Uniqueness of the Fisher–Rao metric on the space of smooth densities on a closed manifold

Peter W. Michor

University of Vienna, Austria www.mat.univie.ac.at/~michor

Information Geometry Seminar March 19, 2021, Stony Brook via Zoom

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Based on:

 [M.Bauer, M.Bruveris, P.Michor: Uniqueness of the Fisher–Rao metric on the space of smooth densities, Bull. London Math. Soc. 48, 3 (2016), 499-506, arXiv:1411.5577]
 [M.Bruveris, P.Michor: Geometry of the Fisher-Rao metric on the

- space of smooth densities, Mathematische Nachrichten 292 (2019), 511-523, arxiv:1607.04550]
- [M.Bruveris, P. Michor, A.Parusinski, A. Rainer: Moser's Theorem for manifolds with corners, Proc. AMS 146 (2018), pp. 4889-4897, arxiv:1604.07787]

The infinite dimensional geometry used here is based on:
[Andreas Kriegl, Peter W. Michor: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, Volume: 53, Amer. Math. Soc., 1997]
Wikipedia [https://en.wikipedia.org/wiki/Convenient_vector_space]
I will use also [Peter W. Michor: Topics in Differential Geometry, Grad. Studies in Math. 93, 2008]

Abstract

For a smooth compact manifold M without boundary, any weak Riemannian metric on the space of smooth positive densities which is invariant under the right action of the diffeomorphism group Diff(M) is of the form

$$G_{\mu}(\alpha,\beta) = C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu + C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta$$

for smooth functions C_1 , C_2 of the total volume $\mu(M) = \int_M \mu$. This implies uniqueness up to a constant for the Fisher-Rao metric G^{FR} on the space of smooth positive probability densities.

In this talk I prove this, and investigate the geometry. If time permits, I conjecturally extend the result to compact smooth manifolds with corners (for example, a simplex).

The Fisher–Rao metric on the space Prob(M) of probability densities is of importance in the field of information geometry. Restricted to finite-dimensional submanifolds of Prob(M), so-called statistical manifolds, it is called Fisher's information metric [Amari: Differential-geometrical methods in statistics, 1985]. The Fisher-Rao metric is invariant under the action of the diffeomorphism group. A uniqueness result was established [Čencov: Statistical decision rules and optimal inference, 1982, p. 156] for Fisher's information metric on finite sample spaces and [Ay, Jost, Le, Schwachhöfer, 2014] extended it to infinite sample spaces.

See also [Ay, Jost, Le, Schwachhöfer: Information Geometry, 2017].

The Fisher–Rao metric on the infinite-dimensional manifold of all positive smooth probability densities was studied in [Friedrich: Die Fisher-Information und symplektische Strukturen, 1991], including the computation of its curvature.

The space of densities

Let M^m be a smooth manifold. Let $(M \supseteq U_\alpha \xrightarrow{u_\alpha} u_\alpha(U_\alpha) \subseteq \mathbb{R}^m)$ be a smooth atlas for it. The *volume bundle* $(Vol(M), \pi_M, M)$ of M is the 1-dimensional vector bundle (line bundle) which is given by the following cocycle of transition functions:

$$\psi_{lphaeta}: U_{lphaeta} = U_{lpha} \cap U_{eta} o \mathbb{R} \setminus \{0\} = GL(1,\mathbb{R}), \ \psi_{lphaeta}(x) = |\det d(u_{eta} \,\circ\, u_{lpha}^{-1})(u_{lpha}(x))| = rac{1}{|\det d(u_{lpha} \,\circ\, u_{eta}^{-1})(u_{eta}(x))|}.$$

Vol(M) is a trivial line bundle over M. But there is no natural trivialization. There is a natural order on each fiber. Since Vol(M) is a natural bundle of order 1 on M, there is a natural action of the group Diff(M) on Vol(M), given by

If M is orientable, then $Vol(M) = \Lambda^m T^*M$. If M is not orientable, let \tilde{M} be the orientable double cover of M with its deck-transformation $\tau : \tilde{M} \to \tilde{M}$. Then $\Gamma(Vol(M))$ is isomorphic to the space $\{\omega \in \Omega^m(\tilde{M}) : \tau^*\omega = -\omega\}$. These are the 'formes impaires' of de Rham. See [M 2008, 13.1] for this.

Sections of the line bundle Vol(M) are called densities. The space $\Gamma(Vol(M))$ of all smooth sections is a Fréchet space in its natural topology; see [Kriegl-M, 1997]. For each section α of Vol(M) of compact support the integral $\int_M \alpha$ is invariantly defined as follows: Let (U_{α}, u_{α}) be an atlas on M with associated trivialization $\psi_{\alpha} : Vol(M)|_{U_{\alpha}} \to \mathbb{R}$, and let f_{α} be a partition of unity with $\operatorname{supp}(f_{\alpha}) \subset U_{\alpha}$. Then we put

$$\int_{M} \mu = \sum_{\alpha} \int_{U_{\alpha}} f_{\alpha} \mu := \sum_{\alpha} \int_{u_{\alpha}(U_{\alpha})} f_{\alpha}(u_{\alpha}^{-1}(y)) \cdot \psi_{\alpha}(\mu(u_{\alpha}^{-1}(y))) \, dy.$$

The integral is independent of the choice of the atlas and the partition of unity.

The Fisher–Rao metric

Let M^m be a smooth compact manifold without boundary. Let $Dens_+(M)$ be the space of smooth positive densities on M, i.e., $Dens_+(M) = \{\mu \in \Gamma(Vol(M)) : \mu(x) > 0 \ \forall x \in M\}$. Let Prob(M) be the subspace of positive densities with integral 1. For $\mu \in Dens_+(M)$ we have $T_\mu Dens_+(M) = \Gamma(Vol(M))$ and for $\mu \in Prob(M)$ we have $T_\mu Prob(M) = \{\alpha \in \Gamma(Vol(M)) : \int_M \alpha = 0\}$. The Fisher–Rao metric on Prob(M) is defined as:

$$\mathcal{G}^{\mathsf{FR}}_{\mu}(lpha,eta) = \int_{\mathcal{M}} rac{lpha}{\mu} rac{eta}{\mu} \mu.$$

It is invariant for the action of Diff(M) on Prob(M):

$$\left((\varphi^*)^* G^{\mathsf{FR}} \right)_{\mu} (\alpha, \beta) = G_{\varphi^* \mu}^{\mathsf{FR}} (\varphi^* \alpha, \varphi^* \beta) =$$

$$= \int_{\mathcal{M}} \left(\frac{\alpha}{\mu} \circ \varphi \right) \left(\frac{\beta}{\mu} \circ \varphi \right) \varphi^* \mu = \int_{\mathcal{M}} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu .$$

Theorem [BBM, 2016]

Let M be a compact manifold without boundary of dimension ≥ 2 . Let G be a smooth (equivalently, bounded) bilinear form on Dens₊(M) which is invariant under the action of Diff(M). Then

$$G_{\mu}(\alpha,\beta) = C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu + C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta$$

for smooth functions C_1, C_2 of the total volume $\mu(M)$.

