Proceedings of the Winter School on Geometry and Physics, Srni 1988 Suppl. Rendiconti Circolo Matematico di Palermo, Ser. II, 22 (1989), 171–175

KNIT PRODUCTS OF GRADED LIE ALGEBRAS AND GROUPS

Peter W. Michor

Institut für Mathematik Universität Wien Austria

ABSTRACT. If a graded Lie algebra is the direct sum of two graded sub Lie algebras, its bracket can be written in a form that mimics a "double sided semidirect product". It is called the *knit product* of the two subalgebras then. The integrated version of this is called a *knit product* of groups — it coincides with the Zappa-Szép product. The behavior of homomorphisms with respect to knit products is investigated.

INTRODUCTION

If a Lie algebra is the direct sum of two sub Lie algebras one can write the bracket in a way that mimics semidirect products on both sides. The two representations do not take values in the respective spaces of derivations; they satisfy equations (see 1.1) which look "derivatively knitted" — so we call them a derivatively knitted pair of representations. These equations are familiar for the Frölicher-Nijenhuis bracket of differential geometry, see [1] or [2, 1.10]. This paper is the outcome of my investigation of what formulas 1.1 mean algebraically. It was a surprise for me that they describe the general situation (Theorem 1.3). Also the behavior of homomorphisms with respect to knit products is investigated (Theorem 1.4).

The integrated version of a knit product of Lie algebras will be called a knit product of groups — but it is well known to algebraists under the name Zappa-Szép product, see [3] and the references therein. I present it here with different

Typeset by \mathcal{AMS} -TEX

1

¹⁹⁹¹ Mathematics Subject Classification. 17B65, 17B80, 20.

Key words and phrases. graded Lie algebras, knit products, representations.

This paper is in final form and no version of it will appear elsewhere.

PETER W. MICHOR

notation in order to describe afterwards again the behavior of homomorphisms with respect to this product. This gives a kind of generalization of the method of induced representations.

1. KNIT PRODUCTS OF GRADED LIE ALGEBRAS

1.1. Definition. Let A and B be graded Lie algebras, whose grading is in \mathbb{Z} or \mathbb{Z}_2 , but only one of them. A *derivatively knitted pair of representations* (α, β) for (A, B) are graded Lie algebra homomorphisms $\alpha : A \to \operatorname{End}(B)$ and $\beta : B \to \operatorname{End}(A)$ such that:

$$\begin{aligned} \alpha(a)[b_1, b_2] &= [\alpha(a)b_1, b_2] + (-1)^{|a||b_1|} [b_1, \alpha(a)b_2] - \\ &- \left((-1)^{|a||b_1|} \alpha(\beta(b_1)a)b_2 - (-1)^{(|a|+|b_1|)|b_2|} \alpha(\beta(b_2)a)b_1 \right) \end{aligned}$$

$$\begin{split} \beta(b)[a_1, a_2] &= [\beta(b)a_1, a_2] + (-1)^{|b||a_1|} [a_1, \beta(b)a_2] - \\ &- \left((-1)^{|b||a_1|} \beta(\alpha(a_1)b)a_2 - (-1)^{(|b|+|a_1|)|a_2|} \beta(\alpha(a_2)b)a_1 \right) \end{split}$$

Here |a| is the degree of a. For (non-graded) Lie algebras just assume that all degrees are zero.

1.2. Theorem. Let (α, β) be a derivatively knitted pair of representations for graded Lie algebras $A = \bigoplus A_k$ and $B = \bigoplus B_k$. Then $A \oplus B := \bigoplus_{k,l} (A_k \oplus B_l)$ becomes a graded Lie algebra $A \oplus_{(\alpha,\beta)} B$ with the following bracket:

$$[(a_1, b_1), (a_2, b_2)] := \left([a_1, a_2] + \beta(b_1)a_2 - (-1)^{|b_2||a_1|}\beta(b_2)a_1, \\ [b_1, b_2] + \alpha(a_1)b_2 - (-1)^{|a_2||b_1|}\alpha(a_2)b_1 \right)$$

The grading is $(A \oplus B)_k := A_k \oplus B_k$.

Proof. Obviously this bracket is graded anticommutative. The graded Jacobi identity is checked by computation. \Box

We call $A \oplus_{(\alpha,\beta)} B$ the *knit product* of A and B. If $\beta = 0$ then α has values in the space of (graded) derivations of A and $A \oplus 0$ is an ideal in $A \oplus_{(\alpha,0)} B$ and we get a semidirect product of graded Lie algebras. Note also that $[(a, 0), (0, b)] = ((-1)^{|b||a|}\beta(b)a, \alpha(a)b)$. This is the key to the following theorem.

