRUTS — — gUSTV L TV | gTSuY | gUUTS | 9T TUPUS g7 _ 9T gpo
e I g (22)

pu,r

U, T S,V uN,T

+ g g = g g 9"+ 9N g g — g
+ gr)\,sgAH g/u),u =+ gu)\,vg)\ﬂ gusm _ gr/\,vg/\ug _ gu)\,sg)\H g

Proof. We will manipulate and write it in the form Rijxm = GiugjrIrsgmo """ by factor-
ing giugjrgksgmo out of each term; what will be left will be precisely the expression for R*"*".
The terms in involving Christoffel symbols are, by :

S, u

D40 Gap = Giugksd™ T2 9jrGmog™ T Gap = GiulirGhsgmy (L TEg"7), (23)
and similarly: F?‘kffmgag = Giuljr GhsYmv (F;sfg”gm). (24)
As we noted before, if g = Q7! then 9;9 = —Q~' - 9;Q - Q! and similarly it is the case that
Om0;g=0Q - (5‘mQ Q71 9,Q+0;Q-Q71-0,Q — aman) -Q71, i.e., in index notation,
Gitgm = Giu (9" O 9" + 9" O 9" — 9" ) Gk
= Giugks0300, (9" D 9 + 9" e 99" — 9" en)
= GiuGksGirgmo (97097 (9% D 9" ¢ + 96 g, — 9" )]
Iru gus,r _'_gu)\,rg)\u gus,v o gus,rv)’ (25)

U,V

= GiudjrJksGmov (g

10



where we have used definitions . Similarly, we can achieve the factorizations:

9jm ik = GiudjrIksImo (gr/\,ug)\# guv,s + g'r/\,sgA# guv,u - grv,us)7 (26)
—Gjksim = GiuGjrTksmo (— 9 G 9" — g gan g0 + "), (27)
—Gim,jk = GiuGjrIksmv (— 9"V g 9" — gV ga g0 + g"0T). (28)

nserting =+ into we can write R;ikm = GiuGir 9ksJmov , Wi given by .
Inserting (23)=@8) into 1) ite R;; ; RS syith R%"" given by 22). O

Proposition 5. The dual Riemannian curvature tensor may also be written as follows:

QRS = _ gusrv _ grows 4 greuw 4 quvrs (T)
L, g g g g ) )
e L g g (g gy g () ()
B %(g)\r,s — PV gan (g — g (T4)
i %(g)\r,v — Vg (g7 — ghs ) (Ts)
+ (" = g ) gan (9" — g*). (Te)

Proof. We will expand and recombine the terms in expression . The terms involving second
derivatives need no manipulation and correspond to term T;. The terms in the second line of (22))
can be written as:

U, T Arau )\u,r)

9 g 9" = G g 9+ 9N g 975 = 9N a9 = (g G gau(g"" = g"*")
which is precisely Ts. It is also the case that:

Qo,r

2070 T0 677 — g™ gan 9" = 9" g g
= 2[4+ ") = 97N gre 977 Gon [ (9" 4 g) — U] — g Mg 97 — g a9
=319 ,9779" ; — 9", (""" +¢"") — g"* , (g7 + ¢7"") }

" %(g)\r,v b T ) gan (975 gh) — gy g guAs gy ghe
=Ts+ (""" = """ )gru(g"™* — g"**) = T3 + Ts.

Similarly one can prove that: —2I"*T'7"g"” + g”“sg,\u gt + g“>‘7”9>\M gt =Ty 4+ Ty. [

For any point p € M and an arbitrary pair of tangent vectors X = X'9;, Y = Y9, in T,M we
consider the covectors X° = X,;dx’ and Y’ = Y;dz" in TrM, with X; = g;;X7 and Y; = g;;Y7. The
numerator of sectional curvature may be rewritten as RijkainYka = R""X,Y, Y, X,.

Theorem (Mario’s formula). For an arbitrary pair of vectors X = X'0; and' Y = Y9, in T,M
the numerator of sectional curvature at point p € M may be written as:

g(R(X7 Y)K X) = RUTSUXuYrYSXv =
— (XuYr _ YuXr) (%gsu,rv + %gusm gpr,v _ égus Y grv,o _ %g)\u,rg)\# gus,v) (Xsz _ YsXv)~

s
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Moreover, if we extend X° and Y’ locally on M to constant I1-forms in terms of local coordinates
(i.e. make its coefficients X,,,Y, constant functions), then the formula becomes:

9(R(X.Y)Y.X) =
= (JXX(Y* 1) + VY (IX°) - HXY + Y X)g™! (X", V)]

+{in(g’1(X",Yb))II2*i Hd(IX")?), (HYbIIZ))}*%9([X,Y],[X,Y]),

where the term in the first set of braces equals the sum of the first two terms in the coordinate form,
the term in the second set of braces equals the third term in the coordinate form and finally the last
terms are equal. In the above formula, | X°||? = X X,.g°" and |Y"||? = Y, Y,g"".

Proof. We will write the six terms provided by Proposition I blas TPV, ¢ =1,...,6. We have:

T’lf"‘S’UXuYrYsXU == _guSW’UXuYTY—sX'U - grv’uquYr}/sX’U + gTS)quuYT}/;XU + guv)TSXUYrYSXU
_ gus’m)(—XqurYsXv — XrYuY’UXS + XTY’U,YSX’U + XuYrY'qu)
gus,rv(XuY; _ YuXT)(XéYU - }/sX'u)7

where the second step follows from relabeling the indices. As far as Ty and T3 are concerned,

(T3" 4 T5™) Xu Y, YoXy = =5 {YiYeg™ , 979" o Xu Xy = Yi Xog™ , 979" o XuYe}
FHY Y 07 (977 + 97 Xu Xy + Xu Xy g7, (977 + g7 Y, Y
~ Y, X, gm (gpu,s —I—gps’”)X Y, — XY, gus’p<gpr,v +gpv,T)YTXU}

=~ LV,Yg", 079" o Xu Xy — 2, X0g™, 977" XY}
+§pmn¢m¢“%w&+zanwﬁf”nmAaXﬂw“AMM+ymwnxﬁ

W 1gm gr7gn (VY X, X, + VY XX, — VX, X,Y - VXXV, )

+9, "V Y X, Xy + Xu XYY, — XYY, X, — XYY, X, )
=(=19%,9"7 +9",9"") (XuYr = Yu X,) (XY, — Ve Xy),

)

where, once again, step (%) follows from relabeling the indices. Also, one can easily see that
Ty X, Y, Y:Y, = —%Y}Y;(gm’S - gAS’T)gM(g““’“ — g X, X, = 0. Finally,
(Ts"™" + TE™") XY, YsY,

= % Y, Xy (g — 9/\”’7‘)9>\u(9w’8 — g XY, + Y, X (9 - gxu’r)gz\u(gw’s — 9" XY

= 3 Yo Xu(g" = M) gnu (9" — ") XY

=3Y, X, {0 " 9rug""* — 9" 009" — 9N g™ + 0T gru g XY

— 3 T = YV X XY + Vo X, XY+ Y X, XY — Y XL XY )
== 3 P gag" Y (XY — VX)) (XY, — V. X,).

Divide by 2 to get the coordinate formula. The non-local version of the formula follows easily by
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bringing the X and Y’s into the formula. Thus (indicating d; with the subscript ;):

YuXr(gsu,rv + gsuyp gpr,'u)YSXv — X’I‘X’U (YsYu gsu,pg gpfgan + Y;Yu gsuwp gprﬁ gav)
= X,.XU((||Yb||2)7pg g7 g% + (||Yb|\2),p 9" 5 g"”) (because Y, Y, are constants)
= Xog? (Xeg” (IY12),),, = X7 (XP(IV°1P),,), = XX(IY°)2).

A typical term from the third part of Mario’s formula is rewritten like this:
VX, 9" 0 g7V X0 = Xo X (1Y), 977 = (IY°12) ,(1X°1) 977 = g~ (Y I1*). d(I X°11));
the other terms are similar. Finally, it is the case that:

(XuY, = Yo X)) g™ 0x = (XY, — Yo X, )g™, 9" 0n = (XY = Y, X")g™ ) Ox
= ((Xug™) Y = (Yug™)  X")0x = (XA, YT =Y X0y = —[X,Y],

and the proof is easily completed. O

Remark. It is convenient to split Mario’s formula in four terms:

Ry = L(X,Y, — Y, X,)g*m" (XY, — Yo X,), (30)
Ry i=L(XuY, = VuX,)g" , 0" (XY, — Vo X,), (31)
Ry :=3(X,Y, = YuX,) (= 4 g%, 97) (X.Ye = Yo X,), (32)
Ry = 5(XuY, = YuX,) (= 3 0™ gau 9"°7) (XsYo — Yo X, ); (33)

all the terms with the exception of R4 (where g appears, but not its derivatives) depend only on
elements of the cometric and their derivatives.

