Uniqueness of the Fisher-Rao metric on the space of smooth densities on a closed manifold

Peter W. Michor

University of Vienna, Austria
www.mat.univie.ac.at/~ michor

Information Geometry Seminar
March 19, 2021, Stony Brook
via Zoom

Based on:

[M.Bauer, M.Bruveris, P.Michor: Uniqueness of the Fisher-Rao metric on the space of smooth densities, Bull. London Math. Soc. 48, 3 (2016), 499-506, arXiv:1411.5577]
[M.Bruveris, P.Michor: Geometry of the Fisher-Rao metric on the space of smooth densities, Mathematische Nachrichten 292 (2019), 511-523, arxiv:1607.04550]
[M.Bruveris, P. Michor, A.Parusinski, A. Rainer: Moser's Theorem for manifolds with corners, Proc. AMS 146 (2018), pp. 4889-4897, arxiv:1604.07787]

The infinite dimensional geometry used here is based on:
[Andreas Kriegl, Peter W. Michor: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, Volume: 53, Amer. Math. Soc., 1997]
Wikipedia [https://en.wikipedia.org/wiki/Convenient_vector_space] I will use also [Peter W. Michor: Topics in Differential Geometry, Grad. Studies in Math. 93, 2008]

Abstract

For a smooth compact manifold M without boundary, any weak Riemannian metric on the space of smooth positive densities which is invariant under the right action of the diffeomorphism group $\operatorname{Diff}(M)$ is of the form

$$
G_{\mu}(\alpha, \beta)=C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu+C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta
$$

for smooth functions C_{1}, C_{2} of the total volume $\mu(M)=\int_{M} \mu$. This implies uniqueness up to a constant for the Fisher-Rao metric G^{FR} on the space of smooth positive probability densities.

In this talk I prove this, and investigate the geometry. If time permits, I conjecturally extend the result to compact smooth manifolds with corners (for example, a simplex).

The Fisher-Rao metric on the space $\operatorname{Prob}(M)$ of probability densities is of importance in the field of information geometry. Restricted to finite-dimensional submanifolds of $\operatorname{Prob}(M)$, so-called statistical manifolds, it is called Fisher's information metric [Amari: Differential-geometrical methods in statistics, 1985]. The Fisher-Rao metric is invariant under the action of the diffeomorphism group. A uniqueness result was established [Čencov: Statistical decision rules and optimal inference, 1982, p. 156] for Fisher's information metric on finite sample spaces and [Ay, Jost, Le, Schwachhöfer, 2014] extended it to infinite sample spaces.

See also [Ay, Jost, Le, Schwachhöfer: Information Geometry, 2017]. The Fisher-Rao metric on the infinite-dimensional manifold of all positive smooth probability densities was studied in [Friedrich: Die Fisher-Information und symplektische Strukturen, 1991], including the computation of its curvature.

The space of densities

Let M^{m} be a smooth manifold. Let $\left(M \supseteq U_{\alpha} \xrightarrow{U_{\alpha}} u_{\alpha}\left(U_{\alpha}\right) \subseteq \mathbb{R}^{m}\right)$ be a smooth atlas for it. The volume bundle $\left(\operatorname{Vol}(M), \pi_{M}, M\right)$ of M is the 1-dimensional vector bundle (line bundle) which is given by the following cocycle of transition functions:

$$
\begin{gathered}
\psi_{\alpha \beta}: U_{\alpha \beta}=U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{R} \backslash\{0\}=G L(1, \mathbb{R}) \\
\psi_{\alpha \beta}(x)=\left|\operatorname{det} d\left(u_{\beta} \circ u_{\alpha}^{-1}\right)\left(u_{\alpha}(x)\right)\right|=\frac{1}{\left|\operatorname{det} d\left(u_{\alpha} \circ u_{\beta}^{-1}\right)\left(u_{\beta}(x)\right)\right|} .
\end{gathered}
$$

$\operatorname{Vol}(\mathrm{M})$ is a trivial line bundle over M. But there is no natural trivialization. There is a natural order on each fiber. Since $\operatorname{Vol}(M)$ is a natural bundle of order 1 on M, there is a natural action of the group $\operatorname{Diff}(M)$ on $\operatorname{Vol}(M)$, given by

If M is orientable, then $\operatorname{Vol}(M)=\Lambda^{m} T^{*} M$. If M is not orientable, let \tilde{M} be the orientable double cover of M with its deck-transformation $\tau: \tilde{M} \rightarrow \tilde{M}$. Then $\Gamma(\operatorname{Vol}(M))$ is isomorphic to the space $\left\{\omega \in \Omega^{m}(\tilde{M}): \tau^{*} \omega=-\omega\right\}$. These are the 'formes impaires' of de Rham. See [M 2008, 13.1] for this.

Sections of the line bundle $\operatorname{Vol}(M)$ are called densities. The space $\Gamma(\operatorname{Vol}(M))$ of all smooth sections is a Fréchet space in its natural topology; see [Kriegl-M, 1997]. For each section α of $\operatorname{Vol}(M)$ of compact support the integral $\int_{M} \alpha$ is invariantly defined as follows: Let $\left(U_{\alpha}, u_{\alpha}\right)$ be an atlas on M with associated trivialization $\psi_{\alpha}: \operatorname{Vol}(M) \mid U_{\alpha} \rightarrow \mathbb{R}$, and let f_{α} be a partition of unity with $\operatorname{supp}\left(f_{\alpha}\right) \subset U_{\alpha}$. Then we put

$$
\int_{M} \mu=\sum_{\alpha} \int_{U_{\alpha}} f_{\alpha} \mu:=\sum_{\alpha} \int_{u_{\alpha}\left(U_{\alpha}\right)} f_{\alpha}\left(u_{\alpha}^{-1}(y)\right) \cdot \psi_{\alpha}\left(\mu\left(u_{\alpha}^{-1}(y)\right)\right) d y
$$

The integral is independent of the choice of the atlas and the partition of unity.

The Fisher-Rao metric

Let M^{m} be a smooth compact manifold without boundary. Let Dens $_{+}(M)$ be the space of smooth positive densities on M, i.e., $\operatorname{Dens}_{+}(M)=\{\mu \in \Gamma(\operatorname{Vol}(M)): \mu(x)>0 \forall x \in M\}$.
Let $\operatorname{Prob}(M)$ be the subspace of positive densities with integral 1 .
For $\mu \in \operatorname{Dens}_{+}(M)$ we have $T_{\mu} \operatorname{Dens}_{+}(M)=\Gamma(\operatorname{Vol}(M))$ and for $\mu \in \operatorname{Prob}(M)$ we have
$T_{\mu} \operatorname{Prob}(M)=\left\{\alpha \in \Gamma(\operatorname{Vol}(M)): \int_{M} \alpha=0\right\}$.
The Fisher-Rao metric on $\operatorname{Prob}(M)$ is defined as:

$$
G_{\mu}^{\mathrm{FR}}(\alpha, \beta)=\int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu
$$

It is invariant for the action of $\operatorname{Diff}(M)$ on $\operatorname{Prob}(M)$:

$$
\begin{aligned}
\left(\left(\varphi^{*}\right)^{*} G^{\mathrm{FR}}\right)_{\mu}(\alpha, \beta) & =G_{\varphi^{*} \mu}^{\mathrm{FR}}\left(\varphi^{*} \alpha, \varphi^{*} \beta\right)= \\
& =\int_{M}\left(\frac{\alpha}{\mu} \circ \varphi\right)\left(\frac{\beta}{\mu} \circ \varphi\right) \varphi^{*} \mu=\int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu
\end{aligned}
$$

Theorem [BBM, 2016]

Let M be a compact manifold without boundary of dimension ≥ 2. Let G be a smooth (equivalently, bounded) bilinear form on Dens $_{+}(M)$ which is invariant under the action of $\operatorname{Diff}(M)$. Then

$$
G_{\mu}(\alpha, \beta)=C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu+C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta
$$

for smooth functions C_{1}, C_{2} of the total volume $\mu(M)$.

