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Preface

This thesis is concerned with symplectic reduction of a cotangent bun-
dle T ∗Q with respect to a Hamiltonian action by a compact Lie group
K that comes as the cotangent lifted action from the configuration
manifold Q. Moreover, we assume that Q is Riemannian and K acts
on Q by isometries. The cotangent bundle T ∗Q is equipped with its
canonical exact symplectic form, and we have a standard momentum
map µ : T ∗Q→ k∗. Consider a coadjoint orbit O that lies in the image
of µ. The goal is now to understand the symplectically reduced space

µ−1(O)/K =: T ∗Q//OK.

Several difficulties arise at this point. First of all the action by K on
the base Q is not assumed to be free. So we will get only a stratified
symplectic space. Its strata will be of the form

(µ−1(O) ∩ (T ∗Q)(L))/K =: (T ∗Q//OK)(L)

where (L) is an element of the isotropy lattice of the K-action on
T ∗Q. This follows from the theory of singular symplectic reduction
as developed in Sjamaar and Lerman [45], Bates and Lerman [6], and
Ortega and Ratiu [33]. See also Theorem 1.H.1.

One of the aspects of cotangent bundle reduction is to relate the re-
duced space (T ∗Q//OK)(L) to the cotangent bundle of the reduced con-
figuration space, i.e. to T ∗(Q/K). However, in this generality Q/K will
not be a smooth manifold, and, worse, the mapping (T ∗Q//OK)(L) →
T ∗(Q/K) (which one constructs canonically – see Section 2.D) does not
have locally constant fiber type. To remedy this mess we have to as-
sume that the base manifold is of single isotropy type, that is Q = Q(H)

for a subgroup H of K. Assuming this we get a first result that says
that

O//0H
Â Ä // T ∗Q//OK // T ∗(Q/K)

is a singular symplectic fiber bundle, and this is Theorem 2.A.4. This
result is obtained by applying the Palais Slice Theorem to the action on
the base space Q, and then using the Singular Commuting Reduction
Theorem of Section 1.H. This is an inroad that was also taken by
Schmah [43] to get a local description of T ∗Q//OK.

However, one can also give a global symplectic description of the re-
duced space, and this is done in Section 2.D. This follows an approach
that is generally called gauged cotangent bundle reduction or Weinstein
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construction ([50]) or also Sternberg construction. In the case that the
action by K on the configuration space is free this global description
was first given by Marsden and Perlmutter [25]. Their result says
that the symplectic quotient T ∗Q//OK can be realized as the fibered
product

T ∗(Q/K) ×Q/K (Q×K O)

and they compute the reduced symplectic structure in terms of data
intrinsic to this realization – [25, Theorem 4.3].

In the presence of a single non-trivial isotropy on the configuration
space one gets a non-trivial isotropy lattice on T ∗Q and thus has to use
stratified symplectic reduction. Therefore, there is quite a difference
between the regular case (where K acts freely on Q) and the single
isotropy type case (where Q = Q(H).) The result for the single isotropy
type case is the following: Each symplectic stratum (T ∗Q//OK)(L) of
the reduced space can be globally realized as

(W//OK)(L) = T ∗(Q/K) ×Q/K (
⊔
q∈QO ∩ Ann kq)(L)/K

where

W := (Q×Q/K T
∗(Q/K)) ×Q

⊔
q∈QAnn kq ∼= T ∗Q

as symplectic manifolds with a Hamiltonian K-action. Moreover, we
compute the reduced symplectic structure in terms intrinsic to this
realization. This is the content of Theorem 2.D.4.

In Section 2.E we are concerned with understanding the Poisson re-
duced space (T ∗Q)/K ∼= W/K by means of the Weinstein construc-
tion in the single isotropy type case, i.e. where Q = Q(H). Indeed, we
find in Theorem 2.E.3 that the Poisson reduced space (T ∗Q)/K may
be realized as the singular fibered product

T ∗(Q/K) ×Q/K (
⊔
q∈QAnn kq)/K,

and we compute the reduced Poisson structure in terms intrinsic to this
realization. The smooth strata of this singularly reduced space are of
the form

T ∗(Q/K) ×Q/K (
⊔
q∈QAnn kq)(L)/K,

where (L) is an element of the isotropy lattice of the K-action on T ∗Q.
In particular, it follows that the reduced Poisson space is canonically
a singular fiber bundle over the cotangent bundle of the reduced con-
figuration space, that is

Ann h/H Â Ä // (T ∗Q)/K // T ∗(Q/K)

We refer to Section 2.B for the notion of a singular fiber bundle. The
smooth strata WL/K thus fiber over T ∗(Q/K) according to

(Ann h)(L0)H/H Â Ä // (T ∗Q)(L)/K // T ∗(Q/K)
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where L0 is a subgroup of H which is conjugate to L within K, and
(L0)

H denotes the isotropy class of L0 with respect to the Ad∗(H)-
action on Ann h. This generalizes the work of Zaalani [53] and Perl-
mutter and Ratiu [37] who considered free actions on the base Q.

It is rather surprising that the subject of cotangent bundle reduction,
albeit so important to Hamiltonian mechanics, still is very untouched.
Even in the case of a free action on the base the results are rather new,
and there is not much to be found about singular cotangent bundle
reduction in the literature. One of the first to study this subject is
Schmah [43]. The other important paper on singular cotangent bundle
reduction is the one by Perlmutter, Rodriguez-Olmos and Sousa-Diaz
[38]. By restricting to do reduction at fully isotropic values of the
momentum map µ : T ∗Q → k∗ they are able to drop all assumptions
on the isotropy lattice of the K-action on Q, and give a very complete
description of the reduced symplectic space. There is also a very recent
paper by Perlmutter, Rodriguez-Olmos, and Sousa-Diaz [39] where the
authors provide a Witt-Artin decomposition of the cotangent bundle
T ∗Q in the presence of a cotangent lifted action by K. This may make
it possible to generalize the results on T ∗Q//OK and (T ∗Q)/K to the
fully singular case.

As an application of these cotangent bundle reduction techniques we
consider Calogero-Moser systems with spin in Section 4. In fact, it
was an idea of Alekseevsky, Kriegl, Losik, Michor [2] to consider polar
representations of compact Lie groups G on a Euclidean vector space
V to obtain new versions of Calogero-Moser systems. We make these
ideas precise by using the singular cotangent bundle reduction machin-
ery. Thus let Σ be a section for the G-action in V , let C be a Weyl
chamber in this section, and put M := ZG(Σ). Under a strong but not
impossible condition on a chosen coadjoint orbit in g∗ we get

T ∗V //OG = T ∗Cr ×O//0M

from the general theory, where Cr denotes the sub-manifold of regular
elements in C. This is the effective phase space of the Spin Calogero-
Moser system. The corresponding Calogero-Moser function is obtained
as a reduced Hamiltonian from the free Hamiltonian on T ∗V . The
resulting formula is

HCM(q, p, [Z]) = 1
2

l∑

i=1

p2
i + 1

2

∑

λ∈R

Pkλ
i=1 z

i
λ
zi
λ

λ(q)2
.

This is made precise with the necessary notation in Section 4.

Finally, we study integrability properties of the thus obtained reduced
Hamiltonian system. Here we consider two ways to exhibit integra-
bility of the Calogero-Moser system. The first is to use a result from
Zung [54, Theorem 2.3] to show that the system is integrable in a
generalized Liouville sense. The second is to make stronger use of the
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gauged reduction picture and to show that the Calogero-Moser Hamil-
tonian is actually integrable via a symplectically complete bifoliation.
This approach has the advantage of providing a deeper insight into the
dynamical behavior of the system.

Having said this, the setup of the thesis is as follows. In Chapter 1
we introduce important concepts from singular geometry which will be
heavily used throughout the thesis. In Chapter 2 we come to the core
subject and develop the results referred to and stated above. Chapter 3
follows Nehorošev [30], Zung [54, 55], Fasso and Ratiu [16], and Fasso
[15] in introducing generalized notions of integrability as well as the
appropriate concept of generalized action-angle variables. In Chapter
4 the ideas from the previous development are employed in the study
of spin Calogero-Moser systems obtained from polar representations of
compact Lie groups.

Thanks. I am grateful to Peter Michor for introducing me to sym-
plectic geometry and proposing the subject of Calogero-Moser systems
associated to polar representations of compact Lie groups. I am also
thankful to Stefan Haller and Armin Rainer for helpful remarks and
comments.

Vienna, February 2005
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CHAPTER 1

Singular geometry

Let K be a compact Lie group that acts by Hamiltonian transforma-
tions on a symplectic manifold (M,ω) such that there is an equivariant
momentum map J : M → k∗ where k is the Lie algebra of K. In such a
situation one can pass to the symplectic quotient of (M,ω) by K, that
is one considers the symplectically reduced space

J−1(O)/K =: M//OK

where O is a coadjoint orbit in the image of J . If the K action on M is
free then it follows that M//OK is a smooth symplectic manifold, and
is also called the Marsden-Weinstein-Meyer reduced space. In general,
however, the reduced space will fail to be a manifold. It will rather be
a topological space that is decomposed in a technical way into pieces
which can be shown to be smooth symplectic manifolds. This way to
look at M//OK renders it a singular symplectic space, and it is ob-
tained from (M,ω) via a process called singular symplectic reduction.
The terms singular space, singular symplectic space, and singular sym-
plectic reduction are explained in this chapter. The reduction process
in this generality is due to Sjamaar and Lerman [45].

1.A. Compact transformation groups

Let K be a compact Lie group that acts by isometries on a Riemann-
ian manifold M , i.e. M is a Riemannian K-space. The action will be
written as l : K ×M → M , (k, x) 7→ l(k, x) = lk(x) = lx(k) = k.x.
Sometimes the action will be lifted to the tangent space TM . That
is, we will consider h.(x, v) := (h.x, h.v) := T lh.(x, v) = (lh(x), Txlh.v)
where (x, v) ∈ TM . As the action is a transformation by a diffeo-
morphism it may also be lifted to the cotangent bundle. This is the
cotangent lifted action which is defined by h.(x, p) := (h.x, h.p) :=
T ∗lh.(x, p) = (h.x, T ∗

h.xlh−1 .p) where (x, p) ∈ T ∗M .

The fundamental vector field is going to repeatedly play an im-
portant role. It is defined by

ζX(x) := ∂
∂t
|0l(exp(+tX), x) = Tel

x(X)

where X ∈ k. The fundamental vector field mapping k → X(M),
X 7→ ζX is clearly linear. By definition the flow of ζX is given by
lexp(tX). Moreover, it intertwines Lie bracket with the negative of the

1



2 1. SINGULAR GEOMETRY

bracket of vector fields. Indeed, notice first, that

Txlk.ζX(x) = ∂
∂t
|0lk(l(exp(tX), x))

= ∂
∂t
|0l(conjk(exp(tX)), k.x)

= Tel
k.x.Teconjk.(X)

= ζAd(k)X
(k.x)

that is ζX and ζAd(k.X)
are lk-related. Now we use this to compute the

bracket to be

[ζX , ζY ](x) = ∂
∂s
|0(FlζXs )∗xζY

= ∂
∂s
|0Texp(sX).xlexp(−sX).ζY (exp(sX).x)

= ∂
∂s
|0ζAd(exp(−sX)).Y

(x)

= −ζ[X,Y ](x)

where X,Y ∈ k and x ∈ M . Had we chosen the sign negatively in the
fundamental vector field mapping then it were Lie algebra homomor-
phism. However, this choice of sign is the standard one in conjunction
with Hamiltonian group actions and momentum maps.

We endow the set of orbits M/K with the quotient topology and call it
the orbit space. Let H be a subgroup of K. A point x ∈ M is said to
be of isotropy type H if its isotropy group Kx = {k ∈ K : k.x = x}
is conjugate to H within K. If H ′ is conjugate to H within K we
shall also write H ′ ∼ H. The family of subgroups of K conjugate to
H within K is denoted by (H) and called the conjugacy class of
H. All conjugacy classes of possible subgroups of K that show up as
isotropy groups of points in M taken together constitute the isotropy
lattice

ILK(M) := {(L) : L = Kx for some x ∈M}

of the action under consideration. If it is clear which action is being
looked at we simply write IL(M). The set of points that have isotropy
H is denoted by

M(H) := {x ∈M : Kx is conjugate to H},

and is called the isotropy type sub-manifold of M of type (H). It
will be shown below that this terminology is justified, i.e. M(H) indeed
is a sub-manifold. Furthermore, there is

MH := {x ∈M : Kx = H}

which is called the set of points that have symmetry H, and the set
of points that are fixed by H,

Fix(H) := MH := {x ∈M : H ⊆ Kx}

There is a natural partial ordering on the isotropy lattice as follows:

(H) ≤ (L) :⇐⇒ there is k ∈ K such that H ⊆ kLk−1
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where (H) and (L) are in the isotropy lattice of M . This relation is
anti-symmetric becauseK was assumed compact. An element x ∈M is
called regular if it has an open neighborhood such that (Kx) ≤ (Ky)
for all y in this neighborhood, and the set of regular points is denoted
by Mreg. If a point is not regular it is said to be singular.

Definition 1.A.1 (Slices). A subset S ⊆M is called a slice at x ∈M
if there are an open K-invariant neighborhood U of K.x in M and a
smooth K-equivariant retraction r : U → K.x such that S = r−1(x).

Proposition 1.A.2. Assume S is a slice at x ∈ M for the K-action,
and U an open K-invariant neighborhood of K.x as in the definition.
Then the following are true.

(i) The slice S is a manifold and Kx acts on S.
(ii) k.S ∩ S 6= ∅ if and only if k ∈ Kx.
(iii) K.S = U .
(iv) Ks ⊆ Kx for all s ∈ S
(v) If x is regular then there is an open neighborhood V of x in S such

that V ⊆Mreg.
(vi) If s1, s2 ∈ S have the same isotropy type as with regard to the Kx-

action on S then their isotropy types with regard to the K-action
coincide. The converse is, however, false.

(vii) The topological spaces S/Kx and (K.S)/K are homeomorphic.
Moreover, this is a typical open neighborhood of K.x in the orbit
space M/K.

Proof. (i): Since r is a retraction, S is a sub-manifold of U , and
hence also of M as U is open in M . By equivariance of r it follows that
Kx acts on S.

(ii): Let s ∈ S and k ∈ K such that k.s = s′ ∈ S. Then k.x = k.r(s) =
r(k.s) = r(s′) = x by equivariance, and the other direction is clear.

(iii): K.S = K.r−1(x) = r−1(K.x) = U .

(iv): This follows from property (ii).

(v): Is clear from the definition and the above properties.

(vi): The positive part of the assertion is obvious. A counterexample
is given by [27, Remark 4.14].

(vii): We consider the map S/Kx → U/K, Kx.s 7→ K.s. Clearly this
map is surjective. It is also injective: assume K.s = K.s1; then there
is a k ∈ K such that k.s = s1 whence k ∈ Kx by (ii). Now since the
quotient spaces are endowed with the final topology with respect to
the respective projections, the vertical arrows in the diagram

S
Â Ä i

//

²²²²

U

²²²²

S/Kx
ι

// U/K
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are final by tautology. Thus the induced map ι is continuous. To see
that it is open, i.e. maps open subsets to open ones, take an open
Kx-invariant neighborhood U1 of x in S. Then K.U1 is open in U ,
since the action K × S → U is a submersion, thus an open mapping.
Hence also ι(U1/Kx) = (K.U1)/K is open in U/K. Therefore also ι−1

is continuous. ¤

Theorem 1.A.3 (Tube Theorem). Let S be a slice for the K-action
at x ∈ M , H = Kx, and U = K.S. Then there is a K-equivariant
diffeomorphism

f : K ×H S −→ U

[(k, s)] 7−→ k.s.

In particular the section K ×H {x} in the associated bundle is mapped
to the orbit K.x. Here the action by H on K×S is given by h.(k, s) =
(kh−1, h.s). The K action on K ×H S is induced by left multiplication
on the first factor of K × S.

The neighborhood U is called a tube around the orbit K.x.

Proof. Consider the diagram

K × S
l

//

ρ
²²²²

K.S = U

K ×H S
f

88p
p

p
p

p
p

Since H acts freely on K it also acts freely on K×S. Thus K×H S is a
smooth manifold, which carries the final smooth structure with respect
to the projection ρ. Therefore, f is smooth. It is clearly equivariant.
The map is surjective since l is. Because k.s = k1k.s1 if and only if
s = k−1

1 .s1 and this implies that k−1
1 k ∈ H it follows that f is also

injective. Finally, l and ρ both are submersions. Thus this is also true
for f . So f is a bijective submersion, hence a diffeomorphism. ¤

Since M is a Riemannian K-space we can define the normal bundle to
an orbit K.x as

Nor(K.x) := T (K.x)⊥ =
⊔
y∈K.xTy(K.x)

⊥.

Furthermore, let Nor(K.x)ε := {X ∈ Nor(K.x) : |X| < ε}, and we
will make use of the geodesic exponential mapping TM → M ×M ,
ξ 7→ (τ(ξ), expτ(ξ) ξ) of Riemannian geometry where τ is the foot point
projection.

Theorem 1.A.4 (Slices). There is a number r > 0 such that the ex-
ponential mapping exp |Nor(K.x)r : Nor(K.x)r → U ⊆ M , where U



1.A. COMPACT TRANSFORMATION GROUPS 5

is the image, is a diffeomorphism onto U . Moreover, U is an open
neighborhood of K.x, and

S := expx(Norx(K.x)r)

is a slice at x such that U = K.S.

A similar theorem also holds for the more general case of a proper
action on a smooth manifold, and this was proved by Palais [34], see
also Michor [27, Theorems 5.6 & 5.7].

Proof. Clearly there is a r > 0 such that

exp |Nor(K.x)r : Nor(K.x)r → exp(Nor(K.x)r) =: U ⊆M

is a diffeomorphism. Moreover, since the metric is invariant under the
group action it follows that Nor(K.x)r ⊆ TxM is Kx-invariant.

Since lk(expy(Y )) = expk.y(Tylk.Y ) for all y ∈M , Y ∈ TyM , and k ∈ K
it follows that U = K.S. Finally the retraction U → K.x is given by
y = expk.x(Y ) 7→ k.x, and this is well-defined. ¤

Locally, a Riemannian action is an orthogonal action on a Euclidean
vector space, in the following sense. If x ∈ M and H = Kx then the
representation

H −→ O(Norx(K.x)),

h 7−→ Txlh

is called the slice representation of K at x. It is immediate from
Proposition 1.A.2 that a point x is regular if and only if the slice rep-
resentation at x is trivial.

Theorem 1.A.5. Let (H) be in the isotropy lattice of the Riemannian
K-action on M . Then the following are true.

(i) The subset Fix(H) = MH = {x ∈M : H ⊆ Kx} is a totally geo-
desic sub-manifold of M .

(ii) MH is an open dense sub-manifold of MH , and if M = M(H) then
MH = MH . Moreover, MH/N(H) is a smooth manifold, where
N(H) is the normalizer of H in K.

(iii) Both M(H) and M(H)/K are smooth manifolds, albeit possibly with
countably many connected components that may differ in dimen-
sion.

(iv) The orbit projection M(H) ³ M(H)/K is a smooth fiber bundle
with typical fiber K/H.

(v) The orbit projection MH ³ MH/N(H) is a smooth fiber bundle
with typical fiber N(H)/H. Moreover, M(H)/K and MH/N(H)
are diffeomorphic.

Proof. (i). Let x ∈ MH , and U ⊆ M a chart centered at x
such that exp−1

x : U → V is a diffeomorphism where V ⊆ TxM
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is an appropriate open neighborhood of 0. Then V ∩ (TxM)H :=
{v ∈ V : h.v = v} is a chart of MH which is centered at V , and,
moreover, Tx(M

H) = (TxM)H ; indeed, let v ∈ V ∩ (TxM)H then
h. expx(v) = expx(h.v) = expx(v) ∈ MH . The last equality follows
since H acts by isometries, and ∂

∂t
|0h. expx(tv) = ∂

∂t
|0 expx(th.v). This

also shows that MH is totally geodesic, i.e. any geodesic in M that
starts in MH will stay in MH for all times.

(ii). Let x ∈ MH ⊆ MH . Consider an element k ∈ K such that
k.MH ⊆ MH and some arbitrary h ∈ H. Then we have x = kk−1.x =
khk−1.x, that is khk−1 ∈ Kx = H. On the other hand, N(H) obviously
acts on MH . Therefore, N(H) is the largest subgroup of K that acts
on MH . Moreover, H acts trivially and so we actually have an action
of N(H)/H on MH . Now it is clear that the set of regular points
with respect to this action is just MH . Thus this is an open dense
sub-manifold of MH by Theorem 1.A.6.

It is clear that M(H) = M implies MH = MH .

Now MH/N(H) is a smooth manifold: indeed, let x ∈MH and consider
a slice S of this action at x with tubular N(H)-invariant neighborhood
U . Then the tube theorem says that U is diffeomorphic toN(H)/H×S.
Thus a typical neighborhood of N(H).x in MH/N(H) is of the form S.

(iii). Let x ∈ M(H) with H = Kx. Let S be a slice at x and U a tube
around K.x. We claim that U ∩M(H) = K.SH :

⊆: Let y ∈ U ∩M(H). There is k ∈ K such that k.y ∈ S. But then
H ∼ Kk.y ⊆ H by Proposition 1.A.2 whence Kk.y = H.

⊇: Is clear.

Thus we have the following

K × SH
l

//

²²²²

K.SH

K ×H SH K/H × SH

∼=

OO

Note that K × SH ⊆ K × S is a sub-manifold by the previous point.
Therefore, M(H) is a sub-manifold with typical neighborhood of the
form K/H × SH .

(iv). This also shows that locally the orbit projection M(H) ³M(H)/K
is of the form K/H×SH → SH , i.e. a smooth fiber bundle with typical
fiber K.x ∼= K/H.

(v). Finally, continuing the notation, the same arguments show that
the projection MH ³ MH/N(H) locally is of the form N(H)/H ×
SH → SH . Moreover, it is easy to see that M(H)/K and MH/N(H)
are homeomorphic, and locally both spaces are modeled on SH . Thus
they are diffeomorphic. ¤
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For completeness sake we also record the following theorem in which
we return to a more general setting.

Theorem 1.A.6. Let M be a proper smooth G-manifold which need
not be connected. Then the following are true.

(i) The set of regular points Mreg is open and dense in M .
(ii) Around any point in M there is an open G-invariant neighborhood

which is only met by finitely many types of orbits.
(iii) The set Msing/G of all singular orbits does not locally disconnect

the orbit space M/G.

Proof. See Michor [27, Section 6] or Palais and Terng [35]. ¤

1.B. Whitney stratified spaces

In this subsection we introduce the Whitney conditions which will be
necessary in the definition of Whitney stratified spaces – see Definition
1.C.5. We follow the approach of Mather [26].

Definition 1.B.1. Let M be a manifold and X,Y sub-manifolds such
that X ∩ Y = ∅. The pair (X,Y ) is said to satisfy condition (a) at
a point y ∈ Y if the following holds. Consider an arbitrary sequence
of points (xi)i in X tending to y such that Txi

X converges to some
r-plane τ ⊆ TyM in the Grassmanian bundle of r-planes in TM . Then
it is true that TyY ⊆ τ . The pair (X,Y ) is said to satisfy condition (a)
if it does so at every point y ∈ Y .

Example 1.B.2. Let M = C
3 = {(x, y, z)}, and consider the complex

analytic sub-manifolds X := {(x, y, z) : zx2 − y2 = 0} \ {(0, 0, z)} and
Y := {(0, 0, z)}. The pair (X,Y ) satisfies condition (a) at all points of
Y except at the origin:

However, Y can be further decomposed: consider Y0 = Y \ {0} and
Z = {0}. Now the pairs (X,Y0), (X,Z), and (Y0, Z) obviously do
satisfy condition (a). 2

Definition 1.B.3 (Whitney condition (b) in R
n). Let X, Y be disjoint

sub-manifolds of R
n with dimX = r. The pair (X,Y ) is said to satisfy

condition (b) at y ∈ Y if the following is true. Consider sequences
(xi)i, (yi)i in X, Y , respectively, such that xi → y, yi → y. Assume
that Txi

X converges to some r-plane τ ⊆ TyR
n = R

n, and that the
lines spanned by the vectors yi−xi converge – in RP n−1 – to some line
l ⊆ R

n = TyR
n. Then l ⊆ τ . The pair (X,Y ) satisfies condition (b)

if it does so at every y ∈ Y .

Obviously condition (b) behaves well under diffeomorphisms in the fol-
lowing sense: for i = 1, 2 consider pairs (Xi, Yi) in R

n, points yi ∈ Yi,
open neighborhoods Ui ⊆ R

n of yi, and a diffeomorphism φ : U1 → U2

sending y1 to y2 and satisfying φ(U1 ∩ X1) = U2 ∩ X2 as well as
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φ(U1 ∩ Y1) = U2 ∩ Y2. Thus it makes sense to formulate this condi-
tion for manifolds.

Definition 1.B.4 (Whitney condition (b)). Let M be a manifold and
X,Y disjoint sub-manifolds. Now (X,Y ) is said to satisfy condition
(b) if the following holds for all y ∈ Y . Let (U, φ) be a chart around y.
Then the pair (φ(X ∩ U), φ(Y ∩ U)) satisfies condition (b) at φ(y).

By the above this definition is independent of the chosen chart in the
formulation.

Example 1.B.5. ConsiderM = C
3 = {(x, y, z)} with Y the z-axis, and

X = {(x, y, z) : y2 + x3 − z2x2 = 0}\Y . Then the pair (X,Y ) satisfies
condition (a). It satisfies condition (b) at all points in Y except at
y = 0. 2

Proposition 1.B.6. Let M be a manifold and (X,Y ) a pair of disjoint
sub-manifolds of M .

(i) If (X,Y ) satisfies condition (b) at y ∈ Y then it also satisfies
condition (a) at y.

(ii) If (X,Y ) satisfies condition (b) at y ∈ Y ∩X then dimX > dimY .

Notice that the assumption X ∩ Y 6= ∅ is necessary for the second
statement in the proposition.

Proof. Since both assertions are of local nature it suffices to con-
sider the case M = R

n.

First assertion: Let (xi)i be a sequence in X such that xi → y ∈ Y .
Suppose Txi

X → τ ⊆ TyR
n = R

n. By contradiction we assume that
TyY ⊆ R

n is not contained in τ . Thus there is a line l ⊆ TyY which
intersects τ at the origin only. Now we choose a sequence (yi)i in Y so
that the difference yi − xi spans a line converging to the line l which
lies in TyY . This, however, contradicts condition (b).

