Remarks on Infinite dimensional symplectic and Poisson geometry

Peter W. Michor

University of Vienna, Austria www.mat.univie.ac.at/~michor

Unendlich-dimensionale Analysis und Geometrie
University of Paderborn
March 26, 2025
Slides will be available at:
https://www.mat.univie.ac.at/~michor/lectures.html

Based on:

[KM97] Andreas Kriegl, Peter W. Michor: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, Volume: 53, Amer. Math. Soc., 1997.

See also:

Wikipedia [https://en.wikipedia.org/wiki/Convenient_vector_space]

- W. M. Tulczyjew. The graded Lie algebra of multivector fields and the generalized Lie deriv- ative of forms. Bull. Acad. Polon. Sci., 22, 9:937–942, 1974.
- [BIM24] Martin Bauer, Sadashige Ishida, Peter W. Michor. Symplectic structures on the space of space curves. arXiv:2407.19908.

Review

For a finite dimensional symplectic manifold (M, ω) we have the following exact sequence of Lie algebras:

$$0 \to H^0(M) \to C^\infty(M,\mathbb{R}) \xrightarrow{\mathsf{grad}^\omega} \mathfrak{X}(M,\omega) \to H^1(M) \to 0.$$

 $H^*(M)$ De Rham cohomology of M with 0 bracket. $C^\infty(M,\mathbb{R})$ is equipped with the Poisson bracket $\{\ ,\ \}$, $\mathfrak{X}(M,\omega)$ all vector fields ξ with $\mathcal{L}_\xi\omega=0$ with usual Lie bracket.

Furthermore, grad^{ω} f is the Hamiltonian vector field for $f \in C^{\infty}(M, \mathbb{R})$ given by $i(\operatorname{grad}^{\omega} f)\omega = df$ and $\gamma(\xi) = [i_{\xi}\omega]$.

Consider a symplectic right action $r: M \times G \to M$ of a connected Lie group G on M; we use the notation $r(x,g)=r^g(x)=r_x(g)=x.g$. By $\zeta_X(x)=T_e(r_x)X$ we get a mapping $\zeta:\mathfrak{g}\to\mathfrak{X}(M,\omega)$ which sends each element X of the Lie algebra \mathfrak{g} of G to the fundamental vector field ζ_X . This is a Lie algebra homomorphism (for right actions!).

$$H^0(M) \xrightarrow{i} C^{\infty}(M, \mathbb{R}) \xrightarrow{\operatorname{grad}^{\omega}} \mathfrak{X}(M, \omega) \xrightarrow{\gamma} H^1(M)$$

A linear lift $j:\mathfrak{g}\to C^\infty(M,\mathbb{R})$ of ζ with $\mathrm{grad}^\omega\circ j=\zeta$ exists if and only if $\gamma\circ\zeta=0$ in $H^1(M)$. This lift j may be changed to a Lie algebra homomorphism if and only if the 2-cocycle $\overline{\jmath}:\mathfrak{g}\times\mathfrak{g}\to H^0(M)$, given by $(i\circ\overline{\jmath})(X,Y)=\{j(X),j(Y)\}-j([X,Y])$, vanishes in the Lie algebra cohomology $H^2(\mathfrak{g},H^0(M))$, for if $\overline{\jmath}=\delta\alpha$ then $j-i\circ\alpha$ is a Lie algebra homomorphism.

If $j: \mathfrak{g} \to C^\infty(M,\mathbb{R})$ is a Lie algebra homomorphism, we may associate the *momentum mapping* $J: M \to \mathfrak{g}' = L(\mathfrak{g},\mathbb{R})$ to it, which is given by $J(x)(X) = \chi(X)(x)$ for $x \in M$ and $X \in \mathfrak{g}$. It is G-equivariant for a suitably chosen (in general affine) action of G on \mathfrak{g}' .

Infinite dimensional weak symplectic manifolds

Let M be a manifold, in general is infinite dimensional, Hausdorff, in the sense of convenient calculus.

A 2-form $\omega \in \Omega^2(M)$ is called a *weak symplectic structure* on M if the following three conditions holds:

- 1. ω is closed, $d\omega = 0$.
- 2. The associated vector bundle homomorphism $\check{\omega}:TM\to T^*M$ is injective.
- 3. The gradient of ω with respect to itself exists and is smooth; this can be expressed most easily in charts, so let M be open in a convenient vector space E. Then for $x \in M$ and $X, Y, Z \in T_x M = E$ we have $d\omega(x)(X)(Y,Z) = \omega(\Omega_x(Y,Z),X) = \omega(\tilde{\Omega}_x(X,Y),Z)$ for smooth $\Omega, \tilde{\Omega}: M \times E \times E \to E$ which are bilinear in $E \times E$.

A 2-form $\omega \in \Omega^2(M)$ is called a *strong symplectic structure* on M if it is closed $(d\omega = 0)$ and if its associated vector bundle homomorphism $\check{\omega}: TM \to T^*M$ is invertible with smooth inverse.

In this case, the vector bundle TM has reflexive fibers T_xM : Let $i:T_xM\to (T_xM)''$ be the canonical mapping onto the bidual. Skew symmetry of ω is equivalent to the fact that the transposed $(\check{\omega})^t=(\check{\omega})^*\circ i:T_xM\to (T_xM)'$ satisfies $(\check{\omega})^t=-\check{\omega}$. Thus, $i=-((\check{\omega})^{-1})^*\circ\check{\omega}$ is an isomorphism.

