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Abstract. We consider spaces of smooth immersed plane curves (modulo

translations and/or rotations), equipped with reparameterization invariant
weak Riemannian metrics involving second derivatives. This includes the full

H2-metric without zero order terms. We find isometries (called R-transforms)

from some of these spaces into function spaces with simpler weak Riemannian
metrics, and we use this to give explicit formulas for geodesics, geodesic dis-

tances, and sectional curvatures. We also show how to utilise the isometries

to compute geodesics numerically.
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1. Introduction

In this article we will study four different Sobolev H2-type metrics on the infinite
dimensional manifold of parametrized curves in the plane, Imm(S1,R2). This space
is of interest due to its connections to the field of mathematical shape analysis.
Riemannian metrics are used in shape analysis, since they equip the space with
a distance function that can be used for comparison or classification of objects;
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they also allow to locally linearize the space via the exponential map and thus to
generalize linear statistical methods to these — in general – highly nonlinear spaces.

In applications to shape analysis one is mostly interested not in the curve itself,
but only in the shape that it represents. Two curves represent the same shape,
if they differ by a reparameterization or relabelling of the points. For this reason
we will only be interested in metrics that are invariant under the action of the
reparameterization group Diff(S1).

The arguably simplest reparametrization invariant metric on Imm(S1,R2) is the
L2-metric

Gc(h, k) =

∫
S1

〈h, k〉ds .

Here h, k ∈ Tc Imm(S1,R2) are tangent vectors with foot point c ∈ Imm(S1,R2) and
ds denotes arc-length integration, i.e., ds = |c′(θ)|dθ. Unfortunately this metric is
unsuitable for shape analysis, because the induced geodesic distance vanishes, i.e.,
any two curves can be joined by paths of arbitrary short length. This surprising
result was proven first for the quotient space Imm(S1,R2)/Diff(S1) in [25]; later it
was generalized in [24] to the space Imm(M,N)/Diff(M) of type M submanifolds
of N where M is compact and dimM ≤ dimN , as well as the diffeomorphism
group Diff(M); using a combination of both results it was shown in [3] that the
distance also vanishes on Imm(M,N). Note that this is a purely infinite dimensional
phenomenon – in finite dimensions the geodesic distance is always positive, due to
the local invertibility of the exponential map.

The vanishing of the geodesic distance for the L2-metric led to the search for
stronger metrics, that would be suitable for shape analysis. Candidates, that have
been considered, include the L2-metric weighted by curvature [25]:

GAc (h, k) =

∫
S1

(1 +Aκ2
c)〈h, k〉ds ,

or the length of the curve [34, 29]:

GΦ
c (h, k) = Φ(`c)

∫
S1

〈h, k〉ds .

Here κc denotes the curvature of the curve, `c its length and Φ : R→ R>0 is a suit-
able positive function. These metrics have been generalized to higher dimensional
immersions in [8, 9].

A different approach to strengthen the metric and the one, that we will use in
this article is to add terms involving higher derivatives of the tangent vectors to
the metric, leading to metrics of the form

Gc(h, k) =

∫
S1

k∑
j=0

aj〈Dj
sh,D

j
sk〉 ds ,

where Dsh = 1
|c′|h

′ denotes the arc-length derivative of h and aj are weights, possi-

bly depending on the curve c. More generally one can consider metrics that are de-
fined via a field of symmetric pseudo- differential operators Lc : Tc Imm(S1,R2)→
Tc Imm(S1,R2) by

Gc(h, k) =

∫
S1

〈Lch, k〉 ds =

∫
S1

〈h, Lck〉 ds .
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This approach leads to the class of Sobolev-type metrics, which were independently
introduced in [11, 26, 32] and studied further in [7, 10, 22]. Often the operator
field L will have a kernel and thus GL will be a metric only a certain quotient of
Imm(S1,R2), e.g., if all constant vector fields are in its kernel, then one has to pass
to the quotient Imm /Tra of plane parametrized curves modulo translations. An
overview of the various metrics on Imm(S1,R2) can be found in [6].

While Sobolev-type metrics are a natural generalization of the L2-metric, their
numerical treatment is unfortunately rather involved. This stems mainly from the
fact that the geodesic equation of a Sobolev-type metric of order k is generally a
highly nonlinear PDE of order 2k. There are exceptions. For the family of first
order metrics on Imm(S1,R2)/Tra given by

Ga,bc (h, h) =

∫
S1

a2〈Dsh, n〉2 + b2〈Dsh, v〉2 ds ,

with a, b > 0 there exists an isometric transformation of the space Imm(S1,R2)/Tra,
called the R-transform, which tremendously simplifies the computation of geodesics;
see [35, 31, 19, 4]. Apart from simplifying the computations, the representation via
the R-transform also permits us to compute the curvature and in some special cases
to obtain explicit formulas for geodesics.

There have been some attempts to solve the geodesic equation directly for order
one metrics on curves [27] and surfaces [2]. Metrics of higher order on the other
hand are still practically untouched. The only exception is [30], discussing the
homogenous H2-metric on the space of plane curves modulo similitudes. It is
therefore of interest to develop representations of higher order metrics, that have
the potential to simplify computations of geodesics.

In this article we continue the investigation started in [4] and use similar methods
to study four different H2-type metrics, namely:

Gc(h, k) =

∫
S1

κ−3/2〈D2
sh, n〉〈D2

sk, n〉+ 〈Dsh, v〉〈Dsk, v〉ds ,((7) in Sect. 3)

Gc(h, k) =

∫
S1

〈Dsh, v〉〈Dsk, v〉+ 〈D2
sh, n〉〈D2

sk, n〉ds ,((13) in Sect. 4)

Gc(h, k) =

∫
S1

〈Dsh,Dsk〉+ 〈D2
sh, n〉〈D2

sk, n〉ds ,((19) in Sect. 5)

Gc(h, k) =

∫
S1

〈Dsh,Dsk〉+ 〈D2
sh,D

2
sk〉ds .((26) in Sect. 6)

Despite its seemingly complicated nature, metric (7) is completely amenable to the
R-tranform treatment: For open curves it is flat and we get explicit formulas for
geodesics and the geodesic distance. The image of the R-transform of the space of
closed curves is a codimension 2 splitting submanifold of an open (with respect to
a finer topology) set in a pre-Hilbert space. See Sect. 3.3 for an explanation of the
form of this metric.

For the metric (13) the image of the corresponding R-transform for open curves
is C∞([0, 2π], (R>0 × R, g)) with a weak L2-type metric; here g is a curved met-
ric on R>0 × R, for which we manage to derive (somewhat) explicit formulas for
geodesics. The image of the space of closed curves is again a codimension 2 splitting
submanifold.



4 MARTIN BAUER, MARTINS BRUVERIS, PETER W. MICHOR

For metric (19) the image of the space of open curves under the R-transform
is splitting submanifold of infinite codimension in C∞([0, 2π], (R>0 × S1 × R, g))
described by a system of ODEs.

The picture for metric (26) is again more complicated but managable; we do not
include full results in this paper.

2. Background material and notation

In this paper we use convenient analysis in infinite dimensions as described in
[20].

2.1. Notation. Let M denote either S1 or [0, 2π] and let c : M → R2 be a regular
curve, i.e., c′(θ) 6= 0. We denote the curve parameter by θ ∈M and differentiation
by ′, i.e., c′ = ∂θc. Since c is an immersion, the unit-length tangent vector v = c′/|c′|
is well-defined. Denote by J the rotation by π

2 . Rotating v we obtain the unit-length
normal vector

n =

(
0 −1
1 0

)
v = Jv .

We will denote by Ds = 1
|c′|∂θ the derivative with respect to arc-length and by

ds = |c′|dθ the integration with respect to arclength. To summarize, we have

v = Dsc , n = Jv , Ds =
1

|c′|
∂θ , ds = |c′|dθ .

The curvature can be defined as

κ = 〈Dsv, n〉 ,
where 〈 , 〉 denotes the Euclidean inner product. The orthonormal frame (v, n)
satisfies the Frenet equations,

Dsv = κn

Dsn = −κv .

We define the turning angle α : M → R/2πZ of a curve c by v(θ) = exp(iα(θ)) =
(cosα, sinα); we shall often treat S1, R/2πZ, and the intervall [0, 2π] with endpoints
identified, as the same space.

2.2. The manifold of plane curves. The space of closed immersed curves,

Imm(S1,R2) =
{
c ∈ C∞(S1,R2) : c′(θ) 6= 0

}
,

is an open set in the manifold C∞(S1,R2) with respect to the C∞-topology and
thus itself a smooth manifold. The tangent space of Imm(S1,R2) at the point c
consists of all vector fields along the curve c. It can be described as the space of
sections of the pullback bundle c∗TR2,

Tc Imm(S1,R2) = Γ(c∗TR2) =

h :

TR2

π

��
S1 c //

h

==

R2

 .

Since the tangent bundle TR2 is trivial, we can identify Tc Imm(S1,R2) with the
space of R2-valued functions on S1,

Tc Imm(S1,R2) ∼= C∞(S1,R2) .
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If we drop the periodicity condition we obtain the manifold of open immersed curves,

Imm([0, 2π],R2) =
{
c ∈ C∞([0, 2π],R2) : c′(θ) 6= 0

}
.

The tangent space of Imm([0, 2π],R2) is similar to that for closed curves, only with
S1 replaced by [0, 2π]. Whenever we describe results that work for both open and
closed curves we will write Imm(M,R2), with M standing for either S1 or [0, 2π].

All metrics in this article will be degenerate on Imm(M,R2) – their kernel will
consist of translations or Euclidean motions. This leads us to consider the spaces
Imm(M,R2)/Tra and Imm(M,R2)/Mot. Here Tra denotes the translation group
on R2, i.e., Tra ∼= R2 and Mot denotes the group R2 nSO(2) of Euclidean motions.
We will identify the quotients with subspaces of Imm(M,R2) (sections for the left
action of the translation group or the motion group) in the following way

Imm(M,R2)/Tra ∼= {c ∈ Imm(M,R2) : c(0) = 0}
Imm(M,R2)/Mot ∼= {c ∈ Imm(M,R2) : c(0) = 0 and α(0) = 0} .

The tangent spaces are then given by

Tc
(
Imm(M,R2)/Tra

) ∼= {h ∈ C∞(M,R2) : h(0) = 0}
Tc
(
Imm(M,R2)/Mot

) ∼= {h ∈ C∞(M,R2) : h(0) = 0, 〈Dsh(0), n(0)〉 = 0} .

If we want sections that are invariant under the reparameterization group Diff(S1),
we shall consider instead

Imm(M,R2)/Tra ∼= {c ∈ Imm(M,R2) :

∫
M

cds = 0} ,

Imm(M,R2)/Mot ∼= {c ∈ Imm(M,R2) :

∫
M

cds = 0 and

∫
M

α ds = 0} .

If we mean any of these sections, we shall write C(M,R2): in all cases it is the
intersection of Imm(M,R2) with a closed linear subspace of C∞(M,R2). We will
also need the space of positively oriented convex curves

Immconv(M,R2) := {c ∈ Imm(M,R2) : κ(c) > 0} ,

which is an open set in Imm(M,R2) and thus itself a smooth manifold.

2.3. Variational formulae. We will need formulae that express, how the quan-
tities that have been introduced in the previous sections change, if we vary the
underlying curve c. For a smooth map F from Imm(M,R2) to any convenient
vector space we denote by

dF (c).h = Dc,hF =
d

dt

∣∣∣∣
t=0

F (c+ th) =
d

dt

∣∣∣∣
t=0

F (c̃(t, ))

the variation in the direction h, where c̃ : R ×M → R2 is any smooth variation
with c̃(0, θ) = c(θ) and ∂t|0c̃(t, θ) = h(θ) for all θ. Examples of maps F include v,
n, α, |c′|, κ. In the following lemma we collect the basic variational formulae that
we will use throughout the article.

Lemma 2.3.1. The first variations of the the turning angle α, the unit tangent
vector v, the normal vector n, the length element |c′| and the curvature κ are given
by

dα(c).h = 〈Dsh, n〉(1)
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dv(c).h = 〈Dsh, n〉n(2)

dn(c).h = −〈Dsh, n〉v(3)

d(|c′|).h = 〈Dsh, v〉|c′|(4)

dκ(c).h = 〈D2
sh, n〉 − 2κ〈Dsh, v〉 .(5)

Proof. The proof of these formulae can be found for example in [26]. �

2.4. Riemannian metrics on spaces of curves. A Riemannian metric on the
manifold of curves is a smooth family of positive definite inner products Gc(., .)
with c ∈ Imm(M,R2), i.e.,

Gc : Tc Imm(M,R2)× Tc Imm(M,R2)→ R .

