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Dramatis personae:
A diagram of actions of diffeomorphism groups.

Diff(M)
r-acts

right action
//

r-acts

%%
Diff(M,µ)

����

Imm(M,N)

needs ḡxx Diff(M) &&

DiffA(N)

r-acts

��

l-acts

left action
oo

l-acts

(LDDMM)xx
Met(M)

Diff(M) %% %%

Bi (M,N)

needs ḡxx
Vol1+(M) Met(M)

Diff(M) MetA(N)

M compact ,N possibly non-compact manifold

Met(N) = Γ(S2
+T∗N) space of all Riemann metrics on N

ḡ one Riemann metric on N

Diff(M) Lie group of all diffeos on compact mf M

DiffA(N), A ∈ {H∞,S, c} Lie group of diffeos of decay A to IdN

Imm(M,N) mf of all immersions M → N

Bi (M,N) = Imm/Diff(M) shape space

Vol1+(M) ⊂ Γ(vol(M)) space of positive smooth probability densities



At the very birth of the notion of manifolds, in his Habilitationsschrift
1854, Riemann mentioned infinite dimensional manifolds explicitly:

“Es giebt indess auch Mannigfaltigkeiten, in welchen die Orts-
bestimmung nicht eine endliche Zahl, sondern entweder eine un-
endliche Reihe oder eine stetige Mannigfaltigkeit von Grössen-
bestimmungen erfordert. Solche Mannigfaltigkeiten bilden z.B.
die möglichen Bestimmungen einer Function für ein gegebenes
Gebiet, die möglichen Gestalten einer räumlichen Figur u.s.w.”

Translation into English by W.K. Clifford 1873:

“There are manifoldnesses in which the determination of posi-
tion requires not a finite number, but either an endless series or
a continuous manifoldness of determinations of quantity. Such
manifoldnesses are, for example, the possible determinations of a
function for a given region, the possible shapes of a solid figure,
&c.”

If one reads this with a lot of good will one can interpret it as follows:

When Riemann sketched the general notion of a manifold, he also forsaw

the notion of an infinite dimensional manifold of mappings between

manifolds, and of a manifold of shapes. He then went on to describe the

notion of Riemannian metric and to talk about curvature.



The diagram in a simpler situation

Diff(S1)
r-acts

right action
//

r-acts

%%
r-acts

��

Imm(S1,R2)

needs ḡxx Diff(S1) ''

DiffA(R2)

r-acts

��

l-acts

left action
oo

l-acts

(LDDMM)xx
Vol+(S1)

����

Met(S1)

Diff(S1)

&& &&

Bi (S1,R2)

needs ḡxx
Vol+(S1)
Diff(S1)

∫
fdθ

=
// R>0

Met(S1)
Diff(S1)∫ √

gdθ

=oo Met(R2)

Diff(S1) Lie group of all diffeos on compact mf S1

DiffA(R2), A ∈ {B,H∞,S, c} Lie group of diffeos of decay A to IdR2

Imm(S1
,R2) mf of all immersions S1 → R2

Bi (S
1
,R2) = Imm/Diff(S1) shape space

Vol+(S1) =
{
f dθ : f ∈ C∞(S1

,R>0)
}

space of positive smooth probability densities

Met(S1) =
{
g dθ2 : g ∈ C∞(S1

,R>0)
}

space of metrics on S1



Some words on smooth convenient calculus

Traditional differential calculus works well for finite dimensional
vector spaces and for Banach spaces.
Beyond Banach spaces, the main difficulty is that composition of
linear mappings stops to be jointly continuous at the level of
Banach spaces, for any compatible topology.

For more general locally convex spaces we sketch here the
convenient approach as explained in [Frölicher-Kriegl 1988] and
[Kriegl-Michor 1997].

I explain this to show how simple differential calculus can be!



The c∞-topology

Let E be a locally convex vector space. A curve c : R→ E is
called smooth or C∞ if all derivatives exist and are continuous. Let
C∞(R,E ) be the space of smooth curves. It can be shown that
the set C∞(R,E ) does not depend on the locally convex topology
of E , only on its associated bornology (system of bounded sets).
The final topologies with respect to the following sets of mappings
into E coincide:

1. C∞(R,E ).

2. The set of all Lipschitz curves (so that

{ c(t)−c(s)
t−s : t 6= s, |t|, |s| ≤ C} is bounded in E , for each C ).

