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The following are notes of lectures held at the University of Vienne:
in 1975/76 and at the University of Linz in February 1976. There the
main part of these notes has been written and revised by Prof. J. B.
Cooper, who also invited me to Linz. I thank him and the other members
of tie enthusiastic and inspiring audience at Linz who helped to bring
_ the presentation into a somewhat final form. The notes were multiplied

with the title: ‘

Classification of elementary catastrophes'of codimension <« 6.

Institutsbericht Nr. 51 of Johannes Kepler Universitit Linz,

Institut fﬂr Mathematik. 1976.
After that I received letters of D. Siersma and Tim Poston, pointing
out mistakes. The lectures were next given at the University of.
Klagenfurt in 1977/78, where also a multiplied version of the'(corrected)
notes appeared under the title: ) - . .

Elementary catsstrophe theory. Institut fur Mathematik,

Universitit fUr Bildungswissenschaften, Klagenfurt, 1978.
Then the lectures were held at the University of Mannheim in 1979,
where §10 was added.

Prof. M. Craioveanu suggested to publish these notes at the University
of Timisoara. Since there is a slightly incfeaaing demand for them
and am tired of photocopying. I happily accepted this offer and I thank
Prof. Craioveanu for his offer. '

This book also contains a reproduction of my paper: The division theorem

~on Banach spaces, with the kind permission of the Austrian Academy of

Sciences. .

In the exposition I have mostly followed £2§] (see the list of -
references at the end) but also have taken meny detsils of proofs
from {21, [B], [, [21]Jhe exposition of §9 differs to -some extent
from that of [2)], since in the latter there are some serious gaps.
Let me indicste, that there I do not not need eny kind of the rather
difficult concept of stratification.
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§0. THOM'S THEOREM: .
Suppose that one has a physical system described by external
parameters which ra.nge througﬁ an open subset of 84 (e.g.
space-time) and n internal paremeters. Assume that the
behaviour of the system is determi*v.ed by a potential i.e. a'.
smooth i‘unction f from RYx ﬂ into R 80 that for
a gliven y€.tR this function assumes a local minimum (with
respect to the internal parameters), Then the possible statea
lie in the set

n 4
Mf = Z(X'y)e R XEB : b&f"/)’) =, - - a%,(( y) = O}
One hopes that, under general conditions en £, Mf' is a
subhmanifold of R" x ® . Motivated by these consideratioms,

R. THOM formulated the following theorem which has since been -
proved by the combined efforts of MATHER, MALGRANGE and others.

Theorem: The following assertion is true for any r 1if n=1,-
for r<é if n=2, for r<5 1if n}3: ;

there is an open, dense subset . J of CP( 8RB @ ) s0
that for each fe F ,

(a) Mg is an r-dimensional manifold;

(v) irf Xt denotes the restriction of the projection
% : @°x8° —, g , then every singularity of Xe 18
locally equivalent to one of a finite set of types - called
the elementary catastroLes.

(e) Xf is locally stable with respect to small changes
in f£; . . ) _
(d) the number of elementary catastrophes is just r if
n=1 and is given by the following table if =n >3 (n=2):

b 1 2 3 4 5 6 7 : 8
1 2 5 7 11 (14)= = |00

The purpose of this course is to ﬁi“ a complete proof of
this theorem.

To clarify the above formulation, we recall .some notation.
+
On the space C%®( (-l , B ) 'of smooth functions from g"



-2

into R we emplby the Wnitney topology which is defined later
(ef. §9.1). ' .

'X-f : Mp—> RY is singular at (x,y)€ My, if the rank of

4 ')(f(x,y) is not maximal.

Two functions f,g from ®&® into & are locally equival-
ent at  x, x' if there are open néighbourhoods U,‘ U' of

x, X' in 8® resp. open neighbourhoods V,V' of f£(x),
£(x') in @®F and diffeomorphisms 4) : U —T",

¢ : v =V with $(x)=x' eand Y (£(x))=g(x') so0 that

the diagram £
’ v > V
® . - LY
Il’/' g > ilv
commnutes.

A function £ 1is locally stable if there is a neighbourhood
of £ (in the Wnitney topology) which contains only functions
which are locally equivalent to f.

§1. THE RING OF GERM3 OF DIFFWIENTIABLE FUNCTIONS:

1.1. A germ of s smooth function.at O¢ R? is an equivalence
class of smooth functions from a neighbourhhod of 0 in RP
with values in R  under the relation

'(t:U——>B)~(g:v—->lR)@hM fly =elw -

The gpace of germs of Tfunctions is a commutative ring with
unit (more precisely an MR -algebra) - we denote it by

'ﬁn(ﬂn ,0) or more simply by £, . :
Then f€ &, is invertible if and only if £(0)#0.

1.2. The partial derivatives (w.r.t. some basis ix.l, -'--,xh}
of B'f )- are ‘clearly well-defined and themselves elements
of Bn . e denote them by . df/dx, (i=1,:++,n).

Def. We demote by M, (= My ) the ideal of gérms f 8o
that £(0)=0.-

Def. A local ring is a commutative ring with unit which
possesses exactly one maximal ideal M (then, of course,
the quotient ring A/M is a field).

'
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Lemma: - t,,, is a local ring and W, is 1ts maximal 1deal.
Proof: It is clear that WM, 1d a maximal ideal (since it
is the «ernél of the ring homomorphisms f +—> £(0) from 5
onto the field R ). On the other hand, any proper ideal -

is contained in 4«(,,, since 1t cannot contain any invertible
element. ‘ ' -

1.3. Def. We denote by Mrr (ke ) the ideal of k-rlat
germs in ‘f“ i.e. the germa £ =80 that f and its partial
derivatives up to order k- vanish at the origin.

For example.. the coordinate functions x4, - Xy, aré elements
of .M.., and 4 monomial x:‘ -+ X (4,eN) is in v{,(,':'
where k=i, + ---+1,. ‘

Proposition: (a) Jf(:, is genenated by ixﬂ, -'-',x,,} (as an fn"
module); ke ' ’
(b) \M.Y‘,‘ = [Mn_:l "“that is, the ideal generated by the
products f,.- --.f, (where each f, is in iy ).
Proof: Let f : U—>B be a representant of a germ. in 'En
where U 1is a convex neighbourhood of O. Then if {O,x]
denotes the segment from O to x we have

S £(x) = £(0) + J a8

- 2(0) + £§ ¥ (A0 d
= £(0) + th.h (x)

where h[ : x »——)5 3%’(('}\ x)an.

Then h, ¢, and so (a) follows immediately (since 1f felly
then f(O)—O) " et .
If fe€ ,{,{,“ , then 'n ¢ M,,, and so M, € Mn M, . The
result then follows by a simple induction proof. '
The converse inclusions are trivial.

) 1

! \t«\‘l

1.4. Def. We call the quotient space f /M, (written
IR £, ,0) or eimply J':') the algebra of k-jets of smooth
functions at the origin. The Taylor expansion shows that Jﬂit
is canonically isomorphic to the space of bolynomials of
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degree < K X {the latter with multiplication obtained by
cutting terms o.f.‘ degree > % in the usual product).

Similarly, JL,;/J’/L is canoaicczlly isomorphic to the vector
space of nomogeneoas polynomials of degree k 1in n-variebles.
Thus if j g —> J, 1is the canonical projection, we can

identify j“f . with its Taylor polynomial of order k ato.
J,,L:' is a (finite- dimensonal)local ring and jk is a local
riug morphism. .

1.5. Nakayama's Lemma: ILet A be a local ring with maximal
ideal I§(1.2‘1. If M is an A-module, M', M'' submodules
of M with M' finitely generated, then
, Yo M e I = Mg on.

Proof: TLet N := (M' + M**)/M''. Then

NGO + LED/MY = IO + N0)/M = ILN.

We must show that N=0 (i.e. we have reduced to the case
N'*=0).
Let (n,l, ---,n,) generate N. Since I.N 2 N there exist,
‘(%J)GI with v

o, = J:Z1 ayny (¢ i,j 5 p)-
i.e. (I -~ A)un =0 where A 1is the matrix (a,;) and n
is the column.vector with entries (n,,, --‘-,np). Now the
determinant det(-n) has the form 1+a (where a€I) and
s0 is invertible. Therefore the inverse matrix (I — A)‘1
exists (it is calculated exactly as -in elementary Tinear
Algebra) and so mn,=n,= --- =n,=0 i.e. N = {0].

.1.6. Proposition: Iet I <.£,, be an ideal. Then the foll-
owing are equivalent:

(a) I2yt; : :
(v) M 2 J/( /Mk” ie. I 4+ J{,(‘f\”eM‘:;
Proof: (a)=(b) is trivial.
(v)=(a) follows from 1.5 (take M!' J,(n , M'* = T),
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Corollary: (a) L4--- fP generate M: . if and only if
JRE, - -,j‘”tr generate the vector space Mk/ PM (of nomogeneous
polynomials of degree Xk in n variables); '
\b) if I is an ideal in %, , then the following are
eguivalent:

() there exists a k with I 2 Jf(&;
(ii) I has finite codimension in fn {(as an R -vector
space). ' ; : -
Proof: (a) Apply the proposition to the ideal I = Ly --- Ny
generated by f1,~:*.fp in ﬁn. : "
(v) (1)=(ii) 1is trivial.
(11) =(i) consider the cnain -

E, 21+ Mn 2 T+ Mi2 --- 27T+ 4, 214»(:,“9'-- -

Since I has finite codimension, there is an r with
41
I +M“ = I + M

v .
i.e. My\ ¢ I +Mn < I +JJ(“1 and weé can apply the

Proposition.

. M N . ; .
1.7. We denote by M,  the ideal (\M» of flat functions.
It is not finitely generated. Put J) := %, /J,{_h .

Proposition: J° ¥ R U_x“--- ;.x“'l] the ring of formal power
series in n variables.

Proof: The isomorphism is induced by associating to f

its Taylor series. %We need only show that this is surjective.
This is a special case of the following Lemma.

Lemma: For o€ N:, L2t £y, : U —>R a smooth function
defined on a neigihbourhood of O 4in @®P . Then there exists
a smooth function f : V—>WR where V is an open :
neighbournood of 0 in R%RP so that %.xdf(o ,y) = fa(y)
(ReNyg, v €8P ). E

Proof: Wwithout loss of generality we can assume that each

£ is defined on RrP and hess compact support. Let ‘g

' .
be @ smooth function from R” " into 10,1} so thnat"

x> 1 Cixis 172
., S 1f_mux\\>‘1.‘,;



We shall siow that we can find a sequence (tg)
by N: ‘80 that the sum ,
= b—q (£ (3 /ol )x* @ (%4 %))
<
converges uniformly for each multi-index 6 .
‘hen Aif ( ) o
£ (x,y)~——>z fd Y xlg (5 )
we can differentiate term by term to obtain o
' X
R 0,y = St (y)Z(§ = 3—-@:
Q@ 2 ql X0 R
= f@(y‘% . .-

To determine (%, ), we manipulate as follows:

indexed

Q (tq-x)

r(x.y‘)= Z(‘/ )“' F_z) (te.x)® ((tq x)

3 (% )"" ) u@cm)

where \*/ : y’_3 y"( Q(y) vanishes for Iyi>1.

ol

-'Hence, sincé f,‘ has compact support

My := max ib (£4 (3) \}’q(xl) 1§15 vx\} <o -

Then ‘we have i

= \ﬂe((&cw/a') X Q(t.z X))\ sk)™ (t)®

o <E My, (\qmm

x=0

and so it suffices to choose (%ty) so that 3 %3 < oo
o .

o

Lt q. e
1.8, Corollary: (a) 3 : ¥§,—> J, 1is’'s surjective

&. - .algebra’ homomorphism ;

(b) Jy  is a loeal ring with miml ideal M, /J/(,, ;
(e)- J: -is a Noether ring with unique prime decomposition

(see Jacobgon).

-

L ty
1.9 Lem:: di%Jhl = dim * /J,(ki1 - (E‘;’k%! .

Proof: By induction on n and k. The cases ns0 and k=0

are trivial.
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In general we have that £,‘m‘ff‘, the space of polynomials of"

degree kX in Xy» “""sXp, 1s the direct sum of the space

of polynomials in degree gk in  FEIRATS and Xy ~times

the spuace of polynomials of degree g k-1 in Xy --- ,xn):

Hence its dimension is '
(k- | (k-1 (nske)!
M- ket n (k-1)! nt kel

§2. THE GROUP OF LOCAL DIFFEOMORPHISS OF RT :

2.1, A germ of a local diffeomorpnism is a.n. equivalence class
of functions q) : U—> U' where U, U' are open neighbour-
hoods of O and 4) (0)=0 so that C’) is a diffeomorph~-
ism on some open neighbourhood of 0 (equivalently, DQ)(O)

is invertible). The equivalence relation is defined exactly
as in 1.1. The set of such germalis a group (with the mult-
iplication induced vy composition of functions) which we
denote by L(R" ,0) or I,.

2.2. The group of k-jets of local diffeomorphisms: If be Iy
ke N , the Taylor expansion of ¢ up to order k- has
the form '

.P‘ + P+ == +P + £,

where P, = D¢(O)€ 6L(n,R) and P, 1is a homogeneous
polynomial of degree r from Rr® into R" . The coordinate
functions of the remainder texm & are elements of M“” .
The germ & is k-flat with respect to_the identity if
P, = Iqgn , Pp= --- =B =0,1i.e. if the coordinate functions

of & -Iqﬂn are in JA,::”.

Lemma: The set of k-flat germs 1is a norrha’l'subgroﬁp of Ln;
Proof: We have displayed above a matural mapping from I,
onto the .space of polynomials

I’.i + —= = + Pp ‘
of degree k from R° into B with B ' invertible.
Now this latter space is a group when multiplication is

Lk
A



defined 2. follows: if P, Q are sucn'polynomials, let PoQ
be the usual composition of P and Q. The terms of degree
>k are dropped to obtain the group product P.Q.

Now the mapping mentioned above from L, onto the polynomials
is' a group homomorphism and the space of k-flat germs is
precisely its kernel.

Def. The quotient group of L, with respect to the normal
subgroup of k-flat germs is called the group of k-jets of
local diffeomorphisms at O and is denoted by I;,‘f'. We write
j% for the canonical projection from I, onto LK. The
proof of{the Lemma shows -that L:’- is naturally isomorphic
to the groups of polynomials of degree <k with invertible
linear parts.

2.3. Proposition: The group Lt" has a natural Lie group
structure.- . '

Proof: L,‘f is an open subset of the finite dimensional
vector spice -f: of all polynomials P, + --- +P, of
degree < k without constant term (for L,‘;‘ is the set of
pélynomiéls for which det P, #0). Tnus L“?— has a global"
coordinate system, defined by the coefficients of the poly-
nonials P, (1.€r<k). The product I..‘°~>(I.‘z —_ Lk’ is
defined. b_y algebraic operations on the coe.‘fficients and so
is analytic. Hence Ia‘t is a Lie group (analyticity of
inversion followe from an elementary result on Lie groups -
see Comm'., Lie groups, Dp. 44)

Remarks: 1) the group L is just GIL(n,R); -

1
2) for k'>k there is a natural projection from I)‘
into I.‘: X and this is a Lie group homomorphism.

2.4. The group L, operates in a natural way on ‘&,\ . If

@g Ln tpgp-the mapping )
‘q;* P e f°¢

is & ring automorphism of ‘f" and the mapping ¢+—->4>*



is a group antihomomorphism from I, into Aut, (f ).

In particular, we have ¢ (Jf(. ) = J/’.h for esch. ¢ since a
ring automorphism preserves the unigue maximal ideal end its
powers.

Def. Two germs f,g € fn are (rigpt)equivalent (written  f~g)
if there is a PE L, so that fop =g i.e. if f and
g are in the same L, -orbit in 'fy‘ .

¢.5. Since & (Mk“ ,):‘” for each ¢ €1L,, Juf,:ﬂ is

an L, -submodule and so J,'\Q = 4, /Mh” is an T,-module
and jk: £ —> J‘c is an L, -module homomorphism. It is
clear that the x-flat germs act trivially on Jf f.e. we
have the following factorisation

hl /7 ‘\& "
J
N Lk _—
n
On the other hand, a (‘)6 L:' operates on feJ,.“,C as follows:
one forms the composition fo(? and drops the terms of

degree > k, ;in other words, one has the following commutative
diagrem:
L, —————> Aut1 (¢

‘l
in symbols, j®( foqa) = jk(f).(P = Jk'(f)-:ik(¢>)-

k, kat '
Remark: The operation of L, on My [ Mo, .ca.n be factorised

as féllowa: Rat
'Y
> Aut ('vun /Mn )

L, — _
J! \L /7
L, = GL(n,R ).

2.6. Infinitesimal generation of Ty, L% We write (t,x,,-,X,)
for a point in B X R ., Let X be a smooth vector field

on an open neighbournood of R X {0} 10’ BxB" ' of the form
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X(t,x) = Z)gt + Z_‘C (t x)égx

=1
where X (£,0) =0 (t € BR).
) n
The integral curves of X are functions wu : R — BxR

with du/fls = X(u(s)), i.e. solutions of the ordinary
differential equations

Qo _ 1 ; $e(t,x) = Xy (t,x) (i=1,--,n).

I° =
The assumption X (t,0)=0ensures that ® X{O} (i.e. the

curve uy,=idg, u;=0 (i=1,---,n)) 1is a solution. We denote

by tt———9} (t, ¢(t,x)) the solution of the equation with
initisl cohdition u(0)=(o0,x). Then by the theory of ordinary
differential equations there exists an

open set U CR x R"” containing R
[0,1]x§0} so that x4
a) U is the union of the integral
curves of X which pass through’

(0,x) e U;

2) every integral curve in U 1is defined
on a neignbourhood of the interval

0.1

3) for t¢[0,1] the mepping
.d‘)t: xy—,?(t x)

is a diffeomorphisms from U, onto U, where
o = fxeg” s (£,x)c T}
In addition @t(o)=o and &, = Iqpn .

Ver

—
=

N

We have thus defined a mapping X+—> ¢, which maps
certain.germs of vector field.along [0,1] x io}gﬁxﬁ into
elements of L, , i.e. it maps VL([0,1] x{0%) —> Ly,

(where .VL - denotes the set of vector fields satisfying the

- conditions imposed above on X). This mapping is not surjec-
tive since ome can calculste that det D $(0) > O (since (‘)
is infinitesimally orientation-preserving! ),

2.7. Lemma: Every ¢€ L, with det D $(0) > 0 1is in the
range of the above mapping. '
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Proof: We can write 4>(x) = Ax + P(x) where - A :-='Dq>(0)
and the coordinates of Yy are in J(zy', . Since det A > O,
there is a curve t+—>4(t) from R 1into GL(n,R ) with
A(0) = Id, A(1) = A. Let 4) be the mapping

(£,%x) —  A(t).x + tY(x) .

Por esch teR , xl———>q>(t,x)isfﬁl germ of a diffeomor-
phism at O and ¢, = Id. Consider the vector field

: n
- i 2 .
X(t,x) = ¥ + z 4%; %,
where (t) = (4’4 y Ty 4),‘ ). Then by the constructionm,
t —> (t,$(t,x)) 1is the integral curve of X.

2.8. Remark: If the components of the vector field X (of 2.6)
are k-flat in each point of R x {0} (k 1), then the

germs of the diffeomorphisms ‘q)t ere k-flat w.r.t the:
identity. . :

2.9. We can iaentify Z, ( = M, XXM, '~ n factors)
with the germs of vector fields at zero which vanish at ‘the
origin (by the mapping (X,, "= ,X,) +—> = x‘,%x

If X ¢ X, , the vector field X := X'+ X defines anone-"
parameter subgroup ¢!2 of I‘n by the process described 'in
2.6 (1t is a subgroup since the' X{ ' are independent of t).
The mapping ' ' A

x”.*‘—bxh———-%¢4

from &, into L, is called the exponential mapping and
one writes ¢, = exp X. Clearly, ?t = exp {tX).

2.10, i,:‘ is the ta.ngen‘t: _epace to the Lie group Lk‘ pt :
Idgn (eince IX' s open in %), 4% 1s 'thus the
underlying vector space of tk}e L:Le algebra of I‘n' Ve have
a natural group homomorphism J"' : I,n—-—-a L (2 2) and

a natural projection jR : -‘(n—'%fq. ‘(2 3)1 ‘,

Progosition: The follobing diagrdxﬁ is commutative' v ‘ ’
.H m" Ln ‘ ., R . ; :
(- ,\ i 0 t DRI
. l/ J S e : £y

ik'———‘r——9\~n
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Proof: If K€&/y‘ and ¢t = exp tX define
OF 1= sR(exp tX) (€Ly) -

t
id’tj is a-one«-parameter subvroup of L and
S i
} ‘tzo Zt J ¢t ‘txo ¢b \tzo -J >\
and this "charac.terises the exponential exp t § where

f::;kx. Thus ﬂ‘=expt'§ .

Thus we have the following method for calculating the expon-
ential of § = jkx €-‘¢‘. We consider the vector field
defined b X in R , integrate i1t and obtain emone-para-
meter subiroup {‘h} of-local diffeomorphisms. Then

_exp tf sfj ¢t.