Cotangent bundles

Every cotangent bundle T^*Q , viewed as a manifold, carries a canonical weak symplectic structure $\omega_Q \in \Omega^2(T^*Q)$, which is defined as follows. Let $\pi_Q^*: T^*Q \to Q$ be the projection. Then the Liouville form $\theta_Q \in \Omega^1(T^*Q)$ is given by $\theta_{\mathcal{Q}}(X) = \langle \pi_{T^*\mathcal{Q}}(X), T(\pi_{\mathcal{Q}}^*)(X) \rangle$ for $X \in T(T^*\mathcal{Q})$, where $\langle \cdot, \cdot \rangle$ denotes the duality pairing $T^*Q \times_Q TQ \to \mathbb{R}$. Then the symplectic structure on T^*Q is given by $\omega_Q = -d\theta_Q$, which of course in a local chart looks like $\omega_F((v,v'),(w,w')) = \langle w',v\rangle_F - \langle v',w\rangle_F$. The associated mapping $\check{\omega}: T_{(0,0)}(E \times E') = E \times E' \to E' \times E''$ is given by $(v, v') \mapsto (-v', i_E(v))$, where $i_E : E \to E''$ is the embedding into the bidual. So the canonical symplectic structure on T^*Q is strong if and only if all model spaces of the manifold Q are reflexive.

Towards the Hamiltonian mapping

Let M be a weak symplectic manifold. The first thing to note is that the Hamiltonian mapping $\operatorname{grad}^\omega: C^\infty(M,\mathbb{R}) \to \mathfrak{X}(M,\omega)$ does not make sense in general, since $\check{\omega}: TM \to T^*M$ is not invertible. Namely, $\operatorname{grad}^\omega f = (\check{\omega})^{-1} \circ df$ is defined only for those $f \in C^\infty(M,\mathbb{R})$ with df(x) in the image of $\check{\omega}$ for all $x \in M$. A similar difficulty arises for the definition of the Poisson bracket on $C^\infty(M,\mathbb{R})$.

For a weak symplectic manifold (M,ω) let $T_x^\omega M$ denote the real linear subspace $T_x^\omega M=\check\omega_x(T_xM)\subset T_x^*M=L(T_xM,\mathbb{R})$, and let us call it the ω -smooth cotangent space with respect to ω of M at x. The convenient structure on $T_x^\omega M$ is the one from T_xM . All $T_x^\omega M$ together form a subbundle of T^*M isomorphic to TM via $\check\omega:TM\to T^\omega M\subseteq T^*M$. It is in general not a splitting subbundle.

Note that only for strong symplectic structures the mapping $\check{\omega}_X: T_XM \to T_X^*M$ is a diffeomorphism onto $T_X^\omega M$ with the structure induces from T_X^*M .

Definition of $C^{\infty}_{\omega}(E,\mathbb{R}) \subset C^{\infty}(E,\mathbb{R})$.

For a weak symplectic vector space (E,ω) we consider linear subspace $C^{\infty}_{\omega}(E,\mathbb{R}) \subset C^{\infty}(E,\mathbb{R})$ consisting of all smooth functions $f: E \to \mathbb{R}$ such that

▶ each iterated derivative $d^k f(x) \in L^k_{\mathsf{sym}}(E; \mathbb{R})$ has the property that

$$d^k f(x)(y_2,\ldots,y_k) \in E^{\omega}$$

is actually in the smooth dual $E^{\omega} \subset E'$ for all $x, y_2, \dots, y_k \in E$,

▶ and that the mapping $\prod^k E \to E$

$$(x, y_2, \ldots, y_k) \mapsto (\check{\omega})^{-1}(df(x)(y_2, \ldots, y_k))$$

is smooth. By the symmetry of higher derivatives, this is then true for all entries of $d^k f(x)$, for all x.

This makes sense even if (E,ω) is a weak symplectic manifold which happens to be a convenient vector space since

$$T^{\omega}E \cong TE = E \times E =: E \times E^{\omega} \subset T^*E = E \times E' \longrightarrow \mathbb{R}$$

Lemma. [KM97, 48.6] For $f \in C^{\infty}(E, \mathbb{R})$ the following assertions are equivalent:

- 1. $df: E \to E'$ factors to a smooth mapping $E \to E^{\omega}$.
- 2. f has a smooth ω -gradient $\operatorname{grad}^{\omega} f \in \mathfrak{X}(E) = C^{\infty}(E, E)$ which satisfies $df(x)y = \omega(\operatorname{grad}^{\omega} f(x), y)$.
- 3. $f \in C^{\infty}_{\omega}(E, \mathbb{R})$.

Definition of $C^{\infty}_{\omega}(M,\mathbb{R}) \subset C^{\infty}(M,\mathbb{R})$:

For a weak symplectic manifold (M,ω) the space $C^{\infty}_{\omega}(M,\mathbb{R})$ is the linear subspace consisting of all smooth functions $f:M\to\mathbb{R}$ such that the differential $df:M\to T^*M$ factors to a smooth mapping $M\to T^{\omega}M$. It follows that these are exactly those smooth functions on M which admit a smooth ω -gradient $\operatorname{grad}^{\omega} f\in\mathfrak{X}(M)$.

