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The NLF-Lie group structure of the group % of the gauge transformations, defined as the
group of sections of the bundle P[G] associated to the principal bundle P(M,G), is discussed.
Other current definitions of the group of gauge transformations are shown to admit a

nontrivial smooth structure only in the case of compact G. The space %~ of principal
connections, as well, is given the structure of local affine NLF-manifold, after identifications of
connections with sections of a convenient vector bundle on M. Finally, the smoothness of the
action of .% on %" is proved in general. In the case of compact M, the group ¥ becomes a tame
Fréchet-Lie group and the action a tame smooth action. :

I. INTRODUCTION

In gauge theories a first and important step is the study
of the action of the group & of the gauge transformations of
a principal bundle P(M,G) on the set € of principal connec-
tions. In fact, according to the gauge principle, physical ob-
Jects are the classes of gauge equivalent connections rather
than connections themselves. In a natural way physicists are
virtually forced to look at & as a smooth group acting on a
smooth manifold % .

The problem of endowing these objects with appropriate
smoothness structures has been approached essentially on
the basis of projective limit techniques (see Ref. 1 and refer-
ences therein), making use of a rather indirect notion of
smoothness and of very reductive assumptions like compact-
ness of the base space M and of the structure group G. A new
approach of the Japanese school® to infinite continuous
groups introduces the “regular” Fréchet-Lie groups. Even
in this approach one cannot avoid the compactness hypothe-
sis for M in the treatment of the group % as a Lie group.

In a previous paper” the group ¥, defined as the group
of sections of the associated bundle P[ G], has been given the
structure of the “Schwartz-Lie” group, i.e., of a Lie group
modeled on a Schwartz space, without any assumption of
compactness for M and G. In this paper we analyze two other
current definitions of the gauge transformation group and
show that they are not quite satisfactory from the point of
view of smoothness properties, at least in the general case.
However, assuming compactness of G we are able to show
that the three definitions give isomorphic Lie groups (Sec.
II).

In Sec. IIT we identify the principal connections with
sections of a convenient vector bundle on M and again with-
out any assumption of compactness we give % the structure
of a local affine manifold model on a Schwartz space.

In Sec. IV we give the proof of the smoothness of the
action of ¥ on ¢, in the case of compact M the group ¥
becomes a tame Fréchet-Lie group and the action a tame
smooth action.
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The results of this paper, in our opinion interesting by
themselves, are a necessary tool for the study of the orbit
space % /Y and its stratification structure. This will be the
content of a forthcoming paper. '

1. THE GROUP OF GAUGE TRANSFORMATIONS

Our basic object is a principal bundle
P(M,G)=(Pp,M;G), where M is an ordinary manifold (or-
dinary manifold means Hausdorff, second countable, and
locally compact C= -manifold, hence finite-dimensional
paracompact and metricizable) and G an ordinary Lie
group. Throughout the paper we will denote by 4 the princi-
pal action, 4: P X G—P, and by 4 and A4,, the partial maps

A% PP, A°u)=A(ua), acG,
A,:G—P, A, (a)=A(ua), ucP.

We consider the associated bundles P[G]=(P XG,
G
Pe-M) (with fiber G and action of G on it given by inner

automorphisms, awsbab ~') and P[z]=(P Xgp, M)
G

(with fiber the Lie algebra ¢ of G and action of G on it given
by the adjoint representation).

We recall that the total space P X F of an associated
G

bundle P[F] (P X F,pp,M) with fiber F consists of equiv-
G

alence classes on P X F relative to the joint action of G.
We will denote by [ (v, ) ]; the equivalence class of the
point (u, f)eP X F. Thus, in the case of P[G],

[(ua)]e

:={(u',a')eP X G |3beG: (v',a’) = (ub,b ~'ab)}
and similarly for [ (v,a) ] in the case of P[g].

The group ¥ of gauge transformations of P(M,G) is, by
definition, the set Sec P[G] of the (smooth) sections of
P[G] with pointwise defined composition law.