To see that this theorem implies the uniqueness of the Fisher-Rao metric, note that if G is a $\operatorname{Diff}(M)$-invariant Riemannian metric on $\operatorname{Prob}(M)$, then we can equivariantly extend it to $\operatorname{Dens}_{+}(M)$ via

$$
G_{\mu}(\alpha, \beta)=G_{\frac{\mu}{\mu(M)}}\left(\alpha-\left(\int_{M} \alpha\right) \frac{\mu}{\mu(M)}, \beta-\left(\int_{M} \beta\right) \frac{\mu}{\mu(M)}\right) .
$$

Relations to right-invariant metrics on diffeom. groups

Let $\mu_{0} \in \operatorname{Prob}(M)$ be a fixed smooth probability density. In [Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that the degenerate, \dot{H}^{1}-metric $\frac{1}{2} \int_{M} \operatorname{div}^{\mu_{0}}(X) \cdot \operatorname{div}^{\mu_{0}}(X)$. μ_{0} on $\mathfrak{X}(M)$ is invariant under the adjoint action of $\operatorname{Diff}\left(M, \mu_{0}\right)$. Thus the induced degenerate right invariant metric on $\operatorname{Diff}(M)$ descends to a metric on $\operatorname{Prob}(M) \cong \operatorname{Diff}\left(M, \mu_{0}\right) \backslash \operatorname{Diff}(M)$ via

$$
\operatorname{Diff}(M) \ni \varphi \mapsto \varphi^{*} \mu_{0} \in \operatorname{Prob}(M)
$$

which is invariant under the right action of $\operatorname{Diff}(M)$. This is the Fisher-Rao metric on $\operatorname{Prob}(M)$. In [Modin, 2014], the \dot{H}^{1}-metric was extended to a non-degenerate metric on $\operatorname{Diff}(M)$, also descending to the Fisher-Rao metric.

Corollary. Let $\operatorname{dim}(M) \geq 2$. If a weak right-invariant (possibly degenerate) Riemannian metric \tilde{G} on $\operatorname{Diff}(M)$ descends to a metric G on $\operatorname{Prob}(M)$ via the right action, i.e., the mapping $\varphi \mapsto \varphi^{*} \mu_{0}$ from $(\operatorname{Diff}(M), \tilde{G})$ to $(\operatorname{Prob}(M), G)$ is a Riemannian submersion, then G has to be a multiple of the Fisher-Rao metric.

Note that any right invariant metric \tilde{G} on $\operatorname{Diff}(M)$ descends to a metric on $\operatorname{Prob}(M)$ via $\varphi \mapsto \varphi_{*} \mu_{0}$; but this is not Diff (M)-invariant in general.

Invariant metrics on Dens $\left(S^{1}\right)$.

Dens $_{+}\left(S^{1}\right)=\Omega_{+}^{1}\left(S^{1}\right)$, and Dens $_{+}\left(S^{1}\right)$ is $\operatorname{Diff}\left(S^{1}\right)$-equivariantly isomorphic to the space of all Riemannian metrics on S^{1} via $\Phi=(\quad)^{2}: \operatorname{Dens}_{+}\left(S^{1}\right) \rightarrow \operatorname{Met}\left(S^{1}\right), \Phi(f d \theta)=f^{2} d \theta^{2}$.
On $\operatorname{Met}\left(S^{1}\right)$ there are many $\operatorname{Diff}\left(S^{1}\right)$-invariant metrics; see [Bauer, Harms, M, 2013]. For example Sobolev-type metrics. Write $g \in \operatorname{Met}\left(S^{1}\right)$ in the form $g=\tilde{g} d \theta^{2}$ and $h=\tilde{h} d \theta^{2}, k=\tilde{k} d \theta^{2}$ with $\tilde{g}, \tilde{h}, \tilde{k} \in C^{\infty}\left(S^{1}\right)$. The following metrics are $\operatorname{Diff}\left(S^{1}\right)$-invariant:

$$
G_{g}^{\prime}(h, k)=\int_{S^{1}} \frac{\tilde{h}}{\tilde{g}} \cdot\left(1+\Delta^{g}\right)^{n}\left(\frac{\tilde{k}}{\tilde{g}}\right) \sqrt{\tilde{g}} d \theta ;
$$

here Δ^{g} is the Laplacian on S^{1} with respect to the metric g. The pullback by Φ yields a $\operatorname{Diff}\left(S^{1}\right)$-invariant metric on $\operatorname{Dens}_{+}(M)$:

$$
G_{\mu}(\alpha, \beta)=4 \int_{S^{1}} \frac{\alpha}{\mu} \cdot\left(1+\Delta^{\Phi(\mu)}\right)^{n}\left(\frac{\beta}{\mu}\right) \mu
$$

For $n=0$ this is 4 times the Fisher-Rao metric. For $n \geq 1$ we get many $\operatorname{Diff}\left(S^{1}\right)$-invariant metrics on $\operatorname{Dens}_{+}\left(S^{1}\right)_{\text {and }}$ on $\operatorname{Prob}\left(S^{1}\right)$.

