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Characters on Algebras of Smooth Functions 

A. KRffiGL, P. MICHOR AND W. SCHACHERMAYER 

Abstract 

For a huge class of spaces it is shown that the real characters on the algebra of 
differentiable functions are exactly the evaluations at points. 

Introduction 

"Milnor and Stasheff's exercise" [17] says that for a smooth manifold M each algebra 
homomorphism C"(M) ~ R is given by evaluation at some point of M. Although the 
classical proof of this statement depends heavily on locally compactness arguments we 
were able to extend it to a wide class of spaces M. In fact, the existence of partitions of 
unity is sufficient, even in the infinite dimensional situation. We use a setting which 
hopefully encompasses all existing notions of "differentiable spaces" and within which 
we identify the statement above as a completeness property (smoothly real-compactness) 
ofM. 

1. General Setting 

1.1 Definition: A smooth space is a pair (M, g) where M is a set and g a set of real 
valued functions on M which separates points and has the following properties: 

1. The set g is closed under composition with COO-functions: For any f1' ... , fn in g 
and F in COO(U, R), where U is open in Rn, such that (f1' ... , f,,) (M) £; U, we have 
F 0 (fl, ... , fn) E .c/'. 

2. If!F is a subset of g such that the family of carriers carr (f):= {x E M: f(x) =1= O} 
offunctions f E !F is locally finite in the initial topology induced by g, then L f is in g. 

/e5 

. Note that condition 1 implies in particular that g is a COO-algebra in the sense of 
[18]. The converse is not true: let M be the open unit intervall and let g be the set of 
restrictions of global smooth functions; then g is a COO-algebra but does not satisfy 1. 

In the following we will always equip M with the initial topology with respect to g 
without further notice, and we will call it the g-topology. 

1.2 We may also remark that an important class of smooth spaces may be described 
in the following manner: A Hausdorff topological space M together with a sheaf of 
COO-algebras consisting of continuous functions such that the topology is initial for the 
global sections. 
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Given (M, g) as in 1.1 and U open in M let g(U) be the set of all real functions f 
on U such that for each x E U there is an open neighborhood U x of x and an fx E g 
with flUx = fx lUx. Then geM) contains g and we have equality in the most important 
cases. 

1.3 Examples of smooth spaces: 
1. Any completely regular topological space M, with the algebra of continuous 

functions g. 
2. Finite dimensional manifolds of class C\ k < w, with Ck-functions. 
3. Locally convex vector spaces with all standard notions of Ck-functions on them. 

In particular we consider C': in the sense of[7] and C'" in the sense of[3], [9,10] (attention: 
the topologies generated by these smooth maps are in general not the locally convex' 
ones, in the latter case it might be even incompatible, since Coo-maps need not be 
continuous with respect to the locally convex topology). 

4. Manifolds with charts modelled on open subsets of locally convex vector spaces 
using one of the Ck notions mentioned in 3 (in particular manifolds of mappings, see [14]. 

5. Vector sets of [11], smooth structures in the sense of [3], differential spaces in the 
sense of [19], and "manifolds" in the sense of [16]. 

2. Smoothly Real Compact Spaces 

2.1 Definition: A smooth space (M, g) is called smoothly real-compact iff any algebra 
homomorphism g -+ R is an evaluation at a point of M, i.e. iff the canonial map 
ev: M -+ Alg (g, R), ev (x):fl-+ f(x) is a bijection onto the set Alg (g, R) of algebra 
homomorphisms. 

So we require that the conclusion of "Milnor and Stashetrs exercise" is true. 
If M is a completely regular topological space, then the smooth space (M, C(M)) 

is smoothly real-compact if and only if it is real-compact in the usual sense. See [6]. 

2.2 Lemma: Let (M, g) be a smooth space and consider the mappings I: M -+ f1 R, 
I (x)f : = f(x) and ev: M -+ Alg (g, R), ev (x): f 1-+ f(x). fe.'? 

The set Alg (g, R) can be considered as a subset of f1 R and the map ev composed with 
fe.'? 

this inclusion gives I. The map I is topological embedding and the closure of its image I(M) 
is Alg (g, R). 