It has been proved in Ref. 3 that & is an NLF-Lie
group, that is, a Lie group modeled on a complete locally
convex nuclear space, strict inductive limit of a countable
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family of separable Fréchet spaces. More precisely, the re-
sults of Ref. 3 can be summarized in the following state-
ments.

(i) & is an NLF-Lie group.

(ii) The set Sec, P[#] of the compact support sections
of P[z] with pointwise defined operations is an NLF-Lie
algebra, in fact the Lie algebra L, of .

(iii) An exponential map Exp: Sec, P[z]—Sec P[G] is
defined by (Expo) (x): =expo(x) VxeM, where exp:

P Xg—P XG is the fiberwise defined exponential map,
G G

which is a local diffeomorphism at 0.

According to these results we more simply say that & is
a Schwartz-Lie group and its Lie algebra a Schwartz—Lie
algebra.

From the algebraic point of view, it is well known (see,
for instance, Ref. 4) that the group ¥ is isomorphic with the
group ¥* of those diffeomorphisms f of the total space P of
P(M,G) such that

(a) po f=p,
(b) flua) = f(u)a, YueP, VaeG.

The group *, in turn, is isomorphic with the group G of
those maps?: P—G such that

Ffluay =a~ Yu)a, YueP, VaeG.

The isomorphisms are

[ y —»y # 5
where aeG is such that (sop) (u) = [(u,a)]¢, and

RN , Js }",
where fis defined by f(u) = u}'(u).

Obviously, ¥* is a subgroup of the group Diff P of the
diffeomorphisms of P. Now, as shown by Michor,’ Diff P
can be given the structure of NLF-Lie group with Lie alge-
bra the NLF-Lie algebra £, (P) of vector fields on P with
compact support. It is easy to see that F* is closed in the
FD-topology, which is the toplogy underlying the differen-
tial structure of Diff P. Under this topology the connected
component of the identity contains only diffeomorphisms
with compact support. If G is not compact, the only element
of $* with compact support is the identity itself, owing to
the equivariance property, therefore, in this case ¥ is a
discrete subgroup of Diff P.

Analogously, & is a closed subgroup of the Schwartz—
Lie group C> (P,G) (see Ref. 3) and again, if G is not com-
pact, & is a discrete subgroup of C* (P,G).

From these remarks it clearly appears that to consider
the gauge transformations as diffeomorphisms of P can be
unsatisfactory. Indeed they are bundle automorphisms and
only the group ¥ fits completely this character, since, from
the categorical point of view, bundle morphisms must be
looked at as sections of a suitable bundle.

If the structure group G is compact, however, ¥* is a
Lie subgroup of Diff Pand ¥ a Lie subgroup of C* (P,G) as
shown in the following theorems.

Theorem 2.1: If G is compact, ¥ * is a splitting Lie sub-
group of Diff P and its Lie algebra £°%(P) is the splitting
subalgebra of £°_ (P) consisting of the vertical G-invariant

t(s)Y(u) = ua,
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vector fields on P with compact support.

Proof: First we note that the subspace £°Y(P) of the
vertical vector fields splits £, (P). We introduce then the
linear operator®

f= Py P),
G

(f X) (u):= f (X :a)(u)du(a),
G G

where X - a is the induced right action of G on vector fields of
P and u is the normalized Haar measure on the compact
group G. It is immediate that f is a continuous projection
onto Z°*(P), the subspace of ¥ (P) consisting of the G-
invariant elements. This shows that Z°*(P) is a splitting
subspace of Z°.(P); moreover, by standard arguments,
Z7%(P) turns out to be a Lie subalgebra of £, (P).

Now we recall that Diff Pisa NLF-Lie group and that a
chart at the identity e is given by (U [,y, & . (P)), where

(1) 7is a local addition on P,
(see, for definition, Ref. 3 or Ref. 5);

(2) U ={feDiff P| f~e, flu)er,(T,P)}
[ fi ~f> means that the set {ueP | f,(u) # f,(u)}isrelatively
compact]; and

Q) U->Z (P), x(f)=2X,

with X(u) = 7,7 Y f(w)).