Second assertion: Let (xi)i be a sequence in X such that xi → y ∈ Y .
By compactness of the Grassmanian we can (passing to a subsequence
if necessary) assume that Txi

X converges to some plane τ . From the
above we know that (b) implies (a) and hence TyY ⊆ τ . If xi is close
enough to Y , i.e., for i large enough, we can find yi ∈ Y minimizing the
distance to xi and so that yi → y. It follows that yi−xi is orthogonal to
TyY . Let li denote the line spanned by yi−xi. Passing to a subsequence
if necessary, the li converge to a line l in RP n−1 and l is still orthogonal
to TyY . By condition (b) we have l ⊆ τ , and clearly dimX = dim τ ≥
dimY + dim l > dimY . ¤

1.C. Singular spaces and smooth structures

Let X be a para-compact and second countable topological Hausdorff
space, and let (I,≤) be a partially ordered set.
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Definition 1.C.1 (Decomposed space). An I-decomposition of X
is a locally finite partition of X into smooth manifolds Si, i ∈ I which
are disjoint (but may consist of finitely many connected components
with differing dimension), and satisfy:

(i) Each Si is locally closed in X;
(ii) X =

⋃
i∈I Si;

(iii) Sj ∩ Si 6= ∅ ⇐⇒ Sj ⊆ Si ⇐⇒ j ≤ i.

The third condition is called condition of the frontier. The
manifolds Si are called strata or pieces. In the case that j < i
one often writes Sj < Si and calls Sj incident to Si or says Sj is a
boundary piece of Si.

We define the dimension of a manifold consisting of finitely many con-
nected components to be the maximum of the dimensions of the man-
ifold’s components.

The dimension of the decomposed space X is defined as

dimX := sup
i∈I

dimSi

and we will only be concerned with spaces where this supremum is
attained.

The depth of the stratum Si of the decomposed space X is defined
as

depthSi := sup{l ∈ N : there are strata Si0 = Si, Si1 , . . . , Sil
such that Si0 < . . . < Sil},

Notice that depthSi is always finite; indeed, else there would be an
infinite family (Sj)j∈J with Sj > Si thus making any neighborhood of
any point in Si meet all of the Sj which contradicts local finiteness of
the decomposition. The depth of X is

depthX := sup {depthSi : i ∈ I}.

Thus, if X consists of one just stratum then depthX = 0. From the
frontier condition we have that depthSi ≤ dimX − dimSi, and also
depthX ≤ dimX.

A simple example for a decomposed space is a manifold with boundary
with big stratum the interior and small stratum the boundary. Also
manifolds with corners are decomposed spaces in the obvious way. Like-
wise the cone CM := (M × [0,∞))/(M × {0}) over a manifold M is
a decomposed space, the partition being that into cusp and cylinder
M × (0,∞).

The following definition of singular charts and smooth structures on
singular spaces is due to Pflaum [40, Section 2].
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Definition 1.C.2 (Singular charts). LetX =
⋃
i∈I Si be a decomposed

space. A singular chart (U, ψ) with patch U an open subset of X
is to satisfy the following.

(i) ψ(U) is locally closed in R
n;

(ii) ψ : U → ψ(U) is a homeomorphism;
(iii) For every stratum Si that meets U the restriction ψ|Si ∩ U :

Si ∩ U → ψ(Si ∩ U) is a diffeomorphism onto a smooth sub-
manifold of R

n.

Two singular charts ψ : U → R
n and φ : V → R

m are called compati-
ble at x ∈ U ∩V if there is an open neighborhood W of x in U ∩V , a
number N ≥ max {n,m}, and a diffeomorphism f : W1 → W2 between
open subsets of R

N such that:

W

ψ
²²

φ

$$IIIIIIIII

ψ(W )
f |ψ(W )

//
Ä _

²²

φ(W )
Ä _

²²

R
N W1

f
//_?

oo W2
Â Ä //

R
N

It follows that f |ψ(W ) : ψ(W ) → φ(W ) is a homeomorphism. Further,
for all strata S that meet W the restriction f |ψ(W ∩S) : ψ(W ∩S) →
φ(W∩S) is a diffeomorphism of sub-manifolds of R

N . The charts (U, ψ)
and (V, φ) are called compatible if they are so at every point of the
intersection U ∩ V . It is straightforward to check that compatibility of
charts defines an equivalence relation.

A family of compatible singular charts on X such that the union of
patches covers all of X is called a singular atlas. Two singular
atlases are said to be compatible if all charts of the first are compatible
with all charts of the second. Again it is clear that compatibility of
atlases forms an equivalence relation.

Let A be a singular atlas on X. Then we can consider the family of all
singular charts that belong to some atlas compatible with A to obtain
a maximal atlas Amax.

Definition 1.C.3 (Smooth structure). Let X =
⋃
i∈I Si be a decom-

posed space. A maximal atlas A on X is called a smooth structure
on the singular space X. A continuous function f : X → R is said to
be smooth if the following holds. For all charts ψ : U → R

n of the
atlas A there is a smooth function F : R

n → R such that f |U = F ◦ψ.
The set of all smooth functions on X is denoted by C∞(X).

A continuous map f : X → Y between decomposed spaces with smooth
structures is called smooth if f ∗C∞(Y ) ⊆ C∞(X). An isomorphism
F : X → Y between decomposed spaces is a homeomorphism that is
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smooth in both directions and maps strata of X diffeomorphically onto
strata of Y .

The smooth structure thus defined on decomposed spaces is in no way
intrinsic but is a structure that is additionally defined to do analysis
on decomposed spaces. Also a smooth map f : X → Y between
decomposed spaces need not at all be strata preserving.

Definition 1.C.4 (Cone space). A decomposed space X =
⋃
i∈I Si is

called a cone space if the following is true. Let x0 ∈ X arbitrary and
S the stratum passing through x0. Then there is an open neighborhood
U of x0 in X, there is a decomposed space L with global chart ψ : L→
Sl−1 ⊆ R

l, and furthermore there is an isomorphism of decomposed
spaces

F : U → (U ∩ S) × CL

such that F (x) = (x, c) for all x ∈ U ∩S. Here CL = (L× [0,∞))/(L×
{0}) is decomposed into the cusp c on the one hand, while the other
pieces are of the form stratum of L times (0,∞). Thus we can take
Ψ : CL→ R

l, [(z, t)] 7→ tψ(z) as a global chart on CL thereby defining
a smooth structure on CL whence also on the product (U ∩ S) × CL.

The space L is called a link, and the chart F is referred to as a cone
chart or also link chart. Of course, the link L depends on the
chosen point x0 ∈ X.

An example for a cone space is the quadrant Q :=
{(x, y) ∈ R

2 : x ≥ 0 and y ≥ 0}. A typical neighborhood of 0 ∈ Q is
of the form {(x, y) : 0 ≤ x < r and 0 ≤ y < r}. The link with respect
to the point 0 then is the arc L := {(cosϕ, sinϕ) : 0 ≤ ϕ ≤ π

2
}. More

generally manifolds with corners carry the structure of cone spaces.

Definition 1.C.5 (Stratified spaces). Let X ⊆ R
m be a subset and

assume that X is a decomposed space, i.e. X =
⋃
i∈I Si, and that the

strata Si be sub-manifolds of R
m. The I-decomposed space X is said

to be (Whitney) stratified if all pairs (Si, Sj) with i > j satisfy
condition (b) – see Definition 1.B.4. For sake of convenience we will
simply say stratified instead of Whitney stratified.

Theorem 1.C.6. Let X ⊆ R
m be a subset of a Euclidean space and

assume that X =
⋃
i∈I Si is decomposed. Then X is stratified if and

only if X is a cone space.

Proof. It is proved in Pflaum [41] that every (Whitney) stratified
space is also a cone space.

An outline of the converse direction is given in Sjamaar and Lerman
[45, Section 6], and also in Goresky and MacPherson [17, Section 1.4].
This argument makes use of Mather’s control theory as introduced in
Mather [26] as well as Thom’s First Isotopy Lemma. ¤
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The above theorem depends crucially on the fact that the decomposed
space X can be regarded as a subspace of some Euclidean space. As
this assumption will always be satisfied in the present context we will
take the words cone space and stratified space to be synonymous. In
fact, Sjamaar and Lerman [45] take cone space to be the definition of
stratified space.

Example 1.C.7. As an example consider a compact Lie groupK acting
by isometries on a smooth Riemannian manifold M . We are concerned
with the orbit projection π : M → M/K and endow the orbit space
with the final topology with respect to the projection map. For nota-
tion and basics on compact transformation groups see Section 1.A. Fix
a point x0 ∈ M with isotropy group Kx0 = H. The slice representa-
tion is then the action by H on Norx0(K.x0). By the Tube Theorem
there is a K-invariant open neighborhood U of the orbit K.x0 such
that K×H V ∼= U as smooth K-spaces where V is an H-invariant open
neighborhood of 0 in Norx0(K.x0) – see Section 1.A.

Now let p = (p1, . . . , pk) be a Hilbert basis for the algebra Poly(V )H

of H-invariant polynomials on V . That is, p1, . . . , pk is a finite system
of generators for Poly(V )H . The Theorem of Schwarz [44, Theorem 1]
now says that p∗ : C∞(Rk) → C∞(V )H is surjective. Moreover, the
induced mapping q : V/H → R

k is continuous, injective, and proper.
See also Michor [27].

As in Section 1.A consider the isotropy type sub-manifoldsM(H). These
give a K-invariant decomposition of M as M =

⋃
(H)M(H) where (H)

runs through the isotropy lattice of the K-action on M . We thus get
a decomposition of the orbit space

M/K =
⋃

(H)

M(H)/K

where again (H) runs through the isotropy lattice of the K-action on
M . By the results of Section 1.A this decomposition clearly renders
M/K a decomposed space.

Now a theorem of Pflaum [40, Theorem 5.9] says that the induced
mapping ψ : U/K → R

k as defined in the diagram

U
'

//

²²²²

K ×H V

²²²²

U/K
'

φ
//

ψ
%%J

J
J

J
J

V/H

q

²²

Voooo

p
{{wwwwwwwwww

R
k
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is a typical singular chart around the point K.x0 in the orbit space.
Furthermore, the smooth functions with respect to this smooth struc-
ture are C∞(M/K) = C∞(M)K , i.e. none other than the K-invariant
smooth functions on M : indeed, by Schwarz’ Theorem we have

ψ∗C∞(Rk) = φ∗q∗C∞(Rk) = φ∗C∞(V )H = C∞(U)K

whence C∞(U)K = C∞(U/K). Finally, the decomposition of M/K by
orbit types turns the orbit space into a stratified space with smooth
structure. 2

Lemma 1.C.8. The quotient smooth structure C∞(M/K) = C∞(M)K

separates points in M/K.

Proof. Let O1 and O2 be arbitrary orbits of the K-action. Con-
sider X = O1 ∪O2, and define f : X → R to be 1 on O1 and 2 on O2.
Then f may be extended to a smooth function on M by the Tietze-
Urysohn Lemma. Thus it may be extended K-invariantly by averaging
since K was assumed compact. ¤

1.D. Properties of Poisson morphisms

In this subsection we collect some properties on Poisson maps which
are tacitly used throughout the text. An in-depth study of Poisson
manifolds can be found in Vaisman [47] which has been used as a basic
reference for the following.

Let (M1, P1) and (M2, P2) be smooth manifolds with Poisson tensors
P1 and P2 respectively. A smooth map ϕ : (M1, P1) → (M2, P2) is said
to be a Poisson morphism if

{ϕ∗f, ϕ∗g}1 := 〈P1, dϕ
∗f ∧ dϕ∗g〉 = 〈P2, df ∧ dg〉 ◦ ϕ =: {f, g}2 ◦ ϕ

for all f, g ∈ C∞(M2).

Proposition 1.D.1. Let (M1, P1) and (M2, P2) be Poisson manifolds,
and ϕ : M1 →M2 a smooth map. Then the following are equivalent

(i) ϕ : (M1, P1) → (M2, P2) is a Poisson morphism.
(ii) For all f ∈ C∞(M2) the Hamiltonian vector fields ∇P1

ϕ∗f :=

P̌1(dϕ
∗f) and ∇P2

f are ϕ-related, that is Tϕ.∇P1
ϕ∗f = ∇P2

f ◦ ϕ.
(iii) The diagram

Λ2TM1

Λ2Tϕ
// Λ2TM2

M1

P1

OO

ϕ
// M2

P2

OO

is commutative.

Proof. These assertions are well-known and straightforward to
prove. ¤
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Proposition 1.D.2. Let (M1, P1), (M2, P2), and (M3, P3) be Poisson
manifolds, and consider smooth maps ϕ : M1 →M2 and ψ : M2 →M3.
Then the following are true.

(i) If ϕ and ψ are Poisson then so is the composition ψ ◦ ϕ.
(ii) If the first map ϕ is a surjective Poisson morphism and the com-

position ψ◦ϕ is Poisson then this is also true for the second arrow
ψ.

(iii) If the second map ψ is an injective Poisson morphism and the
composition ψ ◦ ϕ is Poisson then this is also true for the first
arrow ϕ.

Proof. This is straight forward by considering the appropriate
commutative diagram. ¤

Consider now a Poisson manifold (M1, P1) and a smooth surjective
map ϕ : M1 → M2. If M2 carries Poisson structure P2 such that ϕ is
a Poisson morphism then it is clear that P2 is uniquely determined by
this property. In this case P2 is said to be coinduced from P1 via ϕ.

Proposition 1.D.3. Consider a Poisson manifold (M1, P1) and a
smooth surjective map ϕ : M1 → M2. There exists a coinduced Pois-
son structure P2 on M2 if and only if the expression {f ◦ ϕ, g ◦ ϕ}1 is
constant along the fibers of ϕ for all f, g ∈ C∞(M2).

Proof. If a coinduced structure P2 exists then {f ◦ ϕ, g ◦ ϕ}1 =
{f, g}2 ◦ ϕ is clearly constant along the fibers of ϕ. Conversely, if
{f ◦ ϕ, g ◦ ϕ}1 is constant along the fibers of ϕ we can use it to define
a Poisson bracket on M2 in the obvious way. ¤

Corollary 1.D.4. Consider a Poisson manifold (M1, P1) and a sur-
jective submersion ϕ : M1 → M2 with connected fibers. Assume that
kerTϕ is spanned by local Hamiltonian vector fields, that is

kerTxϕ = span{∇P1
f1

(x), . . . ,∇P1
fr

(x)}

where f1, . . . , fr are smooth local functions on M1 defined around x.
Then there exists a coinduced structure P2 on M2 such that ϕ is a
Poisson morphism.

Proof. By the proposition above we need to show that the ex-
pression {f ◦ ϕ, g ◦ ϕ}1 is constant along the fibers of ϕ for all f, g ∈
C∞(M2). As the fibers of ϕ are connected and their tangent spaces
are spanned by local Hamiltonian vector fields it suffices to show that
∇P1
h {f ◦ ϕ, g ◦ ϕ}1 = 0. Indeed,

∇P1
h {f ◦ ϕ, g ◦ ϕ}1 = {h, {ϕ∗f, ϕ∗g}1}1

= {{h, ϕ∗f}1, ϕ
∗g}1 + {ϕ∗f, {h, ϕ∗g}1}1

= {∇P1
h ϕ

∗f, ϕ∗g}1 + {ϕ∗f,∇P1
h ϕ

∗g}1
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= 0

by the Jacobi identity, and since ∇P1
h (f ◦ϕ) = 0 and ∇P1

h (g◦ϕ) = 0. ¤

1.E. The Witt-Artin Decomposition

Let K be a compact Lie group acting from the left on a symplectic
manifold (M,ω) by symplectomorphisms. The Witt-Artin Theorem
is a tool that gives a decomposition of the tangent space to a point
x ∈ M that will provide us with a subspace V ⊆ TxM that we can
interpret as a symplectic normal space to K.x at x. We then use this
symplectic normal space in Section 1.F to obtain a symplectic analog
of the Riemannian slice theorem from Section 1.A.

Lagrangian subspaces. Before we come to Theorem 1.E.2 we
need some preparatory material on Lagrangian subspaces of symplectic
vector spaces.

Remark 1. Let (E, ω) be a finite dimensional symplectic vector space.
A complex structure J on E is a linear transformation J : E → E such
that J2 = −id E. If a complex structure on E satisfies

ω(x, Jx) > 0 for all x 6= 0, and

ω(x, y) = ω(Jx, Jy) for all x, y ⇐⇒ J ∗ω = ω

then it is said to be ω-compatible. A pair (ω, J) is compatible if and
only if

gc(x, y) = ω(x, Jy)

defines a scalar product on E: indeed, if (ω, J) are compatible then gc

is positive by assumption, and

gc(x, y) = ω(x, Jy) = ω(Jx, JJy) = ω(y, Jx) = gc(y, x).

Conversely, if gc defines an inner product then

ω(x, y) = gc(x,−Jy) = −gc(Jy, x) = ω(Jx, Jy),

and ω(x, Jx) = gc(x, y) > 0 for all x 6= 0.

Moreover, on a symplectic vector space with inner product (E, g, ω)
there also is an automorphism J := ǧ−1 ◦ ω̌, g(Jx, y) = ω(x, y), and
the following are equivalent: J ∗ω = ω ⇐⇒ J2 = −idE ⇐⇒ J∗g = g.
Indeed,

ω(Jx, Jy) = ω(x, y) ⇐⇒ g(J2x, Jy) = ω(Jx, Jy)

= ω(y,−x)

= g(Jy,−x)

= g(−x, Jy)

⇐⇒ J2 = −id

⇐⇒ J−1 = −J
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⇐⇒ g(Jx, Jy) = ω(x, Jy)

= ω(−Jy, x)

= g(y, x).

If one of these equivalent conditions is fulfilled then it follows that J is
an ω-compatible complex structure because ω(x, Jx) = g(x, x) > 0 for
all x 6= 0, and ω(x, y) = ω(Jx, Jy) for all x, y. 2

Remark 2. As a canonical example consider R
2n with its standard

dual basis (e1, . . . , e2n), then the canonical structures

J0 =

(
0 −In
In 0

)
& g0 =

2n∑

i=1

ei ⊗ ei & ω0 =
n∑

i=1

ei ∧ ei+n

are compatible:

ω0(

(
x1

x2

)
, J0

(
y1

y2

)
) = (e1 ∧ e2)(

(
x1

x2

)
,

(
−y2

y1

)
)

= x1y1 + y2x2 = g0(

(
x1

x2

)
,

(
y1

y2

)
),

and the general case follows by using more indices. 2

Remark 3. Let W be a finite dimensional vector space with dual W ∗.
Then (W ×W ∗, ω) is a symplectic vector space with symplectic form
ω((x, x∗), (y, y∗)) := 〈y∗, x〉 − 〈x∗, y〉, where 〈 , 〉 denotes the duality
pairing. If (x1, . . . , xn) is a basis of W = W ∗∗, (x∗1, . . . , x

∗
n) its dual

basis then, for any {a, b, c, d} ⊆ {1, . . . , n},

ω((xa, x
∗
b), (xc, x

∗
d)) = 〈x∗d, xa〉−〈x∗b , xc〉 = (

n∑

k=1

l∗k∧ lk)((xa, x
∗
b), (xc, x

∗
d))

implies ω =
∑n

k=1 l
∗
k ∧ lk, where lk := 0W ⊕ xk, and l∗k := x∗k ⊕ 0W ∗ .

In particular the transversal subspaces W × {0} and {0} × W ∗ are
Lagrangian. 2

Remark 4. Have (E, ω, J, g) carry compatible structures as above, and
define the ω-orthogonal of a linear subspace L ⊆ E to be

Lω := {x ∈ E : ω(L, x) = ω̌(L)(x) = 〈ω̌(L), x〉 = {0}}.

The subspace L is called Lagrangian if L = Lω, and since dimL +
dimLω = dimE it follows that dimL = 1

2
dimE. Observe furthermore

that

JL = J(Lω) = {Jx : ω(x, L) = ω(Jx, JL) = {0}} = (JL)ω, and

JL = L⊥ := {x ∈ E : g(L, x) = {0}}

Indeed, x ∈ L if and only if g(Jx, y) = ω(x, y) = 0 for all y ∈ L
which happens if and only if Jx ∈ L⊥. Thus L and JL are transversal
Lagrangian subspaces.
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Moreover, with the two-form from above the mapping

(E, ω) = (L⊕ JL, ω)
ψ

−→ (L⊕ L∗, ω)

x⊕ Jy 7−→ x⊕ ω̌(−Jy)

becomes a symplectomorphism:

ω(x1 ⊕ Jy1, x2 ⊕ Jy2) = ω(x1, Jy2) + ω(Jy1, x2)

(ψ∗ω)(x1 ⊕ Jy1, x2 ⊕ Jy2) = 〈ω̌(−Jy2), x1〉 − 〈ω̌(−Jy1), x2〉

= ω(x1, Jy2) + ω(Jy1, x2)

for all xi, yi ∈ L. 2

Remark 5. Assume now that (E, ω, g) is a symplectic vector space
with inner product that is acted upon by a compact Lie group H such
that ω and g are invariant under the action. Then J := ǧ−1 ◦ ω̌ :
E → E is H-equivariant since g(J(h.x), y) = ω(h.x, y) = ω(x, h−1.y) =
g(J(x), h−1.y) = g(h.J(x), y). Assume further that L is a H-invariant
Lagrangian subspace of E. Then by the latter remark JL is a La-
grangian complement to L, and by equivariance of J it is clear that JL
is H-invariant as well. 2

Lemma 1.E.1. Let (E, ω) be a symplectic vector space and E1 and E2

linear subspaces of E. Then

(Eω
1 )ω = E1 and (E1 ∩ E2)

ω = Eω
1 + Eω

2

where Eω
1 is the ω-orthogonal to E1 in E.

Proof. The first relation is clear. Also it is obvious that we have
(E1 ∩ E2)

ω ⊇ Eω
1 + Eω

2 . Thus it only remains to show the converse
inclusion ⊆. This, since E1 ⊆ E2 if and only if Eω

1 ⊇ Eω
2 , is equivalent

to E1 ∩ E2 ⊇ (Eω
1 + Eω

2 )ω which again is straightforward. ¤

The Witt-Artin decomposition. The following theorem can
also be found in Ortega and Ratiu [33, Theorem 7.1.1]. However,
we simplify matters by considering only compact groups K.

Theorem 1.E.2 (Witt-Artin decomposition). Let K be a compact Lie
group acting on the symplectic manifold (M,ω) from the left by sym-
plectomorphisms, and denote this action by l : K×M →M . Then the
tangent space at any point x ∈M may be decomposed as follows.

TxM = l.x⊕ q.x⊕ V ⊕W

where definitions and properties of the objects involved are as follows.

(i) l := {X ∈ k : ζX(x) ∈ (k.x)ω} ⊆ k is a Lie subalgebra.
(ii) By the compactness of K we can fix a K invariant inner product

on k and decompose orthogonally

l = kx ⊕ m and k = kx ⊕ m ⊕ q.
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The isomorphism k ∼= k∗ given by the inner product induces dual
splittings

l∗ = k∗x ⊕ m∗ and k∗ = k∗x ⊕ m∗ ⊕ q∗.

(iii) q.x ⊆ TxM is a symplectic subspace.
(iv) By the compactness of K we can choose a K-invariant inner prod-

uct on TxM . Now, we define V as

V := (k.x ∩ (k.x)ω)⊥ ∩ (k.x)ω ∼= (k.x)ω/(k.x ∩ (k.x)ω)

where the orthogonal ⊥ is taken with respect to the chosen inner
product. Then V ⊆ TxM is Kx-invariant symplectic subspace.
Moreover, V ∩ q.x = {0}.

(v) l.x ⊆ (V ⊕ q.x)ω is a Lagrangian subspace and is Kx-invariant.
(vi) W is a Lagrangian Kx-invariant complement to l.x in (V ⊕q.x)ω.
(vii) The map f : W → m∗ defined by

〈f(w), Y 〉 = ωx(ζY (x), w)

for Y ∈ m is a Kx-equivariant isomorphism.

Proof. (i). Clearly, l ⊆ k is a linear subspace. Let X,Y ∈ l and
Z ∈ k. Then

ω(ζ[X,Y ](x), ζZ(x)) = (iζZ i[ζX ,ζY ]ω)(x)

= (iζZLζX iζY − iζZ iζY LζX )xω

= ((LζX iζZ − i[ζX ,ζZ ])iζY )xω − 0

= (LζX (ω(ζY , ζZ)))x − 0

= (iζXdiζZ iζY )xω

= (iζX (LζZ − iζZd)iζY )xω

= (iζXLζZ iζY )xω − 0

= (iζX i[ζZ ,ζY ])xω + (iζX iζY LζZ )xω

= 0 + 0

where we heavily used the Cartan formulas Lξ = iξd+ diξ and Lξiη −
iηLξ = i[ξ,η] for vector fields ξ, η ∈ X(M), as well as diζZω = LζZω = 0
for arbitrary Z ∈ k. Thus l ⊆ k is a Lie subalgebra.

(ii). This is clear by compactness of K.

(iii). To prove that q.x ⊆ TxM is a symplectic subspace we must show
that q.x∩(q.x)ω = {0}. Let X ∈ q and assume that ωx(ζX(x), ζY (x)) =
0 for all Y ∈ q. Then choosing Z ∈ l arbitrary we see that

ωx(ζX(x), ζZ+Y (x)) = ωx(ζX(x), ζZ(x)) + ωx(ζX(x), ζY (x))

= 0 + 0

whence X ∈ q ∩ l = {0}.
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(iv). To prove the assertion about V we use the above lemma to see
that

V ∩ V ω = (l.x)⊥ ∩ (k.x)ω ∩ ((l.x)⊥ ∩ (k.x)ω)ω

= (l.x)⊥ ∩ (k.x)ω ∩ (((l.x)⊥)ω + k.x)

⊆ (l.x)⊥ ∩ (k.x)ω ∩ (k.x)

= (l.x)⊥ ∩ (l.x)

= {0}.

Clearly, V is Kx-invariant where the action is given by Kx × V → V ,
(h, v) 7→ Txlh.v. Finally, assume ζX(x) ∈ V with X ∈ q. Then

ωx(ζX(x), ζY (x)) = 0 for all Y ∈ k

whence it follows that X ∈ l. Thus, by assumption, X ∈ l ∩ q = {0}.

(v). We firstly show that l is Kx-invariant. Let X ∈ l and h ∈ Kx

arbitrary. Since

ζAd(h).X
(x) = ζAd(h).X

(h.x) = Txlh.ζX(x)

we see that

ωx(ζAd(h).X
(x), ζAd(hh−1).Y

(x)) = ωh.x(Txlh.ζX(x), Txlh.ζAd(h−1).Y
(x))

= (l∗hω)x(ζX(x), ζAd(h−1).Y
(x))

= ωx(ζX(x), ζAd(h−1).Y
(x))

= 0

for all Y ∈ k. Now we show that l.x is a Lagrangian subspace of
(V ⊕q.x)ω, and to do so we have to prove that (l.x)ω∩(V ⊕q.x)ω = l.x.
Notice here that V and q.x are symplectic by the above. The inclusion
l.x ⊆ (l.x)ω is clear by the definition of l. Assume now that

ξ ∈ (l.x)ω ∩ (V ⊕ q.x)ω ⊆ (l.x)ω ∩ (q.x)ω = (k.x)ω.