Remark. The denominator of sectional curvature can also be expressed in terms of the comet-
ric:
IXIZIY IS = (X, V)] = Xu X, Y, Yo (g*9™ — g*°g""). (34)

4 Curvature of the Manifolds of Landmarks

In this section we will apply Mario’s formula to the computation of sectional curvature for the
Riemannian manifold of landmarks, introduced in section We first introduce the Hamiltonian
formalism, since it will allow us to write the geodesic equations in a simple form and to introduce
geometric quantities that will eventually appear in the formula for sectional curvature.

4.1 Hamiltonian formalism

On the N D-dimensional manifold £ = LY (RP) of landmarks we consider the Riemannian metric g
given, in coordinates, by the matrix ; it is in block-diagonal form and we write its generic
element as g(qi)(p5), With a,b=1,..., N (landmark labels) and i,5 = 1,..., D (coordinate labels,
respectively of landmarks a and b). More precisely: the matrix ¢g(g) is made of D square (N x N)
blocks; indices 7,5 = 1, ..., D indicate the block, whereas indices a,b =1,..., N locate the element
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within the (¢, j)-block. Therefore if we indicate with h,p(q) the generic element of the N x N matrix
(K(q) + HTN)A we have that

g(ai)(bj):hab(q)6ija aab:17"'7N7 7;7j:17"'7D7

where 9;; is Kronecker’s delta. Similarly, if we indicate as g(@)®7) the elements of the cometric

tensor g(q) !, they are given by ¢(®)®9)(g) = h9®(g) 6/, where h*(q) = K(¢° —¢")+ %-. In analogy
with the notation introduced in section |3| we also denote the partial derivatives by g(m)(bj ) (k) =
%g(“i)(bﬂ and g(ai)(bj)’(ck)(de) = aq%quzg(“i)(bj); they will be computed later.

For simplicity from now on we shall assume that A = oo, i.e. that we are dealing with ezact
matching of landmarks so that £N(RP) has the form (I5). The element of the cometric becomes
g@)®)(q) = K(q* — ¢*) 6% and the Hamiltonian [I6] p. 50] for the system can be written as:

N D
1 — 1 ai j
Hp,q) =50 9(0)"'p =75 > > gl (g) 9) Paibr; = 5 § § K(q® = ¢°) 6 paipe;,
ab=14,j=1 ab 1ij=1

that is H(p, q) = K(q" = ¢"){PasPv) g

1

=

1
2

Proposition 6. Hamilton’s equations for the Riemannian manifold of landmarks are:

N
Q"= K" —d")pm
b=1
N
Da = — Z VK(qa - qb) <pa7pb>RD

b=1

Proof. Equation @ can be written as ¢ = Z{,V:l K(q® — ¢")pyi, fora=1,...,N,i=1,...,D;
alternatively, computing ¢** = % yields the same result. Also:

D
aqam_K(qbl _ qd’ o ’qu _ qcD) => %(qb _ qc) a;’)ai (qbe _ qce)

= Yl 956" — q°) (0, — 69)0f = - (¢" —q°) (85— 55)  (36)

so that

. N .
Pai = ('?qaz (p> ) ) Zc 1 gi(f (qa - q(’) <pa’pC>RD +3 Zb 1 81’ (qb - qa) <pb’pa>RD

—~

*) N
= =3 25 (¢ — @) (Paspo)rD;

in (x) we used the skew-symmetry of VK (¢® — ¢°) in indices a and b, which follows from (K2). [

Corollary 7. If p,(to) = 0 for some landmark a =1,...,N and time ty € R, then p,(t) = 0.
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4.2 Notation

From now on we shall also assume that (K3) holds, i.e. that the kernel K is twice continuously
differentiable; for the time being we will not assume rotational invariance. We define:

K = K(¢" - ¢") € R,

K
DK (2) = O (2), K™ = 0,K(¢" — ) € R,
VK = (0K, - ,0pK)T, VE®:=VK(¢" - ¢") € RP, (37)
PK
2 . 2 yrab .__ 92 a b
0K () := 2.0z, (), 0;K* = 0K (d" - ") €R,
D?K := Hessian(K), D’K .= D?K (¢* — ¢) € RP*D,

Note that VK = VK" VK% = (0 and D?2K% = D?2K" for all a,b=1,...,N, by (K2).

For a fixed set of landmark points ¢ in £ = LV (R”) consider any pair of cotangent vectors
o, € TyL: we shall write a = (a1,...,ay) and 8 = (B1,...,8n), where each component is D-
dimensional. We define the vector field o : RP — RP and its values at the landmark points by:

N
alor(z) = ZK(x — ", zeRP,
b=1
N
(aﬂ)a — ahor(qa) — ZKabab;
b=1

which are, by virtue of formula @, the velocity field o™ on R” induced by the landmark mo-
mentum o = (aq,...,ay) and the corresponding landmark velocity of € T,L (which obviously
coincides with the first of Hamilton’s equations ) Note that of = (a’i, NN agv) is the tangent
vector in T,L with metrically lifted indices. Note that a"°" is the horizontal lift [10, p. 148] of the
tangent vector af on the admissible Hilbert space V: simply put, of all vector fields v : RP — RP
in V such that v(¢%) = (a*)*, a = 1,..., N, a"°" is the one of minimum norm.

The curvature of the Riemannian manifold of landmarks will be expressed in terms of three
auxiliary quantities which we now introduce. We will call these force, discrete strain and landmark
derivative. We start with the force. For a fixed covector a = (ay,...,ay) € Ty L, having the dual
vector extended to a vector field o*°" on all of R allows us to take its derivatives at the landmark
points, a D x D matrix-valued function on RP:

(D) (z) := 0;(a) (z) = Z a0 K (z — ¢°),

b=1
_ N
(Da" Y (g") = 3 0K .
b=1
For a trajectory (q(t), p(t)) of the cotangent flow one has that (pi(t),...,pn(t)) € Ty, L for all ¢

where the trajectory is defined, so the above notation can be used to rewrite Hamilton’s equations
in a more compact form. In particular, the following result holds.
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Proposition 8. The second of Hamilton’s equations (35)) can be written as
Pa = —Dp"(¢%) - pa a=1,...,N. (38)

Proof. pai = = Ypy K (pr, pader = — 351 (Siy K™ puj)pay = — 351 (DP") (%) paj =
—(Dphor(q“) -pa)l,, foranya=1,...,Nandi=1,...,D.

O
For a fixed cotangent vector a € T L, this motivates defining the negative right-hand side of
to be force:

Fu(a,a) := Da™" (¢%) - o, a=1,...,N.

The full bilinear, symmetrized force may be thought of as a map F : T;L x Ty L — Ty L. We call
the covectors given by this the mized force, with the definition:

Fa(aa B) = %(Dahor(qa) ’ Ba + Dﬁhor(qu) : aa)

D N N
Fai(Oé, 5) = %Z Z&iK“b (abjﬂaj + Bbjaaj = %Za Kab aaaﬁb>lRD + <ﬁa7ab>RD)7 (39)
i

b=1

fora=1,...,Nand i = 1,...,D. (The angle brackets are inner products in R”.) Note that the
“complete” cotangent vectors o = (aq,...,an) and 8 = (f1,...,Hn) (not only their a-components)
are needed to compute each component Fy(«, ) of the mixed force. The mixed force has simple
interpretation. If we extend a and S to constant 1-forms on L, then the differential of the map

g g (e, 8) =, K(¢" — ¢°){@a, Bo)ro is given by:

%K (q" — ¢°) (dg" — dg"") (e, By)go

M

1

0iK (4" = q") ({@a Bo)re + (Ba, aw)rp) dg™ = 2F (e, B). (40)

M= $M=
s I

14i=1

a,b

For a fixed o € Ty L we define the discrete vector strain:

N D N
§(a) = (@) — (@), or  §(a) i= 30 S O(K - K)an = 3K - K¥)ay
c=1j=1 c=1
for all a,b = 1,...,N (we call it like that because it measures the infinitesimal change of relative
position of the landmarks a and b induced by the cotangent vector «)). These are vectors and are
skew-symmetric in the points a,b: S%(a) = —5"(a), S%¢(a) = 0. The scalar quantities:
N D
Cab(a) = <(aﬁ)a _ (aﬂ)b,VKab>RD _ ZZ Kac Kb(‘ 0, Fab Qe
c=1i=1

we define to be the scalar compressions felt by kernel K; they are symmetric (since both factors in
the inner product are skew-symmetric), i.e. C%(a) = C**(a), with the property C*(a) = 0. We
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call these compressions because if K is a monotone decreasing function of the distance from the
origin (the most common case), then VK points from ¢ to ¢°.