As we will show in the subsequent Lemma 2.2, there exists a
local addition 7 on P such that

(i) 70TA “ = A4 %o7;
and (ii) the fibers of P are additively closed, i.e.,

7(Ver, PYCP,, xep(u).
For such a local addition we have

x(Uing*) = 24(P).

Actually, if X = y(f) with feUIn%*, then X(u)eVer, P
since f(u)€P, and fibers are additively closed and X is G-
invariant since  is equivariant; vice versa, if Xe #°* (P), the
map f = 70X is a diffeomorphism of P since y is surjective
and satisfies

Slua) = (7+ X)(ua) = r((TA *°X)(u))

= (r°X)(u)a = f(u)a,

(pof ) (u) = p(r(X(u))) = p(u),
hence fe%*. Thus 9* is a splitting submanifold of Diff P,
hence a Lie subgroup of Diff P and its Lie algebra is the
splitting Lie subalgebra 27% (P) of &, (P). O

Lemma 2.2: Let P(M,G) be a principal fiber bundle
with principal action 4. There exists a local addition 7 on P
satisfying conditions (i) and (ii) above.

Proof: Take a G-invariant partition of unity { £, } of P
subordinated to a local trivializing system { (U, @, ) }. If &5
is the (right) invariant spray on G and £, any spray on U, ,
then

§= Y faba®és

is a G-invariant spray on P. The corresponding exponential
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mép exp® is equivariant and defined on an open G-invariant
neighborhood ¥ of the zero section of TP. Using a G-invar-
ijant metric on P, a contracting diffeomorphism A: TP
—h(TP)CV withh(0,) =0,, mpoh = mp, where 7p: TP
—P, can be constructed as in 10.2 of Michor?, which, more-
over, is equivariant. Therefore 7 = exp® oh satisfies (i). As
to (ii), it is enough to remark that the spray £, when restrict-
ed to the fiber P, over x, gives a spray on P, and the diffeo-
morphism £ preserves Ver P. .

Theorem 2.3: If G is compact, & is a splitting Lie sub-
group of C* (P,G) and its Lie algebra is the splitting subal-
gebra C % (P,g) of the Lie algebra C * (P,g) of C* (P,G)
consisting of those maps éz P—4 with compact support such
that @(ua) = Ad,- (@(u)).

Proof: The linear operator

G

(f ¢) (u): =J. Ad,{@(ua))du(a)
G G

is clearly a continuous projection onto C % (P,¢) and this
shows that C %, (P,¢) is a splitting subspace of C ° (P,¢); in
fact C & (P,g) is a Lie subalgebra of C * (P,g) since the Lie
bracket is pointwise defined. A chart at the identity of the
NLF-Lie group C =(P,G) is given by (U,, y, CZ(P}V)
CCZ(P,g)), where, if expg : g—G is the exponential map of
G, V is a zero neighborhood in ¢ such that expg | v:
V—expg (¥V)=WCQG is a diffeomorphism,

U, ={feC~(P,G)| f~e, AP)CW}
and

y: U —CZ(PV)

is given by y( f) = loggof, logg = (expg | v) ™'t W—V.
We may assume that ¥ is invariant under the adjoint action
(e.g., an open ball with respect to a G-invariant metric on g)
so W is invariant under conjugation. Then

90(/,_, =U,
:= {feC~(P,G)| f~e,

FPYCV, flua) =a~'flu)a, VaeG}.
Clearly .
X(/(}e) = {peC ~(P,z)|p~0,

@(ua) = Ad, @(u), p(U)CV}

=y (U)NC 5 (Pg).

Then @ isa splitting submanifold of C = (P,G), hence a Lie
subgroup with Lie algebra the subalgebra C % (P,g) of
Cr(Pyg). ]
As remarked above the groups &, $*, 9 are algebrai-
cally isomorphic and we can consider the following diagram:

g L g

o

J
where the isomorphism j is given by

h(FY 0= [ Ffw)le, uep™'(x).
Now we know that in the case of compact G the three
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groups are NLF-Lie groups. The following result is expect-
ed.

Theorem 2.4: If G is compact, the &, ¥*, and & are
isomorphic as NLF-Lie groups.

Proof* We must just prove that the maps in the above
diagram are smooth.

