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Characters on Algebras of Smooth Functions

A. KRIEGL, P. MICHOR AND W. SCHACHERMAYER

Abstract

For a huge class of spaces it is shown that the real characters on the algebra of
differentiable functions are exactly the evaluations at points.

Introduction

“Milnor and Stasheff’s exercise” [17] says that for a smooth manifold M each algebra
homomorphism C*(M) — R is given by evaluation at some point of M. Although the
classical proof of this statement depends heavily on locally compactness arguments we
were able to extend it to a wide class of spaces M. In fact, the existence of partitions of
unity is sufficient, even in the infinite dimensional situation. We use a setting which
hopefully encompasses all existing notions of “differentiable spaces” and within which
we identify the statement above as a completeness property (smoothly real-compactness)
of M.

1. General Setting

1.1 Definition: A smooth space is a pair (M, &) where M is a set and & a set of real
valued functions on M which separates points and has the following properties:

1. The set & is closed under composition with C®-functions: For any f}, ..., f, in &
and F in C*(U, R), where U is open in R" such that (f,, ..., f,) (M) < U, we have
Fo(fi,..., f)eZ.

2. If # is a subset of & such that the family of carriers carr (f) := {x e M: f(x) + 0}

of functions f € & is locally finite in the initial topology induced by &, then Y fisin &.
feF

Note that condition 1 implies in particular that & is a C®-algebra in the sense of
[18]. The converse is not true: let M be the open unit intervall and let & be the set of
restrictions of global smooth functions; then & is a C®-algebra but does not satisfy 1.

In the following we will always equip M with the initial topology with respect to &
without further notice, and we will call it the &#-topology.

1.2 We may also remark that an important class of smooth spaces may be described
in the following manner: A Hausdorff topological space M together with a sheaf of
C>-algebras consisting of continuous functions such that the topology is initial for the
global sections.
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Given (M, &) as in 1.1 and U open in M let #(U) be the set of all real functions f
on U such that for each x € U there is an open neighborhood U, of x and an f, €%
with f | U, = f.| U,. Then (M) contains & and we have equality in the most important
cases.

1.3 Examples of smooth spaces:

1. Any completely regular topological space M, with the algebra of continuous
functions <.

2. Finite dimensional manifolds of class C*, k < w, with C*-functions.

3. Locally convex vector spaces with all standard notions of C*-functions on them.
In particular we consider CZ in the sense of [7] and C® in the sense of [3], [9,10] (attention:
the topologies generated by these smooth maps are in general not the locally convex '
ones, in the latter case it might be even incompatible, since C®-maps need not be
continuous with respect to the locally convex topology).

4. Manifolds with charts modelled on open subsets of locally convex vector spaces
using one of the C* notions mentioned in 3 (in particular manifolds of mappings, see [14].

S. Vector sets of [11], smooth structures in the sense of [3], differential spaces in the
sense of [19], and “manifolds” in the sense of [16].

2. Smoothly Real Compact Spaces

2.1 Definition: A smooth space (M, &) is called smoothly real-compact iff any algebra
homomorphism &% — R is an evaluation at a point of M, ie. iff the canonial map
ev: M — Alg (¥, R), ev(x):f+—f(x) is a bijection onto the set Alg (<, R) of algebra
homomorphisms.

So we require that the conclusion of “Milnor and Stasheff’s exercise” is true.

If M is a completely regular topological space, then the smooth space (M, C(M))
is smoothly real-compact if and only if it is real-compact in the usual sense. See [6].

22 Lemma: Let (M, &) be a smooth space and consider the mappings 1: M — [] R,
1(x);:= f(x) and ev: M — Alg (¥, R), ev (x): f 1 f(x). b

The set Alg (¥, R) can be considered as a subset of || R and the map ev composed with
fe&

this inclusion gives 1. The map 1 is topological embedding and the closure of its image 1(M)
is Alg (¢, R).

Proof: That ev composed with the inclusion of Alg (&, R) into [ | R gives 1 is obvious.
&

This map : is an embedding, since the topology of M is by definition initial with respect
to the maps f € & and that of [ | Risinitial with respect to pr for feFLandpryor = f.
4

Let ¢: % — R be an algebra homomorphism. We claim that ¢ considered as the
point x, € [T R with coordinates (x,); = @(f) is in the closure of 1(M). For fe & let
y .