3. The set of injections EB → E where B runs through all
bounded absolutely convex subsets in E , and where EB is the
linear span of B equipped with the Minkowski functional
‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (there
exists a sequence 0 < λn ↗∞ with λn(xn − x) bounded).



The c∞-topology. II

This topology is called the c∞-topology on E and we write c∞E
for the resulting topological space.
In general (on the space D of test functions for example) it is finer
than the given locally convex topology, it is not a vector space
topology, since addition is no longer jointly continuous. Namely,
c∞(D ×D) is strictly finer than c∞D × c∞D.
The finest among all locally convex topologies on E which are
coarser than c∞E is the bornologification of the given locally
convex topology. If E is a Fréchet space, then c∞E = E .



Convenient vector spaces

A locally convex vector space E is said to be a convenient vector
space if one of the following holds (called c∞-completeness):

1. For any c ∈ C∞(R,E ) the (Riemann-) integral
∫ 1

0 c(t)dt
exists in E .

2. Any Lipschitz curve in E is locally Riemann integrable.

3. A curve c : R→ E is C∞ if and only if λ ◦ c is C∞ for all
λ ∈ E ∗, where E ∗ is the dual of all cont. lin. funct. on E .
I Equiv., for all λ ∈ E ′, the dual of all bounded lin. functionals.
I Equiv., for all λ ∈ V, where V is a subset of E ′ which

recognizes bounded subsets in E .

We call this scalarwise C∞.

4. Any Mackey-Cauchy-sequence (i. e. tnm(xn − xm)→ 0 for
some tnm →∞ in R) converges in E . This is visibly a mild
completeness requirement.



Convenient vector spaces. II

5. If B is bounded closed absolutely convex, then EB is a Banach
space.

6. If f : R→ E is scalarwise Lipk , then f is Lipk , for k > 1.

7. If f : R→ E is scalarwise C∞ then f is differentiable at 0.

Here a mapping f : R→ E is called Lipk if all derivatives up to
order k exist and are Lipschitz, locally on R. That f is scalarwise
C∞ means λ ◦ f is C∞ for all continuous (equiv., bounded) linear
functionals on E .



Smooth mappings

Let E , and F be convenient vector spaces, and let U ⊂ E be
c∞-open. A mapping f : U → F is called smooth or C∞, if
f ◦ c ∈ C∞(R,F ) for all c ∈ C∞(R,U).
If E is a Fréchet space, then this notion coincides with all other
reasonable notions of C∞-mappings. Beyond Fréchet mappings, as
a rule, there are more smooth mappings in the convenient setting
than in other settings, e.g., C∞c .



Main properties of smooth calculus

1. For maps on Fréchet spaces this coincides with all other
reasonable definitions. On R2 this is non-trivial [Boman,1967].

2. Multilinear mappings are smooth iff they are bounded.

3. If E ⊇ U
f−−→ F is smooth then the derivative

df : U × E → F is smooth, and also df : U → L(E ,F ) is
smooth where L(E ,F ) denotes the space of all bounded linear
mappings with the topology of uniform convergence on
bounded subsets.

4. The chain rule holds.

5. The space C∞(U,F ) is again a convenient vector space where
the structure is given by the obvious injection

C∞(U,F )
C∞(c,`)−−−−−−→

∏
c∈C∞(R,U),`∈F∗

C∞(R,R), f 7→ (` ◦ f ◦ c)c,`,

where C∞(R,R) carries the topology of compact convergence
in each derivative separately.



Main properties of smooth calculus, II

6. The exponential law holds: For c∞-open V ⊂ F ,

C∞(U,C∞(V ,G )) ∼= C∞(U × V ,G )

is a linear diffeomorphism of convenient vector spaces.
Note that this is the main assumption of variational
calculus. Here it is a theorem.

7. A linear mapping f : E → C∞(V ,G ) is smooth (by (2)
equivalent to bounded) if and only if

E
f−−→ C∞(V ,G )

evv−−−→ G is smooth for each v ∈ V .

(Smooth uniform boundedness theorem, [KM97], theorem
5.26).
A mapping f : U → L(F ,G ) is smooth iff

U
f−−→ L(F ,G )

evx−−−→ G is smooth for all x ∈ F .