Finally, if v and w are any two vector fields on the manifold of landmarks, we may write their
Lie derivative as the difference of covariant derivatives:

[o,10]e = VM (w) — VE!(0)

where the flat connection on £ is just the one induced by its embedding in R¥?. In other words,
VEMat (1) is the usual derivative of w in the direction v if we use the coordinates ¢** on landmark
space: that is, V&1 (w) == 37 0(w)ai = 30,; Doy v (9pjw™)dai- 1f @, B are constant 1-forms

everywhere on £V we can take v = of and w = %, now as vector fields on £, and then we find:

viéﬁat Z Z 8qu Oni = Z Z <8qu Z K(q¢" — qC)Bci)ﬁm

a,i b,j a,i b,j
= Z Z bj 8 Kac 5b 5}, 5@, ai Z Z )bj)ajKab Bbi 8(11'
a,i b,c,j a,i b,j
= Z Z VKab>RD6bz ai = Z (Z Cab(a)ﬂbi)aaz
a, b

This is a vector in T,£ which we define to be the landmark derivative of 3* with respect to af. The

coefficients with respect to 9,1,...,09,p (for fixed a) are the elements of the following vector:
N N
Da(avﬂ) ::anb(a)ﬁb: Z (Kac*Kbc)<ac,VKab>RDﬂba a = 17"'7N' (41)
b=1 b,e=1

We have that D(a, 8) = (D%(a, 3))2_; is the N D-dimensional vector of the coefficients of VL flat (51
with respect to the basis {04} of TyL. In particular, the coefficients of the Lie bracket of Ozﬁ and B*
as vector fields on £ are given by D(a, B8) — D(B, ).

4.3 General formula for the sectional curvature of £V(R?)
We can write sectional curvature of LY (RP) in the following way, where we have split it in the terms

introduced by 7.

Notation: from now on ( , ) will indicate the dot product in R?, while ( , )7, and { , )p-r
will be the inner products in the tangent and cotangent bundles of £ = LV (R?), respectively.

Theorem 9. The numerator of sectional curvature of LN (RP), for an arbitrary pair of cotangent
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vectors o and 3, is given by R(af, %, 3% af) = Z?:l R;, with:

Ri=1> (0a®S™(B) — fa® S ()" (Ip ® D2 K (a @ S(B) — B @ S°(ax)), (42)
a#b

Ry =37 ((D"(a,0), FalB,8)) + (D(8, 8), Fala, 0)) = (D"(, ) + D*(8,0), Fal, ), (43)

a

Ry = ||F(a. 8|7, — (Flo,0), F(3,8)) . .
=3 K((Ful, ), Fula, B)) = (Fu(a,0), F(8,8)) ). (44)
Ry = =40, F¥lc|l7, = =5 |[D(e. ) = D(B.0)[yc - (45)

In the formula we have used the definition: (vi®@v2)T (M@ Ms)(wy @ws) = (v Myw:)(vd Maws)
for the first term R, while we have used the norm for Dx N matrices ||J||} := Zil Zfibzl JiaJivAap
for the fourth term Ry.

The theorem is proven by applying Mario’s formula to the cometric of the manifolds of landmarks.
One needs to compute the elements of the cometric and its derivatives in terms of the kernel and
its derivatives . In agreement with notation we will define (note that we will keep using
Einstein’s summation convention wherever possible):

at)(bj ai)(bj c ai)(bj),(c ai)(bj ¢ 7
(@), (de) @i J)M gMEO  gng ged G eR) ) gla J),(M,)@a) gHP)(ek) g(§o)(dl) |
Lemma 10. [t is the case that

ai)(bj a a i
gD oK (58— at) oY, (46)
ai)(bj a a a i
gl ”,<Ck><d@ — 92,K (5% — 6Y) (5% — 68) %, (47)
g(ai)(bj),(dé) — 9K (Kad _ Kbd) 54 (48)
g(ai)(bj),(ck)(df) _ 8}%€Kab (Kac _ Kbc) (Kad _ Kbd) 5. (49)

Proof. Since g(@9(7) = K§ and also %K(q“ —¢") = K52 — 62) by (B6)), equation
follows immediately. Similarly to (36)) one can prove that %%K(q“ — %) = 0%, K (62 — 6Y),

whence: ") = 50 gD = 92 K (55 — 08) (62 — 6%) 6, so (A7) holds too. Now,
by expression :

g(ai)(bj),(df) _ g(ai)(bj)’((:k) g(ck)(df) _ ch akKab ((sg _ 53) S ch 5/{:( _ 8@Kab (Kad _ Kbd) 54

which is . We can use to compute ¢(@9)(b1):(ck)(de) — g(ai)(bj) o) g(rP)(ck) g(€a)(de).

(pp) (€

g(ai)(bj),(ck:)(dé) — Z o2 Kb (53 _ 512) (5(51 _ 52) §1 ke §pk gréd ot

ppbo “po

— agzKab (Kac . Kbc) (Kad o Kbd) 5ij’

which completes the proof. O
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Proof of Theorem[4 We will compute terms Ry, ..., Ry introduced by formulae f. For sim-
plicity, sometimes we will write Dal° instead of Dal*

e Computation of Ry. We have Ry = %(aauﬁc,. — Bauier) gl Os)(en)dv) (o, 31— By ag,). Inserting
expression into such formula yields:

2R, = Zall indices(aauﬂcr - 5auacr) 87%UKab (Kac - Kbc) (Kad - Kbd) one (O‘bsﬂdv - Bbsadv)-

Performing the above multiplications gives rise to four terms, which we will now compute one by
one. First of all we have:

2R1,1 1= 01 indices QaulBer Qs Baw 07, K (K — K*) (K¢ — K") 5
= Dapro [Dus@aud " on] [So (K = K)fep] 07, K [ (K = ) ]
= S 0qan X, S (B) 03, K% S™(B)" = L ol (57(8)) " D2 §™(8);
= (@0 ®59(8))" (Ip @ D2K®) (ap @ S%(8)),
where, once again, the superscript 7 indicates the transpose of a vector; similarly,
2R1 5 1= — > .1 CauBerBostray 02, K (K% — Kb¢) (K — k) §us
= = (00 ® 5(8)) " (Ip ® D2K) (8, ® S°*(a)),
2R1 3 := — Y .1 BauCerQps Bap 02, K (K¢ — Kb¢) (K9 — KT) §us
= — 3 (Ba® 5%())" (Ip ® D2K) (0, © S°(8)),
IRy 4 = 311 BauOerBratran 02, K (K¢ — Ke) (Kad — bd) gus
= (Ba ® 5(a)) " (Ip ® D2K) (8, @ S ().

Now we can take the summation Ry = Z?:l R, ;, which yields precisely expression .
e Computation of Ro. We may combine equations and from Lemma [10[to get:

g(au)(bs),o\ ) g(kp)(cr)y(dv) — E)\p apKab (5& _ 51))\) Jus avK)\c (KAd . ch) §er
— aTKab [avKac(Kad o ch) _ avac(Kbd o ch)] §us. (50)
Inserting into 2Ry = (@aufBer — Bauler) g(au)(bs),(Ap) g (@) (o, By, — Bysoray) yields:
2R2 — Zall indices { aauﬁcrabsﬂdv arKab [avKac(Kad o ch) o avac(Kbd o ch)] Sus
_ aauﬁcrﬁbsadu aTKab [&,Kac(Kad _ ch) _ 8UK”C(K”d _ ch)} Sus
. Bauacrabsﬂdv 8rKab [avKac(Kad o ch) o aUKbc(Kbd o ch)} Sus
4 ﬁauacrﬁbsadv aTKab [avKac(Kad _ ch) _ 6UKbC(Kbd _ ch)} 5us}7

which immediately implies:

0

Ry =
3 Loavea(tas @) (Be, V) [(Ba, VE ) (K= KT) — (B, VE) (K" — K1) (= Ra)
~5 Lapeala; Bo) (Be; VE) [{ag, VK ) (K~ K1) — (ag, VK) (K" — K )] (=: Ry2)
~5 Yaved Bas aw){oe, VE®) [(Ba, VE ) (K~ K) — (Bg, VK) (K" — K°9)] (= Ra3)
+5 LapeaBas Bo) (e, VE®) [{ag, VE ) (K=K — (g, VE) (K" = K)] (=: Ra.4)