But then also

ξ ∈ (k.x)ω ∩ V ω ⊆ (k.x)ω ∩ V ⊥ = (k.x)ω ∩ k.x = l.x

by definition of V .

(vi). Now we have an induced inner product and symplectic form on
(V ⊕q.x)ω, and l.x is a Kx-invariant subspace of (V ⊕q.x)ω as was just
shown. Thus we can apply Remark 5 from above to find a Lagrangian
Kx-invariant complement W to l.x in (V ⊕ q.x)ω.

(vii). Since W is a Lagrangian complement to l.x in (V ⊕ q.x)ω it is
clear that dimW = dim l.x = dim m. Now, the map f : W → m∗

defined by

〈f(w), Y 〉 = ωx(ζY (x), w)
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for Y ∈ m is linear since ωx is bilinear. It is also injective, for assume
that f(w) = 0. Then w ∈ (m.x)ω = (l.x)ω, and thus w ∈ (l.x)ω ∩W =
l.x ∩W = {0}. Finally, f is Kx-equivariant since

〈f(h.w), Y 〉 = ωx(ζY (x), Txlh.w)

= ωx(Txlh.ζAd(h−1).Y
(x), Txlh.w)

= ωx(ζAd(h−1).Y
(x), w)

= 〈f(w),Ad(h−1).Y 〉

= 〈Ad∗(h).f(w), Y 〉

by H-invariance of ωx. ¤

1.F. The Hamiltonian slice theorem

Let K be a compact Lie group acting from the left on a symplectic
manifold (M,ω) by symplectomorphisms. Assume this action is Hamil-
tonian with equivariant momentum map J : M → k∗. Presuming K
to be compact has the advantage that coadjoint orbits in k∗ are sub-
manifolds. Ortega and Ratiu [32] prove an equally strong symplectic
slice theorem under the relaxed condition of having K act properly on
(M,ω) by symplectomorphisms. We will follow mainly the exposition
of Ortega and Ratiu [33]. However, we will simplify matters due to the
stronger conditions on the K-action.

We continue the notation from the previous section. In particular we
have the Witt-Artin decomposition

TxM = l.x⊕ q.x⊕ V ⊕W

from Theorem 1.E.2. Moreover, we put H := Kx with Lie algebra
h = kx, and assume that l = kα with Lie group L = Kα and α = J(x).
Note that always H ⊆ L by equivariance of the momentum map.

Lemma 1.F.1. With these assumptions K× l∗ is a symplectic manifold
with symplectic form

Ω1
(g,λ)((X1, λ1), (X2, λ2)) = 〈λ2, Y1〉−〈λ1, Y2〉+〈λ, [Y1, Y2]〉+〈α, [Z1, Z2]〉

where (g, λ) ∈ K × l∗, Xi ∈ k, λi ∈ l∗, and Xi = Yi + Zi ∈ l ⊕ q

is the respective decomposition into vertical and horizontal part of the
projection K ³ K/L.

Moreover, the form Ω1 is K-invariant with respect to the left K-action
on K × l∗ given by (k, g, λ) 7→ (kg, λ).

Notice that 〈λ, [Z1, Z2]〉 = Ω+(α)(ζX1(α), ζX2(α)) = ωx(ζX1(x), ζX2(x))
where Ω+ is the positive Kostant-Kirillov-Souriau symplectic form on
the coadjoint orbit Ad∗(K).α.
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Proof. Let (g, λ) ∈ K×l∗, Xi ∈ k, λi ∈ l∗, and Xi = Yi+Zi ∈ l⊕q

be the respective decomposition into vertical and horizontal part of the
orbit projection π : K ³ K/L. Now consider

π ◦ pr1 : K × l∗ −→ K/L = Ad∗(K).α

where we symplectically identify K/L with the coadjoint orbit passing
through α.

Further, we consider the 1-form θ1 on K×l∗ given by θ1(g, λ)(X1, λ1) =
〈λ, Y1〉. Now, since l is closed under Lie brackets, we obtain

Ω1 = −dθ1 + (π ◦ pr1)
∗Ω+.

Therefore, Ω1 is closed. It is also non-degenerate since it is so on every
tangent space

T(g,λ)(K × l∗) = k × l∗ = (l ⊕ q) × l∗ ∼= (l × l∗) ⊕ Tα(Ad∗(K).α)

as follows from the construction. As tangent and cotangent lifted ac-
tion of left multiplication by K on itself both are trivial, the form Ω1

obviously is K-invariant. ¤

A symplectic subspace V ⊆ TxM constructed as in Theorem 1.E.2
above will be called symplectic normal space of the K-action on
M at x. Clearly, the isotropy subgroup Kx = H acts linearly on (V, ωx)
by symplectomorphisms. Therefore, there is an equivariant momentum
map JV : V → h∗ which is given by 〈JV (v), X〉 = 1

2
ωx(ζX(v), v) for

X ∈ h.

Let Ω = Ω1 + ωx denote the product symplectic form on K × l∗ × V
where Ω1 is the symplectic form constructed in the lemma above.

We consider the left action H × K → K, (h, g) 7→ gh−1, and the
corresponding cotangent lifted action H×K×k∗ → K×k∗, (h, g, α) 7→
(gh−1,Ad∗(h−1).α). This action is Hamiltonian with momentum map
JT ∗K : K × k∗ → h∗, (g, λ) 7→ −λ|h. See Section 2.A for a proof of
these formulas.

Take these considerations as a motivation for the following. With no-
tation as in the above lemma consider the H-action on K× l∗ given by
h.(k, λ) = (kh−1,Ad∗(h).λ). This action preserves the symplectic form
Ω1:

Ω1
h.(g,λ)((Ad(h).X1,Ad∗(h).λ1), (Ad(h).X2,Ad∗(h).λ2))

= 〈λ2, Y1〉 − 〈λ1, Y2〉 + 〈λ, [Y1, Y2]〉 + 〈α, [Z1, Z2]〉

= Ω1
(g,λ)((X1, λ1), (X2, λ2))

since Ad∗(h).α = α as h ∈ H ⊆ L = Kα by equivariance of the
momentum mapping. Furthermore, the action is Hamiltonian with
global H-equivariant momentum map J1 : K × l∗ → h∗, (k, λ) 7→
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−λ|h. To see this we have to show that d〈J1, H0〉(k, λ)(X2, λ2) =
Ω1

(k,λ)(ζH0(k, λ), (X2, λ2)). Indeed,

d〈J1, H0〉(k, λ)(X2, λ2) = ∂
∂t
|0〈J1, H0〉(k exp(tX2), λ+ tλ2) = −〈λ2, H0〉

and also

Ω1
(k,λ)(ζH0(k, λ), (X2, λ2))

= Ω1
(k,λ)((k exp(−tH0),Ad∗(exp(tH0)).λ), (X2, λ2))

= 〈λ2,−H0〉 − 〈ad∗(H0).λ, Y2〉 + 〈λ, [−H0, Y2]〉 + 〈α, [0, Z2]〉

= −〈λ2, H0〉

as claimed.

Now we can consider the Hamiltonian diagonal action by H on K ×
l∗ × V with equivariant momentum map J1 + JV : K × l∗ × V → h∗,
(k, λ, v) 7→ −λ|h + JV (v).

Proposition 1.F.2 (Constructing the symplectic tube). Let K be a
compact Lie group which acts on (M,ω) by symplectomorphisms such
that there is an equivariant momentum map J : M → k∗, and let V be a
symplectic normal space at x ∈M . Define further α = J(x), H = Kx,
and L = Kα with Lie algebras h and l respectively. Then the reduced
space

Y := (K × l∗ × V )//0H := (J1 + JV )−1(0)/H = K ×H (m∗ × V )

where m = l ∩ h⊥ is as in Theorem 1.E.2, is a smooth symplectic
manifold with induced symplectic structure ωY .

Let π : K×m∗×V → Y denote the projection, and consider (k, µ, v) ∈
K × m∗ × V , and (Xi, µi, vi) ∈ k × µ∗ × V where i = 1, 2. The reduced
symplectic form ωY is uniquely characterized by the formula

ωY (π(k, µ, v))(Tπ.(X1, µ1, v1), Tπ.(X2, µ2, v2))

= 〈TvJV .v2 + µ2, Y1〉 − 〈TvJV .v1 + µ1, Y2〉

+ 〈JV (v) + µ, [Y1, Y2]〉 + 〈α, [Z1, Z2]〉 + ωx(v1, v2)

where Xi = Yi + Zi is the decomposition into vertical and horizontal
part with respect to the orbit projection K ³ K/L.

Proof. Since H acts freely on K × l∗ × V we can use regular
symplectic reduction. First of all we note that Y clearly is non-empty.
Consider a point (k, λ, v) in the zero fiber of the momentum map J1 +
JV . According to the direct sum decomposition l = h ⊕ m we may
decompose λ as λ = λ0 + λ1. By assumption we then have λ0 = JV (v)
while we have no restriction on the m-component. Therefore,

K × m∗ × V ∼= (J1 + JV )−1(0),

(k, µ, v) 7→ (k, JV (v) + µ, v)
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which has an obvious smooth inverse and thus exhibits the zero set
(J1 + JV )−1(0) as a manifold. Moreover, this diffeomorphism is H-
equivariant and thus drops to a diffeomorphism (K × l∗ × V )//0H :=
(J1 + JV )−1(0)/H ∼= K ×H (m∗ × V ). Finally, note that

Ω1(k, JV (v) + µ, v)((Y1, TvJV .v1 + µ1), (Y2, TvJV .v2 + µ2))

= 〈TvJV .v2 + µ2, Y1〉 − 〈TvJV .v1 + µ1, Y2〉

+ 〈JV (v) + µ, [Y1, Y2]〉 + 〈α, [Z1, Z2]〉

whence the characterizing property follows. ¤

Note that the left K-action l : K×K×l∗×V → k∗ given by lk(g, λ, v) =
(kg, λ, v) commutes with the H-action, and respects the symplectic
form Ω1 + ωV .

Remark 1. Using the compactness of the group K there is a quick
way to see that the action l : K ×K × l∗ × V → K × l∗ × V possesses
a momentum map Jl : K × l∗ × V → k∗. Indeed, consider the diagram

C∞(K × l∗ × V )
(Ω̌1)−1

// X(K × l∗ × V,Ω1)
γ

// H1(K × l∗ × V )

H0(K × l∗ × V )
?Â

OO

k
jl

iiS
S

S
S

S
S

S
S

S
S

ζl

OO

where jl(X)(k, λ, v) = 〈Jl(k, λ, v), X〉 and γ(ξ) = [iξΩ
1]. It is well

known and straight forward to show that the top row of this diagram
is an exact sequence of Lie algebra homomorphisms going from Poisson
to Lie to trivial bracket. Since k is the Lie algebra of a compact Lie
group it is reductive and we may decompose it as k = Z(k)⊕ [k, k] with
respect to the fixed Ad(K)-invariant inner product on k. Here Z(k) is
the center of k and [k, k] is the semisimple subalgebra consisting of all
linear combinations of commutators of elements in k; see Knapp [21,
Corollary 4.25] for a proof of this fact.

We want to show that γ ◦ ζ l vanishes. Since both γ and ζ l are linear it
suffices to show this for elements Z ∈ Z(k) and [X,Y ] ∈ [k, k] separately.
Indeed, notice that ζ lZ(g, λ, v) = (Ad(g−1).Z, 0, 0) = (Z, 0, 0) whence
iζl

Z
Ω1 = df is exact where f : K × l∗ × V → R, (g, λ, v) 7→ 〈λ, Z〉. On

the other hand γ(ζ l[X,Y ]) = γ(−[ζ lX , ζ
l
Y ]) = 0 since γ is a Lie algebra

homomorphism into the zero bracket. 2

Remark 2. We claim that the momentum map in question is equi-
variant and is given by

Jl : (k, λ, v) 7→ Ad∗(k).(λ+ α).

To see this we need to show that d〈Jl, X1〉 = iζl
X1

Ω1. Notice firstly that

〈Jl(k, λ, v), X1〉 = (iζl
X1
θ1)(k, λ)+〈Ad∗(k).α,X1〉 where θ1 ∈ Ω1(K×l∗)
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is as in the proof of Lemma 1.F.1. Now,

Ω1
(k,λ,v)(ζ

l
X1

(k, λ, v), (X2, λ2, v2)) =

= −dθ1
(k,λ,v)(ζ

l
X1

(k, λ, v), (X2, λ2, v2))

+ 〈α, [Ad(g−1)X1, X2]〉 + ωx(0, v2)

= (diζl
X1
θ1)(k, λ)(X2, λ2)

− (Lζl
X1
θ1)(k, λ)(X2, λ2) + 〈α, [Ad(g−1)X1, X2]〉.

Because the flow up to time t of the fundamental vector field is given

by Fl
ζl
X1
t (k, λ, v) = (k exp(tX1), λ, v) and we identify the Lie algebra k

with the algebra of all left invariant vector fields on K it follows that

T(k,λ,v)Fl
ζl
X1
t = id whence

(Lζl
X1
θ1)(k, λ)(X2, λ2) = ∂

∂t
|0〈λ, Y2〉 = 0.

Since

d〈Jl, X1〉(X2, λ2, v2) = 〈dJl(k, λ, v).(X2, λ2, v2), X1〉

= (diζl
X1
θ1)(k, λ).(X2, λ2)

+ ∂
∂t
|0〈Ad∗(k exp(tX2)).α,X1〉

and ∂
∂t
|0〈Ad∗(k exp(tX2)).α,X1〉 = 〈α, [Ad(g−1)X1, X2]〉 the desired

formula d〈Jl, X1〉 = iζl
X1

Ω1 follows. 2

Remark 3. Now H and K both act on K × l∗ × V in a Hamiltonian
fashion with momentum map J1 + JV : K × l∗ × V → h∗, (k, λ, v) 7→
−λ|h + JV (v) and Jl : K × l∗ × V → k∗, (k, λ, v) 7→ Ad∗(k).(λ +
α) respectively. These momentum maps have the property that they
are invariant with respect to the action corresponding to the other
momentum map. In particular (J1 + JV )−1(0) is invariant under the
K action, and by invariance of Jl under the H action it follows that Jl
drops to a momentum map JY on

Y := (K × l∗ × V )//0H := (J1 + JV )−1(0)/H = K ×H (m∗ × V )

with respect to the induced K action. Thus

JY : Y = K ×H (m∗ × V ) −→ k∗,

[(k, µ, v)] 7−→ Ad∗(k).(JV (v) + µ+ α)

where we used the same notation as above. This form of a momentum
map is also called Guillemin-Marle normal form due to its relevance
coming from Theorem 1.F.3 below. 2

Remark 4. For a r > 0 we define kr := {X ∈ k : |X| < r} where
we compute the absolute value with respect to the same K-invariant
inner product on k as in Theorem 1.E.2. Also we put mr := m ∩ kr.
Further, we choose a fixed K-invariant Riemannian metric on M , and
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define (TxM)r := {ξ ∈ TxM : |ξ| < r} and Vr = V ∩ (TxM)r. A typical
neighborhood of the zero section in Y is given as

Yr = K ×H (mr × Vr)

where r is chosen so that mr and Vr are H-invariant. Moreover, the
induced K-action restricts to a Hamiltonian action on Yr with momen-
tum map JYr

:= JY |Yr. 2

Theorem 1.F.3 (Hamiltonian slice theorem). Let K be a compact Lie
group which acts on (M,ω) by symplectomorphisms such that there is
an equivariant momentum map J : M → k∗, and let Y be the symplectic
tube around x ∈ J−1(α) ⊆ M as constructed in Proposition 1.F.2.
Then there is an open K-invariant neighborhood U of K.x in M and
an open K-invariant neighborhood Yr of the zero section in Y , and a
K-equivariant symplectomorphism

Ψ : U −→ Yr

such that Ψ(x) = [(e, 0, 0)]. Moreover, JYr
◦Ψ is an equivariant momen-

tum map for the induced action on (U, ω|U), and if K/H is connected
it follows that JYr

◦ Ψ = J |U .

Proof. Apart from the constructions in this section the proof of
this theorem is an application of the Witt-Artin decomposition, the
Palais slice theorem, and the relative Darboux theorem.

Let r > 0 be small enough such that S = expx(Norx(K.x)r) is a slice
for the Riemannian K-action at x as in Theorem 1.A.4 with respect to
the Riemannian metric on M from Remark 4. Thus there is an open
K-invariant neighborhood of K.x in M , and K-equivariant diffeomor-
phism

φ : U −→ K ×H Norx(K.x)r,

k.y 7−→ [(k, exp−1
x (y))] = [(k, ξ)]

where H = Kx. In the notation of Theorem 1.E.2 we have that
Nor(K.x) = V ⊕ W , and we define Vr ⊕ Wr := Nor(K.x)r. Denote
the orthogonal projections onto V and W by prV : Nor(K.x) → V
and prW : Nor(K.x) → W , respectively. Now recall the H-equivariant
isomorphism f : W → m∗ which is given by 〈f(w), Y 〉 = ωx(ζY (x), w)
from that same theorem. Restrict this isomorphism to an isomorphism
fr := f |Wr : Wr → f(WRr) =: m∗

r ⊆ m∗, and consider

Φ : U −→ K ×H (m∗
r × Vr) = Yr,

k. expx(ξ) 7−→ [(k, fr(prW (ξ)), prV (ξ))]

which clearly is smooth and has a smooth and well-defined inverse given
by [(k, µ, v)] 7→ k. expx(v + f−1

r (µ)).

Thus there are now two symplectic forms on U . Namely ω|U and
Φ∗ωY |Yr, and the K-action is Hamiltonian with respect to both these
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forms. Since K.x is a closed sub-manifold of U we are in a situation
to apply the relative Darboux theorem of Section 1.I. We need only
to show that ω|U and Φ∗ωY |Yr coincide along K.x. However, both
forms are K-invariant, and therefore it actually suffices to show that
ωx = (Φ∗ωY )x. Indeed, consider ξ1, ξ2 ∈ TxM . According to the Witt-
Artin decomposition theorem we may write these vectors as

ξi = ζYi
(x) + ζZi

(x) + vi + wi ∈ l.x⊕ q.x⊕ V ⊕W

and we put also Xi = Yi + Zi. In this notation we have that

ωx(ξ1, ξ2) = ωx(ζY1(x) + ζZ1(x) + v1 + w1, ζY2(x) + ζZ2(x) + v2 + w2)

= ωx(ζY1(x), w2) + ωx(ζZ1(x), ζZ2(x)) + ωx(v1, v2)

+ ωx(w1, ζZ2(x))

since all other terms cancel by the properties of the decomposition. On
the other hand, we see that

(Φ∗ωY )x(ξ1, ξ2) =

= ωY [(e, 0, 0)](TxΦ.(ζX1(x) + v1 + w1), TxΦ.(ζX2(x) + v2 + w2))

= ωY [(e, 0, 0)](Txπ.(X1, fr(w1), v1), Txπ.(X2, fr(w2), v2))

= Ω1(e, 0, 0)((X1, T0JV .v1 + fr(w1), v1), (X2, T0JV .v2 + fr(w2), v2))

= 〈T0JV .v2 + fr(w2), Y1〉 − 〈T0JV .v1 + fr(w1), Y2〉

+ 〈JV (0) + 0, [Y1, Y2]〉 + 〈α, [Z1, Z2]〉 + ωx(v1, v2)

= ωx(ζY1(x), w2) + ωx(ζZ1(x), ζZ2(x)) + ωx(v1, v2)

+ ωx(w1, ζZ2(x))

= ωx(ξ1, ξ2)

where π : K × m∗ × V → K ×H (m∗ × V ) is the orbit projection,
and we used the characterizing formula for ωY from Proposition 1.F.2.
Note also that T0JV .v1 = 0 because 〈T0JV .v1, H1〉 = ωx(ζH1(0), v1) = 0
for all H1 ∈ h since 0 is fixed by the H-action, and JV (0) = 0. Now
we are in a position to apply the relative Darboux theorem. By even-
tually shrinking U to a smaller K-invariant neighborhood the rela-
tive Darboux theorem provides us with a K-equivariant symplecto-
morphism h : (U, ω|U) → (U,Φ∗ωY ). So we can consider the com-
posite Ψ := Φ ◦ h : (U, ω|U) → (Yr, ωY |Yr), and this is the desired
K-equivariant symplectomorphism as asserted.

Finally, it is easy to see from the diagram in the remark above that
the two momentum maps J |U : U → k∗ and JYr

◦ Φ : U → k∗ differ
by an element in H0(U) = H0(K ×H (m∗

r × Vr)). However, the bundle
projection Yr = K×H(m∗

r×Vr) → K/H ∼= K.x is a smooth deformation
retract. Therefore, H0(U) = H0(K/H) = R if K/H is connected, and
the two momentum maps differ only by a constant which we may choose
to be zero. ¤
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1.G. Singular Poisson reduction

Let K be a Lie group acting properly on a smooth manifold M . We
equip the orbit space M/K with the quotient topology with respect to
the canonical projection π : M → M/K. The set of smooth functions
on M/K is defined by the requirement that π is a smooth map, i.e.,

C∞(M/K) := {f ∈ C0(M/K) : f ◦ π ∈ C∞(M)}.

Theorem 1.G.1 (Singular Poisson reduction). Let (M, {·, ·}) be a
Poisson manifold, K a Lie group, and let l : K ×M →M be a smooth
proper Poisson action, i.e., l∗k{f, g} = {l∗kf, l

∗
kg} for f, g ∈ C∞(M) and

k ∈ K. Then we have:

(i) The pair (C∞(M/K), {·, ·}M/K) is a Poisson algebra, where
the Poisson bracket {·, ·}M/K is characterized by {f, g}M/K ◦
π = {f ◦ π, g ◦ π}, for any f, g ∈ C∞(M/K), and π : M →
M/K denotes the canonical smooth projection.

(ii) Let h ∈ C∞(M)K be a K-invariant function on M . The flow
Flt of the Hamiltonian vector field ∇h commutes with the K-

action, so it induces a flow Fl
M/K
t on M/K which is Poisson

and is characterized by the identity π ◦ Flt = Fl
M/K
t ◦ π.

(iii) The flow Fl
M/K
t is the unique Hamiltonian flow defined by the

function H ∈ C∞(M/K) which is given by H ◦ π = h.

Proof. This can be found in Ortega and Ratiu [31]. ¤

If, in particular, K is a compact Lie group acting by isometries on a
smooth Riemannian manifold M , then by the Tube Theorem [35] and
Schwarz’ Theorem [44] we may identify C∞(M/K) with C∞(M)K . See
Example 1.C.7.

Definition 1.G.2 (Poisson stratified space). Let X be a stratified
space with smooth structure in the sense of Section 1.C. Then X is
said to be a singular Poisson space if there is a Poisson bracket

{·, ·} : C∞(X) × C∞(X) −→ C∞(X)

on the algebra of smooth functions determined by the smooth structure
such that the inclusion of each stratum S ↪→ X is a Poisson morphism.
In particular, the strata S are Poisson manifolds in the usual sense.

An alternative definition of a singular Poisson space in terms of a Pois-
son bivector on the stratified space is given in Pflaum [40].

Proposition 1.G.3 (Reduced Poisson structure). Let (M, {·, ·}) be
a Poisson manifold, K a compact Lie group, and let K act on M by

Poisson morphisms. Then (C∞(M/K), {·, ·}M/K) is a singular Poisson
space.
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Proof. By Example 1.C.7 the algebra C∞(M/K) is indeed de-
termined by a smooth structure on M/K. Thus it only remains to
check that the inclusion of each stratum M(H)/K ↪→M/K is a Poisson
morphism. This is, however, obvious. ¤

1.H. Singular symplectic reduction

The machinery of singular symplectic reduction is due to Sjamaar and
Lerman [45] who prove that the singular symplectic quotient is a Whit-
ney stratified space that has symplectic manifolds as its strata. This
result which is the Singular Reduction Theorem was then generalized
to the case of proper actions by Bates and Lerman [6], Ortega and
Ratiu [33], and also others.

Let (M,ω) be a connected symplectic manifold, and K a compact
connected Lie group that acts on (M,ω) in a Hamiltonian fashion such
that there is an equivariant momentum map J : M → k∗.

Theorem 1.H.1 (Singular symplectic reduction). Let (H) be in the
isotropy lattice of the K-action on M , and suppose that J−1(O) ∩
M(H) 6= ∅ for a coadjoint orbit O ⊆ k∗. Then the following are true.

• The subset J−1(O) ∩M(H) is an initial sub-manifold of M .
• The topological quotient J−1(O)∩M(H)/K has a unique smooth

structure such that the projection map

J−1(O) ∩M(H)
π

// // J−1(O) ∩M(H)/K

is a smooth surjective submersion.
• Let ι : J−1(O) ∩M(H) ↪→ M denote the inclusion mapping.

Then J−1(O)∩M(H)/K carries a symplectic structure ω0 which
is uniquely characterized by the formula

π∗ω0 = ι∗ω − (J |(J−1(O) ∩MH))∗ΩO

where ΩO is the canonical (positive Kirillov-Kostant-Souriau)
symplectic form on O.

• Consider a K-invariant function H ∈ C∞(M)K. Then the
flow to the Hamiltonian vector field ∇ω

H leaves the connected
components of J−1(O)∩M(H) invariant. Moreover, H factors
to a smooth function h on the quotient J−1(O) ∩ M(H)/K.
Finally, ∇ω

H and the Hamiltonian vector field to h are related
via the canonical projection π, whence the flow of the former
projects to the flow of the latter.

• The collection of all strata of the form J−1(O) ∩ M(H)/K
constitutes a Whitney stratification of the topological space
J−1(O)/K.

Proof. This theorem is the content of Ortega and Ratiu [33, Sec-
tion 8] where it is proved in the more relaxed setting of a proper action
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by a possibly non-connected group and a not necessarily equivariant
momentum map. See also Bates and Lerman [6, Corollary 14].

As an application of the Hamiltonian slice theorem we will show how
to obtain smooth charts for the strata J−1(O) ∩M(H) and then also
on (J−1(O) ∩M(H))/K. Let O = Ad∗(K).α and x ∈ J−1(O) ∩M(H)

such that Kx = H and J(x) = α. By Theorem 1.F.3 we can find an
open K-invariant neighborhood U of K.x in M , and a K-equivariant
symplectomorphism Ψ : U → Yr where Yr is the local model

Yr = K ×H (m∗
r × Vr)

obtained through the Witt-Artin decomposition of TxM as in Section
1.F. Now we know that J |U : U → k∗ factors over Ψ to

JYr
: Yr = K ×H (m∗

r × Vr) −→ k∗,

[(k, µ, v)] 7−→ Ad∗(k).(JV (v) + µ+ α)

which we regard as the local normal form of J . By equivariance of the
symplectomorphism Ψ it follows that Ψ restricts to a homeomorphism
from J−1(O) ∩ M(H) to J−1

Yr
(O) ∩ Y(H) ∩ Yr, and thus it suffices to

show that the latter is a smooth subspace of Yr. Indeed, notice that
[(k, µ, v)] ∈ J−1

Yr
(O) if and only if µ = 0 and JV (v) = 0. But since

ζZ(v) = 0 for all v ∈ V(H) = VH and Z ∈ h, and, moreover, 〈JV (v), Z〉 =
ωx(ζZ(v), v) it follows that VH ⊆ J−1

V (0). Therefore, we conclude

J−1
Yr

(O) ∩ Y(H) ∩ Yr = K ×H (Vr)H = K/H × (Vr)H

which clearly is a smooth submanifold of Yr, and this is our local model
for J−1(O) ∩M(H).