(a) The map ¢ is smooth. Introduce the smooth map

ri (P XG)XP—P, A([(wa)]su)): = ua,

where (P X G) X P is the total space of the fiber product of
G M

the bundles P[G] and P(M,G), and consider the following

maps:

ty: 4 —C = (M,P X G), the canonical embedding,
G

4 €= (MP XG)—C = (PP XG), Seofop,
1z € * (PP X G)—C *(P,(P X G) XP),
(L () () = (flu),u),

ty: C>(P(P >°56') >A§P)—+C 2 (P,P), YXmmsro(yon).

The maps ¢, and ¢, are smooth by Theorem 11.4 of Ref. 5; the
map ¢, is smooth by Proposition 10.5 of Refs. 5; finally, ¢, is
smooth by Proposition 10.10 of Ref. 5. Note that ¢,9¢,%¢,

takes the values in the submanifold C *(P,(P X G) X P) of
G M

C =(P,(P X G)XP)and that ¢ = 13°1,%%,.
G .
(b) The map " is smooth. Introduce the smooth map

v: P >A§P—+G, v(u,v): =a, whereua=v,
and consider the following maps:
Ko ¥ —>C =(P,P), the canonical embedding,
Kk;: C=(PP)y—C=(PP XP), (k,(f))u):=(f(u),u),

k: C= (PP >A$P)—>C°°(P,G), K(f)=wvof.

Note that * = x,9K,%,; its smoothness follows by the same
arguments as at the end of (a).

(c) The mapj is smooth. As is shown in Ref. 3 we can
use as charts at the identities of the groups & and 9 the
canonical charts using the exponential mappings

Exp: L, =Sec, Plz]—>¥%, (ExpA)(x) = exp,(A(x)),

where exp: P X z—P X G is the pointwise defined exponen-
G G

tial map, and

Exp: Ly =C % (Py)—F, (Exp&)(x) = expgl6(u)).

The two charts are clearly j-correlated and the local expres-
sion of j is the continuous linear operator

C = (P,g) DAmAeSec, Pg]

with
A =[wAw)lg, uep™'(x).
Hence the isomorphism j is smooth. ]
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We remark that, taking into account the properties of
the exponential map of &, Theorem 2.4 shows that the ex-
ponential map of the group Diff P restricted to ¥* is a local
diffeomorphism in the case of compact G.

We conclude this section calling attention to two inter-
esting properties of the Schwartz—Lie group ¥.

(1) The group & has no small subgroups; this can be
easily seen and essentially stems from the fact that the group
G, as every ordinary Lie group, has the same property.’

(2) The group ¥ is analytic and the Baker—Campbell-
Hausdorff formula holds

Exp o Exp o' = Exp{(0 + 0') + }[0,0’]
+ Lo (0,011 — [0,[0,0']] + -},

for every 0,0” in a suitable neighborhood of 0 in L., .

This can be seen rather easily using the canonical atlas
defined by the exponential map and again remembering that
the same property holds for the group G.

Obviously also the group %* and & are these two prop-
erties in the case of compact G.

Ill. THE MANIFOLD OF PRINCIPAL CONNECTIONS

In gauge theories an important step is the study of the
action of & on the space & of principal connections. Usually
this action is introduced essentially as a pullback via the
gauge transformations considered as diffeomorphisms of P.

As pointed out in Sec. I, the gauge transformations are
in fact bundle automorphisms and this point of view is per-
haps the only suitable way, in the general case, to treat
smoothness properties of the group of gauge transforma-
tions.

Accordingly it might be convenient to look at connec-
tions too as sections of a suitable bundle over the base space
M. This is just the aim of this section.

We need some preliminaries.

As is well known the tangent space TG of the Lie group
G with multiplication z: G X G—G can be given a Lie group
structure with multiplication Tu.

The group TG can be made to act on the Lie algebra of G
by introducing the affine action

B: TG Xg—¢, Bl(a,0):Ad, —a,
where a,€T,G, acg, and o, = (T, R, )a.