We will now manipulate terms Rs 1,...,R2 4 one by one. Since VK® = VK" by relabeling the
indices we have

R =3 peal@a ) (Be, VK ) (Ba, VK ) (K — K)
= ape{@as @) (Be, VK®) (3 K Bq — 3 (K Bq, V)
= Y ape(@as ) (Be, VEP)(S9(B), VE©) = 37 1 (e, aw) (Be, VE ) C°(B)
= > ap{@ar @) (32 .C%(B)Be, VK®) = 37 (e, ap) (D*(B, B), VK )
=Y DU(B,8)"VE®aj aq = 35, D*(B, B)" Dag®™ - ag = 3, (D(B, B), Fula, @)

Similarly, Ry 4 = > (D% (a, ), Fo (B, 8)). It is also the case that
Raiz == X apelt0r B} Fes VR (4 (K= K arg, V) =, (K= Ky, VE)]

== 3 3 ape(0ar Bo) (B, VK ™) [(5°%(a), VK ) — (S%(a), V)]
:_% D abe(Qar Bo) (Be, VEP) [Oac(a) — C’bc(oz)];
relabeling the indices (and using the fact that VK = —VK®?) yields:
Ry == 5 Y upe[(@a: B} + (@b, )] (Be, VE*)C(a)
= — 3 ¥ (e Bo) + . Ba) (0% () Be, VK )
= %Zab[<aa’5b> <ab76¢l>]< (a’ﬂ)’v}'{ab>
== 32D, B)T [VEB o + VKo B,]
== 3 2. D@ BT [DB™ - aa + Dag™ - Ba] = =32, (D*(av, B), Fala, B)).
Similarly, Ro 3 = =), (D*(B, ), Fo(B, ). By the symmetry of F,(-,-),
Roo+ Raz = —>_ (D%a, B) + D(B, ), Fu(a, )
Adding the above sum to the expressions for Ry ; and Rs 4 finally yields .
o Computation of R3. We have

\no

1 au S cr v o2
R3 = _g(aauﬁcr — ﬁauaw)g( )@ )( ) g( )(dv),(n )(abs/@d'u - ﬂbsad'u).
But by Lemma
gl O glen@stne) N D g K (85— 61)60 g KO (KO — FKn)gr
_ <VKab7 Vch>5us6rv(Kac _ Kad _ Kbc + [(bd)7
whence:

S8Ry = ¥ {(VE, VE) (Ko — Ko~ K4 M)
’ (aauﬁCTabsﬁdvausérv — aauﬂcrﬂbsadvéusarv _ﬁauacrabsﬁduéus(srv +6auacr6bsadv5uséﬂ)) }

=3 aved L ({a, ) (B, Ba) — (ta, Bo) (Bes aa) — (Ba, ) (e, Ba) + (Ba, Bo) (e, va))
. <VKab, Vch>(Kac _ Kad o Kbc + Kbd)}
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Relabeling the indices in the above expression yields:

—8R3 = pea [8(vas aw)(Be, Ba) — 2{ata, Bo) (Be, a) — 2(Ba, o) {cte, Ba)
= 2(aq, Bo) (Bas o) — 2(Ba, aw){va, Be) | (VK VK ) K
=3 wped K[8a (VK ) TVK BT B, — 20l B,(VK*)TVK“al B — 28T o (VK™) VKT o,
— 20! By (VK™ ' VK“BT ae — 28T oy (VK ™) T VE“a] 8]
=20 K [8ag (Dap™) " (DBE™)Be — 20 (DB )" (D) Be — 264 (Dag®) T (DB
— 20 (DB (DB — 28] (Do) (Dal") e ]
=20 K [8(Dab" - g, DB - Bey) — 2(Dag® - B + DB - iy Dag®™ - Be + DBR" - )]
=0 K[8(Fu(a,a), Fo(3,8)) — 8(Fu(a, B), Fe(a, B))],

which is precisely . Alternatively, this can be derived from formula .
o Computation of Ry. It is the case that:

3 S v
Ry = = (@auBer — Baer) g g1y g (0 B, — oy,

By Lemma [T0}
S auer (QauBer — Bautter) gV @) =37 (auBer — Baulier) Or K& (K¢ — K7€) 5
= u {Qau [ 22, 0n K (30 K5 Ber)] — au [, 0p K5 (3 K Ber)]
— Bau [0, 0- K& (3 K 0ver)] + Bau [, 0- K& (3 K ™ acy)| } 6™
=2 g {@au [(VES, 527) = (VES*, 55°)] — B [(VES®, afr) — (VK )] } 6
= au {au(VES?, 559(B)) — Bou(VES, 55(a)) } 6™ = 3, {C(B)tau — C5 () Bau } 5.

So if we define the matrix H;, := ), [C“b(ﬁ)abi - C“b(a)ﬂbi}, 1=1,....,D,a=1,...,N we have:

D N
By =S STt (K by 09 = 532 3 g oy (K ) = S

us &n  Ap u=1¢,n=1
Alternatively, this can be derived from formula . O
The denominator of sectional curvature for £V (RP) is given by the simple formula:
Proposition 11. For any pair of cotangent vectors o, 8 € Ty L,

%*L - <0‘76>§“*£ = Z KabKCd(<aa>ab> </8075d> - <O‘avﬁb><a6’ﬂd>>' (51)

abed

7-c 18]

e

Proof. Using double-index notation we may write equation as follows:

||O¢| %*L Hﬁ| %*»C - <a7 ﬁ>§"*£ = Qqu Qs Ber Baw (g(au)(bs)g(cr)(dv) - g(““)(dv)g(bS)(c’"))
= Zabcd Ogu Ops Ber Bav (Kab(;uchdérU _ Kadé‘uvac6sr)
= aped(@ar ) (Be, Ba) KK =37 1 ileva, Ba)(ow, Ba) KUK,
and follows by relabeling the indices. 0
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4.4 The rotationally invariant case

Finally, suppose the Green’s function K is rotationally invariant, i.e. that (K4) holds:
K(z) =~(|z|), 2 € RP, with v € C?([0,00)).

We will use the convenient notation: o := ¥(0), vap := Y(l¢® — ¢®|1), ¥ :== ¥ (l¢* — ¢°||), and
A= ~"(|lg* — ¢°||) for a,b=1,..., N. Then we can evaluate the first and second derivatives of K:

Lemma 12. For rotationally invariant kernels, it is the case that:

VK(z) = () |—H , (52)
(|| zxt (||
DK (x) = [v”(lle) -2 ﬁ:'d”)} R (53)
L) p,

where I is the D x D identity matriz and Pr+ (z) :=1p— % is projection to the hyperplane of RP
that is normal to x.

Proof. We have that 0, K (x) =~/ (Hac||)”’”7H and follows immediately. Also,

0;0:K () = |8m<nxn> <||z|\>%%xf+ <||x||> e
=v”(llfc||)” o Tl g (o)) 2 = [y(||a) — L] £ 4 2D 5,
which implies . O

Because of (| ., in the rotationally invariant case, the “scalar compresswn” C%(a) really does
measure a multiple compression of the flow o between q and ¢®. We can decompose the vector
strain S (a) into the part parallel to the vector ¢ — ¢® and the part perpendicular to this: let

a_ b
u® = Tk and define

Sab(a)“ = <Sab(a),uab>, S (a)t = 8%(a) — Sab(a)‘l u®. (54)

Note that S®(a)ll is a scalar while S%(a)* is a vector. In particular it is the case that C%(a) =
!, -S%(a)ll. Moreover, formula allows us to simplify the first term R; in the curvature formula.
Substituting into , we get the rotationally invariant case for R;:

Proposition 13. In the rotationally invariant case (K4) we have that
1"
Ry =Y (F2(5(a)! Ba = S (8)) s 7)) B — 5°(8) ! ) (55)
a#b

W@“b L8 B SU(B) ® g, S ()t @ B - SP(A) @ ay)).