Each metric is weak in the sense that Gc, viewed as linear map

Gc : Tc Imm(M,R2)→
(
Tc Imm(M,R2)

)′
from Tc Imm(M,R2) into its dual, which consists of R2-valued distributions on M ,
is injective but not surjective. In this article, we will study metrics G that are
induced by an operator field L via

Gc(h, k) =

∫
M

〈Lch, k〉ds =

∫
M

〈h, Lck〉ds ,

with c a curve and h, k ∈ Tc Imm(M,R2). The momentum p = Lch ⊗ ds ∈
(Tc Imm(M,R2))′ allows us to represent the metric as

Gc(h, k) = 〈p, k〉T Imm .

Furthermore, we will be interested only in metrics that are invariant under the
action of the reparameterization group Diff(M), that is, for each ϕ ∈ Diff(M) the
metric has to satisfy

Gc◦ϕ(h ◦ ϕ, k ◦ ϕ) = Gc(h, k) .

In this case the operator field L inducing the metric is invariant under reparame-
terizations.

Remark. The reason for this restriction is that in applications to shape analysis
one is mostly interested not in the curve c itself, but only in the shape that the
curve represents. Two curves c and e represent the same shape, if they differ by a
reparameterization or relabelling of the points, i.e., c = e ◦ ϕ. Thus one passes to
the quotient

Imm(M,R2)→ Bi(M,R2) := Imm(M,R2)/Diff(M) ,

of shapes modulo reparameterizations. The quotient Bi(M,R2) is an orbifold;
see [25]. Up to technicalities, equivalence classes [c] ∈ Bi(M,R2) correspond to
the image c(M) ⊂ R2 of the curve. Given a reparameterization invariant metric on
Imm(M,R2), it induces a metric on Bi(M,R2), such that the projection map is a
Riemannian submersion. See [8] for details.

The following lemma provides a useful way to calculate the geodesic equation of
such a metric.
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Lemma 2.4.1. Let C(M,R2) = Imm(M,R2) ∩ V ⊂ Imm(M,R2) be any of the
sections mentioned in 2.2, where V is the corresponding closed linear subspace of
C∞(M,R2). Let G = GL be a weak Riemannian metric on C(M,R2) induced by
an operator field L via

GLc (h, k) =

∫
M

〈h, Lck〉ds ,

for c ∈ C(M,R2) and h, k ∈ TcC(M,R2). Let L̄c = Lc( )⊗ ds and let Hc(ct, ct) ∈
(TcC(M,R2))′ be defined via Dc,m(Gc(h, h)) = 〈Hc(h, h),m〉V , where 〈 , 〉V denotes
the dual pairing between V ′ and V .

Then the geodesic equation exists if and only if 1
2Hc(h, h)− (Dc,hLc)(h) is in the

image of L̄c and (c, h) 7→ L̄−1
c

(
1
2Hc(h, h) − (Dc,hLc)(h)

)
is smooth. The geodesic

equation can be written as:

p = Lcct ⊗ ds = L̄c(ct)

pt =
1

2
Hc(ct, ct)

or ctt =
1

2
L̄−1
c (Hc(ct, ct))− L̄−1

c

(
∂t(L̄c)(ct)

)
This lemma is an adaptation to the special situation here of the more general

result [23, Sect. 2.4]; there a robust weak Riemannian manifold is one where the
conclusion of this lemma holds together with a compatibility of the chart structure
with the GL-completions of all tangent spaces. Compare also with the version for
diffeomorphism groups [5, Sect. 3.2]. In the sequel we shall compute Hc(h, h) in
many situations, but often we shall not check that it lies in the image of L̄; the
latter will follow directly from the representation of the metric via R-transforms.

Proof. To calculate the first variation of the energy we consider a one-parameter
family of curves c : (−ε, ε)× [0, 1]×M → R2 with fixed endpoints. The variational
parameter will be denoted by σ ∈ (−ε, ε) and the time-parameter by t ∈ [0, 1]. We
calculate:

∂σ
1

2

∫ 1

0

Gc(ct, ct) dt =
1

2

∫ 1

0

(∂σGc)(ct, ct) dt+

∫ 1

0

Gc(∂σct, ct) dt

=
1

2

∫ 1

0

〈Hc(ct, ct), cσ〉V dt+

∫ 1

0

Gc(∂tcσ, ct) dt

=
1

2

∫ 1

0

〈Hc(ct, ct), cσ〉V dt+

∫ 1

0

〈L̄c(ct), ∂tcσ〉V dt

=
1

2

∫ 1

0

〈Hc(ct, ct), cσ〉V dt+ 0−
∫ 1

0

〈∂t(L̄c(ct)), cσ〉V dt

=

∫ 1

0

GLc

(
L̄−1
c

(1

2
Hc(ct, ct)− ∂t(L̄cct)

)
, cσ

)
dt

=

∫ 1

0

GLc

(
L̄−1
c

(1

2
Hc(ct, ct)− (∂tL̄c)(ct)

)
− ctt, cσ

)
dt . �

2.5. The L2-metric on C∞(M,N) and Hk(M,N). To show well-posedness of the
geodesic equation we will need to work with the L2-metric on Sobolev completions
of manifolds of mappings. Here we summarise the necessary results.

Let M be a compact manifold with volume form µ and (N, g) a Riemannian
manifold. We assume that both M,N are finite dimensional. Let k > dimM/2+1.
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Then the k-th order Sobolev completion Hk(M,N) of order C∞(M,N) is a Hilbert
manifold, and the tangent space is given by

TqH
k(M,N) = {h ∈ Hk(M,TN) : π ◦ h = q} .

All results of this section also hold for k = ∞, i.e., for the Fréchet manifold
C∞(M,N).

We consider the weak Riemannian metric on THk(M,N):

(6) GL
2

q (h, k) =

∫
M

gq(x)(h(x), k(x)) dµ(x) .

The following theorem summarizes the properties of GL
2

.

Theorem 2.5.1. Let k ∈ N satisfy k > dimM/2+1 and let GL
2

be defined by (6).

(1) GL
2

defines a smooth weak Riemannian metric on Hk(M,N).
(2) Let expg : TN → N be the exponential map on (N, g), defined on a neigh-

bourhood of the zero-section. Then

expL
2

: X 7→ expg ◦X

is the exponential map expL
2

: THk(M,N) → Hk(M,N) of the GL
2

-
metric. It is a C∞-mapping defined on a neighbourhood of the zero-section.

(3) Let Ξg : TN → TTN be the geodesic spray of (N, g). Then

ΞL
2

: X 7→ Ξg ◦X

is the geodesic spray ΞL
2

: THk(M,N)→ TTHk(M,N) of the GL
2

-metric.
It is a C∞-mapping.

(4) Let Rg : TN × TN × TN → TN be the curvature tensor of (N, g). Then

RL
2

: (X,Y, Z) 7→ Rg ◦ (X,Y, Z)

is the curvature tensor RL
2

: THk×THk×THk → THk of the GL
2

-metric.
It is a C∞-mapping.

The proof of this theorem can be found in [12, Thm. 9.1], [12, Cor. 9.3], [1, Prop.
2] and [28, Prop. 3.4].

Given a submanifold of Hk(M,N), the smoothness of the induced geodesic spray
can be shown using the following theorem.

Theorem 2.5.2. Let k ∈ N be as above and let M be a smooth submanifold of
Hk(M,N), such that the projection ProjM : THk(M,N) � M → TM is smooth.

Then the geodesic spray of the metric GL
2

on M is given by

ΞM = ProjM ◦ΞL
2

and it is a smooth map.

This theorem is proven in [12, Thm. 11.1].
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3. A flat H2-type metric

3.1. The metric and its geodesic equation. In this section we will study an
H2-type metric on Immconv(M,R2)/Mot – the space of strictly convex curves. This
metric has vanishing vanishing curvature for M = [0, 2π] and for M = S1 the space
is isometric to a codimension 2 submanifold of a flat space. The metric is given by

(7) Gc(h, k) =

∫
M

κ−3/2〈D2
sh, n〉〈D2

sk, n〉+ 〈Dsh, v〉〈Dsk, v〉ds .

Note that the metric is only defined for strictly convex curves, i.e., those satisfying
κ > 0. It is sometimes more convenient to write G via its associated operator L,

Gc(h, k) =

∫
M

〈Lch, k〉ds =

∫
M

〈h, Lck〉ds ,

where Lc : Tc Immconv(S1,R2)→ Tc Immconv(S1,R2) is given by

Lch = D2
s

(
κ−3/2〈D2

sh, n〉n
)
〉 −Ds

(
〈Dsh, v〉v

)
.

Lemma 3.1.1. The null space of the bilinear form Gc(., .) is spanned by constant
vector fields and infinitesimal rotations, i.e.,

ker(Gc) =
{
h ∈ Tc Immconv(M,R2) : h = a+ b.Jc, a ∈ R2, b ∈ R

}
.

Proof. The null space of a symmetric bilinear form A on V × V is the set

ker(A) = {v ∈ V : A(v, w) = 0,∀w ∈ V } .
Thus for all h in the kernel of Gc we have Gc(h, h) = 0. From this we see that
for all h ∈ ker(Gc) we have 〈Dsh, v〉 = 0 and 〈D2

sh, n〉 = 0. If h satisfies the two
conditions then we also have Gc(h, k) = 0 for all k ∈ Tc Immconv(M,R2) and thus
we see that the null space of Gc consists exactly of these h with Gc(h, h) = 0. The
condition 〈Dsh, v〉 = 0 yields Dsh = b.n, with b ∈ C∞(M,R), and the condition
〈D2

sh, n〉 = 0 implies that b is constant. Taking the antiderivative of Dsh we obtain
the desired result. �

As an immediate consequence of Lem. 3.1.1 we obtain that Gc is a weak Rie-
mannian metric on Immconv(M,R2)/Mot. Its geodesic equation is giben by the
following theorem.

Theorem 3.1.2. On the manifold Immconv(M,R2)/Mot of plane parametrized
curves modulo Euclidean motions Gc(., .) defines a weak Riemannian metric. For
M = S1 the geodesic equation is given by

p = Lct ⊗ ds

= D2
s

(
κ−3/2〈D2

sct, n〉n
)
−Ds

(
〈Dsct, v〉v

)
⊗ ds ,

pt = Ds

(1

2
〈Dsct, v〉2v − 〈Dsct, n〉〈Dsct, v〉n−Ds

(
κ−3/2〈Dsct, n〉〈D2

sct, n〉
)
v

+ κ−3/2〈D2
sct, v〉〈D2

sct, n〉n−
3

4
Ds

(
κ−5/2〈D2

sct, n〉2n
))
⊗ ds ,

with the additional constraint

ct ∈ Tc(Imm(S1,R2)/Mot) ∼= {h ∈ C∞(M,R2) : h(0) = 0, 〈Dsh(0), n(0)〉 = 0} .

The first part of the theorem applies to both M = S1 and M = [0, 2π]. The
geodesic equation on the space of closed curves would additionaly contain a series
of boundary terms arising from integrations by parts.
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Remark. Note that Lc : Tc
(
Imm(M,R2)/Mot

)
→ Tc

(
Imm(M,R2)/Mot

)
is not

an elliptic operator, since the highest derivative appears only in the normal direc-
tion. Thus we cannot apply the well-posedness results from [26] or [7]. Nevertheless
we will show in Sects. 3.4 and 3.5 that the geodesic equation is locally well-posed
both on the space of open curves as well as the space of closed curves.

Proof. To calculate the formula for the geodesic equation we use Lem. 2.4.1. Using
the variational formulas from Sect. 2.3 we calculate for a fixed vector field h the
variation of the components of the metric G:

Dc,m (〈Dsh, v〉) = −〈Dsm, v〉〈Dsh, v〉+ 〈Dsm,n〉〈Dsh, n〉
Dc,m

(
〈D2

sh, n〉
)

= −〈Dsh, n〉Ds (〈Dsm, v〉)− 〈D2
sh, v〉〈Dsm,n〉

− 2〈D2
sh, n〉〈Dsm, v〉 .

Thus we obtain the following expression for the variation of the metric:

Dc,m(Gc(h, h)) =

∫
S1

−〈Dsm, v〉〈Dsh, v〉2 + 2〈Dsm,n〉〈Dsh, n〉〈Dsh, v〉

− 2κ−3/2〈Dsh, n〉〈D2
sh, n〉Ds (〈Dsm, v〉)− 2κ−3/2〈D2

sh, v〉〈D2
sh, n〉〈Dsm,n〉

− 3

2
κ−5/2〈D2

sm,n〉〈D2
sh, n〉2 ds .

We can now calculate Hc(h, h) using a series of integrations by parts:

Hc(h, h) = Ds

(
〈Dsh, v〉2v − 2〈Dsh, n〉〈Dsh, v〉n− 2Ds

(
κ−3/2〈Dsh, n〉〈D2

sh, n〉
)
v

+ 2κ−3/2〈D2
sh, v〉〈D2

sh, n〉n−
3

2
Ds

(
κ−5/2〈D2

sh, n〉2n
))
⊗ ds .