To see that this theorem implies the uniqueness of the Fisher–Rao metric, note that if G is a Diff(M)-invariant Riemannian metric on Prob(M), then we can equivariantly extend it to $\text{Dens}_+(M)$ via

$$G_{\mu}(\alpha,\beta) = G_{\frac{\mu}{\mu(M)}} \left(\alpha - \left(\int_{M} \alpha \right) \frac{\mu}{\mu(M)}, \beta - \left(\int_{M} \beta \right) \frac{\mu}{\mu(M)} \right)$$

Let $\mu_0 \in \operatorname{Prob}(M)$ be a fixed smooth probability density. In [Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that the degenerate, \dot{H}^1 -metric $\frac{1}{2} \int_M \operatorname{div}^{\mu_0}(X) \cdot \operatorname{div}^{\mu_0}(X) \cdot \mu_0$ on $\mathfrak{X}(M)$ is invariant under the adjoint action of $\operatorname{Diff}(M, \mu_0)$. Thus the induced degenerate right invariant metric on $\operatorname{Diff}(M)$ descends to a metric on $\operatorname{Prob}(M) \cong \operatorname{Diff}(M, \mu_0) \setminus \operatorname{Diff}(M)$ via

$$\operatorname{Diff}(M) \ni \varphi \mapsto \varphi^* \mu_0 \in \operatorname{Prob}(M)$$

which is invariant under the right action of Diff(M). This is the Fisher-Rao metric on Prob(M). In [Modin, 2014], the \dot{H}^1 -metric was extended to a non-degenerate metric on Diff(M), also descending to the Fisher-Rao metric.

Corollary. Let dim $(M) \ge 2$. If a weak right-invariant (possibly degenerate) Riemannian metric \tilde{G} on Diff(M) descends to a metric G on Prob(M) via the right action, i.e., the mapping $\varphi \mapsto \varphi^* \mu_0$ from (Diff(M), \tilde{G}) to (Prob(M), G) is a Riemannian submersion, then G has to be a multiple of the Fisher–Rao metric.

Note that any right invariant metric \tilde{G} on Diff(M) descends to a metric on Prob(M) via $\varphi \mapsto \varphi_* \mu_0$; but this is not Diff(M)-invariant in general.

Invariant metrics on $Dens_+(S^1)$.

 $\begin{array}{l} {\rm Dens}_+(S^1)=\Omega^1_+(S^1), \mbox{ and } {\rm Dens}_+(S^1) \mbox{ is } {\rm Diff}(S^1)\mbox{-}{\rm equivariantly}\\ {\rm isomorphic to the space of all Riemannian metrics on } S^1 \mbox{ via}\\ \Phi=()^2: {\rm Dens}_+(S^1)\to {\rm Met}(S^1), \mbox{ } \Phi(fd\theta)=f^2d\theta^2.\\ {\rm On } {\rm Met}(S^1)\mbox{ there are many } {\rm Diff}(S^1)\mbox{-}{\rm invariant metrics};\mbox{ see [Bauer, Harms, M, 2013]}.\\ {\rm For example Sobolev-type metrics}.\\ {\rm Write}\\ g\in {\rm Met}(S^1)\mbox{ in the form } g=\tilde{g}d\theta^2\mbox{ and } h=\tilde{h}d\theta^2,\mbox{ } k=\tilde{k}d\theta^2\mbox{ with }\\ \tilde{g}, \tilde{h}, \tilde{k}\in C^\infty(S^1). \\ {\rm The following metrics are } {\rm Diff}(S^1)\mbox{-}{\rm invariant}: \end{array}$

$$G_g^{\prime}(h,k) = \int_{\mathcal{S}^1} rac{ ilde{h}}{ ilde{g}}.\,(1+\Delta^g)^n\left(rac{ ilde{k}}{ ilde{g}}
ight)\sqrt{ ilde{g}}\,d heta\,;$$

here Δ^g is the Laplacian on S^1 with respect to the metric g. The pullback by Φ yields a Diff (S^1) -invariant metric on Dens₊(M):

$$G_{\mu}(\alpha,\beta) = 4 \int_{S^1} \frac{\alpha}{\mu} \cdot \left(1 + \Delta^{\Phi(\mu)}\right)^n \left(\frac{\beta}{\mu}\right) \mu \,.$$

For n = 0 this is 4 times the Fisher–Rao metric. For $n \ge 1$ we get many Diff (S^1) -invariant metrics on Dens₊ (S^1) and on Prob (S^1) .

Geometry of the Fisher-Rao metric on $Dens_+(M)$

$$G_{\mu}(\alpha,\beta) = C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu + C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta$$

This metric will be studied in different representations.

 $\mathsf{Dens}_+(M) \xrightarrow{R} C^{\infty}(M, \mathbb{R}_{>0}) \xrightarrow{\Phi} \mathbb{R}_{>0} \times S \cap C^{\infty}_{>0} \xrightarrow{W \times \mathsf{Id}} (W_-, W_+) \times S \cap C^{\infty}_{>0}.$ We fix $\mu_0 \in \mathsf{Prob}(M)$ and consider the mapping

 $R: \operatorname{Dens}_+(M) \to C^\infty(M, \mathbb{R}_{>0}), \qquad R(\mu) = f = \sqrt{\frac{\mu}{\mu_0}}.$