In the above we use the inner product of tensor products, (v1 ® wi,ve ® ws) := (v1,v2) (w1, ws).
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Proof. For any pair of covectors n and p in T; L, by we have that:

’
Sab(n)TDQKab Sab(’u) _ ,Y(/l/b Sab(n)Tuab (uab)TSab('u) + Yab Sab(n)T PI‘L (uab) Sab(u)

lg® — ¢||
a a ’Vlll a a
=70, S () S () + M (S (), S* (u)*).
Inserting this expressions into yields the desired result. O

4.5 One landmark with nonzero momenta

A simple special case is when only one landmark carries momentum. We now compute the numerator
of sectional curvature when both cotangent vectors are nonzero at only one of the D-dimensional
landmarks (¢',...,¢"). We define:

(TyL)y:={neT;L|n,=0fora>1}
so that the elements of the above set are cotangent vectors of the type n = (n1,0,...,0).
Proposition 14. In LV (RP), for any pair a,B € (T; L)1 the four terms of R(of, Y, B, of) are
given by Ry = Ry = R3 =0 and Ry = —3 Zgbﬁ(H“, H®)go (K™1)ap, where

H® := (Ya1 —70) ({01, VK*") B1 — (81, VK" ) ), fora>1.

Proof. The vanishing of R; can be checked directly (note that the sum in is taken over a # b
since S°¢(n) = 0 for all ¢ and 7). Also, using formula we see that all mixed forces F, are zero,
therefore Ry = R3 = 0 by formulae and (44). Also, by [ 1), D*(cv, 8) = (Va1 —70){u, VK*) 3
since «, B € (T, £)1; a similar expression holds for D*(3, a), which concludes the proof by . O

Therefore when o, 8 € (T; L)1 the sectional curvature is always negative; we can understand
this by considering the geodesic flow in this case. It follows immediately from Proposition [6] that if
we start with zero momenta p, at all ¢*,a > 1, then the momenta at these points stay zero, while
the momentum at ¢' remains constant. Thus the velocity of ¢! is just given by K(0)p; and this is
constant. The point ¢! carrying the momentum moves in a straight line at constant speed, while
the other points ¢® (a > 1) are carried along by the global flow that the motion of ¢! causes and
move at speeds ¢ = K%'p;, which are parallel to ¢' (but not constant). As shown in Figure [3 (the
central landmark ¢! is the only one carrying momentum) what happens is that all other landmark
points are dragged along by ¢!, more strongly when close, less when far away. Points directly in
front of the path of ¢! pile up and points behind space out.

Negative curvature can be seen by the divergence of geodesics. If you imagine slightly changing
the direction of p; in Figure 3| the final configuration of the landmark points (say, after one unit
of time) will differ greatly from the one caused by the original value of p;. Also, if you imagine ¢!
moving along two nearby parallel straight lines, the differential effect on the cloud of other points
accumulates so that the final configurations will differ everywhere; thus, even though the initial
landmark configurations are close, the final configurations will be far away. In general, the last
negative term in the curvature expresses the same effect: the global drag effect of each point results
in a kind of turbulent mixing of all the other points (think of a kitchen mixer the motion of whose
blades mixes the whole bowl).

Proposition |14 simplifies in the case of £ = £2(R?) (two landmarks only). We shall write:

af = (a,u?), ot =ar—alu? Bli= (B, A= -Blu (56)
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Figure 3: Dragging effect of one momentum-carrying landmark ¢* (bullet ) on a grid of landmarks
(circles o), with y(z) = exp(—%(f—z), o = 1.5. Left: initial configuration, with initial momentum
p1 = (2.7,1.8) also shown. Right: configuration after one unit of time, with trajectory of ¢! also

shown; the grid represents the diffeomorphism ¢, obtained by integrating af in time.

Proposition 15. In the case of L = L?*(RP), when o, 3 € (T} L)1 the numerator and denominator
of sectional curvature are given by, respectively:

3 —
R(ad, 07, 6%, 0f) = Ra = =0 2t (71a)” |8l — ad 51 | (57)

R(I8lat - ol P+ 8¢ @of —of 0 81|7).  (58)

ellZ 2 1BlF- 2 — (e, B)F-
Again we have used the inner product of tensor products (v; ® wy,ve ® wy) := (v1, va){w, ws).

Proof. 1t is the case that Ry = —2|H?||>(K~!)s2 (matrices H* were defined in Proposition .
But (K 1)2 = (72 — 7%5) 190, whereas from Propositionwe have

2] = (0 = 712)* ({ar, VE2)?[|Bu]|* + (Br, VE2)?[Jaa||* — 2{an, VK '?) (B1, VE'2)(a, Br)),

where VK12 = ~/,u'2 by . Inserting expressions into the above formula yields .
From Proposition |11 we have that the denominator is given by V3 (||aq ||?[| 31| — (a1, £1)?); again,
inserting into such formula yields (58)). O

We will generalize the above results in the next section.

5 Landmark geometry with two nonzero momenta

The complexity of the formula for curvature reflects a real complexity in the geometry of the land-
mark space. But there is one case in which the geometry such space can be analyzed quite completely.

24



This is when there are only two nonzero momenta along a geodesic. To put this in context, we first
introduce a basic structural relation between landmark spaces.

5.1 Submersions between landmark spaces

Instead of labeling the landmarks as 1,2,--- , N, one can use any finite index set A and label the
landmarks as ¢® with @ € A. And instead of calling the landmark space £V, we can call it £A.
Now suppose we have a subset B C A. Then there is a natural projection m : £A — LB gotten by
forgetting about the points with labels in A4 — B. In the metrics we have been discussing this is a
submersion. In fact, the kernel of dr, the vertical subspace of TLA, is the space of vectors v® such
that v* = 0 if a € B. Its perpendicular in 7% is:

(T* L) = {pe T LA |pa =0 for a € A— B}

so the orthogonal complement of ker(dr) in TL is the space of vectors pf where p is in (T*L£A)z.
On this subspace, the norm is just

> K@@ ¢")(po,py)

b,b’eB

whether p! is taken to be a tangent vector to A or to B. In other words, the horizontal subspace
for the submersion 7 is the subbundle (T*EA)ﬁB C TLA of tangent vectors pf where p has zero
components in A — B and this has the same metric as the tangent space to £5. In particular,
from the general theory of submersions, we know that every geodesic in £Z beginning at some
point 7({¢®}) has a unique lift to a horizontal geodesic in £4 starting at {¢®}. The picture to have
is that all the landmark spaces form a sort of inverse system of spaces whose inverse limit is the
group of diffeomorpisms of RP.

We don’t want to pursue this is in general, but rather we will study the special case where the
cardinality of B is two. We might as well, then, go back to our former terminology and consider the
map 7 : LV — £? gotten by mapping an N-tuple (¢*, ¢?,--- 7qN) to the pair (¢', ¢%). Moreover, we
want to consider only the case in which the kernel K is rotationally invariant as in (K4). A basic
quantity in all that follows is the distance p := ||¢* —¢?|| between the two momentum bearing points.

5.2 Two momentum geodesics

Remarkably, we can describe, more or less explicitly, all the geodesics which arise as horizontal
lifts from this map. These are the geodesics with nonzero momenta only at ¢' and ¢?>. Moreover,
the formula for sectional curvature for the 2-plane spanned by any two horizontal vectors can be
analyzed. This analysis was started in the PhD thesis of the first author [23] and has been pursued
further in [22].

The metric tensor of £ = £L2(R”) in coordinates is obtained by inverting the 2 x 2 matrix K:

R () (K Y11= K V=" -7
K—Mm %o } = {(K‘l)u:(K‘l)zl=—(7§—7(p)2)‘17(p) ! (59)

so that the cometric and metric, for all covectors a, 8 € 17 L and vectors v,w € T, L, are simply:

g_l(aaﬁ) = ’}/0(<C¥17ﬁ1> + <a2752>) +"/(p)(<a17ﬁ2> + <012,51>), (60)

1 1 1 2 2 1 2 2 1
9(0:0) = e [l + (02 u) =) (01 w) + 07, wh))
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The geometry of the two-point space is best understood by changing variables for the landmark
coordinates (¢!, ¢?) and the momentum (p;,ps) to their means and semi-differences, that is:

S S __pitp o PP
. 2 b) q M 2 ) p . 2 b p M 2 b)
so that: ¢' =q+dq, ¢ =7-dq pL=p+0p, p2=D—0p.
Then the cometric becomes:
g (@, 6a),(B8,68)) = 2(v0 +7(p) (@.B) +2(v0 — v(p)) (a,68). (61)

With these coordinates, the two-point landmark space becomes a product V x V; in which all fibers
V x {dqo} are flat Euclidean spaces though with variable scales, all fibers {g,} x Vs are conformally
flat metrics sitting on the manifold R” —{0} and the tangent spaces of the two factors are orthogonal.

