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Abstract

This paper deals with the computation of sectional curvature for the manifolds of N land-
marks (or feature points) in D dimensions, endowed with the Riemannian metric induced by the
group action of diffeomorphisms. The inverse of the metric tensor for these manifolds (i.e. the
cometric), when written in coordinates, is such that each of its elements depends on at most 2D
of the ND coordinates. This makes the matrices of partial derivatives of the cometric very
sparse in nature, thus suggesting solving the highly non-trivial problem of developing a for-
mula that expresses sectional curvature in terms of the cometric and its first and second partial
derivatives (we call this Mario’s formula). We apply such formula to the manifolds of landmarks
and in particular we fully explore the case of geodesics on which only two points have non-zero
momenta and compute the sectional curvatures of 2-planes spanned by the tangents to such
geodesics. The latter example gives insight to the geometry of the full manifolds of landmarks.

1 Introduction

In the past few years there has been a growing interest, in diverse scientific communities, in modeling
shape spaces as Riemannian manifolds. The study of shapes and their similarities is in fact central
in computer vision and related fields (e.g. for object recognition, target detection and tracking,
classification of biometric data, and automated medical diagnostics), in that it allows one to recognize
and classify objects from their representation. In particular, a distance function between shapes
should express the meaning of similarity between them for the application that one has in mind. One
of the most mathematically sound and tractable methods for defining a distance on a manifold is to
measure infinitesimal distance by a Riemannian structure and global distance by the corresponding
lengths of geodesics.

Among the several ways of endowing a shape manifold with a Riemannian structure (see, for
example, [17, 18, 20, 25, 28, 30]), one of the most natural is inducing it through the action of
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the infinite-dimensional Lie group of diffeomorphisms of the manifold ambient to the shapes being
studied. You start by putting a right-invariant metric on this diffeomorphism group, as described
in [27]. Then fixing a base point on the shape manifold, one gets a surjective map from the group of
diffeomorphisms to the shape manifold. The right-invariance of the metric “upstairs” implies that
we get a quotient metric on the shape manifold for which this map is a submersion (see below).
This approach can be used to define a metric on very many shape spaces, such as the manifolds
of curves [12, 26], surfaces [33], scalar images [4], vector fields [6], diffusion tensor images [5], mea-
sures [11, 13], and labeled landmarks (or “feature points”) [14, 15]. The actual geometry of these
Riemannian manifolds has remained almost completely unknown until very recently, when certain
fundamental questions about their curvature have started being addressed [25, 26, 32].

Among all shape manifolds, the simplest case of the manifold of landmarks in Euclidean space
plays a central role. This is defined as

LN (RD) :=
{

(P 1, . . . , PN )
∣∣P a ∈ RD, a = 1, . . . , N

}
.

(typically we consider landmarks P a, a = 1, . . . , N that do not coincide pairwise). It is finite-
dimensional, albeit with high dimension n = ND, where N is the number of landmarks and D is
the dimension of the ambient space in which they live (e.g. D = 2 for the plane). Therefore its
metric tensor may be written, in any set of coordinates, as a finite-dimensional matrix. This space
is important in the study of all other shape manifolds because of a simple property of submersions:
for any submersive map f : X → Y , all geodesics on Y lift to geodesics on X and give you, in fact,
all geodesics on X which at one and hence all points are perpendicular to the fiber of f (so called
“horizontal” geodesics). This means that geodesics on the space of landmarks lift to geodesics on the
diffeomorphism group and then project down to geodesics on all other shape manifolds associated to
the same underlying ambient space RD. Thus geodesics of curves, surfaces, etc. in RD can be derived
from geodesics of landmark points. Technically, these are the geodesics on these shape manifolds
whose momentum has finite support. This efficient way of constructing geodesics on many shape
manifolds has been exploited in much recent work, e.g. [2, 8, 29].

What sort of metrics arise from submersions? Mathematically, the key point is that the inverse
of the metric tensor, the inner product on the cotangent space hence called the co-metric, behaves
simply in a submersion. Namely, for a submersion f : X → Y , the co-metric on Y is simply the
restriction of the co-metric on X to the pull-back 1-forms. Therefore, for the space of landmarks the
cometric has a simple structure. In our case, we will see that each of its elements depends only on
at most 2D of the ND coordinates. Hence the matrices obtained by taking first and second partial
derivatives of the cometric have a very sparse structure — that is, most of their entries are zero.
This suggests that for the purpose of calculating curvature (rather than following the “classical”
path of computing first and second partial derivatives of the metric tensor itself, the Christoffel
symbols, et cetera) it would be convenient to write sectional curvature in terms of the inverse of
the metric tensor and its derivatives. We have solved the highly non-trivial problem of developing
a formula (that we call “Mario’s formula”) precisely for this purpose: for a given pair of cotangent
vectors this formula expresses the corresponding sectional curvature as a function of the cometric
and its first and second partial derivatives except for one term which requires the metric (but not
its derivatives). This formula is closely connected to O’Neill’s formula which, for any submersion as
above, connects the curvatures of X and Y . Subtracting Mario’s formula on X and Y gives O’Neill’s
as a corollary.

This paper deals with the problem of computing geodesics and sectional curvature for landmark
spaces, and is based on results from the thesis of the first author [23]. The paper is organized as
follows. We first give a few more details about the manifold of landmarks, and describe the metric
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induced by the action of the Lie group of diffeomorphisms. We then give a proof for the general
formula expressing sectional curvature in terms of the cometric. This formula is used in the following
section to compute the sectional curvature for the manifold of labeled landmarks. In the last section,
we analyze the case of geodesics on which only two points have non-zero momenta and the sectional
curvatures of 2-planes made up of the tangents to such geodesics. In this case, both the geodesics
and the curvature are much simpler and give insight into the geometry of the full landmark space.

2 Riemannian Manifolds of Landmarks

In this section we briefly summarize how the shape space of landmarks can be given the structure of
a Riemannian manifold. We refer the reader to [27, 31] for the general framework on how to endow
generic shape manifolds with a Riemannian metric via the action of Lie groups of diffeomorphisms.

2.1 Mathematical preliminaries

We will first define a distance function d : LN (RD)× LN (RD)→ R+ on landmark space which will
then turn out to be the geodesic distance with respect to a Riemannian metric. Let Q be the set of
differentiable landmark paths, that is:

Q :=
{
q = (q1, . . . , qN ) : [0, 1]→ LN (RD)

∣∣∣ qa ∈ C1
(
[0, 1],RD

)
, a = 1, . . . , N

}
.

Following [31, Chapters 9, 12, 13], a Hilbert space
(
V, 〈 , 〉V

)
of vector fields on Euclidean space

(which we consider as functions RD → RD) is said to be admissible if (i) V is continuously embedded
in the space of C1-mappings on RD → RD which are bounded together with their derivatives, (ii) V
is large enough: For any positive integer M , if x1, . . . , xM ∈ RD and α1, . . . , αM ∈ RD are such

that, for all u ∈ V ,
∑M
a=1

〈
αa, u(xa)

〉
RD = 0, then α1 = . . . = αM = 0.

The space (V, 〈 , 〉V ) admits a reproducing kernel: that is, for each α, x ∈ RD there exists
Kα
x ∈ V with 〈Kα

x , f〉V = 〈α, f(x)〉RD for all f ∈ V . Further, 〈Kβ
y ,K

α
x 〉V = 〈β,Kα

x (y)〉RD =

〈α,Kβ
y (x)〉RD which is a bilinear form in (α, β) ∈ (RD)2, thus given by a D×D matrix K(x, y); the

symmetry of the inner product implies that K(y, x) = K(x, y)T (where T indicates the transpose).
In this paper we shall assume that K(x, y) is a multiple of the identity and is translation invariant:
we then write K(x, y) simply as K(x − y) ID (where ID is the D × D identity matrix); the scalar
reproducing kernel K : RD → R must be symmetric, and positive definite (see [31, §9.1] for details).

There are other very natural admissible norms on vector fields v whose kernels are not multiples
of the identity, e.g. one can add a multiple of div(v)2 to any norm and then K will intertwine
different components of v. The most natural examples of the norms we will consider are given by
inner products

〈u, v〉V = 〈u, v〉L :=

∫
RD

〈
Lu(x), v(x)

〉
RD dx, (1)

where L is a self-adjoint elliptic scalar differential operator of order greater than D+2 with constant
coefficients which is applied separately to each of the scalar components of the vector field u =
(u1, . . . , uD). By the Sobolev embedding theorem then V consists of C1-functions on RD which
are bounded together with their derivatives. If K is a scalar fundamental solution (or Green’s
function [9]) so that L(K)(x) = δ(x), then the reproducing kernel is given by Kα

x = K( −x)α. A
possible choice of the operator is L = (1− A2∆)k (where A ∈ R is a scaling factor, k ∈ N and ∆ is
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the Laplacian operator), with k > D
2 + 1, in which case (1) becomes the Sobolev norm:

‖u‖2L =

∫
RD

D∑
`=1

k∑
m=0

(
k

m

)
A2m

∑
|α|=m

∣∣Dαu`
∣∣2 dx, (2)

When L = (1−A2∆)k the scalar kernel K has the form K(x− y) = γ
(
‖x− y‖RD

)
, with:

γ(%) =
1

2k+ D
2 −1π

D
2 Γ(k)AD

( %
A

)k−D
2

Kk−D
2

( %
A

)
, % > 0, (3)

where Kν (with ν = k− D
2 ) is a modified Bessel function [1] of order ν (not to be confused with the

symbol K we use for the kernel of V ).
In summary, the scalar kernels that we consider in this paper will always have the properties:

(K1) K is positive definite;
(K2) K is symmetric, i.e. K(x) = K(−x), x ∈ RD.

In addition, in certain sections we will introduce the following simplifying assumptions:

(K3) K is twice continuously differentiable, K ∈ C2(RD);
(K4) K is rotationally invariant , i.e. K(x) = γ(‖x‖RD ), x ∈ RD, for some γ ∈ C2

(
[0,∞)

)
.

Note that if (K4) holds then γ(0) ≥ |γ(ρ)| for all ρ ≥ 0 by (K1) and (K2). Also, the bell-shaped
Bessel kernels of the type (3) satisfy all of the above when k > D

2 + 1.
Now fix any admissible Hilbert space of vector fields. The space Lp([0, 1], V ) is the set of func-

tions v : [0, 1]→ V such that:

‖v‖Lp([0,1],V ) :=
(∫ 1

0

‖v(t, )‖pV dt
) 1

p

<∞.

The space L2([0, 1], V ) is a subset of L1([0, 1], V ) and is in fact a Hilbert space with inner product

〈u, v〉L2([0,1],V ) :=
∫ 1

0
〈u, v〉V dt. It is well known from the theory of ordinary differential equations [7]

that for any v ∈ L1([0, 1], V ), the D-dimensional non-autonomous dynamical system ż = vt(z), with
initial condition z(t0) = x, has a unique solution of the type z(t) = ψ(t, t0, x). Let ϕvst(x) :=
ψ(t, s, x); fixing t = 1 and s = 0 we get ϕv := ϕv01, which is the diffeomorphism generated by v. For
an admissible Hilbert space we will call the set

GV :=
{
ϕv : v ∈ L1

(
[0, 1], V

)}
the group of diffeomorphisms generated by V ; by [31, Chapter 12] it is a metric space and a topo-
logical group. But, in the language of manifolds, GV is not an infinite-dimensional Lie group [19].
V is not a Lie algebra, but is the completion of the Lie algebra of C∞-vector fields with compact
support with respect to ‖ ‖V .

2.2 Definition of the distance function

For velocity vector fields v ∈ L2([0, 1], V ) and landmark trajectories q ∈ Q define the energy

Eλ[v, q] ≡ E[v, q] :=

∫ 1

0

(∥∥v(t, )
∥∥2

V
+ λ

N∑
a=1

∥∥∥dqa
dt

(t)− v
(
t, qa(t)

)∥∥∥2

RD

)
dt, (4)
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where λ ∈ (0,∞] is a fixed smoothing parameter (soon to be described). We claim that a dis-
tance function d on LN (RD) between two landmark sets (or shapes) I = (x1, x2, . . . , xN ) and
I ′ = (y1, y2, . . . , yN ) can be defined as

d(I, I ′) := inf
v,q

{√
E[v, q] : v ∈ L2

(
[0, 1], V

)
, q ∈ Q with q(0) = I, q(1) = I ′

}
; (5)

in the next subsection we will argue that the above function is in fact a geodesic distance with respect
to a Riemannian metric. We treat the minimization of (4) as our starting point; it is the “energy of
a metamorphosis” as formulated in [31, Chapter 13].

The above infimum is computed over all differentiable landmark paths q ∈ Q that satisfy the
boundary conditions (qa(0) = xa and qa(1) = ya, a = 1, . . . , N), and vector fields v ∈ L2([0, 1], V ).
The resulting landmark trajectories {qa(t), t ∈ [0, 1]}a=1,...,N follow the minimizing velocity field
more or less exactly, depending on the value of the smoothing parameter λ ∈ (0,∞]; it is a weight
between the first term, that measures the smoothness of the vector field that generates the diffeo-
morphism, and the second term, that measures how closely the landmark trajectories actually follow
the vector field.

The exact matching problem is the following: given two sets of landmarks I = (x1, x2, . . . , xN )
and I ′ = (y1, y2, . . . , yN ) with xa 6= xb and ya 6= yb for any a 6= b, minimize the energy

E∞[v] :=

∫ 1

0

‖v(t, )‖2V dt

among all v ∈ L2([0, 1], V ) such that ϕv(xa) = ya, a = 1, . . . , N . In this case the landmark
trajectories are defined as the solutions to the ordinary differential equations q̇a = v(t, qa), a =
1, . . . , N . Note that this is equivalent to solving (4) for λ =∞, since such equations are obtained by
setting the integrands of the second term in the right-hand side of (4) equal to zero. When λ <∞
in (4) we have regularized matching, i.e. the landmark trajectories “almost” satisfy such set of
ordinary differential equations; this allows for the time varying vector field to be smoother. For
this reason the second term in the right-hand side of (4) is often referred to as smoothing term;
by allowing smoother vector fields the distance d is made tolerant to small diffeomorphisms and
therefore more robust to object variations due to noise in the data.

2.3 Minimizing velocity fields and Riemannian formulation

By manipulating expression (4) we will now show that it is equivalent to the energy of a path q ∈ Q
with respect to a Riemannian metric.