Remark: We can give J(n a natural Lie algebra structure
as follows: if X,Y ¢, one can take the Lie bracket [X,¥]
of the associated vector fields. Then Ix, YJ € :t,, One can
show that the Lie bracket in the Lie algebra A’,. is given
by the formula [3 x,3er] = Mlx,v].

211 Por ted,, Xedo (X="3Xx Yy, With X €.4,)
we put )
Pp(x) (= P(t,x)) := feexp tX.
Then Fecé, for each t and P, = f.

Proposttion: Mk Z ¥ (= x5)-

(this follows from the definition of an integral curve of a
vector field). ‘
Ve call.FhHXf the infinitesimal action of X on f.
Ihe mapping *+—> ijt is a smooth curve in Jk through |
ka and it is contained in the orbit of j®f under the action
of L,. ‘The vector

%\7 jkpflt-o € '7:’
is/ thus a tangent vector to the orbit ka.Lt.
By the general theory of Lie groups, the orbit of jkf is
an immeraive submanifold of Jk and  the tangent sparo to
the orbit of j*f at j®f is exactly the set of vyotof‘
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obtained above (infinitesimal action of the Tie algebra
on jhf)

2.12. Proposition: TJ\,;(j\’-foL\:'\)s J,‘f‘ is the subspace
n
k(> x. % )+ xe
%j (w v ‘fx,,) Xy "Kn}
ot JX. :

§3. FIJITELY DETRRMUINED GERMS:

3.1. Def. Two germs f,g in ‘fn are k-equivalent
(written f . 3 g) 1if §®f = j*g in Jy‘f‘. ‘

Recall that £ and g are right equivalent when they are
in the same L, -orbit of 'g“ (2.4). A germ f efn is
k-determined if every germ g which is k-equivalent to £
is right equivalent to f (i.e. g R f=3d g~ £).

3.2. Lemma: Let f¢€ '&n be k-determined. Then

1) gfk\‘af = g 18 k-determined;

2) g~f - g 1is k-determined

(i.e. the property of being k-determined is esseuntially

a property of jRf). e _

Proof: Wwe need only prove 2) (since E~NE =3g A f as

f 1is k-determined). R

2) Suppose that f = go@, (&, € I,). If h~g then
Foo= Re = (e = Frogs?

and so jh(h‘q},) = (.’)kh).(.‘lk‘(b,) = jh(f). '

Thus ho®, !%-' f  and so there is a 4>2 € L, with

ho¢1o<‘>z =f = g.?,‘ y . 1l.e. h°(¢1’ 4’&. ¢;1) = g. Hence g~MHh.

3.3. Jefinition: If f € fn , we define .

A0 = Ky -y Wy, 74,
the ideal generated by the partia} derivatives of f with
respect to & given basis {x,,---,x,} for R" . O(f)
is independent of the choice of basis. :
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5.4. Lemma: If fé€ €,NM, and £' :=f - £(0) then
OA(f) = A(f') and f 1is k-determined if and only if f£'

is. ,
Proof: A(f) = A(f*') since b}st = )—GS—L;(FD)};
. v
f&gé:g f'kaig' and £{(0)=g(0).
= geb &> f'=g"xb and £(0)=g(0),
ile. f~ge=> f'ag' and £(0)=g(0) and the result follows.

Thus in ex?mining k-determination we oan restrict our
attention %o germs f¢€ Hove -
o
3.5. Theorem: Let f be a germ in J{, . Then
k.
ME < M, A @B < MUy A0 =D

=> f ist k-determined ==>Mh” W,A(f)hﬂ.hl@
& U g I U L B ).

Proof: The equivalences follow from 1.6.

We now prove the first implication. Suppose that j,(nc.(/( INEIR
Take get, with j%(£) = j®(g). We must suow the existence
of ¢eLn so that fo¢ = g. Define ‘

' F: (x,8)—> (1-t)f(x) + tg(x) (t€ R , x<R" )
and denote by FU the function x +—> F(%,x) so that

F° = f, P' = g. To prove the result we use a homotopy-type
argument. We make the following

Claim: If +,€[0,1] then there is a family [Y in I,
defined in a neighbourhood of to, so that (%= ia, p%, r" = Pl
for each t. '

The result follows from this claim by a standard compactness
arguzent. '

Proof of claim: 'a‘e denote for the moment by fnn the ring
of germs from ( K°XB ,{0,t,)) — R , and by -»tc.m its
maximal ideal. There is a natural :Ln,jection T™: ﬁ fm.,
induced by the projection T : K°x & —> R, Hence we can
regard J, as a subspace of My, Now

My S MWy U YTl
n
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Hence \//(,\: 'gm‘l < J{'(‘n <3E$xn ) %x,&f Mhﬂ fma

by
since 3; = J,(;< x4, =7 3"("‘>‘Zm1 "’\Mvm W(m Erin
37( 't/aa(,(g p)(t.,{.{“
Tuus, by 1Ja1cuyama, fm 1< My L2V ey - )3 >é

3 € Mk” c MR < M <% RN
Now d%y = &~ n & Mw = n oxn, < a-x“)ﬁ )
na1

i.e. g%t(x,t) Jt-‘(x t) where each X3¢ W Bxns -+ %’Kn>f
' = Z x, LJ(x )9 /g\ -for suitable (abJ) in

Tet ‘J_Z : (R7 xR (O to)) —_ (an ,0) be the germ -
defined by the function
(x,t)—> ( Z x; a,_,J(x £));

m1t°

Leg,omn
and consider the ordinary differential equation

ok (x,t) = = P (T (x,1),%)
tfor (x,t) near (0,%t,) with initial value [ (x,t5) = x.
There exists a smooth solution [ : (R%x R » (0,1,)) —( l“n,o).

By uniqueness we have [ (0,t) = ¢ since 9_/(0 t) = 0.
A simple calculation, involving the abowe equation for: 2%
shows that %t (F(T (x,t),t))=0 and so F(r (x,t),t)) is
constant as a function of t. Since t +> det d T (.,t)(0)"
is continuous and r ( ,to)=IdEn , YV (.,t) 1is an element
of L, for t near t,. The equation
F(r (X',‘t),'t) = F( r(x'to)'tp)
for t near t, is tae required result.
Ve now suppose that f € \Mm is k-~determined and 'show that
“”Mc”) < $MUMn . A(2)). Let 5
“{SGV“M’ gN;t‘} = £+ M
Q = {ge My : g ~f} = foly, the orbit of f under IL,.
ki1

Then j%1(P) = j®(g) + jbl(%‘\;-“”) ltu(f) + My /M ks2

which is an affine subspace. of the rleal vector space J,‘?,

in particular, a submanifold.

P = J"”(fonn) = ®UE). (D) = () Tk,

the orbit of j ""(I) under the finite dimensional Lie group
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Li:‘ (cf. 2.2 2.5, 2.12) and so an immersive submanifold. Also

(2.12), g b . '
g (30100250 = {382 0% 0) ¢ xie M

M A(E) 1n I
Since f 1is k-determined, P¢Q, in particular, jk*‘(r)gj‘z“(cz).
‘l‘hus m,,p(j*‘(P)) mem;u‘“‘(Q)) i.e. J‘Q*‘(A(,;“*‘)sjk*‘(Mn.A(r))

3.6. Corollary: 1) fé€Jly is finitely determined &>
&SHMy € b(f) for some k;
2) few(,.;\,c(f; =3 £ is 1-determined.

R+ 4

Proof 1) £ is K-determined == My, S M. A@) ACF)

On the other hand, if J'( A(f) then
LRI My ACF)

and so f is (k+1)-determined.‘
2) 1If f€JAy\Mn then )/a[:((o) £ 0 for some i and

so A(f) = ¢,. Then U, < 3(“ A(f) i.e. £ is 1-
determined.

3.7. Def. Tet fg./(a(., Y {Jﬁ,‘, -——— gbe a fixed basis of R" .
The essence of f (w.r.t to these coordinates) is the

smalleét k for which each x; occurs (with non-zero
coefficient) in j\"f. We write ess(f) for the esmence of f.
det (£) denotes the smallest k for which f 1is k-determined.
Corollary: det (f) > eas (f) (for any basis).

Proof: If k < ess (f) then g = jkf doesn't contain ‘x|

for some i. <Then no power of x,; lies in A(g) .and so

J/(, ¢ D (g) for each £>o. Then g is not finitely
determined (3.5), but gl&f. If f were k-determined,

then so would be g (3.2.) -contradiction.



-1~

§4. CODIMENSION:
4.1. Def. If feAy the codimension of f(written codim f)
is defined to be dim, M,/ A(£) (note that A(f) ¢ Y,

oV ¢ M, for each i).
since %x., ”» ()

2 .
4.2. Lemma: If f£€.U,, then codim f = o0 if and only if
det £ = o0 and 1f they are finite, then det £ < codimf+ 2.
Prootf: Consider the chain of vector spaces C

My = Mot AG) 2 MEEAR) 2 - 2M% +AG)2 -

There are two caseé: -

Case 1: There exists a k 80 that \M\H+ O(f) = J'{ + A(f)
Wwe can assume that k 1is the smallest such integér. Then
by Nayaksma's TLemms, J,ﬁe,‘g O(f) and so v%n s My ACF)
i.e. £ 1is k-determined. Then det f ¢k and codinm f

is greater -than the length of the non-stationary part of the
chain i.e. k-2.

Case 2: The chain is strictly decreasing at each term.

In this cas. both det f and codim £ are infinite.

For if det f < o0, then J'{,, ¢ A (f) for some k (3.6)

and 80 Mn + A(f) = A(f) = ‘,L.(k“ + A(f) 1i.e. we would
have Case 1. :
Similarly codim £ = oo since we have an infinite, strictly
decreasing chain of subspuces between A(f) and M.

4.3. Ve introduce following notation:
= {f€ My codin £ =c]
1= {f (-‘_JL: : codim f < c}
= {f e Ml codinm £ 2 of

Then we have the following partition of J'(y, e
Mz o vTyu - uruv- v Ve

4.4. Theorem: If 0 € c € k-2, then J"(Mn) is ‘the disjoint
union of JR({2.) and ;)k( ) and i (Zm) is-a
closed real algebraic set in J“(V{,{,‘},)‘.
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Proof: va. *cMi  we define T (f) to be dimg v/ A(F)s J/(E'-
Then if gr‘% £, T (i‘) T(g) (i.e. h'(./ depends onlyh on
jk£) (for f-g €My endso PR es, e, AF) M= - MG YHE),

We claim: (i) va)kf) € ¢ = codim £ = T(f) i.e. jkfgjk(ﬂc))

(ii)'t:(;)?f) > ¢ = codim £>c 1i.e. 3% ¢ R h0) -

This implies the first statement of the Theorem.
To'prdve these claims, consider the following scheme (the
symbols between the spaces denote codimension):

L

T

s M
 (nak-1 /
n! (k—l)‘.‘,..»"f "C(JhF)| codm
NGV RN

K  and ¢ are defined by the diagram.

Note that ’ng(f)) is always finite although c.odim f can be
infinite.

' Case (ii): we have codim f)‘t‘,(')h(f)) > ¢ - clear.

Case (1) : we have k-2 3 c?‘t‘()h(f)). ‘Consider the chain
0= Mn/Mu = My /()1 8n) & M (DG + M) 7 E M (01121 R) -

There are (k-1) steps and dim J(n/(A(F}fo) < k-2. Hence
one step must be trivial; i.e. there is an 1gk so that

AF) s = A My T M < ACG) ¥ M
Hence by Nayakama's Lemma M,n < QA(f) and so -4(‘: g&(‘f)
i.e.0= K(f) Lherefore codim f -’t(‘)‘?(f)) and so (1) holds.

We now turn to the second statement. Since Jk(f))> c, we

have
(k- e G I
TR = Loy 1 W<k g 1o ©
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Hence jk(z(,“) = }:kaéjk‘(l(:) ;0 (3k1) < K}
and we show that the latter set is real algebraic.
Let {x1 y -°- ,x,,,} be a basis for K" and number the monomials
of degree < k as follows:
Xy X Xz - X, oz Xmz --- X
1 0x, x, X, Xy X4 X, T xR

to form a basis {Xt: 1< IS % = %—i—?—'} of Jvk‘.

If z= j“(f)ejk(.lf_%,) (where, fe¢My), then z hus a
representation of the form { a Xj. lhen é%x

Jemz - v_
has & representation of the form i a, X where Q:'- (YME -
Jez W nl (el
and each a,, is a wuole number xa, . Now '
FaEd = (a0 M /U = %y - 2% m>ﬂ_
is tune subspace of k"(M ) generated by ia 1 i=1,--- ,1_1_}_.
=158

Now we can write bg;‘.‘.x\j as Z aU'g XB where each aU,e

is an aP‘L'
TLet M be the n(g-1|)x (Q -1) matrix (a.:)e) so that its
columns consist of the coordinates of a se‘t of vectors which

spans (A(f)wltt)/li.,
Then ¢ (2z) <K =—> ding (A(f)+.t( )/J:t,, <X

i.e. if and only if the rank of M 1s less than X, or
equivalently, if the KX-minors of M wvanish. Now tae
condition that e K-minor of M venish is expressed by
the vanishing of a poljnomial 1n {aﬂ,} with_whole number
coefficients. Hence (Ic”) is a real algebraic variety
of dimension o+E)!  _1~1 in the real vector space 3 (-I'Lz

BIK!
4.5. Corollary: ‘J"‘(x(’;‘) ‘is the d:lisjoint union
reuTy - \'\u UJk‘ (Zk-1)

where each Y;“ is the difference of two algebraic varieties

CLCIDRNELS SRR
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’ 2
4.6. Theorca: If fe&uly, and codim f = with 0g cg k-2,
then j5(£.I,) = "'f LK is an immersive submanifold of

jh(J;(,, with codimension c.
Proof: .In 2.12 we showed that

g ((320).28) = # ULy - B00) € F*UT) -
Now by 4.2 det £< (codim f) + 2 <k and so f is k-
determined. Hence J{MHQJ(.,.AG)G.S) .
Now the codimension of (jkf) Lk in jh(‘,uf) is

jdim U3 ) - aim (M. /-\(f))

= atm C Y = aim (M. &) /4P

aim (M3 /Mo . O(£))
and since J/(,\/ M. A(F) = M, /V{{n @ J/(n /‘M" A(H

this is equal to
dim (J/{.n/Mn A(f)) - dim (J’( /My‘

dim (Mn/ A (£)) + aim (A(£)/ My A(E))
~ aim (My /M5 )

= e+ n-n (by the following TLemma).

= C.

4.7, Lemma: If fe.l{,’; with codim £ < o0, then
‘ dimg (A (£)/Mn . &(L)) = n.
Proof: A typical element g of A (£) has the form
2 a }X with each a ¢ 4, . We write a, = a; + a (0)
so that eath ale 4, . Then g = Za (0) %xh A (qu M“.A(F))
and so. daim( A& (£)/M,.0(£)) €
We now show that {3‘/'5,(0} is linearly independent mod M DG).

If not, there would exist ¢ in ® , not all zero, so

that %_ °u%74¢, = ZP"W/b’cL (b, e M)
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‘ . ) . .
Then X := ZL (cb—-bb) /3’Cu is the germ of a vector field

at 0 with x(0) # O. <then v}e can find new coordinates
T¥qs =" 'Yn} in a neighbourhood of O 80 that X = Xy .
1

T™en Xf =0 1i.e. 3% = 0 in a neighbourhood of gero.

But this implies that ess £ = &0 \ with respect to these .
coordinates and this gives a contradiction since det f 7 ess [
(3.7) and so det f = 60 which would imply that codim f.= o0
(4.2).

§5. T4l PREPARATION THUORLM: )
5.1. The division theorem: TLet 4 : R xgP—RK be a -
function defined on a neighbourhood of O so that

a(t,0) = % 3(¢)

for some keN and d a amoofh function from R into R
with a(0) # 0. Then for any smooth f : BXR? —> R

(defined on a neighbourhood of zero) there exist smooth
functions q,r : RXR" —> R , defined near 0 so that
1) f =q.d + r (near Q); ‘ , o
2) r has the form E rb(x)t“ for suitable smooth
\+o : .
functions r . ) :

For a proof, see [4), IV.2.1 (p: 95) or 2], §6.5 (p. 57).

5.2. The preparation theorem: ILet f : (gP,0) —3 (RP ,0)
be a smootir zerm, f * f‘, -—?‘f“ .the induced ring homomorphism.
Then if M 1is a finitely generated ‘én-module, the following
holds: ) :
M is finitely generated as an 'ép—module (via ™ 1
. and only if dmR(M/‘(f*,«r).M) < o0 .
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Proof: =» ) 'f M is finitely generated as E -module, then there is

a surJect1ve :'p—module homomorphism Ep @ 6 ) f e ... & Ep-—-) M.
Then e 5/}( — M/Ji .M is also 5ur3ect1ve, so dimg M/Mp Mk,
&= ) Step 1: Let n = p+1, let f: (" = RxRP, 0) —»RP,0) be given by
f(t,x) = x. Choose a), 8,, +-», 8 € M which generate M as Eml—module
and M/J( .M as real vector space.

Then any th can be wntten in the form m = Zc j + ?zj a‘j ’
where cJ(R and z.¢ £ (.lp) 6 . This is seen as follows:

m= ?—cj a. +b for cj‘R and bcf*(,{p) M. Then b= 2 Yq bq for
ch f'*(lp) and bqu » in turn b ?s.qu 3 for "jqt E and we

may take z5,= Z Ya "iq € f*Clp) Ep+1 .

Now we use JthlB for m =t a,:

te = (cij )aJ forcichandthfU()El,

This means %.(t 5 €5 - zij) a; = 0. .

Consider the matrix B = (b, J) (t :ij - o35 - J) Then B.2 = 0, where
-

3 is the vector (al, vy ak) Let C(B) be the matrix of coractors ‘
of B , then C(B).B = B.C(B) = det(B). (J‘ ) All these are germs, so

let A(t,x) = det(B) = det(t- -TJ 13. (t x)).
Then A(t.x).8 = det(B).3 = C(B).B.2 = 0.
For x = O we get z, (to)_o,soa(tm_det(th ) is a

polynomial of degree k in t which is normed (the lr-admg coef‘flc.lent is 1).
. Thus there is qg¢k such that (t,0) = p(t).t9 with p(Q) = 1.

Now we-may use the division theorem 5.1: For any fe Ep+ we have

£(t,x) = 4&,x).qt,x) + ry (x). td .
L) €p+1/‘ Ep-rl is finitely generated over Sp , in fact by 1, t, tz, ey -1,
ButA.2 = @ as we saw above, thus A.M = 0 , so M 13 a module over the

quotient algebra & /A, E "and finitely generatedly so (since M is

p+l
f1n1tely generated over € 1), and this quotient algebra is finitely

generated over E y 80 M hlmself' is finitely generated overE

Step 2: Let f: mn,ﬂ) —(®P,0) be a germ of rank n , i.e. a germ of an
embedding. The implieit function theorem gives us coordinates

(yl, Ygr erer ¥p ) of RP near 0 such that F(xl, ceey X ) = (xl,...,xB,U,.,q,U)
in these coordinatea. So f is the germ of the usual embedding R"—>R",

Then f* : Ep-vén is surjective and generators of M over En are u‘:so
generators of M over £ P
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Step 3: Now let f: (R",0) — RP,0) be arbitrary. Then we may write f
n

in the forn ®",00 2%, @"xrP,0) _Pr2 . @P,0) .

The first germ is an embedding as treated in step 2. The second germ

is composition of n projections as treated in step 1. So it remains
to show that the conclusion of the theorem survives composition.

Let ®",0) > @®P,0). —— @®9,0) be germs of smooth functions
such that 5.2 holds for f and for g. We have to show that 5.2 holds for
gef . |

Let M be a finitely generated & -module with dmh M/((g- F)*j{q M) <m .
g*l{q ¢ ,4( , 80 (g« f)*Mq f*(g*ﬂq) < f*/l’p , thus (g« f')*/.(q.MC f*/( .M
and thus dimg M/F*’»’p.M -’dln\R M/(g e f)*.q.M <®. Since we may apply
5.2 to f this implies that M is finitely generated over € via f#*,

By definition of the 5 -action on M we have gﬂ( M= f*g*ﬁ .M, s0
d:‘vm]R M/g*J.( M < oo and by applying 5.2 to g we get that‘aM is finitely
generated as E ~-module.

5.3 Suppose that ¢ + @®",0) —> (RP;0) is a smooth germ, . .
A is a finitely generated € p—mdule, C is a finitely generated & —module
and B is an arbitrary .£ —module\ Consider the following scheme wbpra

B8 is an £ -module homomorphism and & is an . & -module hommorphlsm
over d* (i.e. ™ (f.a) =¢*(f).&(a) for acA and fé Ep).