Let (M, ω) be a weak symplectic manifold. The Hamiltonian mapping $\operatorname{grad}^{\omega}: C_{\omega}^{\infty}(M, \mathbb{R}) \to \mathfrak{X}(M, \omega)$, which is given by

$$i_{\mathsf{grad}^{\omega}} f \omega = df$$
 or $\mathsf{grad}^{\omega} f := (\check{\omega})^{-1} \circ df$

is well defined. Also the Poisson bracket

$$\{ \quad , \quad \} : C^{\infty}_{\omega}(M,\mathbb{R}) \times C^{\infty}_{\omega}(M,\mathbb{R}) \to C^{\infty}_{\omega}(M,\mathbb{R})$$

$$\{ f,g \} := i_{\mathsf{grad}^{\omega} f} i_{\mathsf{grad}^{\omega} g} \omega = \omega(\mathsf{grad}^{\omega} g, \mathsf{grad}^{\omega} f) =$$

$$= dg(\mathsf{grad}^{\omega} f) = (\mathsf{grad}^{\omega} f)(g)$$

is well defined and gives a Lie algebra structure to the space $C^{\infty}_{\omega}(M,\mathbb{R})$, which also fulfills

$${f,gh} = {f,g}h + g{f,h}.$$

Theorem, continued.

We equip $C^{\infty}_{\omega}(M,\mathbb{R})$ with the initial structure with respect to the the two following mappings:

$$C^{\infty}_{\omega}(M,\mathbb{R}) \stackrel{\subset}{\longrightarrow} C^{\infty}(M,\mathbb{R}), \qquad C^{\infty}_{\omega}(M,\mathbb{R}) \stackrel{\mathsf{grad}^{\omega}}{\longrightarrow} \mathfrak{X}(M).$$

Then the Poisson bracket is bounded bilinear on $C^{\infty}_{\omega}(M,\mathbb{R})$.

We have the following long exact sequence of Lie algebras and Lie algebra homomorphisms:

$$0 \to H^0(M) \to C^\infty_\omega(M,\mathbb{R}) \xrightarrow{\mathsf{grad}^\omega} \mathfrak{X}(M,\omega) \xrightarrow{\gamma} H^1_\omega(M) \to 0,$$

where $H^0(M)$ is the space of locally constant functions, and

$$H^{1}_{\omega}(M) = \frac{\{\varphi \in C^{\infty}(M \leftarrow T^{\omega}M) : d\varphi = 0\}}{\{df : f \in C^{\infty}_{\omega}(M, \mathbb{R})\}}$$

is the first symplectic cohomology space of (M, ω) , a linear subspace of the De Rham cohomology space $H^1(M)$.

The Diez-Rudolph topology

In [DR24, 5.3: T.Diez, G.Rudolph: Symplectic Reduction in Infinite Dimensions, arXiv:2409.05829], for a weak symplectic vector space (E,ω) , a locally convex topology τ on E is called compatible with ω if the dual $(E,\tau)'=\check{\omega}(E)=E^\omega\subset E'$.

Proposition. [DR24,5.4] For a convenient weak symplectic vector space the bornological topology on E is compatible with ω

- in the Bastiani setting: iff E is a reflexive Banach space and ω is strong.
- here: iff E is reflexive and ω is strong.

Note that $L^p \times L^{p'}$ is symplectic, Banach, but i,g, not Hilbert. Namely: If we take $E' \times E \to \mathbb{R}$ is given by $(x',x) \mapsto \omega(\check{\omega}^{-1}(x'),x)$ as duality reflexivity follows.

How does this notion fit into the convenient framework?

Example: Let $E = \ell^2 \times \ell^2$ with the weak symplectic structure $\omega((x,y),(x',y')) = \sum_n c_n(x_ny'_n - y_nx'_n)$ for a sequence $0 < c_n \searrow 0$ sufficiently fast.

Then any l.c. topology on E compatible with ω is NOT convenient: Namely, let $0 < b_n \nearrow \infty$ with $b_n c_n \searrow 0$. Then for suitable $x \in \ell^2$ the sequence $X_k := (b_n x_n)_{n=1}^k \in \ell^2$ is a Mackey-Cauchy sequence for the weak $\sigma(E, E^\omega)$ -topology but its limit $X = (b_n x_n)$ is i.g. not in ℓ^2 .

Smooth Curves into (E,τ) . [KM97, Section 1] Since (E,τ) is not Mackey complete in general, we define $c:\mathbb{R}\to(E,\tau)$ to be smooth if $\lambda\circ c:\mathbb{R}\to\mathbb{R}$ is smooth **and** each iterated derivative $c^{(n)}(t)$ lies in E (a priori only in the c^{∞} -completion of E). We denote this space by $C^{\infty}(\mathbb{R},(E,\tau))$, and by $c^{\infty}(\tau)$ we denote the final topology on E with respect to $C^{\infty}(\mathbb{R},(E,\tau))$.

Question. Let (E,ω) be a convenient weak symplectic vector space and let τ be any l.c. topology compatible with ω . Under which conditions do we have $C^{\infty}(\mathbb{R},(E,\tau))=C^{\infty}(\mathbb{R},E)$?

Proposition. Let (E,ω) be a convenient weak symplectic vector space and let τ be any l.c. topology compatible with ω . Suppose that the bornology of E has a basis of $\sigma(E,\check{\omega}(E))$ -closed sets (i.e., each bounded set is contained in a $\sigma(E,\omega(E))$ -closed bounded set). This is he case if (E,ω) is a convenient weak symplectic vector space which is a dual space E=F' such that $\check{\omega}(E)\subseteq F\subseteq E'=E''$.

Then we have $C^{\infty}(\mathbb{R},(E,\tau))=C^{\infty}(\mathbb{R},E)$.

This includes the the $\ell^2 \times \ell^2$ example from above.

In the convenient spirit, under this condition we then have $C^{\infty}_{\omega}(E,\mathbb{R})=C^{\infty}((E,\tau),\mathbb{R})$, although (E,τ) is NOT a convenient space.

Proof. This is a special case of the following theorem.