The map R is a diffeomorphism and we will denote the induced metric by $\tilde{G} = (R^{-1})^* G$; it is given by the formula

$$\tilde{G}_{f}(h,k) = 4C_{1}(\|f\|_{L^{2}(\mu_{0})}^{2})\langle h,k\rangle_{L^{2}(\mu_{0})} + 4C_{2}(\|f\|_{L^{2}(\mu_{0})}^{2})\langle f,h\rangle_{L^{2}(\mu_{0})}\langle f,k\rangle_{L^{2}(\mu_{0})},$$

and this formula makes sense for $f \in C^{\infty}(M, \mathbb{R}) \setminus \{0\}$. Consequently, for $(\operatorname{Prob}(M), G^{\operatorname{FR}})$ is isometric to the $2\sqrt{C_1(1)}$ -sphere in $L^2(\mu_0)$ intersected with $C^{\infty}(M, \mathbb{R}_{>0})$. The map *R* is inspired by [B. Khesin, J. Lenells, G. Misiolek, S. C. Preston: Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal., 23(1):334-366, 2013.]

$$R^{-1}: C^{\infty}(M, \mathbb{R}) \to \Gamma_{\geq 0}(\operatorname{Vol}(M)), \quad f \mapsto f^{2}\mu_{0}$$

makes sense on the whole space $C^{\infty}(M, \mathbb{R})$ and its image is stratified (loosely speaking) according to the rank of TR^{-1} . The image looks somewhat like the orbit space of a discrete reflection group. Geodesics are mapped to curves which are geodesics in the interior $\Gamma_{>0}(Vol(M))$, and they are reflected following Snell's law at some hyperplanes in the boundary.

Polar coordinates

on the pre-Hilbert space $(C^{\infty}(M, \mathbb{R}), \langle , \rangle_{L^{2}(\mu_{0})})$. Let $S = \{\varphi \in L^{2}(M, \mathbb{R}) : \int_{M} \varphi^{2} \mu_{0} = 1\}$ denote the L^{2} -sphere. Then

$$\Phi: C^{\infty}(M,\mathbb{R})\backslash\{0\} \to \mathbb{R}_{>0} \times (S \cap C^{\infty}), \qquad \Phi(f) = (r,\varphi) = \left(\|f\|, \frac{f}{\|f\|}\right)$$

is a diffeomorphism. We set $\bar{G} = (\Phi^{-1})^* \tilde{G}$; the metric has the expression

$$ar{\mathcal{G}}_{r,\varphi} = g_1(r) \langle darphi, darphi
angle + g_2(r) dr^2 \, ,$$

with $g_1(r) = 4C_1(r^2)r^2$ and $g_2(r) = 4(C_1(r^2) + C_2(r^2)r^2)$. Finally we change the coordinate r diffeomorphically to

$$s=W(r)=2\int_1^r\sqrt{g_2(\rho)}\,d\rho\,.$$

Then, defining $a(s) = 4C_1(r(s)^2)r(s)^2$, we have

$$ar{G}_{s,arphi} = a(s) \langle darphi, darphi
angle + ds^2$$
 .

- 4 回 ト 4 日 ト - 日 日

Let $W_{-} = \lim_{r \to 0^{+}} W(r)$ and $W_{+} = \lim_{r \to \infty} W(r)$. Then $W : \mathbb{R}_{>0} \to (W_{-}, W_{+})$ is a diffeomorphism.

This completes the first row in Fig. 1.

$$\begin{array}{c|c} \mathrm{Dens}_{+}(M) & \overset{R}{\longrightarrow} C^{\infty}(M, \mathbb{R}_{>0}) \xrightarrow{\Phi} \mathbb{R}_{>0} \times S \cap C^{\infty}_{>0} \xrightarrow{W \times \mathrm{Id}} (W_{-}, W_{+}) \times S \cap C^{\infty}_{>0} \\ & & \downarrow & \downarrow & \downarrow \\ \mathrm{Dens}(M) \setminus \{0\} \xrightarrow{R} C^{0}(M, \mathbb{R}) \setminus \{0\} \xrightarrow{\Phi} \mathbb{R}_{>0} \times S \cap C^{0} \xrightarrow{W \times \mathrm{Id}} \mathbb{R} \times S \cap C^{0} \\ & \downarrow & \downarrow & \downarrow \\ \Gamma_{L^{1}}(\mathrm{Vol}(M)) \setminus \{0\} \xrightarrow{R} L^{2}(M, \mathbb{R}) \setminus \{0\} \xrightarrow{\Phi} \mathbb{R}_{>0} \times S \xrightarrow{W \times \mathrm{Id}} \mathbb{R} \times S \end{array}$$

Figure: Representations of Dens₊(M) and its completions. In the second and third rows we assume that $(W_-, W_+) = (-\infty, +\infty)$ and we note that R is a diffeomorphism only in the first row.

Geodesic equation:

$$\nabla_{\partial_t}^S \varphi_t = \partial_t \left(\log g_1(r) \right) \varphi_t$$

$$r_{tt} = \frac{C_0^2}{2} \frac{g_1'(r)}{g_1(r)^2 g_2(r)} - \frac{1}{2} \partial_t \left(\log g_2(r) \right) r_t$$

Since \overline{G} induces the canonical metric on (W_-, W_+) , a necessary condition for \overline{G} to be complete is $(W_-, W_+) = (-\infty, +\infty)$. Rewritten in terms of the functions C_1 , C_2 this becomes

$$W_+ = \infty \Leftrightarrow \left(\int_1^\infty r^{-1/2} \sqrt{C_1(r)} \, dr = \infty \text{ or } \int_1^\infty \sqrt{C_2(r)} \, dr = \infty\right) \,,$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

and similarly for $W_{-} = -\infty$, with the limits of the integration being 0 and 1.