R
A |
A ————>C finitely generated

€ — or—> €,
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. * '
Proposition: €= QA+ @B+ (PMp).c => C= QA+ gs.
Proof: Let C' = C/QB and denote by Q : C—>C' the
natural projection. C' is finitely generated over ‘f“ .
*
Now C' = QoA+ ( $Mp)c ema eo o /(FFuMy).C0 e
finitely gpnerated over ‘fr . ‘Let Cpo ="~ ,c‘,QC' generate
] -
C' mod (ﬁa‘..f,( )c' over - %, . Then if c€C', ¢ has
e representation in the form i (ﬁ(f-).c\‘, mod ( CP‘ .J{,P)C'
(with f € fp) -vriting f =1+ f(O) we get
c = Z £.(0)e, moa (& - Mp) .ct
and so dmR(c'/( <b“ Up)ct) < 0.
Then by 5.2 (with C'=M), C' 4is finitely generated over fr
(via 4)‘." ). We can then apply Nayakama's Lemma to the.
equation c' = Qou.+(¢ Mp).C
to get C' ¢ (dA i.e. Cco(A+§B

§6. UNFOLDINGS:
6.1. Take f€ ML . The category of unfoldings of f has
‘as objects pairs (r,f') where r&N, and

£f: (8™ ,0) — (.R ,0) 1is a germ so that f'lB"‘i i = f
° 3.
i.e. the diagram &° ___E__a, 8 ' ‘
. J{ixo ‘ " ’

£
Rr® xgf —> R
commutes;

.as morphisms from (s,f'') to (r,f") triples (4),;),L).
- where ¢ : (g™*,0) —> (g™",0), ¢ (R® ,O).——>(R‘, ,0)

and & : (R%,0)—> ( R,0) are germs so that

‘Nﬁ"xiox = “LR) ) xr"?"’ ;’J:s ) F" * V*‘b * T



1d,x0

Note that the last equation can be written in the forn;
£1'(x,y) = Ly {20 p(x,3))}
where Lg, denotes translation by e(y).

the identity on (x,f') is the triple (idem- ldgr ,0),
the composition of two morphiems is defined by Yhe formula

($, ‘P,E)(‘V \}’TJ)-@\Y ¢4’i.\l’+'v)'
a morpnism (¢, ®, ¢) 1s an isomorphism if and only if
r=s aend ¢ and ¢ are local diffeomorphisms.

6.2. Examples: 1) The gum of two unfoldings (r,f').. and
(s,f'') 4s defined to be the unfolding (r+s,f'+f''-f), °
where (f' + f£'' = f) : (x,u,¥)r—>£'(x,u) + £''(x,v) - £(x).

2) The constant unfolding- (r,f) where f : (x,u)r—>1f(x).
Then (x,f) + (s8,£') = (r+s,f'). .
5) If fe My, snd b, - ,b. € M2, tuen (s :’) is an

unfolding of f where
3 (x,u)—>£(x) + by(x)u, +---+ b, (x)u,.

6.3. If (d),a),f,) : (8,£'') —> (r,f') 1s a’morpniem‘

then we can recover (s,f'') from (r,f') and (P,P ,€)
(eince £''(x,u) = f'.@(x,u) + }u)). We say that (s,f'')
is induced from (xr,f') by (?.¢ , & ).’ This suggests the

following def:inition: )
Def. An unfolding (r,f') of f 1is versal if every unfolding
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of £ is i uced by (r,f') (that is, for wvery unfolding
(s,f''), there is a morphism (4),(}),3)‘ from (s,£'') into

(r,©’)).
A universal unfolding of f is & versal folding (r,f') for which

r 4is minimal.

6.4. The m—ge‘c extension of a germ: If feM,, define j:ti
to.be the germ from ( R",0) into jR(&w,) € IR of the

mapping ‘
x —> (k-jet of (y+=> f{x+y)-f(x)) -at zero)
= 1 Uy f(x+y) - £(x)], ).

jff is called tne natural k- jet extension of f£. J‘ff is
determined by the germ f, mot by its particular representution.
‘Wote tnat  JU£(0) = jE(ly > £(0+y)-£(0)],) = jhs.

Def. TLet X,Y be manifolds, h,: X—>Y a smooth function,
¥V an immersive submanifold of X. h is transversal to V
at x€X (written h AV at x) if either h(x)4V or

(Th) (Tx(X)) + Ty(V) = Tyef¥).
h 1is transversal to V (written h AV) if it is transversal
to V at each x€X.

6.5. Lemma: 1) j':'f is transversal to ;]k(at(n.&(f)) in
$*( A(f)) at zero and Im (Djk'f(o)) is generated by
k .}
ij ( ) -- =3 xn)} .
2) if f is k-determined, then ;]Ef is the germ of an
embedding from (R",0) into: (Jk(—bth ), je£). ’

Proof: 1) Im (D (J?f)(o)) is generated by the colwms of the
&eobi eatrix of 3,,f at 0,i.e. by [ 0 (o) ow} e

' But g/x‘.aqﬂo) = a,m;@)(o) = *C%. ) -
Transversality: we must show that
Im (D(38£)(0)) + JR(Mn.B(£)) = 3*(a(2)).
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Suppose -that g ¢ A(f) so that g = % at,b%xl‘b(a\" ¢ ¢,)-
we wreite a= al + a;(0) with aleM,. Thus
o) = Ta 0% + = )
€ Im D(FD)(0) + FE(M,.L ().

2) By 4.2, codim f < e and so JiimR (A (£)/ M. (L)) =n (4.7).
Also J/(E“Q My OD(f) (3.5). Hence

aimpy [3R(A(£)) /1% Mn. & (£))]

= atm LA « 4/ Lk D) w4y as”
= aim (A (£)/ln. B(£)) = n |

and so, by 1), Im D(JEf)(O) has dimension =n, i.e. J‘:f
is an immersion et O and so in a neighbourhood of O.

6.6. k—-jet extensions of unfoldipés: Let (x,f') be an
unfolding of fEMZ . We define JRf' to be the germ
from (R™",0) —> (3, ,J\‘f) defined by the function
(x',y")—> (k-jet of (xr—> £'(x"¥x,y")~£'(x',y’)) at 0)°~
= jh( [ x+—af'(x'+x,y') - f'(x',ir')]o ')-

Note that the definition of 6.4 corresponds to this definition
applied to the trivial unfolding (0,f). As before

55£1(0,0) = ([ xr—>1£7(x,0) - £1(0,0)]) = j*£.

Def. An unfolding (r,f') of f is k-transversal (k20)
if j:ci" is trunsversal to (ka).Ll: in j)‘(.zé(“~) at Oeg™.
Choose a basis {x,, --- ,x,} of R' and Iy, -- ,%}
[} . .
of B . Then 3%7 is a germ from (B“*",o) into (R ,0).
b x \ S
: of B (s e)
We write  3j f' for the element 6}’} }R“*{o} ‘ /b\/,i (0,0')
of Mmn (J=1,---,r). Then we denote by Vp the R -subspace
A .
<2 f',---,)rf'}B of  Hy.
6.7. Lemma: An unfolding (r,€') of f£e#3 1is -k-transversal
if and only 1f WMpy = A(E) + Vot ME: : ‘
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Proof: By. .12, T\,ks((j“f) Ln) = *W,.D(8) < Je(AM, ).
T(;) £ )(oo) (T(”,(R xio})) is’ generxteu by S% jkf (0, O)}

“and we have
¥  §#£'(0,0) 3&40 0)
™ > by
- jk([x — %"(x 0) - 4,,(0 0)o)
#OR.
Hence @] f)(ool (T(M(H"x?o})) = Im Djk'f(o) (6.5).

it

T(jqf )(M’(:T(N)QOJxR )) 1is generuted by i%y j £'(0, O)

-

)=1

and we naye
357 i%1(0,0) = 3% 2’,{; (0,0)
b ST
=3([xr——-—>,§(x0)~
= 3k ).
Thus  T(55£" )0 Ty 103 X R") = %V ).
Then (r,f.‘) is X~transversal e
> In (e ey + (IR0 IR ) = 3Rl

y“’ ,0)].)

G jk(V\;t) + Im_.Djl:I(O) + J“(J{,, A(L)) = J"(J'{n)

= (Ve + KAD)) = F(hy)  (by o)

& My = A + Ve M
6.8~. borollary_: Let by, ---,b, ~be representetives of
a basis of JJ(,,\ /(A(f) “6(:(“) Then if '

: (x,y)r—-—i £(x) + 2 b (x)y_,
the un.folding (r,£') 1is k—tramsw'r’eraal

Proof: b £ (x) = aﬁgy (x,0) - 3‘ 0,0) = bJ‘(x) and so
ih,. ..h,} generates Ver o Hence A(f) + J{“” + VF' - an,

i.e. (r,f*) _18 k-transversal (6.7).

6.9. Lemma: A versal unfolding (r,f'Y of f is Xi-tranes-—
versal for each k>0. In addition » 3 codim f.
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Proof: Choose & k-transversal unfolding (s,f'') of f
(this exists by 6.8). Then

£1(x,2) = £(Rpeb (x,2), $(2)) + £(z)

"
where X, : BR"™ — R is the canonical projection.

Differentiating, we get t
1 Y " 1 -
£ = >k : )4’ ;0 | 2f _3 3¢
) (x) Lﬁq A (%0) b)%(x ) 4 25.3_“(é)u(zc.0) %L(O’O)) {ﬁJ(o).
Hence Vpve A(f) + Voo and so -
My 2 A+ Vv UM A0 Vs AT =,
and so (r,f') is .ktransversal. . :
In eddition, r 3 dimg Vp 3 dimg(A,/(A(2) + LX) for xk3o.

Hence the chain
My = D) + My 2 A + (2 2 ---
must become stationary, say at the ¢-th term. Then
A + ME = A(e) « uf!
Then we have J,{,f < A(f) by Nayskama's Lemma and so
Ty dlmg Vo ydimg Mo/(A(D) + UE) = aimg 4,/ 4(2)

= codim f£.

6.10. Lemma: Let i‘EJ'{.f, be k-determined. Then if (r,f')
and (r,f'') ere k-transversal unfoldings of £, (r,f')
and (r,f'') are isomorphic.

R+
Proof: Since f is k-determined, WM, < My.A(f) S A(f)
(3.5). On the other hand, by 6.7, -

My = BCE) * Yo+ M= DO + Ty = A+ Ve

By 5.9, r 2codim £ = dim (Mn/ A(£)) =:c. TLet wu,,--,u.eMp
be representatives of a basis for M,/ O (£). Then

b (R” x ch.RH:O)——s (R ,0) is an unfolding of £ where

h: (x,v,w) —> £(x) + u,‘(x)vc e u.‘:(x)vc .
(i.e. h 1is independent of w).
Now. if ! (resp. W.) denotes the image of ajf"
(resp. u ) in Mn/ Q(f) we have

DJ £ = = aiﬂJ T, (for some {aLJ} ).



The ¢ xr marrix bi=(a )g: *+++% pes renk ¢ (since {'baf'}spans
j ’ g Ca‘x

Mn/ L(£)). TLet B 1= (th )J ;- be ¢n (r-c) xr-matrix

so 'that [A B—\ ‘is regular. and define

& BT —>R°xE¢ by ¥ —> (“ay,°By)

AL lRmu(r- oy q) . id‘B-.x C\J
and h' : (B™ B",0)—>(R ,0) vy
L - r c
n' : (x,y)v—)h(x,(x)y) =£f(x) + =2 (=2 aﬁ uz(x))y- .

J=1 {=1 J
Then (r,h;) is an unfolding of f and

jnta) = B (o) =000 = {9 (32
| <
and so -b-'"

. J_ = 2 8.8 u = S:?‘
Phen (4) ¢ O) is a.n 1so'norphism from (r,h') onto (r,h)

and b h' ='221 aQJue = bf i.e. we have constructed an
unfolding (r,h') (isomorpuic to (r,h )) so that 21 = BhJ‘
(for each j) (so that, in particular, (r,h') 1is k-trans--
versal).

By symmetry, the Lemma will be proved if we can demonstrate
that. (r,f') == (r,h') i.e. if we can prove the special case

of the Lemma where )f = be" (j=1,---,r). We assume
from now on that these equations hold.
Define

?t(x,y) (= Mx,y,t)) := (1=t)E£'(x,y) + t£' ' (x,y).
Then SR = (1-1) S"rj' +E L = 3 for each .}

and so (r,P') is k-transversal for each t.

Claim 1: for each t°€[0,1] there is a neighbourhood Ut of
—— ‘ (-3
%5 in B 30 that there is an isomorphism

( ¢t) q)t, £t ) ¢ (rlFto)—e(r)Ft)
for each t¢ U, '

The result. follows from this claim by the usual compactness
argument.
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Claim 2: There exist zerms
¢+ (K™ x®, (0,5))—>(B™,0) with  (0,t) =

d ¢ (0 x R,(0,t5)) — (BY,0) with EP(OW) =0 :ii
€ : (RTX R,(0,%)) —> (R,0) with £(0,8) =0 J t
so that - |
1) \\,.43 = $T  where T is the projection :E’“*"x‘m__’r;:rx[t',

2) ¢ (1) = Id e (and so T@(.,to) = Idg" by 1)J;

3) F(Cb(x.y.t),‘t)_-k ely,t) = F(x,y,fo) for t near t,.

Note that we can replace 3) by £ 55, ) ba,

5 B (9oy,h),0). b‘mtc )+ =%y (Peyt,0). 2% (x, b
+ 2%, (GGy L) + 2% (y,5) =0

(for the expression in 4) is the derivative of the left hand

side of 3)).

1

Proof that Claim 2 implies Claim 1: The function
t——> det D& (,,t)(0)

is continuous and so, since det D&(.,t )(0) = det Id =
there is an open interval Uy containing %, so that

det Dq>( ,8)(0) > 0 on Ut.‘ Similarly det nq>( ,8)(0)> 0
on Up. Then @(.,t) and ¢(.,t) “are diffeomorphisms
on U\:° and this implies Claim 1.

Claim 3: There exist germs
X+ (R™ xR ,(0,t5)) —>(B™,0) with ¥(x,0,8)=07
Y: (RYX R(0,t0)) —> (R™,0) with v(0,t) = og 11
z: (R"x a;c,(o,t,,)) —> (R ,0) with 2(0,t)=0

80 that
5) zgx(x.b’»t)x (xvy:t) + ZB{},(XHYJ)YJ(J:'C) +
J .

+3,%t(x,y,t) + 2(y,t) =0 far (x,y,t) near (0,0,%t,).

Proof that Cleim 3 implies Claim 2: Iet ¢, , §, be ‘the
(smooth) solutions of the differential equations
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Ag(x,y ) = XC 4, (x,y,%), §,(7,8),%)
b¢}st(y9t) ‘= Y(¢z(y’t)’t)‘
with initial conditions q>1 (x,y,%,) = x, 4>z(y,‘to) = y.
By uniqueness, ?1(0 0,8) =0, $,(0,) =0 for all t.
Put  E(y,t) := fc 2( d(y.T) AT |
¢(X’Y3t) = ((h (x,y,%), ¢Z(Y9t) ))
Byt = bu(y,t) .
Then a routine calculation shows that 4) (of Claim 2) is
satisfied.
Also Tod =T(, ,9 )= ¢ = ¢2-'nt , i.e. 1) holds.

2) holds on account of the .initial conditions and so we have
proved Claim 2.

Proof of Claim 3: We regard R ™ s B EXR (with
typical element (x,y,t)). 1In this paragraph we denote by
Zm the germs at (0,%,) € B™ . Iet A be a free fm
.module with (x+1) generators (a tpical ae€A is written
as (Y,\,n‘ ¥py2) with Y ,Z2¢ £.,) and B be a free ¢
module with n generators (a typical b€ 3B has the form,
('x1’g--_,x“) with X.)Gvfmrn ). We construct a scheme

l ¢

A ————_———) C = fh*l’ﬂ

w* :
frn ﬁmru

as in the preparation theorem - 5.3).
o : A——> C 1is defined by
=
d(Y1"'1rvz)— /?y Y + Z -

Then o is a modulé homomorphism over ¥ since we have

for ge fr_”
. - v .

o (&Y, , ,EY,,.GZ) F /SZj g.YJ + g.2

,FSX’..YJ' + Z-) =g a (Y1

[/
x

- -
My

41y 1

Y,,2).
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g : B—>C is defined by @(X,,-~,I,) = 3 2F
) L1 Xu

Claim 4: C = oA + QB + (% ,l,(m)c i.e. the hypothesis of
5.3 is satisfied. -

We have Ay = A(f) + Vgt  for each t and so
To = OO + Ve + Rt '

elgn xpojxitg SO that

~ b | N ~s
g =2 X, + i (3% Ak (o .
o Gi "‘ Ja ’SyJJ@{} 'SyJ'( »0)) 1,
for X €f , YicrR ,seR, .
2.8 . bX>
Let g ;&cx\, + Jﬁ( {».YJ +Z,

where X, (¢ tmm)' Y (€ er ), Z (e ‘&m ) are’ chosen 80
that

X(x,0,t,) = i-bx) (for all x),
Yy (0,t,) = ¥, '
) _dE L
2(0,%0) = X =9%,(0,0,£ .Y + s,
Then gllﬁ“xb}xi\;?; ngxio} 3a.nd orie can prove exactly as in 1.3.> ‘

thet this implies that @ - & € Mpee Cruryq. - Now
8= B(Xy, - ,X) + (Y, -,Y,,2) € oA + QB and 8o
€< oA + éB + MpyoC,Tee. CS oL A+ §B~+ H,oC-

Thus we have demonstrated Claim 4 and so can deduce that

Cc olh +'§B (5.3). Hence J(..C% oL (Mp.4) + €(»¢{r.13).

Now b":gt = £'' = £' and so vanishes on B x{o} x®. Hence,

as above, we can deduce that -Dét € J'{.r fmr” < 4(4(;-1\ ,\.Q(.(,(r‘g)
i.e. there exist germs - X,,---,X, €4, gnrm Yy,---5Y, 2 €Mt -

so that -% = ol(Y,--Y,z)+ (X, 5= sXy)
C 1 r 1 h

b N )
= 251 ,S .X‘l + Z { .!) + z
and this 1is exactly Claim 3.

Thus the proof of Lemma 6.10 is complete.
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6.11. Theor u: Let f£€ My be k-determined. Then an unfold-
ing (r,f') of f is versal if and only if it is k-transversal,
Proof: By 6.9, a versal unfolding is s-transversal.
Now suppose that (r,f') 1is k-transversal and that fg,f'")
is an arbitrary unfolding. We must construct a morphism from
(s,£'') 1into (xr,f'). A

(Iapgms X Oﬁf'" Idgs X OIR"'O)
is’ a morphism from (s,£'') 1into (r+s, £''+f'-f) and the

latter is k-transversal since one can easily calculate that

bJ £ \331,"",1‘)
D, (£114f1=f) = .
J . 3')' £'1 . (g=x+1,---,r+8)

and so Vpmep= Voo + V', k

. 41

_ 3ince (r,f') 1is k-transversal, we have Yy = A(f) + Vot M“ .
ka4 '

Thus  A(L) + Vpyelp + My 2My, > eee (ze,frrefr-f) is

v

k-transversal.

Similarly, (ril-s,f') (the unfolding (x,y,2)t+—>f'(x,y))
is k-transversal. Hence, by 6.10, (r+s,f') and
(1;+s,f"+f’—f) are isomorphic. Hence we can conatruct a
morphism from (d,f'') into (r,f') as the composition

(8,8 ") —>(s+r,£' '+2'~f) == (r+8,f') —(r, ")

(the last morphism is the obvious one - forget the irrelevant
coordinates!).

6.12. Theorem: £ € .43 has a versal unfolding if and only
if codim f<o0. Then
a) any two s-parameter versal unfoldings are isbmorphicj;
b) every versal unfolding is isomorphic to an unfolding
of the form (r+s,f') where ' (r,f') is universal;
c) 1if b,, y m ,br(Mv\ _are represent.tives of a ‘basis
for Un/ A(f), then (r,f') is a universal

-
unfolding where f£': (x,y)r—>f(x) + Jz_~1b‘)(x)yJ .

Proof: If codim f <co then f i1s k~determined for some
k (4.2) and so, by 6.8, there exists a k-transversal
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unfolding (r,f') and it is versal by 6.11.

On the other hand, if' f has a versal unfolding, it has a
universal unfolding (r,f') &and then codim £ g r (6.9).
Now sunpose that codim f < oo . '

a) By 6.9 both unfoldings are k-transversal for each k
and so isomorphic by 6.10. ,

n) Let (s,f'') be a versal unfching, (r,f') a universal
unfolding. Then s> r. We can extend (r,f') 1in a trivial
manner to an unfolding (s,f') and this unfolding is k-
transversal. Then (s,f') and (s,f'') are isomorphic by
6.10. ' ‘ '

¢) By 6.8, (r,f') is k-transversal for each k and so
versal. By 6.9, r is minimal and so (r,f') is universal,

6.13%. Ex.xmples. 1) Take n=1, f : x —> N (¥>2).
. '4 -
Then A(f) = {xV ‘) M, eand J{1/A(f) 1“ (M)
This Las as basis the fu.nctions {x,x%, --- x }and g0
fr : (x,y)»—-——)x +x"y1 + o--- X¥yey

is the universal unfolding.
2) Let £ Dbe the function
©2 -

X —> Xy % X3 % ---iX, o
Then. A\(f) = <x;l':x2,x3, --a XD
and so ,/QA(f) has as basis the functions {x1,x1z, ---,x;“} .
Hence £' 0 (x,y)— £(x) + X',‘",ZL +ooms Kq}'q-z
is the universal unfolding. '
3) +ve generalise 2) as follows: take f¢ "“’k. with universal
unfolding

£(x,, --- ,xk) + &(X s T K Ty s - .y.,) .
If @(x\m, -.—,xn) is a non-degenrated quadratic form in
further vuriavles, then the univerq?al unfolding of
£(x, - %) + alXy,, - ,x,) 18 )

f(11 y <" oxk) + Q.(xm. - ’xn) + E(X»], --- 9xkry1 l"-va‘) .