The existence of the geodesic equation, i.e., the invertibility of L̄ will follow
from the representation of the metric via the R-transform. The R-transform is
an isometry from Imm(M,R2)/Mot onto its image im(R) and the image is a

smooth submanifold of the space (C∞(M,R2), GL
2

) with a smooth orthogonal pro-
jection TC∞(M,R2) � im(R) → T im(R). Theorem 2.5.2 shows that the geodesic
spray of the L2-meric restricted to im(R) exists and is smooth and thus we can
pull it back via R to Imm(M,R2)/Mot. Hence the geodesic equation exists on
Imm(M,R2)/Mot. �

3.2. The R-transform. Consider the map

(8) R :

{
Immconv(M,R2)/Mot → C∞(M,R2)

c 7→
√
|c′| (2, 4κ1/4)

,

and equip the space C∞(M,R2) with the L2-Riemannian metric,

(9) GL
2

q (h, k) =

∫
M

〈h(θ), k(θ)〉dθ .

Here q ∈ C∞(M,R2) and h, k ∈ TqC∞(M,R2). Note that the Riemannian metric

GL
2

doesn’t depend on the point q. The space (C∞(M,R2), GL
2

) is therefore a flat
Riemannian manifold.

Theorem 3.2.1. The map

R : (Immconv(M,R2)/Mot, G)→ (C∞(M,R2), GL
2

)
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is an injective isometry between weak Riemannian manifolds, i.e.,

Gc(h, k) = GL
2

R(c)(dR(c).h, dR(c).k) =

∫
M

〈dR(c).h(θ), dR(c).k(θ)〉dθ

for h, k ∈ Tc Immconv(M,R2)/Mot.

Proof. Using formulas (4) and (5) we obtain

Dc,h

(√
|c′|
)

= 1
2 〈Dsh, v〉

√
|c′|

Dc,h

(
κ1/4

√
|c′|
)

= 1
4κ
−3/4〈D2

sh, n〉
√
|c′| ,

and thus the derivative of the R-transform is

dR(c).h =
(
〈Dsh, v〉

√
|c′|, κ−3/4〈D2

sh, n〉
√
|c′|
)
.

Hence

〈dR(c).h, dR(c).h〉 =
(
〈Dch, v〉2 + κ−3/2〈D2

sh, n〉2
)
|c′| ,

and the first statement of the theorem follows.
To show that R is injective we recall that one can recover the turning angle up

to a constant from the curvature function κ and the arclength |c′| via Dsα = κ, or
equivalently

α(θ)− α(0) =

∫ θ

0

κ|c′|dθ .

Choosing a different value for α(0) results in a rotation of the curve. From the
turning angle α and the arclength |c′| one can reconstruct the curve c up to a

translation by integration: c(θ)− c(0) =
∫ θ

0
eiα|c′|dθ. �

3.3. A motivation for this metric. The choice of the factor κ−3/2 in front of the
term 〈D2

sh, n〉2 in (7) appears to be arbitrary. One possibility to construct a second

order Sobolev type metric on Imm(M,R2) as the pullback of the flat GL
2

-metric, is

to use an R-transform, that has a component of the form Rj(c) =
√
|c′|f(κ), where

f : R→ R is some smooth function. The derivative of Rj with respect to c is

dRj(c)h =
√
|c′|
(
f ′(κ)〈D2

ch, n〉 − 2κf ′(κ)〈Dch, v〉+ 1
2f(κ)〈Dch, v〉

)
.

The pullback metric would then contain a term∫
S1

(
f ′(κ)〈D2

ch, n〉 − 2κf ′(κ)〈Dch, v〉+ 1
2f(κ)〈Dch, v〉

)2
ds .

In order to avoid cross-derivatives in the metric, the function f(κ) needs to satisfy

1

2
f(κ) = 2κf ′(κ) .

Solutions to this ODE are given by

f(κ) =

{
Cκ1/4, κ > 0

−C(−κ)1/4, κ < 0
,

with C ∈ R and the corresponding R-transform with Rj(c) = 4
√
|c′|κ1/4 induces

the following term in the metric∫
S1

κ−3/2〈D2
ch, n〉2 ds .
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Thus the factor κ−3/2 is the unique choice to obtain a second order Sobolev type
metric, which is flat on the space Immconv(M,R2)/Mot.

3.4. The space of open curves. The image of the R-transform on the space
Immconv([0, 2π],R2) of open convex curves is the set of all R 2

>0-valued functions,
which is an open set in C∞([0, 2π],R2).

Theorem 3.4.1. The R-transform

R : Immconv([0, 2π],R2)/Mot→ C∞([0, 2π],R 2
>0) ⊂

open
C∞([0, 2π],R2)

is a diffeomorphism and its inverse is given by

(10) R−1 :

{
im(R)op → Immconv([0, 2π],R2)/Mot

q 7→ 2−2
∫ θ

0
q2
1 exp

(
i
∫ σ

0
2−6q−2

1 q4
2 dτ

)
dθ

.

The space (Immconv([0, 2π],R2)/Mot, G) is a flat and geodesically convex Riemann-
ian manifold.

Proof. It is shown in Thm. 3.2.1 that the R-transform is injective. The surjectivity
will follow directly from the inversion formula. For the inversion formula note that
we can reconstruct

|c′| = 2−2q2
1 κ = ( 1

2q
−1
1 q2)4 α′ = 2−6q−2

1 q4
2

and that

c(θ) = c(0) +

∫ θ

0

exp (iα(0)) exp

(
i

∫ σ

0

α(τ) dτ

)
dσ .

Since the initial conditions c(0) and α(0) are unspecified, this determines the curve
up to translations and rotations. The flatness follows from Thm. 2.5.1, since R2

>0 is
flat. Given two curves c0 and c1, the minimizing geodesic connecting them is given
by

c(t, θ) = R−1 (tR(c1) + (1− t)R(c0)) (θ) ,

thus showing that Immconv([0, 2π],R2)/Mot is geodesically convex. �

Remark. Since R 2
>0 is geodesically incomplete, the same is true for the space

Immconv([0, 2π],R2)/Mot. A geodesic will leave the space, when it fails to be an
immersion, i.e., |c′(t, θ)| = 0 for some (t, θ), or when it stops being convex, i.e.,
κ(t, θ) = 0. While the term κ−3/2〈D2

sh, n〉2 in the metric penalizes a curve from
straightening out, it is not strong enough to prevent it.

The R-transform allows us to give explicit formulas for geodesics and for the
geodesic distance.

Theorem 3.4.2. Given two curves c0, c1 ∈ Immconv([0, 2π],R2)/Mot the unique
geodesic connecting them is given by

c(t, θ) = R−1 (tR(c1) + (1− t)R(c0)) (θ) ,

and their geodesic distance is

distGop(c0, c1)2 =

∫ 2π

0

16

(√
|c′1|κ

1/4
1 −

√
|c′0|κ

1/4
0

)2

+ 4

(√
|c′1| −

√
|c′0|
)2

dθ .

Proof. This follows from Thm. 3.4.1. �
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Remark. The formula for the geodesic distance implies in particular that the
following functions are Lipschitz continuous√

|c′| :
(

Immconv([0, 2π],R2)/Mot,distGop

)
→ L2([0, 2π],R)

κ1/4
√
|c′| :

(
Immconv([0, 2π],R2)/Mot,distGop

)
→ L2([0, 2π],R) .

From the Lipschitz continuity of
√
|c′| and the identity

√
`c = ‖

√
|c′|‖L2 we can

then conclude that√
`c :

(
Immconv([0, 2π],R2)/Mot,distGop

)
→ R

is also Lipschitz continuous. An immediate consequence of this is the following
lower bound for the geodesic distance:

distGop(c0, c1) ≥ 2
∣∣∣√`c1 −√`c0∣∣∣ .

3.5. The space of closed curves. When we restrict our attention to the space
Immconv(S1,R2)/Mot of closed, strictly convex curves, the image of theR-transform
is no longer an open subset of C∞(S1,R2).

Define the following function Hcl : Immconv(S1,R2)/Mot→ R2, which measures
how far away the preimage of q is from being a closed curve:

Hcl(q) =

∫ 2π

0

q1(θ)2 exp(iα(q)(θ)) dθ , α(q)(θ) = 2−6

∫ θ

0

q1(σ)−2q2(σ)4 dσ .

The gradients of the components of Hcl with respect to the GL
2

-metric are

gradH1
cl =

(
2q1 cosα(q) + 2−5q4

2q
−3
1

∫ 2π

θ
q2
1 sinα(q) dσ

−2−4q3
2q
−2
1

∫ 2π

θ
q2
1 sinα(q) dσ

)
(11a)

gradH2
cl =

(
2q1 sinα(q)− 2−5q4

2q
−3
1

∫ 2π

θ
q2
1 cosα(q) dσ

2−4q3
2q
−2
1

∫ 2π

θ
q2
1 cosα(q) dσ

)
.(11b)

The function Hcl characterizes the image of the R-transform.

Lemma 3.5.1. The image of Immconv(S1,R2)/Mot under the R-transform is

im(R)cl =
{
q ∈ C∞(S1,R2

>0) : Hcl(q) = 0
}
.

It is a splitting submanifold of C∞(S1,R2
>0) of codimension 2.

For q ∈ im(R)cl the orthogonal complement of Tq im(R)cl with respect to the

GL
2

-metric is spanned by gradH1
cl(q), gradH2

cl(q), given in (11).

Proof. To characterize the image im(R)cl we recall the inversion formula (10) from
Thm. 3.4.1. For q ∈ C∞(R>0 × R) it follows immediately that R−1(q) is a closed
curve if and only if Hcl(q) = 0.

We now show that im(R)cl is a splitting submanifold. Fix q0 ∈ im(R)cl and
define the codimension 2 closed linear subspace

Tq0(im(R)cl) :=
(
R. gradH1

cl(q0) + R. gradH2
cl(q0)

)⊥,GL2

⊂ C∞(S1,R2).

We consider the affine isomorphism

Aq0 :

{
Tq0(im(R)cl)× R2 → C∞(S1,R2)

(h, x, y) 7→ q0 + x. gradH1
cl(q0) + y. gradH2

cl(q0)
.
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Then the derivative D2(Hcl ◦Aq0)(h, x, y) of the smooth mapping

Hcl ◦Aq0 : Tq0(im(R)cl)× R2 → R2

is bounded and invertible for all (h, x, y) near (0, 0, 0), and thus im(R)cl = H−1
cl (0)

is a smooth splitting submanifold by the implicit function theorem with parameters
in a convenient vector space; see [33, Lem. 1], [17] or [15].

Since gradH1
cl(q) and gradH2

cl(q) are linearly independent in C∞(S1,R2) for any
q ∈ C∞(S1,R>0

2), they form a basis of (Tq im(R)cl)
⊥. �

Remark. Since the tangent space Tq im(R)cl has codimension 2, the orthogonal

projection Projim : TC∞(S1,R2) � im(R)cl → T im(R)cl is given by

(12) Projim(q).h = h− 〈h,w1(q)〉w1(q)− 〈h,w2(q)〉w2(q) ,

where w1(q), w2(q) is an orthonormal basis of (Tq im(R)cl)
⊥. In particular Projim

is smooth.

Using the orthonormal basis w1(q), w2(q) of im(R)⊥cl and the Gauß equation one
can calculate the curvature of im(R)cl and hence also of Immconv(S1,R2)/Mot.
This has been done for a different metric in [4].

The geodesic equation on Immconv(S1,R2)/Mot is well-posed in appropriate
Sobolev completions. We refer to Sect. 7 and in particular to Sect. 7.2 for a detailed
discussion and proofs. The spaces Immj,k(S1,R2) are defined in (29).

Theorem 3.5.2. For k ≥ 2 and initial conditions (c0, u0) ∈ T Immk+1,k+2(S1,R2),
the geodesic equation has solutions in Immj+1,j+2(S1,R2) for each 2 ≤ j ≤ k. The
solutions depend C∞ on t and the initial conditions and the domain of existence is
independent of j.

In particular for smooth initial conditions (c0, u0) ∈ T Imm(S1,R2) the geodesic
equation has smooth solutions.

Remark. Since im(R)cl ⊂ im(R)op, the geodesic distance functions satisfy

distGop(c0, c1) ≤ distGcl(c0, c1) .

Thus, the remark after Thm. 3.4.2 also holds for the space Immconv(S1,R2)/Mot of

closed curves, i.e., the functions
√
|c′|, κ1/4

√
|c′| and

√
`c are Lipschitz continuous

with respect to the geodesic distance.

4. The second metric

4.1. The metric and its geodesic equation. The metric studied in the previous
section is defined only for strictly convex curves. Consider the following related
metric

(13) Gc(h, k) =

∫
M

〈Dsh, v〉〈Dsk, v〉+ 〈D2
sh, n〉〈D2

sk, n〉ds ,

with c ∈ Imm(M,R2) and h, k ∈ Tc Imm(M,R2). This metric is defined for all
curves. After integrating the expression of the metric by parts

Gc(h, k) =

∫
S1

〈Dsh, v〉〈Dsk, v〉+ 〈D2
sh, n〉〈D2

sk, n〉ds

=

∫
S1

−〈k,Ds (〈Dsh, v〉v)〉+ 〈k,D2
s

(
〈D2

sh, n〉n
)
〉ds .
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we obtain the associated operator field L of the metric on the space Imm(S1,R2)
of closed curves,

Lch = D2
s

(
〈D2

sh, n〉n
)
−Ds (〈Dsh, v〉v) .