Main properties of smooth calculus, III

8. The following canonical mappings are smooth.

ev : C∞(E ,F )× E → F , ev(f , x) = f (x)

ins : E → C∞(F ,E × F ), ins(x)(y) = (x , y)

( )∧ : C∞(E ,C∞(F ,G ))→ C∞(E × F ,G )

( )∨ : C∞(E × F ,G )→ C∞(E ,C∞(F ,G ))

comp : C∞(F ,G )× C∞(E ,F )→ C∞(E ,G )

C∞( , ) : C∞(F ,F1)× C∞(E1,E )→
→ C∞(C∞(E ,F ),C∞(E1,F1))

(f , g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏

C∞(Ei ,Fi )→ C∞(
∏

Ei ,
∏

Fi )



This ends our review of the standard results of convenient calculus.
Convenient calculus (having properties 6 and 7) exists also for:

I Real analytic mappings [Kriegl,M,1990]; recent result:
[Bochnak, Kucharz: Real analyticity is concentrated in
dimension 2, 2018].

I Holomorphic mappings [Kriegl,Nel,1985] (notion of
[Fantappié, 1930-33])

I Many classes of Denjoy Carleman ultradifferentible functions,
both of Beurling type and of Roumieu-type
[Kriegl,M,Rainer, 2009, 2011, 2013]

I With some adaptations, Lipk [Frölicher-Kriegl, 1988].

I With more adaptations, even C k,α (k-th derivative
Hölder-contin. with index α) [Faure,Frölicher 1989], [Faure,
These Geneve, 1991]



Manifolds of mappings

Let M be a compact (for simplicity’s sake) fin. dim. manifold and
N a manifold. We use an auxiliary Riemann metric ḡ on N. Then

0N_�
��

zero section

{{
N� _
��

diagonal

%%
TN V N? _

open
oo (πN ,expḡ )

∼=
// V N×N � �

open
// N × N

C∞(M,N), the space of smooth mappings M → N, has the
following manifold structure. Chart, centered at f ∈ C∞(M,N), is:

C∞(M,N) ⊃ Uf = {g : (f , g)(M) ⊂ V N×N} uf−−−→ Ũf ⊂ Γ(f ∗TN)

uf (g) = (πN , expḡ )−1 ◦ (f , g), uf (g)(x) = (expḡf (x))−1(g(x))

(uf )−1(s) = expḡf ◦s, (uf )−1(s)(x) = expḡf (x)(s(x))



Manifolds of mappings II

Lemma: C∞(R, Γ(M; f ∗TN)) = Γ(R×M; pr2
∗ f ∗TN)

By Cartesian Closedness (after handling local trivializations).
Lemma: Chart changes are smooth (C∞)
Ũf1 3 s 7→ (πN , expḡ ) ◦ s 7→ (πN , expḡ )−1 ◦ (f2, expḡ

f1
◦s)

since they map smooth curves to smooth curves.
Lemma: C∞(R,C∞(M,N)) ∼= C∞(R×M,N).
By Cartesian closedness.
Lemma: Composition C∞(P,M)× C∞(M,N)→ C∞(P,N),
(f , g) 7→ g ◦ f , is smooth, since it maps smooth curves to smooth
curves
Corollary (of the chart structure):

TC∞(M,N) = C∞(M,TN)
C∞(M,πN)−−−−−−−−→ C∞(M,N).



Regular Lie groups

We consider a smooth Lie group G with Lie algebra g = TeG
modelled on convenient vector spaces. The notion of a regular Lie
group is originally due to Omori et al. for Fréchet Lie groups, was
weakened and made more transparent by Milnor, and then carried
over to convenient Lie groups; see [KM97], 38.4.
A Lie group G is called regular if the following holds:

I For each smooth curve X ∈ C∞(R, g) there exists a curve
g ∈ C∞(R,G ) whose right logarithmic derivative is X , i.e.,{

g(0) = e

∂tg(t) = Te(µg(t))X (t) = X (t).g(t)

The curve g is uniquely determined by its initial value g(0), if
it exists.

I Put evolrG (X ) = g(1) where g is the unique solution required
above. Then evolrG : C∞(R, g)→ G is required to be C∞

also. We have EvolXt := g(t) = evolG (tX ).