Geometry of the Fisher-Rao metric on Dens $+(M)$

$$
G_{\mu}(\alpha, \beta)=C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu+C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta
$$

This metric will be studied in different representations.
$\operatorname{Dens}_{+}(M) \xrightarrow{R} C^{\infty}\left(M, \mathbb{R}_{>0}\right) \xrightarrow{\Phi} \mathbb{R}_{>0} \times S \cap C_{>0}^{\infty} \xrightarrow{W \times \text { ld }}\left(W_{-}, W_{+}\right) \times S \cap C_{>0}^{\infty}$.
We fix $\mu_{0} \in \operatorname{Prob}(M)$ and consider the mapping

$$
R: \operatorname{Dens}_{+}(M) \rightarrow C^{\infty}\left(M, \mathbb{R}_{>0}\right), \quad R(\mu)=f=\sqrt{\frac{\mu}{\mu_{0}}}
$$

The map R is a diffeomorphism and we will denote the induced metric by $\tilde{G}=\left(R^{-1}\right)^{*} G$; it is given by the formula $\tilde{G}_{f}(h, k)=4 C_{1}\left(\|f\|_{L^{2}\left(\mu_{0}\right)}^{2}\right)\langle h, k\rangle_{L^{2}\left(\mu_{0}\right)}+4 C_{2}\left(\|f\|_{L^{2}\left(\mu_{0}\right)}^{2}\right)\langle f, h\rangle_{L^{2}\left(\mu_{0}\right)}\langle f, k\rangle_{L^{2}\left(\mu_{0}\right)}$, and this formula makes sense for $f \in C^{\infty}(M, \mathbb{R}) \backslash\{0\}$. Consequently, for $\left(\operatorname{Prob}(M), G^{\mathrm{FR}}\right)$ is isometric to the $2 \sqrt{C_{1}(1)}$-sphere in $L^{2}\left(\mu_{0}\right)$ intersected with $C^{\infty}\left(M, \mathbb{R}_{>0}\right)$.

Remark on R^{-1}

The map R is inspired by [B. Khesin, J. Lenells, G. Misiolek, S. C. Preston: Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal., 23(1):334-366, 2013.]

$$
R^{-1}: C^{\infty}(M, \mathbb{R}) \rightarrow \Gamma_{\geq 0}(\operatorname{Vol}(M)), \quad f \mapsto f^{2} \mu_{0}
$$

makes sense on the whole space $C^{\infty}(M, \mathbb{R})$ and its image is stratified (loosely speaking) according to the rank of $T R^{-1}$. The image looks somewhat like the orbit space of a discrete reflection group. Geodesics are mapped to curves which are geodesics in the interior $\Gamma_{>0}(\operatorname{Vol}(M))$, and they are reflected following Snell's law at some hyperplanes in the boundary.

Polar coordinates

on the pre-Hilbert space $\left(C^{\infty}(M, \mathbb{R}),\langle,\rangle_{L^{2}\left(\mu_{0}\right)}\right)$. Let
$S=\left\{\varphi \in L^{2}(M, \mathbb{R}): \int_{M} \varphi^{2} \mu_{0}=1\right\}$ denote the L^{2}-sphere. Then
$\Phi: C^{\infty}(M, \mathbb{R}) \backslash\{0\} \rightarrow \mathbb{R}_{>0} \times\left(S \cap C^{\infty}\right), \quad \Phi(f)=(r, \varphi)=(\|$
is a diffeomorphism. We set $\bar{G}=\left(\Phi^{-1}\right)^{*} \tilde{G} ;$ the metric has the expression

$$
\bar{G}_{r, \varphi}=g_{1}(r)\langle d \varphi, d \varphi\rangle+g_{2}(r) d r^{2}
$$

with $g_{1}(r)=4 C_{1}\left(r^{2}\right) r^{2}$ and $g_{2}(r)=4\left(C_{1}\left(r^{2}\right)+C_{2}\left(r^{2}\right) r^{2}\right)$. Finally we change the coordinate r diffeomorphically to

$$
s=W(r)=2 \int_{1}^{r} \sqrt{g_{2}(\rho)} d \rho
$$

Then, defining $a(s)=4 C_{1}\left(r(s)^{2}\right) r(s)^{2}$, we have

$$
\bar{G}_{s, \varphi}=a(s)\langle d \varphi, d \varphi\rangle+d s^{2}
$$

Let $W_{-}=\lim _{r \rightarrow 0+} W(r)$ and $W_{+}=\lim _{r \rightarrow \infty} W(r)$. Then $W: \mathbb{R}_{>0} \rightarrow\left(W_{-}, W_{+}\right)$is a diffeomorphism.

This completes the first row in Fig. 1.

Figure: Representations of Dens $_{+}(M)$ and its completions. In the second and third rows we assume that $\left(W_{-}, W_{+}\right)=(-\infty,+\infty)$ and we note that R is a diffeomorphism only in the first row.

Geodesic equation:

$$
\begin{aligned}
\nabla_{\partial_{t}}^{S} \varphi_{t} & =\partial_{t}\left(\log g_{1}(r)\right) \varphi_{t} \\
r_{t t} & =\frac{C_{0}^{2}}{2} \frac{g_{1}^{\prime}(r)}{g_{1}(r)^{2} g_{2}(r)}-\frac{1}{2} \partial_{t}\left(\log g_{2}(r)\right) r_{t}
\end{aligned}
$$

Since \bar{G} induces the canonical metric on $\left(W_{-}, W_{+}\right)$, a necessary condition for \bar{G} to be complete is $\left(W_{-}, W_{+}\right)=(-\infty,+\infty)$. Rewritten in terms of the functions C_{1}, C_{2} this becomes
$W_{+}=\infty \Leftrightarrow\left(\int_{1}^{\infty} r^{-1 / 2} \sqrt{C_{1}(r)} d r=\infty\right.$ or $\left.\int_{1}^{\infty} \sqrt{C_{2}(r)} d r=\infty\right)$,
and similarly for $W_{-}=-\infty$, with the limits of the integration being 0 and 1 .

Relation to hypersurfaces of revolution in the (pre-) Hilbert space

We consider the metric on $\left(W_{-}, W_{+}\right) \times S \cap C^{\infty}$ in the form $\tilde{G}_{r, \varphi}=a(s)\langle d \varphi, d \varphi\rangle+d s^{2}$ where $a(s)=4 C_{1}\left(r(s)^{2}\right) r(s)^{2}$. Then we consider the isometric embedding (remember $\langle\varphi, d \varphi\rangle=0$ on $\left.S \cap C^{\infty}\right)$

$$
\psi:\left(\left(W_{-}, W_{+}\right) \times S \cap C^{\infty}, \tilde{G}\right) \rightarrow\left(\mathbb{R} \times C^{\infty}(M, \mathbb{R}), d u^{2}+\langle d f, d f\rangle\right)
$$

$$
\Psi(s, \varphi)=\left(\int_{0}^{s} \sqrt{1-\frac{a^{\prime}(\sigma)^{2}}{4 a(\sigma)}} d \sigma, \sqrt{a(s)} \varphi\right)
$$

which is defined and smooth only on the open subset

$$
R:=\left\{(s, \varphi) \in\left(W_{-}, W_{+}\right) \times S \cap C^{\infty}: a^{\prime}(s)^{2}<4 a(s)\right\}
$$

Fix some $\varphi_{0} \in S \cap C^{\infty}$ and consider the generating curve

$$
s \mapsto\left(\int_{0}^{s} \sqrt{1-\frac{a^{\prime}(\sigma)^{2}}{4 a(\sigma)}} d \sigma, \sqrt{a(s)}\right) \in \mathbb{R}^{2}
$$

Then s is an arc-length parameterization of this curve!