In particular, codim f = codim (f+q) .

(choose cbordinates so that ¢ has the form 4_;;:;1-... +x}
and continue as in 2)). '
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It is thus - itural to transform f so that as many variables
as possible are separated into a non-degemrate quadratic form.

6.14. If fe Jr(,,, we define the corank of f (written corank(f))
to be the corank of the matrix (2 £/2x 3 35)&) 1 \

i.e. it corresponds to the coranki of the quadratic form
determined by j3f.

2
Reduction Lemma: Let f € 4, have corank n-r. Then f 1is
right-equivalent to a germ of the form.
L (x1 » 7T oxr) + .g(xrﬁv’",:xn)

where q_ is a non-degenerate quadratic form and j2g=0.
Proof: By a linear transformation we can reduce J*f to the
form

q_(x1!"‘ Xy ) ’ﬁxi '."_xé - ixzr °

Let. h:=flgno. Then he 4 and j*h=q. Now

Ole) = <xy,---yxpdg = My and so ME S M. A(q)
and q 1is 2-determined by 3.5 and hence so is h by 3.2.
Hence h 1is right equivalent to q, i.e. q=ho¢ for some

b¢ L.

) , Now f
is right equivalent to f;(q> X Idpuy) . This means essentially
that we can assumethst f]R,;‘O= q, which we now do.
Since -A(q) = My, q 1s 1ts own universal unfdiing (6.12¢))
and so (n-r,f) 1s a versal unfolding of q (since there
is a morphism from (0,q) into (n-r,f)). But (n-r,q) is
also versal and so (n-r,q) and (n-r,f) are isomorphic,
i.e. there is an isomorphism ( \}/ \}' » £ ) from (n-r,q)
-into (n-z,f). 1In particular

@ (x,,--4x) = Lo (x,; ---,x,) + E(xpyys o 4x,)

__end 80 we can choose g = - §.

Novj&.-Oforjq-Oand;}f-o.js-otollowa since
jel 0 would imply that the carank of q - £ would be



-3

smaller than that of q (since q and € act on distinct
variables) and this gives a contradiction (note that the
corank is invariant under the action of Lr)‘

6.15 Lemma: If £ e Aln has corank r then codim £ » i%_il.‘. i
In particular, if r2> 3 then codim f2 7.
Proof: By 6.14, f is right equivalent to

g(x1,...,x ) + q(xr+1,...,x )
wi th j g = 0 and g a non degenerate quadratic form. By
6.13.3), codim f =.codim g. Now g € M3 and so A(g)‘-‘ﬂ, .

Consider 3%4(8) = (A&) + A/ MY = <P, ... 5B
a Ld v

Over the field R there are no linear generators, at most

r quadratic generators 33(3%/), i =1,...,r, and at most

r? cubic generators X,. j’(“’a . The worst case is if

they are all R - linearly 1ndePenden1: Then dim j3A(g) =T + r2.
So in general dim 33A(g) r(r+1) and

codim f = codim g = dimg M/A(g) > 2 dim 33(#,)/334(8) =
= atn P(U,) - dim PPA8) B (FF) -1 - x(z+1),
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§7. Tilk CLASSIFICATION:

. . 2 .
.7.1. Theor, i1 Bvery germ £ €M of codimension £ 6 is
right~equivalent to one of the following (non-equivalent)

germs.
3 2 2 2

Here \2;-(;) ELX, = 4Xpg + oK) - J+1 - - - x5y (§=2(3),+eun)

is the normal form of a non degenerate quadratic .torn in

(n-1) (resp. (n-2)) variables.

Every germ is accompanied by its universal unfolding together

with its .common name.

Codim £ Universal unfolding
0 b%éux’; . .- :
vy n
1 0+ LZ‘L £.x2 | <+ LZ_le;xtﬂr, X, . (fold)
2. . +xh+ L%_ggxﬁ f_x;‘+é‘;g‘;xf+y1ﬁ+yzx1 (cusp).
I'e n n.,
3 X+ 55‘/‘5 X5+ LZ‘iabxﬁﬂﬁ x +Y, Xy Vg Xy
. . (swallowtail).
3 X+ + :éss,,xi f+x‘,+ 2 L EKL+Y, X X +Y; X +Y5 Xz
(hyperbolic umbilic)
n
2
3 '13~X12§+ %&X\, x —x1x2+ ZE,,xury,,(x +x£)+y2x1 +¥5 Xp
(elliptic umbilic)
" .
4. txf+ gz £.X3 +x,,+ 2 ELXp +y1x +y2x +Yy X +y~ X,
(butterfly)
4 .
4 'A t(:::xzfxz) + +(2 %, +xF )+ ﬁ ELXs +Y, xﬁwyz xf;+y3.;yc1 +
+ de&,xf +y,, (parabolic umbilic - mushroom)
- ¥ n 2 b
5 x]+ ng"r" + Zsbx +Y, 3:1+3,r1x1 +Yy +y,'x'i+y‘x1
.5 xf"xz +X5+ gs £, X0 x; x, +x5 4+ Lﬁ'. EL XL +y1x3+yzxf * Yy X3 +Yy Xq +
P ' Yo%y )
5 L X Xg-xp+ 2 g x] R Xy =5 + 2 EL X+, Xy +33 Ko +yy X34
o " LTSRS L5
t 2 4y, 3 2 .
5 i(x1+xz)+.t§3 6?::0 +(d +x3 )+ 53 E X +Y, x1xi+yzx1 X, +

. R
XtV Xyt YeXe
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Codim f Universal unfolding
6 e 2z £.0 e Sex? by x5 “ o
THT Gt Xt S EXHY Ky e Xy s Xy Y Xy
2
s Xq +Yg Xy
2 n .
6 _+_(xz1 Xp+x5 )+ j_(x1xz+x§)+ %be€+y1 Xy +Yp Xy +Y5Xg+
" .
3 4 <
+ 5.38.,7{, +Y, Xp Y4 X, +Y Xz
3 z, & 2 2 7, & 2 - .
6 X +X, X5+ 3_3 BX XX XTI+ T EK Y Xy 40 4Ty x2+‘.,r4‘xzz+

+Ye X, X +Y X X,
Proof: We classify according to corank. :
Corank O: In 6.14 we showed that every germ of corank O
is equivalent to a non degerate quedratic form. Hence we
need only verlfy that the number of minus signs in the
canonical form is an invariant w.r.t.the Iyraction on J/(,‘,z1 .
By 4.2, det f<2 and so fA j*f. The L,-action on J?
factors over Lf\ and if P = P +B ¢ Lf, (i.e. P,eGL(n,R )),
then the action of P, on j*fe j2(HZ) 1s cut off since
the result has degree . 4. Hence only GL(n,i? ) acts effectively
on j? (A'(i) and then the number of minus signs is clearly
invariant. i .
Corunk 1 (Cuspoids): 3y sepsrating & non degenerate quadratic. form
we can assume that n=1, Since codim f £ 6 we have det f< 8
(4.2). Twus f ~ jgf- = é' a,x* say. Let X be the
smallest index with &, #0. l?hen A(f) = <x")51 = J,{r‘d

and so J,(:C‘E My . D(£). By 3.5, f is Vk-deterr'nined,i-.e.
f’r\« ahxb. If k 1is even, then the substitution xy——)lah-\ X
show that f~ ;tx\f if kX 1is odd then x r—> |akf&sgn a .X

shows that ;g)L xk. Hence

£ 8 x%, ax? 5, exb ,x¥,t,_xg-
Corank 2: Once more, after removing a non degemrate quadratic

2 .
form, we cen assume that n=2, i.e. f (=f(x,y))¢ Mz. By 6.15,
codim £ 2 3,i.e. codim £ = %,4,5,6. .
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J3f is a homogenenous polynomial of degree 3 (éince jzf = 0)
in two variables, thus corresponding to an inhomogeneous
polynomial i1 one variable which factors over €. So ij can
be deéompos,d (over €) into .the linear factors
(a1x +‘b1y)(azx + bzy)(a3x + b3y),
and this decomposition 1is unique up to constants.
We consider four cases:
1) the vectors '{(aL,bb)} are palrwise linearly independent
over € ;
2) two of the vectors are lineazydependent, the third is
independent of the first two;
3) the vectors are pairwise linearly dependent;.
4) it = 0. | e
Case 1:
a) the {at} and {h;} are all Tesl. Under the transformation
X > a,x + b"'y y Y3 89X + Dy

we see that J f(x,y)~ xy(a x + b y) with a,b#0.
N . -9 b.,
(for if A denotes the matrix [au by tuen

ax+hy = (a,)bl).fil’(;))i.e. (a,b).A = (a,,bz) and if a=0
then (a,,b,) and (a;,b;) are linearly dependent).

Now xy(ax+by) X (1/ab)xy(x+y) (by (x,y)+—> (ax,by))
' © A xy(x+y) (by (x,y)r——a(ab)“Ji (x,y))
& x(x2-y?) (by  (x,3) > Z¥(x+y,x-y))
= x3-xy2.

Now O (x}—xy?) = -<3xz—y2,21j% and so
2
My D -x3?) = <3x3—xyz,3xzy~y3,2x2y,2xyz>f
2
G AN D V'

and so x> -xy* is 3-determined (3.5).

Then fh 3¥f R x%-xy?.

b) not all of the {aj, {bb} are real. Since J°f is real,
the factorisation must have the form
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(a,x + byy)(ax + byy)(2x + byy)
where a, and bgy are real. Hence
F £ XN (ax+by) (xR+y?)

~ ex(x%+y?) (by a rotation)
~ x(x2+y2) = B axy?

Lzﬂféxy = (x+y)3-i~(:\:—»y)3

N B ays

Then A (x¥+y%) = <3x’",3yz>i and so
: 2
3

4 3 3 2
Mo A+ = <xFox y,xy'z.y3>de = Mz
2
and so X +y 1is 3-determined. Hence
r
f ~ jxf ~x3+y3;
Case 2: Huppose that (ay,b,) and (a,,b,) are linearly
independent and (a;,bz) 1is a multiple of (azvbz)- Then
the factorisation can be arranged in the form
(a,x + by)(ax + hly)z
where the fe.f and the {b(} are real. .
Then jxf"; x%y (by (-x.y)»——>(alx+bzy,aq'x +byy)) and
A (x3y) = <2xy,x?>§ is not finitely determined (since no
Jower of y alone cfm be generated). Since f is finitely
. . r
determined, there exists a maximal k for which jkf fvxzy.
We can ussume tnat jhf = x%y. Then j“f = -xzyth(x,y),
where h is a nomogeneous polynomial of degree Xx+1. . °~
Applying a transformation @ t (X, 7)o (2 $(x,3), 3+ P (x,7)

where q> ,\‘/ are homogeneous polynomials of degree 'k-17/2,
we have '

ELLEE ﬁ) = jk”f.§ = (xR (y+ §) + nlx,y)

(x +2xd )(y+y) ~+ h(x,y)
x*y + 2xy O + x"\')+ h(x,y) .

* We can choose qp and \*/ 80 that the terms of h which
are divisible by xy or x2% vanish. Then we have
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k+1(f°§> ) = X2y + ay®l  (a#0).

Now L (Ry + aym) = {lexy,x* +¢1(1c+1')y‘2>8a
and so 2. A (xRy + ay®) = fy,xp? ,X° +bxy ,xzy+byk*1>£
J{k” . 2

By 3.5, xzy + ayk i‘:s, (k+1)-determined and hence so 1s £.
Thus £ 5 x? y + ayh” A~ xR Y+ yk'*1 (by (x,y)—>(laj@e2.x, la|® . y).

Now 4 < k+1 = det £g(codim £f) + 2 € 8. Hence we have the
following possibilities:
k = 3: .fr\axzyj_-_y"'r(/ i(xzy + ¥4
-
4: £ f\axly-r_-y '

k =
k =5: £~ x*y+y® r';t(xzy'+y").
k 36: x,y,5%,y%,y%y",y%-.. are linearly independent in

Mo/ O (£) and so codim £ 3 7.

Just as for the case where f has corank O, one can show
that the minus signs cannot be removed.

Case 3: J°f = (ax + by)x , a,b real. Then if (%,%) ana
(a,b) are linearly independent, the transformation

@ : (x,y))——-—> (ax+by, a.x+b_;)
gives 33('fo§) = j f.@
x‘? hes infinite codimension and so f 1is not ' 3-determined.
We can assume that 33f = x° and choose k maximal so that

jkr-fr\}x{' Then Jk”f = x3+h(x,y) where h 1s a homogeneous
polynomial of degree k+1. If q) is the transformation

(Ly)-&———}(x*-\.}:(x.y),y) where ¢ is homogeneous of
degree k~1>2, then
' (e ) = <x+4a>’ + n(x,y)
= x7 + 322 s‘/ + h(x,y).
Now choose \P so that the terms of h which are divisible

by x? va.nish Then
J *1(1’0\1/) = x¥ + cxy® + ayRit ((e, d) # (0,0))..

a). d#0: Applying Q (x,y)— (x,y - x), we get

(k+1) d .
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k"‘(f \‘1 Q ) = x° + ex(y ‘QEI%)—JL x)k' + d(y -L\Eﬁjl x)k*‘“

3, cx(y\ﬁ + x.2,(x,y)) + d(ykn - (x+1)y

=X

¢ _ x4
(kv -
+ x1L92 (x,3)) N

where P1 ,P2 are hdmcgeneous polynomials'of degree k-,1;2)
=x3 + cxy® - cxy® + 3x®p(x,y) + dyk-"‘
= x%¥ + 3x%p(x,y) + dyk"‘) where P 1is homogeneo';xs
of degree >k-1.
Applying ’Y' : (x,y) —> (x-P(x,7),y) we- get
e ) = e 3Ry 4 ey

Y
=x3 4 dykH ~ xS + ykﬂ.

Now A(xgtyw) = <3x2,(k+1)yk> and so
J(z.&(x!ﬂ'k“) = <x3,;tyh,xzy,yk*‘>_82 > J't;”

and so x’:yk” is (k+1)-determined. Hence

£~ Py Since 4 g k+1 = det £ <(coaim £) +2 < 8,

we have the following possibilities:

=3: R Syt ~+(X’+y")

k 7 4: x,y,y ’ yk' ,xy,xy y--- ,xyk' are linearly indep-
endent in .Mn/A(f.) and so codim £ = 1+2(k-1) = 2k-1 2 7

b) d=0: Then jk“(fo -@‘? ) = x° 4 exy® (¢ £ 0)
. &xz't xy %

Then A(F #xyR) = (3°% k.kxyh"'>gl '

k=3 xsixyz"; xz+xy3 is 4-determined by the following

Lemma (7.2). Hence jl"f):, x’ﬂcy5 is 4-determined and so

f »-':/ x° +xy3.
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k> 4: we consider. j‘a”zi‘ = x3_—txy“+]?(x,y) , where P 1is homogeneous

of degree 2. Then 5 konof
s A £) = sRe1 D 4 [
A = G 49>J2 N

< ¥ 1038, éﬁyjk*5f>3geﬂ
ey ¥ (), oy %(x’y%zm :

]

If "fs #0 then x,y,y%,5°,y".xy, xy*,xy® are linearly

in-dependent in R M, /jk’M INEIE

if 527 =0 then P = P(x) = ax®? and
x,y,jz,ys,x“,x",x’*,x;_r,xyz,xyg“ )

are linearly independent.

E';o codim £ = dim JA,;/ A (£) > dim j\q“,L(z/;j‘“”A(f) > 8

Case 4: j%£=0 and so f€ U(F , i.e. A(£)e M .

A (f) is generated by 2 elements over fzz , V{/(rz by 4
(the homogeneous monomials of degree 3) which are independent
over fz . Therefore dim #i / A (f) » > 2. Hence

codim f

H

aim My / D(E) = dim My /M + ain M/ A (L)
(3) -1+2=T1.

Corank » 3: By lemma 6.15 we conclude that codim £ & 7.
Thus the theorem is proved.

\4

Remark: One could continue the classification (see Siersma [].5],
or the papers of V.I. Arnold). In the next step one finds:

the germ 4y3-xz2-a x2y -2 x3 with 27a, 2. a, 5 # 0, which is
F—detemined and has codimension T. Furthermora a /a'z is

an invariant under smooth coordinate cha.nge, 80 the
classification becomes infinite from codimension 7 onwards.
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7.2. Lemma: The germ 'x¥+xy’ in J(: is 4-determined.

Proof: TLet f£QM, with #*£ = x%4xy%. Then we can write
£(x,y) = x5 + xy% + R(x,y) with R¢ 44{; .

Put  Plx,y,t) = (1-t)f(x,y) + t(x3 +xy ) = x% + xy¥ 4+ (1- t)R(x,y)

Note that in the proof of 3.5 we employed the inclusion

J/(n < My <3F/3X1> ey ’5°<n>£,,,,1

to obtain the family {\1} in a neighbourhood of ty. In
fact, we only used the weaker inclusibn: ‘

ki1 : 2F, p}
J/{n s Mo < /3’(4""' %x“\>£n+1
and we shall now verify thisfor n=2, k=4). By Nakayama's
Lemma, it is sufficient to show that

ME e Mo < W%y 0 b My
Now, 3%.,( BF> <3x +y +(1—t)g(x,y) 3xy +(1~t)h(x,y)>f
5 3
where g = bBé'x , =, Bﬁy ‘and so )
Mz - ‘M)z%gz <3x3+xy3+(1-t)xg('x.y)-.3x2y+y4+’(1?£)yg(x.y),
3 , .

3x% 32 +(1-%)xh(x, 1) ,3xy°+(1 -t)yh(xiy)%

Hence we obtain the following ‘elements (mod ./u.s 80 thet we ignore
terms of degree » c) :
et y and 3x* v = hence x"‘,x y ;

&

3xy™ =~ hence xy";

3x% y+x - together with “xy"‘v this givés xsy.
y

Hence we huve obta\ined a. éenerating system of J‘{f with
the exception of y¥ . Now all terms of order 5 in o
(1-t)xn(x,y) are divisible by x and 8o can be removed
with the geneérutors that we already have. Hence we obtain
x2y*®  and this, together with 3x* y4+y, gi_.ves _y:.
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7.%. Corollary: Every germ fe&lly of codimension r 1is

right equ alent to x™2 and its universal unfolding is
given by
r
™ 4 g x by s+ N X .

Proof: Adapt the proof of 7.1 - corank 1.

-

7.4. Corollary: Every germ f é.l{z of codimension £ 7 1is
tight equivalent to one of the list of 7.1 (for n=2) or

one of the following germs:

codim £ universal unfolding

7 :’+x§ xz+x§+y1 x'l"'yzv)ér"' e +y1-x:

7 :xfxi+x: xﬁxz+x§+y1x1+yixk+y,x§+yqx§+y3x:+y5x§+y,x:

7 & x, =x] xixz—x§+yax1+y2xz+y}xj+yax§+ysx2+y¢x§+y?x:

7 +(x}+x3 £ (3 +XT) 4T Xy +Y, X Y5 Xg +Y, XG +Yg Xy XY (X, X]
+¥. X, X3 .

Proof: “onsult the proof of 7.1 with the further restriction
n=2. Tnpe first germ comes from corank 1, the next two from
corank 2 (case 2) and the last from case 3a).
We have shown that thé next gerﬁ in corank 2, case 3b) has
codimension 2>8. Thus it only remains to show that in
case 4 of corank 2, any germ has codimension > 8. This can be
done by decomposing
*r = (a,x+b,y)(a,x+b,y)(a,x+b,y) (&, x+by¥)

over and proceeding as in the proof of 7.1, corank 2.

It turns out that the germ with the lowest codimension is
right equivalent to (x®+y?)(x*+ ay?) (o #0,~1,1)

and that ol is an invariant under linear transformations.
This germ has codimension 8 and so for codimension >7, the
classification becomes infinite. The proof of this.fact is a
tedious.repetition of by now familiar techniques and is left
to the reader.
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7.5. e now examine the question of the number of Ly-orbits.
Ve shall be mainly interested in the orbits of germs f
wiich have codimension < 6 (and so are 8-determined by 4.2).
f is then equivalent to its ¥g-jet and ’

foly = (397 (33F.T8) Al .
We shall therefore be mainly interésted in the number of
L?,—or‘qits in J = jg(.l/(n) C JV? . .
a) Tne open subset 33(Yn)\ jT(MA ) 1is en orbit. For if
£€ MN\UE then £ is 1-determined (3.6) and so f A j'f.
j’?f is a linear form on R" and so is rizht equivaient
to x, say.
b) There are n+1 distinct orbits consisting of equivalence
classes of non degergute quadratic forms. They are immersive
submanifolds of codimension O 1in jq(J/{ ) (4.6) and so
have codimension n in J.
¢) ™M™he orbits of corank 1 and codimension & 6 - according
to 7.1 tuere are nine types: x3 +x1,x1 ,+x"1,x3,+xf. The remain-
ing (n-1) varieble are contained in non degenernte quadratic
forms. There are n possibilities and this gives a total
of Yn orbits whose codimensions can be read from the list
in 7.1 (add n ). ‘ . .
d) The orbits of corank 2 and . codimension 6. According
to 7.1 there are eleven tyves: x1'+x:,x: -x1x;,i(x’;x2+x;),x:xzj—_xf,
+(xf +x‘,‘:),_t(xfx2+x§),x§~+x1x§. As in b) one obtains 11(n-1)
orbits whose codimensions can be read from 7.1.
e) lhe remaining orbits w.r.t Lg,, in J are contained in
Zg = j?(Zq) since their elements have codimension 7 7.