Diffeomorphism group of compact M

Theorem: For each compact manifold M, the diffeomorphism
group is a regular Lie group.
Proof: Diff(M)

open−−−−→ C∞(M,M). Composition is smooth by

restriction. Inversion is smooth: If t 7→ f (t, ) is a smooth curve
in Diff(M), then f (t, )−1 satisfies the implicit equation
f (t, f (t, )−1(x)) = x , so by the finite dimensional implicit
function theorem, (t, x) 7→ f (t, )−1(x) is smooth. So inversion
maps smooth curves to smooth curves, and is smooth.
Let X (t, x) be a time dependent vector field on M (in
C∞(R,X(M))). Then Fl∂t×Xs (t, x) = (t + s,EvolX (t, x)) satisfies
the ODE ∂t Evol(t, x) = X (t,Evol(t, x)). If
X (s, t, x) ∈ C∞(R2,X(M)) is a smooth curve of smooth curves in
X(M), then obviously the solution of the ODE depends smoothly
also on the further variable s, thus evol maps smooth curves of
time dependant vector fields to smooth curves of
diffeomorphism.



The principal bundle of embeddings:
‘differentiable Chow variety’; ‘nonlinear Grassmannian’

For finite dimensional manifolds M, N with M compact,
Emb(M,N), the space of embeddings of M into N, is open in
C∞(M,N), so it is a smooth manifold. Diff(M) acts freely and
smoothly from the right on Emb(M,N).
Theorem: The quotient projection

Emb(M,N)→ Emb(M,N)/Diff(M) =: B(M,N)

is a principal fiber bundle with structure group Diff(M).
Proof: Auxiliary Riem. metric ḡ on N. Given f ∈ Emb(M,N),
view f (M) as submanifold of N. TN|f (M) = Nor(f (M))⊕ Tf (M).

Nor(f (M)) ∩ V N expḡ

−−−−→∼= Wf (M)

pf (M)−−−−→ f (M) is a tubular nbhd of

f (M). If g : M → N is C 1-near to f , then
ϕ(g) := f −1 ◦ pf (M) ◦ g ∈ Diff(M) and
g ◦ ϕ(g)−1 ∈ Γ(f ∗Wf (M)) ⊂ Γ(f ∗Nor(f (M))).
This is the required local splitting.



The orbifold bundle of immersions:
‘differentiable Chow variety including singularities’

Imm(M,N), the space of immersions M → N, is open in
C∞(M,N), and is thus a smooth manifold. The regular Lie group
Diff(M) acts smoothly from the right, but no longer freely.
Theorem: [Cervera,Mascaro,M,1991] For an immersion
f : M → N, the isotropy group
Diff(M)f = {ϕ ∈ Diff(M) : f ◦ ϕ = f } is always a finite group,

acting freely on M; so M
p−−→ M/Diff(M)f is a convering of

manifold and f factors to f = f̄ ◦ p. Thus

Imm(M,N)→ Imm(M,N)/Diff (M) = Bi (M,N)

is a projection onto an honest infinite dimensional orbifold.



How to use this for Sobolev spaces

Theorem. [4.1.19 and 4.1.22 of Frölicher Kriegl: Linear spaces and differentiation theory, 1988] Let
c : R→ E be a curve in a convenient vector space E . Let V ⊂ E ′

be a subset of bounded linear functionals such that the bornology
of E has a basis of σ(E ,V)-closed sets. Then the following are
equivalent:

(i) c is smooth.

(ii) For each k ∈ N there exists a locally bounded curve
ck : R→ E such that for each ell ∈ V the function ` ◦ c is
smooth R→ R with (` ◦ c)(k) = ` ◦ ck .

If E = F ′ is the dual of convenient vector space F , then for any
point separating subset V ⊂ F the bornology of E has a basis of
σ(E ,V)-closed subsets.



Corollary. Let E be a vector bundle over M. Then for each
s ∈ (dim(M)/2,∞) the space C∞(R, ΓHs (E )) of smooth curves
into the space ΓHs (E ) of Sobolev Hs -sections consists of all
continuous mappings c : R×M → E with
p ◦ c = pr2 : R×M → M such that:

I For each x ∈ M the curve t 7→ c(t, x) ∈ Ex is smooth; let
(∂pt c)(t, x) = ∂pt (c(t, x)), and

I For each p ∈ N≥0, the curve ∂pt c has values in ΓHs (E ) so that
∂pt c : R→ ΓHs (E ), and t 7→ ‖∂tc(t, )‖Hs is bounded,
locally in t.