Given any arc-length parameterized curve $I \ni s \mapsto\left(c_{1}(s), c_{2}(s)\right)$ in \mathbb{R}^{2} and its generated hypersurface of rotation

$$
\left\{\left(c_{1}(s), c_{2}(s) \varphi\right): s \in I, \varphi \in S \cap C^{\infty}\right\} \subset \mathbb{R} \times C^{\infty}(M, \mathbb{R})
$$

the induced metric in the (s, φ)-parameterization is $d s^{2}+c_{2}(s)^{2}\langle d \varphi, d \varphi\rangle$.

This suggests that the moduli space of hypersurfaces of revolution is naturally embedded in the moduli space of all metrics of the form $\tilde{G}_{r, \varphi}=a(s)\langle d \varphi, d \varphi\rangle+d s^{2}$.
Example: In the case of $S=S^{1}$ and the tractrix $\left(c_{1}, c_{2}\right)$, the surface of revolution is the pseudosphere (curvature -1) whose universal cover is only part of the hyperbolic plane. But in polar coordinates we get a space whose universal cover is the hyperbolic plane. In detail:

$$
\begin{aligned}
& c_{1}(s)=\int_{0}^{s} \sqrt{1-e^{-2 \sigma}} d \sigma=\operatorname{Arcosh}\left(e^{s}\right)-\sqrt{1-e^{-2 s}} \\
& \quad c_{2}(s)=e^{-s}, \quad s>0 \\
& a(s) d \varphi^{2}+d s^{2}=e^{-2 s} d \varphi^{2}+d s^{2}, \quad s \in \mathbb{R}
\end{aligned}
$$

Theorem

If $\left(W_{-}, W_{+}\right)=(-\infty,+\infty)$, then any two points $\left(s_{0}, \varphi_{0}\right)$ and $\left(s_{1}, \varphi_{1}\right)$ in $\mathbb{R} \times S$ can be joined by a minimal geodesic. If φ_{0} and φ_{1} lie in $S \cap C^{\infty}$, then the minimal geodesic lies in $\mathbb{R} \times S \cap C^{\infty}$.

Proof. If φ_{0} and φ_{1} are linearly independent, we consider the 2 -space $V=V\left(\varphi_{0}, \varphi_{1}\right)$ spanned by φ_{0} and φ_{1} in L^{2}. Then $\mathbb{R} \times V \cap S$ is totally geodesic since it is the fixed point set of the isometry $(s, \varphi) \mapsto\left(s, s_{V}(\varphi)\right)$ where $\mathfrak{s} V$ is the orthogonal reflection at V. Thus there is exists a minimizing geodesic between $\left(s_{0}, \varphi_{0}\right)$ and $\left(s_{1}, \varphi_{1}\right)$ in the complete 3-dimensional Riemannian submanifold $\mathbb{R} \times V \cap S$. This geodesic is also length-minimizing in the strong Hilbert manifold $\mathbb{R} \times S$ by the following arguments:

Given any smooth curve $c=(s, \varphi):[0,1] \rightarrow \mathbb{R} \times S$ between these two points, there is a subdivision $0=t_{0}<t_{1}<\cdots<t_{N}=1$ such that the piecewise geodesic c_{1} which first runs along a geodesic from $c\left(t_{0}\right)$ to $c\left(t_{1}\right)$, then to $c\left(t_{2}\right), \ldots$, and finally to $c\left(t_{N}\right)$, has length Len $\left(c_{1}\right) \leq \operatorname{Len}(c)$. This piecewise geodesic now lies in the totally geodesic $(N+2)$-dimensional submanifold $\mathbb{R} \times V\left(\varphi\left(t_{0}\right), \ldots, \varphi\left(t_{N}\right)\right) \cap S$. Thus there exists a geodesic c_{2} between the two points $\left(s_{0}, \varphi_{0}\right)$ and s_{1}, φ_{1} which is length minimizing in this $(N+2)$-dimensional submanifold. Therefore $\operatorname{Len}\left(c_{2}\right) \leq \operatorname{Len}\left(c_{1}\right) \leq \operatorname{Len}(c)$. Moreover, $c_{2}=\left(s \circ c_{2}, \varphi \circ c_{2}\right)$ lies in $\mathbb{R} \times V\left(\varphi_{0},\left(\varphi \circ c_{2}\right)^{\prime}(0)\right) \cap S$ which also contains φ_{1}, thus c_{2} lies in $\mathbb{R} \times V\left(\varphi_{0}, \varphi_{1}\right) \cap S$.

If $\varphi_{0}=\varphi_{1}$, then $\mathbb{R} \times\left\{\varphi_{0}\right\}$ is a minimal geodesic. If $\varphi_{0}=-\varphi_{0}$ we choose a great circle between them which lies in a 2 -space V and proceed as above.

Covariant derivative

On $\mathbb{R} \times S$ (we assume that $\left(W_{-}, W_{+}\right)=\mathbb{R}$) with metric $\bar{G}=d s^{2}+a(s)\langle d \varphi, d \varphi\rangle$ we consider smooth vector fields $f(s, \varphi) \partial_{s}+X(s, \varphi)$ where $X(s,) \in \mathfrak{X}(S)$ is a smooth vector field on the Hilbert sphere S. We denote by ∇^{S} the covariant derivative on S and get

$$
\begin{aligned}
\nabla_{f \partial_{s}+X}\left(g \partial_{s}+Y\right)= & \left(f . g_{s}+d g(X)-\frac{a_{s}}{2}\langle X, Y\rangle\right) \partial_{s} \\
& +\frac{a_{s}}{2 a}(f Y+g X)+f Y_{s}+\nabla_{X}^{S} Y
\end{aligned}
$$

Curvature:

$$
\begin{aligned}
& \mathcal{R}\left(f \partial_{s}+X, g \partial_{s}+Y\right)\left(h \partial_{s}+Z\right)= \\
& =\left(\frac{a_{s s}}{2}-\frac{a_{s}^{2}}{4 a}\right)\langle g X-f Y, Z\rangle \partial_{s}+\mathcal{R}^{S}(X, Y) Z \\
& \quad-\left(\left(\frac{a_{s}}{2 a}\right)_{s}+\frac{a_{s}^{2}}{4 a^{2}}\right) h(g X-f Y)+\frac{a_{s}^{2}}{4 a}(\langle X, Z\rangle Y-\langle Y, Z\rangle X)
\end{aligned}
$$

Sectional Curvature

Let us take $X, Y \in T_{\varphi} S$ with $\langle X, Y\rangle=0$ and $\langle X, X\rangle=\langle Y, Y\rangle=1 / a(s)$, then

$$
\begin{gathered}
\operatorname{Sec}_{(s, \varphi)}(\operatorname{span}(X, Y))=\frac{1}{a}-\frac{a_{s}^{2}}{4 a^{2}} \\
\operatorname{Sec}_{(s, \varphi)}\left(\operatorname{span}\left(\partial_{s}, Y\right)\right)=-\frac{a_{s s}}{2 a}+\frac{a_{s}^{2}}{4 a^{2}}
\end{gathered}
$$

are all the possible sectional curvatures.