Proof: That ev composed with the inclusion of Alg (g, R) into f1 R gives I is obvious . 
.'? 

This map I is an embedding, since the topology of M is by definition initial with respect 
to the maps f E g and that of f1 R is initial with respect to prf for f E g and prf I = f . 0 

.'? 

Let <p: g -+ R be an algebra homomorphism. We claim that <p considered as the 
point x", E f1 R with coordinates (x",)f = <p(!) is in the closure of I(M). For f E g let 

.'? 

Zf be the set {x E M: f(x) -<p(f) = oJ. The sets Zf are not empty for otherwise 



87 Characters on algebras of smooth functions 

f - cp(f) . 1 is invertible in Y but cp(f - cp(f) . 1) = O. Since Z f n Zg 
= Z(f-rp(f))2+ (g_rp(g))2, the family {Z f: fEY} has the finite intersection property. For any 
finite subset §' <:; Sf' and X~ E n Zf we have l(X~)f = (xrp)f for all f E.9'. SO l(X~) 
converges to xrp in nR. fE~ 

.9' 

Let conversely I(Xa) be a net that converges to Xoo in n R. We have to show that 
.9' 

the map cp: Y -+ R which corresponds to Xoo is an algebra homomorphism. Since l(Xa) 
corresponds to the algebra homomorphism ev (xJ and the net ev (xa) converges pointwise 
to cp on f for all fEY, the limit point cp is also an algebra homomorphism. 0 

2.3 Corollary: Let (M, Y) be a smooth space. Then M is smoothly real-compact if and 
only if l(M) is closed in nR. Furthermore, the algebra Alg (Y, R) ofalgebra homomor­

.9' 

ph isms can be made into a smooth space which is smoothly real-compact and is the universal 
solution for extending smooth functions. 

Proof: The space M is by definition smoothly real-compact iff the map ev is onto, and 
this corresponds via lemma (2.2) to the statement that the map 1 has closed image. 

Every fEY defines a map f-: Aig (Y, R) -+ R by cp t-+ q>(f). We consider as structure 
on Aig (Y, R) the family U-: fEY} =: Y-. Y- is point separating since different 
cp E Alg (Y, R) differ at least at one fEY. 

The initial topology induced on Aig (Y, R) by the family Y- is just the trace topology 
inherited as a subset of ITyR. In particular M is dense in Aig (Y, R). 

Y- satisfies condition 1: Let f- EY-, (fl' ... , f;)(AIg(Y, R» <:; U, F: U -+ R 
smooth. Then (fl' ... , fn)(M) <:; U hence F 0 (fl' ... , fn) E Y, and since M is dense in 
Alg (Y, R), we have F 0 (fl, ... , f;) = (F 0 (fl' ... , f.»-. 

Y- satisfies condition 2: Let.9'- <:; Y such that {carrier f-: f- E.9'-} is locally 
finite, then {carrier f: f E.9'} is locally finite and hence I fEY, i.e. (I f)- E Y- and 
by density of M in Aig (Y, R) we have (I f)- = I f-. 

(Alg (Y, R), Y-) is smoothly real compact: Let cp-: Y- -+ R be an algebra homomor­
phism, then cp: Y --> R defined by cpf:= cp-f- is an algebra homomorphism, hence 
CPEAlg(Y, R) and cp-f- = cpf = f-cp. 0 

2.4 Corollary: If a smooth space (M, Y) is smoothly real-compact, then the //-topology 
on M is real-compact. 

Proof: By the previous corollary a smoothly real-compact space is embedded as a closed 
subspace of n R, hence it is real-compact, see [6] or [2, p. 154]. 

.9' 

2.5 Remark: If one defines a map cp: M0 --> M 1 between smooth spaces (M 0, yo) and 
(M 1, Y 1) to be smooth iff f cp E Yo for all fEY l' then the following can be said: 0 

1. The smooth space Alg (Y, R) with the structure {evf: fEY} defined in (2.3) is 
the universal solution for extending smooth maps into smoothly real-compact spaces. 