Theorem[KF88, Theorem 4.1.19] Let $c : \mathbb{R} \to E$ be a curve in a convenient vector space E. Let $\mathcal{F} \subseteq E'$ be a subset of bounded linear functionals such that the bornology of E has a basis of $\sigma(E,\mathcal{F})$ -closed sets. Then the following are equivalent:

- 1. c is smooth
- 2. There exist locally bounded curves $c^k : \mathbb{R} \to E$ such that $\lambda \circ c$ is smooth $\mathbb{R} \to \mathbb{R}$ with $(\lambda \circ c)^{(k)} = \lambda \circ c^k$, for each $\lambda \in \mathcal{F}$ and each k.

If E = F' is the dual of a convenient vector space F, then for any point separating subset $\mathcal{F} \subseteq F$ the bornology of E has a basis of $\sigma(E,\mathcal{F})$ -closed subsets, by $[FK88 \ 4.1.22]$.

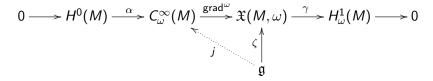
[FK88] Frölicher, A.; Kriegl, A., Linear spaces and differentiation theory, Pure Appl. Math., J. Wiley, Chichester, 1988.

Weakly symplectic group actions.

An infinite dimensional regular Lie group G with Lie algebra $\mathfrak g$ acts from the right on a weak symplectic manifold (M,ω) by $r: M \times G \to M$ (notation $r(x,g) = r^g(x) = r_x(g)$), so that each r^g is a symplectomorphism. Some immediate consequences:

- (1) The space $C_{\omega}^{\infty}(M)^G$ of G-invariant smooth functions with ω -gradients is a Lie subalgebra for the Poisson bracket, since for each $g \in G$ and $f, h \in C^{\infty}(M)^G$ we have $(r^g)^*\{f, h\} = \{(r^g)^*f, (r^g)^*h\} = \{f, h\}.$
- (2) For $x \in M$ the pullback of ω to the orbit x.G is a 2-form, invariant under the action of G on the orbit. In finite dimensions the orbit is an initial submanifold. Here this has to be checked directly in each example. There is a tangent bundle $T_x(x.G) = T(r_x)\mathfrak{g}$. If $i: x.G \to M$ is the embedding of the orbit then $r^g \circ i = i \circ r^g$, so that $i^*\omega = i^*(r^g)^*\omega = (r^g)^*i^*\omega$ holds for each $g \in G$ and thus $i^*\omega$ is invariant.

(3) The infinitesimal action $\zeta:\mathfrak{g}\to\mathfrak{X}(M,\omega)$, given by $\zeta_X(x)=T_e(r_x)X$ for $X\in\mathfrak{g}$ and $x\in M$, is a homomorphism of Lie algebras (for a left action we get an anti homomorphism of Lie algebras). We have the exact sequence of Lie algebra homomorphisms



- (4) If $H^1_{\omega}(M) = 0$ then any symplectic action on (M, ω) is a Hamiltonian action.
- (5) If the Lie algebra $\mathfrak g$ is equal to its commutator subalgebra $[\mathfrak g,\mathfrak g]$, the linear span of all [X,Y] for $X,Y\in\mathfrak g$ (true for all full diffeomorphism groups), then any infinitesimal symplectic action $\zeta:\mathfrak g\to\mathfrak X(M,\omega)$ is a Hamiltonian action, since then any $Z\in\mathfrak g$ can be written as $Z=\sum_i [X_i,Y_i]$ so that $\zeta_Z=\sum_i [\zeta_{X_i},\zeta_{Y_i}]\in \operatorname{im}(\operatorname{grad}^\omega)$ since $\gamma:\mathfrak X(M,\omega)\to H^1_\omega(M)$ is a homominto the zero Lie bracket.

(6) If $j:\mathfrak{g}\to (C^\infty_\omega(M),\{\quad,\quad\})$ happens to be not a homomorphism of Lie algebras then $c(X,Y)=\{j(X),j(Y)\}-j([X,Y])$ lies in $H^0(M)$, and indeed $c:\mathfrak{g}\times\mathfrak{g}\to H^0(M)$ is a cocycle for the Lie algebra cohomology: c([X,Y],Z)+c([Y,Z],X)+c([Z,X],Y)=0. If c is a coboundary, i.e., c(X,Y)=-b([X,Y]), then $j+\alpha\circ b$ is a Lie algebra homomorphism. If the cocycle c is non-trivial we can use the central extension $H^0(M)\times_c\mathfrak{g}$ with bracket [(a,X),(b,Y)]=(c(X,Y),[X,Y]) in the diagram

$$0 \longrightarrow H^{0}(M) \xrightarrow{\alpha} C_{\omega}^{\infty}(M) \xrightarrow{\operatorname{grad}^{\omega}} \mathfrak{X}(M, \omega) \xrightarrow{\gamma} H_{\omega}^{1}(M) \longrightarrow 0$$

$$\downarrow \int_{0}^{1} \operatorname{dr}_{0}^{\gamma} \operatorname{dr}$$

where $\bar{\jmath}(a,X) = j(X) + \alpha(a)$. Then $\bar{\jmath}$ is a homomorphism of Lie algebras.

Momentum mapping

For an infinitesimal symplectic action $\zeta: \mathfrak{g} \to \mathfrak{X}(M,\omega)$ we can find a linear lift $j: \mathfrak{g} \to C^{\infty}_{\omega}(M,\mathbb{R})$ iff there exists $J \in C^{\infty}_{\omega}(M,\mathfrak{g}^*) := \{f \in C^{\infty}(M,\mathfrak{g}^*): \langle f(-), X \rangle \in C^{\infty}_{\omega}(M) \text{ for all } X \in \mathfrak{g} \}$ such that $\operatorname{grad}^{\omega}(\langle J, X \rangle) = \zeta_X$ for all $X \in \mathfrak{g}$.