Notation. Consider a landmark q = (q1, . . . , qN ) in LN (RD). The D scalar components in Eu-
clidean coordinates of the N landmark trajectories qa = (qa1, . . . , qaD), a = 1, . . . , N can be ordered
either into an N ×D matrix or in a tall concatenated column vector. We shall always use indices
a, b, c, . . . ∈ {1, . . . , N} as landmark indices, and i, j, k, . . . ∈ {1, . . . , D} as space coordinates in RD.
We will associate to each of the N landmarks qa ∈ R1×D a momentum pa ∈ R1×D (defined in the
next proposition) which we will write, in coordinates, as pa = (pa1, . . . , paD), for each a = 1, . . . , N .
The components of momenta can also be ordered into an N ×D matrix or in a long row vector. We
chose superscript indices for landmark coordinates and subscript indices for momenta.

For a given set of landmarks (q1, . . . , qN ) ∈ LN (RD) we will define the symmetric N ×N matrix
K(q) :=

(
K(qa− qb)

)
a,b=1,...,N

. The matrix K(q) is positive definite by property (K1) of the kernel.
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Proposition 1. For a fixed landmark path q =
{
qa : [0, 1] → RD

}N
a=1
∈ Q there exists a unique

minimizer with respect to v ∈ L2([0, 1], V ) of the energy E[v, q], namely:

v∗(t, x) :=

N∑
a=1

pa(t)K
(
x− qa(t)

)
, t ∈ [0, 1], x ∈ RD, (6)

where the components of the momenta are given by:

pai(t) =

N∑
b=1

(
K
(
q(t)

)
+

IN
λ

)−1

ab
· d
dt
qbi(t), t ∈ [0, 1], (7)

a = 1, . . . , N , i = 1, . . . , D (here IN indicates the N ×N identity matrix).

Remark. What the above proposition essentially says is that the vector field of minimum energy
that transports the N landmarks along fixed trajectories is, at any point of time, the linear combi-
nation of N lumps of velocity, each centered at a landmark point. The directions and amplitudes of
the summands are determined precisely by the momenta.

Proof of Proposition 1. Using property (ii) of the admissible Hilbert space V , [31, Lemma 9.5] shows
that for given q = (q1, . . . , qN ) ∈ LN (RD) we have the orthogonal decomposition

V =
{
v ∈ V : v(qa) = 0, a = 1, . . . N

}
⊕
{
v =

∑N
a=1 αaK( −qa) : αa ∈ RD

}
. (8)

Thus the minimizer must have the form

v(t, x) =

N∑
a=1

αa(t)K
(
x− qa(t)

)
, t ∈ [0, 1], x ∈ RD, (9)

for some coefficients αa ∈ C([0, 1],RD), a = 1, . . . , N , to be computed. For velocities of the type (9)
the energy (4) can be rewritten as

E[v, q] =

∫ 1

0

D∑
i=1

N∑
a,b=1

{
αaiK(qa − qb)αbi + λ

∣∣αaiK(qa − qb)− q̇bi
∣∣2} dt. (10)

Setting the first variation of (10) with respect to coefficients αai to zero yields the momenta (7).

It is convenient, at this point, to introduce the ND ×ND, block-diagonal matrix

g(q) :=


(
K(q) + IN

λ

)−1
0 · · · 0

0
(
K(q) + IN

λ

)−1 · · · 0
...

...
. . .

...

0 0 · · ·
(
K(q) + IN

λ

)−1

 , (11)

where the N × N block
(
K(q) + IN

λ

)−1
is repeated D times; the choice of symbol g is justified by

the fact that (11) is, as we shall see soon, precisely the Riemannian metric tensor with which we are
endowing the manifold of landmarks, written in coordinates.
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Thus for a fixed path q ∈ Q the minimizer of E[v, q] with respect to v ∈ L2([0, 1], V ) is given
by (6); since it depends on q we will write it, with an abuse of notation, as v∗(q). We can define

Ẽ[q] := E[v∗(q), q], (12)

which depends only on the arbitrary path q ∈ Q. The energy (12) is “equivalent” to the en-
ergy E[v, q], in that:

(a) if (v̂, q̂) minimizes E[v, q] then q̂ minimizes Ẽ[q], and E[v̂, q̂] = Ẽ[q̂];

(b) if q̂ minimizes Ẽ[q] then (v∗(q̂), q̂) minimizes E[v, q], and E[v∗(q̂), q̂ ] = Ẽ[q̂ ].

Proposition 2. For an arbitrary landmark trajectory q ∈ Q the energy Ẽ[q] is given by:

Ẽ[q] =

∫ 1

0

q̇(t)T g
(
q(t)

)
q̇(t) dt =

∫ 1

0

N∑
a,b=1

D∑
i=1

q̇ai(t) q̇bi(t)
(
K
(
q
(
t)) +

IN
λ

)−1

ab
dt (13)

In the above equation q̇(t) is intended as an ND-dimensional column vector obtained by stack-
ing the column vectors (q̇1i(t), . . . , q̇Ni(t))T , i = 1, . . . , D (again, the superscript T indicates the
transpose of a vector).

Proof. Following definition (12), formulae (7) for the momenta are inserted into the modified expres-
sion (10) for energy E[v, q]. Simple matrix manipulations finally yield the right-hand side of (13).

Remarks. Expression (13) has exactly the form of the energy of a path q with respect to Riemannian
metric tensor (11). Whence given two landmark configurations I and I ′ in LN (RD) we have that

if q̂ minimizes (13) among all paths in q ∈ Q such that q(0) = I and q(1) = I ′ then (Ẽ[q̂])1/2 is the
geodesic distance between I and I ′. By point (b) above we also have that (v∗(q̂), q̂) is a minimum

of energy E[v, q], so d(I, I ′) defined in (5) coincides with (Ẽ[q̂])1/2 and is the geodesic distance
between I and I ′ with respect to the metric tensor g.

The Lagrangian function that corresponds to the energy (13) is:

L(q, q̇) =
1

2
q̇T g(q)q̇ =

1

2

N∑
a,b=1

D∑
i=1

q̇aiq̇bi
(
K(q) +

IN
λ

)−1

ab
. (14)

In Hamiltonian mechanics [3, p. 60] the “momenta” are defined as pai = ∂L/∂q̇ai, or, in vector
notation, p(i) = ∂L/∂q̇(i) (for i = 1, . . . , D). Applying such definition to (14) yields precisely
equations (7) of Proposition 1. Whence the use of the term momenta is justified.

Note that for small values of the parameter λ the metric tensor g, written in coordinates, gets
close (up to a multiplicative constant) to the ND×ND identity matrix; in other words, for λ→ 0,
g converges to a Euclidean metric and the geodesic curves become straight lines. On the other
hand, for λ → ∞ (exact matching) the metric converges to [diag{K(q), . . . ,K(q)}]−1 (block K(q)
is repeated D times). In general, the block-diagonal form of the metric tensor g given by (11)
follows from the fact that the operator L in (2) is applied separately to each of the components of
the velocity field; however the dynamics of the D dimensions of q are not decoupled since all ND
components of q appear in each diagonal block of g.

In the case of exact matching landmarks “never collide” (their trajectories are precisely defined by
diffeomorphisms of RD): it takes an infinite amount of energy to make any two landmarks coincide.
So under the condition λ =∞ the manifold of landmarks can actually be taken as the set:

LN (RD) =
{

(P 1, . . . , PN )
∣∣P a ∈ RD, P a 6= P b if a 6= b

}
. (15)
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Figure 1: Two trajectories in L2(R2). Bullets (•) and circles (◦) are the initial and final sets of
landmarks, respectively. The grids represents the two corresponding diffeomorphisms ϕv01.

Figure 1 shows the qualitative behavior of geodesics in L2(R2), with λ = ∞. In the case
illustrated on the left-hand side both landmarks travel in the same direction (from left to right, as
indicated by the arrows): the two arcs of the geodesic “attract” each other, or in other words the
two landmarks tend to “carpool” by using a velocity field with the smallest possible support so to
minimize the L2 part (i.e. the first term) of the Sobolev norm (2) of the velocity field. On the other
hand when the two landmarks travel in opposite directions (as illustrated on the right-hand side of
Figure 1) they try to avoid each other so that the higher order terms of the Sobolev norm are kept
small; we shall return on the issue of obstacle avoidance at the end of this paper. A typical geodesic
in L4(R2) (again with λ =∞) is shown in Figure 2.

Conclusion. We have shown that distance d(I, I ′), I, I ′ ∈ LN (RD) defined in (5) is in fact the
geodesic distance with respect to a Riemannian metric. In coordinates, the corresponding Rieman-
nian metric tensor is given by (11), which is such that each element of its inverse (the cometric)
depends on at most 2D of the ND coordinates. Whence the first and second partial derivatives of
the cometric have a very sparse structure. This gives us motivation for deriving a general formula
for computing sectional curvature in terms of the cometric and its derivatives in lieu of the metric
and its derivatives, which will be done in the next section.

3 Sectional Curvature in terms of the Cometric

3.1 Generalities and notation on sectional curvature

LetM be an n-dimensional Riemannian manifold. If we consider a local chart (U,ϕ) on the manifold
with coordinates (x1, . . . , xn), we have the induced 1-forms dx1, . . . , dxn and coordinate vector fields
{∂1 := ∂

∂x1 , . . . , ∂n = ∂
∂xn }. The metric tensor g : TM×M TM→ R can be represented as g|U =
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Figure 2: A typical geodesic trajectory in L4(R2). Bullets (•) and circles (◦) are the initial and final
sets of landmarks, respectively. The grid represents the corresponding diffeomorphism ϕv01.

g(∂i, ∂j) dx
i⊗dxj =: gij dx

i⊗dxj (here, as in the rest of the current section, we are using Einstein’s
summation convention). For each p ∈ M we get a positive definite matrix with elements gij(p) =
gp(∂i, ∂j). With an abuse of notation we will write gij(x) instead of (gij ◦ ϕ−1)(x), x ∈ ϕ(U) ⊂ Rn.

Notation. We shall denote the partial derivatives of the elements of the metric tensor g as gij,k(x) :=
∂
∂xk gij(x) = ∂kgij and gij,k`(x) := ∂2

∂x`∂xk gij(x) = ∂`∂kgij . Also, we will indicate the cometric

as g−1|U = gij∂i ⊗ ∂j (so that gijgjk = δik) and their partial derivatives with gijij,k(x) := ∂
∂xk g

ij(x)

and gijij,k`(x) := ∂2

∂x`∂xk g
ij(x).

For a tangent vectors X = Xi∂i we consider the 1-form X[ := Xigijdx
j =: Xjdx

j (indices
lowered), and for a 1-form α = αidx

i we have the tangent vector α] := αig
ij∂j (indices lifted).

Indicating with X (M) the space of smooth vector fields on the manifold M, let ∇ : X (M) ×
X (M)→ X (M) be the Levi-Civita connection [16, 21] of the Riemannian manifold. The Christof-
fel symbols Γkij are defined by ∇∂i∂j = Γkij∂k, and it is well known that they have the form:

Γkij = 1
2g
k`(gi`,j + gj`,i − gij,`). The Riemannian curvature endomorphism is the map R : X (M)×

X (M) × X (M) → X (M) given by R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z. In local coordi-

nates R(∂i, ∂j)∂k = R`ijk∂`, and Rijkm := 〈R(∂i, ∂j)∂k, ∂m〉g = gm`R
`
ijk. The Riemannian curvature

tensor acts on vector fields as follows:

R(X,Y, Z,W ) := 〈R(X,Y )Z,W 〉g (16)

and in coordinates it is written as R = Rijkmdx
i ⊗ dxj ⊗ dxk ⊗ dxm. The Riemannian curvature

tensor has a number of symmetries: (i) Rijk` = −Rjik`; (ii) Rijk` = −Rij`k; (iii) Rijk` = Rk`ij ;
and (iv) Rijk` + Rjki` + Rkij` = 0 (first Bianchi identity). With such conventions, the sectional
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curvature associated to a pair of non-parallel tangent vectors X and Y is computed by:

K(X,Y ) =
R(X,Y, Y,X)

‖X‖2g‖Y ‖2g − 〈X,Y 〉2g
=

RijkmX
iY jY kXm

‖X‖2g‖Y ‖2g − 〈X,Y 〉2g
. (17)

In order to express the numerator of sectional curvature (17) in terms of the elements of the

cometric and its derivatives (i.e. gij , gijij,k , and gijij,k`) we consider the covariant expression of the
Riemannian curvature tensor:

Rursv := Rijkm g
iugjrgksgmv, (18)

which we call the dual Riemannian curvature tensor . Similarly we consider the covariant or dual
Christoffel symbols

Γrsu := girgjsgkuΓkij , (19)

which are symmetric in the indices r and s.
To achieve notational compactness we will use the following symbols:

gij,k := gijij,ξ g
ξk and gij,k` := gijij,ξη g

ξkgη`; (20)

Using that g = Q−1 implies ∂kg = −Q−1 · ∂kQ ·Q−1 one immediately sees that

Γrsu = −1

2
guϕ
(
gsϕ,r + grϕ,s − grs,ϕ

)
.

Proposition 3. The following expression holds for the Riemannian curvature tensor:

2Rijkm = gik,jm + gjm,ik − gjk,im − gim,jk + 2ΓαikΓβjmgαβ − 2ΓαjkΓβimgαβ . (21)

For a proof see [24, §24.9].

3.2 Mario’s formula

Proposition 4. The following expression holds for the dual Riemannian curvature tensor:

2Rursv =− gus,rv − grv,us + grs,uv + guv,rs + 2Γrvρ Γusσ g
ρσ − 2Γrsρ Γuvσ gρσ

+ grλ,ugλµ g
µv,s − grλ,ugλµ gµs,v + guλ,rgλµ g

µs,v − guλ,rgλµ gµv,s (22)

+ grλ,sgλµ g
µv,u + guλ,vgλµ g

µs,r − grλ,vgλµ gµs,u − guλ,sgλµ gµv,r.