7.6 We shall now decompose ‘E: , the set of all 8-jets of
germs of codimension 2 7 in%o finitely many disjoint

immersive submanifolds. As we have alyeady seen this cannot

be done using orbits (since there are infinitely many of
them), so we shall attempt to produce as simple a d.ecomposa.t;].on
as possible. Our aim is that each of these manifolds has
codimension (in J) higher than the maximal codimension
apvearing in 7.5.
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This is poséible only in the case that n = 2. In case n 2 3
there will : one type of manifolds with codimension n+6, and
we will be forced to add the' orbits of the germs of codimension
6 to this decomposition here to obtain a decomposition of
satisfying all requirements. This distinction in codimension

will be essential in §3.

a) First of all we consider the subset of 2: consisting
of. the 8-jets of germs with corank 1. By 6.14, every f
with corank 1. is right equivalent to

g(x,) + é £.x2.
1t j%g # d, then f is right equivalent to a germ in the ¢
list 7.1 - ‘hence j¥f& 2, Thus j%g = 0. The set of ng;
with corank 1 can then be decomposed into the n distinet
" orbits of non degerate quadratic forms in n-1 variables.
The tangent space of such an orbit has the form

5 (382 Ln = 1M, A (D))
by 2.12 and ,A(f) = (xz,xz, . ,xh>£ = Mg fn. Hence
| , :“K“'A(f) = Mo ‘/'f('M = .<x4x2,-- 1 Xy X s J’( 1>5n'
The codimension of the orbit in J is

“atn [5F (Mg /336l A (D)) = atm[Cn 2400 /(Mo - A CE)+ Ay M)

a1n [/ (M B () + 4L )]
dim[*"{n/( <x Xzy ===y Xy Xp )"Kn-1> +\/«°’ )—_]

and {14 AR W x1 ,x1 y -- ,x13 is a basis for the last space

[}

over 'R . Hence the codlmension is precisely n+7.
L) We now consider the subset of 2'4 consisting of 13—Jets
of germs with corank 2. Then for suoh an f

Tz, s - hx,) ~ g(x,‘,xz) + Z AL

with jzg. = 0. We consider the four cases investigated in the
proof of 7.1.

Case 1: a) and b) produce germs in list 7.1 and so j%t€ Z:p .
Cese 2: Since f€ Zg, j g~x1xz (k=3,4,5,6) - otherwise

we would produce a germ in the list. In particular, j g~ x‘:xz.
Consider the n-1 orbits in j‘(.l(h) generated by
xzxz + ZELx‘,.’ Then
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alies) = <2x1x2,x§,x3,---,xn> and so

€ -
M- DBGEE) = < uxif,x,x xg s Ay ’%h—z>g ’
The elements {x,, -- s Xy s X2 X, xz,xz,xf,u- x5¥ define a
basis for J‘{y‘/(/{/(h NG s6pY) 4 .4,( ) and so, just as in a),

eacn of these orbits has codimension n+7 ’in j‘(vb(n).
Now consiuer the canounical projection 'I'C'z : jg(.,ttn)—-—) j‘(Mn ).

For the preimages under TC% of these n-1 orbits in jX(Jin)
we have

(e (Gdxy + 3 )8 = ((Rrgr 2 exd) .28 x AT/
¢ 1%X2 & Exy )by = (Ixix, NEVXo L)X Mo/ Mon
and these preimages have the same codimension in j‘(ab("),
namely N+ F . These are the n-1 immersive submanifolds
in which we decompose the germs of case 2.
Case 3: jzg):/xi. Since f¢ Z:, we have j*g f‘:/x.‘s (otherwise
we produce a germ in the lis‘t).n Now consider the n-1 orbits -
generated by the germs x13 + 2 EXS in 3D

=3
A(3*) = <3x:,x3, "',xn)g and so

n

3 2 :

M- BCIEE) = gy, Mae Mz 78,
and the elements {x,(, -.-,x“,ﬁ,xi,xg,xg,yxz,x‘-,,xzz,x1x§}
define a basis for Ay /(M. DCGHE) + .,b(.,!). Hence ‘these
orbits have codimension n+7. Then we decompose the germs of

case 5 into the immersive submanifolds formed by the pre*mages

(T )((x’+$sgtxb).l.:) (x+Z£‘,x‘,)L>(-Mh/4(n

of these orbits. They have codimeneion n+7. - .
Case 4: j°g = 0. lHence 3 g X 5\9‘»’ Consider the: n—1 orbits

generated by the germs i ebxz :l-n J’(J,(") Then
L(FE) = L<X3,---',Ih>g = My, =nd s0
My L(§FL) = M J(..i. The elements
Sy s Xy 1 %4 % %2 237 433 X ,x1x§ 'Iz > '
define a basis for MV\/(MV\.A(JJf) + -4(“) Hence each of
these orbits has codimension n+7 in j ¥(My). Once again,

we decompose the germs of case 4 into the preimages, under
the projection 'Eg , of these n-1 orbits ~ they are immersive

submanifolds of codimension n+7.
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¢) We now consider the subset A € Zi consisting of the
elements ° corank > 3. This set is empty for n £ 2.
We claim that A is a finite disjoint union of immersive
submanifolds of codimension n+6, if- n; 3.
To see this let fe A, with j :t'c A,i.e. with corank > 3.
Then jzfe J* and j*f is a degenerate quadratic torm of rank
n -¢ (which mdy be zero). In the Li-orbit of j°f we may
find a qadratic form which 1ooks lika

q(x1,...,x ) = -x eeot
Its matrix is of the form ( .\* j

‘ 0 .
where the number of minus signs in the main diagonal is a

N -invari;ant of the or'bi.t.
Now let q' be near g in J., . Then the matrix of q' lookz like

A B
‘ (:Bt C), where A and C are symmetric and det A £ O.

Then ; A B) (A o) (A B)
: rank.q' = rank = rank -
o (3" c/ RS P L

-
= rank:(I At?q :)
"B A. B+c o
So rank q' = n~p = rank q iff C = ".B 'B. So to stay in the
same rank class one has to suppress the free choice for

. the entries in symmetric C, i.e. one has to suppress 2g(g+1)

variables. So the codimension of the orbit :l"i‘ . L" is

%;(gn) Thera are finitely many orbits in Jr.

e AP 8(My) ——> 3%(M,) denotes the canonical projection
"truncate" then A is the dis;loint union of the inverse
images under r of all the L ~orbits of gquadratic forms of
corank > 3 in ,‘(ﬂ,) '.L'nese have codimension

n + -r(g+1) 2 n+534 = n+6 in J"f#.)so the inverw images
have the same codimension in J.

7.5 For- la't:er referance we cdllect again ‘the dacompcsitions

of J =3 (JL.,) into immersive submanifolds, which we will use, .

If n = 1, then for any k the space jk(..u, ) consiste of
rini*bely many orbits .+ of codimension 4 nak-1 w X,
and Zx; = {0} ‘has codimension n+k = Led.
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If n = 2 then the open subset J\~2§is the disjoint uhion of.
the finitely many orbits of codimension < n+6 listed in 7.3.
Zi: decomposes into finitely many submanifolds of codimension
> n+7, listed in 7.4 a),b), since the set A of 7.4 ¢) is )
empty. ‘

If n > 3 then the open set J\~2: is the disjoint union of
the finitely many orbits of 8-je£s of germs of codimension

€ 5, which are immersive submanifolds of codimension < n+5.
Zif decomposes into the orbits of 8-jets of germs of '
codimension = 6 and into the finitely many immersive sub-
manifolds of oodihension.) n+6, listed in-7.4.

Remark: Mather has shown that an orbit like ours is indeed

a proper submanifold, since the group actions here are
algebraic actions of algebraic groups with special properties.
We will not need this result, we yill circumvent the arising .
difficulties in §9 with a simple trick (9.4). A proof of

the result may be found in Mather, ,Stability of C -mappings V,
Advances in Mathematics 4.
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§8. CATASTF "PHE GERMS: 2
8.1s Let ..,f') be a universal unfolding of f€ J{, and
let £' : B™_SB represent f'. Put

Lo ~s ~
- N v ... 2 ! _ .
CMpi= {(x,y) € R .w?’%(m(x,y) = = %x“(x,y) = 0}
Denote by b ¢ B —R the natural projection and put

. . r
Ky = \Mp P ME > R
Then O€EMy since f¢ J/(h .

XF' is deflned to be the germ [’Xp] of ’)(‘F", at 0
and is cahled the catagtrophe germ o;’ f'. vwe can regard
Xe! as mapping Mm into R"  where My is the
f F L
germ of a set. X? depends only on f', not on f'.

8.2. Lemma: If f 1is en element of My with codim £ = o,
then there exists a (standard) universal unfolding (e,£')
of f so that there is a dii‘feomorphiam from MF‘ onto IRC.
Proof: Since fe_J;(':‘\, A (f) s My, . “Choose a basis
fu,, -~ ,_.ucg of- My mod A (f) so that
W (x) = {xJ (1€jgn)
J a mon.omial ‘of degree > 2 otherwise.
. ) <
Then f£' : (x,y) —> £(x) + J‘% uj(x)y;
is a universal unfélding (6.12) and
oF =3 o
‘ x5x,y) %,(b(x) + oy, + J%ﬂ {(x)
Consider the smooth mapping Y = ({i Ny BR"X Ec-n —> R
where q’i : ('111,"' Xy Ty - ’Y(_)\-% "2%,(53) - Ja ny) BU%: (x).
Then Mp = i(x,y) P¥E “Y{, (X3 ¥y s =7 53 ) =1y ~,n}

and so is the graph of \‘J . The graph of a smooth mapping
is a manifold which is diffeomorphic to the domain of
definition, in this case 'R xﬁ‘c'“ RC .

n

8.3. Consider the situation of 6.13.3),1.e. f 1is u germ
in Jtn with universal unfolding f(x) + glx,y)
defined on R XIR and Q. is a non degenerate quadratic
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form in separate variables (xkn’ .- ,xn). Then the uhiversai
unfolding of f+q is f+q+tg.

Lemma: ’th ’)(g:”,-”b

Proof: Without loss of generality, we can assume that g
has the form  +x \z -—- +x" |
= (

+
,X)e lex!R“Kthen a simple calculation

If we write x
shows that

2_>_(gr__£;%+ ) (x,y) = é%ﬁ%)(x,y) (g 0);

Hence MF+
diagram:
) mr. Fr r
,Xh%xg ) Mﬁvsc————ﬁmt’r—__) ®
llZ -

Nerg c______>ah"———'-—> R

0 = 1@“ 9>/{0} and we have the following commutative

8.4. Lemma: Let (r,f') and (s,f'') be unfoldings of fE\Mi.
and let (&, CP.&) be a morphism from (s,f'') into (r,f').

Then Mea = (g ) _mnd  Xen 1s the pullback of X
with respect to (cp 4)) i.e. we have the following commut-
ative diagram: . ¢ :

Re“‘"s > ,.Bﬂi-r‘

V] Vl

]\IF“ - - - '> '\{

’XFN J/ -¢ l/
.B\S

Proof: f''(x,z) = f'((ff (x,z), a)(z)) + g(z),
where cp(x z) = (q) (x,2), cp(z)) Hence
PACOR <3¢g (x, z))(bfgx(cp(x 2) .
n
Jacobi matrix of
Now the latter matrix is reguler for z near O (since

Dc‘?(x,o) =Id ) eand so L



=Sl

- i
(x,2) € Hpn &= K (x,2) 20 (1=1,-+0)
| = bag) .(?(X,Z)) =0 (i:h-._)Y))
X,
& P (x,z)eHp

l.e. My = @"(MF{),
The equation Xc.ac‘:): Z),x‘:v follows by restricting the
equality TW,..$ = QoTg %o the appropriate germ of sets.

8.5. If g (R" ,pb)———-a( R",qv) are smooth germs (i=1,2),
we say that g, is equivalent to g, (written g1~ &)

1f there exist germs of difleomorphisms (b (R" ,94)—>(£R »Dy)
and \Y J (B :q,1) >(R :qz) S0 that q/o 81 = J&‘¢

. (there will be no confusion with the equivalence used in §2).
This is the equivalence relation used in §0.  Strictly
speaxing, we cannot apply it to X and  Xpv since M
and ¥, need.not be manifolds. We shall therefore call
the two germs ')(;. and XF“ , defined on the germs MF‘

and  Mp, eguivalent if one can extend them to germs on

open neighbourhoods in R and - R"™ s so that they are
smooth and equivalent in the above sense, using a ¢

which restricté f.:o'a bijec‘tion from MF| onto MF“’

Corollary: ) If fe MZ anda (§,b,e) : (r,£1)—>(r, £
is an. ismnorphi.m between nufoldings of f,then ’)(p NXF“ ?
(in the sense of 8.5);

b) 1if (r,f') and (r,f'') are versal unfoldings of T,
then K~ N s

e)” if (r,f'), (s,f'') are versal unfoldings of f with
r<s, then. XF“ ~ XF' X Id Bs.r,

d) if f,5¢€ Mdn and £fX g (i.e. f 1is right equivalent
'to g in'the sense of 2.4) and if (r,f!) and (r,g')

are versal unfoldings of f end g resp., then ')( t~ 9(
Proof: a)' See 8.4 ( ¢ and (b provide the diffeomorp isma
and T, , W the extensions). : K '
b) By 6.12 (r,f') and (r,f'') are isomorphic ~ now use a).
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c¢) Let (s,f') be the trivial extension of f'. Then (s,£")
is also versal (because-there is a morphism from (z,f') into
(s,£') = cf. 6.11 or 6.12.¢)). By b), (s,f')~ (s5,£'")

and we have the following diagram:

. S-r
I-EF“ —_— I\I(S';\) = I'IF‘ X R
Kgn \ Aol : L Xpxidgey
v s R x®*" '
d) Suppose that f = g ( T). Put £'' 1= glo(y X Id o).

Then I''lgnxgey = 8'lEaygpy= S0y = f
end so (r,f'') is an unfolding of f. The following

diagram provides an equivalence between ~v, and ’)< “ s .
. XX\d, My 3 v
er > B e
Ul v\

Mgy - T oe> N
X x%'l
R 8"

i , ‘

Now  (r,f'') 1is versal and so by b) Xp~Xyp -~ hence 'X;,r\fx‘:,‘wxg.i |
(Proof tnat (xr,f'') is versal : let (s,f''') be an

untfoldiny of f. Then (s,g''') 1is an unfolding of g

where g''' := £ o (Y 'x 14 s). Hence there is a morphism
(q>',¢,6) : (s,g""")—>(r,g" ). Then

oy x Tagn) o bo (Y™ x 1o, ,6)

is a morphism from (s,f''') into (r,f'')).

8.7. Theorem: If rej(f\' and x‘;x i1s the cati.strophe germ

of a universal unfolding ¢f f then, up to equivalence in the
sense of 8.5 and the addition of independent'variable as i .
the proof of 8.6¢)7¥pdepends only on the right equivalenc: ,
class of f. In uddition, ')(?. is; independent of the s .gn

of f and of the addition of a non degenerate quadratic ,

form in new variables.: Hence we can write XF’ (instead of,

LGRE T '



Proof: 3.6 :d 3.3. For the statement about the sign of ¢
note that lu._Fl = MF) and so /Xcl = x_Fl o

8.8. Theorem: If codim f < 6, then there are precisely 14
distinct catastrophegerms (which urise from the universal
unfoldings listed in §7) up to equivalence and the addition of
new variables,

These are called the elementary catastrophes.

§9. GLOBALISATION:
3.1. The Jnituey toyology: Denote by_ G“(Rm,'.R) (reup.
ck (R™R )) the space of smooth functions from g™ into R
(resp. the space of k-times continuously differentinble
_ functions). TIf fé€ c®, the function JRf : R™-.— J&

is defined by jRfQ= FRIFC=x)] where J& 13 the space of

polynomials of degree < k in m varizbles. Ve vrovide

the latter with a norm I || (e.g. the {”-norm on the

coefficients.). For every strictly positive continuous function °
€ : RO>R  and every rgk we put ‘

Vg 1= {fe_ck(ﬁ";ﬁ;') : I!J\,‘f(X)}ME(’&) for XER'".‘}

If € runs through the family of all such functions and

r thrqugh the family of integers less than k then we

obtain a2 zero neighbourhood busis of a 2roup topology on (w2 ,R)-

the Whitney CR-topology. Similarly, if we let r run

through the positive intezers we obtain a topology on C®(&™,R)

the Whitney Cao—topology. CA0 and c‘@ are topoloygical

rings but not topological vector spaces since scualar mult-

iplication is not continuous in the scalar variable (see the

next Leuma).

N .

9.2, Lenma: ILet (£,) Ube 2 sequence in c™, fec™. Then
£, converges to f in the Whitney topology if and only 1if
there is a comoact subset X of W™ so that fy, = £
outside of X with the exception of at most finitely mdny
n's end £f,—> £ uniformly on X together with all ite
derivatives. A similar statements holds for the ﬂk'-topology.
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Proof: Hince the topology is, by definition, translation-
invariant, we can assume that f£=0.
Sutfficiency: suppose that such a X exists and let VE’ be
s neignbourhood of zero. Then §&,:= inf ¢€(x) > 0. . We can-
choose NEWN  so that e

svp, I e ()N < & | and, f|gmy = 0
for nyN. Tnen f,€ V:' for n>d. Hence £, —0.
Necessity: suppose that f,—> 0. Then £, and its derivatives
converge uniformly to zero (choose a constant function § ).
Hence it suffices to show the existence of a X with the
required property with respecf to tne supports of the {fn":.
If no such X exists, then we could find a sequence (x,)
in Bwthixate and a subsequence (f,) so that \fp (x.)1>0..

.
Choose E: R >Ry continuous with - a(xr) < \fv‘,.(xr)\ .

Then the suusequence lies outside 6f the neighououriood

.VO

t of zero - contradiction.

9.3. Proposition: C%°( B™ , R ) is a Baire space in the
Whitney Cw-topology.

Proof: We must show that a countable intersection of open,
dense subsets is dense. Let. U(,U,\,--- be a sequence
of open, dense subsets and let V be an open neighbournood
of fECc™( Gfm,,R ). We have to show that V N (iUJ’# 43 .
By translating, we can assume that £=0. Given szo and
continuous €& : BR™—>R, (strictly positive!) let ‘
Ve = fgecc®( B B ) hife(0)l s £CIT-

=k
There exist k,, & such that V:: € V., <SV. We claim

that there exist sequences (£j) in C™( 8™ ,'R), (k)
(of pesitive integers) amnd (&,) so that for each i the
following hold: Lot ks |

(ai) : £ evg O JQ (£+v)) Nz

e =k

(Bi) : £ +.V6; SU;s | » X

(C1) : WL (x) - j*f; ,(x)\ s 2 (17 1).
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We proceed by induction: since U, is dense we may find
f,€ Vtk N U1 Since U, is open, there exist k,, &,
with £, +V * < U~ . Hence A1 and Bt hold.

Having constructed the data for J= 1, -,1-1 we check first
that f”ev 2N ﬂ(f +Vg -’) n(f,. 1+V ,) and so this set

is open and non empty. Hence there is an
£, € v n ﬂ(f V) A(£.4¥5) T,

since U, 1is dense. Clearly f, satisfies Al and Ci.
Since U, is open we can find k  and & with

£,4¥ ¢ U,. So Bi holds. .

The ;equence (i‘J‘) converges uniformly in all derivatives
on &" and so g=lim f, exists (but it need not

' J

- | | k
converge in the Whitney topology) and, of course, *g = l!sm It

"
uniformly - hence g€C™( B ,R ).

ks )

Each f€ Vg by (A) and so ge:\'fio (by pointwise

conv.ergencs!). Then' f) e(fl;+v,:") for all j>1i and
so g€ fb*vi‘% < U, by (B) Hence
ge?ie‘:- n nud < v ﬂU . g.e.d.
o= Jo1 Y

9.4. Let X be a smooth manifold, Y<X an immersive
submanifold,i.e. Y 1s a manifold and the injection
1:Y¥—>X is an immersion (but not necessdrily a
homeomorphism into) Then Y has the following property:
each point y€Y has an open neighbourhood Uy (in Y)
which is a proper submanifold of X (take i(Vy) where V7
is a compact'neignbourhood of y in Y so that i]V
ig a homeomorphism into. Then Uy = 1(V;) has the ezcated
property). .