Proposition 16. In terms of means and semi-differences, the geodesic equations for L2(RP) are:
7= (vw+7(p)D, p=0,

g = (v0 — 7(p)) o, op = 27'£f)up||2 — |16p]1?) b¢. (62)

The above result is proven by direct computation. We can solve these equations in four steps.
1. First the linear momentum p is a constant, so “center of mass” § moves in a straight line
parallel to this constant:

t
70 =70)+ [ (o+0p(r)ir) 7 (63
2. Secondly, if we treat vectors dq and &p as 1-forms in R”, equations also show that:
(8q A 6p)" = 8q A dp+ 6q A Sp = [(scalar) p] A dp + 6q A [(scalar) dq] = 0,

so the angular momentum 2-form dq A dp € /\2 RP is constant; we write this as we' A e? where w
is the nonnegative real magnitude of the angular momentum and (e!,e?) is an orthonormal pair.
Then it follows that:

8q(t) = 1p(t)[cos (6(t))e" + sin (6(t))e*], for some function 6(t).
3. Thirdly, we can express 6(t) as an integral:
bq = 1p[cos(B)e! +sin(h)e?] + %p@[ —sin(f)e' + cos(f)e?], so
dq N oq= —inG.el Ae?,  as well as (from (62)):
0q A g = (v0 —7(p))dp A dg = —w (yo —v(p)) ' Ae?;

combining the second and third lines, we find:

0(t) = 6(0) + 4 /O t W dr: (64)

note that by (K1) and (K2) it is the case that vo > v(p) for any p > 0, so 6 is a monotone increasing
function if w # 0, otherwise it is a constant.
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4. The last step is to solve for p(t). This can be done using conservation of energy [16, p. 51].
Equations are in fact the cogeodesic equations for the Hamiltonian H(p, ¢) of section which
we may rewrite in terms of means and semi-differences as

|p]®

by (61)); hence this function of p and ||6p| is a constant (p is also a constant). Then we calculate:

H=(v0+v)IPI*+ (o —v(p))

(p*)" = 4(dq,6q)" = 8(3q,8q) = 8(v0 — v(p)) (Op,0q) = p= 4%_:@)(529, 3q).

But:

2 H _ + —12
(5p.80)% + w? = (6p,60)% + |5p A 6q> = 91 - |6q]” = ”( (o + 7)) IP )

4 Yo —7(p)
= V0 =70 \/pz B
p

- = (90 +7(0)IIBII?] — 4w (0 —(p))-

This means that the function p(t) is the solution of:

) T axr
t = /p d where: F("E) = HxQ (’70 — ’7({17)) _ ||]3||2$2 (’73 _ ,7(1,>2) _ 40.)2 ('70 _ ’Y(IE))2

p(0) 2¢/F(z)’
(65)

Summary. If we fix constants H, B, w, p(0), 0(0), ¢*(0) (for all a), we can first integrate (65))
to get p(t) (the separation of ¢! and ¢?), then integrate (64) to find their relative angle 6(t), then
integrate to get their center of mass g(t). This gives the trajectories of ¢! and ¢2. The remaining
points are dragged along as solutions of: %q%(t) = v(|lg*(t) — ¢ (t)[)p1(t) +v(ll¢*(t) — ()] p2(2).

As worked out in [22], one can classify the global behavior of these geodesics into two types. One
is the scattering type in which ¢!, ¢? diverge from each other as time goes to either £o00. This occurs
if the linear or angular momentum is large enough compared to the energy. In the other case where
the energy is large enough compared to both momenta, they come together asymptotically at either
t = 400 or —oo, diverging at the other limit. In both cases, they may spiral around each other an
arbitrarily large number of times (see Figure [4).

5.3 Decomposing curvature

Next we consider LV (RP): we want to compute the sectional curvature R(af, 5%, 8%, at) for cotangent
vectors that are nonzero at only (¢',¢?). Also, we will use the notation u := %
vector from ¢? to ¢ as well as p = ||¢* — ¢?|| for their distance. Similarly to , we will also want
to decompose any vector in 7 € RP into its parts tangent to « and perpendicular to u:

for the unit

nli=(n,u), and nt:=n-nlu

Once again note that 5l is a scalar whereas 7 is a vector. Following the notation used to describe
geodesics above, for any a € (T; L)1 := {n € T;L |na = 0 for a > 2}, we write @ = 1(a1 + az)
1

and do = 5 (a1 — ag).
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Figure 4: Converging and diverging trajectories for two landmarks in two dimensions. In these ex-

amples 7(z) = exp(—La?), (¢1(0),42(0)) = ((1,0), (~1,0)), (p1(0), p2(0)) = ((—10,8.6), (10, ~8.6))
for the graph on the left, (p1(0),p2(0)) = ((—10,9), (10, —9)) for the graph on the right. The thick
and thin lines are, respectively, the trajectories of the first and second landmarks.

Proposition 17. In LY (RP) for any pair a, B € (T;L)l)z, the terms Ry1, R and R3 in the numer-
ator of sectional curvature can be written as

Ry = 4(70 = 7(0)) 7" (p) (80l 81 — 5811, 6018, — 58 xz)
+4(70 —(p)’ Mﬁf)) (bat @ B — 0B ® ay, 60 @ fa — 6B @ o),

Ry = —4(70 = (p)) 7' (p)* (30l 1 = 65101, 6018, — 55z,

Ry = 070D 2 () (81,00 — s (3, 0]

We need the following result.

Lemma 18. For any a € (T;L)1,2, the discrete strain S'(a) is given by:

S%(a) = 2(v0 — 7(p))de. (66)

For any pair o, 8 € (T;L)12 it is the case that Fy(, B) = 0 for a > 2, whereas

Fi(o, 8) = ~Fa(a, ) = T2 (o, o) + (81, 02) ). (67)

Also,
D' (a, ) =2(70 —v(p)) ¥ (p) 5l B2, D*(e, B) =2(70 — 7(p)) V' (p) bl By. (68)

Remark. We are not interested in D*(«, 8) for a > 2 since the terms in formula where they
appear are zero (because F,(a, 8) =0 for a > 2).
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Proof of Lemma[I8 The formula for the discrete strain results from:
S (@) = (ah)' = (o#)* = Zb(Klb — K)oy, = yoa1 +y(p)az — y(p)ar — oz = 2(’}’0 - ’Y(P))‘Sa-

The values for F' follow immediately from formula and VK'2 = 4/(p) u. Note that:
C2 (@) = C*(a) = (S (@), VK'?) = (2(70 — v(p)) 0, ' (p)u) = 2(70 — 7(p))7 (p) 6!, s0

D(a, B)=C"(a) B2=2(70—7(p))¥' (p)dcll By and D?(a, B) =C?' () 81 =2(v0—7(p))¥' (p)ocl p1. O

Proof of Proposition[I7 The Ry expression follows by substituting the expressions in into for-
mula (55)), noting that the only non-zero terms in the latter are for (a,b) = (1,2) and (a,b) = (2,1).
By Theorem [J] and the fact that F» = —F; from Lemma [I8] R, is given by

RQ = <D1(CV7OZ) - Dz(aaa)aFl(675)> + <D1(Baﬂ) - Dz(ﬁaﬂ)aFl(a7a)>
- <D1(O"B) - Dz(aaﬁ) + D1(5705) - D2(5705)7F1(a55)>' (69)
Again by Lemma |18 we have that D'(n,¢) — D*(n,¢) = —4(v — v(p))7 (p) onll 8¢ for any pair
1n,¢ € (TrL)1,2, while Fi(n,¢) = %7’(0)((7717C2> (M2, C1) )u Applying this to all the terms we get

the expression for Ry in the statement of the proposition.
As far as Rj is concerned, by Theorem [0}

Ry =y [(Fi(a, B),F1(a, B)) = (Fi(a, @), F1 (B, B)] +7(p) [(Fi (e, B). Fa(e, B)) —(Fi(a, a)Fa(B, B))]
+9(0) [(F2(e, B),F1(a, B)) = (Fa(ev, @) F1 (B, B))] +0 [(Fa(ev, B), Fa (e, B)) —(Fa(ev, @), Fa(B, B))]
=2(y0 — (p)) [(F1(a, B), Fi(a, B)) = (Fi(e, @), F1 (B, 5))]
= 2000 (v/(p))? [({@1, B2) + (B1, 02)) — 4o, @) (B, Ba)]
where we have used the fact that F» = —F}, by equation . This completes the proof. O

The expressions provided by Proposition become much clearer if we go over to means and
semi-differences, i.e. if we use the substitutions:

o =a+da, ay=a—0da, P1=pF+08, P2=p-0p. (70)

Corollary 19. For any «,3 € (T; L)1,2, with £ = LN (RP), it is the case that:

(o8 — salB|1? — (168160 — sallsB)?)
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Ry =4(70 —v(p))"y"(
() p”) (I168* @@ — st @ B|? — |38+ ® 6a — 6ot ® 38|12,

Ry = —4(0 — v(p))v’(p)z (158" — 6 B2 — 136816 — salss|?),

Ry = (70 —7(0)7(0)? 208 0a—-saeb|’ ~ |Bea—-aef|® - [68©da—da®ip]?).