Proof. We will manipulate (21) and write it in the form Rijkm = giugjrgksgmvR
ursv by factor-

ing giugjrgksgmv out of each term; what will be left will be precisely the expression for Rursv.
The terms in (21) involving Christoffel symbols are, by (19):

ΓαikΓβjmgαβ = giugksg
ασ Γusσ gjrgmvg

ρβ Γrvρ gαβ = giugjrgksgmv
(
Γrvρ Γusσ g

ρσ
)
, (23)

and similarly: ΓαjkΓβimgαβ = giugjrgksgmv
(
Γrsρ Γuvσ gρσ

)
. (24)

As we noted before, if g = Q−1 then ∂jg = −Q−1 · ∂jQ · Q−1 and similarly it is the case that
∂m∂jg = Q−1 ·

(
∂mQ ·Q−1 · ∂jQ+ ∂jQ ·Q−1 · ∂mQ− ∂m∂jQ

)
·Q−1, i.e., in index notation,

gik,jm = giu
(
guλuλ,m gλµ g

µs
µs,j + guλuλ,j gλµ g

µs
µs,m − gusus,jm

)
gsk

= giugksδ
ξ
j δ
η
m

(
guλuλ,η gλµ g

µs
µs,ξ + guλuλ,ξ gλµ g

µs
µs,η − gusus,ξη

)
= giugksgjrgmv

[
grξgvη

(
guλuλ,η gλµ g

µs
µs,ξ + guλuλ,ξ gλµ g

µs
µs,η − gusus,ξη

)]
= giugjrgksgmv

(
guλ,vgλµ g

µs,r + guλ,rgλµ g
µs,v − gus,rv

)
, (25)
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where we have used definitions (20). Similarly, we can achieve the factorizations:

gjm,ik = giugjrgksgmv
(
grλ,ugλµ g

µv,s + grλ,sgλµ g
µv,u − grv,us

)
, (26)

−gjk,im = giugjrgksgmv
(
− grλ,ugλµ gµs,v − grλ,vgλµ gµs,u + grs,uv

)
, (27)

−gim,jk = giugjrgksgmv
(
− guλ,rgλµ gµv,s − guλ,sgλµ gµv,r + guv,rs

)
. (28)

Inserting (23)÷(28) into (21) we can write Rijkm = giugjrgksgmvR
ursv, with Rursv given by (22).

Proposition 5. The dual Riemannian curvature tensor may also be written as follows:

2Rursv =− gus,rv − grv,us + grs,uv + guv,rs (T1)

− 1

2

{
grsrs,ρ g

ρσguvuv,σ − grsrs,ρ
(
gρu,v + gρv,u

)
− guvuv,σ

(
gσr,s + gσs,r

)}
(T2)

+
1

2

{
grvrv,ρ g

ρσgusus,σ − grvrv,ρ
(
gρu,s + gρs,u

)
− gusus,σ

(
gσr,v + gσv,r

)}
(T3)

− 1

2

(
gλr,s − gλs,r

)
gλµ
(
gµu,v − gµv,u

)
(T4)

+
1

2

(
gλr,v − gλv,r

)
gλµ
(
gµu,s − gµs,u

)
(T5)

+
(
gλr,u − gλu,r

)
gλµ
(
gµv,s − gµs,v

)
. (T6)

Proof. We will expand and recombine the terms in expression (22). The terms involving second
derivatives need no manipulation and correspond to term T1. The terms in the second line of (22)
can be written as:

grλ,ugλµ g
µv,s− grλ,ugλµ gµs,v+ guλ,rgλµ g

µs,v− guλ,rgλµ gµv,s= (gλr,u− gλu,r)gλµ(gµv,s− gµs,v)

which is precisely T6. It is also the case that:

2 Γrvρ Γusσ gρσ − grλ,vgλµ gµs,u − guλ,sgλµ gµv,r

= 1
2

[
(gλr,v + gλv,r)− grv,λ

]
gλρ g

ρσgσµ
[
(gµu,s + gµs,u)− gus,µ

]
− grλ,vgλµ gµs,u − guλ,sgλµ gµv,r

= 1
2

{
grvrv,ρ g

ρσgusus,σ − grvrv,ρ (gρu,s + gρs,u)− gusus,σ (gσr,v + gσv,r)
}

+ 1
2 (gλr,v + gλv,r)gλµ(gµu,s + gµs,u)− grλ,vgλµ gµs,u − guλ,sgλµ gµv,r

= T3 + 1
2 (gλr,v − gλv,r)gλµ(gµu,s − gµs,u) = T3 + T5.

Similarly one can prove that: −2Γrsρ Γuvσ gρσ + grλ,sgλµ g
µv,u + guλ,vgλµ g

µs,r = T2 + T4.

For any point p ∈ M and an arbitrary pair of tangent vectors X = Xi∂i, Y = Y i∂i in TpM we

consider the covectors X[ = Xidx
i and Y [ = Yidx

i in T ∗pM, with Xi = gijX
j and Yi = gijY

j . The

numerator of sectional curvature (17) may be rewritten as RijkmX
iY jY kXm = RursvXuYrYsXv.

Theorem (Mario’s formula). For an arbitrary pair of vectors X = Xi∂i and Y = Y i∂i in TpM
the numerator of sectional curvature (17) at point p ∈M may be written as:

g
(
R(X,Y )Y,X

)
= RursvXuYrYsXv =

=
(
XuYr − YuXr

)(
1
2g
su,rv + 1

2g
us
us,ρ g

ρr,v − 1
8 g

us
us,σ g

rv,σ − 3
4 g

λu,rgλµ g
µs,v
)(
XsYv − YsXv

)
.
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Moreover, if we extend X[ and Y [ locally on M to constant 1-forms in terms of local coordinates
(i.e. make its coefficients Xu, Yr constant functions), then the formula becomes:

g
(
R(X,Y )Y,X

)
=

=
{

1
2XX(‖Y [‖2) + 1

2Y Y (‖X[‖2)− 1
2 (XY + Y X)g−1(X[, Y [)

}
+
{

1
4‖d(g−1(X[, Y [))‖2 − 1

4g
−1
(
d(‖X[‖2), d(‖Y [‖2)

)}
− 3

4g
(
[X,Y ], [X,Y ]

)
,

where the term in the first set of braces equals the sum of the first two terms in the coordinate form,
the term in the second set of braces equals the third term in the coordinate form and finally the last
terms are equal. In the above formula, ‖X[‖2 = XsXug

su and ‖Y [‖2 = YrYvg
rv.

Proof. We will write the six terms provided by Proposition 5 as Tursvi , i = 1, . . . , 6. We have:

Tursv1 XuYrYsXv = −gus,rvXuYrYsXv − grv,usXuYrYsXv + grs,uvXuYrYsXv + guv,rsXuYrYsXv

= gus,rv(−XuYrYsXv −XrYuYvXs +XrYuYsXv +XuYrYvXs)

= gus,rv(XuYr − YuXr)(XsYv − YsXv),

where the second step follows from relabeling the indices. As far as T2 and T3 are concerned,

(Tursv2 + Tursv3 )XuYrYsXv = − 1
2

{
YrYsg

rs
rs,ρ g

ρσguvuv,σXuXv − YrXvg
rv
rv,ρ g

ρσgusus,σXuYs
}

+ 1
2

{
YrYs g

rs
rs,ρ

(
gρu,v + gρv,u

)
XuXv +XuXv g

uv
uv,ρ

(
gρr,s + gρs,r

)
YrYs

− YrXv g
rv
rv,ρ

(
gρu,s + gρs,u

)
XuYs −XuYs g

us
us,ρ

(
gρr,v + gρv,r

)
YrXv

}
=− 1

4

{
2YrYsg

rs
rs,ρ g

ρσguvuv,σXuXv − 2YrXvg
rv
rv,ρ g

ρσgusus,σXuYs
}

+ 1
2

{
2YrYs g

rs
rs,ρ g

ρu,vXuXv + 2XuXv g
uv
uv,σ g

σr,sYrYs − 2XuYs g
us
us,ρ

(
gρr,v + gρv,r

)
YrXv

}
(∗)
= − 1

4 g
rv
rv,ρ g

ρσgusus,σ
{
YuYsXrXv + YrYvXuXs − YrXvXuYs − YvXrXsYu

}
+ gusus,ρ g

ρr,v
{
YuYsXrXv +XuXsYrYv −XuYsYrXv −XsYuYvXr

}
=
(
− 1

4 g
us
us,σ g

rv,σ + gusus,ρ g
ρr,v
)
(XuYr − YuXr)(XsYv − YsXv),

where, once again, step (∗) follows from relabeling the indices. Also, one can easily see that
Tursv4 XuYrYsYv = − 1

2YrYs(g
λr,s − gλs,r)gλµ(gµu,v − gµv,u)XuXv = 0. Finally,

(T5
ursv + Tursv6 )XuYrYsYv

= 1
2 YrXv(g

λr,v − gλv,r)gλµ(gµu,s − gµs,u)XuYs + YrXu(gλr,u − gλu,r)gλµ(gµv,s − gµs,v)XvYs

= 3
2 YrXu(gλr,u − gλu,r)gλµ(gµv,s − gµs,v)XvYs

= 3
2 YrXu

{
gλr,ugλµg

µv,s − gλr,ugλµgµs,v − gλu,rgλµgµv,s + gλu,rgλµg
µs,v
}
XvYs

=− 3
2 g

λu,rgλµg
µs,v
{
− YuXrXsYv + YuXrXvYs + YrXuXsYv − YrXuXvYs

}
=− 3

2 g
λu,rgλµg

µs,v(XuYr − YuXr)(XsYv − YsXv).

Divide by 2 to get the coordinate formula. The non-local version of the formula follows easily by
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bringing the X and Y ’s into the formula. Thus (indicating ∂i with the subscript ,i):

YuXr(g
su,rv + gsusu,ρ g

ρr,v)YsXv = XrXv

(
YsYu g

su
su,ρσ g

ρξgση + YsYu g
su
su,ρ g

ρr
ρr,σ g

σv
)

= XrXv

(
(‖Y [‖2),ρσ g

ρrgσv + (‖Y [‖2),ρ g
ρr
ρr,σ g

σv
)

(because Ys, Yu are constants)

= Xvg
σv
(
Xrg

ρr(‖Y [‖2),ρ
)
,σ

= Xσ
(
Xρ(‖Y [‖2),ρ

)
,σ

= XX
(
‖Y [‖2

)
.

A typical term from the third part of Mario’s formula is rewritten like this:

YuXr g
us
us,σ g

rv,σYsXv = XrXv

(
‖Y [‖2

)
,σ
grv,σ =

(
‖Y [‖2

)
,σ

(
‖X[‖2

)
,ρ
gρσ = g−1

(
d(‖Y [‖2), d(‖X[‖2)

)
;

the other terms are similar. Finally, it is the case that:

(XuYr − YuXr)g
λu,r∂λ = (XuYr − YuXr)g

λu
λu,η g

ηr∂λ = (XuY
η − YuXη)gλuλu,η ∂λ

=
(
(Xug

λu),η Y
η − (Yug

λu),ηX
η
)
∂λ =

(
Xλ

,η Y
η − Y λ,ηXη)∂λ = −[X,Y ],

and the proof is easily completed.

Remark. It is convenient to split Mario’s formula in four terms:

R1 := 1
2 (XuYr − YuXr

)
gsu,rv

(
XsYv − YsXv

)
, (30)

R2 := 1
2 (XuYr − YuXr

)
gusus,ρ g

ρr,v
(
XsYv − YsXv

)
, (31)

R3 := 1
2 (XuYr − YuXr

)(
− 1

4 g
us
us,σ g

rv,σ
)(
XsYv − YsXv

)
, (32)

R4 := 1
2 (XuYr − YuXr

)(
− 3

2 g
λu,rgλµ g

µs,v
)(
XsYv − YsXv

)
; (33)

all the terms with the exception of R4 (where g appears, but not its derivatives) depend only on
elements of the cometric and their derivatives.

Remark. The denominator of sectional curvature (17) can also be expressed in terms of the comet-
ric:

‖X‖2g‖Y ‖2g − 〈X,Y 〉2g = XuXsYrYv(g
usgrv − guvgsr). (34)

4 Curvature of the Manifolds of Landmarks

In this section we will apply Mario’s formula to the computation of sectional curvature for the
Riemannian manifold of landmarks, introduced in section 2. We first introduce the Hamiltonian
formalism, since it will allow us to write the geodesic equations in a simple form and to introduce
geometric quantities that will eventually appear in the formula for sectional curvature.

4.1 Hamiltonian formalism

On the ND-dimensional manifold L = LN (RD) of landmarks we consider the Riemannian metric g
given, in coordinates, by the matrix (11); it is in block-diagonal form and we write its generic
element as g(ai)(bj), with a, b = 1, . . . , N (landmark labels) and i, j = 1, . . . , D (coordinate labels,
respectively of landmarks a and b). More precisely: the matrix g(q) is made of D square (N ×N)
blocks; indices i, j = 1, . . . , D indicate the block, whereas indices a, b = 1, . . . , N locate the element
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within the (i, j)-block. Therefore if we indicate with hab(q) the generic element of the N×N matrix(
K(q) + IN

λ

)−1
we have that

g(ai)(bj) = hab(q) δij , a, b = 1, . . . , N, i, j = 1, . . . , D,

where δij is Kronecker’s delta. Similarly, if we indicate as g(ai)(bj) the elements of the cometric

tensor g(q)−1, they are given by g(ai)(bj)(q) = hab(q) δij , where hab(q) = K(qa−qb)+ δab

λ . In analogy

with the notation introduced in section 3 we also denote the partial derivatives by g
(ai)(bj)
(ai)(bj),(ck) =

∂
∂qck

g(ai)(bj) and g
(ai)(bj)
(ai)(bj),(ck)(d`) = ∂2

∂qck∂qd`
g(ai)(bj); they will be computed later.

For simplicity from now on we shall assume that λ =∞, i.e. that we are dealing with exact
matching of landmarks so that LN (RD) has the form (15). The element of the cometric becomes
g(ai)(bj)(q) = K(qa − qb) δij and the Hamiltonian [16, p. 50] for the system can be written as:

H(p, q) =
1

2
pT g(q)−1p =

1

2

N∑
a,b=1

D∑
i,j=1

g(ai)(bj)(q) paipbj =
1

2

N∑
a,b=1

D∑
i,j=1

K(qa − qb) δij paipbj ,

that is H(p, q) =
1

2

N∑
a,b=1

K(qa − qb)
〈
pa, pb

〉
RD .