The null space of Gc is the same as in Sect. 3.

Lemma 4.1.1. The null space of the bilinear form Gc(., .) is spanned by constant
vector fields and infinitesimal rotations, i.e.,

ker(Gc) =
{
h ∈ Tc Imm(M,R2) : h = a+ b.Jc, a ∈ R2, b ∈ R

}
.

Proof. See the proof of Lem. 3.1.1. �

It follows from this lemma that Gc is a Riemannian metric on Imm(M,R2)/Mot.
We will use Lem. 2.4.1 to calculate its geodesic equation.

Theorem 4.1.2. On the manifold Imm(M,R2)/Mot of plane parametrized curves
modulo Euclidean motions Gc(., .) defines a weak Riemannian metric. For M = S1

the geodesic equation is given by

p = Lct ⊗ ds =
(
D2
s

(
〈D2

sct, n〉n
)
−Ds (〈Dsct, v〉v)

)
⊗ ds

pt =
1

2
Ds

(
〈Dsct, v〉2v − 2〈Dsct, n〉〈Dsct, v〉n− 2Ds

(
〈Dsct, n〉〈D2

sct, n〉
)
v

+ 2〈D2
sct, v〉〈D2

sct, n〉n+ 3〈D2
sct, n〉2n

)
⊗ ds ,

with the additional constraint

ct ∈ Tc(Imm(S1,R2)/Mot) ∼= {h ∈ C∞(M,R2) : h(0) = 0, 〈Dsh(0), n(0)〉 = 0} .

Remark. Similarily as in Sect. 3, the operator Lc : Tc
(
Imm(M,R2)/Mot

)
→

Tc
(
Imm(M,R2)/Mot

)
is not an elliptic operator, since the highest derivative ap-

pears only in the normal direction. Again we cannot apply the well-posedness re-
sults from [26] or [7]. Instead we will show in Sects. 4.3 and 4.4, that the geodesic
equation is locally well-posed both on the space of open and closed curves.

Proof. To apply Lem. 2.4.1 we need to compute the Hc-gradient of the metric.
Using the variational formulae from Sect. 2.3 we first calculate the variation of the
metric

Dc,m(Gc(h, h)) =

∫
S1

−〈Dsm, v〉〈Dsh, v〉2 + 2〈Dsm,n〉〈Dsh, n〉〈Dsh, v〉

− 2〈Dsh, n〉〈D2
sh, n〉Ds (〈Dsm, v〉)− 2〈D2

sh, v〉〈D2
sh, n〉〈Dsm,n〉

− 3〈D2
sh, n〉2〈Dsm, v〉ds ,

and we integrate to obtain

Hc(h, h) = Ds

(
〈Dsh, v〉2v − 2〈Dsh, n〉〈Dsh, v〉n− 2Ds

(
〈Dsh, n〉〈D2

sh, n〉
)
v

+ 2〈D2
sh, v〉〈D2

sh, n〉n+ 3〈D2
sh, n〉2n

)
⊗ ds .

Regarding the existence of the geodesic equation, see the proof of Thm. 3.1.2. �
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4.2. The R-transform. Consider the map

(14) R :

{
Imm(M,R2)/Mot → C∞(M,R2)

c 7→ (
√
|c′|, κ|c′|2)

On R2 we define the following Riemannian metric

g(q1,q2) =

(
4 0
0 q−6

1

)
,

and we equip the space C∞(M, (R2, g)) with the L2-metric,

(15) GL
2

q (h, k) =

∫
M

gq(θ)(h(θ), k(θ)) dθ .

Here q ∈ C∞(M,R2) and h, k ∈ TqC∞(M,R2). Note that as opposed to (9) the

metric (15) does depend on the footpoint q. We will sometimes write GL
2,g

q to

emphasize this dependence on the metric g. Since (R2, g) is not a flat Riemannian

manifold, neither is (C∞(M, (R2, g)), GL
2

).

Theorem 4.2.1. With the metrics g and GL
2

defined as above, the map

R : (Imm(M,R2)/Mot, G)→ (C∞(M, (R2, g)), GL
2

)

is an injective isometry between weak Riemannian manifolds, i.e.,

Gc(h, k) = GL
2

R(c)(dR(c).h, dR(c).k) =

∫
M

gR(c)(θ)(dR(c).h(θ), dR(c).k(θ)) dθ ,

for h, k ∈ Tc Imm(M,R2)/Mot.

Proof. Using the formulas (4) and (5) we obtain

Dc,h

(√
|c′|
)

= 1
2 〈Dsh, v〉

√
|c′|

Dc,h

(
κ|c′|2

)
= 〈D2

sh, n〉|c′|2 − 2κ〈Dsh, v〉|c′|2 + 2κ〈Dsh, v〉|c′|2

= 〈D2
sh, n〉|c′|2 ,

and thus the derivative of the R-transform is

dR(c).h =
(

1
2 〈Dsh, v〉

√
|c′|, 〈D2

sh, n〉|c′|2
)
.

Hence

gR(c)(dR(c).h, dR(c).h) =
(
〈Dch, v〉2 + 〈D2

sh, n〉2
)
|c′|

and the first statement of the theorem follows. Injectivity has already been shown
in the proof of Thm. 3.2.1. �

4.3. The space of open curves. The image of the R-transform on the space
Imm([0, 2π],R2)/Mot of open curves is the set of all R>0 × R-valued functions,
which is an open subset of C∞([0, 2π],R2).

Theorem 4.3.1. With the metrics g and GL
2

defined as above, the R-transform

R : Imm([0, 2π],R2)/Mot→ C∞([0, 2π],R>0 × R) ⊂
open

C∞([0, 2π],R2)

is a diffeomorphism. Its inverse is given by

R−1 :

{
C∞([0, 2π],R>0 × R) → Imm([0, 2π],R2)/Mot

q 7→
∫ θ

0
q2
1 exp

(
i
∫ σ

0
q2q
−2
1 dτ

)
dσ

.
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The space (Imm([0, 2π],R2)/Mot, GL
2,g) is a geodesically convex Riemannian man-

ifold.

Proof. The characterization of the image and the inversion formula can be proven
as in Thm. 3.4.1 using

|c′| = q2
1 κ = q−4

1 q2 α′ = q−2
1 q2 .

It is shown in Sect. 4.5 that (R>0 × R, g) is geodesically convex and that the
geodesic connecting two points is unique. Given two curves c0 and c1, the mini-
mizing geodesic connecting them is described in (16). Thus Imm([0, 2π],R2)/Mot
is geodesically convex. �

Remark. Since R>0 ×R is geodesically incomplete (see Sect. 4.5), so is the space
Imm([0, 2π],R2)/Mot. A geodesic will leave the space, when it fails to be an im-
mersion, i.e., when c′(t, θ) = 0 for some (t, θ).

The R-transform allows us to give formulas for geodesics and a lower bound for
the geodesic distance.

Theorem 4.3.2. Given two curves c0, c1 ∈ Immconv([0, 2π],R2)/Mot the unique
geodesic connecting them is given by

(16) c(t, θ) = R−1(q(t))(θ) ,

where for each θ ∈ [0, 2π] the curve t 7→ q(·, θ) is the geodesic connecting R(c0)(θ)
and R(c1)(θ). The geodesic distance is bounded from below by

distGop(c0, c1)2

≥
∫ 2π

0

215/8
(
|c′1|2κ1 − |c′0|2κ0

)2(
|c′0|4 + |c′1|4 + 1

2A

∣∣ |c′1|2 κ1 − |c′0|2κ0

∣∣)3/2
+ 16

(√
|c′1| −

√
|c′0|
)2

dθ ,

where A is the constant

A =

∫ 1

0

z6 dx√
1− z6

= 0.30358... .

Proof. The proof of this theorem follows directly from the analysis of the finite
dimensional metric g, see Sect. 4.5. �

Remark. The formula for the geodesic distance implies in particular that the
function √

|c′| :
(

Imm([0, 2π],R2)/Mot,distGop

)
→ L2([0, 2π],R)

is Lipschitz continuous, Since
√
`c = ‖

√
|c′|‖L2 we can then conclude that√

`c :
(

Immconv([0, 2π],R2)/Mot,distGop

)
→ R

is also Lipschitz continuous. This implies the following lower bound for the geodesic
distance:

distGop(c0, c1) ≥ 4
∣∣∣√`c1 −√`c0∣∣∣ .

The space (Imm([0, 2π],R2)/Mot, GL
2

) is not flat. The representation via R-
transform allows us to calculate its curvature.
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Theorem 4.3.3. The sectional curvature of the plane spanned by h, k is given by

kc(P (h, k)) =
−3
∫ 2π

0

(
〈Dsh, v〉〈D2

sk, n〉 − 〈Dsk, v〉〈D2
sh, n〉

)2
ds

Gc(h, h)Gc(k, k)−Gc(h, k)2
,

with h, k ∈ Tc Imm([0, 2π],R2)/Mot. In particular the sectional curvature is non-
positive.

Proof. The sectional curvature of (C∞([0, 2π],R2), GL
2

) is the integral over the
pointwise sectional curvatures, see Thm. 2.5.1. The statement now follows from
the curvature formulas for g given in Sect. 4.5. �

4.4. The space of closed curves. The image of the space Imm(S1,R2)/Mot of
closed curves under the R-transform is not an open subset of C∞(S1,R2).

Consider the following function Hcl : Imm(S1,R2)/Mot → R2, which measures
how far away the preimage of q is from being closed:

Hcl(q) =

∫ 2π

0

q1(θ)2 exp(iα(q)(θ)) dθ , α(q)(θ) =

∫ θ

0

q2(σ)q1(σ)−2 dσ .

The gradients of the components of Hcl with respect to the GL
2

-metric are

grad(H1
cl) =

(
1
2q1 cosα(q) + 1

2q2q
−3
1

∫ 2π

θ
q2
1 sinα(q) dσ

−q4
1

∫ 2π

θ
q2
1 sinα(q) dσ

)
(17a)

grad(H2
cl) =

(
1
2q1 sinα(q)− 1

2q2q
−3
1

∫ 2π

θ
q2
1 cosα(q) dσ

+q4
1

∫ 2π

θ
q2
1 cosα(q) dσ

)
.(17b)

The function Hcl permits us to characterize the image of the R-transform.

Lemma 4.4.1. The image of Imm(S1,R2)/Mot under the R-transform is given
by

im(R)cl =
{
q ∈ C∞(S1,R>0 × R) : Hcl(q) = 0

}
.

It is a splitting submanifold of C∞(R>0 × R) of codimension 2.
For q ∈ im(R)cl, the orthogonal complement of Tq im(R)cl with respect to the

GL
2

-metric is spanned by gradH1
cl(q), gradH2

cl(q), given in (17).

Proof. Mutatis mutandis, we can reuse the proof of Lem. 3.5.1. �

Remark. The orthogonal projection Projim : TC∞(S1,R2) � im(R)cl → T im(R)cl

is again given by (12) and it is a smooth map.

The geodesic equation on Imm(S1,R2)/Mot is well-posed in appropriate Sobolev
completions. We refer to Sect. 7 and in particular to Sect. 7.2 for a detailed dis-
cussion and proofs. The spaces Immj,k(S1,R2) are defined in (29).

Theorem 4.4.2. For k ≥ 2 and initial conditions (c0, u0) ∈ T Immk+1,k+2(S1,R2),
the geodesic equation has solutions in Immj+1,j+2(S1,R2) for each 2 ≤ j ≤ k. The
solutions depend C∞ on t and the initial conditions and the domain of existence is
independent of j.

In particular for smooth initial conditions (c0, u0) ∈ T Imm(S1,R2) the geodesic
equation has smooth solutions.
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Remark. Since im(R)cl ⊂ im(R)op, the geodesic distance functions satisfy

distGop(c0, c1) ≤ distGcl(c0, c1) .

Therefore the remark after Thm. 4.3.2 also holds for the space Imm(S1,R2)/Mot

of closed curves, i.e., the functions
√
|c′| and

√
`c are Lipschitz continuous with

respect to the geodesic distance.

4.5. Analysis of the Riemannian manifold (R>0 × R, g). The metric is g =
4dx2 +x−6dy2 = σ1⊗σ1 +σ2⊗σ2, where σ1 = 2dx, σ2 = x−3dy is an orthonormal
coframe.

First we note that the Levi-Civita connection has a 2-dimensional symmetry
group; its transformations map geodesics to geodesics:

Ta

(
x

y

)
=

(
x

y + a

)
, a ∈ R ; Hr

(
x

y

)
=

(
rx

r4y

)
, r ∈ R>0 .

Namely, each Ta and each reflection y 7→ −y is an isometry. On the other hand,
H∗r g = 4d(rx)2 + (rx)−6d(r4y)2 = r2g, and a constant multiple of a Riemannian
metric has the same geodesics. Since Hr TaH

−1
r = Tr4 a, this is the semidirect

product R>0 oR with multiplication (Ta1 , Hr1)(Tr2 , Hr2) = (Ta1+r41a2
Hr1r2).