Moreover the group 7G can be considered as the struc-
ture group of the tangent principal bundle TP(TM,TG)
=(TP,Tp,TM;TG). Actually if (U,,p,) is a trivializing
system for P(M,G) with transition functions @.p, then
(TU,,Tp, ) is a trivializing system for TP(TM,TG) with
transition functions Tg,z.

We recall that a connection one-form w on the principal
bundle P(M,G) is a g-valued one-form on P such that

VueP,
for every fundamental vector field a* on P, i.e.,
ay=(T,A4,)a,
and
(b) woTA® = Ad, — low, VaeG.
Looking at  as a map from TP into » we can investigate

(a) w(a}) =a,

aeg;
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.

its equivariant properties with respect to the actions of 7G
on TP and g.

We have, with §, €T, P, a,€T, G, and acg such that a,
= (T.,R,)a,
w(T(u,a) A (§u !aa ))

=o((T,4)(§,) + (T,4,)(a,))

= Ada 'w(gu ) + m((TaAu )((TeRa )a))

=Ad, @(8,) + o((T,4°T,4,)a)

=Ad, @(§,) + Ad,- 0((T.4,)a)

=Ad,-w(£,) + Ad, .a

=B((a,) " a(£,))

Thus connection one-forms can be considered as (parti-
cular) B-type g-valued maps on TP. It is well known that the
B-type g-valued maps on TP correspond bijectively to the
sections of the bundle TP[ ] associated to the principal bun-
dle TP(TM,TG). To get a precise characterization of con-

nection one-forms we must investigate this associated bun-
dle.

First of all we remark that TP[z] = (TP X2, 1p,, TM)
76

is an affine bundle, that is, a bundle of affine spaces; actually
the action B of TG on ; is affine. The transition functions
Yap take values in the group of affine transformations of »
and are given by :

Vs ()8 = B((T,@op)E,0)
=Adp  (x)6 — (d,@.p)E,, £.€TU,,

where d, @5 = (T,R@up..,)” '°T @, is the (right) loga-
rithmic derivative of the transition function g, of the prin-
cipal bundle P(M,G).

We now introduce the fiber bundle 7Py, [ |=(TP X »,
TG

7y ©Tp,M), where 7,,: TM—M is the projection of the tan-
gent bundle of M.

By standard arguments it can be seen that 7P, [¢] is a
vector bundle for which the fiber over x is T, M X .

If Op: P>TP, Oy: M—TM, and O;: G—TG are the
zero sections of the corresponding tangent bundles, the fol-
lowing diagram commutes:

P Op TP
M O ™

The pair (0p,0; ) is an injection of principal bundles
over O,,, so it induces uniquely a map

f:PXy——»TPX;,
G TG

which is a bundle injection over O,, of the associated bun-
dles P[¢] and TP[¢]. Moreover .7 is a vector bundle injec-
tion of P[] and TP, [2] over id,,.

Now we can prove the following decomposition
theorem, which will be very important later on.

Theorem 3.1: TP, [ 2] P[] ® TM, that is, the vector
bundle 7P, [ ] is the Whitney sum of P[] and the tangent
bundle of M.
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Proof: The image .7~ (P[¢]) of P[¢] is a subbundle of
TP, [#]. Hence there exists a Whitney complement of
J (Plg]), e, a subbundle W of TPy [g] such that
TPy [#] =7 (P[£]) ® W. Looking at the diagram

we get Tp, 0.7 = 0,°p,,sothat Im 7 CKer Tp,, Tp, be-
ing a vector bundle morphism over M. But dim Im .7~
=dim ¢ =dim Ker 7p,,soIm 7" = Ker Tp,. Hence Ip,
induces a vector bundle isomorphism of W and TM. O

Now we can give a precise characterization of the con-
nections on P(M,G) among the sections of TP[#]. To every
connection one-form @ there corresponds a section y of
TP[¢] with

v(§:) = [(gu’w(gu Mres

where Tp(£,) = £,. Clearly the connections are exactly
those sections y of TP[ ] that satisfy the following diagram:

TM____ Y TP Xy
TG
Tp,
M id - M

and are linear on the fibers, that is on those sections of TP[ & ]
which are also vector bundle morphisms over the identity of
TM and TP, [¢].