Proof of the Main Theorem

First, the main theorem again:
Theorem [BBM, 2016] Let M be a compact manifold without boundary of dimension ≥ 2. Let G be a smooth (equivalently, bounded) bilinear form on Dens+ (M) which is invariant under the action of $\operatorname{Diff}(M)$. Then

$$
G_{\mu}(\alpha, \beta)=C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu+C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta
$$

for smooth functions C_{1}, C_{2} of the total volume $\mu(M)$.

Proof of the Main Theorem

Here M is a compact smooth manifold without boundary, possibly non-orientable.

Let us fix a basic probability density μ_{0}. By Moser's theorem [Moser, 1965], see [M, 2008, 31.13] or the proof of [Kriegl, M, 1997, 43.7] for proofs in the notation used here, there exists for each $\mu \in \operatorname{Dens}_{+}(M)$ a diffeomorphism $\varphi_{\mu} \in \operatorname{Diff}(M)$ with $\varphi_{\mu}^{*} \mu=\mu(M) \mu_{0}=: c . \mu_{0}$ where $c=\mu(M)=\int_{M} \mu>0$. Then

$$
\left(\left(\varphi_{\mu}^{*}\right)^{*} G\right)_{\mu}(\alpha, \beta)=G_{\varphi_{\mu}^{*} \mu}\left(\varphi_{\mu}^{*} \alpha, \varphi_{\mu}^{*} \beta\right)=G_{c . \mu_{0}}\left(\varphi_{\mu}^{*} \alpha, \varphi_{\mu}^{*} \beta\right)
$$

Thus it suffices to show that for any $c>0$ we have

$$
G_{c \mu_{0}}(\alpha, \beta)=C_{1}(c) \cdot \int_{M} \frac{\alpha}{\mu_{0}} \frac{\beta}{\mu_{0}} \mu_{0}+C_{2}(c) \int_{M} \alpha \cdot \int_{M} \beta
$$

for some functions C_{1}, C_{2} of the total volume $c=\mu(M)$. Both bilinear forms are still invariant under the action of the group $\operatorname{Diff}\left(M, c \mu_{0}\right)=\operatorname{Diff}\left(M, \mu_{0}\right)=\left\{\psi \in \operatorname{Diff}(M): \psi^{*} \mu_{0}=\mu_{0}\right\}$. The bilinear form

$$
T_{\mu_{0}} \operatorname{Dens}_{+}(M) \times T_{\mu_{0}} \operatorname{Dens}_{+}(M) \ni(\alpha, \beta) \mapsto G_{c \mu_{0}}\left(\frac{\alpha}{\mu_{0}} \mu_{0}, \frac{\beta}{\mu_{0}} \mu_{0}\right)
$$

can be viewed as a bilinear form

$$
C^{\infty}(M) \times C^{\infty}(M) \ni(f, g) \mapsto G_{c}(f, g) .
$$

We will consider now the associated bounded linear mapping

$$
\check{G}_{c}: C^{\infty}(M) \rightarrow C^{\infty}(M)^{\prime}=\mathcal{D}^{\prime}(M)
$$

(1) The Lie algebra $\mathfrak{X}\left(M, \mu_{0}\right)$ of $\operatorname{Diff}\left(M, \mu_{0}\right)$ consists of vector fields X with

$$
0=\operatorname{div}^{\mu_{0}}(X):=\frac{\mathcal{L}_{X} \mu_{0}}{\mu_{0}}
$$

On an oriented open subset $U \subset M$, each density is an m-form, $m=\operatorname{dim}(M)$, and $\operatorname{div}^{m u_{0}}(X)=\operatorname{dix}_{X} \mu_{0}$.

The mapping $\hat{\iota}_{\mu_{0}}: \mathfrak{X}(U) \rightarrow \Omega^{m-1}(U)$ given by $X \mapsto i_{X} \mu_{0}$ is an isomorphism. The Lie subalgebra $\mathfrak{X}\left(U, \mu_{0}\right)$ of divergence free vector fields corresponds to the space of closed $(m-1)$-forms.

Denote by $\mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$ the set (not a vector space) of 'exact' divergence free vector fields $X=\hat{\iota}_{\mu_{0}}^{-1}(d \omega)$, where $\omega \in \Omega_{c}^{m-2}(U)$ for an oriented open subset $U \subset M$.
(2) If for $f \in C^{\infty}(M)$ and a connected open set $U \subseteq M$ we have $\left(\mathcal{L}_{X} f\right) \mid U=0$ for all $X \in \mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$, then $f \mid U$ is constant.

Since we shall need some details later on, we prove this well-known fact.

Let $x \in U$. For every tangent vector $X_{x} \in T_{x} M$ we can find a vector field $X \in \mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$ such that $X(x)=X_{x}$; to see this, choose a chart $\left(U_{x}, u\right)$ near x such that $\mu_{0} \mid U_{x}=d u^{1} \wedge \cdots \wedge d u^{m}$, and choose $g \in C_{c}^{\infty}\left(U_{x}\right)$, such that $g=1$ near x.

Then $X:=\hat{\iota}_{\mu_{0}}^{-1} d\left(g \cdot u^{2} \cdot d u^{3} \wedge \cdots \wedge d u^{m}\right) \in \mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$ and $X=\partial_{u^{1}}$ near x. So we can produce a basis for $T_{x} M$ and even a local frame near x.

Thus $\mathcal{L}_{X} f \mid U=0$ for all $X \in \mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$ implies $d f=0$ and hence f is constant.
(3) If for a distribution (generalized function) $A \in \mathcal{D}^{\prime}(M)$ and a connected open set $U \subseteq M$ we have $\mathcal{L}_{X} A \mid U=0$ for all $X \in \mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$, then $A\left|U=C \mu_{0}\right| U$ for some constant C, meaning $\langle A, f\rangle=C \int_{M} f \mu_{0}$ for all $f \in C_{c}^{\infty}(U)$.
Because $\left\langle\mathcal{L}_{X} A, f\right\rangle=-\left\langle A, \mathcal{L}_{X} f\right\rangle$, the invariance property $\mathcal{L}_{X} A \mid U=0$ implies $\left\langle A, \mathcal{L}_{X} f\right\rangle=0$ for all $f \in C_{c}^{\infty}(U)$. Clearly, $\int_{M}\left(\mathcal{L}_{X} f\right) \mu_{0}=0$. For each $x \in U$ let $U_{x} \subset U$ be an open oriented chart which is diffeomorphic to \mathbb{R}^{m}. Let $g \in C_{c}^{\infty}\left(U_{x}\right)$ satisfy $\int_{M} g \mu_{0}=0$; we will show that $\langle A, g\rangle=0$. Because the integral over $g \mu_{0}$ is zero, the compact cohomology class
$\left[g \mu_{0}\right] \in H_{c}^{m}\left(U_{x}\right) \cong \mathbb{R}$ vanishes; thus there exists $\alpha \in \Omega_{c}^{m-1}\left(U_{x}\right) \subset \Omega^{m-1}(M)$ with $d \alpha=g \mu_{0}$. Since U_{x} is diffeomorphic to \mathbb{R}^{m}, we can write $\alpha=\sum_{j} f_{j} d \beta_{j}$ with $\beta_{j} \in \Omega^{m-2}\left(U_{x}\right)$ and $f_{j} \in C_{c}^{\infty}\left(U_{x}\right)$. Choose $h \in C_{c}^{\infty}\left(U_{x}\right)$ with $h=1$ on $\bigcup_{j} \operatorname{supp}\left(f_{j}\right)$, so that $\alpha=\sum_{j} f_{j} d\left(h \beta_{j}\right)$ and $h \beta_{j} \in \Omega_{c}^{m-2}(M) \subset \Omega^{m-2}(M)$. Thus the fields $X_{j}=\hat{\iota}_{\mu_{0}}^{-1} d\left(h \beta_{j}\right)$ lie in $\mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$ and we have the identity $\sum_{j} f_{j} \cdot i_{X_{i}} \mu_{0}=\alpha$.