Relation to hypersurfaces of revolution in the (pre-) Hilbert space

We consider the metric on $(W_-, W_+) \times S \cap C^{\infty}$ in the form $\tilde{G}_{r,\varphi} = a(s)\langle d\varphi, d\varphi \rangle + ds^2$ where $a(s) = 4C_1(r(s)^2)r(s)^2$. Then we consider the isometric embedding (remember $\langle \varphi, d\varphi \rangle = 0$ on $S \cap C^{\infty}$)

$$\begin{split} \Psi : ((W_{-}, W_{+}) \times S \cap C^{\infty}, \tilde{G}) &\to \left(\mathbb{R} \times C^{\infty}(M, \mathbb{R}), du^{2} + \langle df, df \rangle\right), \\ \Psi(s, \varphi) &= \left(\int_{0}^{s} \sqrt{1 - \frac{a'(\sigma)^{2}}{4a(\sigma)}} \, d\sigma \,, \, \sqrt{a(s)}\varphi\right), \end{split}$$

which is defined and smooth only on the open subset

$$R:=\{(s,\varphi)\in (W_-,W_+)\times S\cap C^\infty: a'(s)^2<4a(s)\}.$$

Fix some $\varphi_0 \in S \cap C^\infty$ and consider the generating curve

$$s\mapsto \Big(\int_0^s\sqrt{1-rac{a'(\sigma)^2}{4a(\sigma)}\,d\sigma}\,,\,\,\sqrt{a(s)}\Big)\in\mathbb{R}^2\,.$$

Then s is an arc-length parameterization of this curve! $(a + b) = 0 \leq 0$

Given any arc-length parameterized curve $I \ni s \mapsto (c_1(s), c_2(s))$ in \mathbb{R}^2 and its generated hypersurface of rotation

$$\{(c_1(s),c_2(s)\varphi):s\in I,\varphi\in S\cap C^\infty\}\subset\mathbb{R}\times C^\infty(M,\mathbb{R}),$$

the induced metric in the (s, φ) -parameterization is $ds^2 + c_2(s)^2 \langle d\varphi, d\varphi \rangle$.

This suggests that the moduli space of hypersurfaces of revolution is naturally embedded in the moduli space of all metrics of the form $\tilde{G}_{r,\varphi} = a(s)\langle d\varphi, d\varphi \rangle + ds^2$.

Example: In the case of $S = S^1$ and the tractrix (c_1, c_2) , the surface of revolution is the pseudosphere (curvature -1) whose universal cover is only part of the hyperbolic plane. But in polar coordinates we get a space whose universal cover is the hyperbolic plane. In detail:

$$c_1(s) = \int_0^s \sqrt{1 - e^{-2\sigma}} \, d\sigma = \operatorname{Arcosh} \left(e^s \right) - \sqrt{1 - e^{-2s}}$$

$$c_2(s) = e^{-s}, \quad s > 0$$

$$a(s) \, d\varphi^2 + ds^2 = e^{-2s} d\varphi^2 + ds^2, \qquad s \in \mathbb{R}.$$

If $(W_-, W_+) = (-\infty, +\infty)$, then any two points (s_0, φ_0) and (s_1, φ_1) in $\mathbb{R} \times S$ can be joined by a minimal geodesic. If φ_0 and φ_1 lie in $S \cap C^{\infty}$, then the minimal geodesic lies in $\mathbb{R} \times S \cap C^{\infty}$.

Proof. If φ_0 and φ_1 are linearly independent, we consider the 2-space $V = V(\varphi_0, \varphi_1)$ spanned by φ_0 and φ_1 in L^2 . Then $\mathbb{R} \times V \cap S$ is totally geodesic since it is the fixed point set of the isometry $(s, \varphi) \mapsto (s, \mathfrak{s}_V(\varphi))$ where \mathfrak{s}_V is the orthogonal reflection at V. Thus there is exists a minimizing geodesic between (s_0, φ_0) and (s_1, φ_1) in the complete 3-dimensional Riemannian submanifold $\mathbb{R} \times V \cap S$. This geodesic is also length-minimizing in the strong Hilbert manifold $\mathbb{R} \times S$ by the following arguments:

Given any smooth curve $c = (s, \varphi) : [0, 1] \to \mathbb{R} \times S$ between these two points, there is a subdivision $0 = t_0 < t_1 < \cdots < t_N = 1$ such that the piecewise geodesic c_1 which first runs along a geodesic from $c(t_0)$ to $c(t_1)$, then to $c(t_2)$, ..., and finally to $c(t_N)$, has length $\text{Len}(c_1) \leq \text{Len}(c)$. This piecewise geodesic now lies in the totally geodesic (N + 2)-dimensional submanifold $\mathbb{R} \times V(\varphi(t_0), \ldots, \varphi(t_N)) \cap S$. Thus there exists a geodesic c_2 between the two points (s_0, φ_0) and s_1, φ_1 which is length minimizing in this (N + 2)-dimensional submanifold. Therefore $\text{Len}(c_2) \leq \text{Len}(c_1) \leq \text{Len}(c)$. Moreover, $c_2 = (s \circ c_2, \varphi \circ c_2)$ lies in $\mathbb{R} \times V(\varphi_0, (\varphi \circ c_2)'(0)) \cap S$ which also contains φ_1 , thus c_2 lies in $\mathbb{R} \times V(\varphi_0, \varphi_1) \cap S$.

If $\varphi_0 = \varphi_1$, then $\mathbb{R} \times \{\varphi_0\}$ is a minimal geodesic. If $\varphi_0 = -\varphi_0$ we choose a great circle between them which lies in a 2-space V and proceed as above.

Covariant derivative

On $\mathbb{R} \times S$ (we assume that $(W_-, W_+) = \mathbb{R}$) with metric $\overline{G} = ds^2 + a(s) \langle d\varphi, d\varphi \rangle$ we consider smooth vector fields $f(s, \varphi) \partial_s + X(s, \varphi)$ where $X(s,) \in \mathfrak{X}(S)$ is a smooth vector field on the Hilbert sphere S. We denote by ∇^S the covariant derivative on S and get

$$\nabla_{f\partial_s+X}(g\partial_s+Y) = \left(f \cdot g_s + dg(X) - \frac{a_s}{2} \langle X, Y \rangle\right) \partial_s + \frac{a_s}{2a}(fY + gX) + fY_s + \nabla_X^S Y$$

Curvature:

$$\begin{aligned} &\mathcal{R}(f\partial_s + X, g\partial_s + Y)(h\partial_s + Z) = \\ &= \big(\frac{a_{ss}}{2} - \frac{a_s^2}{4a}\big)\langle gX - fY, Z\rangle\partial_s + \mathcal{R}^S(X, Y)Z \\ &- \big(\big(\frac{a_s}{2a}\big)_s + \frac{a_s^2}{4a^2}\big)h(gX - fY) + \frac{a_s^2}{4a}\big(\langle X, Z\rangle Y - \langle Y, Z\rangle X\big). \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let us take $X, Y \in T_{\varphi}S$ with $\langle X, Y \rangle = 0$ and $\langle X, X \rangle = \langle Y, Y \rangle = 1/a(s)$, then

$$\operatorname{Sec}_{(s,\varphi)}(\operatorname{span}(X,Y)) = \frac{1}{a} - \frac{a_s^2}{4a^2},$$
$$\operatorname{Sec}_{(s,\varphi)}(\operatorname{span}(\partial_s,Y)) = -\frac{a_{ss}}{2a} + \frac{a_s^2}{4a^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

are all the possible sectional curvatures.