Thus we have, denoting by ¢ the set of the principal
connections,

¢ ={yeSec L(TM,TP,;[2]), Tp oy(x) = 1,, YxeM},

where L(TM,TP,,[#]) is the vector bundle over M whose
fiber at x consists of the linear maps from 7, M into
(my©Tp,) '(x) and 1, is the identity operator on T, M.

On the basis of the above identification we can give € a
suitable differentiable structure.

It is shown in Ref. 5, Proposition 10.10, that the vector
space Sec E of the sections of an ordinary vector bundle
(E,7,X) is a splitting submanifold of C* (X,E) modeled on
the NLF-space Sec, E. For any seSec E, thesets + Sec, Eis
an open neighborhood of s in FD-topology and an affine
subspace, which is isomorphic to Sec. E; for this reason
Sec Eis called a local topological affine space. We now prove
that % is an affine subspace and a splitting submanifold
(shortly a local topological affine splitting subspace) of the
local topological affine space Sec L (TM, TPy [2]).

Theorem 3.2: ¢ is a topological affine splitting subspace
of Sec L(TM,TP,, [#]) isomorphic to Sec L(TM,P[z]) as
topological affine space.

Proof: Fix y,€€; since Tp,o(y(x) — ¥o(x)) =0, Vx
eM, implies y—y,<KerTp, =Im7, then y—7,
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€Sec L (TM,.7 (P[£])). Conversely, let oeSec L{TM,
T (P [£])). One can easily prove that ¥, 4+ 0€% ; moreover,
by Theorem 3.1, Sec L (TM,TPy,[2]))=Sec L(TM,TM)
®Sec L(TM,P [4]) as locally convex vector spaces, hence
Sec L(TM,P[¢]) is a splitting submanifold of
Sec L(TM,TP,, [#]) modeled on Sec L(TM,P[z]). 0

Remark: There is another interesting way to look at
connections of P(M,G); they can be considered as reduc-
tions of the principal bundle TP(TM,TG) to the subgroup G
of the structure group 7G. This follows from the fact that the
bundles 7P[ ;] and TP /G are isomorphic and by Proposi-
tion 5.6 (Chap. I of Ref. 8).

Here we will not exploit further this point of view on
connections.

IV. SMOOTHNESS OF THE ACTION OF ¥ ON ¢

In order to prove the smoothness of the action of & on
% we need some preliminary results of geometric nature.

Given the principal bundle P(M,G), let Z: G X F—Fbe
the left action of G on a manifold F which defines the asso-
ciated bundle P[F]; then TZ: TG X TF —TF is again a left
action and defines the associated bundle TP[TF].

The following theorem can be proved by standard argu-

ments.
Theorem 4.1: (a) The associated bundle TP[TF] is iso-

morphic to the tangent bundle (T(P X F),Tpy,TM ) of the
bundle P[F]. ¢

(b) The triple O(P XF)= (TP XTFd¢P XF),
where 35([ (£,.57) ] 1¢) = [(u(,'f) lgsisa vzgztor bundleGiso-
morphic to the tangent bundle of the manifold P X F.

G

Given two vector bundles &, = (E,7,X) and &,
= (F,m,Y), we recall that L(£,,£,) stands for the vector
bundle (L(E,F),aXw,X X Y),where L(E,F),,, consistsof
thelinearmaps L, ,,: E,—F, and (a X@) (L, ) = (x,p).
We denote by Ly (£,,£,) the bundle over X obtained by the
composition of @ X @ with the canonical projection on X.