We have dσ1 = 0 and dσ2 = −3x−4 dx∧dy = −(3/2)x−1σ1∧σ2. Using Cartan’s
structure equation we compute the connection form ω ∈ Ω1(R>0 × R; o(2)),

−dσ1 = 0 + ω1
2 ∧ σ2 = 0

−dσ2 = ω2
1 ∧ σ1 + 0 = 3

2xσ
1 ∧ σ2

=⇒ ω =

(
0 3

2x4 dy
− 3

2x4 dy 0

)
The curvature matrix and the Gauss curvature are then:

Ω = dω + ω ∧ ω =

(
0 − 3

x2σ
1 ∧ σ2

3
x2σ

1 ∧ σ2 0

)
, scal(g) = − 3

x2
.

This already implies that there are no conjugate points along any geodesic and that
the Riemannian exponential mapping centered at each point is a diffeomorphism
onto its image.

We use the dual orthonormal frame s1 = 1
2∂x, s2 = x3∂y. Then the velocity of

a curve q(t) is q̇ = ẋ∂x + ẏ∂y = 2ẋ(s1 ◦ q) + ẏx−3(s2 ◦ q), and the geodesic equation
is as follows:

0 = ∇∂t q̇ = ∇∂t
(
2ẋ(s1 ◦ q) + ẏx−3(s2 ◦ q)

)
= (ẍ+ 3

4x
−7ẏ2

)
∂x +

(
ÿ − 6x−1ẋẏ

)
∂y

or
ẍ = − 3

4x
−7ẏ2

ÿ = 6x−1ẋẏ

Note that (x0 + tẋ0, y0) are incomplete geodesics. Hence, if ẏ(t) = 0 for some t,
then for all t. If ẏ > 0, it never can change sign, always ẍ < 0 and the geodesic,
which is curving always to the left, leaves the space for t → ∞. The case ẏ < 0 is
mapped to ẏ > 0 by the reflection (x, y) 7→ (x,−y).

Now we eliminate time from the geodesic equation. The second equation can be
rewritten as

ÿ

ẏ
= 6

ẋ

x
⇐⇒ log(|ẏ|) = 6 log(x) + log(|ẏ0|)− 6 log(x0)

⇐⇒ ẏ = C1x
6 where C1 =

ẏ0

x6
0

.
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Inserting this, the first equation becomes

ẍ = − 3
4C

2
1x

5 ⇐⇒ 2ẍẋ = − 3
2C

2
1x

5ẋ ⇐⇒ ẋ2 = − 1
4C

2
1x

6 + ẋ2
0

⇐⇒ ẋ = sign(ẋ0)
(
C2

2 − 1
4C

2
1x

6
)1/2

where C2 = ẋ0.

Therefore,

dy

dx
=
ẏ

ẋ
=

sign(ẋ0)C1x
6

(C2
2 − 1

4C
2
1x

6)1/2
=

C1x
6

C2(1− | C1

2C2
|2x6)1/2

=
2C3x6

(1− (|C|x)6)1/2
,

C =
( C1

2C2

)1/3

=
( ẏ0

2x6
0ẋ0

)1/3

.

Note that sign(C) = sign
(
ẏ0
ẋ0

)
. We get y as a function of x, namely

y(x) = y0 +

∫ x

x0

2C3z6 dz

(1− (|C|z)6)1/2
= y0 +

2 sign(C)

|C|4

∫ |C|x
|C|x0

z6 dz√
1− z6

for 0 < x0, x ≤ 1/|C|. Thus the trajectory of a geodesic is given by:

(18)

y(x) = y0 + sign
( ẏ0

ẋ0

) 2

|C|4
(
F (|C|x)− F (|C|x0)

)
for 0 ≤ x0 ≤ x ≤ 1/|C| , where

F (u) =

∫ u

0

z6 dz√
1− z6

with A := F (1) = 0.30358... .

Let us now assume that ẏ0 > 0 and ẋ0 > 0. Then

y(0) = y0 −
2

|C|4
F (|C|x0) , y(1/|C|) = y(0) +

2F (1)

|C|4
,

dy

dx
(0) = 0 ,

dy

dx
(1/|C|) =∞ .

The reflection y 7→ −y+2y(1/|C|) maps this geodesic to its other half which returns
to x = 0.

Given two points (x0 > 0, y0) and (x1 > 0, y1), without loss satisfying x0 < x1

and y0 < y1, we shall now determine the unique connecting geodesic trajectory. By
our assumption we have ẏ0 > 0 and ẋ0 > 0, thus sign(C) = sign(ẏ0/ẋ0) = 1.
Case 1. The two points lie on the right travelling branch of the geodesic arc if we
can find C > 0 such that

y1 = y0 +
2

C4

(
F (Cx1)− F (Cx0)

)
, 0 < x0 < x1 ≤

1

C
.

The function f(C) = fx0,x1(C) := 2
C4

(
F (Cx1) − F (Cx0)

)
is monotone increasing

in 0 < C ≤ 1
x1

, since (note that F (u) is flat for u↘ 0)

f ′(C) = − 8

C5

(
F (Cx1)− F (Cx0)

)
+ 2C2(

x7
1√

1− (Cx1)6
− x7

0√
1− (Cx0)6

) > 0.

This is the case if and only if

0 < y1 − y0 ≤ fx0,x1
(1/x1) = 2x4

1(F (1)− F (x0/x1)) = 2x4
1

∫ 1

x0/x1

z6 dz√
1− z6

.
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Case 2. The point (x0, y0) lies on the right travelling branch, but (x1, y1) is reached
only after passing the apex on the left travelling branch. We know that y1 − y0 >
fx0,x1(1/x1). We have to find the apex (x̄, ȳ) with x0 < x1 < x̄, y0 < ȳ < y1, and
C = 1/x̄. The apex is given by

ȳ := y0 + 2x̄4
(
F (1)− F (x0/x̄)

)
= y1 − 2x̄4

(
F (1)− F (x1/x̄)

)
.

So we have to solve

y1 − y0 = 2x̄4
(
2F (1)− F (x0/x̄)− F (x1/x̄)

)
for x̄ = 1/C > x1. Since the right hand side is monotone increasing in C = 1/x̄
there is a unique solution.

This implies that (R>0 × R, g) is geodesically convex, and there is a unique
geodesic connecting any two points.

Since we need it later, we describe the Riemann curvature tensor, for q =
(q1, q2) ∈ R>0 × R and h, k,∈ R2:

(σ1 ∧ σ2)q(h, k) =
2

q3
1

(h1k2 − k1h2) =
2

q3
1

det(h, k) =
2

q3
1

〈h, ik〉

Rgq(h, k)` = s1Ω1
2(h, k)σ2(`) + s2Ω2

1(h, k)σ1(`)

=

(
0 − 3

q81
〈h, Jk〉

12
q31
〈h, Jk〉 0

)(
`1
`2

)
gq(Rgq(h, k)k, h) = scal(g)(q).

(
‖h‖2gq‖k‖

2
gq − gq(h, k)2

)
=
−3

q2
1

((
4h2

1 +
h2

2

q6
1

)(
4k2

1 +
k2

2

q6
1

)
−
(
4h1k1 +

h2k2

q6
1

)2)
=
−12

q8
1

(h1k2 − h2k1)
2

Lemma 4.5.1. The geodesic distance admits the following lower bound

dist((x0, y0), (x1, y1)) ≥ 2

√
|x0 − x1|2 +

|y0 − y1|2

21/8
(
x4

0 + x4
1 + 1

2A |y0 − y1|
)3/2 .

Proof. Let γ(t) be the geodesic connecting (x0, y0) and (x1, y1). The distance be-
tween the points, where the continuation of γ intersects the y-axis is less than

2A
(
x4

0 + x4
1

)
+ |y0 − y1| .

Thus

γ1(t) ≤ 2−1/4
(
x4

0 + x4
1 + 1

2A |y0 − y1|
)1/4

.

Define

r = 2−1/12
(
x4

0 + x4
1 + 1

2A |y0 − y1|
)1/4

,

and rescale the point by (xi, yi) = (rxi, r
4yi). From the symmetries of the Levi-

Civita connection we see that the geodesic connecting (x0, y0) and (x1, y1) is given
by (γ1, γ2) = (rγ1, r4γ2). Hence

γ1(t) = rγ1(t) ≤ 2−1/3 = 4−1/6 .

On the set {(x, y) : x ≤ 4−1/6} we have

g(x, y) = 4dx2 + x−1/6dy2 ≥ 4dx2 + 4dy2
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and thus

dist((x0, y0), (x1, y1)) = Leng(γ) = r−1 Leng(γ) ≥ r−1 LenEucl(γ)

≥ r−1
√
|x0 − x1|2 + |y0 − y1|2

=
√
|x0 − x1|2 + r6|y0 − y1|2 .

This concludes the proof. �

5. The third metric

5.1. The metric and its geodesic equation. The metrics studied in the previous
two sections both had Euclidean motions in their kernel. In this section we will
study the following metric

(19) Gc(h, k) =

∫
M

〈Dsh,Dsk〉+ 〈D2
sh, n〉〈D2

sk, n〉ds ,

whose kernel consists only of translations. We can obtain it from (13) by adding
the term 〈Dsh, n〉〈Dsk, n〉. We shall study this metric only on the space of closed
curves because the R-transform is not better behaved on the space of open curves.

The associated operator field L is given by

Lch = D2
s

(
〈D2

sh, n〉n
)
−D2

sh .

Lemma 5.1.1. The null space of the bilinear form Gc(., .) is spanned by constant
vector fields, i.e.,

ker(Gc) =
{
h ∈ Tc Imm(S1,R2) : h = a, a ∈ R2

}
.

Proof. We have h ∈ ker(Gc) if and only if Dsh = 0. �

As an immediate consequence of Lem. 5.1.1 we obtain thatGc is a weak Riemann-
ian metric on Imm(S1,R2)/Tra. We will use Lem. 2.4.1 to calculate its geodesic
equation.

Theorem 5.1.2. On the manifold Imm(S1,R2)/Tra of plane curves modulo trans-
lations Gc(., .) defines a weak Riemannian metric. The geodesic equation is given
by

p = Lct ⊗ ds =
(
−D2

sct +D2
s

(
〈D2

sct, n〉n
))
⊗ ds ,

pt = Ds

(1

2
|Dsh|2v −Ds

(
〈Dsct, n〉〈D2

sct, n〉
)
v

+ 〈D2
sct, v〉〈D2

sct, n〉n+
3

2
〈D2

sct, n〉2v
)
⊗ ds,

with the additional constraint:

ct ∈ Tc
(
Imm(S1,R2)/Tra

) ∼= {h ∈ C∞(S1,R2) : h(0) = 0} .

Remark. Similarily, as in Sects. 3 and 4 the operators

Lc : Tc
(
Imm(S1,R2)/Tra

)
→ Tc

(
Imm(S1,R2)/Tra

)
are not elliptic operators and thus we again cannot apply the well-posedness results
from [26] or [7].
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Proof. Using the variational formulas from Sect. 2.3 we calculate the variation of
the metric:

Dc,m(Gc(h, h)) =

∫
S1

−〈Dsm, v〉〈Dsh,Dsh〉 − 2〈D2
sh, n〉〈Dsh, n〉Ds (〈Dsm, v〉)

− 2〈D2
sh, n〉〈D2

sh, v〉〈Dsm,n〉 − 〈D2
sh, n〉2〈Dsm, v〉ds .

We can now calculate Hc(h, h) using a series of integrations by parts,

Hc(h, h) = Ds

(
|Dsh|2v − 2Ds

(
〈Dsh, n〉〈D2

sh, n〉
)
v

+ 2〈D2
sh, v〉〈D2

sh, n〉n+ 3〈D2
sh, n〉2v

)
⊗ ds .

Regarding the existence of the geodesic equation, see the proof of Thm. 3.1.2. �

5.2. The R-transform. Consider the map

R :

{
Imm(S1,R2)/Tra → C∞(S1,R>0 × S1 × R) ,

c 7→ (
√
|c′|, α, κ|c′|2)

.

In order to simplify the notation we shall write, R3
∗ for R>0×S1×R. On R3

∗ we
define the following Riemannian metric

(20) g(q1,q2,q3) =

 4 0 0
0 q2

1 0
0 0 q−6

1

 ,

and we equip the space C∞(M, (R3
∗, g)) with the L2-Riemannian metric,

(21) GL
2

q (h, k) =

∫
M

gq(θ)(h(θ), k(θ)) dθ .

Here q ∈ C∞(M, (R3
∗, g)) and h, k ∈ TqC∞(M, (R3

∗, g)).
The reason for introducing these objects lies in the following theorem.