 $J \in C^{\infty}_{\omega}(M, \mathfrak{g}^*)$ is called the *momentum mapping* for the infinitesimal action $\zeta : \mathfrak{g} \to \mathfrak{X}(M, \omega)$.

Basic properties of the momentum mapping

(1) For $x \in M$, the transposed mapping of the linear mapping $dJ(x): T_xM \to \mathfrak{g}^*$ is

$$dJ(x)^{\top}: \mathfrak{g} \to T_x^*M, \qquad dJ(x)^{\top} = \check{\omega}_x \circ \zeta$$

(2) The closure of the image $dJ(T_xM)$ of $dJ(x): T_xM \to \mathfrak{g}*$ is the annihilator \mathfrak{g}_x° of the isotropy Lie algeba $\mathfrak{g}_x := \{X \in \mathfrak{g}: \zeta_X(x) = 0\}$ in \mathfrak{g}^* , since the annihilator of the image is the kernel of the transposed mapping,

(3) The kernel of dJ(x) is the symplectic orthogonal

$$(T(r_{\mathsf{x}})\mathfrak{g})^{\perp,\omega}=(T_{\mathsf{x}}(\mathsf{x}.\mathsf{G}))^{\perp,\omega}\subseteq T_{\mathsf{x}}\mathsf{M}.$$

- (4) If G is connected, $x \in M$ is a fixed point for the G-action if and only if x is a critical point of J, i.e. dJ(x) = 0.
- (5) (Emmy Noether's theorem) Let $h \in C^{\infty}_{\omega}(M)$ be a Hamiltonian function which is invariant under the Hamiltonian G action. Then $dJ(\operatorname{grad}^{\omega}(h)) = 0$. Thus the momentum mapping $J: M \to \mathfrak{g}^*$ is constant on each trajectory (if it exists) of the Hamiltonian vector field $\operatorname{grad}^{\omega}(h)$.

Towards the Schouten-Nijenhuis bracket

Let M be a convenient smooth manifold. We shall use the graded differential algebra of differential forms consisting of smooth sections of the bundle of bounded skew symmetric multilinear forms $L^*_{\text{skew}}(TM,\mathbb{R})$ on the the tangent bundle:

$$\Omega(M) = \bigoplus_{k=0}^{\infty} \Omega^{k}(M) = \bigoplus_{k=0}^{\infty} C^{\infty}(M \leftarrow L_{\mathsf{skew}}^{k}(TM, \mathbb{R})).$$

Later we shall use only manifolds M having the following property: For each covector $\alpha \in T^*M$ there exists a function $f \in C^\infty(M)$ with $df_{\pi(\alpha)} = \alpha$. The following classes of manifolds have this property: Smoothly paracompact manifolds (having smoothly paracompact modelling spaces). Each manifold M such that $C^\infty(M,\mathbb{R})$ separates points on TM: Then ev : $M\ni x\mapsto \operatorname{ev}_x\in C^\infty(M,\mathbb{R})'$ is a smooth injective immersion and linear functionals in $C^\infty(M,\mathbb{R})'$ restricted to $T\operatorname{ev}.TM\subset C^\infty(M,\mathbb{R})'$ suffice.

The bornological tensor product

For a convenient vector space E, let $E\bar{\otimes}_{\beta}E$ be the c^{∞} -completed bornological tensor product which linearizes bibounded bilinear mappings. If E is a Banach or Fréchet or (DF) space then each bibounded bilinear mapping is jointly continuous and thus $E\bar{\otimes}_{\beta}E$ agrees with the completed projective tensor product of Grothendieck.

Let $\bigwedge^n E$ be the (Mackey-) closed linear subspace of all alternating tensors in $\bigotimes_{\beta}^n E$. It is the universal solution for convenient vector spaces F of the linearization problem $L(\bigwedge^n E, F) \cong L^n_{\rm alt}(E; F)$, where $L^n_{\rm alt}(E; F)$ is the space of all bounded n-linear alternating mappings $E \times \ldots \times E \to F$, a direct summand of $L^n(E; F) := L(E, \ldots, E; F)$. The mapping $\bigwedge^n : L(E, F) \to L(\bigwedge^n E, \bigwedge^n F)$ is bounded multilinear and thus smooth.

Summable skew multi vector fields

We apply the smooth mapping

$$\bigwedge^n: L(E,F) \to L(\bigwedge^n E, \bigwedge^n F)$$

to the chart change mappings for the tangent bundle $TM \rightarrow M$ to obtain the smooth vector bundle $\pi_M: \bigwedge^n TM \to M$ of summable *n*-multi vectors on M. Note that the space linearly generated by $X_1 \wedge \cdots \wedge X_n$ for $X_i \in T_x M$ is dense in the fiber $\bigwedge^n T_x M$. The space $\Gamma(\bigwedge^n TM)$ of smooth sections of this bundle is the space of summable multi vector fields on M. We write $\Gamma(\bigwedge^0 TM) = C^{\infty}(M, \mathbb{R})$ and $\Gamma(\bigwedge TM) = \bigoplus_{n>0} \Gamma(\bigwedge^n TM)$ which is a graded commutative algebra for the usual wedge-product of multi vector fields for the grading $(\Gamma(\Lambda TM), \Lambda)_n = \Gamma(\Lambda^n TM)$. The wedge product is a bounded bilinear operation on the convenient space $\Gamma(\Lambda TM)$, by the universal property of the bornological tensor product.

Easy Theorem.