Proposition 6. Hamilton’s equations for the Riemannian manifold of landmarks are:

q̇a =

N∑
b=1

K(qa − qb) pb

ṗa = −
N∑
b=1

∇K(qa − qb)
〈
pa, pb

〉
RD

a = 1, . . . , N. (35)

Proof. Equation (7) can be written as q̇ai =
∑N
b=1K(qa − qb) pbi, for a = 1, . . . , N , i = 1, . . . , D;

alternatively, computing q̇ai = ∂H
∂pai

yields the same result. Also:

∂
∂qaiK(qb1 − qc1, . . . , qbD − qcD) =

∑D
`=1

∂K
∂x` (qb − qc) ∂

∂qai (qb` − qc`)

=
∑D
`=1

∂K
∂x` (qb − qc) (δba − δca)δ`i = ∂K

∂xi (qb − qc) (δba − δca) (36)

so that

ṗai = − ∂H
∂qai (p, q) = − 1

2

∑N
c=1

∂K
∂xi (qa − qc) 〈pa, pc〉RD + 1

2

∑N
b=1

∂K
∂xi (qb − qa) 〈pb, pa〉RD

(∗)
= −

∑N
b=1

∂K
∂xi (qa − qb) 〈pa, pb〉RD ;

in (∗) we used the skew-symmetry of ∇K(qa − qb) in indices a and b, which follows from (K2).

Corollary 7. If pa(t0) = 0 for some landmark a = 1, . . . , N and time t0 ∈ R, then pa(t) ≡ 0.
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4.2 Notation

From now on we shall also assume that (K3) holds, i.e. that the kernel K is twice continuously
differentiable; for the time being we will not assume rotational invariance. We define:

Kab := K(qa − qb) ∈ R,

∂iK(x) :=
∂K

∂xi
(x), ∂iK

ab := ∂iK(qa − qb) ∈ R,

∇K := (∂1K, · · · , ∂DK)T , ∇Kab := ∇K(qa − qb) ∈ RD,

∂2
ijK(x) :=

∂2K

∂xi∂xj
(x), ∂2

ijK
ab := ∂2

ijK(qa − qb) ∈ R,

D2K := Hessian(K), D2Kab := D2K(qa − qb) ∈ RD×D.

(37)

Note that ∇Kab = −∇Kba,∇Kaa = 0 and D2Kab = D2Kba, for all a, b = 1, . . . , N , by (K2).
For a fixed set of landmark points q in L = LN (RD) consider any pair of cotangent vectors

α, β ∈ T ∗q L: we shall write α = (α1, . . . , αN ) and β = (β1, . . . , βN ), where each component is D-

dimensional. We define the vector field αhor : RD → RD and its values at the landmark points by:

αhor(x) :=

N∑
b=1

K(x− qb)αb, x ∈ RD,

(α])a := αhor(qa) =

N∑
b=1

Kabαb,

which are, by virtue of formula (6), the velocity field αhor on RD induced by the landmark mo-
mentum α = (α1, . . . , αN ) and the corresponding landmark velocity α] ∈ TqL (which obviously

coincides with the first of Hamilton’s equations (35)). Note that α] = (α]1, . . . , α
]
N ) is the tangent

vector in TqL with metrically lifted indices. Note that αhor is the horizontal lift [10, p. 148] of the
tangent vector α] on the admissible Hilbert space V : simply put, of all vector fields v : RD → RD
in V such that v(qa) = (α])a, a = 1, . . . , N , αhor is the one of minimum norm.

The curvature of the Riemannian manifold of landmarks will be expressed in terms of three
auxiliary quantities which we now introduce. We will call these force, discrete strain and landmark
derivative. We start with the force. For a fixed covector α = (α1, . . . , αN ) ∈ T ∗q L, having the dual

vector extended to a vector field αhor on all of RD allows us to take its derivatives at the landmark
points, a D ×D matrix-valued function on RD:

(Dαhor)ji (x) := ∂i(α
hor)j(x) =

N∑
b=1

αbj∂iK(x− qb),

(Dαhor)ji (q
a) =

N∑
b=1

∂iK
abαbj .

For a trajectory (q(t), p(t)) of the cotangent flow one has that (p1(t), . . . , pN (t)) ∈ T ∗q(t)L for all t

where the trajectory is defined, so the above notation can be used to rewrite Hamilton’s equations
in a more compact form. In particular, the following result holds.
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Proposition 8. The second of Hamilton’s equations (35) can be written as

ṗa = −Dphor(qa) · pa a = 1, . . . , N. (38)

Proof. ṗai = −
∑N
b=1 ∂iK

ab〈pb, pa〉RD = −
∑D
j=1

(∑N
b=1 ∂iK

ab pbj
)
paj = −

∑D
j=1(Dphor)ji (q

a) paj =

−
(
Dphor(qa) · pa

)
i
, for any a = 1, . . . , N and i = 1, . . . , D.

For a fixed cotangent vector α ∈ T ∗q L, this motivates defining the negative right-hand side of (38)
to be force:

Fa(α, α) := Dαhor(qa) · αa, a = 1, . . . , N.

The full bilinear, symmetrized force may be thought of as a map F : T ∗q L × T ∗q L → T ∗q L. We call
the covectors given by this the mixed force, with the definition:

Fa(α, β) := 1
2

(
Dαhor(qa) · βa +Dβhor(qa) · αa

)
,

Fai(α, β) := 1
2

D∑
j=1

N∑
b=1

∂iK
ab
(
αbjβaj + βbjαaj

)
= 1

2

N∑
b=1

∂iK
ab
(
〈αa, βb〉RD + 〈βa, αb〉RD

)
, (39)

for a = 1, . . . , N and i = 1, . . . , D. (The angle brackets are inner products in RD.) Note that the
“complete” cotangent vectors α = (α1, . . . , αN ) and β = (β1, . . . , βN ) (not only their a-components)
are needed to compute each component Fa(α, β) of the mixed force. The mixed force has simple
interpretation. If we extend α and β to constant 1-forms on L, then the differential of the map
q 7→ g−1

q (α, β) =
∑
a,bK(qa − qb)〈αa, βb〉RD is given by:

d
(
g−1
q (α, β)

)
=

N∑
a,b=1

D∑
i=1

∂iK(qa − qb) (dqai − dqbi) 〈αa, βb〉RD

=

N∑
a,b=1

D∑
i=1

∂iK(qa − qb)
(
〈αa, βb〉RD + 〈βa, αb〉RD

)
dqai = 2F (α, β). (40)

For a fixed α ∈ T ∗q L we define the discrete vector strain:

Sab(α) := (α])a − (α])b, or Sab(α)i :=

N∑
c=1

D∑
j=1

(Kac −Kbc)δijαcj =

N∑
c=1

(Kac −Kbc)αci

for all a, b = 1, . . . , N (we call it like that because it measures the infinitesimal change of relative
position of the landmarks a and b induced by the cotangent vector α). These are vectors and are
skew-symmetric in the points a, b: Sab(α) = −Sba(α), Saa(α) = 0. The scalar quantities:

Cab(α) :=
〈
(α])a − (α])b,∇Kab

〉
RD =

N∑
c=1

D∑
i=1

(Kac −Kbc) ∂iK
ab αci

we define to be the scalar compressions felt by kernel K; they are symmetric (since both factors in
the inner product are skew-symmetric), i.e. Cab(α) = Cba(α), with the property Caa(α) = 0. We
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call these compressions because if K is a monotone decreasing function of the distance from the
origin (the most common case), then ∇Kab points from qa to qb.

Finally, if v and w are any two vector fields on the manifold of landmarks, we may write their
Lie derivative as the difference of covariant derivatives:

[v, w]L = ∇L,flat
v (w)−∇L,flat

w (v)

where the flat connection on L is just the one induced by its embedding in RND. In other words,
∇L,flat
v (w) is the usual derivative of w in the direction v if we use the coordinates qai on landmark

space: that is, ∇L,flat
v (w) :=

∑
ai v(wai)∂ai =

∑
ai

∑
bj v

bj(∂bjw
ai)∂ai. If α, β are constant 1-forms

everywhere on LN we can take v = α] and w = β], now as vector fields on L, and then we find:

∇L,flat
α] (β]) =

∑
a,i

∑
b,j

(α])bj
∂

∂qbj
(β])ai ∂ai =

∑
a,i

∑
b,j

(α])bj
( ∂

∂qbj

∑
c

K(qa − qc)βci
)
∂ai

=
∑
a,i

∑
b,c,j

(α])bj ∂jK
ac (δab − δcb)βci ∂ai =

∑
a,i

∑
b,j

(
(α])aj − (α])bj

)
∂jK

ab βbi ∂ai

=
∑
a,i

∑
b

〈
(α])a − (α])b,∇Kab

〉
RDβbi ∂ai =

∑
a,i

(∑
b

Cab(α)βbi

)
∂ai.

This is a vector in TqL which we define to be the landmark derivative of β] with respect to α]. The
coefficients with respect to ∂a1, . . . , ∂aD (for fixed a) are the elements of the following vector:

Da(α, β) :=

N∑
b=1

Cab(α)βb =

N∑
b,c=1

(Kac −Kbc)〈αc,∇Kab〉RDβb , a = 1, . . . , N. (41)

We have that D(α, β) = (Da(α, β))Na=1 is the ND-dimensional vector of the coefficients of ∇L,flat
α] (β])

with respect to the basis {∂ai} of TqL. In particular, the coefficients of the Lie bracket of α] and β]

as vector fields on L are given by D(α, β)−D(β, α).

4.3 General formula for the sectional curvature of LN(RD)

We can write sectional curvature of LN (RD) in the following way, where we have split it in the terms
introduced by (30)–(33).

Notation: from now on 〈 , 〉 will indicate the dot product in RD, while 〈 , 〉TL and 〈 , 〉T∗L
will be the inner products in the tangent and cotangent bundles of L = LN (RD), respectively.

Theorem 9. The numerator of sectional curvature of LN (RD), for an arbitrary pair of cotangent
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vectors α and β, is given by R(α], β], β], α]) =
∑4
i=1Ri, with:

R1 = 1
2

∑
a6=b

(
αa ⊗ Sab(β)− βa ⊗ Sab(α)

)T (ID ⊗D2Kab
)(
αb ⊗ Sab(β)− βb ⊗ Sab(α)

)
, (42)

R2 =
∑
a

(〈
Da(α, α), Fa(β, β)

〉
+
〈
Da(β, β), Fa(α, α)

〉
−
〈
Da(α, β) +Da(β, α), Fa(α, β)

〉)
, (43)

R3 =
∥∥F (α, β)

∥∥2

T∗L −
〈
F (α, α), F (β, β)

〉
T∗L

=
∑
ac

Kac
(〈
Fa(α, β), Fc(α, β)〉 −

〈
Fa(α, α), Fc(β, β)

〉)
, (44)

R4 = − 3
4

∥∥[α], β]]L
∥∥2

TL = − 3
4

∥∥D(α, β)−D(β, α)
∥∥2

K−1 . (45)

In the formula we have used the definition: (v1⊗v2)T (M1⊗M2)(w1⊗w2) := (vT1 M1w1)(vT2 M2w2)

for the first termR1, while we have used the norm forD×N matrices ‖J‖2A :=
∑D
i=1

∑N
a,b=1 JiaJibAab

for the fourth term R4.
The theorem is proven by applying Mario’s formula to the cometric of the manifolds of landmarks.

One needs to compute the elements of the cometric and its derivatives in terms of the kernel and
its derivatives (37). In agreement with notation (20) we will define (note that we will keep using
Einstein’s summation convention wherever possible):

g(ai)(bj),(d`) := g
(ai)(bj)
(ai)(bj),(ck) g

(ck)(d`) and g(ai)(bj),(ck)(d`) := g
(ai)(bj)
(ai)(bj),(µρ)(ξσ) g

(µρ)(ck)g(ξσ)(d`).

Lemma 10. It is the case that

g
(ai)(bj)
(ai)(bj),(ck) = ∂kK

ab (δac − δbc) δij , (46)

g
(ai)(bj)
(ai)(bj),(ck)(d`) = ∂2

k`K
ab (δac − δbc) (δad − δbd) δij , (47)

g(ai)(bj),(d`) = ∂`K
ab (Kad −Kbd) δij , (48)

g(ai)(bj),(ck)(d`) = ∂2
k`K

ab (Kac −Kbc) (Kad −Kbd) δij . (49)

Proof. Since g(ai)(bj) = Kabδij and also ∂
∂qck

K(qa − qb) = ∂kK
ab(δac − δbc) by (36), equation (46)

follows immediately. Similarly to (36) one can prove that ∂
∂qd`

∂kK(qa − qb) = ∂2
`kK

ab (δad − δbd),
whence: g

(ai)(bj)
(ai)(bj),(ck)(d`) = ∂

∂qd`
g

(ai)(bj)
(ai)(bj),(ck) = ∂2

`kK
ab (δad − δbd) (δac − δbc) δij , so (47) holds too. Now,

by expression (46):

g(ai)(bj),(d`) = g
(ai)(bj)
(ai)(bj),(ck) g

(ck)(d`) =
∑
ck ∂kK

ab (δac − δbc) δij Kcd δk` = ∂`K
ab (Kad −Kbd) δij .

which is (48). We can use (47) to compute g(ai)(bj),(ck)(d`) = g
(ai)(bj)
(ai)(bj),(µρ)(ξσ) g

(µρ)(ck)g(ξσ)(d`):

g(ai)(bj),(ck)(d`) =
∑
µρξσ ∂

2
ρσK

ab (δaµ − δbµ) (δaξ − δbξ) δij Kµc δρkKξd δσ`

= ∂2
k`K

ab (Kac −Kbc) (Kad −Kbd) δij ,

which completes the proof.
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Proof of Theorem 9. We will compute terms R1, . . . , R4 introduced by formulae (30)–(33). For sim-
plicity, sometimes we will write Dαhor

a instead of Dαhor(qa).
• Computation of R1. We have R1 = 1

2 (αauβcr−βauαcr) g(au)(bs),(cr)(dv)(αbsβdv−βbsαdv). Inserting
expression (49) into such formula yields:

2R1 =
∑

all indices(αauβcr − βauαcr
)
∂2
rvK

ab (Kac −Kbc) (Kad −Kbd) δus
(
αbsβdv − βbsαdv

)
.