Theorem 5.2.1. With the metrics g and GL
2

defined as above, the R-transform

R : (Imm(M,R2)/Tra, G)→ (C∞(M, (R3
∗, g)), GL

2

)

is an injective isometry between weak Riemannian manifolds, i.e.,

Gc(h, k) = GL
2

R(c)(dR(c).h, dR(c).k) =

∫
M

gR(c)(θ)(dR(c).h(θ), dR(c).k(θ)) dθ ,

for h, k ∈ Tc Imm(M,R2)/Tra.

Proof. Using the formulas from Sect. 2.3 we calculate the derivative of the R-
transform:

dR(c)h =
(

1
2 〈Dsh, v〉

√
|cθ|, 〈Dsh, n〉, 〈D2

sh, n〉|cθ|2
)
.

Hence

gR(c)(dR(c)h, dR(c)h) =
(
〈Dch, v〉2 + 〈Dsh, n〉2 + 〈D2

sh, n〉2
)
|cθ| ,

and the first statement of the theorem follows. The map R is injective on Imm /Tra
since one can reconstruct the curve c up to translations from |c′| and α. �

Remark. A key difference between this R-transform and the ones used in Sects.
3.2 and 4.2 is that the image has infinite codimension, both for open as well as
closed curves.
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5.3. The space of closed curves.

Theorem 5.3.1. The image of Imm(S1,R2)/Tra under the R-transform is given
by

im(R) =

{
(q1, q2, q3) :

(1) q′2 = q−2
1 q3

(2)
∫
S1 q

2
1 exp(iq2) dθ = 0

}
.

It is a splitting submanifold of C∞(S1,R3
∗). The inverse of the R-transform is given

by

R−1 :

{
im(R) → Imm(S1,R2)/Tra

q 7→
∫ θ

0
q2
1 exp(iq2) dσ

.

We introduce the maps

Hdiff :

{
C∞(S1,R3

∗)→ C∞(S1,R)
q 7→ q3 − q2

1q
′
2

Hcl :

{
C∞(S1,R3

∗)→ R2

q 7→
∫
S1 q

2
1 exp(iq2) dθ

,

(22)

which allow us to write im(R) = H−1
diff(0) ∩H−1

cl (0).

Proof. The constraint Hdiff(q) = 0, rewritten in terms of c, is the definition of
curvature κ = Dsα, written as

κ|c′|2 =
√
|c′|

2
α′ .

The constraint Hcl(0) results from
∫
S1 c
′ dθ = 0 and c′ = q2

1 exp(iq2). The latter
identity implies

c(θ) = c(0) +

∫ θ

0

q2
1 exp(iq2) dσ .

Since c(0) is unspecified, this determines the curve up to translations. Thus we
have identified im(R) and proven the inversion formula.

To show that im(R) is a splitting submanifold define

Φ :

{
C∞(S1,R3

∗) → C∞(S1,R3
∗)

(q1, q2, q3) 7→ (q1, q2, q3 + q2
1q
′
2)

.

The map Φ is a smooth diffeomorphism and H−1
diff(0) = Φ({q3 = 0}). Thus H−1

diff(0)
is a splitting submanifold of C∞(S1,R3

∗). Now we will pull back im(R) by Φ and
show that Φ−1(im(R)) is a splitting submanifold of {q3 = 0}. First note that

Φ−1(im(R)) = (Hcl ◦ Φ)
−1

(0) ∩ {q3 = 0} = H−1
cl (0) ∩ {q3 = 0} .

The last equality holds becauseHcl doesn’t depend on q3. ThatH−1
cl (0) is a splitting

submanifold of {q3 = 0} can be shown via the implicit function theorem with
convenient parameters like in Lem. 3.5.1. This concludes the proof. �

Next we want to compute the orthogonal projection Projim : TC∞(S1,R3
∗) �

im(R)→ T im(R). We do this in two steps. First define the space

im(R)op = H−1
diff(0) = {q ∈ C∞(S1,R>0 × S1 × R) : q3 = q2

1q
′
2} ,

and compute the orthogonal projection Projimop : TC∞(S1,R3
∗) → T im(R)op. The

space im(R)op corresponds to the image of the R-transform on the space of open
curves, if S1 were replaced by [0, 2π]. We can compute the tangent space

Tq im(R)op =
{(
h1, h2, 2q

−1
1 q3h1 + q2

1h
′
2

)
: h1, h2 ∈ C∞(S1,R)

}
for q ∈ im(R)op.
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Lemma 5.3.2. Let q ∈ im(R)op and h ∈ TqC
∞(S1,R3

∗). Then the orthogonal

projection k = Projimop(q).h of h to the tangent space to im(R)op is given by

q2
1k2 − (Ak′2)

′
= B(23a)

k1 =
2q8

1h1 + q1q3h3 − q3
1q3k

′
2

2(q8
1 + q2

3)
(23b)

k3 = 2q1q
′
2k1 + q2

1k
′
3(23c)

with the functions

A =
q6
1

q8
1 + q2

3

, B = q2
1h2 +

(
2q3

1q3h1 + q−4
1 q2

3h3

q8
1 + q2

3

)′
,

Furthermore the map Projimop is smooth.

Proof. The orthogonal projection k ∈ Tq im(R)op of h is defined by the equation

GL
2

q (h, a) = GL
2

q (k, a) ,

which has to hold for all a ∈ Tq im(R)op. Any such a is of the form

a = (a1, a2, 2q
−1
1 q3a1 + q2

1a
′
2) .

Thus the above equation reads∫
S1

4h1a1 + q2
1h2a2 + q−6

1 h3(2q−1
1 q3a1 + q2

1a
′
2) dθ =

=

∫
S1

4k1a1 + q2
1k2a2 + q−6

1 (2q−1
1 q3k1 + q2

1k
′
2)(2q−1

1 q3a1 + q2
1a
′
2) dθ .

which is equivalent to the system

4h1 + 2q−7
1 q3h3 = 4k1 + 4q−8

1 q2
3k1 + 2q−5

1 q3k
′
2

q2
1h2 − (q−4

1 h3)′ = q2
1k2 −

(
2q−5

1 q3k1 + q−2
1 k′2

)′
.

The first equation allows us to express k1 in terms of k′2,

k1 =
2q8

1h1 + q1q3h3 − q3
1q3k

′
2

2(q8
1 + q2

3)
,

which we then insert into the second equation and obtain

q2
1k2 − (Ak′2)

′
= B ,

with A and B defined as above. The map (q, h) 7→ k is smooth, because the solution
of an elliptic equation depends smoothly on the coefficients. �

Now we compute Projim. The components of the constraint function Hcl are

Hcl =

(∫
S1

q2
1 cos q2 dθ,

∫
S1

q2
1 sin q2 dθ

)
,

and their gradients with respect to the GL
2

-metric are given by

gradL
2

H1
cl(q) = ( 1

2q1 cos q2,− sin q2, 0)(24a)

gradL
2

H2
cl(q) = ( 1

2q1 sin q2, cos q2, 0) .(24b)
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Theorem 5.3.3. Let q ∈ im(R). Define vi = Projimop(q). gradL
2

Hi
cl(q) for i = 1, 2

and let T (q) : TqC
∞(S1,R3

∗) → TqC
∞(S1,R3

∗) be the projection to the orthogonal
complement of span{v1, v2}. Then

(25) Projim(q) = T (q) ◦ Projimop(q) ,

and Projim is smooth.

Proof. Since span{v1, v2} is the orthogonal complement to im(R) within im(R)op,
the map T (q) projects Tq im(R)op down to Tq im(R). In order for T to be smooth
we need that {v1, v2} are linearly independent. This is equivalent to the condition

that gradL
2

H1
cl(q) and gradL

2

H2
cl(q) don’t differ by an element of (Tq im(R)op)

⊥
.

This is clear from Lem. 5.3.2 and the formulas (24) for the gradients of Hi
cl. �

The geodesic equation on Immconv(S1,R2)/Tra is well-posed in appropriate
Sobolev completions. We refer to Sect. 7 and in particular to Sect. 7.2 for a detailed
discussion and proofs. The spaces Immj,k(S1,R2) are defined in (29).

Theorem 5.3.4. For k ≥ 2 and initial conditions (c0, u0) ∈ T Immk+1,k+2(S1,R2),
the geodesic equation has solutions in Immj+1,j+2(S1,R2) for each 2 ≤ j ≤ k. The
solutions depend C∞ on t and the initial conditions and the domain of existence is
independent of j.

In particular, for smooth initial conditions (c0, u0) ∈ T Imm(S1,R2) the geodesic
equation has smooth solutions.

6. The full H2-metric

6.1. The metric and its geodesic equation. In this section we will study the
full H2-metric that has translations in the kernel. In comparison to the metric of
the previous section we add the missing H2-term 〈D2

sh, v〉 to the definition of the
metric. This yields the bilinear form

(26) Gc(h, k) =

∫
M

〈Dsh,Dsk〉+ 〈D2
sh,D

2
sk〉ds .

On closed curves the associated operator field of this pseudo metric is given by

Lch = D4
sh−D2

sh .

Lemma 6.1.1. The null space of the bilinear form Gc(., .) is spanned by constant
vector fields, i.e.,

ker(Gc) =
{
h ∈ Tc Imm(M,R2) : h = a, a ∈ R2

}
.

Proof. The proof of this lemma is obvious, since the bilinear form Gc measures the
full first derivative. �

Remark. In contrast to the other metrics studied in this article the operator L
is elliptic and invertible on Tc Imm /Tra. Therefore we will be able to apply the
well-posedness result of [7, 35].

As an immediate consequence of Lem. 3.1.1 we obtain that Gc is a weak Rie-
mannian metric on Imm(M,R2)/Tra. Similarly. as in Sects. 3 and 4 we will use
Lem. 2.4.1 to calculate its geodesic equation.
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Theorem 6.1.2. On the manifold Imm(M,R2)/Tra of plane curves modulo trans-
lations, the pseudo metric Gc(., .) is a weak Riemannian metric. The geodesic equa-
tion on the manifold of closed curves modulo Euclidean motions Imm(S1,R2)/Tra
is given by:

p = Lct ⊗ ds = D4
sct −D2

sct ⊗ ds

pt = Ds

(
3|D2

sct|2v − 2Ds

(
〈Dsct, D

2
sct〉v

)
+ |Dsct|2v

)
⊗ ds

with the additional constraint:

ct ∈ Tc
(
Imm(M,R2)/Tra

) ∼= {h ∈ C∞(M,R2) : h(0) = 0} .

For each k > 11/2 and initial conditions (c0, u0) ∈ T Immk(S1,R2), the geodesic
equation has solutions in Immj(S1,R2) for each 11/2 < j ≤ k. The solutions
depend C∞ on t and the initial conditions and the domain of existence is indepen-
dent of j. In particular, for smooth initial conditions (c0, u0) ∈ T Imm(S1,R2), the
geodesic equation has smooth solutions.

Proof. Using the variational formulas from Sect. 2.3 and

d(D2
sh)(c).m = −2〈Dsm, v〉D2

sh−Ds(〈Dsm, v〉)Dsh

we obtain the variation of the metric:

Dc,m(Gc(h, h)) =

∫
S1

−3〈Dsm, v〉〈D2
sh,D

2
sh〉 − 2Ds(〈Dsm, v〉)〈Dsh,D

2
sh〉

− 〈Dsm, v〉〈Dsh,Dsh〉ds

We can now calculate Hc(h, h) using a series of integration by parts:

Hc(h, h) = Ds

(
3|D2

sh|2v − 2Ds

(
〈Dsh,D

2
sh〉v

)
+ |Dsh|2v

)
⊗ ds . �

The well-posedness result can be proven similar as in [35], see also [7].

6.2. The R-transform. We introduce the following transformation

R :

{
Imm(M,R2)/Tra → C∞(M,R>0 × S1 × R2) ,

c 7→ (
√
|c′|, α,Ds|c′|, κ|c′|2)

.

which assigns to each curve c the 4-tuple of functions (
√
|c′|, α,Ds|c′|, κ|c′|2). In

order to simplify the notation we shall write, R4
∗ for R>0 × S1 × R2. On R4

∗ we
define the following Riemannian metric,

(27) g(q1,q2,q3,q4) =


4 0 0 0
0 q2

1 + q2
4q
−6
1 −q4q

−4
1 0

0 −q4q
−4
1 q−2

1 0
0 0 0 q−6

1

 ,

and we equip the space C∞(M, (R4
∗, g)) with the L2-Riemannian metric,

(28) GL
2

q (h, k) =

∫
M

gq(θ)(h(θ), k(θ)) dθ .

Here q ∈ C∞(M, (R4
∗, g)) and h, k ∈ TqC∞(M, (R4

∗, g)).
The reason for introducing these objects lies in the following theorem:
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Theorem 6.2.1. With the metrics g and GL
2

defined as above, the map

R : (Imm(M,R2)/Tra, G)→ (C∞(M, (R4
∗, g)), GL

2

)

is an injective isometry between weak Riemannian manifolds, i.e.,

Gc(h, k) = GL
2

R(c)(dR(c).h, dR(c).k) =

∫
M

gR(c)(θ)(dR(c).h(θ), dR(c).k(θ)) dθ ,

for h, k ∈ Tc Imm(M,R2)/Tra.