1.3. Theorem. Let A and B be graded Lie subalgebras of a graded Lie algebra C such that A + B = C and $A \cap B = 0$. Then C as graded Lie algebra is isomorphic to a knit product of A and B.

Proof. For $a \in A$ and $b \in B$ we write

$$[a,b] =: \alpha(a)b - (-1)^{|a||b|}\beta(b)a$$

for the decomposition of [a, b] into components in C = B + A. Then $\beta : B \to$ End(A) and $\alpha : A \to$ End(B) are linear. Now decompose both sides of the graded Jacobi identity

$$[a, [b_1, b_2]] = [[a, b_1], b_2] + (-1)^{|a||b_1|} [b_1, [a, b_2]]$$

and compare the A- and B-components respectively. This gives equation 1.1 for α and that β is a graded Lie algebra homomorphism. The rest follows by interchanging A and B. Now we decompose $[a_1 + b_1, a_2 + b_2]$ and see that $C = A \oplus_{(\alpha,\beta)} B$. \Box

1.4. Now let $\Phi : A \oplus_{(\alpha,\beta)} B \to A' \oplus_{(\alpha',\beta')} B'$ be a linear mapping between knit products. Then Φ can be decomposed into $\Phi(a,b) =: (f(a) + \psi(b), g(b) + \varphi(a))$ for linear mappings $\varphi : A \to B', \psi : B \to A', f : A \to A'$, and $g : B \to B'$.

Theorem. In this situation Φ is a graded Lie algebra homomorphism if and only if the following conditions hold:

$$\begin{split} \varphi([a_1, a_2]) &= [\varphi(a_1), \varphi(a_2)] + \alpha'(f(a_1))\varphi(a_2) \\ &- (-1)^{|a_1||a_2|} \alpha'(f(a_2))\varphi(a_1) \\ \psi([b_1, b_2]) &= [\psi(b_1), \psi(b_2)] + \beta'(g(b_1))\psi(b_2) \\ &- (-1)^{(|b_1||b_2|}\beta'(g(b_2))\psi(b_1) \\ [\psi(b), f(a)] &= f(\beta(b)a) - \beta'(g(b))f(a) \\ &- (-1)^{|a||b|} (\psi(\alpha(a)b) - \beta'(\varphi(a))\psi(b)) \\ [g(b), \varphi(a)] &= \varphi(\beta(b)a) - \alpha'(\psi(b))\varphi(a) \\ &- (-1)^{|a||b|} (g(\alpha(a)b) - \alpha'(f(a))g(b)) \\ f([a_1, a_2]) &= [f(a_1), f(a_2)] + \beta'(\varphi(a_1))f(a_2) \\ &- (-1)^{|a_1||a_2|}\beta'(\varphi(a_2))f(a_1) \\ g([b_1, b_2]) &= [g(b_1), g(b_2)] + \alpha'(\psi(b_1))g(b_2) \\ &- (-1)^{|b_1||b_2|}\alpha'(\psi(b_2))g(b_1) \end{split}$$

If f and g are graded Lie algebra homomorphism the last pair of equations obviously simplifies.

Proof. A long but straightforward computation. \Box

This theorem can be used to build representations of C out of representations of A and B.

PETER W. MICHOR

2. Knit products of groups

2.1. Definition. Let A and B be groups. An automorphically knitted pair of actions (α, β) for (A, B) are mappings $\alpha : B \times A \to A$ and $\beta : B \times A \to B$ such that:

- (1) $\check{\alpha}: B \to \{\text{bijections of A}\}\$ is a group homomorphism, so $\alpha_{b_1} \circ \alpha_{b_2} = \alpha_{b_1 b_2}$ and $\alpha_e = Id_A$, where $\alpha_b(a) := \alpha(b, a)$.
- (2) $\beta: A \to \{\text{bijections of B}\}\$ is a group anti homomorphism, i.e., $\beta^{a_1} \circ \beta^{a_2} =$ $\beta^{a_2 a_1}$ and $\beta^e = Id_B$, where $\beta^a(b) = \beta(b, a)$.
- (3) $\alpha_b(a_1a_2) = \alpha_b(a_1).\alpha_{\beta^{a_1}(b)}(a_2).$
- (4) $\beta^{a}(b_{1}b_{2}) = \beta^{\alpha_{b_{2}}(a)}(b_{1}).\beta^{a}(b_{2}).$