If, conversely, Y X 1is a subset and, for each ye&Y,
. there is a subset Uyc¥ (jEUy) such that U, 1is a,
‘proper submanifold of X of constant dimension for each. y,
then Y is an immersed subménifold of X. Por we car; provide
Y with a manifold structure by pasting ;toéether the -~ U),fs

via tbe transition mappings Id : Uyn"Uy. —> Uy 0 T,



Then it is clear that the injection i : ¥—>X 4is an .immer- .
sion and the topology of Y 1s, in general, finer than that
induced by X since the 'Uy's are now open in Y. The
immersive submanifold is clearly uniquely determined by

this property.

9.5. Lemma: Let X,Y he smooth manifolds with W a proper
submanifold of Y. Let f : X—>Y be a smooth map and
x€ X be sucn that f£(x)¢W and £ AW at x. Then there
exists a neighbourhood N of x in: X ‘such wa on.N.
Proaf: There is an’ open neighbourhood V of f(x) in Y.
and a submersion T : V—> R*¥VY guen that Vaw = T 0).
The fact that £ M W at x is easily seen to be eqﬁivalent‘
to W, f being a submersion at x, i.e. in some local chart
about x in X, the Jacobi matrix of T L has maximal
rank at x. But then this is true on a neighbourhood of x
so that £ M W on this neighbourhood.

9.6. Lemma: Let X,Y be smoéth manifolds with W '.a proper
submanifold of Y. Let f : X—Y ©be a smooth map'and. . .
assume that £ AW on X. Then f 1(W) is a proper submani—
fold of X. .
Proof: It suffices ‘to show that for every point xef (W),

there is an open neighbourhood’ 'U of ¥ in X so that

Unf'(W) 1is & submanifold. Let V and T  he as in the

proof of 9.5. Then TW-'(0) = VAW and . W.f is a sub-
mersion on f '(VnW) (cf. 9.5). Now (T, f)"‘(o) = f“(V)nf’(W),

and so £(V) n£(W) is a submanifold of £(V). Take
U=f (v)

)
3

9.7. Lemma: '-Let’.X;B,Y . be smooth'manifolds, with W & proper
submanifold'of Y. 'Let '§': B —>-C%(X,Y) " be a"mapping A
such that the mapping’ 4) '-xXxB-'—*—) Y, given by
= $(x,0)" = J(b) (%) St e
is smooth ana i B W." Then the ee't A e e
v o fpe B J(b) ?ﬁw‘} Frsiion Lo E

is dense in B.
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Proof: Let Wy i= $lw) ¢ xxB. By 9.6 Wy iea
proper submanifod of XXB. Let T = W¢ —3> B Dbe the
-regtriction to W¢ of the projection XX B —>B. We claim
that if * is a regular value for T (i.e. either
b & © (W¢) of b€ T (W‘b) and T 18 a submersi~m on
wx4(v)), then .j(b) A W. Then by the theorem of Sard (ef.
[4), §II.1 or [2]) the set of regular values is dense in B
and so we are done. Thus let b be regular for T . If
dim Wy< dim B, then J(®)(X)AW = d . If x€X with
(x,b) € Wy, then W(x,b) = b but T cannot be submersive
at” (x,b). Hence b 1is not regular. -In this case Jv) A w.

Suppose that dim Wy » dim B. Take x€&X. If (x,b)&Wy,
then J(b)(x)¢W and so j(p) W at x. Taus we can
assume that {x,b) EW@. Since TW(x,b) = b and T 1is
gsubmersive at (x,b) we have that.

(fr."‘: )(x,h) Ty = TpB

8e T (XX B) = Ty We + oy (X xT03).

Now apply (T‘P)(xb
(Tcp)(w T(,(U(XXB) = ('.rcp)m) T(xuw¢ + (73(0)), T

‘ < Tyipg W + (Tj(b)),xfl‘xx.
By hypothesis we have ¢ MW and so

o) T = Tap + (T Dk Ty (XX B)
and so -QKNGQY = wa@qw + (Tj(b))xT%x)
i.e. j(v) AW at x.

9.8 Put J = 3°(M,) ¢ Jfand denote by P = §Q;3 the partition
of J in the finite collection of immersive submenifolds as
explained in 7.5. Remember that there are two groups of
immersive submanifolds, divided up differently according to
the cases n = 2 and n 2 3. One group consists of orbits alone
all of which have codimension € n+5 oxr n+6 respectively.

The other is a mixed collection, but all members have codimen~
sion > n+6 = 8 or n+7 respectively.

The case n = 1 is special. Here the theorem of §O is true for
any r and the following proofs may easily be adapted. We will
not comment on this case any more.
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9.9. If f€ C“(R\nw, R ) we denote by 311‘ the mapping
from R™ into i¥(Mn) defined by.:

Felxy) = :!"( [x —=> T(xx',y) - f(x,y)]d S

= the Taylor expansmn of f(. ,y) in g
of order 3 w1tnout r-onsta.nt term. ‘

3
Note that ,[aqf]@’o] = Jj [yloo) in the ‘sense of 6. 6

9.10. If X< @™ eand W is an im:nersive submif'old Pf
Jd, W'€J, then put . “ .

sz( = {fec®@™, R ) ¢ TRV at eech
‘ x€x nc31 f)‘1 @t

t o nHY s
We denote 5’3};— by 5‘: . and .?R ‘}W ..
If €>0 is a constant, let .
12 . o o ..
Vo, = {g€C® (&Y, R ) ' Wafa(yi<e  for yexf:

Then this is a neighbourhood of zero since it conteins Vi .
9.11. Lemma: Let W be an immer“;.ive submanifold of J,
X< B™" be compact and W'< W be a coinpé.ct subset (so that

V)N"

W! 1is compact in J also) ‘Then 3’ is open in" €*°®R™, R).
Proof: Choose f in é‘ww and x in X. Then either
:!‘B f(x)§ W' or j‘f(x)€ W' end the matrix .
[T(J‘f) : N
has rank dim J = (n'éa y - 1, where B is a matrix whose

columns form a basis of ﬂ{)§;(x,w. Since W' is closed,.

the above statement continues to hold for all x'€U,n X where
U, 1s a neighbourhood of x and all £ cc® (g™ r)

so that jif'(x ) is near to jff(x') for each x'€ U NX,
i.e. for each f'€f + \/E‘ . for some comstant  £,>0

(ef. 9.5). Cover X by finitely many Uy - If & 1is the
minimum of the E.,(J. then f + Yz,( g ;v w

9.12. Proposition: Let W be an. immersive submanifold'
of J. Then F, = {€c®(r™, B) -‘jgfmw_g is
a residual subset of C®(®™, R ).

1 o
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Proof: We have to show that 4, can be represented as a
countable 1. .ersection ‘of open dense subsets. Choose a

cover of W by open (in W), relatively compact subsets ﬁlb}

as in 9.4. We can find a countable cover. Then each I cw

16 compact. Next choose a countable cover {X-- of a""'

by compact sets. Then 3w = (\é' a.nd by 9.11, each JVJW
is open. It remains to show thet eac‘fx 7% 7, is dense. To '
simplify the notation, we write X for XJ and W' for W_.
We shall show that we can approximate an arbitrary f¢ C®

by functions in 4, . Take J = j3i, and consider it

as a space .of polyn:)mial functions on R™" ,» independent of

the second.variable and vanishing at 0. Let o be a

. * _function on B"”’ with compact support and ol = 1

on a neighbournood U of .X in R™" . PFor bEJ, let

- f+dh be the function

(£+ w2 b) (x,y) = £(x,y) + a(x,y)b(x), (x,y)e™".
If &, =0 in J (i.e. the coefficients of b, converge
to zero), then f+db, ~>f in C®(B™ ,R ) by 9.2.
Now let ¢ : UXJ —> J Dbe the mapping

(x,y.0) +—> J3(£+ot b) (x,y) = 3F(£+0) (x,¥)

= jjf(x.y) + 3¥u(x)
and let j : J—> C*®(U,J) be the mapping

b 33(£40) (20 7).

If ]l'.‘ is a relatively compact open neighbourhood of W'
in W, them W'' is a proper submanifold of J (cf. 9.4).
Ve claim that M W For

39(f+b)(x,y) j}f(x,y) + J?b(x)
and, for fixed x, b\—-—-—)jfb(x) is just the mapping of b
onto its Taylor expansion at x without constant term.
This mapping has an inverse (nemely, the mapping e, c@!) ,
for c€J) and so for any (x,y) € @™ the mapping

b+—> & (x,y,b) = j1f(x,y) + ,j,.b(x)

ies a diffeomorphism from J onto itself. Thus
$: 1xs—7
is a submersion and so clearly transversal to W'' im J.
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The con@itions of 9.7 are then fulfilled and we conclude
that the set JBEJ :.j(b) = j$(£+0) § W' on U}

is dense in B. Then we can find a sequence (b ) in B
converging to O. Hence f+qob —>f 1in C“(B‘*"‘. 8)
and j?(f-ﬁdhn)a.\'W" on U, ie. I+olb, € Jr’ QJ\:; .

9.13. We would like to show that F = Q:?Q ’ which
i3 a residual subset of C®(R™", R) by 96'.12,15, in fact,
open. -.’7"& is not open in general (since Q 1is an immersive

submanifold). Thus we have to choose another approach:

Let 3, = § e CNETLR) : 2@ )0 5'= § in case n = 2,

i= [ £eCO(@®™T,R) : L@ T)aZi= $3 in case n » 3.
Since each Q®= P with Q ¢ Z" (6,7 according to the two cases
n=2o0orn2 3; we will stick to this notation from now on)
has codimension? n + 5,6 in J, a mapping from &%*F into J
(for r € 5,6) which meets ?_“, can never be transversal to all
of the Q's in P. Thus 3s 3, . This argument can easily be adapted
to the case n = 1, r arbitrary.
meoey.
Proof: Take f in f . Por xe g™ j‘:r(x)q_}iﬁ . and .

9.14. Lemma: %, 1is open in C° (R

since Z"; is closed in J (4.4) we have
£(x) := tnf {13feCx)-bl : be Z4] > o.
"y -
The mapping £: B *"’-\R thus defined is strictly positive
and continuous (since it has the form ’ '
¥
g(x) = a(3le(x), 3gq) )
But then £ + Vé is clerarly a neighbourhood of £ which

is contained in 51 . i

9.15. Now put J, := J\Z; which is open in J and
R = fe€r : Q¢ 5}. Then P consists of the 21n-9 orbits
listed in 9.8a). The following is the key Lemma for the

openness property and uses heavily a special property of
the decomposition P1 which is normally subsumed under the
name of stratification. Since we vun wse it directly, we will
not dwell on the definitions.
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Lemma: Let' fe ¥ , xc Rmr, jg,‘f(x)ng for some QPR .
Then if j M Q, at -x, therc is a neighbourhood U, of x
tn. B™" a neighbourhood 'V of. £ in F auch that
teV.
Jff K'-\QJ on U, for all. Q €B; and each f'e
Proof: jif §Q, at x implies that
! _: . '
tr(T4) = Taeg(9) = Im (TOHHE)) + TyfpeQu +
Now let: @ = J X.L} —>J, e the mapping Q(z,cb) = 2.9,
j.e. the action inducéd on J, by Lfl. Now if =z €dJd,, then
7,(2.18).= In (T(Q (2,:)) ), Tet a(JFf)(x) and d(@(z,.))(e)
be matrix representatipns of T(jgf) and T(Q (%,. ))
for some coordinates. 'Then the column vectors of

d(31f) genez:ate -Im (’_T‘(‘;]1 £), )} and those of d(g (z,.))(e)
generate T;(z. A n) likewise. So, hy assupption, the mutrix

feGin G 1 ate (g 2(x),0)(e)]

has maxlmal ran.k, namely dim J1 =dim J = (n+8) 1.
The mapping ;

(rmu¢y—»@ukwuwmw<hruw“x¢ﬂ
is continuous on 31><R ™ X Lg . asince (jsf' Mx")
depends continuously on ,x.j‘-’\ff : BMM—y er . Thus the
matrix ) ‘ o
faGafe =) 1 ate (aF27(x), ()]
has maximal rank if x' 4s near x in E?qw, say x'eU,
a compact neighbourhood of x, and <}> is near e in If,

say $ €W, a neighbourhood of e in Lﬁ,, and if
d(jﬁf’)(x') is near d(;] £)(x') for all x €U,, say

£re(f + V) ) 0 &'4 where £>0 is a constant aad the
notation is from 9.10. But this means that jvi" ;F\QJ
on U, forall Q;¢P; and all f£'&(f+ V) D0 F =V
9.16. Proposition: If n =1 for all v, if n = 2 for rsé if n3 3'

for r&5 the set ¥ is open in C° R™T, R).
Proof: Let X < 8™ he compact. We show first that

X, . .
£ ={ted BB om xrwau Qe Rf
X
is open. Choose £ in: 5‘1 . If x€X then 3.1 £(x) (QJ
for some j ao, by 9. 15 there is a neighbourhood U of
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e

x in R and a neighbourhood (f + vau Yynd o of £
(see the proof of 9.15) so that £' M Q, " on U, for all
Q P and all f'e(f + VE, Un n F . Cover X by finitely
many {ka} of the Uy's and let ¢ = min 5’()& Then

(f+V )r\ﬂ ;x

oo i

Now let X =~ U X, be a disjoint union of compact subsets
of ®'" and suppose that the X;'s have pairwise disjoint
neighbourhoods {Y,}. We claim 'th'at - #* {s ‘again -open.
For let 8. rROTT— R be. smooth functiqns with

0 <Q\ 8.=1 on X  end %L =0 "off Y, for each

i. Now if fe 31 , then f£€ Jx“ for each i and so
by the first part of the proof there i$¢ a constant: ¢ >0

so that (f + Vibx ) 0 g, <4 Tet
}«,:=1-2$+2&§~ '

Then }.o is strictly positive and if. xé_x then J\,.L(;:c) =

Hence (f+V'~)r\5’C (\(f+vf_,()né’c 2X. ,\;r.;‘

= v,.

We can now prove that g’l _is open in 51 . For we can

choose subsets X,X' of R&R™C with the above property

so that XUuX' =R"™" (e. g -
X := U ixe RN em- — \\ x\\ N 2m+ %}
X':=-' ix € R’“r 3 2m+%s,\$x\\ < 2m+%}

Then # J N ; and so is open.

9.17 Theorem: If n=1 and r is arbitrary, or ns2 and r<#6, or
ny 3 and r £ 5, they the open dense subset )

4 = {fe ETR) RERQ for all Qq in 23}
has the following property if fesd , then Mg ‘{5 2 manifold
(notation from §8 or §0) and each singularity of X, is

equivalent to an elementary cat‘astropﬁhe.
i

i

Proof: Choose f in F . Then Jff A js(J/f}) -in

J = g(J,{,n) For j (v%f\ ) is a linear subspace of J and
if x € g"" with :jg £(x) (_j"’(-’/,\ ), J,f(x) € Q for some
QEP, Q¢ :1“( MEY. Then J1f ?F\ Q at x° that is

PR

v,
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Ty d = IR 2D, + Tkl )
: ¢ 1m T 0), + T preati)
. and 8o Jif A Jg(’«l/(,,,) at x.

By 9.6 (jff)q(:}’(’«uﬁ)) is a submanifold of &™" of
codimension n since js('v{/f,ﬁ) has codimension n.

Now (507353 = (e 8™ ¢ ety €3® ML ]
- T(x,5) € 8" s 3U[x' > £(x"4x,¥)~2(x,3)], ) = OF
{x,y) e &™": zii;,‘,‘(x..v)'.-t ---= ?g(n(x.y) =0}

M. .
N

~ 0 "

1

H,enc'e i; is a submanifold of & of dimension r.

Let 9(; : M; —->a' be the restriction of the projection
“from 8" onto B" . Suppose that . hee a singularity
at (x,y)EH; and suppose w.l.o0.g. that (x,y) = (0,0).

Iet f := fl. Then [:‘.] ME  since (0,0) €M

ot T = Tlgngg Then LT €M ' -

£#1e], = [j}f]@o) A (*0.1% in 7 eince fed  and

’ A
so [f], 1s an B8-transversal unfolding of [_t:\o (of. 6.6).
Thus by 6.7 . Ty
My = DCUEL) + Vg o+ M

. A ’ 3 .

and so  dim (M,/ A( [f]o) + My ) < dim V‘UJ(OP’sr< 6.
Then T (j’tfl) < 6 (see the proof of 4.4) and so

. IS ’ L y
- .codim [f) = T(J'[£)) s6 (4.4)
which imphes that
L) LY
. 4ot [£] < codin tl, +2 < 8 (4.2),
i.e. [£] 1is B8-determined and ()., 18 an &-trdns-
A )
versal unfolding of [f], . Then (x, [:t](")) is amuniversal

unfolding o [£], vy 6.11. By 8.7, resp. 8.8, we conclude
_that [‘X;]o = xcﬂ(t,;) is equivalent to an elementary

catastrophe.

9.18 Theorem: Under the assumptions of theorem 9,17 for any
f€3 the mapping Xf is locally stable on Mr.
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(We say that K¢ 1s locally stable at ('xo,yo)gMF if the
following holds: if N - is a neighbourhood of (x,,y,) in g™
then there is a neighbourhood V of f in % such that
for each g€V there exists an (x ,y4)€NF\M with

0% Toamy ~ DX ey

in the sense of 8.5. Since My and My are manifolds, we can
express the notion of equivalence of 8. g in a simpler way:
there exist germs of diffeomorphisms

¢ : (M;.(Io.y° ))—_—"} (M{’v(x1 !YA‘))
Y:(8",y,) ——> (8 ,y,).
so that "‘/‘ [X‘:](ﬁ(a‘m) = [X{:\(’(L‘/‘) ° ?)Lc
¢, Do 1y
Balepe
Proof: Let (xo,yo)C_M; . f l°:= $ f(xo,yb)eJ and N
8""

is a neighbourhood of (x,,y.7 in
jffx(ao.ﬂ.‘) at  (x4,¥,)

since f € F . Let c¢ = codim %.La in J ( € n+€). Then

there exlsts a c-dimensional affine subspace C through -

(X0)¥0) im E™ such that for D = CAN " we have

11 ] 4}

pE P 2,.L, and thus [311'\],]@.7‘) is a germ of an

then

enbedding. There exists an open subset D,¢ D, (xy,¥,) €Dy,
such that 31:(1)1) 0 (z,.1¥) 1is & one-point set. If g is

near enough to f in J , then jg(D1)n(zo.L€,) is -
still anone-point set. and j‘ g}b ;ﬁ (2,.1%) on D..

let Va3 be a neighbourhood of f such that each
gEV has this property. Then for g€V we have

3,\ g‘} 1}-\ (z.o.L ) om Dy and there exists (1:1 1¥4) €Dy
such that j,‘g(x1,y1)=‘x1 e;],‘g(D )q(zo.L ). Hence there
exists &€& LY such that z1=n°.¢‘ . Let

£,(x,y) = £(x,+X,¥,+y) - £(x,,¥,) ,

31(x,y) = g(xy+x,¥,+Yy) —é(x1,y )y
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so that  f,.g, . : (R™,0) —-——>( R",0) and

zo = JS(f \ {o})’ z“ ') f“h \i_,)

Now jzf‘, 43‘?1};‘.(a translation) and so FF J (f,,]R ny

and (r, Yf.:\cm) is an 8-traunsversal uni‘o]ding of Lfd&? u,‘;lo,

Since, rg 6. we may check as in the proof of 9.17 that

(r, [fo](oo}) is anunlversa.l unfolding of [f"h&“x a{_‘ and that
[f"llR"xi 1 is B8-determined, so that [f"‘ﬁutvx] is right-
equ:.vafent to its  8-jet z.c. Likewise 8, and %,. Now by
construction z,,~z and so

[£o lﬁ i-)] ~ zbwz f\J le4] R *151-]
and (r, [£.]q,), (T, [31](03}) are universal unfoldings.
H by 8.6(d J
ence by (d) we may conclude that X[FQ rX[gJ )

e Il ~ Xora, ~ Xgae ™ [Xg Loy, 2
where the first equivalence is given by translation by
~(x4,¥,) in ‘@™ and by -yo in R" and the last
equlvalence is given by translating by - --(Jc1 ,y,') in R
and by -y, 1in R, ,
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§10 CATASTROPHES ON FOLIATED MANiFOLDS

10.1 Let M be a manifold, smooth without boundary. Our first aim is
to treat the Whitney-c ~topology (sometimes also called fine topolagy) .
on C® (M), the algebra of smooth functions on M. Forthat we have to

treat the jet bundles .J (M,;R) over M.
1
Definition: A k-jet of functions on M is an equivalence class [f ,x]

k
of pairs (f,x) where fe C® (M) and xe M. The equivalence relation is .

the following: [f,x], = [g,y], if x =y and f, g have the same
Taylor expansion at 0 in some (hence any) chart of M centered at Xe

A coordinate free version: [f, x] = [g,y]k if x =y and ® f ‘[kgx ,
where T‘< is the k-tlmes 1terated tangent bundle functor.

We write [f,x], = * =3 ke(x) and call it the k-jet of f at x.