Corollary Let E1,E2 be vector bundles over M, let U ⊂ E1 be an
open neighborhood of the image of a smooth section, let
F : U → E2 be a fiber preserving smooth mapping, and let
s ∈ (m/2,∞). Then the set ΓHs (U) := {h ∈ ΓHs (E1) : h(M) ⊂ U}
is open in ΓHs (E1), and the mapping F∗ : ΓHs (U)→ ΓHs (E2) given
by h 7→ F ◦ h, is smooth. If the restriction of F to each fiber of E1

is real analytic, then F∗ is real analytic.



Recall the diagram of actions of diffeomorphism groups.

Diff(M)
r-acts //

r-acts

%%
Diff(M,µ)

����

Imm(M,N)

needs ḡxx Diff(M) &&

DiffA(N)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(M)

Diff(M) %% %%

Bi (M,N)

needs ḡxx
Vol1+(M) Met(M)

Diff(M) MetA(N)

M compact ,N possibly non-compact manifold

Met(N) = Γ(S2
+T∗N) space of all Riemann metrics on N

ḡ one Riemann metric on N

Diff(M) Lie group of all diffeos on compact mf M

DiffA(N), A ∈ {H∞,S, c} Lie group of diffeos of decay A to IdN

Imm(M,N) mf of all immersions M → N

Bi (M,N) = Imm/Diff(M) shape space

Vol1+(M) ⊂ Γ(vol(M)) space of positive smooth probability densities



Diff(S1)
r-acts //

r-acts

%%
r-acts

��

Imm(S1,R2)

needs ḡxx Diff(S1) ''

DiffA(R2)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Vol+(S1)

����

Met(S1)

Diff(S1)

&& &&

Bi (S1,R2)

needs ḡxx
Vol+(S1)
Diff(S1)

∫
fdθ

=
// R>0

Met(S1)
Diff(S1)∫ √

gdθ

=oo Met(R2)

Diff(S1) Lie group of all diffeos on compact mf S1

DiffA(R2), A ∈ {B,H∞,S, c} Lie group of diffeos of decay A to IdR2

Imm(S1
,R2) mf of all immersions S1 → R2

Bi (S
1
,R2) = Imm/Diff(S1) shape space

Vol+(S1) =
{
f dθ : f ∈ C∞(S1

,R>0)
}

space of positive smooth probability densities

Met(S1) =
{
g dθ2 : g ∈ C∞(S1

,R>0)
}

space of metrics on S1



Weak Riemannian metrics on Imm and Bi

Imm(M,N)

π

��
Bi (M,N)

Let G be Diff(M)-invariant weak Rieman-
nian metric G on Imm. The vertical bundle
in T Imm consists of the tangent spaces to
the Diff(M)-orbits.

If the G -orthogonal complement to the vertical bundle (called the
horizontal bundle) is a complement, then Tπ restricted to the
horizontal space yields an isomorphism

(ker Tf π)⊥,G ∼= Tπ(f )Bi .

Otherwise one has to induce the quotient metric, or use the
completion. One needs concepts like robust Riemannian manifolds
to make this work. For Imm it mostly works very well.
This gives a metric on Bi such that π : Imm→ Bi is a Riemannian
submersion.

[Micheli, M, Mumford, Izvestija 2013]



Riemannian submersions

Imm(M,N)
π−−→ Bi := Imm(M,N)/Diff(M)

I Horizontal geodesics on Imm(M,N) project down to geodesics
in shape space.

I O’Neill’s formula connects sectional curvature on Imm(M,N)
and on Bi .

I A formula for sectional curvature using the inverse metric G−1

on the cotangent bundle as much as possible thies nicely with
O’Neill’s formula and allows curvature computations in some
highly complex shape space situations.

[Micheli, M, Mumford, Izvestija 2013]



The simplest (L2-) metric on Imm(S1,R2)

G 0
c (h, k) =

∫
M
〈h(θ), k(θ)〉ds where ds = |c ′(θ)|dθ.

Problem: The induced geodesic distance vanishes.
Movies about vanishing: Diff(S1) Imm(S1,R2)
Geodesic equation is a relative of Burger’s equation:

ctt = − 1

2|cθ|
∂θ

( |ct |2 cθ
|cθ|

)
− 1

|cθ|2
〈ctθ, cθ〉ct .