2. Smoothly real-compact spaces are completely determined by the algebra Aig (Y', R), 
since ev: M -+ Aig (Y', R) is for these spaces a diffeomorphism. 
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3. If for two smoothly real-compact spaces (M 0' f/0) and (M1, f/ 1) the algebras 
Alg (f/0, R) and Alg (f/ t, R) are isomorphic, then the smooth spaces are diffeomorphic. 

3. The Main Theorem 

3.1 Lemma: For a smooth space (M, f/) the following Jour conditions are equivalent: 
1. Let f: M --. R be continuous in the f/ -topology and a < b. Then there is some g E f/ 

with gb:f(x)~a} = 0, gb:f(x)~b} = 1. 
2. For any continuous function f and a < b there is some g E f/ such that {x E M: f(x) 

~ a} S {xEM:g(x) = O} S {xEM: f(x) < b}. 
3. The algebra f/ is dense in the set of all continuous functions in the topology of 

uniform convergence. 
4. The boundedfunctions in f/ are dense in the space ofall bounded continuous functions 

on M with respect to the sup-norm. 

Proof: (2 => 4) We want to apply the Stone-Weierstrass theorem to the Stone-Cech 
compactification PM of M and the algebra of bounded functions in f/. So let x, Y E pM. 
Then there is a bounded continuous f with f(x) < f(y). Choose a smooth g according 
to (2) for a := f(x) and b := f(y). Make it bounded and non-negative by composing with 
a suitable real function. Then g(x) = 0 and g(y) > O. Thus the algebra of bounded 
functions in f/ separates points in PM and hence is by the Stone-Weierstrass theorem 
dense in the algebra C({JM) of continuous functions on pM. But c(PM) is the 
algebra of continuous bounded functions on M. 

b-a 2a+b 
(4 => 1) Choose agE f/ with Ig - fl < -3-. Then g(x) ~ -3- for f(x) ~ a and 

g(x) ~ a ~ 2b for f(x) ~ b. By composing with a smooth function one obtains everything 

needed. 
(1 => 3) Let f be continuous, without loss of generality we may assume f ~ 0 

(decompose f = f+ - f-)· Let e > 0 and choose smooth gk with image in [0, 1] and 
gk(X) = 0 for x with f(x) ~ ke and gk(X) = 1 for x with f(x) ~ (k + 1) e. Then the 
sum g:= I egk is locally finite and If - gl < 2e. 

kEN b - a 
(3 => 2) Choose agE f/ with Ig - fl < -- and an appropriate map eE C<Xl(R, R). 

~hen eo (g _ ~~ b) satisfies (2). 0 2 

3.2 Theorem: Let (M, f/) be a smooth space such that: 
1. M is real-compact in the f/-topology. 
2. The (equivalent) properties of 3.1 hold. 

Then (M, f/) is smoothly real-compact. 

First Proof: Let q> be an algebra homomorphism. Th,en I := ker q> is an ideal in f/. 
Step 1: If f1' ... , fn E I and g E C<Xl(Rn, R) with g(O) = 0, then go (f1' ... , fn) E I, 

t n .og . 
because g(x) = S I -i (tx) dt . x' =: I hi' x' and go (fl' ... , I.) = I hi(ft, ... , I.) .hE I. 

Oi=tOX 
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Step 2: For fE!/ let again Z/:={x:f(x)=<pf}. Then ';z:={Z/:fE!/} 
= {Z/: f El}, since ZI = ZI-'P/'l and f - <pf· 1 E I. 

,;Z has the finite intersection property (see the proof of 2.2). We claim that it has the 
countable intersection property. Ifnot there is a sequence (fn).EN with nZ In = 0and we 
may assume that Zln::2 Zln+l and f.EI for all n. 

Step 3: Put U.:= {x E M: lJ:(x)1 < ~ for i < nand f.(x) =l= O}. We claim that 
n 

{U. : n EN} is a locally finite cover of M: Let x E M. There is a minimal n with f.(x) =l= 0, 
1 .

so X E Un. Let Y,= {y E M: If.(Y) - I. (x)1 < -If.(x)l}. Then Y (') Um = 0 If m > nand 
1 1 2 
;, ~ 2: lf.(x)l. 