Performing the above multiplications gives rise to four terms, which we will now compute one by
one. First of all we have:

2R1,1 :=
∑

all indices αauβcrαbsβdv ∂
2
rvK

ab (Kac −Kbc) (Kad −Kbd) δus

=
∑
abrv

[∑
usαauδ

usαbs
][∑

c(K
ac −Kbc)βcr

]
∂2
rvK

ab
[∑

d(K
ad −Kbd)βdv

]
=
∑
ab α

T
a αb

∑
rv S

ab(β)r ∂2
rvK

ab Sab(β)v =
∑
ab α

T
a αb

(
Sab(β)

)T
D2Kab Sab(β);

=
∑
ab

(
αa ⊗ Sab(β)

)T (ID ⊗D2Kab
)(
αb ⊗ Sab(β)

)
,

where, once again, the superscript T indicates the transpose of a vector; similarly,

2R1,2 := −
∑

all αauβcrβbsαdv ∂
2
rvK

ab (Kac −Kbc) (Kad −Kbd) δus

= −
∑
ab

(
αa ⊗ Sab(β)

)T (ID ⊗D2Kab
)(
βb ⊗ Sab(α)

)
,

2R1,3 := −
∑

all βauαcrαbsβdv ∂
2
rvK

ab (Kac −Kbc) (Kad −Kbd) δus

= −
∑
ab

(
βa ⊗ Sab(α)

)T (ID ⊗D2Kab
)(
αb ⊗ Sab(β)

)
,

2R1,4 :=
∑

all βauαcrβbsαdv ∂
2
rvK

ab (Kac −Kbc) (Kad −Kbd) δus

=
∑
ab

(
βa ⊗ Sab(α)

)T (ID ⊗D2Kab
)(
βb ⊗ Sab(α)

)
.

Now we can take the summation R1 =
∑4
i=1R1,i, which yields precisely expression (42).

• Computation of R2. We may combine equations (46) and (48) from Lemma 10 to get:

g
(au)(bs)
(au)(bs),(λρ) g

(λρ)(cr),(dv) =
∑
λρ ∂ρK

ab (δaλ − δbλ) δus ∂vK
λc (Kλd −Kcd) δρr

= ∂rK
ab
[
∂vK

ac(Kad −Kcd)− ∂vKbc(Kbd −Kcd)
]
δus. (50)

Inserting (50) into 2R2 = (αauβcr − βauαcr) g(au)(bs)
(au)(bs),(λρ) g

(λρ)(cr),(dv)(αbsβdv − βbsαdv) yields:

2R2 =
∑

all indices

{
αauβcrαbsβdv ∂rK

ab
[
∂vK

ac(Kad −Kcd)− ∂vKbc(Kbd −Kcd)
]
δus

− αauβcrβbsαdv ∂rKab
[
∂vK

ac(Kad −Kcd)− ∂vKbc(Kbd −Kcd)
]
δus

− βauαcrαbsβdv ∂rKab
[
∂vK

ac(Kad −Kcd)− ∂vKbc(Kbd −Kcd)
]
δus

+ βauαcrβbsαdv ∂rK
ab
[
∂vK

ac(Kad −Kcd)− ∂vKbc(Kbd −Kcd)
]
δus
}
,

which immediately implies:

R2 =
1
2

∑
abcd〈αa, αb〉〈βc,∇Kab〉

[
〈βd,∇Kac〉(Kad−Kcd)−〈βd,∇Kbc〉(Kbd−Kcd)

]
(=: R2,1)

− 1
2

∑
abcd〈αa, βb〉〈βc,∇Kab〉

[
〈αd,∇Kac〉(Kad−Kcd)−〈αd,∇Kbc〉(Kbd−Kcd)

]
(=: R2,2)

− 1
2

∑
abcd〈βa, αb〉〈αc,∇Kab〉

[
〈βd,∇Kac〉(Kad−Kcd)− 〈βd,∇Kbc〉(Kbd−Kcd)

]
(=: R2,3)

+ 1
2

∑
abcd〈βa, βb〉〈αc,∇Kab〉

[
〈αd,∇Kac〉(Kad−Kcd)− 〈αd,∇Kbc〉(Kbd−Kcd)

]
(=: R2,4)
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We will now manipulate terms R2,1,. . . ,R2,4 one by one. Since ∇Kab = −∇Kba, by relabeling the
indices we have

R2,1 =
∑
abcd〈αa, αb〉〈βc,∇Kab〉〈βd,∇Kac〉(Kad −Kcd)

=
∑
abc〈αa, αb〉〈βc,∇Kab〉

〈∑
dK

adβd −
∑
dK

cdβd,∇Kac
〉

=
∑
abc〈αa, αb〉〈βc,∇Kab〉〈Sac(β),∇Kac〉 =

∑
abc〈αa, αb〉〈βc,∇Kab〉Cac(β)

=
∑
ab〈αa, αb〉

〈∑
cC

ac(β)βc,∇Kab
〉

=
∑
ab〈αa, αb〉〈Da(β, β),∇Kab〉

=
∑
abD

a(β, β)T∇KabαTb αa =
∑
aD

a(β, β)TDαhor
a · αa =

∑
a〈Da(β, β), Fa(α, α)〉.

Similarly, R2,4 =
∑
a〈Da(α, α), Fa(β, β)〉. It is also the case that

R2,2 =− 1
2

∑
abc〈αa, βb〉〈βc,∇Kab〉

[〈∑
d(K

ad−Kcd)αd,∇Kac
〉
−
〈∑

d(K
bd−Kcd)αd,∇Kbc

〉]
=− 1

2

∑
abc〈αa, βb〉〈βc,∇Kab〉

[
〈Sac(α),∇Kac〉 − 〈Sbc(α),∇Kbc〉

]
=− 1

2

∑
abc〈αa, βb〉〈βc,∇Kab〉

[
Cac(α)− Cbc(α)

]
;

relabeling the indices (and using the fact that ∇Kab = −∇Kba) yields:

R2,2 =− 1
2

∑
abc

[
〈αa, βb〉+ 〈αb, βa〉

]
〈βc,∇Kab〉Cac(α)

=− 1
2

∑
ab

[
〈αa, βb〉+ 〈αb, βa〉

]〈∑
cC

ac(α)βc,∇Kab
〉

=− 1
2

∑
ab

[
〈αa, βb〉+ 〈αb, βa〉

]
〈Da(α, β),∇Kab〉

=− 1
2

∑
abD

a(α, β)T
[
∇KabβTb αa +∇KabαTb βa

]
=− 1

2

∑
aD

a(α, β)T
[
Dβhor

a · αa +Dαhor
a · βa

]
= −

∑
a〈Da(α, β), Fa(α, β)〉.

Similarly, R2,3 = −
∑
a〈Da(β, α), Fa(β, α)〉. By the symmetry of Fa(·, ·),

R2,2 +R2,3 = −
∑
a〈Da(α, β) +Da(β, α), Fa(α, β)〉

Adding the above sum to the expressions for R2,1 and R2,4 finally yields (43).
• Computation of R3. We have

R3 = −1

8
(αauβcr − βauαcr

)
g

(au)(bs)
(au)(bs),(ησ) g

(cr)(dv),(ησ)
(
αbsβdv − βbsαdv

)
.

But by Lemma 10,

g
(au)(bs)
(au)(bs),(ησ) g

(cr)(dv),(ησ) =
∑N
η=1

∑D
σ=1∂σK

ab (δaη − δbη)δus ∂σK
cd (Kcη −Kdη)δrv

= 〈∇Kab,∇Kcd〉δusδrv(Kac −Kad −Kbc +Kbd),

whence:

−8R3 =
∑

all

{
〈∇Kab,∇Kcd〉(Kac −Kad −Kbc +Kbd)

·
(
αauβcrαbsβdvδ

usδrv−αauβcrβbsαdvδusδrv−βauαcrαbsβdvδusδrv+βauαcrβbsαdvδ
usδrv

)}
=
∑
abcd

{(
〈αa, αb〉〈βc, βd〉 − 〈αa, βb〉〈βc, αd〉 − 〈βa, αb〉〈αc, βd〉+ 〈βa, βb〉〈αc, αd〉

)
· 〈∇Kab,∇Kcd〉(Kac −Kad −Kbc +Kbd)

}
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Relabeling the indices in the above expression yields:

−8R3 =
∑
abcd

[
8〈αa, αb〉〈βc, βd〉 − 2〈αa, βb〉〈βc, αd〉 − 2〈βa, αb〉〈αc, βd〉
− 2〈αa, βb〉〈βd, αc〉 − 2〈βa, αb〉〈αd, βc〉

]
〈∇Kab,∇Kcd〉Kac

=
∑
abcdK

ac
[
8αTa αb(∇Kab)T∇KcdβTd βc − 2αTa βb(∇Kab)T∇KcdαTd βc − 2βTa αb(∇Kab)T∇KcdβTd αc

− 2αTa βb(∇Kab)T∇KcdβTd αc − 2βTa αb(∇Kab)T∇KcdαTd βc
]

=
∑
acK

ac
[
8αTa (Dαhor

a )T (Dβhor
c )βc − 2αTa (Dβhor

a )T (Dαhor
c )βc − 2βTa (Dαhor

a )T (Dβhor
c )αc

− 2αTa (Dβhor
a )T (Dβhor

c )αc − 2βTa (Dαhor
a )T (Dαhor

c )βc
]

=
∑
acK

ac
[
8〈Dαhor

a · αa, Dβhor
c · βc, 〉 − 2〈Dαhor

a · βa +Dβhor
a · αa, Dαhor

c · βc +Dβhor
c · αc〉

]
.

=
∑
acK

ac
[
8〈Fa(α, α), Fc(β, β)〉 − 8〈Fa(α, β), Fc(α, β)〉

]
,

which is precisely (44). Alternatively, this can be derived from formula (40).
• Computation of R4. It is the case that:

R4 = −3

4
(αauβcr − βauαcr

)
g(ξλ)(au),(cr)g(ξλ)(ηµ) g

(ηµ)(bs),(dv)
(
αbsβdv − βbsαdv

)
.

By Lemma 10:∑
aucr(αauβcr − βauαcr

)
g(ξλ)(au),(cr) =

∑
aucr(αauβcr − βauαcr

)
∂rK

ξa (Kξc −Kac) δλu

=
∑
au

{
αau

[∑
r∂rK

ξa(
∑
cK

ξcβcr)
]
− αau

[∑
r ∂rK

ξa(
∑
cK

acβcr)
]

− βau
[∑

r∂rK
ξa(
∑
cK

ξcαcr)
]

+ βau
[∑

r∂rK
ξa(
∑
cK

acαcr)
]}
δλu

=
∑
au

{
αau

[
〈∇Kξa, βhor

ξ 〉 − 〈∇Kξa, βhor
a 〉

]
− βau

[
〈∇Kξa, αhor

ξ 〉 − 〈∇Kξa, αhor
a 〉

]}
δλu

=
∑
au

{
αau〈∇Kξa, Sξa(β)〉 − βau〈∇Kξa, Sξa(α)〉

}
δλu =

∑
au

{
Cξa(β)αau − Cξa(α)βau

}
δλu.

So if we define the matrix Hia :=
∑
b

[
Cab(β)αbi − Cab(α)βbi

]
, i = 1, . . . , D, a = 1, . . . , N we have:

R4 = −3

4

∑
us

∑
ξη

∑
λµ

Huξ δ
λu (K−1)ξη δλµHsη δ

µs = −3

4

D∑
u=1

N∑
ξ,η=1

HuξHuη (K−1)ξη = −3

4
‖H‖2K−1 .

Alternatively, this can be derived from formula (41).

The denominator (34) of sectional curvature for LN (RD) is given by the simple formula:

Proposition 11. For any pair of cotangent vectors α, β ∈ T ∗q L,

‖α‖2T∗L ‖β‖2T∗L − 〈α, β〉2T∗L =
∑
abcd

KabKcd
(
〈αa, αb〉〈βc, βd〉 − 〈αa, βb〉〈αc, βd〉

)
. (51)

Proof. Using double-index notation we may write equation (34) as follows:

‖α‖2T∗L ‖β‖2T∗L − 〈α, β〉2T∗L = αau αbs βcr βdv
(
g(au)(bs)g(cr)(dv) − g(au)(dv)g(bs)(cr)

)
=
∑
abcd αau αbs βcr βdv

(
KabδusKcdδrv −KadδuvKbcδsr

)
=
∑
abcd〈αa, αb〉〈βc, βd〉KabKcd −

∑
abcd〈αa, βd〉〈αb, βd〉KadKbc,

and (51) follows by relabeling the indices.
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4.4 The rotationally invariant case

Finally, suppose the Green’s function K is rotationally invariant, i.e. that (K4) holds:

K(x) = γ(‖x‖), x ∈ RD, with γ ∈ C2
(
[0,∞)

)
.

We will use the convenient notation: γ0 := γ(0), γab := γ(‖qa − qb‖), γ′ab := γ′(‖qa − qb‖), and
γ′′ab := γ′′(‖qa− qb‖) for a, b = 1, . . . , N . Then we can evaluate the first and second derivatives of K:

Lemma 12. For rotationally invariant kernels, it is the case that:

∇K(x) = γ′(‖x‖) x

‖x‖
, (52)

D2K(x) =
[
γ′′(‖x‖)− γ′(‖x‖)

‖x‖

] xxT
‖x‖2

+
γ′(‖x‖)
‖x‖

ID (53)

= γ′′(‖x‖) xx
T

‖x‖2
+
γ′(‖x‖)
‖x‖

Pr⊥(x),

where ID is the D×D identity matrix and Pr⊥(x) := ID− xxT

‖x‖2 is projection to the hyperplane of RD

that is normal to x.

Proof. We have that ∂iK(x) = γ′(‖x‖) xi

‖x‖ and (52) follows immediately. Also,

∂j∂iK(x) = xi

‖x‖
∂
∂xj γ

′(‖x‖) + γ′(‖x‖) 1
‖x‖

∂
∂xj x

i + γ′(‖x‖)xi ∂
∂xj

1
‖x‖

= γ′′(‖x‖) x
ixj

‖x‖2 + γ′(‖x‖)
‖x‖ δij − γ′(‖x‖) x

ixj

‖x‖3 =
[
γ′′(‖x‖)− γ′(‖x‖)

‖x‖
]
xixj

‖x‖2 + γ′(‖x‖)
‖x‖ δij ,

which implies (53).