Conserved momenta for G 0 along any geodesic t 7→ c( , t):

〈v , ct〉|cθ|2 ∈ X(S1) reparam. mom.∫
S1

ctds ∈ R2 linear moment.∫
S1

〈Jc , ct〉ds ∈ R angular moment.



Weak Riem. metrics on Emb(M ,N) ⊂ Imm(M ,N).

GP
f (h, k) =

∫
M

ḡ(P f h, k) vol(f ∗ḡ)

where ḡ is some fixed metric on N, g = f ∗ḡ is the induced metric
on M, h, k ∈ Γ(f ∗TN) are tangent vectors at f to Imm(M,N),
and P f is a positive, selfadjoint, bijective (scalar) pseudo
differential operator of order 2p depending smoothly on f .
Also P has to be Diff(M)-invariant: ϕ∗ ◦ Pf = Pf ◦ϕ ◦ ϕ∗.
Good example: Sobolev type metrics P f = (1 + ∆f ∗ḡ )p, where
∆f ∗ḡ is the Bochner-Laplacian on M induced by the metric f ∗ḡ . p
can be real.
Geodesic equation is well-posed. For that f 7→ P f has to have a
smooth extension to Sobolev completions ImmHs (M,N) for all

s > dim(M)
2 + 1.

Curvature formulas are available even for general P.

[M Mumford, 2005a, 2005b], [Bauer, Bruveris, Harms, M, 2011, 2012], O.Müller



Elastic metrics on plane curves

Here M = S1 or [0, 2π].The elastic metrics on Imm(M,R2)/transl. is

(where ds = |c ′(θ)|dθ, Ds = ∂θ
|c′(θ) , v = Dsc = c′

|c′| )

G a,b
c (h, k) =

∫ 2π

0

a2〈Dsh, n〉〈Dsk , n〉+ b2〈Dsh, v〉〈Dsk, v〉 ds .

Theorem. The metric G a,b is the pullback of the flat L2 metric via:

Ra,b : Imm([0, 2π],R2)→ C∞([0, 2π],R3)

Ra,b(c) = |c ′|1/2

(
a

(
v
0

)
+
√

4b2 − a2

(
0
1

))
.

The image takes values in a cone C a,b in R3. The metric G a,b is flat on
open curves, geodesics are the preimages under the R-transform of
geodesics on the flat space im R and the geodesic distance between
c , c ∈ Imm([0, 2π],R2)/ trans is given by the integral over the pointwise
distance in the image Im(R). The curvature on B([0, 2π],R2) is
non-negative.

[BauerBruverisMarsland M 2014]



Right invariant weak Riemannian metrics on
Diffeomorphism groups.

For M = N (compact connected) the space Emb(M,M) equals the
diffeomorphism group Diff(M) of M. Reparameterization invariant
metrics are right invariant metrics G on Diff(M), as explained by
Arnold 1966. G is uniquely determined by its restriction to the Lie
algebra TIdDiff(M) = X(M) (with the negative of the usual Lie
bracket), viewed as GId = G : X(M)→ X(M)′. The following
works for regular convenient Lie groups.
A smooth curve t 7→ ϕ(t) ∈ Diff(M) is a geodesic iff the right
logarithmic derivative u(t) := (∂f ϕ(t)) ◦ ϕ(t)−1

∂tu = −G−1
Id ad(u)∗ GId(u) = −G−1

Id LuGId(u)

Thus the geodesic equation exists in general ⇔

⇔ ad(X )∗GId(X ) = LXGIdX ∈ G (X(M)) ⊂ X(M)′ ∀X ∈ X(M)

⇔ Existence of the Christoffel symbols.
[Arnold 1966] has the stronger condition ad(X )∗G (Y ) ∈ G (X(M)).