Schouten-Nijenhuis bracket for summable multi vector fields. Let M be a smooth manifold. We consider the space $\Gamma(\bigwedge_{sum}TM)$ of multivector fields on M. This space carries a graded Lie bracket for the grading $\Gamma(\bigwedge_{sum}^{*+1}TM), *=-1,0,1,2,\ldots$, called the Schouten-Nijenhuis bracket, which is given by

$$[X_1 \wedge \cdots \wedge X_p, Y_1 \wedge \cdots \wedge Y_q]$$

$$= \sum_{i,j} (-1)^{i+j} [X_i, Y_j] \wedge X_1 \wedge \cdots \widehat{X}_i \cdots \wedge X_p \wedge Y_1 \wedge \cdots \widehat{Y}_j \cdots \wedge Y_q,$$

$$[f, U] = -\overline{\imath} (df) U,$$

where $\bar{\imath}(df)$ is the insertion operator $\bigwedge_{sum}^k TM \to \bigwedge_{sum}^{k-1} TM$, the adjoint of $df \land () : \bigwedge_{sum}^l T^*M \to \bigwedge_{sum}^{l+1} T^*M$.

Easy Theorem continued

Let $U \in \Gamma(\bigwedge_{sum}^u TM)$, $V \in \Gamma(\bigwedge_{sum}^v TM)$, $W \in \Gamma(\bigwedge_{sum}^w TM)$, and $f \in C^{\infty}(M, \mathbb{R})$. Then we have:

$$[X,V]=\mathcal{L}_XV$$
 is the Lie derivation along a vector field X $[U,V]$ $[U,[V,W]]=[[U,V],W]+(-1)^{(u-1)(v-1)}[V,[U,W]].$ $[U,V\wedge W]=[U,V]\wedge W+(-1)^{(u-1)v}V\wedge [U,W].$ $[X,U]=\mathcal{L}_XU.$

The last 4 properties determine the Schouten bracket uniquely on $\Gamma(\bigwedge_{sum} TM)$

Let $P \in \Gamma(\bigwedge_{sum}^2 TM)$. Then the product $\{f,g\} := \frac{1}{2} \langle df \wedge dg, P \rangle$ on $C^{\infty}(M)$ satisfies the Jacobi identity if and only if [P,P] = 0.

Duality between multivector fields and differential forms

Let M be a smooth manifold modeled on a convenient vector space E. By the universal property of the bornological tensor product described in !1.1, the dual space of $\bigwedge^n E$ is the space $L^n_{\text{skew}}(E;\mathbb{R})$. Using and extending the conventions of *Greub78*, we start from the duality

$$\langle \ , \ \rangle : \bigwedge^n E^* \times \bigwedge^n E \to \mathbb{R}$$
$$\langle \varphi_1 \wedge \dots \wedge \varphi_n, X_1 \wedge \dots \wedge X_n \rangle = \det(\langle \varphi_i, X_j \rangle_{i,j})$$

we get the complete fiberwise duality

$$\langle , \rangle : \Omega^n(M) \times \Gamma(\bigwedge^n TM) \to C^{\infty}(M),$$

 $\langle \omega, X_1 \wedge \cdots \wedge X_n \rangle = \omega(X_1, \dots, X_n)$

We have the following dual pairs of operators: For $\omega \in \Omega^p(M)$ the linear map $\mu(\omega): \Omega^k(M) \to \Omega^{k+p}(M)$ given by $\mu(\omega)\psi := \omega \wedge \psi$ is the fiberwise dual operator to $\bar{\iota}(\omega): \Gamma(\bigwedge^{k+p} TM) \to \Gamma(\bigwedge^k TM)$, where

$$\overline{\iota}(\omega)(X_1 \wedge \cdots \wedge X_{k+p}) =
= \frac{1}{p!k!} \sum_{\sigma \in \mathfrak{S}_{k+p}} \operatorname{sign}(\sigma) \omega(X_{\sigma(1)}, \dots, X_{\sigma(p)}) X_{\sigma(p+1)} \wedge \cdots \wedge X_{\sigma(p+k)}.$$

Likewise, for $U \in \Gamma(\bigwedge^p TM)$ the fiberwise linear mapping $\bar{\mu}(U) : \Gamma(\bigwedge^k TM) \to \Gamma(\bigwedge^{k+p} TM)$ given by $\bar{\mu}(U)V = U \wedge V$ is the fiberwise dual of the 'insertion operator' $i(U) : \Omega^{k+p}(M) \to \Omega^k(M)$.

Lemma.

Let U be in $\Gamma(\bigwedge^u TM)$. Then we have:

- ▶ $i(U): \Omega(M) \to \Omega(M)$ is a homogeneous bounded module homomorphism of degree -u. It is a graded derivation of $\Omega(M)$ if and only if p=1. For $f \in C^{\infty}(M)$ we have $i(f)\omega = f.\omega$.
- ▶ $i(U \land V) = i(V) \circ i(U)$, thus the graded commutator vanishes:

$$[i(U), i(V)] = i(U)i(V) - (-1)^{uv}i(V)i(U) = 0.$$

▶ $i(U)(\omega \wedge \psi) = i(\overline{\iota}(\omega)U)\psi + (-1)^u\omega \wedge i(U)\psi$ for $\omega \in \Omega^1(M)$ and $\psi \in \Omega(M)$, that is: $[i(U), \mu(\omega)] = i(\overline{\iota}(\omega)U)$

The Lie differential operator

For
$$U \in \Gamma(\bigwedge^u TM)$$
 we define the *Lie derivation* $\mathcal{L}(U): \Omega^k(M) \to \Omega^{k-u+1}(M)$ by
$$\mathcal{L}(U):= [i(U),d] = i(U) \circ d - (-1)^p d \circ i(U)$$

which is homogeneous of degree 1-u and is called the Lie differential operator. It is a derivation if and only if U is a vector field. We have $[\mathcal{L}(U),d]=0$ by the graded Jacobi identity of the graded commutator.