Because of (52), in the rotationally invariant case, the “scalar compression” Cab(α) really does
measure a multiple compression of the flow α] between qa and qb. We can decompose the vector
strain Sab(α) into the part parallel to the vector qa − qb and the part perpendicular to this: let

uab := qa−qb
‖qa−qb‖ and define

Sab(α)‖ :=
〈
Sab(α), uab

〉
, Sab(α)⊥ := Sab(α)− Sab(α)‖ uab. (54)

Note that Sab(α)‖ is a scalar while Sab(α)⊥ is a vector . In particular it is the case that Cab(α) =
γ′ab ·Sab(α)‖. Moreover, formula (53) allows us to simplify the first term R1 in the curvature formula.
Substituting (53) into (42), we get the rotationally invariant case for R1:

Proposition 13. In the rotationally invariant case (K4) we have that

R1 =
∑
a 6=b

(γ′′ab
2

〈
Sab(α)‖ βa − Sab(β)‖ αa, S

ab(α)‖ βb − Sab(β)‖ αb
〉

(55)

+
γ′ab

2‖qa − qb‖
〈
Sab(α)⊥ ⊗ βa − Sab(β)⊥ ⊗ αa, Sab(α)⊥ ⊗ βb − Sab(β)⊥ ⊗ αb

〉)
.

In the above we use the inner product of tensor products, 〈v1 ⊗ w1, v2 ⊗ w2〉 := 〈v1, v2〉〈w1, w2〉.
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Proof. For any pair of covectors η and µ in T ∗q L, by (53) we have that:

Sab(η)TD2Kab Sab(µ) = γ′′ab S
ab(η)Tuab (uab)TSab(µ) +

γ′ab
‖qa − qb‖

Sab(η)T Pr⊥(uab)Sab(µ)

= γ′′ab S
ab(η)‖ Sab(µ)‖ +

γ′ab
‖qa − qb‖

〈
Sab(η)⊥, Sab(µ)⊥

〉
.

Inserting this expressions into (42) yields the desired result.

4.5 One landmark with nonzero momenta

A simple special case is when only one landmark carries momentum. We now compute the numerator
of sectional curvature when both cotangent vectors are nonzero at only one of the D-dimensional
landmarks (q1, . . . , qN ). We define:

(T ∗q L)1 :=
{
η ∈ T ∗q L

∣∣ ηa = 0 for a > 1
}

so that the elements of the above set are cotangent vectors of the type η = (η1, 0, . . . , 0).

Proposition 14. In LN (RD), for any pair α, β ∈ (T ∗q L)1 the four terms of R(α], β], β], α]) are

given by R1 = R2 = R3 = 0 and R4 = − 3
4

∑N
a,b=2〈Ha, Hb〉RD (K−1)ab, where

Ha := (γa1 − γ0)
(
〈α1,∇Ka1〉β1 − 〈β1,∇Ka1〉α1

)
, for a > 1.

Proof. The vanishing of R1 can be checked directly (note that the sum in (42) is taken over a 6= b
since Scc(η) = 0 for all c and η). Also, using formula (39) we see that all mixed forces Fa are zero,
therefore R2 = R3 = 0 by formulae (43) and (44). Also, by (41), Da(α, β) = (γa1−γ0)

〈
α1,∇Ka1

〉
β1

since α, β ∈ (T ∗q L)1; a similar expression holds for Da(β, α), which concludes the proof by (45).

Therefore when α, β ∈ (T ∗q L)1 the sectional curvature is always negative; we can understand
this by considering the geodesic flow in this case. It follows immediately from Proposition 6 that if
we start with zero momenta pa at all qa, a > 1, then the momenta at these points stay zero, while
the momentum at q1 remains constant. Thus the velocity of q1 is just given by K(0)p1 and this is
constant. The point q1 carrying the momentum moves in a straight line at constant speed, while
the other points qa (a > 1) are carried along by the global flow that the motion of q1 causes and
move at speeds q̇a = Ka1p1, which are parallel to q̇1 (but not constant). As shown in Figure 3 (the
central landmark q1 is the only one carrying momentum) what happens is that all other landmark
points are dragged along by q1, more strongly when close, less when far away. Points directly in
front of the path of q1 pile up and points behind space out.

Negative curvature can be seen by the divergence of geodesics. If you imagine slightly changing
the direction of p1 in Figure 3, the final configuration of the landmark points (say, after one unit
of time) will differ greatly from the one caused by the original value of p1. Also, if you imagine q1

moving along two nearby parallel straight lines, the differential effect on the cloud of other points
accumulates so that the final configurations will differ everywhere; thus, even though the initial
landmark configurations are close, the final configurations will be far away. In general, the last
negative term in the curvature expresses the same effect: the global drag effect of each point results
in a kind of turbulent mixing of all the other points (think of a kitchen mixer the motion of whose
blades mixes the whole bowl).

Proposition 14 simplifies in the case of L = L2(RD) (two landmarks only). We shall write:

α
‖
1 := 〈α1, u

12〉, α⊥1 := α1 − α‖1 u12, β
‖
1 := 〈β1, u

12〉, β⊥1 := β1 − β‖1 u12. (56)
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Figure 3: Dragging effect of one momentum-carrying landmark q1 (bullet •) on a grid of landmarks

(circles ◦), with γ(x) = exp(− 1
2
x2

σ2 ), σ = 1.5. Left: initial configuration, with initial momentum

p1 = (2.7, 1.8) also shown. Right: configuration after one unit of time, with trajectory of q1 also
shown; the grid represents the diffeomorphism ϕv01, obtained by integrating αhor in time.

Proposition 15. In the case of L = L2(RD), when α, β ∈ (T ∗q L)1 the numerator and denominator
of sectional curvature are given by, respectively:

R(α], β], β], α]) = R4 = −3

4
γ0
γ0 − γ12

γ0 + γ12

(
γ′12

)2 ∥∥β‖1α⊥1 − α‖1β⊥1 ∥∥2
, (57)

‖α‖2T∗L ‖β‖2T∗L − 〈α, β〉2T∗L = γ2
0

(∥∥β‖1α⊥1 − α‖1β⊥1 ∥∥2
+ 1

2

∥∥β⊥1 ⊗ α⊥1 − α⊥1 ⊗ β⊥1 ∥∥2
)
. (58)

Again we have used the inner product of tensor products 〈v1 ⊗ w1, v2 ⊗ w2〉 := 〈v1, v2〉〈w1, w2〉.

Proof. It is the case that R4 = − 3
4‖H

2‖2(K−1)22 (matrices Ha were defined in Proposition 14).

But (K−1)22 = (γ2
0 − γ2

12)−1γ0, whereas from Proposition 14 we have

‖H2‖2 = (γ0 − γ12)2
(
〈α1,∇K12〉2‖β1‖2 + 〈β1,∇K12〉2‖α1‖2 − 2〈α1,∇K12〉〈β1,∇K12〉〈α1, β1〉

)
,

where ∇K12 = γ′12u
12 by (52). Inserting expressions (56) into the above formula yields (57).

From Proposition 11 we have that the denominator is given by γ2
0(‖α1‖2‖β1‖2 − 〈α1, β1〉2); again,

inserting (56) into such formula yields (58).

We will generalize the above results in the next section.

5 Landmark geometry with two nonzero momenta

The complexity of the formula for curvature reflects a real complexity in the geometry of the land-
mark space. But there is one case in which the geometry such space can be analyzed quite completely.
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This is when there are only two nonzero momenta along a geodesic. To put this in context, we first
introduce a basic structural relation between landmark spaces.

5.1 Submersions between landmark spaces

Instead of labeling the landmarks as 1, 2, · · · , N , one can use any finite index set A and label the
landmarks as qa with a ∈ A. And instead of calling the landmark space LN , we can call it LA.
Now suppose we have a subset B ⊂ A. Then there is a natural projection π : LA → LB gotten by
forgetting about the points with labels in A − B. In the metrics we have been discussing this is a
submersion. In fact, the kernel of dπ, the vertical subspace of TLA, is the space of vectors va such
that va = 0 if a ∈ B. Its perpendicular in T ∗ is:

(T ∗LA)B :=
{
p ∈ T ∗LA

∣∣pa = 0 for a ∈ A− B
}

so the orthogonal complement of ker(dπ) in TLA is the space of vectors p] where p is in (T ∗LA)B.
On this subspace, the norm is just ∑

b,b′∈B

K(qb − qb
′
)〈pb, pb′〉

whether p] is taken to be a tangent vector to A or to B. In other words, the horizontal subspace

for the submersion π is the subbundle (T ∗LA)]B ⊂ TLA of tangent vectors p] where p has zero
components in A − B and this has the same metric as the tangent space to LB. In particular,
from the general theory of submersions, we know that every geodesic in LB beginning at some
point π({qa}) has a unique lift to a horizontal geodesic in LA starting at {qa}. The picture to have
is that all the landmark spaces form a sort of inverse system of spaces whose inverse limit is the
group of diffeomorpisms of RD.

We don’t want to pursue this is in general, but rather we will study the special case where the
cardinality of B is two. We might as well, then, go back to our former terminology and consider the
map π : LN → L2 gotten by mapping an N -tuple (q1, q2, · · · , qN ) to the pair (q1, q2). Moreover, we
want to consider only the case in which the kernel K is rotationally invariant as in (K4). A basic
quantity in all that follows is the distance ρ := ‖q1−q2‖ between the two momentum bearing points.

5.2 Two momentum geodesics

Remarkably, we can describe, more or less explicitly, all the geodesics which arise as horizontal
lifts from this map. These are the geodesics with nonzero momenta only at q1 and q2. Moreover,
the formula for sectional curvature for the 2-plane spanned by any two horizontal vectors can be
analyzed. This analysis was started in the PhD thesis of the first author [23] and has been pursued
further in [22].

The metric tensor of L = L2(RD) in coordinates is obtained by inverting the 2× 2 matrix K:

K =

[
γ0 γ(ρ)
γ(ρ) γ0

]
=⇒

{
(K−1)11 = (K−1)22 = (γ2

0 − γ(ρ)2)−1γ0

(K−1)12 = (K−1)21 = −(γ2
0 − γ(ρ)2)−1γ(ρ)

, (59)

so that the cometric and metric, for all covectors α, β ∈ T ∗q L and vectors v, w ∈ TqL, are simply:

g−1(α, β) = γ0

(
〈α1, β1〉+ 〈α2, β2〉

)
+ γ(ρ)

(
〈α1, β2〉+ 〈α2, β1〉

)
, (60)

g(v, w) =
1

γ2
0 − γ(ρ)2

[
γ0

(
〈v1, w1〉+ 〈v2, w2〉

)
− γ(ρ)

(
〈v1, w2〉+ 〈v2, w1〉

)]
.
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The geometry of the two-point space is best understood by changing variables for the landmark
coordinates (q1, q2) and the momentum (p1, p2) to their means and semi-differences, that is:

q :=
q1 + q2

2
, δq :=

q1 − q2

2
, p :=

p1 + p2

2
, δp :=

p1 − p2

2
,

so that: q1 = q + δq, q2 = q − δq, p1 = p+ δp, p2 = p− δp.

Then the cometric (60) becomes:

g−1
(
(α, δα), (β, δβ)

)
= 2
(
γ0 + γ(ρ)

) 〈
α, β

〉
+ 2
(
γ0 − γ(ρ)

) 〈
δα, δβ

〉
. (61)

With these coordinates, the two-point landmark space becomes a product V ×Vδ in which all fibers
V ×{δq0} are flat Euclidean spaces though with variable scales, all fibers {q0}× Vδ are conformally
flat metrics sitting on the manifold RD−{0} and the tangent spaces of the two factors are orthogonal.

Proposition 16. In terms of means and semi-differences, the geodesic equations for L2(RD) are:

q̇ =
(
γ0 + γ(ρ)

)
p, ṗ = 0,

δ̇q =
(
γ0 − γ(ρ)

)
δp, δ̇p = −2

γ′(ρ)

ρ

(
‖p‖2 − ‖δp‖2

)
δq.

(62)

The above result is proven by direct computation. We can solve these equations in four steps.
1. First the linear momentum p is a constant, so “center of mass” q moves in a straight line

parallel to this constant:

q(t) = q(0) +
(∫ t

0

(
γ0 + γ(ρ(τ))

)
dτ
)
p. (63)

2. Secondly, if we treat vectors δq and δp as 1-forms in RD, equations (62) also show that:

(δq ∧ δp)� = δ̇q ∧ δp+ δq ∧ δ̇p = [(scalar) δp] ∧ δp+ δq ∧ [(scalar) δq] = 0,

so the angular momentum 2-form δq ∧ δp ∈
∧2 RD is constant ; we write this as ω e1 ∧ e2 where ω

is the nonnegative real magnitude of the angular momentum and (e1, e2) is an orthonormal pair.
Then it follows that:

δq(t) = 1
2ρ(t)

[
cos
(
θ(t)

)
e1 + sin

(
θ(t)

)
e2
]
, for some function θ(t).

3. Thirdly, we can express θ(t) as an integral:

δ̇q = 1
2 ρ̇
[

cos(θ)e1 + sin(θ)e2
]

+ 1
2ρθ̇
[
− sin(θ)e1 + cos(θ)e2

]
, so

δ̇q ∧ δq = − 1
4ρ

2θ̇ e1 ∧ e2, as well as (from (62)):

δ̇q ∧ δq =
(
γ0 − γ(ρ)

)
δp ∧ δq = −ω

(
γ0 − γ(ρ)

)
e1 ∧ e2;

combining the second and third lines, we find:

θ(t) = θ(0) + 4ω

∫ t

0

γ0 − γ(ρ(τ))

ρ(τ)2
dτ ; (64)

note that by (K1) and (K2) it is the case that γ0 ≥ γ(ρ) for any ρ ≥ 0, so θ is a monotone increasing
function if ω 6= 0, otherwise it is a constant.
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4. The last step is to solve for ρ(t). This can be done using conservation of energy [16, p. 51].
Equations (62) are in fact the cogeodesic equations for the Hamiltonian H(p, q) of section 4.1, which
we may rewrite in terms of means and semi-differences as

H =
(
γ0 + γ(ρ)

)
‖p‖2 +

(
γ0 − γ(ρ)

)
‖δp‖2

by (61); hence this function of ρ and ‖δp‖ is a constant (p is also a constant). Then we calculate:

(ρ2)� = 4〈δq, δq〉� = 8〈δ̇q, δq〉 = 8
(
γ0 − γ(ρ)

)
〈δp, δq〉 =⇒ ρ̇ = 4

γ0 − γ(ρ)

ρ
〈δp, δq〉.

But:

〈δp, δq〉2 + ω2 = 〈δp, δq〉2 + ‖δp ∧ δq‖2 = ‖δp‖2 · ‖δq‖2 =
ρ2

4

(
H− (γ0 + γ(ρ))‖p‖2

γ0 − γ(ρ)

)
,

=⇒ ρ̇ = 2

√
γ0 − γ(ρ)

ρ

√
ρ2
[
H−

(
γ0 + γ(ρ)

)
‖p‖2

]
− 4ω2

(
γ0 − γ(ρ)

)
.