(DiffN ,G ) induces metrics on differentiable Chow
varieties

Left action of DiffA(N) on B(M,N). M can be a finite set:
Landmark space. Given a right invariant metric G of high enough
Sobolev order we can induce a metric on each orbit through a
submanifold S ⊂ N of type M such that
evS : DiffA(N)→ B(M,N) becomes a Riemannian submersion.
Subtle, since here the G -orthogonal space to the fiber is NOT a
complement as a rule. Needs the notion of robust weak
Riemannian manifolds: Horizontally lifted tangent vectors from TB
are vector fields in the GId-completion of XA(M).
Nevertheless geodesics, curvature and efficient numerical
procedures are available:
LDDMM=large deformation diffeomorphic metric matching (Beg,
Miller, Trouve, Younes).
[Micheli, M, Mumford, 2013]



Advantages of Sobolev type metrics
• Positive geodesic distance if p ≥ 1.
• Geodesic equations are well posed, usually for p ≥ 1.
• Spaces are geodesically complete for p > dim(M)

2 + 1.
[Bruveris, M, Mumford, 2013], [Bruveris 2015] for plane curves. Higher dim. for Imm proof still lacking.
A remark in [Ebin, Marsden, 1970], and [Bruveris, Vialard, J.EMS 2017] for diffeomorphism groups.

• Geodesic equations for Sobolev metrics on Diff(S1), Diff(R), and
the Virosoro groups of order −1

2 , 0,
1
2 , 1 lead to named equations:

Burgers, Korteveg-de Vrieß, Camassa Holm, Hunter-Saxton, quasi
geostrophic, De Gasperi-Procesi.
• L2-metric on Diff(M, µ) and

∫
Rn g((1 + 1

ε2 grad div)X ,Y )µ on
Diff(Rn) describe incompressible Euler flow of fluid mechanics.
• High order Sobolev metrics on DiffA(Rn) induce metrics on
B(M,Rn) which have found convincing applications in
computational anatomy etc. M may be a finite set: Landmark
space. See lectures by M.Miller and L.Younes on Friday.
LDDMM=large deformation diffeomorphic metric matching



A sidestep to Invariant theory

Theorem [BBM 2016] Let M be a compact connected smooth
compact manifold, of dimension ≥ 2. Let G be a smooth
(equivalently, bounded) bilinear form on the space Dens+(M) of
smooth positive densities, which is invariant under the action of
Diff(M). Then

Gµ(α, β) = C1(µ(M))

∫
M

α

µ

β

µ
µ+ C2(µ(M))

∫
M
α ·
∫
M
β

for smooth functions C1,C2 of the total volume µ(M).

This is the Fisher-Rao metric on the space of smooth positive
probability measures on M, used in Information Geometry



Conjecture Let M be a compact connected smooth oriented
manifold with corners, of dimension m = dim(M) ≥ 2. Then the
associative algebra of Diff0(M)-invariant covariant tensor fields on
Dens+(M) is generated by:

µ 7→ F (µ(M)), F (µ(x)) for x ∈ ∂mM, F ∈ C∞(R)

(µ, α) 7→
∫
M
α

(µ, α1, . . . , αp) 7→
∫
C

α1

µ
. . .

αk

µ
d
(αk+1

µ2

)
∧ · · · ∧ d

(αp

µ2

)
,

1 ≤ k < p, 1 ≤ p − k ≤ m

C a component of ∂m−p+kM

(µ, α1, . . . , αp) 7→
∫
M

α1

µ
. . .

αp

µ
· µ, 2 ≤ p,



Problems of Sobolev type metrics
• Analytic solutions to the geodesic equation are complicated.
Numerics are in general computationally expensive. Although the
methods sketched in this conference seem to be geometrically
correct way for shape analysis, many applications use much simpler
and more error prone methods. Danger of too much reliance on
the miracle like deep learning methods using big data.
• Curvature of shape space with respect to these metrics is
complicated. Too much negative curv. components make geodesic
shooting inaccurate. Too much positive components mixes up
statistics: Need for better statistics (PCA) on curves spaces!



Well-posedness and geodesic distance in dim. 1

wellp. for Hs :

Space:
geod. dist.:

s≥1/2

Diff(S1)
+:s> 1

2
,−:s≤ 1

2

right-acts //

right-acts

��

s≥1

Imm(S1,R2)
−:s=0,+:s≥1

needs ḡ

��

Diff(S1)

��

Diffc(R2)
left-acts

(LDDMM)
oo

left-acts
(LDDMM)

��
wellp. for Hs :

Space:
geod. dist.:

s≥0

Met(S1)
+:s≥0

s≥1

Bi (S1,R2)
−:s=0,+:s≥1

[M. Mumford, 2005],
[Bauer, Bruveris, Harms, M, 2012] for KdV on Virasoro R× Diffc(R)
[Bauer, Bruveris, Harms, M, 2013, 2013],