First, the main theorem again:

Theorem [BBM, 2016] Let M be a compact manifold without boundary of dimension ≥ 2 . Let G be a smooth (equivalently, bounded) bilinear form on $\text{Dens}_+(M)$ which is invariant under the action of Diff(M). Then

$$G_{\mu}(\alpha,\beta) = C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu + C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta$$

for smooth functions C_1, C_2 of the total volume $\mu(M)$.

Here M is a compact smooth manifold without boundary, possibly non-orientable.

Let us fix a basic probability density μ_0 . By Moser's theorem [Moser, 1965], see [M, 2008, 31.13] or the proof of [Kriegl, M, 1997, 43.7] for proofs in the notation used here, there exists for each $\mu \in \text{Dens}_+(M)$ a diffeomorphism $\varphi_{\mu} \in \text{Diff}(M)$ with $\varphi_{\mu}^* \mu = \mu(M)\mu_0 =: c.\mu_0$ where $c = \mu(M) = \int_M \mu > 0$. Then

$$\left((\varphi_{\mu}^{*})^{*}G\right)_{\mu}(\alpha,\beta) = \mathcal{G}_{\varphi_{\mu}^{*}\mu}(\varphi_{\mu}^{*}\alpha,\varphi_{\mu}^{*}\beta) = \mathcal{G}_{c.\mu_{0}}(\varphi_{\mu}^{*}\alpha,\varphi_{\mu}^{*}\beta).$$

Thus it suffices to show that for any c > 0 we have

$$G_{c\mu_0}(\alpha,\beta) = C_1(c) \cdot \int_M \frac{\alpha}{\mu_0} \frac{\beta}{\mu_0} \mu_0 + C_2(c) \int_M \alpha \cdot \int_M \beta$$

for some functions C_1 , C_2 of the total volume $c = \mu(M)$. Both bilinear forms are still invariant under the action of the group $\text{Diff}(M, c\mu_0) = \text{Diff}(M, \mu_0) = \{\psi \in \text{Diff}(M) : \psi^*\mu_0 = \mu_0\}$. The bilinear form

$$\mathcal{T}_{\mu_0} \operatorname{Dens}_+(\mathcal{M}) \times \mathcal{T}_{\mu_0} \operatorname{Dens}_+(\mathcal{M}) \ni (\alpha, \beta) \mapsto \mathcal{G}_{c\mu_0} \Big(\frac{\alpha}{\mu_0} \mu_0, \frac{\beta}{\mu_0} \mu_0 \Big)$$

can be viewed as a bilinear form

$$C^{\infty}(M) \times C^{\infty}(M) \ni (f,g) \mapsto G_c(f,g).$$

We will consider now the associated bounded linear mapping

$$\check{G}_c: C^\infty(M) \to C^\infty(M)' = \mathcal{D}'(M).$$

(1) The Lie algebra $\mathfrak{X}(M, \mu_0)$ of Diff (M, μ_0) consists of vector fields X with

$$0 = \operatorname{div}^{\mu_0}(X) := \frac{\mathcal{L}_X \mu_0}{\mu_0}$$

On an oriented open subset $U \subset M$, each density is an *m*-form, $m = \dim(M)$, and $\operatorname{div}^{mu_0}(X) = di_X \mu_0$.

The mapping $\hat{\iota}_{\mu_0} : \mathfrak{X}(U) \to \Omega^{m-1}(U)$ given by $X \mapsto i_X \mu_0$ is an isomorphism. The Lie subalgebra $\mathfrak{X}(U, \mu_0)$ of divergence free vector fields corresponds to the space of closed (m-1)-forms.

Denote by $\mathfrak{X}_{exact}(M, \mu_0)$ the set (not a vector space) of 'exact' divergence free vector fields $X = \hat{\iota}_{\mu_0}^{-1}(d\omega)$, where $\omega \in \Omega_c^{m-2}(U)$ for an oriented open subset $U \subset M$.

(2) If for $f \in C^{\infty}(M)$ and a connected open set $U \subseteq M$ we have $(\mathcal{L}_X f)|U = 0$ for all $X \in \mathfrak{X}_{exact}(M, \mu_0)$, then f|U is constant.

Since we shall need some details later on, we prove this well-known fact.

Let $x \in U$. For every tangent vector $X_x \in T_x M$ we can find a vector field $X \in \mathfrak{X}_{exact}(M, \mu_0)$ such that $X(x) = X_x$; to see this, choose a chart (U_x, u) near x such that $\mu_0 | U_x = du^1 \wedge \cdots \wedge du^m$, and choose $g \in C_c^{\infty}(U_x)$, such that g = 1 near x.

Then $X := \hat{\iota}_{\mu_0}^{-1} d(g.u^2.du^3 \wedge \cdots \wedge du^m) \in \mathfrak{X}_{exact}(M,\mu_0)$ and $X = \partial_{u^1}$ near x. So we can produce a basis for $T_x M$ and even a local frame near x.

Thus $\mathcal{L}_X f | U = 0$ for all $X \in \mathfrak{X}_{exact}(M, \mu_0)$ implies df = 0 and hence f is constant.

(3) If for a distribution (generalized function) $A \in \mathcal{D}'(M)$ and a connected open set $U \subseteq M$ we have $\mathcal{L}_X A | U = 0$ for all $X \in \mathfrak{X}_{exact}(M, \mu_0)$, then $A | U = C \mu_0 | U$ for some constant C, meaning $\langle A, f \rangle = C \int_M f \mu_0$ for all $f \in C_c^{\infty}(U)$.