Proof. Using the identity

Dc,h (Ds ◦R) = Ds (Dc,hR)− 〈Dsh, v〉Ds(R(c)) ,

we calculate:

Dc,h (Ds|c′|) = Ds (|c′|〈Dsh, v〉)− 〈Dsh, v〉Ds|c′|
= |c′|〈D2

sh, v〉+ |c′|〈D2
sh,Dsv〉

= |c′|〈D2
sh, v〉+ |c′|κ〈Dsh, n〉 .

Thus we obtain the derivative of the R-map:

dR(c).h =
(

1
2 〈Dsh, v〉

√
|c′|, 〈Dsh, n〉, |c′|〈D2

sh, v〉+ |c′|κ〈Dsh, n〉, 〈D2
sh, n〉|c′|2

)
.

Hence

gR(c)(dR(c).h, dR(c).h) =
(
〈Dsh, v〉2 + 〈Dsh, n〉2(1 + κ2)

+ 〈D2
sh, v〉2 + 2〈D2

sh, v〉〈Dsh, n〉κ+ 〈Dsh, n〉2κ2

− 2〈D2
sh, v〉〈Dsh, n〉κ− 2〈Dsh, n〉2κ2 + 〈D2

sh, n〉2
)
|c′|

=
(
〈Dsh,Dsh〉+ 〈D2

sh,D
2
sh〉
)
|c′| ,

and the first statement of the theorem follows. The map R is injective on Imm /Tra
since one can reconstruct the curve c up to translations from |c′| and α. �

6.3. The metric on the space of closed curves.

Theorem 6.3.1. The image of Imm(S1,R2)/Tra under the R-transform is given
by

im(R) =

(q1, q2, q3, q4) :
(1) 2q′1 = q1q3

(2) q′2 = q−2
1 q4

(3)
∫
S1 q

2
1 exp(iq2) dθ = 0

 .

It is a splitting submanifold of C∞(S1,R4
∗). The inverse of the R-transform is given

by

R−1 :

{
im(R) → Imm(S1,R2)/Tra

q 7→
∫ θ

0
q2
1 exp(iq2) dσ

.

Introduce the maps

Hdiff :

{
C∞(S1,R4

∗)→ C∞(S1,R2)
q 7→

(
q3 − 2q−1

1 q′1, q4 − q2
1q
′
2

)
Hcl :

{
C∞(S1,R3

∗)→ R2

q 7→
∫
S1 q

2
1 exp(iq2) dθ

,

which allow us to write im(R) = H−1
diff(0) ∩H−1

cl (0).
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Proof. The first component of the constraint Hdiff(q) = 0 corresponds to the iden-
tity Ds|c′| = 1

|c′|∂θ|c
′|. The second component as well as Hcl(q) = 0 are the same

as in Thm. 5.3.1.
To show that im(R) is a splitting submanifold define

Φ :

{
C∞(S1,R4

∗) → C∞(S1,R4
∗)

(q1, q2, q3, q4) 7→ (q1, q2, q3 + 2q−1
1 q′1, q4 + q2

1q
′
2)

.

We note as in the proof of Thm. 5.3.1 that Φ is a smooth diffeomorphism, that
H−1

diff(0) = Φ({q3 = 0, q4 = 0}) and that

Φ−1(im(R)) = H−1
cl (0) ∩ {q3 = 0, q4 = 0} .

Since Hcl doesn’t depend on q3, q4 we then apply the implicit function theorem with
convenient parameters to conclude the proof. �

7. Well-posedness of the geodesic equation

7.1. Well-posedness for the third metric. Let G be the Riemannian metric
(19) from Sect. 5 on closed curves

Gc(h, h) =

∫
S1

|Dsh|2 + 〈D2
sh, n〉2 ds .

For j ≥ 1, k ≥ 1 define the spaces

(29) Immj,k(S1,R2) =
{
c ∈ H2(S1,R2) : |c′| ∈ Hj(S1,R), α ∈ Hk(S1, S1)

}
.

Then Immj,k(S1,R2) is a Hilbert manifold modelled on Hj×Hk and a global chart
is given by c 7→ (|c′|, α). For k ≥ 2 denote by

Immk(S1,R2) = {c ∈ Hk(S1,R2) : |c′| > 0}

the space of Sobolev immersions of order k. Note that we have the inclusions

Immmax(j,k)+1(S1,R2) ⊆ Immj,k(S1,R2) ⊆ Immmin(j,k)+1(S1,R2) ,

and if j = k, then

Immj,j(S1,R2) = Immj+1(S1,R2) .

The spaces can Immj,k(S1,R2) can be seen as a refinement of the Sobolev scale of
function spaces.

Theorem 7.1.1. For k ≥ 2, the geodesic spray

ΞG : T Immk+1,k+2(S1,R2)/Tra→ TT Immk+1,k+2(S1,R2)/Tra

of the metric G is smooth.

Combining this theorem with the existence theorem for ODEs, the translation
invariance of the geodesic spray from App. A and Thm. A.1, we obtain the following
corollary.

Corollary 7.1.2. For k ≥ 2 and initial conditions (c0, u0) ∈ T Immk+1,k+2(S1,R2) ,
the geodesic equation has solutions in Immj+1,j+2(S1,R2)/Tra for each 2 ≤ j ≤ k.
The solutions depend C∞ on t and the initial conditions and the domain of existence
is independent of j.

In particular for smooth initial conditions (c0, u0) ∈ T Imm(S1,R2)/Tra the
geodesic equation has smooth solutions.
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Proof of Theorem. The R-transform

R(c) = (
√
|c′|, α, κ|c′|2)

extends to a smooth map

R : Immk+1,k+2(S1,R2)/Tra→ Hk(S1,R3
∗)

with R3
∗ = R>0 × S1 × R and the image of the map is given by

im(R) =

(q1, q2, q3) :
(1) q1 ∈ Hk, q2 ∈ Hk+1, q3 ∈ Hk

(2) q′2 = q−2
1 q3

(3)
∫
S1 q

2
1 exp(iq2) dθ = 0

 .

By Lem. 7.1.3 it is an embedded submanifold of Hk(S1,R3
∗). Let g be the Rie-

mannian metric (20) on R3
∗ and GL

2

the L2-metric (15) on Hk(S1,R3
∗). The

same proof as for Thm. 5.2.1 shows that the R-transform is an isometry between

(Immk+1,k+2(S1,R2)/Tra, G) and (Hk(S1,R3
∗), G

L2

).
Denote by

ι : im(R)→ Hk(S1,R3
∗)

the inclusion map. The orthogonal projection to T im(R) is a map

Projim : ι∗THk(S1,R3
∗) � im(R)→ T im(R) ,

and it is given by the same formulas (23) and (25) as in Thm. 5.3.3. It is shown in

Lem. 7.1.4 that Projim can be extended to a smooth map

Projim : THk(S1,R3
∗)→ THk(S1,R3

∗) .

Denote by

ΞL
2

: THk(S1,R3
∗)→ TTHk(S1,R3

∗)

the geodesic spray of the GL
2

-metric on Hk(S1,R3
∗). It is smooth by Thm. 2.5.1.

Theorem 2.5.2 shows that the geodesic spray of the GL
2

-metric restricted to im(R)
is given by

Ξim = T Projim ◦ΞL
2

◦ Tι : T im(R)→ TT im(R) ,

and that this map is smooth as well. The geodesic sprays ΞL
2

and Ξim are TR-
related, i.e., the following diagram commutes.

TT Immk+1,k+2 /Tra
TTR // TT im(R)

T Immk+1,k+2 /Tra
TR //

ΞG

OO

T im(R)

Ξim

OO

Since im(R) is an embedded submanifold of Hk(S1,R3
∗) the map

R : Immk+1,k+2(S1,R3
∗)/Tra→ im(R)

is a diffeomorphism and we can conclude that ΞG is smooth. �

Lemma 7.1.3. Let k ≥ 2. The image of the R-transform

R :

{
Immk+1,k+2(S1,R2)/Tra → Hk(S1,R3

∗)

c 7→ (
√
|c′|, α, κ|c′|2)

,

is an embedded submanifold of Hk(S1,R3
∗).
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Proof. Define the functions

Cα : Hk(S1,R3
∗)→ R Cα(q) =

∫
S1

q−2
1 q3 dθ

Cdiff : Hk ×Hk+1 ×Hk → Hk Cdiff = q′2 − q−2
1 q3

Ccl : Hk(S1,R3
∗)→ R2 Ccl(q) =

∫
S1

q2
1 exp(iq2) dθ ,

which allow us to write the image im(R) as

im(R) = Hk(S1,R3
∗) ∩ C−1

α (2πZ) ∩ C−1
diff(0) ∩ C−1

cl (0) .

That Hk(S1,R3
∗) ∩ C−1

α (2πZ) is a submanifold of Hk(S1,R3
∗) can be seen via the

inverse function theorem on Banach spaces. Let Φ be the map

Φ :

{
Hk(S1,R3

∗) ∩ C−1
α (2πZ) → Hk(S1,R3

∗)
(u1, u2, u3) 7→

(
u1, u2 +

∫
u−2

1 u3, u3

) ,

with
∫
u−2

1 u3 denoting the indefinite integral of u−2
1 u3. Then Φ is a bijection, when

restricted to

Φ : Hk(S1,R3
∗) ∩ C−1

α (2πZ) ∩ {u2 = 0}
∼=−→ Hk(S1,R3

∗) ∩ C−1
α (2πZ) ∩H−1

diff(0) .

This implies that

Hk(S1,R3
∗) ∩ C−1

α (2πZ) ∩ C−1
diff(0) ↪→ Hk(S1,R3

∗) ∩ C−1
α (2πZ)

is a submanifold. Finally, that

Hk(S1,R3
∗) ∩ C−1

α (2πZ) ∩ C−1
diff(0) ∩ C−1

cl (0) ↪→ Hk(S1,R3
∗) ∩ C−1

α (2πZ) ∩ C−1
diff(0)

is a submanifold can again be shown via the implicit function theorem. �

Lemma 7.1.4. Let k ≥ 2. The orthogonal projection Projim defined in (25) can
be extended to a smooth map

Projim : THk(S1,R3
∗)→ THk(S1,R3

∗) .

Proof. First we show that Projimop : THk → THk is a smooth map. Using the

notation of Lem. 5.3.2 we see that for (q, h) ∈ THk we have A ∈ Hk(S1,R) and

B ∈ Hk−1(S1,R). The second component k2 of Projimop is given as the solution of
the equation

q2
1k2 − (Ak′2)′ = B

and by Lem. B.1 we know that such a k2 ∈ Hk+1(S1,R) exists and depends

smoothly on (q, h). Then (23) shows that k1, k3 ∈ Hk(S1,R) thus showing Projimop

to be well-defined and smooth.
The smoothness of the maps q 7→ gradL

2

Hi
cl(q) for i = 1, 2 given by (24)

is clear and we see by inspection that gradL
2

Hi
cl(q) ∈ Hk(S1,R3). Therefore

q 7→ Projim(q). gradL
2

Hi
cl(q) =: vi(q) is also smooth. Let w1(q), w2(q) be an or-

thonormal basis of span{v1(q), v2(q)}, constructed, e.g., via Gram-Schmidt. Then

T (q).h = h− 〈h,w1(q)〉w1(q)− 〈h,w2(q)〉w2(q)

is smooth as well. Thus we conclude that the composition

Projim(q).h = T (q).Projimop(q).h

is smooth as required. �



32 MARTIN BAUER, MARTINS BRUVERIS, PETER W. MICHOR

7.2. Well-posedness for the first and second metrics. The statements of
Thm. 7.1.1 and Cor. 7.1.2 also hold for the metrics (7) and (13) from Sect. 3 and
Sect. 4 on the space of closed curves. In the proof of Thm. 7.1.1 we need to change
the R-transform used to represent the metric and prove the analogues of Lem. 7.1.3
and Lem. 7.1.4, the rest of the proof will remain the same.

Let G be the metric (13) from Sect. 4,

Gc(h, k) =

∫
S1

〈Dsh,Dsk〉+ 〈D2
sh, n〉〈D2

sk, n〉ds .

The image of the R-transform (14) is a submanifold in appropriate Sobolev exten-
sions.

Lemma 7.2.1. Let k ≥ 2. The image of the R-transform

R :

{
Immk+1,k+2(S1,R2)/Mot → Hk(S1,R>0 × R)

c 7→ (
√
|c′|, κ|c′|2)

is an embedded submanifold of Hk(S1,R>0 × R).

Proof. The image is given by

im(R) = {q ∈ Hk(S1,R>0 × R) : Hcl(q) = 0} ,

with the functional Hcl given by

Hcl(q) =

∫ 2π

0

q2
1 exp

(
i

∫ θ

0

q1(σ)−2q2(σ) dσ

)
dθ .

The gradient of Hcl was computed in Sect 4.4. Since 0 is a regular point of Hcl,
the statement of the lemma follows from the implicit function theorem in Banach
spaces. �

Since the image is defined by a finite number of constraints, the projection to
the orthogonal complement can be written explicitely.