Proof. By insertion of formulae it is easily seen that

+ 4(’}/0 —

(081 = 58101, 80l B — 661 as) = (681 — salB||* — (|656a — sallap|,
(ot ® B — 68 ® ar,dat @ By — BT @ as) = |8 @@ — dat @ B>~ |08+ @ da — dat ® 642
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so the new expressions for R; and Ry follow immediately. Also:

[{a1,82) + <51,042>]2 — 41, o) (B1, B2)
= [2((@, B) — (60, 08))]” — 4((@, @) — (dar,60)) (B, B) — (68,8))
= —2[2((@,a)(8, B) — (@, B)*)] — 2[2((6ax, 60 (63, 08) — (6ex, 3)*)]
+ 4[(@,@)(68,08) + (B, B) (6ax, 6a) — 2(@, B) (dax, 63)]
= 2Bea-awd|? -2)08®da—da®db|?+408®a— da® B> O

The fourth term Ry is the only one which involves the other points ¢*,a > 2. But one has an
inequality for this term involving the same expressions in « and 3:

Proposition 20. Any pair o, 8 € (T*LY)1 2 are constant 1-forms on LN which are pull-backs via
the submersion LN — L2 of constant 1-forms on L2. We can therefore consider the curvature term
Ry(LN) = =3||[a*, B¥]on ||> on LN and the corresponding term Ry(L?) = —2||[a*, %] z2||? on L.
Then we have the inequality:

Ry(LY) < Ra(L?) = —67/(p)? WW' — 5ol BI” + (yo —v(p) 168150 — 50817 .

Proof. Firstly, note that [a¥, %] .~ breaks into perpendicular parts: a vertical part in the kernel of
dr and a horizontal part which is simply the horizontal lift of [af, 3%] ;2. This explains the inequality
assertion in Proposition To calculate R4(L?), we use the last expression in , ie.

Ry(L%) =332, (D%a,B) — D*(B,a), D(a, B) — D*(B,0)) (K~ 1)ap
Yo —v(p)

— g0 =) I3, — 5l 18, — 55l
=3 T (P)Q{’)’O[H(Sa pr—d0Blay|? + [|6a! Bs — 68 a2||2}

— 2y(p)(0al 81 = 381as, dal By — 65 as) }.

where we have used and . The final result follows after inserting into the above
expression and performing some algebra. O

Note that all terms in Corollary [I9] and Proposition [20] are very similar. In fact, they are all
“components” of the norm | A B||? of the 2-form whose sectional curvature is being computed.
First note that we can decompose T*L£? into the direct sum of three pieces, namely:

slrec? .= {(au, —au) | a € R}, dim (6”T*£2) =1,
stTr L = {(p, —p) |p eRP pL u}, dim (5J‘T*£2) =D-1,
T (%= {(p,p) |p e RV}, dim (T*EQ) =

where as usual u := ” L1 (see Figure . Note that these three subspaces are orthogonal with

q H
respect to the cometric by virtue of . An arbitrary covector a = (a1, a9) € Ty L2 can be uniquely
decomposed into the summation a = a1y + a(2) + a3y, with:

aqy = (6a”u, —(50z”u) e sl 2, Q) 1= (sat, —dat) € 51T L2, ag) = (@,a) € T 2. (71)
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Figure 5: Typical covectors a = (a1, 2) in spaces (5”T;L‘, 5LT;£, and T;L‘, for £ = L2(R?).

So it is the case that: (i) a € 61T*£? & dta=0and @ = 0; (ii) a € 6*T*L? < §la =0 and @ = 0;
(iii) o € T"£2 < dal = 0 and dat = 0.
Consequently the space of 2-forms /\2 T*L? decomposes into the direct sum of five pieces:

2 5
AT L* = PV, with: Vi o= 80T AT L,
i=1
Vo = 6tT L2 AT L2, Vs = ol c? A 6tTrL?,
2 2
Vi = N\ (61T L), Vs = N\ (T°C?).

(Since §IT* £2 is one-dimensional it creates no 2-forms.) Once again, note that the spaces V4, ..., Vs
are pairwise orthogonal with respect to the inner product

<0¢/\57§/\77>/\2T*£2 = <O‘7£>T*£2<ﬂvn>T*£2 - <O‘a7’>T*£2<67£>T*£27 a,B,§,n € T* 2 (72)

by the orthogonality of 6“Tq*£, 6LT;£, and T;L. Any 2-form a A S then decomposes into the sum
of its five projections onto these subspaces and its norm squared is the sum of the norm squared of
these components. Let us first give the five pieces of its norm names:

T = |6flu @@ — sallu B2,

Ty := |08t @@ —dat @ 5%, Ty := |08l ® ot — salu® 5B+,
Ty = |68+ @ sat — dat @ 68%2, Ts:=|Boa-ae |
In the above definitions || || indicates the Euclidean norm. We have to be careful here: we have

been using Euclidean norms in R” in all our formulas above and now we are dealing with norms in
T*L?; these essentially differ only by a factor, by . More precisely, the following result holds:

Proposition 21. The denominator of the sectional curvature for L2(R?) can be written as:
oA 5”5\2 repz =400 = v(p)*)(T1 + To) +2(70 — 7(0))2(2T3 +Ty) +2(70 + W(ﬂ))QTs- (73)
Proof. We may apply decomposition to both o = Z?:l agy and 3 = Zle By, and write
@B =(aw) ABe) = Bay Aa) + (@@ A Be = Be Aaw)

+ (@) A By — By A a)) +a@) ABe) +a@) ABs),
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where the five summands on the right-hand side belong to Vi, ..., Vs respectively. We have

lleay A Beay = By Aaa gz e e =
= [laqy A B Az -2 + 1By Aa@ IRz 7o ez = 2(aq) A By, Bay A ag) gz 12

Y 412 = 1(0)2) [(3aN2|B]1? + (8" |[@])% — 281581 (e, B)] = 4(32 — +(p)?) T,

where we have used and in step (*). The square norm of the remaining four terms is
computed similarly. Orthogonality of Vi, ..., Vs finally yields (73). O

To express the formulas for the numerator of sectional curvature succinctly, let us also introduce
abbreviations for the coefficients involving ~:

k1(p) = (30 — 7(0) " (p), ka(p) == (70 — 7(/}))27’/();))7
. 1r\2 L (’YO*’Y(P))Q R &
ks(p) :== (v0 —v(p))Y (p)?, ka(p) := W’Y (p)”

Note that k1, ko, ks and k4 are all homogeneous of degree 3 in v and degree —2 in the distance p
or dp on LV. Moreover ky is negative, k3 and k4 are positive, while k; may be positive or negative.
For all « of interest, +' is everywhere negative, starting at 0 decreasing to a minimum at some pg,
then increasing back to 0 at co. Then k; is negative for p < pg and positive for p > pg.

The following equalities are proven by direct computation:

168 @@ — ba @ B> =Ty + Tp,
108+ ® 6o — Sat @ 682 = Tz + Ty,
108 ® 6o — da @ 6B||* = 2T + Ty.

Inserting notation and the above equalities into Propositions [17] and [20| immediately yields:

Proposition 22. We can write the terms in the numerator of sectional curvature for L2(RP) as:

Ry = 4k (T\ — T3) + 4ko(To — T3 — Ty), Ry = —4ks(Th — Ty), (75)
Ry =ks(2(Th + T2) — 215 — Ty — T5), Ry = —6(ksT5 + kqT1),

hence R = R(af, g%, 3% af) = Z?Zl R; may be expressed as:
R = 2(2]€1 — k3 — 3k4)T1 + 2(2]€2 + k3)T2 + 4( — k1 — ko — ]{13)T3 + ( — 4ky — k3)T4 — k3T5. (76)

By virtue of Proposition the above proposition still holds in the case of £V (RP”) as long
as a, 3 € (T;L)1,2 and the equality signs for R4 in and R in are substituted by “<”. The
coefficients in (76) may have all sorts of signs for peculiar kernels. However, the kernels  of interest
are the Bessel kernels and the Gaussian kernel, which is their asymptotic limit as their order
goes to infinity. The coefficients for these kernels are shown in Figure[f] We see that the coefficients
of Ty and T3 are negative while those of T are positive. Henceforth, we assume we have a kernel
for which this is true.
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2k1 —k3—3k4

—4k,—kg

Figure 6: The coefficients of T} (top left), To (top right), T5 (bottom left) and T (bottom right) for
the Bessel kernels v (shown with thin lines) and the Gaussian kernel (shown with the thick line).
The kernels are scaled to normalize (0) and 7" (0).