Because $\langle \mathcal{L}_X A, f \rangle = -\langle A, \mathcal{L}_X f \rangle$, the invariance property $\mathcal{L}_X A | U = 0$ implies $\langle A, \mathcal{L}_X f \rangle = 0$ for all $f \in C_c^\infty(U)$. Clearly, $\int_{M} (\mathcal{L}_{X} f) \mu_{0} = 0$. For each $x \in U$ let $U_{x} \subset U$ be an open oriented chart which is diffeomorphic to \mathbb{R}^m . Let $g \in C^{\infty}_c(U_x)$ satisfy $\int_{M} g\mu_0 = 0$; we will show that $\langle A, g \rangle = 0$. Because the integral over $g\mu_0$ is zero, the compact cohomology class $[g\mu_0] \in H^m_c(U_x) \cong \mathbb{R}$ vanishes; thus there exists $\alpha \in \Omega_c^{m-1}(U_x) \subset \Omega^{m-1}(M)$ with $d\alpha = g\mu_0$. Since U_x is diffeomorphic to \mathbb{R}^m , we can write $\alpha = \sum_i f_i d\beta_i$ with $\beta_i \in \Omega^{m-2}(U_x)$ and $f_i \in C^{\infty}_c(U_x)$. Choose $h \in C^{\infty}_c(U_x)$ with h = 1on $\bigcup_i \operatorname{supp}(f_i)$, so that $\alpha = \sum_i f_i d(h\beta_i)$ and $h\beta_i \in \Omega_c^{m-2}(M) \subset \Omega^{m-2}(M)$. Thus the fields $X_i = \hat{\iota}_{\mu_0}^{-1} d(h\beta_i)$ lie in $\mathfrak{X}_{exact}(M, \mu_0)$ and we have the identity $\sum_i f_i \cdot i_{X_i} \mu_0 = \alpha$.

This means
$$\sum_{j} (\mathcal{L}_{X_{j}}f_{j})\mu_{0} = \sum_{j} \mathcal{L}_{X_{j}}(f_{j}\mu_{0}) = \sum_{j} di_{X_{j}}(f_{j}\mu_{0}) =$$

 $d\left(\sum_{j} f_{j}.i_{X_{j}}\mu_{0}\right) = d\alpha = g\mu_{0} \text{ or } \sum_{j} \mathcal{L}_{X_{j}}f_{j} = g, \text{ leading to}$
 $\langle A,g \rangle = \sum \langle A, \mathcal{L}_{X_{j}}f_{j} \rangle = -\sum \langle \mathcal{L}_{X_{j}}A, f_{j} \rangle = 0.$

i

So $\langle A, g \rangle = 0$ for all $g \in C_c^{\infty}(U_x)$ with $\int_M g\mu_0 = 0$. Finally, choose a function φ with support in U_x and $\int_M \varphi\mu_0 = 1$. Then for any $f \in C_c^{\infty}(U_x)$, the function defined by $g = f - (\int_M f\mu_0) \varphi$ in $C^{\infty}(M)$ satisfies $\int_M g\mu_0 = 0$ and so

i

$$\langle A, f \rangle = \langle A, g \rangle + \langle A, \varphi \rangle \int_{M} f \mu_{0} = C \int_{M} f \mu_{0},$$

with $C_x = \langle A, \varphi \rangle$. Thus $A | U_x = C_x \mu_0 | U_x$. Since U is connected, the constants C_x are all equal: Choose $\varphi \in C_c^{\infty}(U_x \cap U_y)$ with $\int \varphi \mu_0 = 1$. Thus (3) is proved.

(4) The operator $\check{G}_c : C^{\infty}(M) \to \mathcal{D}'(M)$ has the following property: If for $f \in C^{\infty}(M)$ and a connected open $U \subseteq M$ the restriction f|U is constant, then we have $\check{G}(f)|U = C_U(f)\mu_0|U$ for some constant $C_U(f)$.

For $x \in U$ choose $g \in C^{\infty}(M)$ with g = 1 near $M \setminus U$ and g = 0on a neighborhood V of x. Then for any $X \in \mathfrak{X}_{exact}(M, \mu_0)$, that is $X = \hat{\iota}_{\mu_0}^{-1}(d\omega)$ for some $\omega \in \Omega_c^{m-2}(W)$ where $W \subset M$ is an oriented open set, let $Y = \hat{\iota}_{\mu_0}^{-1}(d(g\omega))$. The vector field $Y \in \mathfrak{X}_{exact}(M, \mu_0)$ equals X near $M \setminus U$ and vanishes on V. Since f is constant on U, $\mathcal{L}_X f = \mathcal{L}_Y f$. For all $h \in C^{\infty}(M)$ we have $\langle \mathcal{L}_X \check{G}_c(f), h \rangle = \langle \check{G}_c(f), -\mathcal{L}_X h \rangle = -G_c(f, \mathcal{L}_X h) = G_c(\mathcal{L}_X f, h) =$ $\langle \check{G}_c(\mathcal{L}_X f), h \rangle$, since G_c is invariant. Thus also

$$\mathcal{L}_X \check{G}_c(f) = \check{G}_c(\mathcal{L}_X f) = \check{G}_c(\mathcal{L}_Y f) = \mathcal{L}_Y \check{G}_c(f).$$

Now Y vanishes on V and therefore so does $\mathcal{L}_X \check{G}_c(f)$. By (3) we have $\check{G}_c(f)|_V = C_V(f)\mu_0|_V$ for some $C_V(f) \in \mathbb{R}$. Since U is connected, all the constants $C_V(f)$ have to agree, giving a constant $C_U(f)$, depending only on U and f. Thus (4) follows.

By the Schwartz kernel theorem, \check{G}_c has a kernel \hat{G}_c , which is a distribution (generalized function) in

$$\mathcal{D}'(M \times M) \cong \mathcal{D}'(M) \bar{\otimes} \mathcal{D}'(M) = = (C^{\infty}(M) \bar{\otimes} C^{\infty}(M))' \cong L(C^{\infty}(M), \mathcal{D}'(M)).$$

Note the defining relations

$$G_c(f,g) = \langle \check{G}_c(f),g \rangle = \langle \hat{G}_c, f \otimes g \rangle.$$

Moreover, \hat{G}_c is invariant under the diagonal action of $\text{Diff}(M, \mu_0)$ on $M \times M$. In view of the tensor product in the defining relations, the infinitesimal version of this invariance is: $\mathcal{L}_{X \times 0+0 \times X} \hat{G}_c = 0$ for all $X \in \mathfrak{X}(M, \mu_0)$.

(5) There exists a constant $C_2 = C_2(c)$ such that the distribution $\hat{G}_c - C_2 \mu_0 \otimes \mu_0$ is supported on the diagonal of $M \times M$.