Lemma 7.2.2. Let k ≥ 2. The orthogonal projection Projim to T im(R) can be
extended to a smooth map

Projim : THk(S1,R>0 × R)→ THk(S1,R>0 × R) .

Proof. The smoothness of the maps q 7→ gradL
2

Hi
cl(q) for i = 1, 2 given by (17)

is clear and we see by inspection that vi(q) := gradL
2

Hi
cl(q) ∈ Hk(S1,R2). Let

w1(q), w2(q) be an orthonormal basis of span{v1(q), v2(q)}, constructed, e.g., via
Gram-Schmidt. Then the orthogonal projection is given by

Projim(q).h = h− 〈h,w1(q)〉w1(q)− 〈h,w2(q)〉w2(q)

and is smooth. �

For the metric (7),

Gc(h, k) =

∫
S1

κ−3/2〈D2
sh, n〉〈D2

sk, n〉+ 〈Dsh, v〉〈Dsk, v〉ds ,

the analogues of the above lemmas can be proven in the same way.
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8. Discretization

In this section we describe, how one can use the R-transform to discretize the
geodesic equation of second order metrics. To make the exposition more concise
we will restrict ourselves to the third metric, described in Sect. 5, although the
principles are rather general.

We consider the metric (19),

Gc(h, k) =

∫
M

〈Dsh,Dsk〉+ 〈D2
sh, n〉〈D2

sk, n〉ds .

The space Imm /Tra with the metric G is isometric to

im(R) =

{
(q1, q2, q3) :

(1) q′2 = q−2
1 q3

(2)
∫
S1 q

2
1 exp(iq2) dθ = 0

}
,

which is a submanifold of C∞(S1,R3
∗) equipped with the GL

2

-metric. Here R3
∗ =

R>0 × S1 × R and we equip it with the non-flat Riemannian metric

g = 4 dq1 ⊗ dq1 + q2
1 dq2 ⊗ dq2 + q−6

1 dq3 ⊗ dq3 .

Instead of discretizing the space Imm /Tra and the geodesic equation thereon, we

discretize instead C∞(S1,R3
∗), the metric GL

2

and the constraints defining im(R).

8.1. Spatial discretization. We replace the curve q ∈ C∞(S1,R3
∗) by N uni-

formly sampled points q1, . . . , qN with qk = q(2πk/N). Denote by ∆θ = 2π/N the
spatial resolution. The continuous geodesic equation corresponds to a Hamiltonian
system with the Hamiltonian

Econt(q, p) =
1

2

∫
S1

g−1
q(θ)(p(θ), p(θ)) dθ ,

together with the constraint functions Hdiff , Hcl defined in (22), that define the
image of the R-transform. Instead of discretizing the geodesic equations directly,
we discretize the Hamiltonian function. The discrete Hamiltonian is

Ediscr(q
1, . . . , qN , p1, . . . , pN ) =

1

2

N∑
k=1

g−1
qk

(pk, pk)∆θ .

To simplify notation we shall denote the discretized curve (q1, . . . , qN ) again by q
and the same for the momentum. The discrete constraint functions are

Hk
diff(q, p) =

(
qk1
)−2

qk3 −
(
qk+1
2 − qk2

)
/∆θ

Hcl(q, p) =

N∑
k=1

exp(iqk2 )(qk1 )2∆θ .

Thus we have replaced an infinite-dimensional system by a 3N -dimensional Hamil-
tonian system with N + 2 constraints. The resulting system has 2N − 2 degrees of
freedom. This corresponds to discretizing a plane curve by N points and removing
translations, again leading to 2N − 2 degrees of freedom.

The advantage of the R-transform is that the Hamiltonian Econt of the contin-
uous system doesn’t contain spatial derivatives, since it is related to an L2-type
metric. The spatial derivatives appear in the constraints, in particular in Hdiff ,
which enforces that the third component q3 is a derivative of the second compo-
nent q2. However, even though q3 represents the curvature of the curve and thus
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a second derivative, the constraint Hdiff is written in terms of the first derivative
only, which can be discretized using first order differences.

Our discrete equations are now Hamilton’s equations of a constrained Hamilton-
ian system. Denote by H : R3N → RN+2 the collected constraint functions and let
λ ∈ RN+2 be a Lagrange multiplier. Then Hamilton’s equations are

∂tq = ∂pEdiscr(q, p)

∂tp = −∂qEdiscr(q, p) +DHT (q).λ

H(q) = 0 .

(30)

8.2. Time discretization. There is a variety of integrators available for the time-
discretization of a constrained Hamiltonian system. For example RATTLE is a
second-order symplectic method, that preserves constraints exactly. A time-step of
RATTLE is given by the following equations. To simplify notation, we denote in
this section by qj = q(tj) the system at time tj .

pj+1/2 = pj +
∆t

2

(
−∂qE(qj , pj+1/2) +DHT (qj).λ1

)
qj+1 = qj +

∆t

2

(
∂pE(qj , pj+1/2) + ∂pE(qj+1, pj+1/2)

)
0 = H(qj+1)

pj+1 = pj+1/2 +
∆t

2

(
−∂qE(qj+1, pj+1/2) +DH(qj+1)T .λ2

)
0 = DH(qj+1).∂pE(qj+1, pj+1) .

(31)

This method was first proposed in [18]. One first performs a momentum update
with half of the timestep using the implicit Euler method and an unknown La-
grange multiplier λ1. This is followed by a full time-step for the position using the
implicit midpoint rule. The Lagrange multiplier λ1 is determined by the condition
H(qj+1), which guarantees that the constraints are exactly satisfied in each time-
step. Then we perform another half time-step for the momentum with the explicit
Euler and determine the Lagrange multiplier λ2 by requiring the hidden constraint
DH(qj+1).∂pE(qj+1, pj+1) = 0 to be satisfied. See [16, 21] for more details about
symplectic integrators.

9. Experiments

In this section we present a series of numerical examples to demonstrate the
value of R-transforms for numerical computations. The examples were computed
as described in Sect. 8. In all these examples we will only consider the third metric,
i.e.,

Gc(h, h) =

∫
S1

〈Dsh,Dsh〉+ 〈D2
sh, n〉2ds .

The curves are discretized with 100 points and since the metric ignores translations
we centered all curves such that their center of mass lies at the origin. In Fig. 1
we show two examples of solutions to the geodesic boundary value problem.

The second series of examples (Fig. 2) is concerned with the geodesic initial
value problem. It shows two geodesic that starts at the circle with two different
initial velocities.
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Figure 1. First line, left side: Geodesic connecting a circle to an
ellipse in time t = 2. First line, right side: The geodesic continued
until time t = 6. Second line, left side: Geodesic connecting a
ellipse to a rotated ellipse in time t = 2. Second line, right side:
The geodesic continued until time t = 6.

The last example shows a geodesic in the shape space of umparametrized curves.
Following the presentation of [26] we identify this space with the quotient space

Bi(S
1,R2) = Imm(S1,R2)/Diff(S1).

Every reparametrization invariant metric on Imm(S1,R2) induces a metric on the
shape space Bi(S

1,R2) such that the projection

π : Imm(S1,R2)→ Bi(S
1,R2)

is a Riemannian submersion. In this setting geodesics on shape space Bi(S
1,R2)

correspond to horizontal geodesics on Imm(S1,R2), i.e., geodesics on Imm(S1,R2)
with horizontal velocity. By the conservation of reparametrization momentum a
geodesic with horizontal inital velocity stays horizontal for all time and thus this
condition has to be checked at the initial point of the geodesic only. For a detailed
description of this construction see [26, 7].

For metrics that are induced by a differential operator field L the horizontality
condition can be expressed as

h ∈ Hor(c) ⊂ Tc Imm(S1,R2)⇔ Lch = f.n, f ∈ C∞(S1) ,

with n denoting the normal field to c. In the following we want to investigate this
condition for the third metric,

Gc(h, h) =

∫
S1

〈Dsh,Dsh〉+ 〈D2
sh, n〉2ds .

This metric is induced by the differential operator

Lch = D2
s

(
〈D2

sh, n〉n
)
−D2

sh .
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Figure 2. Two examples of a geodesic that starts at the circle.
On the right hand side the geodesic is printed, whereas on the left
hand side we pictured the initial velocity. First line: Initial velocity
h = (0, sin θ). The geodesic is computed until time 2. Second line:
Initial velocity h = − sin2 θ(cos θ, sin θ). The geodesic is computed
until time 1.

To simplify the expressions we choose the circle c(θ) = (cos θ, sin θ) as the starting
point of the geodesic. Then we have

|c′| = 1, Ds = ∂θ, ∂θn = v and ∂θv = −n .

Let h = an+ bv. Then

D2
sh = ∂2

θ (an+ bv) = ∂θ(a
′n+ an′ + b′v + bv′)

= a′′n+ 2a′n′ + an′′ + b′′v + 2b′v′ + bv′′

= (a′′ − a+ 2b′)n+ (−2a′ + b′′ − b)v

Thus we have

∂2
θ

(
〈∂2
θh, n〉n

)
= ∂2

θ

(
(a′′ − a− 2b′)n

)
= (a′′′′ − a′′ + 2b′′′)n+ 2(a′′′ − a′ + 2b′′)n′ + (a′′ − a+ 2b′)n′′

= −2(a′′′ − a′ + 2b′′)v + (a′′′′ − 2a′′ + a− 2b′ + 2b′′′)n
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Figure 3. A horizontal geodesic on Imm(S1,R2) with initial ve-
locity h = −(2− cos 2θ, 2 sin 2θ) until time .3.

From this we can read off the tangential and the normal part of Lh:

〈Lch, v〉 = −2a′′′ + 4a′ − 5b′′ + b

〈Lch, n〉 = a′′′′ − 3a′′ + 2a+ 2b′′′ − 4b′

A horizontal velocity satisfies 〈Lch, v〉 = 0, which leads to the ODE

−2a′′′ + 4a′ − 5b′′ + b = 0 .

A solution to this equation is given for example by

a = 3 cos θ, b = sin θ ,

This leads the initial velocity

h = (− cos2 θ − 3 sin2 θ,−4 cos θ sin θ) = −(2− cos 2θ, 2 sin 2θ) .

Appendix A. Translation invariant sprays

Let N be a finite dimensional manifold. Consider a spray Ξ on C∞(S1, N)
that has smooth extensions to Hk(S1, N) for k ≥ k0. For each initial condition
(q0, v0) ∈ THk(S1, N) and each Sobolev order k denote by Jk(q0, v0) the maximal
domain of existence of its flow. If (q0, v0) ∈ THk+1(S1, N) then a-priori we only
have the inclusion

Jk+1(q0, v0) ⊆ Jk(q0, v0) .

To obtain that smooth initial conditions have smooth solutions need to know
that the length of the maximal existence interval is bounded from below, i.e.,
∩k≥k0Jk(q0, v0) = {0} cannot happen. If the spray is invariant under translations,
this is ruled out by the following result.

Theorem A.1 (Ebin-Marsden, 1970). Let the spray Ξ be invariant under transla-
tions, i.e.

Ξ(T (σ)q, T (σ)v) = T (σ)Ξ(q, v) ,
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with T (σ)q(θ) = q(θ + σ) being the translation group. Then for initial conditions
(q0, v0) ∈ THk+1(S1, N) we have

Jk+1(q0, v0) = Jk(q0, v0) .

Proof. This result is implicit in [12, Thm. 12.1] and made explicit in [13, Lem. 5.1].
We prove it here only for N = Rd, the general case requiring only slightly more
cumbersome notation.

If the spray is translation-invariant, then so is the exponential map,

exp(T (σ)q0, T (σ)tv0) = T (σ) exp(q0, tv0) .

Differentiating at σ = 0 gives

T(q0,tv0) exp .(q′0, tv
′
0) = ∂θ exp(q0, tv0) .

From our assumption q0, v0 ∈ Hk+1(S1,Rd) it follows that the left-hand side is an
element of Hk(S1,Rd). Since q(t) = exp(q0, tv0) we see that q′(t) ∈ Hk(S1,Rd)
which implies q(t) ∈ Hk+1(S1,Rd). Thus Jk(q0, v0) = Jk+1(q0, v0). �

Appendix B. Regularity for elliptic equations

Lemma B.1. Let k ≥ 2 and let L be the operator

Lu = −(au′)′ + bu

with a ∈ Hk−1(S1), b ∈ Hk−2(S1) and a > 0, b ≥ ε > 0 for ε ∈ R. The L is a
bibounded, invertible operator

L : Hk(S1)→ Hk−2(S1) .

Furthermore the map L−1 : a, b, f 7→ L−1
a,bf is a smooth map

L−1 : Hk−1(S1)×Hk−2(S1)×Hk−2(S1)→ Hs(S1) .

Proof. This lemma can be proven in the same way as existence and regularity
results are proven for second order elliptic PDEs in, e.g., [14, Chap. 6]. The proofs
can be followed line by line, even though we have required less regularity for the
coefficient functions. �
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