The set of all k—,jeta is called J¥ (M,R)

10.2. Now let M = U be an open subset of R"™. Then the k-jet at xeU of
any function fe c® (U) has a canonical representative, the Taylor-
polynomial of f at x of order k :

(FGI(E) = F(x) + df(x)t + FrafPO0E,E) + e+ rd¥eGoLk,
So we have Jk(U,R) = U><J s where Jk is the space of k-jets at-0 of C®-
functions on R™, treated in §1. Each J ke U-ka(U,R) is a section of
the triviel vector bundle Jk(U,ﬁ) over U. '
Now let g: U—U' be a diffeomorphism between open subsets of Rm.
Then for each”x €U the k-jet j¥g(x) is an invertible polynomisl
mapping from 0R™,x) to R™,g(x)), and truncated composition with jkg(x)
from the right hand side gives a linear isomorphism (even an algebra
isomorphism, see §1) from J;(x)(l.l',ﬁ) to .J‘:((U,R); where J:(U,R), =
is the space of all jets with source y. In detail:

jkt'(g(x))'----'> jkf(g(x))'jkg(x) jk(fo g)(x).
This gives a fibrewxse linept (even fibrewioe algobra-homomrphic)
diffeomorphism X (gR): XK (u',R) — 3 (UR).

10.3. Now let M be again & manifold of dimension m. Let (U,u) be a chart,
i.e. u: U—>u(U)¢R™ is a diffeomorphism from an open set U in M onto
an open subset of R". .

For each k-jet © € x (H,R) with source x = «(¥)€EU , i.os & =] f(x)
for some f, and o * (M,R)—> M is the source pro,jection we apoot#itg
e v H)Y € FLUIR) to & .
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: - k k k
This is a bijective mapping Fw l,R): J U(M,JR) = J°(U,R) ~2J (u(U) ,R)

= u(U)xJ . All these mappings together for an atlas of M give an
atlas of J (M,R) By 10.2 the chart—changa mappings are smooth and so
J (IVI,IR) is a smooth manifold, of: b (M,R) —» M is a smooth vector bundle

projection (even an algebra bundle projection).

10.4 The Whitney-C® -topology on C® (M):is given by taking all sets
of the form U(k,V) = §FeC® (M: ¥F(M eV}, V an open set in J*MR),
~as a basis for the topology. It is easy to see that this is actually a
basis of a topology. To prove that this topology is a Baire space we have

to make the following constuction.

10.5. Let X, Y be arbitrary topological spaces. Let C(X,Y) buo the spuce
of all continuous functions X—Y. The graph topology on C(X,Y) is given
in the following way: Let feC(X,Y), and T‘ = {(x,f(x)). xcxz ¢ X<y
be the graph of f. Let W be an open nelghbourhood of Pf in X»Y. Than
let N(F,W) = §geC(XY): [ cWd , and take the Filter N(f,W), W open
in XxY and containing T} £ as a base for the neighbourhoods of f in C(X,Y).
If X is paracompact and Y is a metric space with metric d then the gruph
topology on C(X,Y) has a base consisting of all sets of the form

N(F,e) = §geC(X,Y): d(F(x),g(x)) <&(x) for all x in X §, where

- §: X =R runs through all continuous strictly positive functions on X.
Still another definition: A subset of C(X,Y) is called uniformly closed
with respect to the metric d on Y, if it contains the limit of each

uniformly convergent sequence in it. Any subset which is closed in the
topology of pointwise convergence, is uniformly closed, as is a subset
which is closed in the compact open tapology.

Lemma: Let X be paracompact and let Y be a complete metric space. Then
any uniformly closed subset Q of C(X,Y) is a Baire space in the
graph topology. .

Proof: Let (A ) be sequence of subsets of Q which are open and dense in

the graph topology Let U be a non empty open set in Q.

We have to show that UnﬂA £ 8.

The set A Nu is open and not empty, so there is some f‘ € A NnuU

and some 5 €C(X,(0,1)) such that QnN(f 25 )¢ A nu , whara

N(f 1E) = Egec(x Y): d(f (x),g(x)) E (x) for all x in X;
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By recursion we get sequences (F ) in Q, (€ ) in C(X,(0,1)) such that
£ <&, /2 and Q(\N(Fn+1,ZEn+l) S Al O N(fn,g ) for all n,
Then we have d(f 1), F () < 277, therefore (f_) is uniformly
convergent on X and fi= lJ.m f‘n is in Q since Q is uniformly closed

with respect to d. Also d(t‘(x),f x) € = £,(x) € £ (x) & 7%= 26 (x).
- k3n " k30 n:
So feN(f ,26 )0 Q 5 A nN(F ,5 ), fep for each n.

Also f‘eN(f 2£ YaQ sA nU, thus ernﬂA .

10.6 Theorem: C® (M) is a Baire space in the Whitney-C® ~topology.

Proof: Let JP (MR) be the projective limit of the sequence

oJ (M,R)Q-—Jk+l(M,lR)<-—Jk+2(M,lR)<" <.+ , where the maps are the
canonical truncations. Each .] (M,R) is a manifold, so it is complete
metrizable, so J* (MJR) is a closed subset of TTJk(M,R) and is thus
also complete metrizable.

tet j%: c® (M) —> c(M,3® (MR)) be the obvmus mapping. Then j%
injective (since truncation at order 0 of J @ ¢ gives back f),.and the
image is closed in the compact open topology (which induces on C® (M)
the topology of uniform convergence on compact subsets, in each derivative
separately, making it into s complete locally convex vector space).

So the image of jm is uniformly closed und by the lesmma it is a Baire
space in the induced topology. Also the image is contained in the |
subspace of all continunus sections of the topological) vector bundle
e (M,R) —>M, where the graph topology coincides with the topology
given by the base U(s,V) = fs' 2 8'(X)& V§ , V open in J® (M,R).

By well known propertiee of the topological projective limit, this last
topology induces the Whitney—Cm-topoldgy on % (M).

10.7. Let M be a manifold of dimension n+r. A foliation F of codimension
r on M is given by a distinéuished atlas on M, an atlas consisting of
distinguished charts (U,u). These cherts ere maps u: U-—>R">aR",

u(U) = Qy% Q,, a product of two open cubes in R", R", respectively.
For any two distinguished charts (U,u) and (v, v) the chart-change map
ue vl v(UaV) = u(UaV) has the form lu-v Lx,y) = (Flxyy2,g(y)).
For any distinguished chart (U,u) the set u” (le {y}) is (a piece of )
an n-dimensional submanifold in M. It is called a plaque. For any xeM
let F(x) be the maximal n~dimensional connected immersive submanifold
of M which conincides in eaph-ddstinguished chart with = pleque ard
containe .X.F(x) is called the leal ®F the foliation F through x.
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10.8. Let F be a foliation on M. To any x in M we may associate the
tangent p. e TXF(x) to the legf‘ through x, which we denote by TXF for
short. This gives a vector bundle TF over M, a subbundle of the tangent
bundle TM. If X and Y are two vector fields on M taking values in TF
(sectioné of TF—>M), then the Lie bracket[X,Y] takes also values in TF.

Theorem (Frobenius): Let E be an n-plane bundle in TM over M.
Then E is the tangent bundle of a foliation on M if
and only if for any sections X,Y of E,the Lie bracket [x,v]

in TM has also values in E.

This is a standard result of differential geometry.

10.9. Let M™T be & manifold with a foliation F of dimension n.

We want to define the vector bundle (algebra bundle) JkF(M,R) of

k-jets along leafs of smooth functions on M.

For that let (U,u) be a distinguished chart on M, so u(U) = le Qz
_is a product of cubes in R" and RF respectively.

We define J-(u(U)R) := Q)x 0, x35 (here F indicates the trivial
foliation R™T = R"xRT). For any f€C®(u(U)) we define

o0y =2 Gy G0 e 3K

Any chart-change mapping between distinguished charts (U,u) snd (V,v)
_is of the form u.v'l(x,y) = (a(x,y),b(y)), so it induces a fibrewise
linear (and multiplicative) smooth mapping

) Jkr‘:'l' VLR Fpauan,R) —»:“Fwwnv)m by

Tplue viTRI(G e f(u e v (x,y))) 1= J felx,y),b(y))e] plue V'l)(x,y)

= 3 Feusvxy) = M (Feua vy ,

and thia depends only on J:f = J(F| F(a(x,y),b(y)) = J*(f| a, < {by ).
So finally we have :

J"F(u ° y'l,ﬂ)(a(x,y),b(y),jkrf'(a(x,y),b(y))) =z
= (x5, 5eFlalx,y), bly))« 3(al.,y))(x).

Note that jk(a(.,y))(x) is a germ of a diffeomorphism (Ql,x) --(Qi,l(x,y)).

So by glueing the sets JkF(u(U),R) via the chart-change maps J_kr(u- V"I,R),
we obt.ainj the k-jet bundle JkF(M,R) of k-jets along leafs of smooth
functions on M.

'
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10.10. The following consideratmns are parallel to 9.8 - 9.18.

As in 9.8 we put J = j (.M )CJ and again let P = {Vﬁ be the

partition of J in the F1n1te collection of immersive ‘submanifolds

as explained in 7.5. The reader is advised to look up 9.8 and 7.5 now.

The subbundle (in a fixed distinguished coordinate chart (U,u)) i

le szJ of leﬂz XJ: is stable under all coordinate changes of

distinguished charts, since these lie in the group Lg. Also all

the members of the partition P are stable under these coordinate changes.

So we see that the following facts hold: ’

1. There is a subbundle JBF(M,R)O of JBF(M,R) of fibre codimension 1,
consisting of all k-jets along leafs without constant terms.

In any distinguished chart this bundle is mapped to Q ><Q *J.

2. .8 M R)0 is paditioned into a finite collection of 1mmers;ve
submanlf'olda Nl. Each wi is a fibre bundle over M with structure
group Lra‘ and typical fibre Vi' Each Wi has either codimension )
£ n+5,n+6 or codimension » n+6, n+7 (for n} 3 or n = 2 respectively;
again we do not mention the simpler case n = 1 which is left to the
reader). In a distinguished chart the immersive subbundle Wi is mapped
to lenzxvi, Vi the corresponding member of the partition P of J.

10.11. Let us fix some notation for the following:
M™T is a smooth manifold with & codimension r foliation F, where

r<6 for n=2 and r £5 for n3 3 and r arbitrary for n = 1.

We write J(M) := 3% (MR)  for short.

If X is a subset of M,:W is an immersive submanifold of J(M) and Y is
a subset of JM), we put

3’w y == frec®m: FF A W at each xeX with j rf(x)t:;?
Furthermore put 7w y = 3w y '3:: 1= '}w Im) - ?w iz 3,,’.3('”).
We fix a metric d_ on each space J F(I"l,-d?) so that it becomes a complete
metnc space. For feCT (M), & € C(M (0,1)), X<M and k>0 we put

N (f,e) := {geC (M): d (J Ff(x),J Fg(x)) < €(x) for each xé€ X}

This is a neighbourhood of‘ f in the Whltney-c ~topolegy smce_ it
contains the open neighbourhood NM(f,S):-i . .

10.12. Lemma: Let W be an immersive submanifold of 3(M), let X be a
conpact subset of M and let W' be compact in W.
Then '}w yi i open in c®m.
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Proof: Let fe 'Jiw we - It suffices to show that For each x €X there is
a compact elghbourhood U of x in M such that '5 “N. contains an open
neighbourhood V., of f in C (M). For then we can cover the compact X
by finitely many U, = U; and then QVy; =: Ve nswq, < ?}“ W
and V is an open neighbourhood of f.

Now we have to control only near x, so via a distinguished chart we
may assume that we are in le 02 < Rm'r, and there we already proved

_lemma 9.11.

10.13. Progos.ttlon. Let W be an immersive submanifold of J(M).
‘Then ¥, = {fec M): j fﬁs\ﬂ} is a residusl subset

of CP (M).

Proof: We want to show that ?w can be represented as a countable
intersection of open dense subsets. Choose a cover of W by open (in W),
relatively compact (in W) subsets W, as in 9.4. Then each W, is an

. embedded submanifold of J(M) and WJ . is compact. Next choose a countable
»cover‘(Xk) ‘of M by compact subsets such that each Xk is contained

in a dlstmguished chart (U ,uk) of M.

Then ¥, {‘) ‘Jw ” and by lemma 10.12 each 3: is open.

It remains to show that it is also dense. Since we nead transversality
"~ only on )(k €U, , we may assume that we are in R™T and Finish the proof
as in 9.12. :

10.14. We want to show that the set ¥ = () {F, : W, ¢ P, the partition of
a(n)} which is a residual subset by 10.13, is in fact open

We repeat the procedure of §9 and put 3’ ffrec®(m): j F.f’(M)nw =g
for those w in P which have codimension ; n+6, n+7‘§

Z 5 the um.on of those W, with codim. 2 o+6, n+7, is closad in each
distinguished trivialisation Q) %0y >J (it is Q) > Q, % 26 ;7 ‘there),
and 1t is a lacally trivial topological bundle over M, so = is closed
in 3(M) and therefore 3‘ is open in C® (M), by the same argument as in
lemma 9.14. Let Py = W,z codim W, <n+5, n+63, o partition of the open
set MO

10.15. Lemma: Let fe. 7 TR M, j F(x)t\’l for some Wi Py,
If j FF A wi at x, then there is a neighbourhood U of x
:m M and a neighbourhood V of f in 3‘ such that

3 Fg}’,\'J on U for all geV and for lll wijl.



-5

Proof: ‘The problem is local at xe M, so we may choose a distinguished
chart at x€M and use lemma 9.15 or better its proof.

10.16. Proposition: & n '}l =()§’Xwi= W.e P1§ n ';1 is open in C® (M).

Proof: The same proof as for ’9. 16 applies here, since we did not use
the spacial structure of Rn+r-structure, For the last part of the
proof, choose a complete metric on M.

10.17. Theorem: Let M™T pe a smooth manifold with a foliation F of
codimension r. If n = 1 let r be arbitrary. If n = 2 let
r<6. If n23 let r<5. )

Then the open dense subset ¥ = EFE c® (M): j Ff A W, for
all W; € P3 (J' ZFF&'\ e+e if n 2 1) has the f‘ollow:.ng
properties:

1. If fe¥ , then the set M = fxeM: df(x)|TF = 0} isa
submanifold of M.

2. For fe ¥ and z€ Mf there is a distinguished chart
(U,u: U—Q xazg)R =<RT) centered at z and a mapping
ve c® @, ) such that fou~ (x,y) - v(y) is a polynomlal
in the llst of §7.

Proof: Using a distinguished nelghbourhood we can assume that we are
in R™T and we get from theorem 9.17:

Mf. is locally a submanifold, so it is a submanifold.

The germ of f at z is a (uni)versal unfolding of the germ of f
restricted to the leaf F(z) through z. This clearly implies 2 by §7.

10.18. Theorem: Under the assumptions of 1o.l17,for any fe & the
singularity type of f at z is locally stable: the polynomial
in 10.17.2 stays the same if f is changed sufficiently few »
with respect to the Whitney—Cm—topology , and the singularity
point z stays near the original one.

This is seen by looking at the proof of 9.18.
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10.19. Lat.‘w : M —»N be asubmersionwhich we may ansume surjective
without 1. s of generality. Then the connected components of inverse
images of points form the leafs of a foliation of M (with quotient

structure N).

Theorem:

1.

2.

Let w : M Nr‘be a submersion with induced foliation F
on M. Suppose that r is arbitrary if n = 1, €6 if n = 2,
r<5if ny3.

Then there is an open dense set ¥ S C™ (M) such that:

For fe ¥ the set M. = §xeM: df(x)|T,F = 03 is & submenifold
of M. .

For f ¢ ¥ denote by X Me —N the restriction of* the
projection ¥ to M.cM. Then each singdlarity of X, is
equivalent to an elementary catastrophe.

The mapping X is locally stable with respect to f:

For any xe Mg there are open neighbourhoods U of x in M

and V of £ in C® (M) such that for any ge V there is some

ye U with ye Mg.and the property that the germ of X, at x

is equivalent to the germ of xg at y.

This is a reformulation of 10.17 and 10.18 using 9.18 again.
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Appendix. THE DIVISION THEOREM ON BANACH SPACES.*

The following is a detsiled exposition of the proof of
the division theorem for smooth functions, following Nire_,n-'-
berg [8]* up to his extension lemms snd Mather's proof [6)
of the latter. This proof is devdlopped in the context of
Banach spaces = the necessary modifications are minor. ‘I‘he
division theorem has been used in [5] .

1. The division theorem. Iet E,F be real Banaoh spaces
and let d s RXE—sR be a smooth function, defined near O,
such that d4(t,0) = E(n)uk for some k =0, where d¢o0) ;é 0,
d s+ R—>R is smooth, defined near O,

Then given any smooth function near O f 3 RXE —>F
there are smooth functions near 0 q 3 B XE—>F, rin E—>F,
1=Ol,...,k-l. such that '

o §
2060 = Q(6,0a(61) + 2 2k

i=o

2. Notation s Iet Pyt Bxak—aa be the Polynomial

Pk(t.g\) = & ﬂz%t Y 1 (}opt-n, %"1).

1::0

ja f(n,x) be &
smooth function BRXE-—>C ®F. ‘ '

Then tihere are hmoot:h funcﬂions, defined near 0 in R s
q ¢t BXEXR Kk >¢ RF, ri: E XR —->C ®F, is= 0,....!:—1, such

that £(t,x) = q(t.x,&)Pk(t;. 9\)+Zn1(x,9\)t . If £ is

realvalued in € @F (i.e. takes 1ts values in the real sub-
space 1 ®F), then q &pd r; may be chosen realvalued too.

4. Remarks 3+ a) C®F = FDIF is just the canonicsl
complexification of uhe Bauaoh quce F, wit;h some suiuable norm.

® Reprinted from Sitzungsbenichuen der Osﬁerreiehwchen Akade-
mie der Wissenschaften Mathem.-neturw. Klasse, Abteilung IT,
189.8d., l.bis 3.Heft, 1980, with the pemission of the
Auaui@n Academy of Belences

* References in parentheses refer to uha bibliogmm 8t the o
end of this appendix.



b) The last assertion is triviasl t Just apply the pro-
jection C®F—>1®F to. q and By

¢) If £ is in E defined pear 0O only, then the po-
lynomisl divisioo theorem remsgins valid for q and Iy de~-
fiped near ). Nothing in the proof to follow has to be ohan~
ged. But the global version does not imply the loocal obe ip
general, since there need not exist smooth partitions of uni-
ty'on E (on C ([0,1]) e.g. there is no smooth function wigh
bounded support, of. Bonic and Frampton [1]).

d) Without loss of generality we may assume that £(., x)
has compsct support in R for esch x&B (or near O0). For
suppose the theorem is velid in this case and £ is arbi-
trary, let gj(l:),h (t), JEN be two locally finite femilies
of smooth functions with compact support such that
(gj(u)h‘.](t:))'_j is a partition of uniny. Then for esch J we
may write k-1

a(t)f(ﬁ.x)- a4(t, x.mpkcn 9\>+Z ry 4Cx Aot
but then clearly kel
£(t,x)= q(t,x, X)Pk(ﬁ,ﬁ)#izl ri(x, x)ui
=

for

Q.( G,X, l k? 83( ¢ )q,a( X, 2 ).ri('x. k )';S;j( t )n,_d (x.'A).

5', Proof of the division theorem uslng the local form
of the polynomial division theorem i
Given d as 1n 1. there are amoouh functions defined
nesr O q 1 JRxExIR —>R, ry t Exa —>R, 1 = 0,...,k~1 &0
tha
' k=1
d(tlx) = Q(S:an)Pk(ﬂ 3)4‘2: !i(x,.’\)u . (6)
We clain that 3 '
r
q(opo:.o) £ 0,1‘1<0,0)8 o, 5"—;'1 (0.0) A0 for sll 3,
?r \ |
—i (0,0) = 0 for J< 1. (7)

e 33\1
By (6) we have
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-1 .
t53C6)= d(5,0)= q(6,0,0)6% + = r; (0,004,
i=0

Looking 8t the Taylor expansions at 0 .of both sides of this
equation we see thet r,(0,0) = 0 for all 1 and q(0,0,0)=
= da(0) # 0. Now differentiste (6) at x =0, A= 0 with res=

pect 40 Q‘i s, t0 obtain
K]

= q(u,o,O)c + .3;9 (t,0 o)u +§: -?—1 (0, 0)1;d
N, 5 N

Again Taylor expabsion at 0 tells us that for J < i we

2
have —5;;\-;1 (0,0)= 0 eand T$ (0,0)= =q(0,0,0) # 0. So (7)

follows. Let now R = (ro....,rk_l)aExB —>gK + then D23(0,0)8

r .
= (—5-51- (0,0))t R*—>R® and this matrix 1s invertible by (7).
d
Now consider the mapping (x, A)F>(x,R(z,\)) from
EXB into itself, defined nesar 0. Its derivative at O has
the form ‘

({)1:3.05 _pan:o.m )

end so is invertible too. By the inverse function theorem on
Bansch speces (cf.S8.Lang [4], I, §5, this mepping is locelly
invertible at (0,0)} its ipverse (again fibered over E) be=
ing of the form (x, I)H(z.s(x.).)). Then of course -
R(x,s(x, l)) = 9\ .
Iet now P,q t RXE—>R be given by ’5(17,:): Pk(to 8(x,0)),
a(t,x)= q(t,x,s(x,0)). Using (6) egain for A= s8(x,0) we have
~ k=l ;
a(t,%)= q(t,x,5(x,0))F <urs(x.o>>+§n1<;,s<;.6))ui
Ty gL
= q(n.x)?(u,x). @i IV @3 pp s
1/3(t,x) exists and is smooth pear O since’ q(@,ﬂ) =
= Q(0,0,0) £ 0, so P(t,x) = a(t,x)/q(t,;x) neer 0.
Now if somé £ 1is given es in  1.° 'bhen“‘by v3. agein there
are 'functions m : RXUXRS—=P, p. 1 BXRESF, 1=0,.0.;k-1,

4
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‘defined nee- O, such that (for A= 8(x,0))
. = 1
£0t,x) = m(t,x,8(x,0))P(t,8(x,0))+ Z_l n, (x,8(x,0))t

i=o0
' k-1 1
. g&£4§;§£;;922 at,x)+ 2 B, (x,8(x,0))¢
q(t’x) ] i=0

= q(t,x)d(t,x)+ > fi(x)ti.
i=o0 qod.