This means that the function ρ(t) is the solution of:

t =

∫ ρ(t)

ρ(0)

x dx

2
√
F (x)

, where: F (x) := H x2
(
γ0 − γ(x)

)
− ‖p‖2x2

(
γ2

0 − γ(x)2
)
− 4ω2

(
γ0 − γ(x)

)2
.

(65)

Summary. If we fix constants H, p, ω, ρ(0), θ(0), qa(0) (for all a), we can first integrate (65)
to get ρ(t) (the separation of q1 and q2), then integrate (64) to find their relative angle θ(t), then
integrate (63) to get their center of mass q(t). This gives the trajectories of q1 and q2. The remaining
points are dragged along as solutions of: d

dtq
a(t) = γ

(
‖qa(t)− q1(t)‖

)
p1(t) + γ

(
‖qa(t)− q2(t)‖

)
p2(t).

As worked out in [22], one can classify the global behavior of these geodesics into two types. One
is the scattering type in which q1, q2 diverge from each other as time goes to either ±∞. This occurs
if the linear or angular momentum is large enough compared to the energy. In the other case where
the energy is large enough compared to both momenta, they come together asymptotically at either
t = +∞ or −∞, diverging at the other limit. In both cases, they may spiral around each other an
arbitrarily large number of times (see Figure 4).

5.3 Decomposing curvature

Next we consider LN (RD): we want to compute the sectional curvatureR(α], β], β], α]) for cotangent

vectors that are nonzero at only (q1, q2). Also, we will use the notation u := q1−q2
‖q1−q2‖ for the unit

vector from q2 to q1 as well as ρ = ‖q1 − q2‖ for their distance. Similarly to (54), we will also want
to decompose any vector in η ∈ RD into its parts tangent to u and perpendicular to u:

η‖ := 〈η, u〉, and η⊥ := η − η‖ u.

Once again note that η‖ is a scalar whereas η⊥ is a vector. Following the notation used to describe
geodesics above, for any α ∈ (T ∗q L)1,2 :=

{
η ∈ T ∗q L

∣∣ ηa = 0 for a > 2
}

, we write α = 1
2 (α1 + α2)

and δα = 1
2 (α1 − α2).
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Figure 4: Converging and diverging trajectories for two landmarks in two dimensions. In these ex-
amples γ(x) = exp(− 1

2x
2), (q1(0), q2(0)) = ((1, 0), (−1, 0)), (p1(0), p2(0)) = ((−10, 8.6), (10,−8.6))

for the graph on the left, (p1(0), p2(0)) = ((−10, 9), (10,−9)) for the graph on the right. The thick
and thin lines are, respectively, the trajectories of the first and second landmarks.

Proposition 17. In LN (RD) for any pair α, β ∈ (T ∗q L)1,2, the terms R1, R2 and R3 in the numer-
ator of sectional curvature can be written as

R1 = 4
(
γ0 − γ(ρ)

)2
γ′′(ρ)

〈
δα‖β1 − δβ‖α1, δα

‖β2 − δβ‖α2

〉
+ 4
(
γ0 − γ(ρ)

)2 γ′(ρ)

ρ

〈
δα⊥ ⊗ β1 − δβ⊥ ⊗ α1, δα

⊥ ⊗ β2 − δβ⊥ ⊗ α2

〉
,

R2 = −4
(
γ0 − γ(ρ)

)
γ′(ρ)2

〈
δα‖β1 − δβ‖α1, δα

‖β2 − δβ‖α2

〉
,

R3 =
γ0 − γ(ρ)

2
γ′(ρ)2

[(
〈α1, β2〉+ 〈β1, α2〉

)2 − 4〈α1, α2〉〈β1, β2〉
]
.

We need the following result.

Lemma 18. For any α ∈ (T ∗q L)1,2, the discrete strain S12(α) is given by:

S12(α) = 2
(
γ0 − γ(ρ)

)
δα. (66)

For any pair α, β ∈ (T ∗q L)1,2 it is the case that Fa(α, β) = 0 for a > 2, whereas

F1(α, β) = −F2(α, β) =
γ′(ρ)

2

(
〈α1, β2〉+ 〈β1, α2〉

)
u. (67)

Also,
D1(α, β) = 2

(
γ0 − γ(ρ)

)
γ′(ρ) δα‖ β2, D2(α, β) = 2

(
γ0 − γ(ρ)

)
γ′(ρ) δα‖ β1. (68)

Remark. We are not interested in Da(α, β) for a > 2 since the terms in formula (43) where they
appear are zero (because Fa(α, β) = 0 for a > 2).
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Proof of Lemma 18. The formula for the discrete strain results from:

S12(α) = (α])1 − (α])2 =
∑
b(K

1b −K2b)αb = γ0α1 + γ(ρ)α2 − γ(ρ)α1 − γ0α2 = 2
(
γ0 − γ(ρ)

)
δα.

The values for F follow immediately from formula (39) and ∇K12 = γ′(ρ)u. Note that:

C12(α) = C21(α) =
〈
S12(α),∇K12

〉
=
〈
2
(
γ0 − γ(ρ)

)
δα, γ′(ρ)u

〉
= 2
(
γ0 − γ(ρ)

)
γ′(ρ) δα‖, so

D1(α, β)=C12(α)β2 =2(γ0−γ(ρ))γ′(ρ)δα‖β2 and D2(α, β)=C21(α)β1 =2(γ0−γ(ρ))γ′(ρ)δα‖β1.

Proof of Proposition 17. The R1 expression follows by substituting the expressions in (66) into for-
mula (55), noting that the only non-zero terms in the latter are for (a, b) = (1, 2) and (a, b) = (2, 1).

By Theorem 9 and the fact that F2 = −F1 from Lemma 18, R2 is given by

R2 =
〈
D1(α, α)−D2(α, α), F1(β, β)

〉
+
〈
D1(β, β)−D2(β, β), F1(α, α)

〉
−
〈
D1(α, β)−D2(α, β) +D1(β, α)−D2(β, α), F1(α, β)

〉
. (69)

Again by Lemma 18 we have that D1(η, ζ) − D2(η, ζ) = −4
(
γ0 − γ(ρ)

)
γ′(ρ) δη‖ δζ for any pair

η, ζ ∈ (T ∗q L)1,2, while F1(η, ζ) = 1
2γ
′(ρ)
(
〈η1, ζ2

〉
+ 〈η2, ζ1〉

)
u. Applying this to all the terms we get

the expression for R2 in the statement of the proposition.
As far as R3 is concerned, by Theorem 9:

R3 = γ0

[
〈F1(α, β),F1(α, β)〉−〈F1(α, α),F1(β, β)〉

]
+γ(ρ)

[
〈F1(α, β),F2(α, β)〉 −〈F1(α, α),F2(β, β)〉

]
+ γ(ρ)

[
〈F2(α, β),F1(α, β)〉−〈F2(α, α),F1(β, β)〉

]
+γ0

[
〈F2(α, β),F2(α, β)〉 −〈F2(α, α),F2(β, β)〉

]
= 2(γ0 − γ(ρ))

[
〈F1(α, β), F1(α, β)〉 − 〈F1(α, α), F1(β, β)〉

]
= γ0−γ(ρ)

2 (γ′(ρ))2
[
(〈α1, β2〉+ 〈β1, α2〉)2 − 4〈α1, α2〉〈β1, β2〉

]
,

where we have used the fact that F2 = −F1, by equation (67). This completes the proof.

The expressions provided by Proposition 17 become much clearer if we go over to means and
semi-differences, i.e. if we use the substitutions:

α1 = α+ δα, α2 = α− δα, β1 = β + δβ, β2 = β − δβ. (70)

Corollary 19. For any α, β ∈ (T ∗q L)1,2, with L = LN (RD), it is the case that:

R1 = 4
(
γ0 − γ(ρ)

)2
γ′′(ρ)

(
‖δβ‖α− δα‖β‖2 − ‖δβ‖δα− δα‖δβ‖2

)
+ 4
(
γ0 − γ(ρ)

)2 γ′(ρ)

ρ

(
‖δβ⊥ ⊗ α− δα⊥ ⊗ β‖2 − ‖δβ⊥ ⊗ δα− δα⊥ ⊗ δβ‖2

)
,

R2 = −4
(
γ0 − γ(ρ)

)
γ′(ρ)2

(
‖δβ‖α− δα‖β‖2 − ‖δβ‖δα− δα‖δβ‖2

)
,

R3 =
(
γ0 − γ(ρ)

)
γ′(ρ)2

(
2‖δβ ⊗ α− δα⊗ β‖2 − ‖β ⊗ α− α⊗ β‖2 − ‖δβ ⊗ δα− δα⊗ δβ‖2

)
.

Proof. By insertion of formulae (70) it is easily seen that〈
δα‖β1 − δβ‖α1, δα

‖β2 − δβ‖α2

〉
= ‖δβ‖α− δα‖β‖2 − ‖δβ‖δα− δα‖δβ‖2,〈

δα⊥ ⊗ β1 − δβ⊥ ⊗ α1, δα
⊥ ⊗ β2 − δβ⊥ ⊗ α2

〉
= ‖δβ⊥ ⊗ α− δα⊥ ⊗ β‖2− ‖δβ⊥ ⊗ δα− δα⊥ ⊗ δβ‖2,
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so the new expressions for R1 and R2 follow immediately. Also:[
〈α1,β2〉+ 〈β1, α2〉

]2 − 4〈α1, α2〉〈β1, β2〉

=
[
2(〈α, β〉 − 〈δα, δβ〉)

]2 − 4
(
〈α, α〉 − 〈δα, δα〉

)(
〈β, β〉 − 〈δβ, δβ〉

)
= −2

[
2(〈α, α〉〈β, β〉 − 〈α, β〉2)

]
− 2
[
2(〈δα, δα〉〈δβ, δβ〉 − 〈δα, δβ〉2)

]
+ 4
[
〈α, α〉〈δβ, δβ〉+ 〈β, β〉〈δα, δα〉 − 2〈α, β〉〈δα, δβ〉

]
= −2‖β ⊗ α− α⊗ β‖2 − 2‖δβ ⊗ δα− δα⊗ δβ‖2 + 4‖δβ ⊗ α− δα⊗ β‖2.

The fourth term R4 is the only one which involves the other points qa, a > 2. But one has an
inequality for this term involving the same expressions in α and β:

Proposition 20. Any pair α, β ∈ (T ∗LN )1,2 are constant 1-forms on LN which are pull-backs via
the submersion LN → L2 of constant 1-forms on L2. We can therefore consider the curvature term
R4(LN ) = − 3

4‖[α
], β]]LN ‖2 on LN and the corresponding term R4(L2) = − 3

4‖[α
], β]]L2‖2 on L2.

Then we have the inequality:

R4(LN ) ≤ R4(L2) = −6γ′(ρ)2

[(
γ0 − γ(ρ)

)2
γ0 + γ(ρ)

‖δβ‖α− δα‖β‖2 +
(
γ0 − γ(ρ)

)
‖δβ‖δα− δα‖δβ‖2

]
.

Proof. Firstly, note that [α], β]]LN breaks into perpendicular parts: a vertical part in the kernel of
dπ and a horizontal part which is simply the horizontal lift of [α], β]]L2 . This explains the inequality
assertion in Proposition 20. To calculate R4(L2), we use the last expression in (45), i.e.

R4(L2) = − 3
4

∑2
a,b=1

〈
Da(α, β)−Da(β, α), Db(α, β)−Db(β, α)

〉
(K−1)ab

= −3
γ0 − γ(ρ)

γ0 + γ(ρ)
γ′(ρ)2

{
γ0

[
‖δα‖β1 − δβ‖α1‖2 + ‖δα‖β2 − δβ‖α2‖2

]
− 2γ(ρ)

〈
δα‖β1 − δβ‖α1, δα

‖β2 − δβ‖α2

〉}
,

where we have used (59) and (68). The final result follows after inserting (70) into the above
expression and performing some algebra.

Note that all terms in Corollary 19 and Proposition 20 are very similar. In fact, they are all
“components” of the norm ‖α ∧ β‖2 of the 2-form whose sectional curvature is being computed.
First note that we can decompose T ∗L2 into the direct sum of three pieces, namely:

δ‖T ∗L2 :=
{

(au,−au)
∣∣ a ∈ R

}
, dim

(
δ‖T ∗L2

)
= 1,

δ⊥T ∗L2 :=
{

(p,−p)
∣∣ p ∈ RD, p ⊥ u

}
, dim

(
δ⊥T ∗L2

)
= D − 1,

T
∗L2 :=

{
(p, p)

∣∣ p ∈ RD
}
, dim

(
T
∗L2

)
= D,

where as usual u := q1−q2
‖q1−q2‖ (see Figure 5). Note that these three subspaces are orthogonal with

respect to the cometric by virtue of (60). An arbitrary covector α = (α1, α2) ∈ T ∗q L2 can be uniquely
decomposed into the summation α = α(1) + α(2) + α(3), with:

α(1) := (δα‖u,−δα‖u) ∈ δ‖T ∗L2, α(2) := (δα⊥,−δα⊥) ∈ δ⊥T ∗L2, α(3) := (α, α) ∈ T ∗L2. (71)
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Figure 5: Typical covectors α = (α1, α2) in spaces δ‖T ∗q L, δ⊥T ∗q L, and T
∗
qL, for L = L2(R2).

So it is the case that: (i) α ∈ δ‖T ∗L2 ⇔ δ⊥α = 0 and α = 0; (ii) α ∈ δ⊥T ∗L2 ⇔ δ‖α = 0 and α = 0;

(iii) α ∈ T ∗L2 ⇔ δα‖ = 0 and δα⊥ = 0.

Consequently the space of 2-forms
∧2

T ∗L2 decomposes into the direct sum of five pieces:

2∧
T ∗L2 =

5⊕
i=1

Vi, with: V1 := δ‖T ∗L2 ∧ T
∗L2,

V2 := δ⊥T ∗L2 ∧ T
∗L2, V3 := δ‖T ∗L2 ∧ δ⊥T ∗L2,

V4 :=

2∧(
δ⊥T ∗L2

)
, V5 :=

2∧(
T
∗L2

)
.