Step 4: Choose (I. E Coo(R', [0, 1]) such that (I.(t 1 , ... , tn) > 0 iff It ;I < ~ for i < nand 
t. =l= O. 

n 

00 

By step 1 we have that (In 0 (fl, ... , f.) =: gn E I and carr (gn) = Un. Let g:= L -1 
g•. 

• = 1 2n 

Then g E!/ by 1.1.2, and g(x) > 0 for all x E M. Hence iE!/ and rx := <p G) > O. Let 

2n > rx. Hence there exists a point Xo E Zg, (') ... (') Zgn (') Zg-'-a =l= 0. Therefore 
1 1 1 o = g1 (Xo) = ... = g.(xo) and - = g(xo) = L k gk(XO) ~ -;; yields a contradiction. 
rx k>n2 2 

Hence ,;Z has the countable intersection property. 

Step 5: Let now Xoo E n ZPM, where 13M denotes the Stone-Cech compactification. 
ZE:E 

We claim that Xoo E M: Otherwise the real-compactness of M implies the existence 
of a function f E C(f3M, I) with flM > 0 and f(x",) = 0 (vide [2, p. 152]). Since M is 
assumed to have the property of the lemma above there exists a smooth 

];E!/ with {XEM:f(X) ~ i ~ 1} ~ {xEM:];(x) = O} ~ {XEM:f(X) < n· Consi­

der Zi:= {xEM: ];(x) = O}. Zi E';z since]; - <p];. 1 E Ker <p and Zli-'P/d (') Zi =l= 0 

because {x E 13M: f(x) < i ~ J~ Zi has non empty intersection with Z Ii - 'Plt-l as 

neighborhood ofxoo' But this implies that <p(D = 0, i.e. ZIi = Zi' Hence by the countable 
intersection property (/) =l= nZi' Which is contradicted by the fact that x E Zi implies 

1 
0< f(x) <-. 

i 

Step 6: The point Xoo is in n Z. Therefore Xoo E Z for all Z E';z, i.e. for all f E!/ we 
ZE:E 

have fx oo - <pf' 1 = 0 or <pf = fx oo • D 

Second Proof: Condition 3.1.3 implies that the uniformity generated by the continuous 
maps and that generated by the smooth maps is equal. (For a continuous f and 
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an B > 0 choose a smooth g with Ig - fl < B. Then {(x, y): Ig(x) - g(y)1 < B} 

s {(x, y): If(x) - f(y)1 < 3B}.) 
M real-compact implies that the uniformity generated by the family of continuous 

mappings is complete, hence the uniformity generated by f/ is complete, i.e. l(M) is 
closed in IIg' Rand hepce M is smoothly real-compact. 0 

3.3 Corollary: Let (M, f/) be a smooth space with smooth partitions ofunity (i.e. to every 
open covering U of M there is a family :F sf/such that all f E:F are non negative and 
thefamity {x: f(x) > O}Je§ is a locally finite covering subordinated to U and L f = 1), 
then M is smoothly real-compact. Je§ 

Proof: Since M admits smooth partitions of unity, M is paracompact and therefore 
real-compact (see [2, p. 337]). This corollary depends on the set-theory: beware of 
measurable cardinals!). Furthermore M has the property (1) of the lemma, since 
Ao := {x: f(x) ~ a} and Ai := {x: f(x) ~ b} are disjoint closed subsets hence by partition 
of unity there is an fo E f/ with folAo = 0, folA! = 1. 0 

3.4 Remark: 
1. For finite dimensional paracompact manifolds this gives the classical "Exercise of 

Milnor and Stasheff". 
2. Every paracompact manifold modelled on a locally convex space with smooth 

partitions of unity has itself smooth partitions of unity, hence is smoothly real-compact. 
This applies especially to the NLF-manifolds considered by [15], as well as to paracompact 
manifolds modelled on arbitrary Hilbertspaces or co(r) with any set r (see [20]). 

3. Results for finite order differentiability can be obtained along similar lines. We are 
content with the arche-typical COO-case. 

3.5 Proposition: Any product of real lines with the smooth functions in the sense C: of 
[7] and Coo of [3] and [9, 10] is smoothly real-compact. 