This means $\sum_{j}\left(\mathcal{L}_{X_{j}} f_{j}\right) \mu_{0}=\sum_{j} \mathcal{L}_{X_{j}}\left(f_{j} \mu_{0}\right)=\sum_{j} \operatorname{di}_{X_{j}}\left(f_{j} \mu_{0}\right)=$ $d\left(\sum_{j} f_{j} . i_{X_{j}} \mu_{0}\right)=d \alpha=g \mu_{0}$ or $\sum_{j} \mathcal{L}_{X_{j}} f_{j}=g$, leading to

$$
\langle A, g\rangle=\sum_{j}\left\langle A, \mathcal{L}_{X_{j}} f_{j}\right\rangle=-\sum_{j}\left\langle\mathcal{L}_{X_{j}} A, f_{j}\right\rangle=0
$$

So $\langle A, g\rangle=0$ for all $g \in C_{c}^{\infty}\left(U_{x}\right)$ with $\int_{M} g \mu_{0}=0$. Finally, choose a function φ with support in U_{x} and $\int_{M} \varphi \mu_{0}=1$. Then for any $f \in C_{c}^{\infty}\left(U_{x}\right)$, the function defined by $g=f-\left(\int_{M} f \mu_{0}\right) \cdot \varphi$ in $C^{\infty}(M)$ satisfies $\int_{M} g \mu_{0}=0$ and so

$$
\langle A, f\rangle=\langle A, g\rangle+\langle A, \varphi\rangle \int_{M} f \mu_{0}=C \int_{M} f \mu_{0}
$$

with $C_{x}=\langle A, \varphi\rangle$. Thus $A\left|U_{x}=C_{x} \mu_{0}\right| U_{x}$. Since U is connected, the constants C_{x} are all equal: Choose $\varphi \in C_{c}^{\infty}\left(U_{x} \cap U_{y}\right)$ with $\int \varphi \mu_{0}=1$. Thus (3) is proved.
(4) The operator $\check{G}_{c}: C^{\infty}(M) \rightarrow \mathcal{D}^{\prime}(M)$ has the following property: If for $f \in C^{\infty}(M)$ and a connected open $U \subseteq M$ the restriction $f \mid U$ is constant, then we have $\check{G}(f)\left|U=C_{U}(f) \mu_{0}\right| U$ for some constant $C_{U}(f)$.

For $x \in U$ choose $g \in C^{\infty}(M)$ with $g=1$ near $M \backslash U$ and $g=0$ on a neighborhood V of x. Then for any $X \in \mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$, that is $X=\hat{\iota}_{\mu_{0}}^{-1}(d \omega)$ for some $\omega \in \Omega_{c}^{m-2}(W)$ where $W \subset M$ is an oriented open set, let $Y=\hat{\iota}_{\mu_{0}}^{-1}(d(g \omega))$. The vector field $Y \in \mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$ equals X near $M \backslash U$ and vanishes on V. Since f is constant on $U, \mathcal{L}_{X} f=\mathcal{L}_{Y} f$. For all $h \in C^{\infty}(M)$ we have $\left\langle\mathcal{L}_{X} \check{G}_{c}(f), h\right\rangle=\left\langle\check{G}_{c}(f),-\mathcal{L}_{X} h\right\rangle=-G_{c}\left(f, \mathcal{L}_{X} h\right)=G_{c}\left(\mathcal{L}_{X} f, h\right)=$ $\left\langle\check{G}_{c}\left(\mathcal{L}_{X} f\right), h\right\rangle$, since G_{c} is invariant. Thus also

$$
\mathcal{L}_{X} \check{G}_{c}(f)=\check{G}_{c}\left(\mathcal{L}_{X} f\right)=\check{G}_{c}\left(\mathcal{L}_{Y} f\right)=\mathcal{L}_{Y} \check{G}_{c}(f) .
$$

Now Y vanishes on V and therefore so does $\mathcal{L}_{X} \check{G}_{c}(f)$. By (3) we have $\check{G}_{c}(f)\left|V=C_{V}(f) \mu_{0}\right| V$ for some $C_{V}(f) \in \mathbb{R}$. Since U is connected, all the constants $C_{V}(f)$ have to agree, giving a constant $C_{U}(f)$, depending only on U and f. Thus (4) follows.

By the Schwartz kernel theorem, \check{G}_{c} has a kernel \hat{G}_{c}, which is a distribution (generalized function) in

$$
\begin{aligned}
& \mathcal{D}^{\prime}(M \times M) \cong \mathcal{D}^{\prime}(M) \bar{\otimes} \mathcal{D}^{\prime}(M)= \\
& \quad=\left(C^{\infty}(M) \bar{\otimes} C^{\infty}(M)\right)^{\prime} \cong L\left(C^{\infty}(M), \mathcal{D}^{\prime}(M)\right)
\end{aligned}
$$

Note the defining relations

$$
G_{c}(f, g)=\left\langle\check{G}_{c}(f), g\right\rangle=\left\langle\hat{G}_{c}, f \otimes g\right\rangle
$$

Moreover, \hat{G}_{c} is invariant under the diagonal action of $\operatorname{Diff}\left(M, \mu_{0}\right)$ on $M \times M$. In view of the tensor product in the defining relations, the infinitesimal version of this invariance is: $\mathcal{L} X \times 0+0 \times X{ }^{G_{c}}=0$ for all $X \in \mathfrak{X}\left(M, \mu_{0}\right)$.
(5) There exists a constant $C_{2}=C_{2}(c)$ such that the distribution $\hat{G}_{c}-C_{2} \mu_{0} \otimes \mu_{0}$ is supported on the diagonal of $M \times M$.