Moreover, if X and Y are smooth manifolds, the
one-jet map j': C* (X,¥)—-C~(X,J'(X,Y)) is a smooth
map by Proposition 11.1 of Ref. 5. Now, identifying
J'(X,Y) with L(TX,TY), we remark that the mapj ' takes
values in the splitting submanifold Sec Ly (TX,TY) of
C= (X,L(TX,TY)). Therefore the map

j': % =Sec PG ]—Sec L (TM,T(P XG))
G
is a smooth map and by Theorem 4.1 we can consider it as a
map
Jj 1 9 —Sec Ly (TM,0(P X G)).
G

Coming to the action of & on ¥, first we recall that in

the definition of TP X TG we use the action of TG on itself

TG

by inner automorphisms @, »B,a,B, ~' and in TP X g the
TG
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above defined action B: TG X g—4. One can easily check
that

B (ﬂbaaﬁb - l)B(ﬂb )6)) = B(Bb )-B (aa )6) )
Then the following “fibered action™ is well defined:

B: (TP XTG) X (TP X g)—TP X 2,
TG ™ TG TG

B([(€02) 116 [ ) ] 7o) = [(£u,Ad 8 — @) 7,
wherea, =T,R, - a.

Using B we define the left action of ¥ on ¢

A GXEE, Ay =7,
where

P(£):=B(( ') r(ED), for §.eT M.

Theorem 4.2: The action 4 is smooth.
Proof: We can decompose A as follows:

j ' i
G XE — Sec L,,(TMO(P X G))xSec L(TM, TPy, [¢])
G

Compy -

— Sec L(TM, TP, [2])— ¥,

wherei: ¥ —Sec L(TM,TPy, [#]) is the canonical inclusion
and use of the fact that Compy (j ' Xi)(¥ X € )CImi is
made. We have just recalled that j ' is a smooth map; the
inclusion i/ is an embedding by Theorem 3.2 and Compj is
smooth by Proposition 11.4 of Ref. . O

Remark: We recall that, for every ye%, y(&)
= [(£..@(§,))] r¢» Where Tp(£,) = £, and w is the con-
nection one-form corresponding to y. Analogously if €9
there exists an /£ such that s(x) = [(u, f{u))]s with
uep~'(x). Moreover

(J'9)(&) = (T$) (&) = [ TFI(EN ] 16

so that we have
B[ T 1) EN ror [0 ] 16)
= [(gu’Ad](u)m(gu) — (df) (&, ))]’I‘G’
where df’ =(T.Rp.,)~ ‘OT,,}" is the (right) logarithmic deri-

vative of f at u.
If we change the left action into a right action

A CXG—C, Ays)=y=A("'p),
we have
7€) = [(€uAd i) @) — @D 7€) 1o
= [(fuxAd]"(u)r'w(é'u)
+(Tﬁu)L(hu)r'"Tu])(fu)]TG,
since
(df) 71 (6) = (TR ) 'oT, F 1)
= Ty~ Ry o TS 7 (62)
= — (T Loy °Tu I
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In the expression

Aduy-@(8,) + (T Ly~ °T, ) (5.),
one can easily recognize the usual transformation f * of the
one-form w via pullback with the automorphism f defined by
Sflu) = u}"(u) (i.e., the corresponding element of ADY

Once the smoothness of the action 4 has been proved, a
natural development is the investigation of the properties of
the orbits and the structure of the orbit space. In this context
the main difficulties one is faced with arise from the lack of
inverse map theorems for manifolds modeled on locally con-
vex vector spaces more general than Banach spaces. Perhaps
for this reason it is common in physical applications to retire
to Banach manifolds or to chains of Banach manifolds.
However, a workable version of the inverse map theorem
(the Nash—Moser theorem ) is now available for a significant
subcategory of Fréchet manifolds called “tame Fréchet
manifolds” by Hamilton.®

Now, if the base manifold M is assumed to be compact,
the group ¥ clearly becomes a nuclear Fréchet-Lie group
and % a splitting affine subspace of a nuclear Fréchet space.
Actually we can show that ¥ is a tame Fréchet-Lie group,
% a tame Fréchet manifold, and the action a tame smooth
action. ’

To some extent, moreover, even the case of noncompact
M can be handled: the connected component of the unit of &
can be shown to be a strict inductive limit (in the category of
topological groups) of tame Fréchet-Lie groups.

As a consequence of the tameness properties we can
prove, in general, that every locally compact subgroup of &
is a splitting Lie subgroup. This result appears as a general-
ization to & of a classical Cartan theorem and will be useful
in the study of stability subgroups of the action & on .
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