Z, be the set {xe M: f(x) — @(f) = 0}. The sets Z, are not empty for otherwise
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f— (-1 is invertible in & but o(f — @(f) 1) =0. Since Z,n Z,
= Z(;- o)+ @- gy the family {Z : f € &} has the finite intersection property. For any

finite subset # = & and x5 € () Z, we have 1(xz), = (x,), for all fe Z. So 1(xs)

. F
converges to x, in [ | R. Ie
¥

Let conversely 1(x,) be a net that converges to x,, in [ | R. We have to show that
7

the map ¢: % — R which corresponds to x, is an algebra homomorphism. Since i(x,)
corresponds to the algebra homomorphism ev (x,) and the net ev (x,) converges pointwise
to @ on f for all f e &, the limit point ¢ is also an algebra homomorphism. []

2.3 Corollary: Let (M, &) be a smooth space. Then M is smoothly real-compact if and
only if (M) is closed in || R. Furthermore, the algebra Alg (¥, R) of algebra homomor-
. ¥

phisms can be made into a smooth space which is smoothly real-compact and is the universal
solution for extending smooth functions.

Proof: The space M is by definition smoothly real-compact iff the map ev is onto, and
this corresponds via lemma (2.2) to the statement that the map 1 has closed image.

Every f € & defines amap f~: Alg (¢, R) — R by ¢ — ¢(f). We consider as structure
on Alg (&, R) the family {f~ fe #} =: ¥~. &~ is point separating since different
¢ € Alg (¥, R) differ at least at one f € %.

The initial topology induced on Alg (&, R) by the family &~ is just the trace topology
inherited as a subset of IT,R. In particular M is dense in Alg (&, R).

&~ satisfies condition 1: Let f~e<%~, (f1,..., fx)(Alg(¥,R) < U, F:U - R
smooth. Then (f4, ..., f,)(M) € U hence F o (f, ..., f,) €, and since M is dense in
Alg(#,R), wehave Fo(f{, ..., f)=Foo(f1,.... [o)".

&~ satisfies condition 2: Let #~ < & such that {carrier f~: f~ e #~} is locally
finite, then {carrier f: f € #} is locally finite and hence ) fe &, ie. (3 )~ € ¥~ and
by density of M in Alg(#, R) we have (3 /)~ =Y. /™.

(Alg (¥, R), #~)is smoothly real compact: Let ¢ ~: &~ — R be an algebra homomort-
phism, then ¢:% — R defined by ¢ f:= ¢~f"~ is an algebra homomorphism, hence
peAlg(#,Rland o"f~ =of = fTo. O

2.4 Corollary: If a smooth space (M, ¥) is smoothly real-compact, then the S-topology
on M is real-compact.

Proof: By the previous corollary a smoothly real-compact space is embedded as a closed
subspace of [ | R, hence it is real-compact, see [6] or [2, p. 154].
14

2.5 Remark: If one defines a map ¢: M, —» M, between smooth spaces (M,, ¥,) and
(M,, &) to be smooth iff fo¢pe P, for all fe.&,, then the following can be said:
1. The smooth space Alg (¥, R) with the structure {ev,: f e &} defined in (2.3) is
the universal solution for extending smooth maps into smoothly real-compact spaces.
2. Smoothly real-compact spaces are completely determined by the algebra Alg (<, R),
since ev: M — Alg (¥, R) is for these spaces a diffeomorphism.
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3. If for two smoothly real-compact spaces (M,, &,) and (M,, #,) the algebras
Alg (¥,, R)and Alg (¥, R) are isomorphic, then the smooth spaces are diffecomorphic.

3. The Main Theorem

3.1 Lemma: For a smooth space (M, &) the following four conditions are equivalent:

1. Let f: M — R be continuous in the #-topology and a < b. Then there is some g € &
with gle: joysa = 05 8lixeszn = L

2. For any continuous function f and a < b there is some g € & such that {x € M: f(x)
Sa} < {xeM:g(x) =0} = {xe M: f(x) < b}.

3. The algebra & is dense in the set of all continuous functions in the topology of
uniform convergence.

4. The bounded functions in & are dense in the space of all bounded continuous functions
on M with respect to the sup-norm.

Proof: (2= 4) We want to apply the Stone-Weierstrass theorem to the Stone-Cech
compactification M of M and the algebra of bounded functions in &. So let x, y € M.
Then there is a bounded continuous f with f(x) < f(y). Choose a smooth g according
to (2) for a == f(x) and b = f(y). Make it bounded and non-negative by composing with
a suitable real function. Then g(x) = 0 and g(y) > 0. Thus the algebra of bounded
functions in % separates points in fM and hence is by the Stone-Weierstrass theorem
dense in the algebra C(BM) of continuous functions on SM. But C(SM) is the
algebra of continuous bounded functions on M.

2 b
a+ for f(x) < aand

b —
(4 = 1) Choose a ge & with |g — f] < —-3-1 Then g(x) <

g(x)ga+2b

needed.