By equivariance of Ψ we further note that we thus obtain a chart

(Vr)H = (J−1
Yr

(O) ∩ (Yr)(H))/K ∼= (U ∩ J−1(O) ∩M(H))/K

which is the desired local symplectic model of a typical stratum. ¤

As a matter of convention we write shorthand M//OK := J−1(O)/K
for the reduced space of M with respect to the Hamiltonian action by
K. If O is the coadjoint orbit passing through α then we shall also
abbreviate J−1(α)/Kα = M//αK = M//OK.

Definition 1.H.2 (Singular symplectic space). Let X be a singular
Poisson space in the sense of Definition 1.G.2. Then X is called a sin-
gular symplectic space if each stratum S is a symplectic manifold
such that the inclusion

S ↪→ X

is a Poisson morphism with respect to the Poisson structure on S which
is determined by the symplectic structure.

This definition is essentially due to Sjamaar and Lerman [45].
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Proposition 1.H.3. Let (M,ω) be a connected symplectic manifold,
and K a compact connected Lie group that acts on (M,ω) in a Hamil-
tonian fashion such that there is an equivariant momentum map J :
M → k∗. Let O be a coadjoint orbit in the image of J . Then M//OK
is a singular symplectic space.

Proof. Using the Symplectic Slice Theorem of Section 1.F one can
show as in Example 1.C.7 that there is a smooth structure on M//OK
such that

C∞(M//OK) ∼=

{f ∈ C0(J−1(O)) : there is F ∈ C∞(M) : F |J−1(O) = f}
K
.

The rest is now just a rephrasing of Theorem 1.H.1. ¤

Theorem 1.H.4 (Singular commuting reduction). Let G and K be
compact Lie groups that act by symplectomorphisms on (M,ω) with
momentum maps JG and JK respectively. Assume that the actions
commute, that JG is K-invariant, and that JK is G-invariant. Let
α ∈ g∗ be in the image of JG and β ∈ k∗ in the image of JK.

Then the G action drops to a Poisson action on M//βK and JG factors
to a momentum map jG for the induced action. Likewise, the K action
drops to a Poisson action on M//αG and JK factors to a momentum
map jK for the induced action. Furthermore, we have

(M//αG)//βK ∼= M//(α,β)(G×K) ∼= (M//βK)//αG

as symplectically stratified spaces.

Proof. This is proved and discussed (in greater generality) in [23,
Section 10.4]. ¤

1.I. Appendix: Relative Darboux Theorem

In this section we follow the development in Michor [28]. The presen-
tation differs, however, in so far as we add a K-action to the situation.

Let t 7→ ft be a curve of diffeomorphisms on a manifold M which are
defined locally for all t ∈ R such that f0 = idM . We define the time
dependent vector fields on M

ξt(x) := (Txft)
−1 ∂

∂t
ft(x)

and
ηt(x) := ( ∂

∂t
ft)(f

−1
t (x)).

We have by definition that Tft.ξt = ηt ◦ ft so that ξt and ηt are ft-
related.

Proposition 1.I.1 (Time dependent vector fields). Let ω ∈ Ωk(M).
Then the following are true for the above defined time dependent vector
fields.
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(i) iξtf
∗
t ω = f ∗

t iηt
ω.

(ii) ∂
∂t
f ∗
t ω = f ∗

t Lηt
ω = Lξtf

∗
t ω.

Proof. Let x ∈M and X1, . . . , Xk ∈ X(M). Then

(iξtf
∗
t ω)x(X1, . . . , Xk) = ωft(x)(Txft.ξt(x), Txft.X1, . . . , Txft.Xk)

= (f ∗
t iηt

ω)x(X1, . . . , Xk)

since ξt and ηt are ft-related.

To prove the second part we have to use the evolution operator Φη :
R × R ×M →M for the time dependent vector field ηt which has the
defining properties

∂
∂t

Φη
t,s(x) = ηt(Φ

η
t,s(x)), and Φη

s,s(x) = x.

If we define η ∈ X(R ×M) by η(t, x) = (∂t, ηt(x)) then we have

(t,Φη
t,s(x)) = Flηt−s(s, x)

and thus also
Φη
t,s = Φη

t,r ◦ Φη
r,s.

Moreover, by definition of ηt we have ∂
∂t
ft = ηt ◦ ft and also f0 = idM .

Therefore, it follows that ft(x) = Φη
t,0(x) which we may rewrite as

(t, ft(x)) = Flηt (0, x) or also as

ft = pr2 ◦ Flηt ◦ ins0

where ins0 means insertion of 0 in the first variable. We thus compute

∂
∂t
f ∗
t ω = ∂

∂t
(pr2 ◦ Flηt ◦ ins0)

∗ω

= ins∗0
∂
∂t

(Flηt )
∗pr∗2ω

= ins∗0
∂
∂s
|0(Flηt+s)

∗pr∗2ω

= ins∗0(Flηt )
∗Lη(pr∗2ω)

where we used that ins∗0 is linear on Ωk(R ×M). Now notice that

(Lηpr∗2ω)(t, x) = (diηpr∗2ω)(t, x) − (iηdpr∗2ω)(t, x) = (Lηtω)(x)

where we used that pull back commutes with d. Thus we obtain

( ∂
∂t
f ∗
t ω)(x) = (ins∗0(Flηt )

∗Lη(pr∗2ω))(x)

= (Lηpr∗2ω)(t, ft(x)) ◦ Λk(id R × Txft)

= (Lηtω)(x) ◦ ΛkTxft

= (f ∗
t Lηt

ω)(x)

which is the first part of the second assertion. To see the second part
we use the first assertion and get

f ∗
t Lηt

ω = f ∗
t (diηt

− iηt
d)ω = (diξt − iξtd)f

∗
t ω = Lξtf

∗
t ω

as required. ¤
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Proposition 1.I.2 (Relative Poincare Lemma). Let ι : N ↪→ M be a
closed submanifold and ω ∈ Ωk+1 such that ι∗ω = 0. Then there exists
an open neighborhood U of N in M and a form θ ∈ Ωk(U) such that
dθ = ω|U and θ|N = 0. Moreover, if ω vanishes when evaluated on
TM |N then so do the first derivatives of θ along N .

Assume furthermore that M is acted upon by a compact Lie group K,
and that ω and N are K-invariant. Then also U and θ may be chosen
K-invariant.

Proof. By restricting to a (K-invariant) tubular neighborhood of
N we may assume that p : M = E → N is fiber bundle with zero
section ι : N → E. We define fiber wise multiplication µ : R ×E → E
by µ(t, x) = µt(x) = tx. Clearly µ1 = id E and µ0 = ι ◦ p. Consider
the vertical vector field ξ ∈ X(E) given by ξ(x) = x. Also we consider

the curve of diffeomorphisms ft := Flξlog t = µt. As above we define the
time dependent vector fields corresponding to this curve by

ξt = (Txft)
−1 ∂

∂t
ft(x) = 1

t
(Flξlog t)

∗ξ and ηt(x) = ( ∂
∂t
µt)(µ

−1
t (x)) = 1

t
ξ(x).

Using the proposition on time dependent vector fields we get
∂
∂t
µ∗
tω = µ∗

tLηt
ω = dµ∗

t iηt
ω

Notice that

(µ∗
t iηt

ω)x(X1, . . . , Xk) = ωtx(ηt(tx), tX1, . . . , tXk)

defines a smooth curve µ∗
t iηt

ω in Ωk(E) since ηt(tx) = ξ(x) = x. More-
over, if ω is K-invariant then so is µ∗

t iηt
ω by construction. Now since

µ∗
1ω = ω and µ∗

0ω = p∗ ◦ ι∗ω = 0 we conclude that

ω = µ∗
1ω − µ∗

0ω

=

∫ 1

0

∂
∂t
µ∗
tωdt

= d(

∫ 1

0

µ∗
t iηt

ωdt) =: dθ.

Thus dθ = ω on E, and ι∗θ = 0 since ι∗(µ∗
t iηt

ω) = 0. Moreover, if ω
vanishes on TE|N then so do the first derivatives of θ along N , and
the asserted K-invariance is also obvious. ¤

Theorem 1.I.3 (Relative Darboux Theorem). Let N be a closed sub-
manifold of M , and let ω0 and ω1 be symplectic forms on M that co-
incide along N . Then there are open neighborhoods U and V of N
in M , and a diffeomorphism f : U → V which satisfies f |N = id N ,
Tf |(TM |N) = id TM |N , and f ∗ω1 = ω0.

If furthermore M is acted upon by a compact Lie group K such that both
ω0 and ω1 are K-invariant, and N is a K-invariant closed submani-
fold then U and V may be chosen K-invariant, and f : (U, ω0|U) →
(V, ω1|V ) is a K-equivariant symplectomorphism.
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Proof. Suppose we are in the situation of a given K-action as
formulated in the second part of the theorem. Let ωt := ω0 + t(ω1−ω0)
which clearly is a closed form on M . Since non-degeneracy is an open
condition we find an open neighborhood U of N in M such that ωt|U
is symplectic. Moreover, we choose U to be K-invariant. By passing to
a smaller neighborhood if necessary we find by the Relative Poincare
Lemma a K-invariant one-form θ ∈ Ω1(U) such that (ω1 −ω2)|U = dθ.
Moreover, θ|N = 0 and also all first derivatives along N of θ vanish.

Now consider the time dependent vector field ηt ∈ X(U) defined by the
equation iηt

ωt|U = −θ. Correspondingly we have the curve of local dif-

feomorphisms defined by ft = pr2 ◦Flηt ◦ ins0 where η(t, x) = (∂t, ηt(x))
defines an ordinary vector field as in the proof of the proposition on
time dependent vector fields above. Notice that by K-invariance of
ωt and θ we may conclude that T lk.ηt = ηt ◦ lk where lk : M → M
is the K-action on M . That is ηt is lk-related to itself, whence the
corresponding flow commutes with the action, thus implying that ft is
K-equivariant.

To see that ft leads to desired symplectomorphism we notice that
∂
∂t
f ∗
t ωt = ∂

∂s
|0f

∗
t+sωt +

∂
∂s
|0f

∗
t ωt+s

= f ∗
t Lηt

ωt + f ∗
t (ω1 − ω0)

= f ∗
t (diηt

ωt − (ω1 − ω0))

= f ∗
t (dθ − (ω1 − ω0)) = 0.

Therefore, f ∗
t ωt is constant in t, and we see that f1 is the desired K-

equivariant symplectomorphism since ω0 = f ∗
0ω0 = f ∗

1ω1. ¤





CHAPTER 2

Singular cotangent bundle reduction

This chapter is concerned with symplectic and Poisson reduction of a
cotangent bundle T ∗Q with respect to a Hamiltonian action by a com-
pact Lie group K that comes as the cotangent lifted action from the
configuration manifold Q. Moreover, we assume that Q is Riemannian
and K acts on Q by isometries. The cotangent bundle T ∗Q is equipped
with its canonical exact symplectic form, and we have a standard mo-
mentum map µ : T ∗Q → k∗. Consider a coadjoint orbit O that lies
in the image of µ. The goal is now to understand the symplectically
reduced space

µ−1(O)/K =: T ∗Q//OK.

Several difficulties arise at this point. First of all the action by K on
the base Q is not assumed to be free. So we will get only a stratified
symplectic space. Its strata will be of the form

(µ−1(O) ∩ (T ∗Q)(L))/K =: (T ∗Q//OK)(L)

where (L) is an element of the isotropy lattice of the K-action on
T ∗Q. This follows from the theory of singular symplectic reduction
as developed in Sjamaar and Lerman [45], Bates and Lerman [6], and
Ortega and Ratiu [33]. See also Theorem 1.H.1.

One of the aspects of cotangent bundle reduction is to relate the re-
duced space (T ∗Q//OK)(L) to the cotangent bundle of the reduced
configuration space, i.e. to T ∗(Q/K). However, in this general-
ity Q/K will not be a smooth manifold, and, worse, the mapping
(T ∗Q//OK)(L) → T ∗(Q/K) (which one constructs canonically – see
Section 2.D) does not have locally constant fiber type. To remedy this
mess we have to assume that the base manifold is of single isotropy
type, that is Q = Q(H) for a subgroup H of K. Assuming this we get
a first result that says that

O//0H
Â Ä // T ∗Q//OK // T ∗(Q/K)

is a symplectic fiber bundle, and this is Theorem 2.A.4. This result is
obtained by applying the Palais Slice Theorem to the action on the base
space Q, and then using the Singular Commuting Reduction Theorem
of Section 1.H. This is an inroad that was also taken by Schmah [43]
to get a local description of T ∗Q//OK.

However, one can also give a global symplectic description of the re-
duced space, and this is done in Section 2.D. This follows an approach

35
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that is generally called gauged cotangent bundle reduction or Weinstein
construction ([50]) or also Sternberg construction. In the case that the
action by K on the configuration space is free this global description
was first given by Marsden and Perlmutter [25]. Their result says
that the symplectic quotient T ∗Q//OK can be realized as the fibered
product

T ∗(Q/K) ×Q/K (Q×K O)

and they compute the reduced symplectic structure in terms of data
intrinsic to this realization – [25, Theorem 4.3].

In the presence of a single non-trivial isotropy on the configuration
space one gets a non-trivial isotropy lattice on T ∗Q and thus has to
use stratified symplectic reduction. The result is then the following:
Each symplectic stratum (T ∗Q//OK)(L) of the reduced space can be
globally realized as

(W//OK)(L) = T ∗(Q/K) ×Q/K (
⊔
q∈QO ∩ Ann kq)(L)/K

where

W := (Q×Q/K T
∗(Q/K)) ×Q

⊔
q∈QAnn kq ∼= T ∗Q

as symplectic manifolds with a Hamiltonian K-action. Moreover, we
compute the reduced symplectic structure in terms intrinsic to this
realization. This is the content of Theorem 2.D.4.

It is rather surprising that the subject of cotangent bundle reduction,
albeit so important to Hamiltonian mechanics, still is very untouched.
Even in the case of a free action on the base the results are rather new,
and there is not much to be found about singular cotangent bundle
reduction in the literature. One of the first to study this subject is
Schmah [43]. The other important paper on singular cotangent bundle
reduction is the one by Perlmutter, Rodriguez-Olmos and Sousa-Diaz
[38]. By restricting to do reduction at fully isotropic values of the
momentum map µ : T ∗Q → k∗ they are able to drop all assumptions
on the isotropy lattice of the K-action on Q, and give a very complete
description of the reduced symplectic space.

In order to understand the Poisson reduced space T ∗Q = W/K via
the Weinstein construction we follow a similar program. That is, we
compute the coinduced Poisson bracket on

W/K = T ∗(Q/K) ×Q/K (
⊔
q∈QAnn kq)/K

in terms intrinsic to this realization. The resulting formula involves
the canonical symplectic form on T ∗(Q/K) and vertical differentiation
and curvature form with respect to a certain connection on the bundle

Ann /H ↪→ W/K −→ T ∗(Q/K)

which is a bundle with smooth base and singular fiber. This is the
content of Theorem 2.E.9.
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In the case that K acts freely on Q the Poisson bracket on the re-
duced Poisson manifold T ∗Q/K is determined in Zaalani [53] and in
Perlmutter and Ratiu [37].

2.A. Bundle picture

Let us introduce the basic assumptions of the thesis. That is Q is a
Riemannian manifold, K is a compact connected Lie group which acts
onQ by isometries. TheK action then induces a Hamiltonian action on
the cotangent bundle T ∗Q by cotangent lifts. This means that the lifted
action respects the canonical symplectic form Ω = −dθ on T ∗Q where θ
is the Liouville form on T ∗Q, and, moreover, there is a momentum map
µ : T ∗Q → k∗ given by 〈µ(q, p), X〉 = θ(ζT

∗Q
X )(q, p) = 〈p, ζX(q)〉 where

(q, p) ∈ T ∗Q, X ∈ k, ζX is the fundamental vector field associated to

the K-action on Q, and ζT
∗Q

X ∈ X(T ∗Q) is the fundamental vector field
associated to the cotangent lifted action.

In this section we want to apply the slice theorem of Section 1.A to
the action of K on Q to get a local model of the singularly symplectic
reduced space T ∗Q//OK = µ−1(O)/K where O is a coadjoint orbit in
the image of µ.

Thus we consider a tube U in Q around an orbit K.q with Kq = H.
And we denote the slice at q by S such that

U ∼= K ×H S.

In particular it follows that U/K ∼= S/H.

Assume for a moment that the action by K on U is free, that is U ∼=
K×S. Let µ : T ∗U → k∗ be the canonical momentum mapping, λ ∈ k∗

a regular value in the image of µ, and O the coadjoint orbit passing
through λ. Then we have

(T ∗U)//OK = (T ∗U)//λK = (T ∗K × T ∗S)//λK

= (T ∗K)//λK × T ∗S

= O × T ∗(U/K)

as symplectic spaces; since T ∗K//λK = O. The aim of this section
is to drop the freeness assumption. To do so we will take the same
approach as Schmah [43] and use singular commuting reduction.

Now we return to the case where U = K ×H S as introduced above.
On K × S we will be concerned with two commuting actions. These
are

λ : K ×K × S −→ K × S, λg(k, s) = (gk, s)

τ : H ×K × S −→ K × S, τh(k, s) = (kh−1, h.s).

These actions obviously commute. The latter, i.e. τ is called the
twisted action by H on K × S. We can cotangent lift λ and τ to give
Hamiltonian transformations on T ∗(K×S) with momentum mappings
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Jλ and Jτ , respectively. By left translation we trivialize T ∗(K × S) =
(K × k∗) × T ∗S.

To facilitate the notation we will denote the cotangent lifted action of
λ, τ again by λ, τ respectively.

Lemma 2.A.1. Let (k, η; s, p) ∈ K × k∗ × T ∗S. Then we have the
following formulas

Jλ(k, η; s, p) = Ad(k−1)∗.η =: Ad∗(k).η ∈ k∗,

Jτ (k, η; s, p) = −η|h + µ(s, p) ∈ h∗

where µ is the canonical momentum map on T ∗S. Moreover, the ac-
tions λ and τ commute, and Jλ is H-invariant and J τ is K-invariant.

Since the canonical momentum map on T ∗S is the same as that on
T ∗U restricted to T ∗S the use of the symbol µ for both these maps is
unambiguous.

The signs in the formulas for the momentum mappings depend on the
choice of sign in the definition of the fundamental vector field map as
defined in Section 1.A.

Proof. We denote the left action by K on itself by L, the right
action by R, and the conjugate action by conj. In this notation we
then have Ad(k).X = Teconjk.X, and conjk = Lk ◦ R

k−1
= Rk−1

◦ Lk.
Notice the choice of sign in the definition of the fundamental vector
field associated to left actions in Section 1.A. For right actions we
need to choose the opposite sign. It is straightforward to verify that
the cotangent lifted actions of L and R on T ∗K = K × k∗ are given by

T ∗Lg(k, η) = (gk,−η) = (gk, η ◦ ζR(g))

T ∗Rg(k, η) = (kg,Ad(g−1)∗.η) = (kg, η ◦ ζL(g))

where ζL and ζR denote the fundamental vector field mappings associ-
ated to L and R respectively.

Thus 〈Jλ(k, η; s, p), X〉 = 〈η, ζLX(k)〉 = 〈Ad∗(k).η,X〉 for all X ∈ k

which shows the first claim. Also, it follows that 〈J τ (k, η; s, p), Z〉 =
〈−η, Z〉 + 〈p, ζX(s)〉 for all Z ∈ h. The invariance of Jλ and Jτ is
immediate from the formulas of the trivialized cotangent lifted actions.

¤

Corollary 2.A.2. Let α ∈ k∗ and β ∈ h∗ such that α, β is in the
image of Jλ, Jτ respectively. Then the following are true.

(i) The action λ descends to a Hamiltonian action on the Marsden-
Weinstein reduced space T ∗(K × S)//βH. Moreover, Jλ factors
to a momentum map jλ : T ∗(K × S)//βH → k∗ for this action.

(ii) The action τ descends to a Hamiltonian action on the Marsden-
Weinstein reduced space T ∗(K × S)//αK. Moreover, J τ factors
to a momentum map jτ : T ∗(K × S)//αK → h∗ for this action.
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(iii) The product action K×H×T ∗(K×S) → T ∗(K×S), (k, h, u) 7→
λk.τh.u is Hamiltonian with momentum map (Jλ, Jτ ). Moreover,

(T ∗(K × S)//αK)//βH = T ∗(K × S)//(α,β)(K ×H)

= (T ∗(K × S)//βH)//αK

as singular symplectic spaces.

Proof. Since the actions by λ and τ are free the first two assertions
can be deduced from the regular commuting reduction theorem with
the necessary conditions being verified in the above lemma. Clearly,
the product action by K × H is well-defined and Hamiltonian with
asserted momentum map. However, the product action will not be
free in general. Thus the last point is a consequence of the singular
commuting reduction theorem of Section 1.H. ¤

We will only be interested in the case where β = 0. There are more
than one Hamiltonian cotangent lifted actions on T ∗K. However,
when it comes to reduction we will be only concerned with the lifted
action λ. Thus the expression T ∗K//αK unambiguously stands for
(Jλ)−1(α)/Kα.

Proposition 2.A.3. Clearly, 0 is in the image of J τ . Therefore,

T ∗U//αK ∼= T ∗(K ×H S)//αK

= T ∗(K × S)//0H//αK

= (T ∗K//αK × T ∗S)//0H

= (O × T ∗S)//0H

as stratified symplectic spaces, and where O = Ad∗(K).α.

Proof. Since the isomorphism T ∗U
'
−→ T ∗(K ×H S) comes from

an equivariant diffeomorphism U
'
−→ K ×H S on the base it is an equi-

variant symplectomorphism that intertwines the respective momentum
maps. Now the regular reduction theorem for cotangent bundles at zero
momentum says that T ∗(K ×H S) and T ∗(K × S)//0H are symplec-
tomorphic. Further it is well-known that T ∗K//αK = O. The rest is
a direct consequence of Theorem 1.H.4 on singular commuting reduc-
tion. ¤

We continue to assume that K acts on the Riemannian manifold Q by
isometries. But now we also make the rather strong assumption that

Q = Q(H)

i.e. all isotropy subgroups of points q ∈ Q are conjugate within K to
H.
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Theorem 2.A.4 (Bundle picture). Let Q = QH and let O ⊆ k∗ be
a coadjoint orbit in the image of the momentum map µ : T ∗Q → k∗.
Then we have a singular symplectic fiber bundle

O//0H
Â Ä // T ∗Q//OK // T ∗(Q/K)

in the sense of Section 2.B with stratified typical fiber O//0H and
smooth base T ∗(Q/K).

This theorem is to say that the singularities of the reduced phase space
are confined to the fiber direction which also will be referred to as the
spin direction.

Proof. This follows from the above in the following way. Consider
a tube U of the K-action on Q. Then the slice theorem tells us that
there is a slice S such that there is a K-equivariant diffeomorphism

U ∼= K ×H S = K/H × S

since all points of Q by assumption are regular whence the slice rep-
resentation is trivial. We can lift this diffeomorphism to a symplecto-
morphism of cotangent bundles to get

T ∗U//OK ∼= O//0H × T ∗S

as in Proposition 2.A.3 above. Since T ∗S is a typical neighborhood in
T ∗(Q/K) the result follows. ¤

2.B. Interlude on singular fiber bundles

Singular bundles. By Theorem 2.A.4 we are led to the following
generalization of the concept of smooth bundles.

Definition 2.B.1 (Singular fiber bundles). . Let F and P be stratified
spaces (Definition 1.C.5) with smooth structure (Definition 1.C.3) and
M be a smooth manifold. We say that the topological fiber bundle

F
Â Ä // P

π
// M

is a singular fiber bundle if for each trivializing patch U ⊆M the
homeomorphism

P |U ∼= U × F

is an isomorphism of stratified spaces.

There are two reasons for defining singular fiber bundles in this way.
Firstly, it is the kind of structure encountered in Theorem 2.A.4, and
secondly by Mather’s control theory [26] these bundles possess many
features similar to ordinary smooth fiber bundles.

Note that if M is a Riemannian manifold which is acted upon by a com-
pact Lie group K through isometries then the orbit projection mapping
M ³M/K is, in general, not a singular fiber bundle according to this
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definition. Indeed, the fiber type of M ³ M/K need not be locally
constant.

Lemma 2.B.2. Let π : P → M be a singular fiber bundle with typical
fiber F . Let S be a stratum of P . Then π|S : S →M is a smooth fiber
bundle.

Proof. Indeed, locally the stratum S is diffeomorphic to U × SF
where SF is a stratum of F and U is a trivializing neighborhood in
M . ¤

Definition 2.B.3 (Singular symplectic fiber bundles). Let F and P
be stratified symplectic spaces (Definition 1.H.2) with smooth structure
and M be a smooth symplectic manifold. We say that the singular fiber
bundle

F
Â Ä // P

π
// M

is a singular symplectic fiber bundle if for each trivializing patch
U ⊆M the homeomorphism

P |U ∼= U × F

is an isomorphism of stratified symplectic spaces with respect to the
inherited symplectic structures. It follows, in particular, that π is a
Poisson morphism.

Control data. The theory of control data is due to Mather [26],
and we follow in our presentation of the subject that of [26]. Let N be
a smooth manifold, and X ⊆ N a stratified subset endowed with the
relative topology with strata Si where i ∈ I as in Section 1.C.

A tubular neighborhood of a stratum Si in X is a closed neigh-
borhood of Si in N which is diffeomorphic to an inner product bundle
πi : Ei → Si. Via the inner product we can measure the vertical dis-
tance of a point in Ei to Si and call this the tubular neighborhood
function ρi : Ei → R. Clearly, ρi(x) = 0 if and only if x ∈ Si. We
can also think of the tubular neighborhood as being retracted onto Si
via the projection πi. Control data associated to the stratification
{Si : i ∈ I} of X is a system of tubular neighborhoods πi : Ei → Si
satisfying the following commutation relations:

(πj ◦ πi)(x) = πj(x),

(ρj ◦ πi)(x) = ρj(x)

whenever j ≤ i and both sides are defined.

Proposition 2.B.4. There exist control data to the stratification
{Si : i ∈ I} of X. If M is another manifold, and f : N →M a smooth
mapping such that f |Si : Si → M is a submersion for all i ∈ I then
the control data may be chosen so that f ◦ πSi

= f for all i ∈ I.