Theorem

Let $U \in \Gamma(\bigwedge^u TM)$, $V \in \Gamma(\bigwedge^v TM)$, and $f \in C^{\infty}(M)$. Then we have:

$$\mathcal{L}(U \wedge V) = i(V) \circ \mathcal{L}(U) + (-1)^{u} \mathcal{L}(V) \circ i(U)$$
 (1)

$$\mathcal{L}(X_{1} \wedge \cdots \wedge X_{u}) =$$

$$= \sum_{j} (-1)^{j-1} i(X_{u}) \cdots i(X_{j+1}) \mathcal{L}(X_{j}) i(X_{j-1}) \cdots i(X_{1})$$
 (2)

$$\mathcal{L}(f) = [i(f), d] = [\mu(f), d] = -\mu(df)$$
 (3)

$$[\mathcal{L}(U), i(V)] = (-1)^{(u-1)(v-1)} i([U, V]) = -i([V, U])$$
 (4)

$$[\mathcal{L}(U), \mathcal{L}(V)] = (-1)^{(u-1)(v-1)} \mathcal{L}([U, V]) = -\mathcal{L}([V, U])$$
 (5)

$$\langle d\omega, -[V, U] \rangle = \langle di(V) d\omega, U \rangle$$

 $-(-1)^{(u-1)(v-1)}\langle di(U)d\omega,V\rangle$

(6)

Formula (6) was the starting point of the treatment of the Schouten-Nijenhuis bracket in *Tulczyjew74*.

The general Schouten bracket

For a convenient manifold the general multivector fields of order k are the smooth sections of the vector bundle $L^k_{\text{skew}}(T^*M,\mathbb{R}) \to M$. We could call these

$$\mathsf{MV}(M) = \sum_{k=0}^{\infty} \mathsf{MV}^k(M) := \sum_{k=0}^{\infty} \Gamma(L_{\mathsf{skew}}^k(T^*M, \mathbb{R})).$$

A summable differential form ω on M is a smooth section of the bundle of skew symmetric tensors

 $\bigwedge_{\operatorname{sum}}^k T^*M \subset \bar{\otimes}_{\beta}^k T^*M = T^*M\bar{\otimes}_{\beta}T^*M\bar{\otimes}_{\beta}\ldots\bar{\otimes}_{\beta}T^*M \to M,$ where $\bar{\otimes}_{\beta}$ denotes the c^{∞} -completed bornological tensor product which linearizes bounded bilinear mappings.

Let us denote by $\Omega^k_{\operatorname{sum}}(M)$ the graded algebra of all summable differential forms. Note that exterior derivative $d:\Omega^k(M)\to\Omega^{k+1}(M)$ does not map $\Omega^k_{\operatorname{sum}}(M)$ into $\Omega^{k+1}_{\operatorname{sum}}(M)$; summability of a form is destroyed by the exterior derivative.

The graded algebra $\Omega_{\text{sum},d}(M)$

Therefore we let $\Omega^k_{\operatorname{sum},d}(M)$ be the graded differential subalgebra of all summable forms ω such that $d\omega$ is again summable. Note that the latter condition is a linear partial differential relation. Here we assume that $C^\infty(M)$ separates points on TM: For each $\alpha \in T^*M$ there exists $f \in C^\infty(M)$ with $df_{\pi(\alpha)} = \alpha$. Consequently, $\operatorname{ev}_X \circ d: \Omega^k_{\operatorname{sum},d}(M) \to \bigwedge^{k+1} T^*_x M$ is surjective for all $x \in M$

The vector bundle $L^k_{\text{skew}}(T^*M,\mathbb{R}) \to M$ is the dual bundle of $\bigwedge_{\text{sum}}^k T^*M \to M$; we will denote the duality by (the dual space is always on the feft hand side)

$$\langle , \rangle : L^k_{\mathsf{skew}}(T^*M, \mathbb{R}) \times_M \bigwedge_{\mathsf{sum},\beta}^k T^*M \to \mathbb{R}$$

$$\langle U, \varphi_1 \wedge \dots \wedge \varphi_k \rangle = U(\varphi_1, \dots, \varphi_k)$$

as well as its extension to spaces of sections.

For $\omega \in \Omega^k_{\text{sum}}(M)$ we consider the pointwise linear (i.e., vector bundle push-forward) mapping

$$\mu(\omega): \Omega^{\ell}_{\mathsf{sum}}(M) \to \Omega^{\ell+k}_{\mathsf{sum}}(M), \quad \mu(\omega)\varphi = \omega \wedge \varphi$$

and its pointwise dual

$$\bar{\iota}(\omega) = \mu(\omega)^* : \mathsf{MV}^{\ell+k}(M) \to \mathsf{MV}^{\ell}(M),$$

 $\langle U, \mu(\omega)\varphi \rangle = \langle U, \omega \wedge \varphi \rangle = \langle \bar{\iota}(\omega)U, \varphi \rangle$