Namely, if $(x, y) \in M \times M$ is not on the diagonal, then there exist open neighborhoods U_x of x and U_y of y in M such that $\overline{U_x} \times \overline{U_y}$ is disjoint to the diagonal, or $\overline{U_x} \cap \overline{U_y} = \emptyset$. Choose any functions $f, g \in C^{\infty}(M)$ with $\operatorname{supp}(f) \subset U_x$ and $\operatorname{supp}(g) \subset U_y$. Then $f|(M \setminus \overline{U_x}) = 0$, so by (4), $\check{G}_c(f)|(M \setminus \overline{U_x}) = C_{M \setminus \overline{U_x}}(f).\mu_0$. Therefore,

$$\begin{aligned} G_c(f,g) &= \langle \hat{G}_c, f \otimes g \rangle = \langle \check{G}_c(f), g \rangle \\ &= \langle \check{G}_c(f) | (M \setminus \overline{U_x}), g | (M \setminus \overline{U_x}) \rangle, \text{ since supp}(g) \subset U_y \subset M \setminus \overline{U_x}, \\ &= C_{M \setminus \overline{U_x}}(f) \cdot \int_M g \mu_0 \end{aligned}$$

By applying the argument for the transposed bilinear form $G_c^T(g, f) = G_c(f, g)$, which is also $\text{Diff}(M, \mu_0)$ -invariant, we arrive at

$$G_c(f,g) = G_c^T(g,f) = C'_{M \setminus \overline{U_y}}(g) \cdot \int_M f\mu_0.$$

Fix two functions f_0, g_0 with the same properties as f, g and additionally $\int_M f_0 \mu_0 = 1$ and $\int_M g_0 \mu_0 = 1$. Then we get $C_{M \setminus \overline{U_x}}(f) = C'_{M \setminus \overline{U_y}}(g_0) \int_M f \mu_0$, and so

$$egin{aligned} \mathcal{G}_{m{c}}(f,g) &= \mathcal{C}_{\mathcal{M}\setminus\overline{U_{y}}}'(g_{0})\int_{\mathcal{M}}f\mu_{0}\cdot\int_{\mathcal{M}}g\mu_{0}\ &= \mathcal{C}_{\mathcal{M}\setminus\overline{U_{x}}}(f_{0})\int_{\mathcal{M}}f\mu_{0}\cdot\int_{\mathcal{M}}g\mu_{0}\,. \end{aligned}$$

Since dim $(M) \ge 2$ and M is connected, the complement of the diagonal in $M \times M$ is also connected, and thus the constants $C_{M \setminus \overline{U_x}}(f_0)$ and $C'_{M \setminus \overline{U_y}}(g_0)$ cannot depend on the functions f_0, g_0 or the open sets U_x and U_y as long as the latter are disjoint. Thus there exists a constant $C_2(c)$ such that for all $f, g \in C^{\infty}(M)$ with disjoint supports we have

$$G_c(f,g) = C_2(c) \int_M f \mu_0 \cdot \int_M g \mu_0$$

Since $C_c^{\infty}(U_x \times U_y) = C_c^{\infty}(U_x) \bar{\otimes} C_c^{\infty}(U_y)$, this implies claim (5).

Now we can finish the proof. We may replace $\hat{G}_c \in \mathcal{D}'(M \times M)$ by $\hat{G}_c - C_2 \mu_0 \otimes \mu_0$ and thus assume without loss that the constant C_2 in (5) is 0. Let (U, u) be an oriented chart on M such that $\mu_0|U = du^1 \wedge \cdots \wedge du^m$. The distribution $\hat{G}_c|U \times U \in \mathcal{D}'(U \times U)$ has support contained in the diagonal and is of finite order k. By [Hörmander I, 1983, Theorem 5.2.3], the corresponding operator $\check{G}_c: C_c^{\infty}(U) \to \mathcal{D}'(U)$ is of the form $\hat{G}_c(f) = \sum_{|\alpha| \le k} A_{\alpha} . \partial^{\alpha} f$ for $A_{\alpha} \in \mathcal{D}'(U)$, so that $G(f,g) = \langle \check{G}_{c}(f), g \rangle = \sum_{\alpha} \langle A_{\alpha}, (\partial^{\alpha} f).g \rangle$. Moreover, the A_{α} in this representation are uniquely given, as is seen by a look at [Hörmander I, 1983, Theorem 2.3.5].

For $x \in U$ choose an open set U_x with $x \in U_x \subset \overline{U_x} \subset U$, and choose $X \in \mathfrak{X}_{exact}(M, \mu_0)$ with $X | U_x = \partial_{u^i}$, as in the proof of (2). For functions $f, g \in C_c^{\infty}(U_x)$ we then have, by the invariance of G_c ,

$$\begin{split} 0 &= G_c(\mathcal{L}_X f, g) + G_c(f, \mathcal{L}_X g) = \langle \hat{G}_c | U \times U, \mathcal{L}_X f \otimes g + f \otimes \mathcal{L}_X g \rangle \\ &= \sum_{\alpha} \langle A_{\alpha}, (\partial^{\alpha} \partial_{u^i} f).g + (\partial^{\alpha} f)(\partial_{u^i} g) \rangle \\ &= \sum_{\alpha} \langle A_{\alpha}, \partial_{u^i} ((\partial^{\alpha} f).g) \rangle = \sum_{\alpha} \langle -\partial_{u^i} A_{\alpha}, (\partial^{\alpha} f).g \rangle \,. \end{split}$$

Since the corresponding operator has again a kernel distribution which is supported on the diagonal, and since the distributions in the representation are unique, we can conclude that $\partial_{u^i} A_{\alpha} | U_x = 0$ for each α , and each *i*.

To see that this implies that $A_{\alpha}|U_x = C_{\alpha}\mu_0|U_x$, let $f \in C_c^{\infty}(U_x)$ with $\int_M f\mu_0 = 0$. Then, as in (3), there exists $\omega \in \Omega_c^{m-1}(U_x)$ with $d\omega = f\mu_0$. In coordinates we have $\omega = \sum_i \omega_i . du^1 \wedge \cdots \wedge \widehat{du^i} \wedge du^m$, and so $f = \sum_i (-1)^{i+1} \partial_{u^i} \omega_i$ with $\omega_i \in C_c^{\infty}(U_x)$. Thus

$$\langle \mathcal{A}_{\alpha}, f \rangle = \sum_{i} (-1)^{i+1} \langle \mathcal{A}_{\alpha}, \partial_{u^{i}} \omega_{i} \rangle = \sum_{i} (-1)^{i} \langle \partial_{u^{i}} \mathcal{A}_{\alpha}, \omega_{i} \rangle = 0 \,.$$

Hence $\langle A_{\alpha}, f \rangle = 0$ for all $f \in C_c^{\infty}(U_x)$ with zero integral and as in the proof of (3) we can conclude that $A_{\alpha}|U_x = C_{\alpha}\mu_0|U_x$.