Proof. See Mather [26, Proposition 7.1]. ¤
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If f : N → M is as in Proposition 2.B.4 then f is said to be a con-
trolled submersion from X to M .

By a stratified vector field η on X we mean a collection
{ηi : i ∈ I} where each ηi is a smooth vector field on Si. Assume we are
given a system of control data associated to the stratification of X, and
identify the tubular neighborhoods of the strata with the correspond-
ing inner-product bundles. Then the stratified vector field η on X is
said to be a controlled vector field if the following conditions
are met. For any stratum Sj there is an open neighborhood Bj of Sj in
the tubular neighborhood Ej such that for any stratum Si with i > j
the conditions

Lηi
(ρj|Bj ∩ Si) = 0,

Tx(πj|Bj ∩ Si).ηi(x) = ηj(πj(x))

are satisfied for all x ∈ Bj ∩ Si.

Let J be an open neighborhood of {0}×X in R×X, and assume that
α : J → X is a local one-parameter group which is smooth in the sense
of Definition 1.C.3. We say that α generates the stratified vector
field η if J is maximal such that each stratum Si is invariant under α
and

∂
∂t
|0α(t, x) = ηi(x)

for all x ∈ Si and all i ∈ I.

Proposition 2.B.5. Assume η is a controlled vector field on X. Then
there is a unique smooth one-parameter group which generates η.

Proof. See Mather [26, Proposition 10.1]. ¤

Proposition 2.B.6. Assume f : N → M is a smooth map such that
f |X : X →M is a controlled surjective submersion. Then the following
are true.

• Let ξ be a smooth vector field on M . Then there is a controlled
vector field η on X such that ηi and ξ are f |Si-related for all
i ∈ I.

• Suppose further that f |X → M is a proper map. Then f :
X →M is a singular fiber bundle.

Proof. See Mather [26, Proposition 9.1] for the first statement.
Concerning the second assertion, [26, Proposition 11.1] states that un-
der these assumptions the mapping f : X → M is locally topologi-
cally trivial, and it follows from [26, Corollary 10.3] that the trivial-
izing homeomorphisms are, in fact, isomorphisms of stratified spaces.
Thus f : X → M is a singular fiber bundle in the sense of Definition
2.B.1. ¤
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Pullback bundles. Let M and Y be smooth manifolds, and let
τ : Y → M be a smooth mapping. Consider a singular fiber bundle
π : X → M with typical fiber F as in Definition 2.B.1. We consider
further the topological pullback bundle of X and Y over M with the
following notation.

X ×M Y τ ∗X
π∗τ

//

τ∗π
²²

X

π

²²

Y
τ

// M

Now we can endow X ×M Y with the product stratification given by
strata of the form S ×M Y which is the smooth fibered product of a
stratum S of X with Y over M . Note that S×M Y is a well defined pull
back bundle by Lemma 2.B.2. Moreover, X ×M Y inherits a smooth
structure in the sense of Section 1.C from the canonical topological
inclusion X×M Y ↪→ X×Y . The singular space with smooth structure
thus obtained is called the fibered product of X and Y over M .
Since π : X →M is a singular fiber bundle it follows that

τ ∗π : X ×M Y → Y

is a singular fiber bundle as well with the same typical fiber F . More-
over, this construction satisfies the following universal property. Let Z
be a singular space with smooth structure and f1 : Z → X, f2 : Z → Y
be smooth mappings satisfying π ◦ f1 = τ ◦ f2. Then there is a unique
smooth map f = (f1, f2) such that the following commutes.

Z
f1

zzuuuuuuuuuuu

f
²²
Â

Â

Â
f2

$$IIIIIIIIIII

X
π

$$IIIIIIIIII X ×M Y
π∗τ

oo
τ∗π

// Y
τ

zzuuuuuuuuuu

M

Therefore, in this sense, pull backs exist in the category of singular
fiber bundles. There is, in fact, a similar notion of pull backs in the
work of Davis [12].

2.C. Weinstein construction

For this section we continue with the basic assumptions of the pa-
per. That is Q is a Riemannian manifold, K is a compact connected
Lie group which acts on Q by isometries. Moreover, Q is supposed
to be of single isotropy type, i.e. Q = Q(H) were H is an isotropy
subgroup of K. The K action then induces a Hamiltonian action
on the cotangent bundle T ∗Q by cotangent lifts. This means that
the lifted action respects the canonical symplectic form Ω = −dθ
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on T ∗Q and there is a momentum map µ : T ∗Q → k∗ given by
〈µ(q, p), X〉 = θ(ζT

∗Q
X )(q, p) = 〈p, ζX(q)〉 where (q, p) ∈ T ∗Q, X ∈ k,

ζX is the fundamental vector field associated to the K-action on Q,
and ζT

∗Q
X ∈ X(T ∗Q) is the fundamental vector field associated to the

cotangent lifted action.

Since the K action on Q has only a single isotropy type the orbit space
Q/K is a smooth manifold, and the projection π : Q → Q/K is a
surjective Riemannian submersion with compact fibers. However, the
lifted action by K on T ∗Q is already much more complicated, and the
quotient space (T ∗Q)/K is only a stratified space in general. Its strata
are of the form (T ∗Q)(L)/K where (L) is in the isotropy lattice of T ∗Q.

The vertical sub-bundle of TQ with respect to π : Q → Q/K is
Ver := kerTπ. Via the K-invariant Riemannian metric we obtain
the horizontal sub-bundle as Hor := Ver⊥. We define the dual hori-
zontal sub-bundle of T ∗Q as the sub-bundle Hor∗ consisting of those
co-vectors that vanish on all vertical vectors. Likewise, we define the
dual vertical sub-bundle of T ∗Q as the sub-bundle Ver∗ consisting of
those co-vectors that vanish on all horizontal vectors.

Fix an Ad(K)-invariant inner product on the Lie algebra k of the com-
pact Lie group K. For X,Y ∈ k and q ∈ Q we define

Iq(X,Y ) := 〈ζX(q), ζY (q)〉

and call this the inertia tensor. This gives a non-degenerate pairing
on k⊥q × k⊥q , whence it gives an identification Ǐq : k⊥q → (k⊥q )∗ = Ann kq.
We use this isomorphism to define a one-form on Q with values in the
bundle

⊔
q∈Qk⊥q by the following:

T ∗
qQ

µq
// Ann kq

(Ǐq)−1

²²

TqQ

'

OO

Aq
//____ k⊥q

The form A shall be called the mechanical connection on Q →
Q/K. The inertia tensor and mechanical connection first appeared in
Smale [46] in the context of an Abelian group action. See also Marsden,
Montgomery, and Ratiu [24, Section 2]. Blaom [8] generalized these
concepts to the case of a free action of the group on the configuration
space. In the present situation, however, we are concerned with a non-
trivial single isotropy type on the base manifold Q, and we will see in
the next paragraphs that the thus defined form A indeed is a connection
form on Q³ Q/K – albeit in a generalized sense.

The mechanical connection has the following properties. It follows from
its definition that TQ →

⊔
q∈Qk⊥q , (q, v) 7→ (q, Aq(v)) is equivariant,

kerAq = Tq(K.q)
⊥, and Aq(ζX(q)) = X for all X ∈ k⊥q .
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This means that A ∈ Ω1(Q; k) given by A : TQ → k⊥q ↪→ k, (q, v) 7→
Aq(v) is a principal connection form on the K-manifold Q in the sense
of Alekseevsky and Michor [3, Section 3.1]. According to [3, Section
4.6] the curvature form associated to A is defined by

CurvA := dA+ 1
2
[A,A]∧

where

[ϕ, ψ]∧ := 1
k!l!

∑

σ

sign σ[ϕ(vσ1, . . . , vσl), ψ(vσ(l+1), . . . , vσ(l+k))]

is the graded Lie bracket on Ω(Q; k) :=
⊕∞

k=0 Γ(ΛkT ∗Q ⊗ k), and ϕ ∈
Ωl(Q; k) and ψ ∈ Ωk(Q; k).

We define a point-wise dual A∗
q : Ann kq → Ver∗q ⊆ T ∗

qQ by the formula
A∗
q(λ)(v) = λ(Aq(v)) where λ ∈ Ann kq and v ∈ TqQ. Notice that

A∗
q(µq(p)) = p

for all p ∈ Ver∗q and

µq(A
∗
q(λ)) = λ

for all λ ∈ Ann kq.

Using the horizontal lift mapping which identifies Hor ∼= (Q ×Q/K

T (Q/K)) on the one hand and the mechanical connection A on the
other hand we obtain an isomorphism

TQ = Hor ⊕ Ver −→ (Q×Q/K T (Q/K)) ×Q

⊔
q∈Qk⊥q

of bundles over Q. Via the Riemannian structure there is a dual version
to this isomorphism, and to save on typing we will abbreviate

W := (Q×Q/K T
∗(Q/K)) ×Q

⊔
q∈QAnn kq ∼= Hor∗ ⊕ Ver∗.

To set up some notation for the upcoming proposition, and clarify the
picture consider the following stacking of pull-back diagrams.

W
ρ∗eτ=eeτ

//

eτ∗ρ=eρ
²²

⊔
qAnn kq

ρ

²²

Q×Q/K T
∗(Q/K)

π∗τ=eτ
//

τ∗π=eπ
²²

Q

π

²²

T ∗(Q/K)
τ

// Q/K

The upper stars in this diagram are, of course, not pull-back stars. It
is in fact the transition functions that are being pulled-back, whence
the name.

Proposition 2.C.1 (Symplectic structure on W). There is a dual
isomorphism

ψ = ψ(A) : (Q×Q/K T
∗(Q/K)) ×Q

⊔
q∈QAnn kq = W −→ T ∗Q,
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(q, η, λ) 7−→ (q, η + A(q)∗λ)

where we identify elements in {q} × T ∗
[q](Q/K) with elements in Hor∗q

via the dual of the inverse of the horizontal lift.

This isomorphism can be used to induce a symplectic form on the con-
nection dependent realization of T ∗Q, namely σ = ψ∗Ω where Ω = −dθ
is the canonical form on T ∗Q. Moreover, there is an explicit formula
for σ in terms of the chosen connection:

σ = (π̃ ◦ ρ̃)∗ΩQ/K − d˜̃τ
∗
B

where ΩQ/K is the canonical symplectic form on T ∗(Q/K), and fur-
thermore B ∈ Ω1(

⊔
qAnn kq) is given by

B(q,λ)(v1, λ1) = 〈λ,Aq(v1)〉.

The explicit formula now is

(dB)(q,λ)((v1, λ1), (v2, λ2))

= 〈λ,CurvAq (v1, v2)〉 + 〈λ, [Z1, Z2]〉 − 〈λ2, Z1〉 + 〈λ1, Z2〉

where (q, λ) ∈
⊔
qAnn kq, (vi, λi) ∈ T(q,λ)(

⊔
qAnn kq) for i = 1, 2, and

vi = ζZi
(q) ⊕ vhor

i ∈ Verq ⊕ Horq

is the decomposition into vertical and horizontal part with Zi ∈ k.

Furthermore, there clearly is an induced action by K on W. This action
is Hamiltonian with momentum mapping

µA = µ ◦ ψ : W −→ k∗, (q, η, λ) 7−→ λ,

where µ is the momentum map T ∗Q→ k∗, and ψ is equivariant.

Proof. Clearly, the isomorphism ψ does induce a symplectic form
σ = ψ∗Ω on W , and it only remains to verify the asserted formula. Let

w = (q; [q], η; q, λ) = (q, η, λ) ∈ W ,

and ξi ∈ X(W) for i = 1, 2. We use the notation

ξi(w) = (vi(q), ηi([q], η), λi(q, λ)).

That is, vi ∈ X(Q), ηi ∈ X(T ∗(Q/K)), and λi ∈ X(
⊔
qAnn kq). By

definition of pulling back of forms we have

σw(ξ1, ξ2) = Ω(q,η+A∗

q(λ))(Twψ.ξ1(w), Twψ.ξ2(w)).

Denoting the horizontal lift of (Flvi

t (q),Flηi

t ([q], η)) simply by Flηi

t (η),
and considering λi(q, λ) as an element of Ann kq (effectively forgetting
the Q-component which is just vi(q)) we compute

Twψ.ξi(w) = ∂
∂t
|0ψ(Flξit (w))

= ∂
∂t
|0(Flvi

t (q),Flηi

t (η) + A(Flvi

t (q))∗(Flλi

t (q, λ)))

= (vi(q), ηi(η) + A∗
q(λi(q, λ)) + (Lvi

A+ A ◦ ad(vi))
∗
q(λ))
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where the last equality is true since:

∂
∂t
|0〈A(Flvi

t (q))∗(Flλi

t (q, λ)), X〉 = ∂
∂t
|0〈Flλi

t (q, λ), A(X)(Flvi

t (q))〉

= 〈λi(q, λ), Aq(X)〉 + 〈λ,Lvi
(A(X))q〉

= 〈A∗
q(λi(q, λ))

+ (Lvi
A+ A ◦ ad(vi))

∗
q(λ), X〉

for X ∈ TQ and we used the formal notation ad(v1)q(v2) = [v1, v2](q).
Therefore,

σw(ξ1, ξ2) = Ω(q,η+A∗

q(λ))

(
(v1(q), η1(η) + A∗

q(λ1(q, λ))

+ (Lv1A+ A ◦ ad(v1))
∗
q(λ)),

(v2(q), η2(η) + A∗
q(λ2(q, λ))

+ (Lv2A+ A ◦ ad(v2))
∗
q(λ))

)

= 〈η2(η) + A∗
q(λ2(q, λ)) + (Lv2A+ A ◦ ad(v2))

∗
q(λ), v1(q)〉

− 〈η1(η) + A∗
q(λ1(q, λ)) + (Lv1A+ A ◦ ad(v1))

∗
q(λ), v2(q)〉

+ 〈η + A(q)∗(λ), [v1, v2](q)〉

= 〈η2(η), v
hor
1 (q)〉 − 〈η1(η), v

hor
2 (q)〉 + 〈η, [vhor

1 , vhor
2 ](q)〉

+ 〈λ,Lv2(A(v1))q〉 − 〈λ,Lv1(A(v2))q〉

+ 〈λ,A(q)[v1, v2](q)〉

+ 〈λ2(λ), A(q).v1(q)〉 − 〈λ1(λ), A(q).v2(q)〉

= Ω
Q/K
([q],η)((v

hor
1 , η1), (v

hor
2 , η2))

− 〈λ,CurvAq (v1, v2)〉 − 〈λ, [Z1, Z2]〉

+ 〈λ2(λ), Z1〉 − 〈λ1(λ), Z2〉

where vi(q) = vi(q)
hor ⊕ ζZi

(q) ∈ Horq ⊕ Verq. Note also that
[ζZ1 , ζZ2 ] = −ζ[Z1,Z2] which is due to the sign chosen in the definition of
the fundamental vector field in Section 1.A. The curvature two-form
is given by

CurvAq (v1, v2) = dAq(v1, v2) + A(q)[v1, v2](q) ∈ k.

For B ∈ Ω1(
⊔
qAnn kq) given by B(q, λ)(v1, λ1) = 〈λ,A(q).v1(q)〉 we

have

dB(q, λ)
(
(v1, λ1), (v2, λ2)

)
= L(v1,λ1)(B(v2, λ2))(q,λ)

− L(v2,λ2)(B(v1, λ1))(q,λ)

−B(q, λ)([(v1, λ1), (v2, λ2)])

= ∂
∂t
|0B(Fl

(v1,λ1)
t (q, λ))(v2, λ2)

− ∂
∂t
|0B(Fl

(v2,λ2)
t (q, λ))(v1, λ1)

− 〈λ,A(q)[v1, v2](q)〉
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= ∂
∂t
|0〈Flλ1

t (λ), A(Flv1t (q))(v2)〉

− ∂
∂t
|0〈Flλ2

t (λ), A(Flv2t (q))(v1)〉

+ 〈λ, [Z1, Z2]〉

= 〈λ1(λ), Z2〉 − 〈λ2(λ), Z1〉

+ 〈λ,Lv1(A(v2))q〉

− 〈λ, (Lv2A)q(v1(q))〉

+ 〈λ, [Z1, Z2]〉.

Putting this together we find

σw(ξ1, ξ2) = Ω
Q/K
([q],η)((v

hor
1 , η1), (v

hor
2 , η2)) −

(
〈λ1(λ), Z2〉 − 〈λ2(λ), Z1〉

+ 〈λ,Lv1(A(v2))q〉 − 〈λ,Lv2(A(v1))q〉 + 〈λ, [Z1, Z2]〉
)

=
(
(π̃ ◦ ρ̃)∗ΩQ/K − d˜̃τ

∗
B
)
w
(ξ1, ξ2)

which is the desired formula. Finally, the statement about the K ac-
tion on W is obvious since ψ is equivariantly symplectomorphic by
construction. ¤

2.D. Gauged cotangent bundle reduction

Proposition 2.D.1 (Poisson structure on Weinstein space). There are
stratified isomorphisms of singular bundles over Q/K:

α = α(A) :
⊔

(L)(TQ)(L)/K −→ T (Q/K) ×Q/K

⊔
(L)(
⊔
q∈Qk⊥q )(L)/K,

[(q, v)] 7−→ (Tπ(q, v), [(q, Aqv)])

where (L) runs through the isotropy lattice of TQ. The dual isomor-
phism is given by

β = (α−1)∗ : (T ∗Q)/K −→ T ∗(Q/K) ×Q/K (
⊔
q∈QAnn kq)/K =: W,

[(q, p)] 7−→ (C∗(q, p), [(q, µ(q, p))])

where the stratification was suppressed. Here

C∗ : T ∗Q→ Hor∗ → T ∗(Q/K)

is constructed as the point wise dual to the horizontal lift mapping C :
T (Q/K) ×Q/K Q→ Hor ⊆ TQ, ([q], v; q) → Cq(v).

Moreover, β is an isomorphism of Poisson spaces as follows. There is
a natural isomorphism

W/K
∼=

−→ W,

[(q; [q], η; q, λ)] 7−→ ([q], η; [(q, λ)])

thus inducing a quotient Poisson bracket on C∞(W ) ∼= C∞(W)K as
the quotient Poisson bracket.
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In the case that K acts on Q freely the first assertion of the above
proposition can also be found in Cendra, Holm, Marsden, Ratiu [10].
Following Ortega and Ratiu [33, Section 6.6.12] the above constructed
interpretation W of (T ∗Q)/K is called Weinstein space referring to
Weinstein [50] where this universal construction first appeared.

Proof. As already noted above, (TQ)/K is a stratified space.
Since the base Q is stratified as consisting only of a single stratum,
the equivariant foot point projection map τ : TQ → Q is trivially a
stratified map. Using the Slice Theorem on the base Q it is easy to see
that both (TQ)/K → Q/K and the projection (

⊔
q∈Qk⊥q )/K → Q/K

are singular bundle maps in the sense of Definition 2.B.1. Hereby
(
⊔
q∈Qk⊥q )/K is stratified into isotropy types, According to Davis [12]

or also Section 2.B pullbacks are well defined in the category of strati-
fied spaces and thus it makes sense to define T (Q/K)×Q/K (

⊔
q∈Qk⊥q )/K

as a stratified space with smooth structure.

The map α is well defined: indeed, for (q, v) ∈ TQ and k ∈ K we have

Tπ(k.q, k.v) = (π(k.q), Tk.qπ(Tqlk(v)))

= (π(q), Tq(π ◦ lk)(v))

= Tqπ(v),

and [(k.q, A(k.q, k.v))] = [(q, A(q, v))] by equivariance of A. It is clearly
continuous as a composition of continuous maps. Moreover, since
C∞((TQ)/K) = C∞(TQ)K by Example 1.C.7 it follows that α is a
smooth map of singular spaces.

We claim that α maps strata onto strata, and moreover we have the
formula

α((TQ)(L)/K) = T (Q/K) ×Q/K (
⊔
q∈Qk⊥q )(L)/K.

Indeed, consider (q, v) ∈ (TQ)(L), that is H ∩ Kv = L′ ∼ L where
H = Kq. The notation L′ ∼ L means that L′ is conjugate to L within
K. Now we can decompose v as v = v0 ⊕ ζX(q) ∈ Horq ⊕ Tq(K.q) for
some appropriate X ∈ k. Since Q consists only of a single isotropy
type we have TqQ = TqQH + Tq(K.q) – which is not a direct sum
decomposition. As usual, QH = {q ∈ Q : Kq = H}. This shows that
v0 ∈ TqQH , and hence H ⊆ Kv0 . By equivariance of A it follows that

Kq ∩Kv = H ∩Kv0 ∩KζX(q) = H ∩KζX(q) = H ∩KA(q,v)

which is independent of the horizontal component. Hence the claim.
The restriction of α to any stratum clearly is smooth as a composition
of smooth maps.

Since Aq(ζX(q)) = X for X ∈ k⊥q we can write down an inverse as

α−1 : ([q], v; [(q,X)]) → [(q, Cq(v) + ζX(q))]
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and again it is an easy matter to notice that this map is well defined,
continuous, and smooth on each stratum. Again, it follows from the
definition of the smooth structures on the respective spaces that α−1

is smooth.

It makes sense to define the dual β of the inverse map α−1 in a point
wise manner, and it only remains to compute this map.

〈β[(q, p)], ([q], v; [(q,X)])〉 = 〈[(q, p)], [(q, Cq(v) + ζX(q))]〉

= 〈p, Cq(v)〉 + 〈p, ζX(q)〉

= 〈C∗(q, p), v〉 + 〈µ(q, p), X〉

= 〈(C∗(q, p), [(q, µ(q, p))]), ([q], v; [(q,X)])〉

where we used the K-invariance of the dual pairing over Q.

Finally, β is an isomorphism of singular Poisson spaces: note first that
the identifying map W/K → W , [(q; [q], η; q, λ)] 7→ ([q], η; [(q, λ)]) is
well-defined because Kq acts trivially on Hor∗q = T ∗

[q](Q/K) 3 η which
in turn is due to the fact that all points of Q are regular. Moreover, by
the universal property for singular pull back bundles from Section 2.B
it is obvious that this map W/K → W is smooth and has a smooth
inverse. The quotient Poisson bracket is well-defined since C∞(W)K ⊆
C∞(W) is a Poisson sub-algebra. The statement now follows because
the diagram

T ∗Q
ψ−1

//

²²²²

W

"" ""EE
EE

EE
EE

E

(T ∗Q)/K
β

// W W/K

is commutative, and composition of top and down-right arrow is Pois-
son and the left vertical arrow is surjective. ¤

Lemma 2.D.2. Let O ⊆ k∗ be a coadjoint orbit, µ : T ∗Q → k∗

the canonical momentum mapping, and µq := µ|(T ∗
qQ). Then either

µ−1
q (O) = ∅ for all q ∈ Q or µ−1

q (O) 6= ∅ for all q ∈ Q. In the latter
case we have

µ−1
q (O) = Ann q(Tq(K.q)) × {A∗

q(λ) : λ ∈ Ann kq ∩ O}

which is an equality of topological spaces and where A∗
q is the adjoint

of Aq : TqQ→ k⊥q .

Proof. Via the K-invariant inner product on k we identify k∗ with
k. Thus O is an Ad(K)-orbit. Moreover, we identify T ∗Q and TQ
via the K-invariant metric on Q. The statement in the lemma is now
equivalent to the following assertion. Given q1, q2 ∈ Q, then A−1

q1
(O) 6=

∅ if and only if A−1
q2

(O) 6= ∅. If q1 and q2 are in the same K-orbit then
this is obvious. Therefore we can assume without loss of generality
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that Kq1 = Kq2 : all isotropy subgroups are conjugate to each other,
and q2 can be moved around in its orbit.

Let X = Aq1(v1) ∈ O ∩ k⊥q1 with v1 = ζX(q1) ∈ Verq1 . Then also

Aq2(ζX(q2)) = X ∈ O ∩ k⊥q2 since k⊥q1 = k⊥q2 . ¤

The action of Proposition 2.C.1 by K on W is Hamiltonian with mo-
mentum map µA = µ ◦ ψ : W → k∗.

Lemma 2.D.3. Let O be a coadjoint orbit in the image of the momen-
tum map µA : W → k∗. Further, let (L) be in the isotropy lattice of the
K-action on W such that µ−1

A (O) ∩W (L) 6= ∅. Then

W (L) = (Q×Q/K T
∗(Q/K)) ×Q (

⊔
q∈QAnn kq)(L)

and

W (L) ∩ µ
−1
A (O) = (Q×Q/K T

∗(Q/K)) ×Q (
⊔
q∈QAnn kq ∩ O)(L)

are smooth manifolds. Moreover,

O(L0)H ∩ Ann h Â Ä // (
⊔
q∈QO ∩ Ann kq)(L) // Q

is a smooth fiber bundle where L0 is a subgroup of H such that L0

is conjugate to L within K. The space O(L0)H denotes the isotropy
sub-manifold of type L0 of O with regard to the Ad∗(H)-action on O.

Notice that O ∩ Ann h is not smooth, in general.

Proof. The statement about W (L) is clear. Thus also the descrip-
tion of W (L) ∩ µ

−1
A (O) follows from the previous lemma together with

Theorem 1.H.1.

Now to the second assertion. Let q0 ∈ Q with Kq0 = H. Then

(q0, λ) ∈ (
⊔
q∈QO ∩ Ann kq)(L)

if and only if

λ ∈ O ∩ Ann h and H ∩Kλ = Hλ = L0 ∼ L within K

which is true if and only if

λ ∈ (O ∩ Ann h)(L0)H = O(L0)H ∩ Ann h

where L0 is a subgroup of H conjugate to L within K.

Consider the Ad∗(H) action on O. This action is a Hamiltonian one
with momentum map given by ρ : O → h∗, λ 7→ λ|h, i.e. by restriction.
Thus O ∩ Ann h = ρ−1(0) which however is not smooth but only a
stratified space in general. Typical smooth strata of this space are of
the form O(L0)H ∩ Ann h with L0 a subgroup of H.

To see smooth local triviality we proceed as follows. Let again q0 ∈ Q
with Kq0 = H, and let S be a slice at q0 and U a tube around K.q0.
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That is, K/H × S ∼= U , (kH, s) 7→ k.s. Then we consider the smooth
trivializing map

S ×K ×H (O ∩ Ann h)(L0)H −→ (
⊔
q∈QO ∩ Ann kq)(L)|U,

(s, [(k, λ)]) 7−→ (k.s,Ad∗(k).λ)

which is well defined since Ad∗(k).λ ∈ (Ann kk.s ∩ O)(kL0k−1)Kk.s , and
the uncertainty coming from the diagonal H-action just cancels out.
Clearly this map is smooth with the obvious smooth inverse

(q, λ) = (k.s,Ad∗(k).λ0) 7−→ (s, [(k, λ0)]).

In particular this construction constructs smooth bundle charts of the
total space (

⊔
q∈QO ∩ Ann kq)(L). ¤

The singular reduction diagram of Ortega and Ratiu [33, Theorem
8.4.4] adjoined to the universal reduction procedure of Arms, Cushman,
and Gotay [4], see also [33, Section 10.3.2] applied to the Weinstein
space has the following form.