For a decomposable k-form $\omega = \varphi_1 \wedge \cdots \wedge \varphi_k$ we have

$$\langle \bar{\iota}(\varphi_1 \wedge \dots \wedge \varphi_k) U, \varphi_{k+1} \wedge \dots \wedge \varphi_{k+\ell} \rangle =$$

$$= \langle U, \varphi_1 \wedge \dots \wedge \varphi_k \wedge \varphi_{k+1}, \dots, \varphi_{k+\ell} \rangle$$

$$= U(\varphi_1, \dots, \varphi_{k+\ell})$$

Similarly, for $U \in MV^u(M)$ we consider

$$\bar{\mu}(U): \mathsf{MV}^{\ell}(M) \to \mathsf{MV}^{u+\ell}(M), \quad \bar{\mu}(U)V = U \wedge V$$

which is the dual of $i(U): \Omega^{\ell+u}_{\operatorname{sum}}(M) \to \Omega^{\ell}_{\operatorname{sum}}(M)$ which on decomposable $u+\ell$ -forms is given by

$$i(U)(\varphi_1 \wedge \dots \wedge \varphi_{u+\ell}) =$$

$$= \frac{1}{u!\ell!} \sum_{\sigma \in \mathcal{S}_{k+\ell}} \operatorname{sign}(\sigma) U(\varphi_{\sigma(1)}, \dots, \varphi_{\sigma(u)}) \varphi_{\sigma(u+1)} \wedge \dots \wedge \varphi_{\sigma(k+\ell)}$$

Thus i(U) respects the d-stable subalgebra $\Omega^k_{\mathsf{sum},d}(M)$ so that

$$i(U): \Omega^{\ell+u}_{\mathsf{sum},d}(M) \to \Omega^{\ell}_{\mathsf{sum},d}(M)$$

Lemma

Let U be in $MV^{u}(M)$ and $V \in MV^{v}(M)$. Then we have:

- 1. $i(U): \Omega_{sum}(M) \to \Omega_{sum}(M)$ is a homogeneous bounded module homomorphism of degree -u. It is a graded derivation of $\Omega_{sum}(M)$ if and only if p=1. For $f \in C^{\infty}(M)$ we have $i(f)\omega = f.\omega$.
- 2. $i(U \wedge V) = i(V) \circ i(U)$, thus the graded commutator vanishes:

$$[i(U), i(V)] = i(U)i(V) - (-1)^{uv}i(V)i(U) = 0.$$

3. $i(U)(\omega \wedge \psi) = i(\overline{\iota}(\omega)U)\psi + (-1)^u \omega \wedge i(U)\psi$, i.e., $[i(U), \mu(\omega)] = i(\overline{\iota}(\omega)U)$, for $\omega \in \Omega^1(M)$ and $\psi \in \Omega_{sum}(M)$.

The Schouten-Nijenhuis bracket: Tulczyjew's Approach

We turn the above Theorem around and use (6) as definition: For $\omega \in \Omega^{u+v-2}_{\text{sum},d}(M)$ we put

$$\langle [U,V],d\omega \rangle = -\langle V,di(U)d\omega \rangle + (-1)^{(u-1)(v-1)}\langle U,di(V)d\omega \rangle$$

We can also prove

$$\langle [U,V], fd\omega \rangle = -f \langle V, di(U)d\omega \rangle + (-1)^{(u-1)(v-1)}f \langle U, di(V)d\omega \rangle.$$

So [U,V] is a multivector field of order u+v-1: To see this, note first that $[\ ,\]$ respects f-dependence of multivector field; then restrict U and V to chart, and compute (1) where $d\omega=\varphi_1\wedge\ldots\varphi_{u+v-1}$ for constant 1-forms φ_i . Then

$$[\ ,\]:\mathsf{MV}^u(M) imes\mathsf{MV}^v(M) o\mathsf{MV}^{u+v-1}(M)$$

is a smooth (bounded) bilinear operator satisfying $[U,V]=-(-1)^{(u-1)(v-1)}[V,U]$. It also satisfies

$$\bar{\iota}(df)[U,V] = [\bar{\iota}(df)U,V] + (-1)^{u-1}[U,\bar{\iota}(df)V]$$

We also have

$$i([U, V]) = -i(V)di(U) + (-1)^{(u-1)(v-1)}i(U)di(V) + (-1)^{v}di(U \wedge V) + (-1)^{u}i(U \wedge V)d$$

Definition of Lie differentials: For $U \in MV^u(M)$ the *Lie differential operator*

$$\mathcal{L}(U) := [i(U), d] = i(U) \circ d - (-1)^{p} d \circ i(U)$$
$$: \Omega^{k}_{\mathsf{sum}, d}(M) \to \Omega^{k-u+1}_{\mathsf{sum}, d}(M)$$

is well defined. It is a derivation if and only if U is a vector field. We have $[\mathcal{L}(U),d]=0$ by the graded Jacobi identity of the graded commutator. We now generalise the above Theorem to this new situation:

Theorem

Let $U \in MV^u(M)$, $V \in MV^v(M)$, and $f \in C^{\infty}(M)$. Then we have:

$$\mathcal{L}(U \wedge V) = i(V) \circ \mathcal{L}(U) + (-1)^{u} \mathcal{L}(V) \circ i(U)$$
 (1)

$$\mathcal{L}(X_1 \wedge \cdots \wedge X_u) =$$

$$= \sum_{j} (-1)^{j-1} i(X_u) \cdots i(X_{j+1}) \mathcal{L}(X_j) i(X_{j-1}) \cdots i(X_1)$$
 (2)

$$\mathcal{L}(f) = [i(f), d] = [\mu(f), d] = -\mu(df)$$
 (3)

$$[\mathcal{L}(U), i(V)] = (-1)^{(u-1)(v-1)}i([U, V]) = -i([V, U])$$
(4)

$$[\mathcal{L}(U), \mathcal{L}(V)] = (-1)^{(u-1)(v-1)} \mathcal{L}([U, V]) = -\mathcal{L}([V, U])$$
 (5)