Namely, if $(x, y) \in M \times M$ is not on the diagonal, then there exist open neighborhoods U_{x} of x and U_{y} of y in M such that $\overline{U_{x}} \times \overline{U_{y}}$ is disjoint to the diagonal, or $\overline{U_{x}} \cap \overline{U_{y}}=\emptyset$. Choose any functions $f, g \in C^{\infty}(M)$ with $\operatorname{supp}(f) \subset U_{x}$ and $\operatorname{supp}(g) \subset U_{y}$. Then $f \mid\left(M \backslash \overline{U_{x}}\right)=0$, so by (4), $\check{G}_{c}(f) \mid\left(M \backslash \overline{U_{x}}\right)=C_{M \backslash \overline{U_{x}}}(f) \cdot \mu_{0}$.
Therefore,

$$
\begin{aligned}
& G_{c}(f, g)=\left\langle\hat{G}_{c}, f \otimes g\right\rangle=\left\langle\check{G}_{c}(f), g\right\rangle \\
& \quad=\left\langle\check{G}_{c}(f)\right|\left(M \backslash \overline{U_{x}}\right), g\left|\left(M \backslash \overline{U_{x}}\right)\right\rangle, \text { since } \operatorname{supp}(g) \subset U_{y} \subset M \backslash \overline{U_{x}}, \\
& \quad=C_{M \backslash \overline{U_{x}}}(f) \cdot \int_{M} g \mu_{0}
\end{aligned}
$$

By applying the argument for the transposed bilinear form $G_{c}^{T}(g, f)=G_{c}(f, g)$, which is also $\operatorname{Diff}\left(M, \mu_{0}\right)$-invariant, we arrive at

$$
G_{c}(f, g)=G_{c}^{T}(g, f)=C_{M \backslash \overline{U_{y}}}^{\prime}(g) \cdot \int_{M} f \mu_{0} .
$$

Fix two functions f_{0}, g_{0} with the same properties as f, g and additionally $\int_{M} f_{0} \mu_{0}=1$ and $\int_{M} g_{0} \mu_{0}=1$. Then we get $C_{M \backslash \overline{U_{x}}}(f)=C_{M \backslash \overline{U_{y}}}^{\prime}\left(g_{0}\right) \int_{M} f \mu_{0}$, and so

$$
\begin{aligned}
G_{c}(f, g) & =C_{M \backslash \overline{U_{y}}}^{\prime}\left(g_{0}\right) \int_{M} f \mu_{0} \cdot \int_{M} g \mu_{0} \\
& =C_{M \backslash \overline{U_{x}}}\left(f_{0}\right) \int_{M} f \mu_{0} \cdot \int_{M} g \mu_{0}
\end{aligned}
$$

Since $\operatorname{dim}(M) \geq 2$ and M is connected, the complement of the diagonal in $M \times M$ is also connected, and thus the constants $C_{M \backslash \overline{U_{x}}}\left(f_{0}\right)$ and $C_{M \backslash \overline{U_{y}}}^{\prime}\left(g_{0}\right)$ cannot depend on the functions f_{0}, g_{0} or the open sets U_{x} and U_{y} as long as the latter are disjoint. Thus there exists a constant $C_{2}(c)$ such that for all $f, g \in C^{\infty}(M)$ with disjoint supports we have

$$
G_{c}(f, g)=C_{2}(c) \int_{M} f \mu_{0} \cdot \int_{M} g \mu_{0}
$$

Since $C_{c}^{\infty}\left(U_{x} \times U_{y}\right)=C_{c}^{\infty}\left(U_{x}\right) \bar{\otimes} C_{c}^{\infty}\left(U_{y}\right)$, this implies claim (5).

Now we can finish the proof. We may replace $\hat{G}_{c} \in \mathcal{D}^{\prime}(M \times M)$ by $\hat{G}_{c}-C_{2} \mu_{0} \otimes \mu_{0}$ and thus assume without loss that the constant C_{2} in (5) is 0 . Let (U, u) be an oriented chart on M such that $\mu_{0} \mid U=d u^{1} \wedge \cdots \wedge d u^{m}$. The distribution $\hat{G}_{c} \mid U \times U \in \mathcal{D}^{\prime}(U \times U)$ has support contained in the diagonal and is of finite order k. By [Hörmander I, 1983, Theorem 5.2.3], the corresponding operator $\check{G}_{c}: C_{c}^{\infty}(U) \rightarrow \mathcal{D}^{\prime}(U)$ is of the form $\hat{G}_{c}(f)=\sum_{|\alpha| \leq k} A_{\alpha} . \partial^{\alpha} f$ for $A_{\alpha} \in \mathcal{D}^{\prime}(U)$, so that $G(f, g)=\left\langle\check{G}_{c}(f), g\right\rangle=\sum_{\alpha}\left\langle A_{\alpha},\left(\partial^{\alpha} f\right) . g\right\rangle$. Moreover, the A_{α} in this representation are uniquely given, as is seen by a look at [Hörmander I, 1983, Theorem 2.3.5].

For $x \in U$ choose an open set U_{x} with $x \in U_{x} \subset \overline{U_{x}} \subset U$, and choose $X \in \mathfrak{X}_{\text {exact }}\left(M, \mu_{0}\right)$ with $X \mid U_{x}=\partial_{u^{i}}$, as in the proof of (2). For functions $f, g \in C_{c}^{\infty}\left(U_{x}\right)$ we then have, by the invariance of G_{c},

$$
\begin{aligned}
0 & =G_{c}\left(\mathcal{L}_{X} f, g\right)+G_{c}\left(f, \mathcal{L}_{X} g\right)=\left\langle\hat{G}_{c} \mid U \times U, \mathcal{L}_{X} f \otimes g+f \otimes \mathcal{L}_{X} g\right\rangle \\
& =\sum_{\alpha}\left\langle A_{\alpha},\left(\partial^{\alpha} \partial_{u^{i}} f\right) \cdot g+\left(\partial^{\alpha} f\right)\left(\partial_{\mu^{i}} g\right)\right\rangle \\
& =\sum_{\alpha}\left\langle A_{\alpha}, \partial_{u^{i}}\left(\left(\partial^{\alpha} f\right) \cdot g\right)\right\rangle=\sum_{\alpha}\left\langle-\partial_{u^{i}} A_{\alpha},\left(\partial^{\alpha} f\right) \cdot g\right\rangle .
\end{aligned}
$$

Since the corresponding operator has again a kernel distribution which is supported on the diagonal, and since the distributions in the representation are unique, we can conclude that $\partial_{\mu^{i}} A_{\alpha} \mid U_{x}=0$ for each α, and each i.

To see that this implies that $A_{\alpha}\left|U_{x}=C_{\alpha} \mu_{0}\right| U_{x}$, let $f \in C_{c}^{\infty}\left(U_{x}\right)$ with $\int_{M} f \mu_{0}=0$. Then, as in (3), there exists $\omega \in \Omega_{c}^{m-1}\left(U_{x}\right)$ with $d \omega=f \mu_{0}$. In coordinates we have
$\omega=\sum_{i} \omega_{i} \cdot d u^{1} \wedge \cdots \wedge \widehat{d u^{i}} \wedge d u^{m}$, and so $f=\sum_{i}(-1)^{i+1} \partial_{u^{i}} \omega_{i}$ with $\omega_{i} \in C_{c}^{\infty}\left(U_{x}\right)$. Thus

$$
\left\langle A_{\alpha}, f\right\rangle=\sum_{i}(-1)^{i+1}\left\langle A_{\alpha}, \partial_{u^{i}} \omega_{i}\right\rangle=\sum_{i}(-1)^{i}\left\langle\partial_{u^{i}} A_{\alpha}, \omega_{i}\right\rangle=0 .
$$

Hence $\left\langle A_{\alpha}, f\right\rangle=0$ for all $f \in C_{c}^{\infty}\left(U_{x}\right)$ with zero integral and as in the proof of (3) we can conclude that $A_{\alpha}\left|U_{x}=C_{\alpha} \mu_{0}\right| U_{x}$.