µ−1
A (O) oo ? _

²²²²

µ−1
A (λ) Â Ä //

²²²²

W

²²²²

µ−1
A (O)/K oo

'
µ−1
A (λ)/K Â Ä // W/K W

where λ ∈ µA(W) and O is the coadjoint orbit passing through λ.
Therefore it is a sensible generalization of the smooth case to interpret
the reduced µ−1

A (O)/K = W//OK as a typical stratified symplectic leaf
of the stratified Poisson space W . The following thus generalizes the
result of Marsden and Perlmutter [25, Theorem 4.3] to the case of a
non-free but single isotropy type action of K on Q.

What now follows is notation for the upcoming theorem. Let O be
a coadjoint orbit in the image of the momentum map µA : W → k∗,
and let (L) be in the isotropy lattice of the K-action on W such that
WO

(L) := µ−1
A (O) ∩W (L) 6= ∅. Then we have

ιO(L) : WO
(L) ↪→ W ,

the canonical embedding, and the orbit projection mapping

πO
(L) : WO

(L) ³WO
(L)/K =: (W//OK)(L).

Consider furthermore

ρO(L) : (
⊔
q∈QO ∩ Ann kq)(L) ³ (

⊔
q∈QO ∩ Ann kq)(L)/K

and

φO
(L) : (

⊔
q∈QO ∩ Ann kq)(L) −→ O, (q, λ) 7−→ λ

as well as the embedding

jO(L) : (
⊔
q∈QO ∩ Ann kq)(L) ↪→

⊔
q∈QAnn kq.
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Finally, we denote the Kirillov-Kostant-Souriou symplectic form on O
by ΩO, that is ΩO(λ)(ad∗(X).λ, ad∗(Y ).λ) = 〈λ, [X,Y ]〉. Remember
from Proposition 2.C.1 that the symplectic structure on W is denoted
by σ.

Theorem 2.D.4 (Gauged symplectic reduction). Let Q = Q(H), let O
be a coadjoint orbit in the image of the momentum map µA : W → k∗,
and let (L) be in the isotropy lattice of the K-action on W such that
WO

(L) := µ−1
A (O) ∩W (L) 6= ∅. Then the following are true.

(i) The smooth manifolds (W//OK)(L) and

(O//0H)(L0)H =: (O ∩ Ann h)(L0)H/H

are typical symplectic strata of the stratified symplectic spaces
W//OK and O//0H respectively. Here L0 is an isotropy subgroup
of the induced H-action on O and (L0)

H denotes its isotropy class
in H.

(ii) The symplectic stratum (W//OK)(L) can be globally described as

(W//OK)(L) = T ∗(Q/K) ×Q/K (
⊔
q∈QO ∩ Ann kq)(L)/K

whence it is the total space of the smooth symplectic fiber bundle

(O//0H)(L0)H
Â Ä // (W//OK)(L)

// T ∗(Q/K)

Hereby L0 is an isotropy subgroup of the induced H-action on O
which is conjugate in K to L, and (L0)

H denotes its isotropy class
in H.

(iii) The symplectic structure σO
(L) on (W//OK)(L) is uniquely deter-

mined and given by the formula

(πO
(L))

∗σO
(L) = (ιO(L))

∗σ − (µA|W
O
(L))

∗ΩO.

More precisely,

σO
(L) = ΩQ/K − βO

(L)

where βO
(L) ∈ Ω2((

⊔
q∈QO ∩ Ann kq)(L)/K) is defined by

(ρO(L))
∗βO

(L) = (jO(L))
∗dB + (φO

(L))
∗ΩO.

Finally B is the form that was introduced in Proposition 2.C.1.
Thus for (q, λ) ∈ (

⊔
q∈QO ∩ Ann kq)(L) and

(vi, ad
∗(Xi).λ) ∈ T(q,λ)(

⊔
q∈QO ∩ Ann kq)(L)

where i = 1, 2 we have the explicit formulas

B(q,λ)(vi, ad
∗(Xi).λ) = 〈λ,Aq(vi)〉

and also

dB(q,λ)((v1, ad
∗(X1).λ), (v2, ad

∗(X2).λ))

= 〈λ,CurvAq (v1, v2)〉 + 〈λ, [X2, Z1]〉 − 〈λ, [X1, Z2]〉 + 〈λ, [Z1, Z2]〉
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where vi = ζZi
(q) ⊕ vhor

i ∈ Verq ⊕ Horq is the decomposition into
vertical and horizontal parts with Zi ∈ k.

(iv) The stratified symplectic space can be globally described as

W//OK = T ∗(Q/K) ×Q/K

⊔
q∈QO ∩ Ann kq/K

whence it is canonically the total space of

O//0H
Â Ä // W//OK // T ∗(Q/K)

which is a singular symplectic fiber bundle with singularities con-
fined to the fiber direction in the sense of Definition 2.B.1.

Proof. Assertion (i). This is well-known as a general principle of
stratified symplectic reduction – see Ortega and Ratiu [33, Section 8.4]
or Section 1.H.

Assertion (ii). We know from above that all spaces involved in the
diagram really are smooth. As in the proof of Lemma 2.D.3 let q0 ∈ Q
with Kq0 = H, S a slice at q0, and U ∼= K/H × S a tube around the
orbit K.q0. Then we get the local description

(W//OK)(L)|U = T ∗S ×S (
⊔
q∈UO ∩ Ann kq)(L)/K

∼= T ∗S ×S S × (O ∩ Ann h)(L0)H/H

= T ∗S × (O//0H)(L0)H

as claimed.

The bundle is symplectic: This follows from Theorem 2.A.4.

Assertion (iii). The defining property of the reduced symplectic form
σO

(L), namely,

(πO
(L))

∗σO
(L) = (ιO(L))

∗σ − (µA|W
O
(L))

∗ΩO

is a well-established fact, see e.g. Bates and Lerman [6, Proposition
11]. Thus it is clear from Proposition 2.C.1 that

σO
(L) = ΩQ/K − βO

(L)

– if βO
(L) is a well defined two-form on (

⊔
q∈QO ∩ Ann kq)(L)/K such that

(ρO(L))
∗βO

(L) = (jO(L))
∗dB + (φO

(L))
∗ΩO.

To see this notice firstly that

β̃ := (jO(L))
∗dB + (φO

(L))
∗ΩO ∈ Ω2((

⊔
q∈QO ∩ Ann kq)(L))

isK-invariant. Furthermore, we claim that β̃ is horizontal, i.e. vanishes
upon insertion of a vertical vector field. Indeed, let

(q, λ) ∈ (
⊔
q∈QO ∩ Ann kq)(L),

and Zi ∈ k for i = 1, 2, and Y ∈ k such that

ad∗(Z1).λ, ad
∗(Y ).λ ∈ TλO(L0)Kq ∩ Ann kq,
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and consider v2(q) = vhor
2 ⊕ ζZ2(q) ∈ Horq ⊕ Verq as in the proof of

Proposition 2.C.1. Then we have

β̃(q,λ)((ζZ1(q), ad
∗(Z1).λ), (v2(q), ad

∗(Y ).λ))

= 0 + 〈λ, [Z1, Z2]〉 − 〈ad∗(Y ).λ, Z1〉 + 〈ad∗(Z1).λ, Z2〉

+ 〈λ, [Z1, Y ]〉

= 〈λ, [Z1, Z2]〉 + 〈λ, [Y, Z1]〉 − 〈λ, [Z1, Z2]〉

+ 〈λ, [Z1, Y ]〉

= 0.

That is β̃ is a basic form and thus descends to a form βO
(L).

Assertion (iv) is a pasting together of the results in (ii). ¤

Corollary 2.D.5. Let O be a coadjoint orbit in the image of the
momentum map µA : W → k∗, and let (L) be in the isotropy lattice of
the K-action on W such that WO

(L) := µ−1
A (O) ∩ W (L) 6= ∅. Assume

further that there is a global slice S such that Q ∼= K/H ×S. Then we
have the global description

W//OK = T ∗S ×O//0H.

Moreover, the reduced symplectic form σO
(L) on a symplectic stratum

(W//OK)(L) = T ∗S × (O//0H)(L0)H is given by the formula

σO
(L) = ΩQ/K − ΩO

(L0)H

where ΩO
(L0)H is the canonically reduced symplectic form on

(O//0H)(L0)H , and L0 is a subgroup of H which is conjugate to L within
K.

Proof. This is an immediate consequence of Theorems 2.A.4 and
2.D.4. ¤

2.E. Gauged Poisson reduction

Let us introduce the abbreviation E :=
⊔
q∈QAnn kq.

Lemma 2.E.1. The natural projection ρ : E → Q is a smooth fiber
bundle with typical fiber Ann h.

Proof. We trivialize at an arbitrary point q0 ∈ Q. We may assume
Kq0 = H. Let U ⊆ Q be a tube around K.q0 such that U ∼= S ×K/H
as K-spaces, where S is a slice at q0. Then it is possible to trivialize as

E|U

²²

∼=
// S × (K × Ann h)/H

²²

S ×K ×H Ann h

U
∼=

// S ×K/H
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with trivializing map given by

S ×K ×H Ann h −→ E|U

(s, [(k, λ)]) 7−→ (k.s,Ad∗(k)(λ))

where Ad∗(k)(λ) := Ad(k−1)∗(λ). This map is well-defined and smooth
with inverse given by

(q, λ) = (k.s,Ad∗(k)(λ0)) 7−→ (s, [(k, λ0)])

which is well-defined and smooth as well. Notice furthermore that
the trivializing map is K-equivariant with respect to the K-action on
S × K ×H Ann h given by g.(s, [(k, λ)]) = (s, [(gk, λ)]). Indeed, this
follows immediately from the proof of Lemma 2.A.1. ¤

Lemma 2.E.2. Let E :=
⊔
q∈QAnn kq.

(i) Let U ⊆ Q be a trivializing neighborhood for ρ : E → Q as in the
proof of Lemma 2.E.1. Then E|U is K-invariant, and if (L) is
an element of the isotropy lattice for the K-action on E then the
corresponding stratum is trivialized as

(E|U)(L)
∼= S ×K ×H (Ann h)(L0)H/H

where L0 ⊆ H is an isotropy subgroup for the H-action conjugate
to L in K, and (L0)

H is the conjugacy class of L0 in H. Moreover,
the strata of Ann h/H are of the form (Ann h)(L0)H/H.

(ii) The induced mapping ρ0 : E/K → Q/K is a singular fiber bundle
with typical fiber Ann h/H in the sense of Definition 2.B.1.

Proof. The proof of this Lemma works like that of Lemma 2.D.3.
Indeed, let q0 ∈ Q with Kq0 = H. Then

(q0, λ) ∈ (
⊔
q∈QAnn kq)(L) = E(L)

if and only if

λ ∈ Ann h and H ∩Kλ = Hλ = L0 ∼ L within K

which is true if and only if

λ ∈ (Ann h)(L0)H

where L0 is a subgroup ofH conjugate to L withinK. Notice that it fol-
lows from the Slice Theorem for Riemannian actions that (Ann h)(L0)H

is a smooth manifold. Therefore, also the second assertion follows. ¤

Theorem 2.E.3. There is a stratified isomorphism of stratified bundles
over Q/K

ψ0 = ψ0(A) : T ∗(Q/K) ×Q/K (
⊔
q∈QAnn kq)/K =: W −→ (T ∗Q)/K,

(C∗(q, p), [(q, µ(q, p))]) 7−→ [(q, p)]

where the stratification was suppressed. Here

C∗ : T ∗Q→ Hor∗ → T ∗(Q/K)
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is constructed as the point wise dual to the horizontal lift mapping C :
T (Q/K) ×Q/K Q → Hor ⊆ TQ, ([q], v; q) → Cq(v) associated to the
connection A ∈ Ω1(Q; k).

If (L) is an isotropy class of the K-action on T ∗Q, then ψ−1
0 maps the

isotropy stratum (T ∗Q)(L)/K onto

T ∗(Q/K) ×Q/K (
⊔
q∈QAnn kq)(L)/K =: W(L).

Moreover, the natural projection

ρ̃
(L)
0 : W(L) → T ∗(Q/K)

is a smooth Poisson fiber bundle with typical fiber of the form

(Ann h)(L0)H/H in the sense that ρ̃
(L)
0 is a Poisson morphism. Here

L0 ⊆ H is an isotropy subgroup for the H-action conjugate to L in K,
and (L0)

H is the conjugacy class of L0 in H.

Therefore, ρ̃0 : W → T ∗(Q/K) is a singular Poisson fiber bundle in
the sense of Section 2.B.

In the case that K acts on Q freely the first assertion of the above
theorem can also be found in Cendra, Holm, Marsden, Ratiu [10].
Following Ortega and Ratiu [33, Section 6.6.12] the above constructed
interpretation W of (T ∗Q)/K is called Weinstein space referring to
Weinstein [50] where this universal construction first appeared.

Proof. It only remains to show that ρ̃0 : W → T ∗(Q/K) is a
Poisson morphism. Indeed, all the other assertions follow from Propo-
sition 2.D.1 and Lemma 2.E.2 together with Section 2.B. To see that
ρ̃0 : W → T ∗(Q/K) is a Poisson morphism notice firstly that

Hor∗(π : Q³ Q/K) = µ−1(0)

where µ : T ∗Q → k∗ is the canonical momentum map. Since the
inclusion mapping µ−1(0) ↪→ T ∗Q is an injective Poisson mapping it
follows that also the horizontal projection T ∗Q → Hor∗(π) = µ−1(0)
is a Poisson morphism. Therefore, the thus constructed projection
mapping

T ∗Q // µ−1(0) // // µ−1(0)/K ∼= T ∗(Q/K)

is a morphism of Poisson manifolds. Hereby, it is important to re-
mark that the isomorphism µ−1(0)/K ∼= T ∗(Q/K) is a symplecto-
morphism from the Marsden-Weinstein reduced structure on µ−1(0)/K
into the canonical cotangent bundle symplectic form on T ∗(Q/K). By
the characterization of the Poisson structure on W from Proposition
2.D.1 this implies that ρ̃0 : W → T ∗(Q/K) indeed is a Poisson mor-
phism, and the same is true for the smooth bundle projection map

ρ̃
(L)
0 : W(L) → T ∗(Q/K). ¤
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Next we shall construct a connection on ρ : E → Q which will provide
a connection on ρ̃ : W → Q ×Q/K T ∗(Q/K). Recall the mechanical
connection A ∈ Ω1(Q; k) from Section 2.C. Consider the embedding

ι : E −→ T ∗Q

(q, λ) 7−→ (q, A∗
q(λ)).

On % : T ∗Q → Q we choose the canonical (with respect to the met-
ric) linear connection Φ(%) : TT ∗Q → V (%). Consider the following
diagram

TE //____
Ä _

Tι
²²

k∗

TT ∗Q
Φ(%)

// V (%)

dµ|V (%)

OO

which induces a connection on ρ : E → Q. Via the pullback construc-
tion this also induces a connection on ρ̃ : W → Q×Q/K T

∗(Q/K). We

denote this connection by Ã : TW → V (ρ̃).

The connection Ã and the momentum map µA := µ ◦ ψ : W → k∗ are
related by

Ã(q, η, λ)(ξ) = dµA(q, η, λ)(ξ),

where ξ ∈ T(q,η,λ)W , and (q, η, λ) is short-hand for (q; [q], η; q, λ) ∈ W .

We will use the connection Ã to decompose an arbitrary vector ξ ∈
T(q,η,λ)W as

ξ = (v(q); η′([q], η); v1(q), ν(q, λ)),

where ν(q, λ) = Ã(q, η, λ)(ξ) is independent of η. Notice also that
v1(q) = v(q) by the pullback property. Further we can decompose
v(q) ∈ TqQ according to

v(q) = v(q)hor(π) + ζZ(q) ∈ Hq(π) ⊕ Vq(π)

with respect to the connection A on π : Q → Q/K. The same can be
done with η′([q], η) ∈ T(q,η,λ)(T

∗(Q/K)) as

η′([q], η) = η′([q], η)hor(τ) + η′([q], η)ver(τ) ∈ H([q],η)(τ) ⊕ V([q],η)(τ)

with respect to the canonical connection on τ : T ∗(Q/K) → Q/K
which comes from the induced metric on Q/K. Notice that we have
η′([q], η)hor(τ) = v(q)hor(π) by the pullback property.

Definition 2.E.4 (Vertical differentiation on). Consider the bundle

ρ̃ : W −→ Q×Q/K T
∗(Q/K)

Let ν ∈ V(q,η,λ)(ρ̃) and F ∈ C∞(W). We define

dvF (q, η, λ)(ν) :=
∂

∂t

∣∣∣∣
0

F (q, η, λ+ tν)

to be the vertical derivative of F at (q, η, λ).



2.E. GAUGED POISSON REDUCTION 59

Definition 2.E.5 (Horizontal differentiation on). Consider the bundle

ρ̃ : W −→ Q×Q/K T
∗(Q/K).

The horizontal derivative of F ∈ C∞(W) is defined as

d eAF := dF ◦ χ

where
χ := 1 − Ã : TW → H(ρ̃)

denotes the horizontal projection with respect to ρ̃.

Lemma 2.E.6. Let F ∈ C∞(W)K, and decompose the Hamiltonian
vector field of F at (q, η, λ) ∈ W as

∇σ
F (q, η, λ) = (v(q); η′([q], η); v(q), ν(q, λ))

with ν(q, λ) = Ã(q, η, λ)(∇σ
F (q, η, λ)) according to above. Here σ is the

symplectic structure on W from Proposition 2.C.1. Then, ν(q, λ) = 0.

Proof. This is a consequence of Noether’s Theorem. We have

ν(q, λ) = Ã(q, η, λ)(∇σ
F (q, η, λ)) = dµA(q, η, λ)(∇σ

F (q, η, λ)) = 0,

since µA is constant along flow lines of Hamiltonian vector fields of
invariant functions. ¤

Lemma 2.E.7. Let F ∈ C∞(W)K, and decompose the Hamiltonian
vector field of F at (q, η, λ) ∈ W as

∇σ
F (q, η, λ) = (v(q); η′([q], η); v(q), 0).

Then,

η′([q], η) = (Ω
Q/K
([q],η))̌

−1
(d eAF (q, η, λ)),

where we consider d eAF (q, η, λ) as an element of T ∗
([q],η)(T

∗(Q/K)). Re-

call that ΩQ/K denotes the canonical symplectic form on T ∗(Q/K).

Proof. Let us assume that F ∈ C∞(W)K factors through π̃ ◦ ρ̃:

W
F

//

eπ◦eρ
²²

R

T ∗(Q/K)
f

::uuuuuuuuuu

Then,
d eAF (q, η, λ) = df((π̃ ◦ ρ̃)(q, η, λ)) = df([q], η).

By Theorem 2.E.3 the projection π̃ ◦ ρ̃ is Poisson as a composition of
Poisson maps: Indeed we have

W // //

eπ◦eρ
²²

W/K

T ∗(Q/K) W
eρ0

oo
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where ρ̃0 is as in Theorem 2.E.3. Therefore, we find

η′([q], η) = T(q,η,λ)(π̃ ◦ ρ̃).∇σ
F (q, η, λ)

= ∇
Q/K
f ((π̃ ◦ ρ̃)(q, η, λ))

= (Ω
Q/K
([q],η))̌

−1
(df([q], η))

= (Ω
Q/K
([q],η))̌

−1
(d eAF (q, η, λ)).

This yields the statement for general F ∈ C∞(W)K . ¤

Lemma 2.E.8. Let F ∈ C∞(W)K, and decompose the Hamiltonian
vector field of F at (q, η, λ) ∈ W as

∇σ
F (q, η, λ) = (v(q); η′([q], η); v(q), 0).

Via the connection A ∈ Ω1(Q; k) we can write

v(q) = v(q)hor(π) + ζZ(q) ∈ Hq(π) ⊕ Vq(π).

Then, Z = dvF (q, η, λ).

Proof. It suffices to consider F ∈ C∞(
⊔
q∈QAnn kq)

K . We work
in tube coordinates around q ∈ Q. Thus let S be a slice through q for
the K-action such that U ∼= S ×K/H, where U is a tube around K.q
and H = Kq. Then we have

⊔
q∈QAnn kq|U ∼= S ×K ×H Ann h,

by Lemma 2.E.1. Since we already know the part of the Hamiltonian
vector field of F that is tangent to S, we may further reduce the prob-
lem to considering a function F ∈ C∞(K×HAnn h)K = C∞(Ann h/H).
Now

K ×H Ann h = T ∗K//0T
∗R(H),

where T ∗R(H) is the cotangent lifted action of the right multiplication
of H on K. Thus, there exists a function F1 ∈ C∞(T ∗K) = C∞(K×k∗)
that is T ∗L(K)-invariant (L denotes the left multiplication on K) such
that the following diagram commutes

K × Ann h
Â Ä //

²²²²

K × k∗

F1

²²

K ×H Ann h
F

// R

We can choose local cotangent bundle coordinates ai, bi where i =
1, . . . ,m on T ∗K such that b1, . . . , bl are coordinates on h∗, bl+1, . . . , bm
are coordinates on Ann h, and such that

∂
∂a1
, . . . , ∂

∂al
are a basis of h, and ∂

∂al+1
, . . . , ∂

∂am
are a basis of h⊥.
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Then for the canonical Poisson bracket on T ∗K we obtain

{F1, ·}
T ∗K =

m∑

i=1

(
∂F1

∂bi

∂
∂ai

− ∂F1

∂ai

∂
∂bi

)
=

m∑

i=l+1

∂F1

∂bi

∂
∂ai

∈ h⊥

which is the vertical derivative of F1 identified with an element of h⊥.
Since the projection K×Ann h → K×HAnn h is Poisson, Hamiltonian
vector fields project to Hamiltonian vector fields, and therefore the
Hamiltonian vector field of F on K×HAnn h is dvF , and this is tangent
to the K-factor. Thus Z = dvF (q, η, λ) ∈ k⊥q . ¤

Theorem 2.E.9 (Poisson structure on Weinstein space). The natural
identification

W/K
=

−→ W,

[(q; [q], η; q, λ)] 7−→ ([q], η; [(q, λ)])

gives an induced Poisson bracket on C∞(W ) = C∞(W)K which makes
the stratified isomorphism

ψ0 = ψ0(A) : T ∗(Q/K) ×Q/K (
⊔
q∈QAnn kq)/K = W −→ (T ∗Q)/K

from Theorem 2.E.3 into an isomorphism of Poisson spaces.

Let [(q, η, λ)] ∈ W/K = W , and f1, f2 ∈ C∞(W ). Assume that
F1, F2 ∈ C∞(W)K are lifts of f1, f2 to W. Then the induced Pois-
son bracket on W is given by

{f1, f2}
W [(q, η, λ)] =

= Ω
Q/K
([q],η)

(
(Ω

Q/K
([q],η))̌

−1
(d eAF1(q, η, λ)), (Ω

Q/K
([q],η))̌

−1
(d eAF2(q, η, λ))

)

− 〈λ,CurvAq

(
(Ω

Q/K
([q],η))̌

−1
(d eAF1(q, η, λ)), (Ω

Q/K
([q],η))̌

−1
(d eAF2(q, η, λ))

)
〉

− 〈λ, [dvF1(q, η, λ), dvF2(q, η, λ)]〉,

where ΩQ/K is the canonical symplectic form on T ∗(Q/K), the
horizontal components d eAFi(q, η, λ) are considered as elements of

T ∗
([q],η)(T

∗(Q/K)), and CurvA is the curvature form associated to the

mechanical connection A on Q³ Q/K from Section 2.C.

In the case that K acts freely on Q the Poisson bracket on the reduced
Poisson manifold T ∗Q/K is determined in Zaalani [53] and in Perl-
mutter and Ratiu [37]. In the first paper the realization of T ∗Q/K as
Weinstein space is used, the latter deals with its realization as Stern-
berg and Weinstein space.

Proof. The identifying map W/K → W , [(q; [q], η; q, λ)] 7→
([q], η; [(q, λ)]) is well-defined because Kq acts trivially on Hor∗q =
T ∗

[q](Q/K) 3 η which in turn is due to the fact that all points of
Q are regular. The quotient Poisson bracket is well-defined since
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C∞(W)K ⊆ C∞(W) is a Poisson sub-algebra. The first statement
in the theorem now follows because the diagram

T ∗Q
ψ−1

//

²²²²

W

"" ""EE
EE

EE
EE

E

(T ∗Q)/K
ψ−1

0
// W W/K

is commutative, and composition of top and down-right arrow is Pois-
son and the left vertical arrow is surjective.

Let f1, f2 ∈ C∞(W ) and let F1, F2 ∈ C∞(W)K be its unique lifts to
W . In order to establish the formula for the reduced Poisson bracket
we decompose the Hamiltonian vector fields of F1 and F2 as above

∇σ
Fi

(q, η, λ) = (vi(q); η
′
i([q], η); vi(q), νi(q, λ)) (i = 1, 2).

With the intrinsic symplectic form σ on W from Proposition 2.C.1 we
have

{f1, f2}
W [(q, η, λ)] = {F1, F2}

W(q, η, λ) = σ(∇σ
F1
,∇σ

F2
)(q, η, λ)

which turns to the desired formula by the identity η′([q], η)hor(τ) =
v(q)hor(π), and Lemmas 2.E.6, 2.E.7, and 2.E.8. ¤



CHAPTER 3

Non-commutative integrability

The idea of non-commutative integrability under the name of degen-
erate integrability is due to Nehorošev [30] who also introduced the
appropriate concept of action-angle variables. This presentation fol-
lows mostly the approach of Zung [54, 55], that of Fasso and Ratiu
[16], and Fasso [15]. See also Mishchenko and Fomenko [29].

3.A. Generalized Liouville integrability

Let M be a smooth manifold and f1, . . . , fr ∈ C∞(M). The family
f1, . . . , fr is said to be functionally independent if there is an
open and dense subset U ⊆M such that df1(x), . . . , dfr(x) are linearly
independent for all x ∈ U . The functional dimension of a family
F of smooth functions on M is the maximal number of elements in F
which are functionally independent.

The following definition is less general than that given in the above
cited references but better suited for the applications in this paper.

Definition 3.A.1. Let (M, { , }) be a Poisson manifold, and con-
sider a Hamiltonian function H : M → R. We denote the Poisson
sub-algebra of all first integrals of H by FH , that is

FH := {F ∈ C∞(M) : {F,H} = 0}.

The Hamiltonian system is called generalized Liouville inte-
grable if there is a finite dimensional Poisson vector space W and a
generalized momentum map Φ : M → W which is a Poisson morphism
with respect to the Poisson structure on W such that the following are
satisfied.

• Φ∗ : C∞(W ) → FH is an isomorphism of Lie-Poisson algebras.
• dimM = ddimC∞(W ) + ddimZ(C∞(W )) where Z(C∞(W ))

denotes the commutative sub-algebra of Casimir functions on
W , and ddimC∞(W ) = dimW is the functional dimension of
C∞(W ).