8; For the proof of 3. we will need two lemmas. Before
proving the first one, some notation @

Iet L1 c——>c be smooth as & real funanion. If 2 =x + 1y,
then df-—l:-t?dx-f-—idys-a—dz-fl—dz,

ox 0%
' £ _1f2f _, 2f . L(2f 2L,
wore 32 322 1 BE), 2L 2L+ 1 41 )
d(fdz):d:fAdz:Oq--%—-dlAdm.

9. Lewna s Iet £ 3 C—>C@PF be smooth. Let Y be &
aimble closed curve in € whose interiour is U. Then for
wé€U we have

£(w)= —-——S-—L-z ds +
2151

SMM.
27ti 3 0 L~

(1f- 1.' is holomorphio C—>»C ®F, i.e. 14 = 0, this reduces

io the Bepach space valued Ceuchy formula. The integrels in
this lemme are meent to be Bochner integrels : Riemannian

syms will converge in the Banach space C @ F. See Dunford-
Schwartz I [3] for a discussion of veotor valued integration.)

Proof 1 First we reduce the lemma bto the one dimensionel
case 3 The Iirst integrel exists in O ®F since T is com=-
peoct.and £(2)/(z-w) 1is contipuous on “I' . The second one
exists, since Of/d%Z is continuous on U end %5—_‘&%3 de~
fines & finite Radon messure on U.

Now we use duality. Tske apy continmuous ¢ -« linear funow-
tionsl i on € ®F. That couwmutes with integration (with the
limits of Riemanvian sums by continuity and with those aums
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by lincerisy) &nd with %: by the chaih rule, since it is
2

ites ocwn derivative. So we mey compute 1
1 £(z) dz Adz
Pl——\——az + 2 f(z .
2TDiTz-VJ - 2Tei -w \
1 (£(2))
g\P dz + SS- 50(13(2))

Tomid zo-w 21l
T

dz AdzZ

Z - W

=\P(f(w)) by the one dimensiongl formula. So by the theorem
of Fahn Basnach the formule holds in € ®F. ,

Now we prove the one dimensional case, Let w U, choose
€ <min{lw - zl: zé'{"}. Tet Ug = U\(disc of radius € sbout
w) &nd "fe=bU€ . E

Je apply 8. and Stokes'theorem to the function £(z)/(z-w),
which is smooth on 8 neighbourhood of U .

g of dzAdz SS‘ (.E(z) f(z)

Ua bZ IZ. L 'bU Z-w
£(2) 2"i( 19

= - g % dz + S‘ ¥+ Eexplih) 1 gexp(idad.
Z=W gexp(i®)

v 1 , :

4s € —>0, the last integral converges to 271ti f(w) by .
form contipuity of £, and the integral on the lefi~hspnd-s-
converges to S —a—f 42Adz | gince -h—f is bounded, $2Adz
0z 2z -w z zZ =-w

induces & finite Radon measure which, applied to the diffe-

rence set U\UE s converges to O. .qed.

lo. The Nirenberpg Extension Iemma : Iet £ 3 R X E—>
€ @F be 2 smooth func“ion with support contained in K X E
for some compact K 1in R. Then there exists a smooth func-
tion T 1 € XE X C*—>C@F such thst

F(t,x,\)= £(t,x) for HER and 81l 2 E&C5. (11)

—é-f-_ (2z,x,X) venishes to ipnfinite order for {Imz = 0} (12)
Z v .
:and on {(z,)\) s Pk(z,ﬁ) = 0} for all xgBE.

13, Proof of the polynomiel division theorem 3., using



T

¢che Nirenberg extension lewma lo.

Iet pe as in lo, and let T be 1ts extension. It

sufficesg, to prove the theorem for such an £, of. 4«d).

%t T be a smooth simple closed curve near U ‘o ¢,

U the interiour of ;Y'l 0eu,
For P (2, A= 25+ 27\ z", ”(;\o""’?\k 1)60 , ZEU
we have Kl
P (3, =B, V= 25wk + 2N (at- wt
1=l
-=(z-w)(zk"1 252 bt oWEE 4 wk"'1 *
+ ZQ\ (21~ =1, A2y 4.+ awt "2 wial))
i=1
k-—l
‘(zuw)Zpi(z,%wi for polynomiuls Py in z,’l
P (z,A) B w 7\) k=l
So £ = K - +E:pi(m,7\)wi.

zZ - W z =W i=0
Now by 9. we can compute

Fwe D= L (Eoaxd) 4,

g. Qf{ﬁs,}gl___)uj'\d“

7517 Z =W 21’61 Zow W
= S—-L—‘ng K(ZJO ds + w—ugg ? 7\)" dzada
SRS P (2,A) 2L K(.’.,Z\) %
= [-—-]-'—-- f.(!:u?h_l ‘ 1 dz +

- L27ti (z=w) Pk(zsm

T
+ - ggw L dzAdE P (W,Q\)
'az Pk(z )\) o W

k-l
[ Sf(z,xq M 4z +
27Ci -

T P (2,2)
'bf(z X, A) (v A)

i

27\71 SS k(z,ﬂ\) "le] v

K1
= QCw,x,')OPkCW.Q\)i- Z ri(x.))w s where

MML_.—&+

gz = g
2701 ) (z = w) P(z,)



1

gg z DF(zaxA ) 1 dz Adz
27:1 U 0% P(z,A) z~-w

5. and

1 P (219\)
!k = S‘:‘EJ 32Xy bt e
ri(x, A) Py (2:%x,A) z (z.ﬁ) dz +

'bi'(z,xs)\) py(z, )
am 0% P (2, 1)

All t.hese integrals are Bochner integrals in € @ F. We
have to check, that they are defined and yield smooth functi-
ons. The (formal) computation above is valid, since we ua»ed
only linearity of the integral. Now & Bochner integral is de-
finad,'if the function is continuous and the domain (or its
closure) is compact. The result is smooth in the remainipg
variables, if all derivatives of the integrand are contintous °
(we mey interchange differentiation and integration). .

The first integrals in the defipition of poth qg and
ry are defined @nd smooth es long @&s the zeres of Pk(z.l)
in 2 do not ocour on the curve Y if )\ 1s smell enough.

Iet us check this i1 Assume that for zé,'T‘ we hsve ‘
o< < lzl<412 <1, maxl')til<8 when

E Z'&z >\z“1-219\\\z1\>fql-xe»k

For € small enough che 1asu num’oer will be posiuive.f
' The second inte;rals in the definitions exist &nd are

dzAdz .

smooth, since -a-’?- vanishes to infinite order on the Zeros

0z
of P, &nd for resl 2z (we need w regl in the chconem) 3
this takes care of 1/(z - W),  qed.

14, '.Eb :px:ove the Kizegber‘g ext;emsion lemm we peed 8not-
her lemma first. We denote
S(y,%n 1n:€{1y-m zlt zeo, Pﬁ(lz,?\)a Q} for yeﬂ
snd Ago“ IR ST 9 e aie g R

i,

lgg_m‘ (mibhor) 3 ‘Ihere exists e cnnuinuous funuoo _
?: m x ¢Ex® —>[0,1] such that

§CE,A,y)= 0 in & peighbonzhood of y=0i a8
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PC,Asy)= 0 when gyl 21 (19
-a-- ?(? JA,v)= O in 8 peighbourhood of 5(3,3\): 0 (18)

(19) The function S’(f ﬁ,y) is infinitely often differvn-
tiable with respect to A,y, 8nd its derivatives are conti-
puous with respect to all veriables &nd satisfy

Wl lp! T
) b 2 < ey Lt Y| B T
] 0% oaF oy S YOI EQUCH A ARER Ty
for all multiindices o(,F and 81l T EN, and 821 A € K
where K 1is compact in ¢® apd C 1is @ conatant depending
8s indicated. .
20. Proof of the Niremberg extension lemma lo, using

lemma 15.
Given a smooth function f 1t R X E~—>C ®@P, in B com-
pactly supported, we conslider the Fouriertransform

E £( v,x)e-a TOLEF gy,

This integral exists in C®F since f£(.,x) is compactly
supported, and f(¥F ,x) is smooth (ocompare the last argu=
A
ments. in 13.). .Furthermore UZ(¥ ,x)lI<K %p NeCe,x)de, so

=00

;.’(g-',x) =

-

is uniformly bounded in ¥ for esch xg&E. If (E) is s
polynomial, then

g 00
HEICE.) = § 2(0.0p(E ) 2T F g

oSpf(tx.x)p (—- e -—a--)(e"zn“‘f)dn
-g 2701 Bc
= _é;p (- e 3—)(;(u.x>>e'2"‘”'fau,

| 27c1 0
the last equation holds, since -~ = . —?—- is i‘ormllly golfe ¢
2701 Ot

adjoint (use integration by perts, afuez reducing to ¥ = R
by duality as in the proof of 9.).

8o |p(E )mf(‘g.x)ll is uniformly bounded too and Uf(g-‘.x)ll
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is repidly decreasing in T;‘ s @nd sach derivative of % has

the seme property (use the ssme srgument for the derivative).
e define now the extension £ of £. Por (2,%x,A) EC XE x(;“"
we put : '

(2]
f(z,:gf)k): S ?(gnl’m z)elanigz%(?sx)d-g 2

where is the funchion of lemms 15,

We clsim that this integral is uniformmly absolutely con=-
vergent in € F &and that we can differentiste under the
integrsl sign, i.e. for eny wmultiindices o« , p and T, 56N
the following integral is again uniformly absolutely convergent:

oD bloﬂ B’Pl 'a 'b
- XX )P 2= oz

For, by (17) and (19),

2% F T
X% 3P 2¢¥ 97°
is uniformly bounded by & polynomisl in |E| , end ll%('g',x)li
is rapidly decreasing. 8o the integral exists in C@®F (it
does S0 on each compact in R, and if we piece together com=-
pacts in an appropriate manner 'tl;e integrals of the norm of
the function over these compacts will converge).‘.dn even -
simpler argumenc appl ies to each derivative of £ with res-
pect to x. So T exists end 1s smooth.

By (16) snd the Fourier inversion formule (whieh holds
¢ ®F too 1 use duslity to reduce it to the case F =R as
in the proof of 9.) T is an extension of £ 3

S©ECEN, In 202z (g ,2)eE .

@& 2)eZHES)

o0 : .
£(t,x)= { 205,205 g = £(6, 2,0, rem.

-00 A M
g l
So (11) holds. .a finite ord on

By (16) agsin _._a__g vanishes to infinite order

{Im z = 0} and by €18) to 1nfinite order on {(z X):P (z,X)=
= 0}, so (12) holds. ged.
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21, Proof of lemme 15. let
o0 . k. .
d@q,k}: . S‘hd; log P (x +/)"i,?\)12dx, so 61t BxCEeR. (22)
' om g,
We olaim that ( O is defined in 14.)

V2 S0 < 6@ D < €2/2 &fq,m 12 S # o. (23)

To show this we integrate by residues.
‘Fix meR and AECS, let 2,,...,2, Dbe the zeros of

zk—éPK(z,Q\). Then Pk(z,?\) =T;T(z - zi).
2 _|4 - - 2
l'&d—x' log Pk(x +/vli,'A)l =]Ti'§ 105]?(:( +rt!1 zj)l

| ‘lgl’ = "l*“”a’F:(Za = ”1]1'%\(% * ;1"'55) '

1 1 1
Iet Q(z)= -—-(2__ )(Z. ————-——-_——). Z2€C , 80 that
2w Tz aqeng VT - iz

114
= —|— 10g P (x +mi, )| 3.
A=) 27\:L1x °6 Fi'x * 1 ‘

for x€ER

Clearly Q(z) 1is meromorphic and g2 Q(2z) 1is bounded out=-

‘side 8 suitable compsct set. If Q(x) bhas no real poles, i.e.

if 5(9),?\)) 0, then by the method of residues it follows

thet o0

G(q,ﬂ): 2r S‘Q(x)dx =1 (sum of all residueas of Q(z) in
=00

the upper half plane)

-2 SR il S S

jes b=l z-mam1 j€B €=l 3y-z, v 2m1

where A denotes the set of all j such that Im z. > and
B denotes shq set of all J such that Im 2 <'q { we sup~-
pose furthermore that zy- 71 £ oy +frzi for all j,k (this
is a copdition on ) ), so the last equation holds.

Iet now h;}k =1 if j.k€A4, bak = -1 if J,k€B, =nd
b;}k =0 o'uhazwise. Then the above is equal to
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Im zj + Im ze -241

b.
1<i, b=k 46 lzy- %, -2#}1[2

This is the sum of k2 nonnegative quantities each of. which
is £ 1/2 g( ,A end st lesst one of them is = 1/2 5(’7,1). .
Hence (23) follows in case that Z5= i # Ee +q}i for all
Js g. By continuity, (23) holds in general.

Now we want to estimate the partial derivatives of & .
Ve clasim that

AT - k(L1 +1B1+7)
ST 3P 3,776‘@),)) <0, P.T,x)(u&v),m )

for all multiindices o(,]?», ‘all T¢éN and 811 )€K, a

compact subset of ()k, whenever 5(’[}.’)\) £ 0O,
We have

24)

|& 108 B Ceve, 0] 2= 'R(x,ﬂ')s'l)/]Pk(xM)i.A)lz. (25)

where R(x,ﬂ,,g\) is a polynomisl in (x,?t,’l))él& X CKXIR of
degree 2k = 2 in x. ) ‘

Any first partial derivative of (25) is of the form
Rﬁx,q,))/l}’én fqi,l)l”’, where R; 1s a polynomial of de~-
gree a4t most 2k -~ 2 + 2k = 4k - 2 in x.

Apy J-th partial derivative of (25) is of the form
Bj(x,'q;l)/lil’k(x—rqi,.?i)la(l*_d), where Ry 1s & polynomial of
degree &t most 2k(1l + j=1)=2 + 2(1 + j=l)k = 2kj=-2 in x
by induction. |P.(x +qi,1)12(1+j) is & polynomial in x¢ R,

eER, N\E Ck, with lesding coefficient 1 in x, of degree
2k(1 + j) in x, this is 2k + 2 higher than the degree of
R;j in x. The same argument applies to 7 , if 5(41.7«);4 0,
l.e. if there @are no poles on the line x fﬂi,_ xeR. So the
dominating factor is the distance to the next pole, in the
appropriate power, and ’5(1[.)\) megsures the "vertical"
distance to the next pole. So we obtain the following s For
any compact subset K of ¢° there exists s constant
C(K,3J) such that

Rj(Xn'q;A)

Pg<x""qi!2)2( i+;)

< O(K,§)

(l‘f I‘XIZK‘.Z)(]-"'}"I 12k+2) *
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o (L 5(«).7\)"2"(“"3(' HIple T,

l/(l+lx12k+?) iz integrable elong R, 5o we wmay integrate
the sbove estimate with respect to x to obtain (24).

We will construct the function ? o
Iet g be & smooth function [0,00)—-—»1{2 satlsfying

g(t) = 1 1f 0< t < 4K,
0<gi) <1 1r 40 <t <86, (28)
3(t) = 0 if 8194 t.

Let h be & second smooth function [0,00)—>R satislyiug
h(t)= O it < € for some O<ECL/2,
0<h(8)El 1rggt<S1~€ , (am)
h(t)= 1 if l-€ < t.

Then define ?('g sAy) for ('g,',\,y)em x € x® o8 tolliows 3
S’(?;%y): 0 1r /(%) Syl
. =1 1 1f yiK 21+ [ED,

i

. Y
h(4(1+l§1)§ &( G('I].X)/( L+ IE]))drr] )
Y oif 1/72Q0+18 g y £ 1/ (1+lgD,

NA
n(a(1+ 1D T glolm, A/ Q+E))Yan )
¥ 5‘1 y +|E| 1)

- g
1f -/ (EDg y S -1/2C1+ED.

H

First we clsim that

. 1
S TS gt (1 1ED ANSUAIED  (29)
~sribrep |

g 4
gai D om0/ e
Jal g » 1+ gl))d }1/4(1*' l)- (50)
wlgr | PR

For that remember the defiuition of & (14) asnda (23).

Let m be Lebesgue measure on R and I(E )=[1/2(1+ ] )
1/(1+ ]‘gl)]. Then & simple geometrical argument ;gnhm!:o are a;g
most Kk different zeros of Pk(.‘ A) for fixed A) glves

({NEEN SN )3r D= u(IE) )aline 11 Sin. D)< £h
0 1) )1/2(1+l§1)~2m.g‘ P<]
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‘e ere interested in the set of those » for which
e (0 A/ (1+18D)= 1. Sufficient for that is CY('Y),QL)/(lq-I'g])
< 8g” by (26). 3y (23) oY ,')\)\<k2/26-( sA), sb we obtain
the sufficient condition O(ms) > V/8k(1+IEl). But now ’
m({a’lél(‘g); 5(4),9\) > 1/8k(1+ l?l)})) 1/4(1+|%51) a8 we com-
nuted cbove. (29) follows since on this set g = 1.

A similer arguwent proves (3o0).

Using (29) 8nd (30) we see that the definitions of
?(‘g,?x,y) coincide on overlepping intervalls, so g’(‘g,ﬁ,y)
is swooth in A and y for fixed & .

Iet us check now whether the conditions. (16)«(19) of
lenma 15 are satisfiled 3

(16) On & peighbourhood of y = 0, exactly for |y|< 1/2(1+1%D,
we have S’(E sA,y)= 1 by definition.

(17) If 1By)l > 1, then Iyl>Wg| SU/(1+18D, s0 Q&)= .
= 0 by definition.

(18) We wont thet —%—y-?_(? sAy)= 0 in @ neighbourhood of
S(y,a) = O. * '

T+[El '
%; ?('g',?uyh ' (4(1+15]) S s(d(zr}.ﬁ)/(lﬂ‘gl))d'r} ).

- (=4(1+ 15 Ds( g(y.’)‘)/(ng)). if y€I(E).
If y 1s so nesr at. {rqx 5(1),}): 0} that
S (7N 11621+ D), then 63,2/ (1+18D >
$1/28 (7, N1+ 1D > 8, |

using (23), so &(6(y,N/(1+1ED)= 0 by (26). If &(7.,N= O,
then (23) does not hold but the conclusion holds by continuity.

a - '\- X . . .
So ﬁf(g A,¥y)= O. Exsotly the ssme argument-applies, if

y € - I(H). ‘
(19) We already know that ?('g‘ »XAy) is smooth with respect
to ,y. 8o we have only to estimate

5 53F 57 S Al

For fixed "g we know that f("g .Q\,y) is constsnt outside




~92=

AI(’g‘)U(-I(g)). in particulaxr for |y] > 1/(1+ l?!).'
Iet tow K € ¢ be compact end consider ?\éC‘c. do want

to estimate for AEK the expression

ald‘ ’blpt 37 n(4(1+1E] S

7 o 5D

X" 3AP Oy” 7
and the similsr expression for y€(-I(E)).

The partisl derivstive (31) is & polynomisl in the por-
tial derivetives of h and g (which sre uniformly bounded
since both are constant outside a ocompact set) and in l+l§],
1/(1+15]) end the partiel derivatives of & .

The letter are bounded by an expression

C(d,P,T.ﬁ)(1+ 8z, lol+1p]+ Ty

using (24). Recall that 5(5',70 is the "vertiocsl™ distunce
from y to the next zero of B (., A). If X remains in K
then the set -of 8ll these zeros is bounded, so this expresulon
above becomes big only in a compact set, where we cap bound it
uniformly. S0 we csn disregard ell partiel derivatives and of
course 1/(1+I€D) in (31). So (31) is bounded by s polynomisl
in 1+1%|, of order ld|+|pl+T , i.e. just the order psrtial
derivative (31). So finally we obtsin & bound of the form
G(d.P,T,K)(li- l§'ll+ lotl+1Bl+7 ). god.

1
1+(%]
s(o‘(a?,l)/(hl?gl))dv)) (31)
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