5.4 Sectional curvature of £?(R")

Finally, we will now explore the important example of two landmarks on the real line. In this partic-
ular case the manifold is two dimensional, so sectional curvature K will turn out to be independent
of cotangent vectors o and 5. In fact, given the translation invariance of the metric tensor, it will
only depend on the distance p = ¢! — ¢?| between the two landmarks.

The spaces 6IIT*£2(R!) and T" £2(R') are one-dimensional while 6-7*£2(R") = {0}. Thus
2
AT CRY) = T L2RY) A T LR
and the only non-zero term in is T}. Therefore combining formulas and we get:
Proposition 23. The sectional curvature of L2(RY) is given by

_2ki—ks—=3ks _ 0 —70) 4 2% —=7(P) [ \\2
= 2(vg —v(p)?) Y +(p) 12 (v0 +7(p))? ( (,0)) .

The above function K is shown on the left-hand side of Figure [7] as a function of p, for the
Gaussian kernel. The coefficient of the term T} in is negative for p small and positive for p
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Figure 7: Left: sectional curvature K for £2(R!) (from Proposition, as a function of p = |¢' —¢?|;
here v(z) = exp(—1x?). Right: two trajectories in £?(R'!) shown in the (¢',¢?) plane (under the
assumption that ¢! < ¢?). Both geodesics originate at (¢',¢%) = (0,4), and lie in the region
where K > 0 (above the upper dotted line, that indicates the zero of K at |¢' — ¢?| ~ 1.53); they
have different initial momenta (p1,p2) = (1,1) and (p1,p2) = (1,0.4), and exhibit conjugate points.

large. The “cause” of the positive curvature has been analyzed in [23]. Roughly speaking, suppose
two points both want to move a fixed distance to the right. Then if they are far enough away, they
can just move more or less independently (we shall refer to this as Geodesic 1). Or (i) the one in
back can speed up while the one in front slows down, then (ii) when the pair are close, they move in
tandem using less energy because they are close and finally (iii) the back one slows down, the front
one speeds up when they near their destinations (Geodesic 2). This gives explicit conjugate points
(in the sense that two points are joined by distinct geodesics) and is illustrated on the right-hand
side of figure Figure |7 (where Geodesics 1 and 2 are represented, respectively, by the dashed and
thick curves).

5.5 Sources of positive curvature; obstacle avoidance

There is another source of positive curvature in £2 in higher dimensions. It is clear from equation
and Figure [f] that any positive curvature must come from the term with 7} or the term with 7y. As
the five terms are orthogonal, we can make all of them but one zero.

For example, if we choose a = (dallu, —dallu) € 8IT*C and B = (B, B) € T'L, then it is the case
that T) = (6al)?||B]|? and it is the only non-zero term. Then, if p is sufficiently large, the sectional
curvature for this 2-plane is positive as discussed in the last section. Figure [§]illustrates an instance
of the existence of conjugate points for two geodesics in £2(R?); the momenta (p1, p2) of each of the
two trajectories belong at all times to 61 7*£? & T2

The other possibility is that 7T} is the non-zero term, which happens when a = (da’, —6at) €
StT*L and B = (6%, —6p+) € 6+T*L. We have Ty = 2(||d0at||?||684 |2 — (6at, 65+)?), and for it
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Figure 8:  Existence of conjugate points in £*(R?), with v(z) = exp(—3x?). Both geodesics
originate at landmark set (¢',¢?) = ((—2,—4),(2,4)); the first one (dashed) has initial momen-
tum (p1,p2) = ((0,10),(0,10)) € T"£2 while the second one (continuous) has initial momentum
(p1,p2) = ((6,10),(—6,10)) € SIT*£2 @ T £2. The geodesic trajectories exhibit conjugate points.

to be nonzero it is required that D > 3 because T, is the norm of a 2-form in /\2 (5LT*£), which
has dimension (D —1)(D —2)/2. The positive curvature of this section is readily seen by considering
the geodesics which these vectors generate. The simplest example is the following:

Proposition 24. The circular periodic orbit of radius r:
q'(t) = (rcost,rsint), @(t) = —¢*(t), (77)
t € R, is a geodesic in L2(R?) if and only if r is the solution of the equation o —~(2r) +r+y'(2r) = 0.

Proof. For orbit it is the case that § = 0, 6¢ = ¢! and p = 2r; also p; = (’yo — 7(;)))_1q'1 and
p2 = —p1, so that p = 0 and dp = p;. The first three equations of can easily be checked; the
fourth one holds if and only if y9 — y(2r) + r7/(2r) = 0. O

(The above result was also proven by Frangois-Xavier Vialard of Imperial College, London.)
Orbit has the property that at time 7, ¢' and ¢ interchange their positions: it is a geodesic
from the set of landmark points ((r,0), (—r,0)) € £L2(R?) to the set ((—r,0),(r,0)) € £*(R?). But
if these points live in R?, they can move around each other in any plane containing the points. Thus
we have a circle of geodesics in £2(R?):

q'(t) = (rcost,rcos@sint,rsinfsint), @ (t) = —¢*(t)
all connecting ((r,0,0), (—r,0,0)) to ((—,0,0), (r,0,0)), for any 6 € [0,27). This is exactly like all

the lines of fixed longitude connecting the north and south pole on the 2-sphere and means that one
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set of landmark points is a conjugate point of the other in £2(R?). This is the simplest example of
how geodesics between landmark points must avoid collisions and so make a choice between different
possible detours, leading to conjugate points and thus positive curvature.

6 Conclusions

We believe that £V (RP”), the Riemannian manifold of N landmark points in D dimensions, is a
fundamental object for differential geometry and that we have only scratched the surface in its study.
We started with a basic formula which computes sectional curvature of a Riemannian manifold in
terms of the cometric, its partial derivatives, and the metric itself (but not its derivatives). This is
particularly adapted to computing curvature for manifolds which arise as submersive quotients of
other manifolds and gives O’Neill’s formula as a corollary. We then applied this to derive a formula
for sectional curvature of the space of landmarks. This formula is not simple but, like Arnold’s
formula for curvature of Lie groups under left- (or right)-invariant metrics, splits into a sum of four
terms. The four terms involve interesting intermediate expressions in the two vectors (or co-vectors)
which define the section and which have relatively simple geometric interpretations. We called these
the mized force, the discrete vector strain, the scalar compression and the landmark derivative. The
geodesic equation in its Hamiltonian form is quite simple and involves the force as expected. We
also gave several concrete examples to illustrate the nature of these geodesics.

Finally, we have examined in detail the case of geodesics in which only one or two landmark points
have non-zero momenta, and computed the curvature in sections spanned by such geodesics. We
found that in this case there are essentially two sources of positive curvature. One can understand
them through the non-uniqueness of geodesics joining two N-tuples: the first sort of non-uniqueness
is caused by the two points with non-zero momentum choosing between converging in the middle of
the geodesic (“car-pooling”) or moving independently and not converging; the second occurs only
when D > 3 and arises when the same two points need to get around each other and must choose
on which side to pass (if D = 2, this sort non-uniqueness also occurs but comes from non-trivial
topology, not curvature).

One of the most important questions left open is explore how prevalent positive curvature is in
general, i.e. for geodesics in which all points carry momentum. Answering this question is central
to applications of landmark space in which geodesics are actually computed. One might hope that
the picture for two momenta is true in general but this is far from clear. It seems interesting to
explore whether there is some sort of “index” for curvature forms — a numerical measure of how
much positive vs. negative curvature is present. Another important question is to explore the shape
of the coefficients in for different kernels. More generally, what is the impact of different kernel
types (Bessel, Gaussian, Cauchy) on the corresponding geodesics? Finally, note that all kernels have
a length constant built into their definition so the geometry of the space of landmarks is far from
scale invariant. Thus one should analyze what happens asymptotically when the points are very
close relative to this constant or are very far from each other.
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