But then $G_{c}(f, g)=\int_{U_{x}}(L f) \cdot g \mu_{0}$ for the differential operator $L=\sum_{|\alpha| \leq k} C_{\alpha} \partial^{\alpha}$ with constant coefficients on U_{x}. Now we choose $g \in C_{c}^{\infty}\left(U_{x}\right)$ such that $g=1$ on the support of f. By the invariance of G_{c} we have again

$$
\begin{gathered}
0=G_{c}\left(\mathcal{L}_{X} f, g\right)+G_{c}\left(f, \mathcal{L}_{X} g\right)=\int_{U_{x}} L\left(\mathcal{L}_{X} f\right) \cdot g \mu_{0}+\int_{U_{x}} L(f) \cdot \mathcal{L}_{X} g \cdot \mu_{0} \\
=\int_{U_{X}} L\left(\mathcal{L}_{X} f\right) \mu_{0}+0
\end{gathered}
$$

for each $X \in \mathfrak{X}\left(M, \mu_{0}\right)$. Thus the distribution $f \mapsto \int_{U_{x}} L(f) \mu_{0}$ vanishes on all functions of the form $\mathcal{L}_{X} f$, and by (3) we conclude that $L(\quad) \cdot \mu_{0}=C_{x} \cdot \mu_{0}$ in $\mathcal{D}^{\prime}\left(U_{x}\right)$, or $L=C_{x}$ Id. By covering M with open sets U_{x}, we see that all the constants C_{x} are the same. This concludes the proof of the Main Theorem.

Thank you for listening up to now.
If you are willing to listen more, there is a little more.

Manifolds with corners

A manifold with corners (recently also called a quadrantic manifold) M is a smooth manifold modelled on open subsets of $\mathbb{R}_{\geq 0}^{m}$. Assume it is connected and second countable; then it is paracompact and it admits smooth partitions of unity. Any manifold with corners M is a submanifold with corners of an open manifold \tilde{M} of the same dim. Restriction $C^{\infty}(\tilde{M}) \rightarrow C^{\infty}(M)$ is a surjective continuous linear map which admits a continuous linear section. Thus $C^{\infty}(M)$ is a topological direct summand in $C^{\infty}(\tilde{M})$ and the same holds for the dual spaces: The space of distributions $\mathcal{D}^{\prime}(\underset{\sim}{M})$, which we identity with $C^{\infty}(M)^{\prime}$, is a direct summand in $\mathcal{D}^{\prime}(\tilde{M})$. It consists of all distributions with support in M.

We do not assume that M is oriented, but eventually, that M is compact. Diffeomorphisms of M map the boundary ∂M to itself and map the boundary $\partial^{q} M$ of corners of codimension q to itself; $\partial^{q} M$ is a submanifold of codimension q in M; in general $\partial^{q} M$ has finitely many connected components. We shall consider ∂M as stratified into the connected components of all $\partial^{q} M$ for $q>0$.

Moser's theorem for manifolds with corners [BMPR18]

Let M be a compact connected smooth manifold with corners, possibly non-orientable. Let μ_{0} and μ_{1} be two smooth positive densities in $\operatorname{Dens}_{+}(M)$ with $\int_{M} \mu_{0}=\int_{M} \mu_{1}$. Then there exists a diffeomorphism $\varphi: M \rightarrow M$ such that $\mu_{1}=\varphi^{*} \mu_{0}$. If and only if $\mu_{0}(x)=\mu_{1}(x)$ for each corner $x \in \partial^{\geq 2} M$ of codimension ≥ 2, then φ can be chosen to be the identity on ∂M.

This result is highly desirable even for M a simplex. The proof is essentially contained in [Banyaga1974], who proved it for manifolds with boundary.

Conjecture

Let M be an oriented compact connected manifold with corners, of dimension $m \geq 2$, and let

$$
\partial^{p} M=\left(\partial^{p} M\right)_{1} \sqcup\left(\partial^{p} M\right)_{2} \sqcup \cdots \sqcup\left(\partial^{p} M\right)_{n_{p}}
$$

be the decomposition of the set of corners of codimension p into its connected components which are manifolds of dimension $m-p$. Then the the associative algebra of bounded Diff $_{0}(M)$-invariant tensor fields on Dens+ (M) is has the following set of generators, where $\mu \in \operatorname{Dens}_{+}(M)$ is the footpoint and $\alpha_{i} \in \Gamma(\operatorname{Vol}(M))=T_{\mu} \operatorname{Dens}_{+}(M):$
$f(\mu(M)) \quad$ where $f \in C^{\infty}\left(\mathbb{R}_{>0}, \mathbb{R}\right), \quad \int_{M} \frac{\alpha_{1}}{\mu} \ldots \frac{\alpha_{n}}{\mu} \mu \quad n \geq 1$,
$\int_{\left(\partial^{P} M\right)_{j}} \frac{\alpha_{1}}{\mu} \ldots \frac{\alpha_{n}}{\mu} d\left(\frac{\alpha_{i_{n+1}}}{\mu}\right) \wedge \cdots \wedge d\left(\frac{\alpha_{i_{n+m-p}}}{\mu}\right), \begin{gathered}p=0, \ldots m-1, \\ j=0, \ldots, n_{p}\end{gathered}$
$\frac{\alpha}{\mu}\left(\left(\partial^{m} M\right)_{j}\right), \quad$ for $j=1, \ldots, n_{m}$; note that $\left(\partial^{m} M\right)_{j}$ is a point.

For a non-orientable compact manifold \bar{M} with corners, let $\pi: M \rightarrow \bar{M}$ be its orientable double cover with its deck transformation $\tau: M \rightarrow M$. We consider the bounded linear isomorphism

$$
\frac{1}{2} \pi^{*}: \operatorname{Dens}_{+}(\bar{M}) \rightarrow\left\{\alpha \in \operatorname{Dens}_{+}(M): \tau^{*} \alpha=\alpha\right\} \subset \operatorname{Dens}_{+}(M)
$$

Then the set of generators for the algebra of bounded Diff (M)-invariant tensor fields on Dens ${ }_{+}(M)$, applied to $\frac{1}{2} \pi^{*} \alpha_{i}$ and $\frac{1}{2} \pi^{*} \mu$ for $\mu \in \operatorname{Dens}_{+}(\bar{M})$ and $\alpha_{i} \in T_{\mu} \operatorname{Dens}_{+}(\bar{M})$, is a set of generators for the algebra of $\operatorname{Diff}(\bar{M})$-invariant bounded tensor fields on Dens $_{+}(\bar{M})$.

Really thank you for listening.