But then $G_c(f,g) = \int_{U_x} (Lf) g\mu_0$ for the differential operator $L = \sum_{|\alpha| \le k} C_\alpha \partial^\alpha$ with constant coefficients on U_x . Now we choose $g \in C_c^\infty(U_x)$ such that g = 1 on the support of f. By the invariance of G_c we have again

$$0 = G_c(\mathcal{L}_X f, g) + G_c(f, \mathcal{L}_X g) = \int_{U_x} L(\mathcal{L}_X f) \cdot g\mu_0 + \int_{U_x} L(f) \cdot \mathcal{L}_X g \cdot \mu_0$$
$$= \int_{U_x} L(\mathcal{L}_X f) \mu_0 + 0$$

for each $X \in \mathfrak{X}(M, \mu_0)$. Thus the distribution $f \mapsto \int_{U_x} L(f)\mu_0$ vanishes on all functions of the form $\mathcal{L}_X f$, and by (3) we conclude that $L(\).\mu_0 = C_x.\mu_0$ in $\mathcal{D}'(U_x)$, or $L = C_x \operatorname{Id}$. By covering Mwith open sets U_x , we see that all the constants C_x are the same. This concludes the proof of the Main Theorem. Thank you for listening up to now.

If you are willing to listen more, there is a little more.

Manifolds with corners

A manifold with corners (recently also called a quadrantic manifold) M is a smooth manifold modelled on open subsets of $\mathbb{R}^{m}_{\geq 0}$. Assume it is connected and second countable; then it is paracompact and it admits smooth partitions of unity. Any manifold with corners M is a submanifold with corners of an open manifold \tilde{M} of the same dim. Restriction $C^{\infty}(\tilde{M}) \to C^{\infty}(M)$ is a surjective continuous linear map which admits a continuous linear section. Thus $C^{\infty}(M)$ is a topological direct summand in $C^{\infty}(\tilde{M})$ and the same holds for the dual spaces: The space of distributions $\mathcal{D}'(M)$, which we identity with $C^{\infty}(M)'$, is a direct summand in $\mathcal{D}'(\tilde{M})$. It consists of all distributions with support in M.

We do not assume that M is oriented, but eventually, that M is compact. Diffeomorphisms of M map the boundary ∂M to itself and map the boundary $\partial^q M$ of corners of codimension q to itself; $\partial^q M$ is a submanifold of codimension q in M; in general $\partial^q M$ has finitely many connected components. We shall consider ∂M as stratified into the connected components of all $\partial^q M$ for q > 0.

Moser's theorem for manifolds with corners [BMPR18]

Let *M* be a compact connected smooth manifold with corners, possibly non-orientable. Let μ_0 and μ_1 be two smooth positive densities in Dens₊(*M*) with $\int_M \mu_0 = \int_M \mu_1$. Then there exists a diffeomorphism $\varphi : M \to M$ such that $\mu_1 = \varphi^* \mu_0$. If and only if $\mu_0(x) = \mu_1(x)$ for each corner $x \in \partial^{\geq 2}M$ of codimension ≥ 2 , then φ can be chosen to be the identity on ∂M .

This result is highly desirable even for M a simplex. The proof is essentially contained in [Banyaga1974], who proved it for manifolds with boundary.

Conjecture

Let M be an oriented compact connected manifold with corners, of dimension $m \ge 2$, and let

$$\partial^{p}M = (\partial^{p}M)_{1} \sqcup (\partial^{p}M)_{2} \sqcup \cdots \sqcup (\partial^{p}M)_{n_{p}}$$

be the decomposition of the set of corners of codimension p into its connected components which are manifolds of dimension m - p. Then the the associative algebra of bounded $\text{Diff}_0(M)$ -invariant tensor fields on $\text{Dens}_+(M)$ is has the following set of generators, where $\mu \in \text{Dens}_+(M)$ is the footpoint and $\alpha_i \in \Gamma(\text{Vol}(M)) = T_{\mu} \text{Dens}_+(M)$:

$$f(\mu(M)) \quad \text{where } f \in C^{\infty}(\mathbb{R}_{>0}, \mathbb{R}), \quad \int_{M} \frac{\alpha_{1}}{\mu} \dots \frac{\alpha_{n}}{\mu} \mu \quad n \geq 1,$$

$$\int_{(\partial^{p}M)_{j}} \frac{\alpha_{1}}{\mu} \dots \frac{\alpha_{n}}{\mu} d\left(\frac{\alpha_{i_{n+1}}}{\mu}\right) \wedge \dots \wedge d\left(\frac{\alpha_{i_{n+m-p}}}{\mu}\right), \quad p = 0, \dots, m-1,$$

$$\frac{\alpha}{\mu}((\partial^{m}M)_{j}), \quad \text{for } j = 1, \dots, n_{m}; \text{ note that } (\partial^{m}M)_{j} \text{ is a point.}$$

n

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

For a non-orientable compact manifold M with corners, let $\pi: M \to \overline{M}$ be its orientable double cover with its deck transformation $\tau: M \to M$. We consider the bounded linear isomorphism

$$\frac{1}{2}\pi^*:\mathsf{Dens}_+(\overline{M})\to\{\alpha\in\mathsf{Dens}_+(M):\tau^*\alpha=\alpha\}\subset\mathsf{Dens}_+(M).$$

Then the set of generators for the algebra of bounded Diff(M)-invariant tensor fields on Dens₊(M), applied to $\frac{1}{2}\pi^*\alpha_i$ and $\frac{1}{2}\pi^*\mu$ for $\mu \in \text{Dens}_+(\overline{M})$ and $\alpha_i \in T_\mu \text{Dens}_+(\overline{M})$, is a set of generators for the algebra of Diff(\overline{M})-invariant bounded tensor fields on Dens₊(\overline{M}).

Really thank you for listening.

・ロト・(型ト・(型ト・(型ト))