Proof First for Coo: Any continuous map f: TI R -> R factorizes over TIA R with A 
countable (see [2]) this is even true for sequentially cont\nuous maps provided the index 
set of the product has a non-real-measurable cardi~al (see [13]) and for Mackey 
sequentially continuous maps by a similar proof. Since every smoot:(1 map in the sense of 
COO is continuous with respect to Mackey converging sequences (cf. [10]) it is thus 
continuous with respect to the product topology, and hence the initial topology induced 
by the smooth maps is just the product topology. Obviously TI R is real-compact. So it 
remains to verify condition (2) of the lemma. Let f: nR -> R be continuous. Then f 
can be factorized into f prA for some countable A. Thus we have to verify the property 0 

(2) only for smooth functions on RN, but this is obvious, since this space is a nuclear 
Frechet space and hence has smooth partitions of unity. 

Now for C:: We proceed directly, so let cp: C;."(Rr) -> R be an algebra homomorphism. 
Step 1: Consider the restriction of cp to the linear subspace C;."(Rr) ;2 R(r) = Ei1 r R. 

Being a linear functional this restriction is an element of (R(r), = Rr. Call this point x", 
and we have cp(g) = <g, x",> for every continuous linear g on Rr. 

Step 2: Let f E C<Xl(Rr, R) be such that flu = 0 for some neighborhood U of x",. 
We claim that cp(f) = 0: 
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Without loss of generality let us assume that x", = O. Then U contains a neighborhood 

{x = (Xi) E RI: Ixil < ! for all i E F} where F is a finite subset of r. Let g E COO(R F) 
n . 

be such that g(O) = 0 and get) = 1 for all t with some coordinate ti ~ !. 
ion 

g(u) = L S -! (ty) . yj dt = Lh/y) yj. Then h := go prF has the property h(O) = 0 and 
j 0 aj j 

hex) = 1 for x ¢ U. Thus h· f = f. So cp(f) = L cp(hj 0 prF) cp(prj)cp(f) = 0, since prj 
j 

is linear and thus cp(pr) = O. 
Step 3: Now let f E C;'(RT, R) be arbitrary. We claim that cp(f) = f(x",): 
By step 2, cp(f) depends only on flu for some neighborhood U of Xcp in RT and we 

take U so small that flu depends only on finitely many coordinates (Xi)iEF' Then 

l '\' of . .Sf(x) = f(xlp) + L.. -i (xcp + t(x - x",» (x' - x~) dt for x E U 
o i ax 

and so: 

flu = f(xcp) . 1 + L hi pri (' - xlp) 
i 

cpU) = cpUlu) = f(xlp) . 1 + Lcp(hi) cp(pri(' - xcp» = I(x",). D 
i 

3.6 Remarks: 
1. For a measurable cardinal r the smooth functions on RT in the sense of C;' and 

Coo are different. 
2. The subspace of an uncountable product of R's given by all vectors with countable 

support is not smoothly real-compact if structured with the C"'-functions, because it is 
not real-compact [2, p. 148, 153] although it is a convenient vector space in the sense 
of [3], [9]. 

3. An uncountable product II R does not satisfy the following property stronger than 
the one in Lemma 3.1: For two closed disjoint subsets Ai s; II R there is a continuous 
function I: II R ---> R with f(Ad n I(A 2) = 0. 

Hence such a product is neither paracompact nor normal, although the smooth maps 
do generate the topology. 

Proof: Let Ai: = {x E IT N: for every j * i there is at most one S E r with Xs = j}. 
T 

Clearly the sets Ai are closed and disjoint and prA (Ad n prA (A2 ) *0for any countable 
subset A of r. Since any continuous function f depends only on countably many 
coordinates it cannot separate these two sets. D 

3.7 Open problems: 
1. Is W, C"') not smoothly real-compact? The COO-topology on [1 is coarser than the 

norm topology. More generally, is any Banach space with rough norm [12] not smoothly 
real-compact? 
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2. We suspect that for any smooth space real-compactness and smoothly real­
compactness are equivalent. 
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