Well-posedness and geodesic distance in dim(M) > 0

wellp. for Hs :

Space:
geod. dist.:

s≥1

Diff(M)
+:s≥1,−:s<1

right-acts //

right-acts

��

s≥1

Imm(M,N)
−:s=0,+:s≥1

needs ḡ

��

Diff(M)

��

s≥1

Diffc(N)
−:s<1,+:s≥1

left-acts

(LDDMM)
oo

left-acts
(LDDMM)

��
wellp. for Hs :

Space:
geod. dist.:

s∈R>0

Met(M)
+:s≥0

s≥1

Bi (M,N)
−:s=0,+:s≥1

[M. Mumford, 2005],
[Bauer, Bruveris, Harms, M, 2012] for KdV (L2) on Virasoro R×Diffc(R)
[Bauer, Bruveris, Harms, M, 2013, 2013],
[Bauer, Harms, Preston, 2018] for H−1/2 on Diff(M2, µ)
[Jerrard, Maor, 2018] W s,p has vanishing Geod. distance on Diffc(M) if

s < min{ dim(M)
p , 1}, allways positive if s > dim(M)

p or s ≥ 1.



Universal Teichmüller space

The quotient T := Diff(S1)/PSL(2,R), also known as universal
Teichmüller space, is naturally a coadjoint orbit of the Virasoro
group, and as such it carries a natural invariant Kähler structure;
The corresponding Riemann metric is called Weil-Petersen metric:
For u ∈ X(S1) ∼= C∞(S1), Fourier series u(θ) =

∑
n∈Z ane inθ with

an = a−n, let

‖u‖2
WP =

∑
n∈Z
|n3 − n||an|2 =

∫
S1

L(u).u dθ

where L = H(∂3
θ + ∂θ) and H is the periodic Hilbert transform,

given by convolution with 1
2π cotan( θ2 ).

The kernel ker(‖ · ‖WP) = sl(2,R).
This metric admits soliton like solutions, called Teichons.
[Mumford, Sharon, 2004, 2006], [Kushnarev, 2009]



A shape space with strongly negatively curved parts

Diff(S2)
r-acts //

r-acts $$

Imm(S2,R3)

needs ḡxx Diff(S2) ''

Diffc(R2)
l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(S2) Bi (S2,R3)

G Φ
f (h, k) =

∫
M

Φ(f )g(h, k) vol(g)

The pathlength metric induced by G Φ separates points on Bi if
either:

I Φ ≥ C1 + C2‖Trg (S)‖2 with C1,C2 > 0 or
I Φ ≥ C3 Vol

This leads us to consider Φ = Φ(Vol, ‖Trg (S)‖2). Special cases:

I GA-metric: Φ = 1 + A‖Trg (S)‖2

I Conformal metrics: Φ = Φ(Vol)
[BauerHarms M 2012]



Negative Curvature: Movies

Movies: Ex1: Φ = 1 + .4 Tr(L)2 Ex2: Φ = eVol Ex3: Φ = eVol



Final mention: Weak Riemann metrics on Met(M)

All of them are Diff(M)-invariant; natural, tautological.

Gg (h, k) =

∫
M

g 0
2 (h, k) vol(g) =

∫
Tr(g−1hg−1k) vol(g), L2-metr.

or = Φ(Vol(g))

∫
M

g 0
2 (h, k) vol(g) conformal

or =

∫
M

Φ(Scalg ).g 0
2 (h, k) vol(g) curvature modified

or =

∫
M

g 0
2 ((1 + ∆g )sh, k) vol(g) Sobolev order s real

where Φ is a suitable real-valued function, Vol =
∫
M

vol(g) is the total
volume of (M, g), Scal is the scalar curvature of (M, g), and where g 0

2 is
the induced metric on

(
0
2

)
-tensors.

[DeWitt, 1967], [Ebin, 1970], [Freed, Groisser, 1989], [Gil-Medrano, M,
1991], [Bauer, Harms, M, 2013], [Bauer, Bruveris, Harms, M, 2018].



Movie using soliton solution for the Ḣ1-metric on space of plane curves

All these marvellous applications and uses of convenient calculus
are due to the inspiration by David.

Thank you, David, for this, and for collaborating with me!

Thank you, audience, for your attention!

Thank you, organizers, for this great conference!