For the following assume that (M,ω,H) is a generalized Liouville in-
tegrable system on a symplectic manifold with dimM = 2n. Let
l = ddimZ(C∞(W )) and m = ddimC∞(W ). Assume we are given
a smooth vector valued function

u = (u1, . . . , ul, ul+1, . . . , um) : W → R
m = R

2n−l

63
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such that u1, . . . , ul generate the center of C∞(W ) and u1, . . . , um gen-
erate C∞(W ) as Poisson algebras. Assume further for simplicity that
u and Φ both are submersions. If we define

Φi := ui ◦ Φ

we get the following assertions.

• {Φi,Φj} = 0 for all i ≤ l and j arbitrary.
• {Φj, H} = 0 for all j.
• the set {dΦ1(x), . . . , dΦl(x), dΦl+1(x), . . . , dΦ2n−l(x)} is lin-

early independent for all x ∈M .

If l = n this is one of the usual definitions of complete integrability.

Remark 1. Consider the level set Φ−1(Φ(x)) and the connected com-
ponent L containing x thereof. By definition all points in M are regular
with respect to Φ. Thus L is a closed sub-manifold of dimension l. 2

Remark 2. Consider the l-dimensional integrable distribution spanned
by the ∇ω

Φi
where i ≤ l. Since

∂
∂t
|0(Φj ◦ Fl

∇ω
Φi

t )(x) = {Φj,Φi} = 0,

the leaf passing through x is just the connected component L ⊆
Φ−1(Φ(x)) containing x. Obviously, L is an isotropic submanifold of
M , and for the annihilator with respect to ω we have

(TxL)ω := ω-Ann(TxL) = Span{∇ω
Φj

(x) : 1 ≤ j ≤ 2n− l}.

Moreover, Hamiltonian flow lines of H are parallel to this foliation by
isotropic sub-manifolds. Therefore, ∇ω

H(x) ∈ Span{∇ω
Φi

(x) : 1 ≤ i ≤ l}
and applying ω̌−1 yields

dH(x) =
l∑

i=1

∂H
∂Φi

(x)dΦi(x).

2

Remark 3. As above let L be the leaf through x corresponding to the
distribution spanned by ∇ω

Φi
where i ≤ l. Since L is at the same time

the connected component of Φ−1(Φ(x)) containing x, the equation

dH.∇ω
Φi

= {H,Φi} = 0

where i ≤ l implies that H is constant on the fibers of the submersion
Φ : M → W . Thus there is a smooth mapping h : W → R such that
Φ∗h = H. Moreover, as Φ is a surjective Poisson morphism it follows
that h lies in the center of the Poisson algebra C∞(W ). 2

Remark 4. Assume (ϕ, I, q, p) are generalized action-angle
variables in the sense of Nehorošev [30] on an open subset U ⊆ M .
That is

ω|U =
∑l

j=1 dIj ∧ dϕj +
∑n−l

j=1 dpj ∧ dqj,
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and thus ∇ω
Ij

= ω̌−1(dIj) = ∂ϕj
, for example. Assume furthermore the

commutation relations

{Ij, H} = 0 and {qi, H} = {pi, H} = 0.

In these coordinates the flow equations to the Hamiltonian H then
assume the canonical form

∂
∂t
|0(ϕi ◦ Fl

∇ω
H

t )(x) = dϕi(x).ω̌
−1(

l∑

j=1

∂H
∂Ij

(x)dIj(x)) = ∂H
∂Ii

(x),

∂
∂t
|0(Ii ◦ Fl

∇ω
H

t )(x) = 0,

∂
∂t
|0(qj ◦ Fl

∇ω
H

t )(x) = 0,

∂
∂t
|0(qj ◦ Fl

∇ω
H

t )(x) = 0.

Thus we have H = H(I) in these coordinates. Generalizing in accor-
dance to the harmonic oscillator, the numbers

νi(x) = ∂H
∂Ii

(x)

are called frequencies of the system. They are said to be independent
if they are linearly independent over the rationals. 2

The following is a generalized Liouville-Arnold theorem, and is the
main theorem of Nehorošev [30].

Theorem 3.A.2. Let (M,ω) be a symplectic manifold with dimM =
2n. Assume the Hamiltonian system (M,ω,H) is generalized Liou-
ville integrable with integrals Φ1, . . . ,Φl,Φl+1, . . . ,Φ2n−l defined by the
momentum map Φ : M → W as above and where l ≤ n. Assume
further that the Hamiltonian vector fields corresponding to the inte-
grals Φ1, . . . ,Φl are complete. Then a connected component L of a
non-empty level surface Φ−1(Φ(x)), where x is a regular point of Φ, is
an isotropic submanifold of dimension l. On an open neighborhood of
L there exist generalized action-angle variables (ϕ, I, q, p). Moreover
Ij = Ij(Φ1, . . . ,Φl), and qj = qj(Φ) and pj = pj(Φ).

The Hamiltonian flow lines are affine in these coordinates, and are
given by the set of equations in Remark 4 above. If L is compact it is
diffeomorphic to a l-torus,1 otherwise it is diffeomorphic to the product
of a torus by a vector space.

Proof. See Nehorošev [30, Theorem 1]. ¤

Say we are given a generalized Liouville integrable system (M,ω,H)
as above which we now additionally assume to be invariant under the
Hamiltonian action by a compact Lie group G. That is G acts on M by
symplectomorphisms, there is a standard momentum map J : M → g∗,
andH ∈ C∞(M)G. We know that we can do singular Poisson reduction
or singular symplectic reduction with this system to obtain a reduced

1In this case one speaks of conditionally periodic or quasi periodic motion.
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Hamiltonian system. However, what happens to the integrability of
the system? Curiously, this question seems to not have been formally
addressed until Zung [54, 55].

Theorem 3.A.3. Assume the Hamiltonian system (M,ω,H) is invari-
ant under a Hamiltonian action of a compact Lie group G. If (M,ω,H)
is generalized Liouville integrable then the reduced system is integrable
as well:

• The singularly Poisson reduced system is generalized Liouville
integrable.

• The singularly symplectic reduced system is generalized Liou-
ville integrable.

Proof. This theorem is proved by Zung [54, Theorem 2.3]. For
material on singular reduction we refer to Sections 1.G and 1.H. ¤

It is crucial in the formulation of the above theorem that dimM =
ddimFH + ddimZ(FH), and FH is the set of all first integrals of H.
Thus generalized Liouville integrability is in the context of reduction
better suited than classical integrability.

3.B. Symplectically complete foliations

The aim of the following sections is to investigate the geometric mean-
ing of non-commutative integrability. In doing so we will follow the
presentation of Fasso and Ratiu [16] and that of Fasso [15].

Let (M,ω) be a symplectic manifold with dimension 2n = dimM . Let
A be a distribution on M with coisotropic subspaces. That is, for
every x ∈M the space Ax is a coisotropic subvectorspace of TxM , and
A =

⊔
x∈MAx. The polar distribution Aω to A is defined as the

symplectic orthogonal distribution by which we mean the distribution
given by ⊔

x∈MAω
x =: Aω.

By coisotropicity we have that Aω
x ⊆ Ax and thus also Aω ⊆ A. There-

fore, leaves of A are, if they exist, unions of leaves of Aω, if these exist.

Proposition 3.B.1. Let α : M → A be a surjective submersion such
that {α∗f, α∗g} = 0 for all f, g ∈ C∞(A). Then

A :=
⊔
x∈MTxα

−1(α(x))

defines a smooth coisotropic distribution which is integrable. Moreover,
the polar distribution B := Aω of A is integrable. Its leaves are isotropic
initial submanifolds of M .

Proof. Since α : M → A is a surjective submersion the fibers
α−1(α(x)) are closed submanifolds of M . Thus the distribution A :=⊔
x∈MTxα

−1(α(x)) is trivially integrable with leaves the connected com-
ponents of the fibers of α.
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Since {α∗f, α∗g} = 0 for all f, g ∈ C∞(A) we can consider α as a Pois-
son morphism into the trivial bracket on A. LetX be a local vector field
on M defined on an open neighborhood of x such that ωx(Xx, Yx) = 0
for all Y ∈ X(M) which are tangent to the fiber α−1(α(x)). Then we
can find a smooth function defined on an open neighborhood U of x
in M satisfying ω̌|U(X) = df . Therefore, df is horizontal with respect
to α since df(Y ) = ω(X,Y ) = 0 for all vertical vector fields Y . Thus
f = α∗f0 where f0 is a local smooth function on A. Because α is a
Poisson morphism it follows that the Hamiltonian vector field X corre-
sponding to f and the Hamiltonian vector field on A corresponding to
f0 are α-related. However, since the Poisson structure on A is trivial it
follows that the latter is zero. That is, Tα.X = 0 whence X is tangent
to the fibers of α. Thus we have shown that Xx ∈ Ax which proves A
a coisotropic distribution.

By a general feature of the ω-annihilator we have that

dimBx = dimAω
x = dimM − dimAx,

and the latter number is independent of x, whence B is a distribution of
constant rank. Let x ∈M arbitrary and f1, . . . , fl be smooth functions
on A such that df1(α(x)), . . . , dfl(α(x)) are linearly independent. Then
it follows from the same argument as above that

Bx = span{∇ω
α∗fi

(x) : i = 1, . . . , l}

where ∇ω is the symplectic gradient. Therefore, B is a smooth distri-
bution, and it is also involutive since

[∇ω
α∗fi

,∇ω
α∗fj

] = ∇ω

{α∗fi, α
∗fj}

= 0

since {α∗fi, α
∗fj} = α∗{fi, fj} = 0. Thus integrability follows from the

Frobenius theorem. ¤

Definition 3.B.2 (Polar foliation). Let F be a foliation on the sym-
plectic manifold (M,ω). The foliation F is called symplectically
complete if it has a polar foliation Fω. Hereby, a foliation Fω is said
to be polar to F if for all x ∈ M the tangent space at x to the leaf
of Fω is the symplectic orthogonal of the tangent space at x to the
leaf of F that passes through x; if the polar foliation exists it is clearly
unique.

The notion of symplectic completeness is due to Dazord and Delzant
[13].

Example 3.B.3. A foliation into Lagrangian submanifolds is symplec-
tically complete as it is its own polar.

Example 3.B.4. Let h ∈ C∞(M). Then the flow lines of the Hamilton-
ian vector field ∇ω

h constitute a symplectically complete foliation. Its
polar is given by the foliation into connected level sets of h. Indeed, if a
vector field ξ is tangent to the level sets of h then ω(∇ω

h , ξ) = dh.ξ = 0.
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Example 3.B.5. Generalizing the last example, let a compact con-
nected Lie group K act on (M,ω) is a Hamiltonian fashion with mo-
mentum map J : M → k∗. Since

〈dJ(x).ξ(x), X〉 = (iξ〈dJ,X〉)(x) = (iξiζXω)(x) = 〈ω̌x(ζX(x)), ξ〉

for all x ∈ M , ξ ∈ X(M), and X ∈ k it follows that the transpose to
dJ(x) : TxM → k∗ is given by

(dJ(x))t = ω̌x ◦ ζ(x) : k −→ T ∗
xM.

This implies the equation

rankTxJ = dim(K.x)

for all x ∈M which is also known as the Bifurcation Lemma.

Assume further that all α ∈ k∗ are weakly regular with respect to J in
the sense that J−1(α) ⊆M is a submanifold and we have TxJ

−1(α) =
kerTxJ for all x ∈ J−1(α). Thus we have that

dim J−1(α) + dim(K.x) = dimM − rankTxJ + dim(K.x) = dimM

on the one hand. On the other hand we have that

ωx(ζX(x), ξ(x)) = 〈(dJ.ξ)(x), X〉 = 0

for all ξ tangent to the fibers of J and all X ∈ k. Therefore, the orbits
of the Hamiltonian group action define a foliation of M which is sym-
plectically complete. Its polar is given by the connected components
of the fibers of J .

Example 3.B.6. By Proposition 3.B.1 every foliation of (M,ω) which
is given by the connected components of the fibers of a surjective sub-
mersion α : M → A with the property that {α∗f, α∗g} = 0 for all
f, g ∈ C∞(A) is symplectically complete.

Lemma 3.B.7. Let α : M → A be a surjective submersion such that
{α∗f, α∗g} = 0 for all f, g ∈ C∞(A). Define A to be the foliation
corresponding to the constant rank integrable distribution

⊔
x∈MTxα

−1(α(x)),

and let B = Aω be its polar foliation, as in Proposition 3.B.1. Assume
further that the leaf space M/B is a smooth manifold such that the
projection β : M → M/B is a smooth surjective submersion. Then
there exists a uniquely induced Poisson structure on M/B such that
β : M →M/B is a Poisson morphism.

Proof. Let us introduce the notation B := M/B. By assumption
β : M → B is a surjective submersion with connected fibers. Moreover,
we know from the proof of Proposition 3.B.1 that

Txβ
−1(β(x)) = Bx = Aω

x = span{∇ω
α∗fi

(x) : i = 1, . . . , l}

whence we can invoke Corollary 1.D.4 to conclude as claimed. ¤
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Proposition 3.B.8. Let α : M → A be a surjective submersion such
that {α∗f, α∗g} = 0 for all f, g ∈ C∞(A). Define A to be the foliation
corresponding to the constant rank integrable distribution

⊔
x∈MTxα

−1(α(x)),

and let B = Aω be its polar foliation, as in Proposition 3.B.1. Assume
further that the leaf space M/B is a smooth manifold such that the
projection β : M → M/B is a smooth surjective submersion which
is Poisson with respect to the induced Poisson bracket on M/B. Then
there exists a unique surjective submersion γ : M/B =: B → A = M/A
which is a Poisson morphism such that the diagram

M
β

//

α
ÃÃ

AA
AA

AA
AA

B

γ

²²

A

commutes. Moreover, the symplectic leaves of B are the connected
components of the fibers of α.

Proof. Let x ∈ M arbitrary and denote the leaf of A passing
through x by Ax and that of B passing through x by Bx. Since

TxBx = TxA
ω
x ⊆ TxAx

by coisotropicity of Ax it follows that every leaf of B is a union of
leaves of A. Thus A induces a foliation β(A) of B, and thus a well-
defined set theoretic map γ : B → A such that α = γ ◦ β. Since B
is a quotient manifold of M it carries the final topology and the final
smooth structure with respect to the projection β : M → B. Thus γ
is continuous and smooth since this is true for the composition map
γ ◦ β = α.

Moreover, γ is a surjective submersion since this is true for α.

It remains to check the assertion about the symplectic leaves of B.
Firstly, notice that B is a Poisson manifold with Poisson structure P B

coinduced from M via β as Lemma 3.B.7 shows. By the theorem about
the symplectic foliation of a Poisson manifold we need to show that

P̌B
b (TbB) = Tbγ

−1(γ(b)) = kerTbγ

for all b ∈ B. Indeed, to see the inclusion (⊆) let x ∈ β−1(b) and f a
smooth local function on B defined locally around b. Then

Tbγ.∇
B
f (b) = Tbγ.Txβ.∇

M
β∗f (x)

= Txα.∇
M
β∗f (x)

= 0

since γ is a Poisson morphism and α is a Poisson morphism into the
trivial bracket by assumption.
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To see the inclusion (⊇) let x ∈ β−1(b) and ξ0 a local vector field on
B defined locally around b. Then we choose a local lift ξ of ξ0 defined
around x ∈M . The equation

Txα.ξ(x) = Tbγ.Txβ.ξ0(b) = 0

implies that ξ = ∇M
α∗f for a local smooth function f on A, and thus

ξ0(x) = Txβ.∇
M
β∗γ∗f (x) = ∇B

γ∗f (b)

which shows the converse inclusion. ¤

3.C. Integrability via bifoliations

Definition 3.C.1 (Bifoliation). Let F be a foliation of (M,ω) which is
symplectically complete with polar Fω. Then the pair (F ,Fω) is called
a bifoliation of (M,ω). We say that the pair (F ,Fω) is a regular
bifoliation of (M,ω) if it is a bifoliation, and the leaf spaces M/F
and M/Fω are smooth (Hausdorff) manifolds such that the canonical
projections M ³M/F and M ³M/Fω are surjective submersions.

Theorem 3.C.2 (Liouville-Arnold). Let (M,ω) be a symplectic man-
ifold with regular bifoliation (A,B) such that the canonical projection
α : M ³ M/A =: A has coisotropic fibers. Let dimM = 2n and
dimB = l, and assume that IA1 , . . . , I

A
l are local coordinates on A de-

fined on an open subset UA in A such that the local Hamiltonian vector
fields

∇M
Ij

:= ω̌−1(dIj) are complete

where Ij := α∗IAj and j = 1, . . . , l. Then the following are true.

(i) The leaves of B are isotropic submanifolds of M .
(ii) If we equip A with the trivial Poisson structure α is a Poisson

morphism into the zero bracket. The quotient M/B =: B is a
smooth manifold which carries a Poisson structure coinduced by
the canonical projection β : M ³ B. Moreover, there exists
surjective submersive Poisson mapping γ : B → A such that α =
γ ◦ β.

(iii) For all b ∈ γ−1(UA) there is an open neighborhood UB in γ−1(UA)
on which there are coordinates

IB1 := γ∗IA1 , . . . , I
B
l := γ∗IAl , qB1 , . . . , q

B
n−l, pB1 , . . . , p

B
n−l,

that satisfy the commutation relations

{IBk , I
B
j }

B
= 0,

{IBk , q
B
j }

B
= {IBk , p

B
j }

B
= 0,

{pBi , q
B
j }

B
= δij

with respect to the induced bracket on B.
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(iv) Let b and UB be fixed as in point (iii). Then there exist local
coordinates

ϕ1, . . . , ϕl, I1 := α∗IA1 , . . . , Il := α∗IAl ,

q1 := β∗qB1 , . . . , qn−l := β∗qBn−l,

p1 := β∗pB1 , . . . , pn−l := β∗pBn−l,

defined on an open neighborhood U of β−1(b) such that

ω|U =
∑l

j=1 dIj ∧ dϕj +
∑n−l

j=1 dpj ∧ dqj

in these coordinates.

Proof. Assertion (i) is obvious, and assertion (ii) is just a refor-
mulation of Proposition 3.B.8.

(iii). This assertion makes use of the Darboux Theorem applied to the
symplectic manifold γ−1(γ(b)).

(iv). This assertion is proved as in the usual Liouville-Arnold Theorem.
In particular, it follows that the coordinates ϕ1, . . . , ϕl can be computed
from the other data exclusively through employment of differentiation,
integration, and use of the implicit function theorem. ¤

The coordinates

qB1 , . . . , q
B
n−l, pB1 , . . . , p

B
n−l,

in the above theorem should be thought of as local coordinates on
the fiber γ−1(γ(b)) which is the symplectic leaf passing through b by
Proposition 3.B.8. If the fiber is compact then there is, of course, no
hope to find such coordinates globally on the fiber.

Definition 3.C.3 (Non-commutative integrability). A Hamiltonian
system (M,ω,H) is called non-commutatively integrable if the
following requirements are met. There is a regular bifoliation (A,B)
where A is a coisotropic foliation and a smooth function h : M/A =:
A→ R such that

M
α

// //

H ÃÃ
AA

AA
AA

AA
A

h
²²

R

commutes. Moreover, the Hamiltonian vector field ∇M
α∗I is complete for

all I ∈ C∞(A). In this situation, the space A is called action space
of the system.

A few remarks are in order. If the leaves of the foliation A are compact
then the Hamiltonian vector field ∇M

α∗I is automatically complete for
all I ∈ C∞(A). This is due to the fact that the flow of ∇M

α∗I acts on
the leaves, and thus is always confined by a compact submanifold of
M .
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If the foliation A is Lagrangian such that A = B the system is inte-
grable in the usual (commutative) sense.

Various synonyms are used for the term non-commutative integrability.
The most common ones are degenerate integrability (Nehorošev [30]),
superintegrability (Fasso [15]), and generalized Liouville integrability
(Zung [54]). The latter terminology was also used in Section 3.A to
distinguish the approach via first integrals from this more geometric
approach.

One should also note that Fasso and Ratiu [16] consider the system
(M,ω,H) to be non-commutatively integrable if the Hamiltonian vec-
tor field ∇M

F is tangent to the leaves of the isotropic foliation B which
are assumed to be compact. We get rid of the compactness condition
by assuming the Hamiltonian vector fields ∇M

α∗I to be complete for all
I ∈ C∞(A). Further, it follows from our definition that ∇M

H is tan-
gent to the leaves of B. Conversely, if ∇M

H is assumed to be tangent
to the leaves of B then dh.∇M

α∗f = ω(∇M
H ,∇

M
α∗f ) = 0 for all functions

f ∈ C∞(A). Since Txα
−1(α(x)) is spanned by Hamiltonian vector

fields of the type ∇M
α∗f (x) for all x ∈M this implies that H is constant

along the (connected) fibers of α, and thus factors over α to a mapping
h : A→ R.

Notice also the connection with the definition of generalized Liouville
integrability from Section 3.A. Indeed, there the central object of in-
terest was the set FH of all first integrals of the Hamiltonian H. Now,
if the dimension of the action space A equals the number independent
frequencies of the system, then FH = β∗C∞(B).

The following is a corollary of the Liouville-Arnold Theorem 3.C.2.

Corollary 3.C.4. Let (M,ω,H) be a non-commutatively integrable
system. Assume (ϕ, I, q, p) are generalized action-angle variables on
an open subset U ⊆M . That is

ω|U =
∑l

j=1 dIj ∧ dϕj +
∑n−l

j=1 dpj ∧ dqj,

In these coordinates the flow equations to the Hamiltonian H then as-
sume the canonical form

∂
∂t
|0(ϕi ◦ Fl

∇ω
H

t )(x) = dϕi(x).ω̌
−1(

l∑

j=1

∂H
∂Ij

(x)dIj(x)) = ∂H
∂Ii

(x),

∂
∂t
|0(Ii ◦ Fl

∇ω
H

t )(x) = 0,

∂
∂t
|0(qj ◦ Fl

∇ω
H

t )(x) = 0,

∂
∂t
|0(qj ◦ Fl

∇ω
H

t )(x) = 0.

In particular, we have H = H(I) in these coordinates.

Proof. By Theorem 3.C.2 the appropriate set (ϕ, I, q, p) of gener-
alized action-angle variable indeed does exist. By construction via the
bifoliation of these coordinates the Hamiltonian H satisfies the same
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commutation relations with (ϕ, I, q, p) as in Remark 4 of Section 3.A.
Thus the flow equations follow. ¤

3.D. Bifoliations with symmetry

Suppose we are given a non-commutatively integrable system (M,ω,H)
with symmetries. That is, continuing the notation from the previ-
ous section, there is a regular bifoliation (A,B) of M where A has
coisotropic leaves, and H factors to a mapping h on A := M/A through
the projection α : M ³ A onto the action space. The symmetries
of the system are expressed by a Hamiltonian action K × M → M
of a compact connected Lie group with equivariant momentum map
J : M → k∗. We suppose that K also acts on the action space A such
that α is K-equivariant, and that h is K-invariant. Thus also H is
K-invariant.

In this setting it is natural to reduce the system (M,ω,H) in the fol-
lowing sense. Let O be a coadjoint in the image of the momentum map
J such that J is of constant rank in an open neighborhood of J−1(O)
in M . Then it is well known the that the symplectic reduced space
J−1(O)/K = M//OK is a smooth symplectic manifold with uniquely
induced symplectic structure, and that H reduces to a Hamiltonian H0

on M//OK. By this we mean the following. Let ι : J−1(O) ↪→ M and
π : J−1(O) ³ M//OK denote inclusion and projection respectively.
Then the reduced Hamiltonian satisfies π∗H0 = ι∗H. This terminology
is justified due to Noether’s Theorem which guarantees that the flow
lines of the Hamiltonian vector field of H are confined within J−1(O)
and, furthermore, project onto the flow lines of the Hamiltonian vector
field of H0.

As it is natural to reduce the system it is also natural to suspect that
some features of the non-commutative integrability will be valid for
the reduced system. For the case of Liouville integrable systems this
has been dealt with by Zung [54, 55] as was shown in Section 3.A.
However, for the case of non-commutative integrability via bifoliations
this topic seems to be, so far, untouched. We try to give a partial
answer to this problem in this section.

Proposition 3.D.1. Let (M,ω,H) be a non-commutatively integrable
Hamiltonian system which is invariant under the action by a compact
connected Lie group K such that there is an equivariant momentum
map J : M → k∗. Assume that (M,ω,H) is integrable via the regular
bifoliation (A,B) where A has coisotropic leaves such that H factors
over α : M → M/A =: A to a mapping h : A → R. Furthermore, K
acts on A such that α : M → A is equivariant, and h is K-invariant.
Let O be a coadjoint orbit in the image of J such that J is of constant
rank on an open neighborhood of J−1(O) in M , and let the orbit spaces
M/K and A/K be smooth manifolds.
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Assume also that A is connected and that α : M → A possesses a global
section Sα : A ↪→M such that Sα(A) ∩ J−1(O) 6= ∅.

Then there exists a surjective and submersive Poisson morphism α0 :
M//OK → A/K into the trivial Poisson bracket on A/K such that

M//OK
α0

$$J
J

J
J

J

Â Ä //

H0

²²

M/K

²²

Moooo

α

²²

R A/K
h

oo Aoooo

is commutative, and where H0 is the reduced Hamiltonian.

Proof. Via the section Sα let us consider A as a submanifold of
M . Notice that A is isotropic and K-invariant in (M,ω). We claim
that

dJ |TA = 0

whence J is locally constant along A. Indeed, let ξ be a vector field
that is tangent to A and X ∈ k arbitrary. Then

〈dJ(x).ξx, X〉 = ωx(ζX(x), ξx) = 0

for all x ∈ A since A is K-invariant and isotropic. Therefore, J is
locally constant and by connectedness also globally constant on A. By
assumption there is a point a ∈ A such that J(a) ∈ O, and thus it
follows that A ⊆ J−1(O).

By the assumptions J−1(O) is an immersed initial submanifold of
M , and so α restricts to a smooth surjective mapping α|J−1(O) :
J−1(O) → A. However, since

TxA ⊆ kerTxJ ⊆ TxJ
−1(O)

for all x ∈ A ⊆ J−1(O). By equivariance α thus induces a surjective
submersion α0 : M//OK → A/K, since M//OK = J−1(O)/K is a
smooth manifold as it follows from the assumptions. Moreover, because
the inclusion M//OK ↪→ M/K is a Poisson morphism and α itself is
Poisson it follows from the diagram in the assertion that also α0 is
a Poisson morphism into the coinduced bracket on A/K which is the
trivial bracket.

Finally it is clear that H0 factors over α0 to a map h since H factors
over πA ◦ α : M → A→ A/K by assumption. ¤

As a corollary to this proposition we find out that the dynamics of the
reduced system behave like those of a (non-commutatively) integrable
system in the following way.