(1 = 3) Let f be continuous, without loss of generality we may assume f = 0
(decompose f = f, — f-). Let ¢ > 0 and choose smooth g, with image in [0, 1] and
gi(x) = 0 for x with f(x) < ke and gi(x) = 1 for x with f(x) = (k + 1)&. Then the

sumg:= Y, &g, is locally finite and | f — g| < 2.
keN

3=2)Chooseage ¥ with [g — f] <

for f(x) = b. By composing with a smooth function one obtains everything

b—a

and an appropriate map ¢ € C*(R, R).
b
Then g - (g - (_1_%_) satisfies (2). [

3.2 Theorem: Let (M, &) be a smooth space such that:
1. M is real-compact in the ¥ -topology.
2. The (equivalent) properties of 3.1 hold.

Then (M, &) is smoothly real-compact.

First Proof: Let ¢ be an algebra homomorphism. Then I := ker ¢ is an ideal in &.
Step 1: If f},..., f,el and ge C®(R", R) with g(0) =0, then go(f},..., f)el,

1 2 9 . .
because g(x) = g .;é%(tx)dt'xlﬁzhi'x' and go(fy,.... ) =Y h(f1, ... f;) - fiel
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Step 2: For fe& let again Z,:={x: f(x) = ¢f}. Then & :={Z,: fe ¥}
={Z,: fel},sinceZ; =Z;_,;,and f —of-1lel

Z has the finite intersection property (see the proof of 2.2). We claim that it has the
countable intersection property. If not there is a sequence ( f,),en With () Z 7. = @ and we
may assume that Z, 2 Z,, . and f, el for all n.

1

Step 3: Put U,={xeM:|fi(x)) <~ for i <n and f,(x) + 0}. We claim that
n

{U,: ne N} isalocally finite cover of M: Let x € M. There is a minimal n with f,(x) + 0,

1
so xe U, Let V:i={ye M:|f,(y) — f,(x)| < Elf,,(x)l}. Then VAU, = @ if m > n and

1 _1
— =5 Ukl

1
Step 4: Choose g, € C*(R", [0, 1]) such that g,(¢y, ..., t,) > 0iff [t;] < —fori < n and
t, + 0. "

1
By step 1 we have that g, o (f, ..., f,) =: g, €I and carr (g,) = U,. Let g:= ) ?g,,.
n=1

1 1
Then ge & by 1.1.2, and g(x) > O for all xe M. Hence —€ & and a := ¢ (~> > 0. Let
g 8

2" > a. Hence there exists a point xo€Z, n..NZ, NZ,-1_, + @. Therefore

1 1 1
0=g,(xp) = ... = ga(Xo) and = = g(xo) = 2, > gi(xo) = > yields a contradiction.
o k>n

Hence & has the countable intersection property.

Step 5: Let now x,, € () Z?M, where BM denotes the Stone-Cech compactification.
Zex

We claim that x,, € M: Otherwise the real-compactness of M implies the existence
of a function f e C(BM,I) with f|,; > 0 and f(x,) = O (vide [2, p. 152]). Since M is
assumed to have the property of the lemma above there exists a smooth

1 1
f;€ & with {xeM:f(x) < _+_1—} c{xeM: fi(x) =0} c {xeM:f(x) < —}. Consi-
i i
der Z;:={xeM: fi(x) =0}. Z,e X since f; — ¢of;-1eKerpand Z;,_,;.y " Z; + 0
1
because {x epM: f(x) < ) € Z; has non empty intersection with Z, _ .., as
; .

neighborhood of x,. But this implies that ¢(f;) = 0,ie. Z;, = Z,. Hence by the countable
intersection property @ + (| Z,. Which is contradicted by the fact that x € Z; implies

0< f(x) <1,.
1

Step 6: The point x, isin [ Z. Therefore x,, € Z for all Z € %, i.e. for all f € & we
ZeZ

have fx, —of-1=0o0rof = fx,. O

Second Proof: Condition 3.1.3 implies that the uniformity generated by the continuous
maps and that generated by the smooth maps is equal. (For a continuous f and
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an ¢ > 0 choose a smooth g with |g — f| < & Then {(x, y): |g(x) — gO)| < &}
< {(6 1): 1/ x) — SO < 3e})

M real-compact implies that the uniformity generated by the family of continuous
mappings is complete, hence the uniformity generated by & is complete, i.e. 1(M) is
closed in IT, R and hence M is smoothly real-compact. []

3.3 Corollary: Let (M, &) be a smooth space with smooth partitions of unity (i.e. to every
open covering U of M there is a family F < & such that all f € F are non negative and
the family {x: f(x) > O} ;. 5 is a locally finite covering subordinated to U and Y f=1,
then M is smoothly real-compact. Je#