(Since δ‖T ∗L2 is one-dimensional it creates no 2-forms.) Once again, note that the spaces V1, . . . , V5

are pairwise orthogonal with respect to the inner product〈
α ∧ β, ξ ∧ η

〉∧2 T∗L2 :=
〈
α, ξ
〉
T∗L2

〈
β, η

〉
T∗L2 −

〈
α, η

〉
T∗L2

〈
β, ξ
〉
T∗L2 , α, β, ξ, η ∈ T ∗L2 (72)

by the orthogonality of δ‖T ∗q L, δ⊥T ∗q L, and T
∗
qL. Any 2-form α ∧ β then decomposes into the sum

of its five projections onto these subspaces and its norm squared is the sum of the norm squared of
these components. Let us first give the five pieces of its norm names:

T1 := ‖δβ‖u⊗ α− δα‖u⊗ β‖2,
T2 := ‖δβ⊥ ⊗ α− δα⊥ ⊗ β‖2, T3 := ‖δβ‖u⊗ δα⊥ − δα‖u⊗ δβ⊥‖2,
T4 := ‖δβ⊥ ⊗ δα⊥ − δα⊥ ⊗ δβ⊥‖2, T5 := ‖β ⊗ α− α⊗ β‖2.

In the above definitions ‖ ‖ indicates the Euclidean norm. We have to be careful here: we have
been using Euclidean norms in RD in all our formulas above and now we are dealing with norms in
T ∗L2; these essentially differ only by a factor, by (61). More precisely, the following result holds:

Proposition 21. The denominator of the sectional curvature (17) for L2(R2) can be written as:

‖α ∧ β‖2∧2 T∗L2 = 4
(
γ2

0 − γ(ρ)2
)
(T1 + T2) + 2

(
γ0 − γ(ρ)

)2
(2T3 + T4) + 2

(
γ0 + γ(ρ)

)2
T5. (73)

Proof. We may apply decomposition (71) to both α =
∑3
i=1 α(i) and β =

∑3
i=1 β(i), and write

α ∧ β =
(
α(1) ∧ β(3) − β(1) ∧ α(3)

)
+
(
α(2) ∧ β(3) − β(2) ∧ α(3)

)
+
(
α(1) ∧ β(2) − β(1) ∧ α(2)

)
+ α(2) ∧ β(2) + α(3) ∧ β(3),
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where the five summands on the right-hand side belong to V1, . . . , V5 respectively. We have

‖α(1) ∧ β(3) − β(1) ∧ α(3)‖2∧2 T∗L2 =

=
∥∥α(1) ∧ β(3)‖2∧2 T∗L2 +

∥∥β(1) ∧ α(3)‖2∧2 T∗L2 − 2〈α(1) ∧ β(3), β(1) ∧ α(3)〉∧2 T∗L2

(∗)
= 4

(
γ2

0 − γ(ρ)2
)[

(δα‖)2‖β‖2 + (δβ‖)2‖α‖2 − 2 δα‖δβ‖〈α, β〉
]

= 4
(
γ2

0 − γ(ρ)2
)
T1,

where we have used (72) and (61) in step (∗). The square norm of the remaining four terms is
computed similarly. Orthogonality of V1, . . . , V5 finally yields (73).

To express the formulas for the numerator of sectional curvature succinctly, let us also introduce
abbreviations for the coefficients involving γ:

k1(ρ) :=
(
γ0 − γ(ρ)

)2
γ′′(ρ), k2(ρ) :=

(
γ0 − γ(ρ)

)2 γ′(ρ)

ρ
,

k3(ρ) :=
(
γ0 − γ(ρ)

)
γ′(ρ)2, k4(ρ) :=

(
γ0 − γ(ρ)

)2
γ0 + γ(ρ)

γ′(ρ)2.

(74)

Note that k1, k2, k3 and k4 are all homogeneous of degree 3 in γ and degree −2 in the distance ρ
or dρ on LN . Moreover k2 is negative, k3 and k4 are positive, while k1 may be positive or negative.
For all γ of interest, γ′ is everywhere negative, starting at 0 decreasing to a minimum at some ρ0,
then increasing back to 0 at ∞. Then k1 is negative for ρ < ρ0 and positive for ρ > ρ0.

The following equalities are proven by direct computation:

‖δβ ⊗ α− δα⊗ β‖2 = T1 + T2,

‖δβ⊥ ⊗ δα− δα⊥ ⊗ δβ‖2 = T3 + T4,

‖δβ ⊗ δα− δα⊗ δβ‖2 = 2T3 + T4.

Inserting notation (74) and the above equalities into Propositions 17 and 20 immediately yields:

Proposition 22. We can write the terms in the numerator of sectional curvature for L2(RD) as:

R1 = 4k1(T1 − T3) + 4k2(T2 − T3 − T4), R2 = −4k3(T1 − T3),

R3 = k3(2(T1 + T2)− 2T3 − T4 − T5), R4 = −6(k3T3 + k4T1),
(75)

hence R = R(α], β], β], α]) =
∑4
i=1Ri may be expressed as:

R = 2
(
2k1 − k3 − 3k4

)
T1 + 2

(
2k2 + k3

)
T2 + 4

(
− k1 − k2 − k3

)
T3 +

(
− 4k2 − k3

)
T4 − k3T5. (76)

By virtue of Proposition 20 the above proposition still holds in the case of LN (RD) as long
as α, β ∈ (T ∗q L)1,2 and the equality signs for R4 in (75) and R in (76) are substituted by “≤”. The
coefficients in (76) may have all sorts of signs for peculiar kernels. However, the kernels γ of interest
are the Bessel kernels (3) and the Gaussian kernel, which is their asymptotic limit as their order
goes to infinity. The coefficients for these kernels are shown in Figure 6. We see that the coefficients
of T2 and T3 are negative while those of T4 are positive. Henceforth, we assume we have a kernel
for which this is true.
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2k1−k3−3k4

2k2+k3

−k1−k2−k3

−4k2−k3

Figure 6: The coefficients of T1 (top left), T2 (top right), T3 (bottom left) and T4 (bottom right) for
the Bessel kernels γ (shown with thin lines) and the Gaussian kernel (shown with the thick line).
The kernels are scaled to normalize γ(0) and γ′′(0).

5.4 Sectional curvature of L2(R1)

Finally, we will now explore the important example of two landmarks on the real line. In this partic-
ular case the manifold is two dimensional, so sectional curvature K will turn out to be independent
of cotangent vectors α and β. In fact, given the translation invariance of the metric tensor, it will
only depend on the distance ρ = |q1 − q2| between the two landmarks.

The spaces δ‖T ∗L2(R1) and T
∗L2(R1) are one-dimensional while δ⊥T ∗L2(R1) = {0}. Thus

2∧
T ∗L2(R1) = δ‖T ∗L2(R1) ∧ T

∗L2(R1)

and the only non-zero term in (76) is T1. Therefore combining formulas (73) and (76) we get:

Proposition 23. The sectional curvature of L2(R1) is given by

K =
2k1 − k3 − 3k4

2(γ2
0 − γ(ρ)2)

=
γ0 − γ(ρ)

γ0 + γ(ρ)
γ′′12 −

2γ0 − γ(ρ)

(γ0 + γ(ρ))2

(
γ′(ρ)

)2
.

The above function K is shown on the left-hand side of Figure 7 as a function of ρ, for the
Gaussian kernel. The coefficient of the term T1 in (76) is negative for ρ small and positive for ρ
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Figure 7: Left: sectional curvature K for L2(R1) (from Proposition 23), as a function of ρ = |q1−q2|;
here γ(x) = exp(− 1

2x
2). Right: two trajectories in L2(R1) shown in the (q1, q2) plane (under the

assumption that q1 < q2). Both geodesics originate at (q1, q2) = (0, 4), and lie in the region
where K > 0 (above the upper dotted line, that indicates the zero of K at |q1 − q2| ' 1.53); they
have different initial momenta (p1, p2) = (1, 1) and (p1, p2) = (1, 0.4), and exhibit conjugate points.

large. The “cause” of the positive curvature has been analyzed in [23]. Roughly speaking, suppose
two points both want to move a fixed distance to the right. Then if they are far enough away, they
can just move more or less independently (we shall refer to this as Geodesic 1). Or (i) the one in
back can speed up while the one in front slows down, then (ii) when the pair are close, they move in
tandem using less energy because they are close and finally (iii) the back one slows down, the front
one speeds up when they near their destinations (Geodesic 2). This gives explicit conjugate points
(in the sense that two points are joined by distinct geodesics) and is illustrated on the right-hand
side of figure Figure 7 (where Geodesics 1 and 2 are represented, respectively, by the dashed and
thick curves).

5.5 Sources of positive curvature; obstacle avoidance

There is another source of positive curvature in L2 in higher dimensions. It is clear from equation (76)
and Figure 6 that any positive curvature must come from the term with T1 or the term with T4. As
the five terms are orthogonal, we can make all of them but one zero.

For example, if we choose α = (δα‖u,−δα‖u) ∈ δ‖T ∗L and β = (β, β) ∈ T ∗L, then it is the case
that T1 = (δα‖)2‖β‖2 and it is the only non-zero term. Then, if ρ is sufficiently large, the sectional
curvature for this 2-plane is positive as discussed in the last section. Figure 8 illustrates an instance
of the existence of conjugate points for two geodesics in L2(R2); the momenta (p1, p2) of each of the

two trajectories belong at all times to δ‖T ∗L2 ⊕ T ∗L2.
The other possibility is that T4 is the non-zero term, which happens when α = (δα⊥,−δα⊥) ∈

δ⊥T ∗L and β = (δβ⊥,−δβ⊥) ∈ δ⊥T ∗L. We have T4 = 2(‖δα⊥‖2‖δβ⊥‖2 − 〈δα⊥, δβ⊥〉2), and for it
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Figure 8: Existence of conjugate points in L2(R2), with γ(x) = exp(− 1
2x

2). Both geodesics

originate at landmark set (q1, q2) =
(
(−2,−4), (2, 4)

)
; the first one (dashed) has initial momen-

tum (p1, p2) =
(
(0, 10), (0, 10)

)
∈ T

∗L2 while the second one (continuous) has initial momentum

(p1, p2) =
(
(6, 10), (−6, 10)

)
∈ δ‖T ∗L2 ⊕ T ∗L2. The geodesic trajectories exhibit conjugate points.

to be nonzero it is required that D ≥ 3 because T4 is the norm of a 2-form in
∧2 (

δ⊥T ∗L
)
, which

has dimension (D−1)(D−2)/2. The positive curvature of this section is readily seen by considering
the geodesics which these vectors generate. The simplest example is the following:

Proposition 24. The circular periodic orbit of radius r:

q1(t) = (r cos t, r sin t), q2(t) = −q1(t), (77)

t ∈ R, is a geodesic in L2(R2) if and only if r is the solution of the equation γ0−γ(2r)+rγ′(2r) = 0.

Proof. For orbit (77) it is the case that q ≡ 0, δq = q1 and ρ ≡ 2r; also p1 =
(
γ0 − γ(ρ)

)−1
q̇1 and

p2 = −p1, so that p = 0 and δp = p1. The first three equations of (62) can easily be checked; the
fourth one holds if and only if γ0 − γ(2r) + rγ′(2r) = 0.

(The above result was also proven by François-Xavier Vialard of Imperial College, London.)
Orbit (77) has the property that at time π, q1 and q2 interchange their positions: it is a geodesic
from the set of landmark points

(
(r, 0), (−r, 0)

)
∈ L2(R2) to the set

(
(−r, 0), (r, 0)

)
∈ L2(R2). But

if these points live in R3, they can move around each other in any plane containing the points. Thus
we have a circle of geodesics in L2(R3):

q1(t) = (r cos t, r cos θ sin t, r sin θ sin t), q2(t) = −q1(t)

all connecting
(
(r, 0, 0), (−r, 0, 0)

)
to
(
(−r, 0, 0), (r, 0, 0)

)
, for any θ ∈ [0, 2π). This is exactly like all

the lines of fixed longitude connecting the north and south pole on the 2-sphere and means that one
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set of landmark points is a conjugate point of the other in L2(R3). This is the simplest example of
how geodesics between landmark points must avoid collisions and so make a choice between different
possible detours, leading to conjugate points and thus positive curvature.

6 Conclusions

We believe that LN (RD), the Riemannian manifold of N landmark points in D dimensions, is a
fundamental object for differential geometry and that we have only scratched the surface in its study.
We started with a basic formula which computes sectional curvature of a Riemannian manifold in
terms of the cometric, its partial derivatives, and the metric itself (but not its derivatives). This is
particularly adapted to computing curvature for manifolds which arise as submersive quotients of
other manifolds and gives O’Neill’s formula as a corollary. We then applied this to derive a formula
for sectional curvature of the space of landmarks. This formula is not simple but, like Arnold’s
formula for curvature of Lie groups under left- (or right)-invariant metrics, splits into a sum of four
terms. The four terms involve interesting intermediate expressions in the two vectors (or co-vectors)
which define the section and which have relatively simple geometric interpretations. We called these
the mixed force, the discrete vector strain, the scalar compression and the landmark derivative. The
geodesic equation in its Hamiltonian form is quite simple and involves the force as expected. We
also gave several concrete examples to illustrate the nature of these geodesics.

Finally, we have examined in detail the case of geodesics in which only one or two landmark points
have non-zero momenta, and computed the curvature in sections spanned by such geodesics. We
found that in this case there are essentially two sources of positive curvature. One can understand
them through the non-uniqueness of geodesics joining two N -tuples: the first sort of non-uniqueness
is caused by the two points with non-zero momentum choosing between converging in the middle of
the geodesic (“car-pooling”) or moving independently and not converging; the second occurs only
when D ≥ 3 and arises when the same two points need to get around each other and must choose
on which side to pass (if D = 2, this sort non-uniqueness also occurs but comes from non-trivial
topology, not curvature).

One of the most important questions left open is explore how prevalent positive curvature is in
general, i.e. for geodesics in which all points carry momentum. Answering this question is central
to applications of landmark space in which geodesics are actually computed. One might hope that
the picture for two momenta is true in general but this is far from clear. It seems interesting to
explore whether there is some sort of “index” for curvature forms — a numerical measure of how
much positive vs. negative curvature is present. Another important question is to explore the shape
of the coefficients in (76) for different kernels. More generally, what is the impact of different kernel
types (Bessel, Gaussian, Cauchy) on the corresponding geodesics? Finally, note that all kernels have
a length constant built into their definition so the geometry of the space of landmarks is far from
scale invariant. Thus one should analyze what happens asymptotically when the points are very
close relative to this constant or are very far from each other.
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