Corollary 3.D.2. Let assumptions and notation be the same as in
Proposition 3.D.1. Then the following are true.
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(i) The projection α0 : M//OK → A/K onto the reduced action space
determines a coisotropic foliation A0 whose leaves are the (con-
nected) fibers of α0.

(ii) The coisotropic foliation A0 is symplectically complete, and we
denote its polar foliation which is isotropic by B0.

(iii) The Hamiltonian vector field on M//OK of α∗
0f is complete for

all f ∈ C∞(A/K).
(iv) The flow lines of the Hamiltonian vector field of the reduced

Hamiltonian H0 are parallel to the isotropic leaves of B0.
(v) If the foliation B0 is regular then the reduced system

(M//OK,ω0, H0) is non-commutatively integrable in the sense of
Definition 3.C.3

Proof. (i) and (ii). Note that the fibers of α0 are connected since
this is true for the fibers of α. Thus we obtain a coisotropic foliation
A0 which is symplectically complete as in Proposition 3.B.1.

(iii). Let f0 ∈ C∞(A/K) which we may identify with a function f ∈
C∞(A)K . Since (M,ω,H) is non-commutatively integrable it follows
the Hamiltonian vector field ∇ω

α∗f is complete by Definition 3.C.3. Since
α∗f ∈ C∞(M)K by equivariance the vector field ∇ω

α∗f is tangent to
J−1(O) by virtue of the Noether Theorem. Now via reduction the
Hamiltonian vector field of α∗f on M projects to the Hamiltonian
vector field of α∗

0f0 on M//OK, and since the former is complete so is
the latter.

(iv). This follows from the construction of B0 (see Proposition 3.B.1)
and the fact that H0 = α∗

0h.

(v). This last point is clear from the definition. ¤

Motivated by the above conclusion we introduce the following termi-
nology.

Definition 3.D.3 (Weak non-commutative integrability). A Hamil-
tonian system (M,ω,H) is called weakly non-commutative inte-
grable if the following requirements are met. There is a bifoliation
(A,B) where A is a regular coisotropic foliation and a smooth function
h : M/A =: A→ R such that

M
α

// //

H ÃÃ
AA

AA
AA

AA
A

h
²²

R

commutes. Moreover, the Hamiltonian vector field ∇M
α∗I is complete

for all I ∈ C∞(A).

Thus we can rephrase Corollary 3.D.2 by saying that, under appropriate
assumptions, a non-commutatively integrable system with symmetries
reduces to a weakly non-commutative integrable system.
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One of the drawbacks of dropping the regularity assumption on the
isotropic foliation B is that there need not exist generalized action-
angle coordinates on neighborhood of a full leaf of B. However, we can
pass to the local leaf space with respect to the foliation B, and then
locally carry out the same construction as in the regular case.

The motivating example for this construction is the Calogero-Moser
system which is obtained via a cotangent bundle reduction from a sim-
ple (integrable) system on a cotangent bundle.



CHAPTER 4

Spin Calogero-Moser systems

Consider the mechanical system that consists of l particles which move
on the real line and interact via an inverse square potential. That is
we are concerned with the Hamiltonian system which is described by
the Hamiltonian function

HCM(q1, . . . , ql, p1, . . . , pl) = 1
2

l∑

i=1

p2
i +

∑

i>j

V (qij)

where qi and pi denote position and momenta of the particles, respec-
tively, and qij := qi − qj. The potential is given by

V (ξ) = 1
ξ2
,

and HCM is called the classical, i.e. spin less, rational Calogero-
Moser Hamiltonian function. One can alter the potential function
to consider trigonometric, hyperbolic, and elliptic Calogero-Moser sys-
tems.

In general, when one is given a Hamiltonian system with symmetries
one can reduce the system to obtain a system that depends on fewer
variables than the original one. The idea is that the reduced system will
be easier to solve than the original one since there are fewer equations.
Then one usually wants to reconstruct solutions of the original system
out of solutions for the reduced system. However, it may also occur that
the original system is of a very simple form while the reduced system
is very complicated. In this case one can picture the reduced system
as a system that has hidden symmetries. Indeed, the Calogero-Moser
system is such a system that can be constructed through a reduction
process from a very simple, namely a free, Hamiltonian system with
symmetries on a cotangent bundle. This observation is due to Kazdhan,
Kostant, Sternberg [20, Section 2] for the case of classical rational
Calogero-Moser systems. For non-rational Calogero-Moser systems see,
for example, Gorsky and Nekrasov [18].

The point of this chapter is to apply the cotangent bundle reduction
procedure of Section 2.D to obtain the Calogero-Moser system as a
reduced Hamiltonian system. Therefore, we consider only the case
of rational potential since the other cases involve infinite dimensional
Hamiltonian systems, and this is beyond the scope of the techniques
from Section 2.D.

77
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The observation that the construction of the Calogero-Moser system via
Hamiltonian reduction should prove it integrable in a non-commutative
way was made by Reshetikhin [42].

4.A. SL(m,C) by hand

As an example consider G = SL(m,C). Here we work along the lines of
Kazdhan, Kostant, Sternberg [20, Section 2] who considered the case
G = SU(m,C). See also Alekseevsky, Kriegl, Losik, Michor [2, Section
5.7]. The point to this example is that we try to say as much as possible
about the reduced phase space by using an ad hoc approach. The result
may then be taken as motivation for the general theory of cotangent
bundle reduction.

Let O = Ad(G)Z0 be an orbit passing through a semisimple element
Z0. Consider (a, α) ∈ Gr × g with α − aαa−1 = µ(a, α) = Z. As
usual Gr denotes the set of regular elements, that is Gr consists of
those matrices that have m different eigenvalues. Moreover, we let H
denote the subgroup of diagonal matrices, and Hr := H ∩ Gr. Via
the Ad(G)-action we can bring a in diagonal form with entries ai 6= aj
for i 6= j. Since Zij = αij −

ai

aj
αij the following are coordinates on

(µ−1(O) ∩ (Gr × g))/Ad(G).

• ai for i = 1, . . . ,m.
• αi := αii for i = 1, . . . ,m.
• αij = (1 − ai

aj
)−1Zij for i 6= j.

These coordinates give an identification

(µ−1(O) ∩ (Gr × g))/Ad(G) = (T ∗Hr × (O ∩ h⊥)/Ad(H))/W

where W = N(H)/H is the Weyl group. Claim: If O is an
orbit which is of minimal non-zero dimension then we have that
O ∩ h⊥/Ad(H) = {point}. Moreover, the reduced phase space can
be described as (µ−1(O) ∩ (Gd × g))/Ad(G) ∼= T ∗Hr/W .

Here Gd denotes the open and dense subset of all diagonable elements
in SL(m,C). Indeed, let µ(a, α) = Z ∈ O ∩ h⊥ with a in diagonal
form. Thus Z = vwt − cI where c := 1

m
〈v, w〉 6= 0, v, w ∈ C

m, and wt

is the transposed to the column vector w. Since Z ∈ h⊥ we infer that
viwi = c. Hence

O ∩ h⊥ = {( c
v1
v, . . . , c

vm
v) − cI : vi ∈ C \ {0}}.

Take such an ( c
v1
v, . . . , c

vm
v) − cI =: Z1. Let h =

∏m
i=1 vi ·

diag(v−1
1 , . . . , v−1

m ). Then we can bring Z1 into the normal form
Ad(h)Z1 = c(1)ij − cI where (1)ij denotes the m × m-matrix with
all entries equal to 1. Finally note that αij −

ai

aj
αij = c

vj
vi 6= 0 implies

that a = diag(a1, . . . , am) is actually regular.
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4.B. Application: Hermitian matrices

Consider V the space of complex Hermitian n × n matrices as the
configuration space to start from. This space shall be endowed with
the inner product V × V → R, (a, b) 7→ Tr(ab). Moreover, we let
G = SU(n,C) act on V by conjugation. Clearly this action leaves
the trace form invariant. Via the inner product we can trivialize the
cotangent bundle as T ∗V = V × V ∗ = V × V , and the cotangent lifted
action of G is simply given by the diagonal action. The canonical
symplectic form on T ∗V is given by

Ω(a,α)((a1, α1), (a2, α2)) = Tr(α2a1) − Tr(α1a2).

The free Hamiltonian on T ∗V = V × V is given by

Hfree : (a, α) 7−→ 1
2
Tr(αα).

Trajectories of this Hamiltonian are given by straight lines of the form
t 7→ a+ tα in the configuration space V .

Let us further identify su(n)∗ = su(n) via the Killing form. The mo-
mentum mapping is then given by

µ : (a, α) 7−→ [a, α] = ad(a).α.

Consider also an orbit O together with its canonically induced sym-
plectic structure in the image of the momentum mapping.

Assumption: The orbit O is such that µ−1(O) ⊆ Vr × V . Here Vr
denotes the set of regular elements in V with respect to the G action.

This assumption is for example fulfilled if the projection from O to any
root space is non-trivial.

Let Σ denote the subspace of V consisting of diagonal matrices. Then
Σ is a section of the G-action on V , see Section 4.F. Further, we
define Σr := Vr ∩ Σ. Within Σ we choose the positive Weyl chamber
C := {diag(q1, . . . , qn) : q1 > . . . > qn} so that C = Σ/W where W =
W (Σ) = NG(Σ)/ZG(Σ). Thus Cr := Σr ∩ C may be considered as a
global slice for the G-action on Vr so that G/M ×Cr ∼= Vr, (gM, a) 7→
g.a where M := ZG(Σr) = ZG(Σ). That is M is the subgroup of SU(n)
consisting of diagonal matrices only. Now we may apply Corollary
2.D.5 to get

T ∗V //OG = T ∗Cr ×O//0M

as symplectically stratified spaces. The strata are of the form

(T ∗V //OG)(L) = T ∗Cr × (O//0M)(L0)M

where L0 is a subgroup of M conjugate to L within G. Moreover, the
reduced symplectic structure σO

(L) on (T ∗V //OG)(L) is of product form,
i.e.

σO
(L) = ΩCr − ΩO

(L0)M
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where ΩO
(L0)M is the canonically reduced symplectic form on

(O//0M)(L0)M .

From the general theory we know that the Hamiltonian Hfree reduces

to a Hamiltonian H
(L)
CM on the stratum (T ∗V //OG)(L), and that integral

curves of Hfree project to integral curves of H
(L)
CM. In particular the

dynamics remain confined to the symplectic stratum. The reduced
Hamiltonian is thus given by

H
(L)
CM(q, p, [λ]) = Hfree(q, p+ A∗

q(λ))

where [λ] is the class of λ in (O//0M)(L0)M and A∗
q : g⊥

q = m⊥ →

Tq(G.q) = Σ⊥ is the point wise dual to the mechanical connection as
introduced in Section 2.D. Assume that q = diag(q1 > . . . > qn) and
that λ = (λij)ij ∈ (O ∩ m⊥)(L0)M . Then

A∗
q(λ)ij =

λij

qi−qj
for i 6= j, and A∗

q(λ)ii = 0.

Therefore, for p = diag(p1, . . . , pn) ∈ Σ and q, [λ] as introduced we
obtain

H
(L)
CM(q, p, [λ]) = 1

2
Tr(p)2 + 1

2
Tr(A∗

q(λ))2

= 1
2

n∑

i=1

p2
i + 1

2

∑

i6=j

λijλji

(qi−qj)(qj−qi)

= 1
2

n∑

i=1

p2
i +

∑

i>j

|λij |
2

(qi−qj)2

since λji = −λij and Tr(pA∗
q(λ)) = Tr(A∗

q(λ)p) = 0. This is the Hamil-
tonian function of the Calogero-Moser system with spin. Integrability
of this system in the non-commutative sense is proved in the next sec-
tion in a more general context.

4.C. Calogero-Moser systems associated to polar
representations

The idea of considering polar representations of compact Lie groups to
obtain new versions of Spin Calogero-Moser systems is due to Alek-
seevsky, Kriegl, Losik, Michor [2].

As in Section 4.F let V be a real Euclidean vector space and G a
connected compact Lie group that acts on V via a polar representation.
Via the inner product we consider the cotangent bundle of V as a
product T ∗V = V × V . The canonical symplectic form Ω is thus given
by

Ω(a,α)((a1, α1), (a2, α2)) = 〈α2, a1〉 − 〈α1, a2〉

where 〈 , 〉 is the inner product on V . The free Hamiltonian on T ∗V =
V × V is given by

Hfree : (a, α) 7−→ 1
2
〈α, α〉.
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Trajectories of this Hamiltonian are given by straight lines of the form
t 7→ a+ tα in the configuration space V .

Of course, we want to play with the cotangent lifted action of G, and
this is just the diagonal action of G on V × V . By Section 4.F we may
think of the action by G on V as a symmetric space representation and
thus consider g ⊕ V =: l as a real semisimple Lie algebra with Cartan
decomposition into g and V , and with bracket relations [g, g] ⊆ g,
[g, V ] ⊆ V , and [V, V ] ⊆ V . The momentum mapping corresponding
to the G-action on T ∗V = V × V is now given by

µ : V × V −→ g∗ = g, (a, α) 7−→ [a, α] = ad(a).α

where we identify g = g∗ via an Ad(G)-invariant inner product. Con-
sider also an orbit O together with its canonically induced symplectic
structure in the image of the momentum mapping.

Assumption: The orbit O is such that µ−1(O) ⊆ Vr × V . Here Vr
denotes the set of regular elements in V with respect to the G action.

We proceed as above, and let Σ denote a fixed section of the G-action
on V , consider C a Weyl chamber in Σ, and put M := ZG(Σ). Now
we may apply Corollary 2.D.5 to get

T ∗V //OG = T ∗Cr ×O//0M

as symplectically stratified spaces. The strata are of the form

(T ∗V //OG)(L) = T ∗Cr × (O//0M)(L0)M

where L0 is a subgroup of M conjugate to L within G. Moreover, the
reduced symplectic structure σO

(L) on (T ∗V //OG)(L) is of product form,
i.e.

σO
(L) = ΩCr − ΩO

(L0)M

where ΩO
(L0)M is the canonically reduced symplectic form on

(O//0M)(L0)M .

From the general theory we know that the Hamiltonian Hfree reduces

to a Hamiltonian H
(L)
CM on the stratum (T ∗V //OG)(L), and that integral

curves of Hfree project to integral curves of H
(L)
CM. In particular the

dynamics remain confined to the symplectic stratum. The reduced
Hamiltonian is thus given by

H
(L)
CM(q, p, [Z]) = Hfree(q, p+ A∗

q(λ))

where [Z] is the class of Z in (O//0M)(L0)M and A∗
q : g⊥

q = m⊥ →

Tq(G.q) = Σ⊥ is the point wise dual to the mechanical connection as
introduced in Section 2.D. Let

q ∈ Cr, p =
l∑

i=1

piB
i
0, and Z =

∑

λ∈R

kλ∑

i=1

ziλE
i
λ ∈ (O ∩ m⊥)(L0)M
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where l = dim Σ and kλ = 1
2
dim lλ. Here notation is as in Section 4.F,

and R = R(l,Σ) ⊆ Σ∗ denotes the set of restricted roots, in particular.
With these definitions the dual mapping to the mechanical connection
is given by

A∗
q(Z) =

∑

λ∈R

kλ∑

i=1

zi
λ

λ(q)
Bi
λ.

Note that λ(q) 6= 0 for all λ ∈ R since q ∈ Cr is regular. The reduced
Hamiltonian thus computes to

H
(L)
CM(q, p, [Z]) = 1

2
〈p+ A∗

q(Z), p+ A∗
q(Z)〉 = 1

2

l∑

i=1

p2
i + 1

2

∑

λ∈R

Pkλ
i=1 z

i
λ
zi
λ

λ(q)2
.

The reduced Hamiltonian system (T ∗V //OG, σ
O, HCM) is thus a new

version of a Calogero-Moser system with spin. It is in fact a stratified
Hamiltonian system in the sense that it is a Hamiltonian system on each
symplectic stratum (T ∗V //OG)(L), and the Hamiltonian dynamics stay
confined to these strata.

4.D. Integrability of Calogero-Moser systems

Liouville integrability of the Calogero-Moser system. We
now show that the thus obtained Calogero-Moser system is integrable
in the generalized Liouville sense. To do so we will use Theorem 3.A.3.
We start by choosing coordinates q1, . . . , qn, p1, . . . , pn on T ∗V = V ×V
such that the Poisson bracket of functions f, g ∈ C∞(V × V ) is given
by the usual equation

{f, g} =
n∑

i=1

( ∂f
∂pi

∂g
∂qi

− ∂f
∂qi

∂g
∂qi

).

Moreover we assume that q1 . . . , ql, p1, . . . , pl are coordinates on Σ ×
Σ ↪→ V × V . Let us now consider the map

Φ : V × V −→ Σ⊥ × V

given by projection, and endow Σ⊥ × V with the inherited Poisson
structure. Clearly, C∞(Σ⊥×V ) has a center and this is just generated
by p1, . . . , pl. Thus we may identify Z(C∞(Σ⊥ × V )) = C∞(Σ). Now
the set of all first integrals of Hfree, i.e.

FHfree
= {F ∈ C∞(V × V ) : {F,H} = 0}

can be identified with C∞(Σ⊥ × V ) via Φ since Hfree factors over the
projection onto the second factor and is G-invariant, and thus can be
considered as a function on Σ. Therefore,

dimV × V = dim Σ⊥ × V + dim Σ

= ddimFHfree
+ ddimZ(C∞(Σ⊥ × V )),
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and we are exactly in the situation of Theorem 3.A.3 to conclude gen-
eralized Liouville integrability of the reduced system.

Non-commutative integrability of the system. The aim of
this section is to employ the methods of Section 3.D to better under-
stand the geometry of the reduced Hamiltonian system on T ∗Vr//OG.
We continue to stick to the notation from the previous paragraphs.
That is Σ is a section of the polar representation of G on V , the subset
C is a Weyl chamber in this section, and M = ZG(Σ) is the centralizer
of Σ in the group. Moreover, W = W (Σ) := NG(Σ)/M denotes the
Weyl group associated to the section Σ.

Consider the projection of T ∗V = V × V onto the second factor

T ∗V = V × V
α:=pr2

// V =: A

which has the property the Hfree factors over α to a mapping

h : A −→ R, a 7−→ 1
2
〈a, a〉.

Notice also that α is equivariant with respect to the diagonal G-action
on T ∗V and the action on V . Thus we may interpret A as the action
space of the completely integrable system (T V ,Ω, Hfree) in the sense of
Definition 3.C.3. Indeed, the system is integrable via the Lagrangian
bifoliation given by the fibers of α.

However, this Lagrangian bifoliation is a bifoliation with symmetries
as in Section 3.D. That is, we are in the following situation.

T ∗V // //

α

²²

(T ∗V )/G

²²

T ∗V //OG_?
oo

H0

²²

α0

xxp
p

p
p

p
p

A
πA

// // A/G
h0

// R

where H0 = HCM is the reduced Hamiltonian and h0 is such that
h = π∗

Ah0. Furthermore, α0 : T ∗V //OG → A/G = Σ/W is a well-
defined smooth map of stratified spaces, in the sense of Definition 1.C.3.
Indeed, this is true since α0 is a composition of smooth maps by Ex-
ample 1.C.7 and Proposition 1.H.3.

However, α0 need not be surjective nor will it be a strata-preserving
map in general. This means that fibers of α0 are not unions of strata
of T ∗V //OG.

Let p ∈ Σr be an arbitrary regular point in the section. Since M =
ZG(Σ) = ZG(p) for regular p ∈ Σ, Remark 1 of Section 4.F implies that
the equation

µ(q, p) = ad(−p).q ∈ O ∩ m⊥

always has a solution q which is given by

q = (ad(−p)|Σ⊥)−1(Z).

This shows that the image of α0 contains all of Σr/W = Cr.
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Employing the same methods as in Section 4.C we thus conclude that

α−1
0 (Cr) ∼= Σ ×O//0M × Cr ↪→ (T ∗V )//OG

where the isomorphism is a symplectic diffeomorphism of stratified
symplectic spaces, and the inclusion is strata preserving. In partic-
ular, the fibers α−1

0 ([p]) with p ∈ Σr are stratified into smooth strata
of the form

α−1
0 ([p]) ∩ (T ∗V //OG)(L) = Σ × (O//0M)(L0)M

where L0 is a subgroup of M conjugate to L within G.

More generally, using Remarks 1 and 4 of Section 4.F we see that the
fibers of α0 are of the form

α−1
0 ([p]) = (ZV (p) ×O ∩ g⊥

p )/NG(p) = Σ/Wp × (O ∩ g⊥
p )/M

where [p] ∈ Σ/W = A/K is an arbitrary point in the image of α0,
and Wp denotes the stabilizer in W of p with respect to the effective
W -action on Σ. This is in accordance to the description above since
Σr can be characterized as the subset of Σ upon which W acts freely.

To understand the Hamiltonian dynamics generated on T ∗//OG by
H0 = HCM let, as above, p0 = [p] ∈ Cr ⊆ A0. Then the fiber α−1

0 (p0)
is stratified into coisotropic strata of the form

Σ × (O//0M)(L0)M

where L0 is a subgroup of M conjugate to L within G. The symplectic
perpendicular of such a stratum obviously exists and is given by

Σ ↪→ Σ × (O//0M)(L0)M .

By the theory of Section 3.D we thus conclude that the Hamiltonian
flow of H0 = HCM starting at a point in

Σ × (O//0M)(L0)M × {p0}

is given by a straight line in Σ.

This means that we have identified the isotropic invariant subman-
ifolds of the Hamiltonian system (T ∗V //OG,H0 = HCM). These
submanifolds have dimension l = dim Σ which is in general strictly
less than 1

2
dimT ∗V //OG whence the Hamiltonian system is a non-

commutatively integrable one.

4.E. Discussion of the dynamics

In the last section we discussed the Hamiltonian dynamics of the re-
duced system (T ∗V //OG,H0 = HCM). However, now we want to inves-
tigate the dynamical behavior on the reduced configuration space

V/G = Σ/W = C
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which is often also called the shape space of the system. This is inter-
esting because the dynamics that take place on this space are those of
the Calogero-Moser dynamical system.

In the previous sections we have given two isomorphic descriptions of
an open dense subset of the reduced system (T ∗V //OG,H0 = HCM).
That is, we are in the following situation:

Cr × (Σ ×O//0M) Â Ä // T ∗V //OG (Σ ×O//0M) × Cr? _oo

where we have placed brackets to distinguish between reduced position
and reduced momentum coordinates.

As a particular case consider the situation where (L0)
M is an element

of the isotropy lattice such that

(O//0M)(L0)M = (O(L0)M ∩ Ann m)/M

is discrete. For example, this was the case in the explicit approach of
Section 4.A. Since W = W (Σ) is a reflection group we conclude from
the above that, in this case, the dynamics on the shape space is given
by a line in Σ that is reflected at all Walls. Thus the scattering process
is given by a transformation of the type

(x1, . . . , xl) 7−→ (xl, . . . , x1)

where l = dim Σ.

More generally, the dynamics are more complicated, and we consider
the coordinates of (O//0M)(L0)M to be spin coordinates which keep the
dynamics from hitting certain walls.

4.F. Appendix: Polar representations

Let V be a real Euclidean vector space, and G be a connected compact
Lie group. Further, let ρ : G → SO(V, 〈 , 〉) be a polar represen-
tation of G on V . That is, there is subspace Σ ⊆ V (a section) such
that Σ meets all G-orbits, and does so orthogonally.

The following is due to Dadok [11] and is a consequence of his classi-
fication of polar actions.

Proposition 4.F.1. There exists a connected Lie group G̃ together
with a representation ρ̃ : G̃ → SO(V ) such that the following hold.
There is a real reductive Lie algebra l with a Cartan decomposition
l = k ⊕ p. Moreover, there is a Lie algebra isomorphism A : Lie(G̃) =
g̃ → k and a linear isomorphism B : V → p such that B(ρ̃′(X).v) =
[A(X), B(v)] for all X ∈ g̃ and v ∈ V . Finally, the G-orbits coincide
with the G̃-orbits, that is V/G = V/G̃.

Proof. See Dadok [11, Proposition 6]. ¤
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Thus, for the purpose of this paper, it suffices to assume that the
representation of G on V is a symmetric space representation whence
l = g ⊕ V is a Cartan decomposition, and hence [g, g] ⊆ g, [g, V ] ⊆ V ,
and [V, V ] ⊆ g. Therefore, G × V ∼= L, (g, v) 7→ g exp(v) is a global
Cartan decomposition of L with maximal compact subgroup G where
Lie(L) = l.

An element v ∈ V is said to be regular (with respect to the G-action)
if the orbit O(v) = ρ(G).v = G.v is of maximal possible dimension. The
set of regular elements will be denoted by Vr. The following assertions
are well known and/or obvious. See, for example, Knapp [21].

Remark 1. Let v ∈ V . Then, by reason of dimension ad(v)|Zg(v)
⊥ :

Zg(v)
⊥ → ZV (v)⊥ and ad(v)|ZV (v)⊥ : ZV (v)⊥ → Zg(v)

⊥ both are
linear isomorphisms. 2

Remark 2. The set Vr of regular elements is open dense in V . More-
over, v ∈ Vr if and only if ZV (v) =: Σ is a section in V . This is the
case if and only if Σ is maximally Abelian. 2

Remark 3. Let Σ ∈ V be a section, and put m := Zg(Σ). The set
R = R(l,Σ) ⊆ Σ∗ shall denote the set of restricted roots. This gives
rise to the restricted root space decomposition

l = m ⊕ Σ ⊕
⊕

λ∈R

lλ.

Any Cartan subalgebra h ⊆ l of l is of the form

h = t ⊕ Σ

where t ⊆ m is a Cartan subalgebra (Lie algebra to a maximal torus)
of g.

Each restricted root space lλ has an orthonormal basis

Ei
λ ∈ g, Bi

λ ∈ V

where i = 1, . . . , kλ = 1
2
dim lλ, and which is such that ad(v)Ei

λ =
λ(v)Bi

λ and ad(v)Bi
λ = λ(v)Ei

λ for all v ∈ Σ. The vectors

Ei
0, i = 1, . . . , dim m, Bj

0, j = 1, . . . , dim Σ

will denote an orthonormal basis of m, Σ respectively. 2

Remark 4. Consider an arbitrary point v ∈ V . Then the isotropy sub-
group Gv = ZG(v) acts transitively on the set of all sections containing
v. Moreover, if Σ0 and Σ1 both are sections containing v then the el-
ement g ∈ G satisfying g.Σ0 = Σ1 is unique up to right multiplication
in the group by NG(Σ0). 2

Definition 4.F.2 (Generalized Weyl group). Let Σ be a section in V
of the G-action. Then

W := W (Σ) := NG(Σ)/ZG(Σ)
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is called the generalized Weyl group associated the action.

Remark 5. The generalized Weyl group of a polar representation is a
classical Weyl group. Indeed, this follows also from Dadok [11, Propo-
sition 6]. In particular, W is a reflection group. 2
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