Proof: Since M admits smooth partitions of unity, M is paracompact and therefore
real-compact (see [2, p. 337]). This corollary depends on the set-theory: beware of
measurable cardinals!). Furthermore M has the property (1) of the lemma, since
Ag = {x: f(x) £ a}and 4, = {x: f(x) = b} aredisjoint closed subsets hence by partition
of unity there is an fy, € & with fyl,, =0, fol,, = 1. O

3.4 Remark:

1. For finite dimensional paracompact manifolds this gives the classical “Exercise of
Milnor and Stasheff”.

2. Every paracompact manifold modelled on a locally convex space with smooth
partitions of unity has itself smooth partitions of unity, hence is smoothly real-compact.
This applies especially to the NLF-manifolds considered by [15], as well as to paracompact
manifolds modelled on arbitrary Hilbertspaces or ¢o(I') with any set I" (see [20]).

3. Results for finite order differentiability can be obtained along similar lines. We are
content with the arche-typical C*-case.

3.5 Proposition: Any product of real lines with the smooth functions in the sense C* of
[7] and C® of [3] and [9, 10] is smoothly real-compact.

Proof: First for C*: Any continuous map f:[[ R — R factorizes over [, R with 4
countable (see [2]) this is even true for sequentially continuous maps provided the index
set of the product has a non-real-measurable cardinal (see [13]) and for Mackey
sequentially continuous maps by a similar proof. Since every smooth map in the sense of
C* is continuous with respect to Mackey converging sequences (cf. [10]) it is thus
continuous with respect to the product topology, and hence the initial topology induced
by the smooth maps is just the product topology. Obviously [ [ R is real-compact. So it
remains to verify condition (2) of the lemma. Let f: ][] R — R be continuous. Then f
can be factorized into f - pr, for some countable 4. Thus we have to verify the property
(2) only for smooth functions on R", but this is obvious, since this space is a nuclear
Frechet space and hence has smooth partitions of unity.

Now for C?: We proceed directly, so let ¢: C*(R') — R be an algebra homomorphism.

Step 1: Consider the restriction of ¢ to the linear subspace C*(R") 2 R¥) = @,R.
Being a linear functional this restriction is an element of (Ry = R’. Call this point X,y
and we have ¢(g) = <g, x,» for every continuous linear g on R".

Step 2: Let fe C*(R’, R) be such that f|; = 0 for some neighborhood U of x,,.
We claim that ¢(f) = 0:
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Without loss of generality let us assume that x, = 0. Then U contains a neighborhood
. |
{x = (x) e R": x| < = for all ie F} where F is a finite subset of I'. Let ge C*(RF)
n A

1
be such that g(0) =0 and g(t) =1 for all ¢+ with some coordinate t; = —.
n

g(u) = Z _[ g ty yidt = Zh (y) y’. Then h:= g o pry has the property h(0) = 0 and
h(x) = 1 for x¢ U. Thus h- f f-So o(f) = 2 o(h; o pr) o(pr;) @(f) = 0, since pr;

is linear and thus ¢(pr;) = 0.

Step 3: Now let f e C®(R", R) be arbitrary. We clalm that o(f) = f(x,):

By step 2, ¢(f) depends only on f]y for some neighborhood U of x, in R" and we
take U so small that f|, depends only on finitely many coordinates (xi)ie r- Then

fix) = ¢)+jz (x + t(x — x,) (x' — xi)dt for xeU

and so:

flo = flxp) 1 + X hipr(- — x,)

@) = o(fl) = fx,) 1 + XL o) o(pri(- — x,)) = flx,). O

3.6 Remarks:

1. For a measurable cardinal I the smooth functions on RT in the sense of C* and
C* are different.

2. The subspace of an uncountable product of R’s given by all vectors with countable
support is not smoothly real-compact if structured with the C*-functions, because it is
not real-compact [2, p. 148, 153] although it is a convenient vector space in the sense
of [3], [9].

3. An uncountable product IT R does not satisfy the following property stronger than
the one in Lemma 3.1: For two closed disjoint subsets 4; = IT R there is a continuous
function f:TI R — R with f(4,) n f(4,) = 0.

Hence such a product is neither paracompact nor normal, although the smooth maps
do generate the topology.

Proof: Let A;:= {xe|] N: for every j # i there is at most one se I" with x, = j}.

r
Clearly the sets 4; are closed and disjoint and pr4(4,) N pr4(A4,) + 0 for any countable
subset A of I'. Since any continuous function f depends only on countably many
coordinates it cannot separate these two sets. []

3.7 Open problems:

1. Is (I, C*) not smoothly real-compact? The C*-topology on [* is coarser than the
norm topology. More generally, is any Banach space with rough norm [12] not smoothly
real-compact?
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2. We suspect that for any smooth space real-compactness and smoothly real-
compactness are equivalent.
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