2.2. Theorem. Let (α, β) be an automorphically knitted pair of actions for (A, B). Then $A \times B$ is a group $A \times_{(\alpha,\beta)} B$ with the following operations: $(a, b_1)(a_2, b_2) = (a_1, \alpha_1, (a_2), \beta^{a_2}(b_1), b_2)$ (a_1, b_1) (a

$$\begin{array}{l} (a,b)^{-1} := (\alpha_{1,-1}(a_{2}), \beta^{a_{2}}(b_{1}).b_{2}) \\ (a,b)^{-1} := (\alpha_{1,-1}(a^{-1}), \beta^{a^{-1}}(b^{-1})). \end{array}$$

 $(a, b) \stackrel{e}{\to} := (\alpha_{b^{-1}}(a^{-1}), \beta^{-1}(b^{-1})).$ Unit is (e, e). $A \times \{e\}$ and $\{e\} \times B$ are subgroups of $A \times_{(\alpha, \beta)} B$ which are isomorphic to A and B, respectively. If $\check{\alpha} \equiv Id_A$ then $\{e\} \times B$ is a normal subgroup of $A \times_{(\alpha,\beta)} B$ and we have a semidirect product; similarly if $\check{\beta} \equiv Id_B$.

If A and B are topological groups or Lie groups and α , β are continuous or smooth, then $A \times_{(\alpha,\beta)} B$ is also a topological group or Lie group, respectively.

The proof is routine.

We will call $A \times_{(\alpha,\beta)} B$ the *knit product* of A and B in analogy with section 1. In algebra, with different notation, this product is well known under the name Zappa-Szép product. I owe this remark to G. Kowol.

2.3. Theorem. Let G be a group, let A and B be subgroups such that G = A.Band $A \cap B = \{e\}$. Then G is isomorphic to a knit product of A and B.

Proof. Let $b.a = \alpha(b, a) \cdot \beta(b, a)$ be the unique decomposition of b.a in G = A.B. Then

$$a_1b_1a_2b_2 = a_1\alpha(b_1, a_2)\beta(b_1, a_2)b_2 = (a_1\alpha_{b_1}(a_2)).(\beta^{a_2}(b_1)b_2).$$

So it remains to show that (α, β) satisfies the conditions of 2.1. Obviously we have $\alpha(e, a) = a$, $\beta(e, a) = e$, $\alpha(b, e) = e$, $\beta(b, e) = b$. Comparing coefficients in the law of associativity of G gives two equations. Setting suitable elements in these equations to e gives all conditions of 2.1. \Box

2.4. Let $\Phi = (\Phi_1, \Phi_2) : A \times_{(\alpha,\beta)} B \to A' \times_{(\alpha',\beta')} B'$ be a mapping between knit products of groups. We put

(1)
$$f(a) := \Phi_1(a, e), \qquad g(b) := \Phi_2(e, b)$$

(2)
$$\varphi(b) := \Phi_1(e, b), \qquad \psi(a) := \Phi_2(a, e)$$

Then we have $f: A \to A', g: B \to B', \varphi: B \to A', \psi: A \to B'$. Φ is a group homomorphism if and only if

(3)
$$\begin{cases} \Phi_1(a_1\alpha_{b_1}(a_2),\beta^{a_2}(b_1)b_2) = \Phi_1(a_1,b_1).\alpha'_{\Phi_2(a_1,b_1)}(\Phi_1(a_2,b_2)) \\ \Phi_2(a_1\alpha_{b_1}(a_2),\beta^{a_2}(b_1)b_2) = \beta'^{\Phi_1(a_2,b_2)}(\Phi_2(a_1,b_1)).\Phi_2(a_2,b_2). \end{cases}$$

Now we set in (3) suitable elements to e, use (1) and (2) and get in turn

(e)
$$\begin{cases} \Phi_1(a_1, b_2) = f(a_1) . \alpha'_{\psi(a_1)}(\varphi(b_2)) \\ \Phi_2(a_1, b_2) = \beta'^{\varphi(b_2)}(\psi(a_1)) . g(b_2) \end{cases}$$

(f)
$$\begin{cases} \varphi(b_1b_2) = \varphi(b_1).\alpha'_{g(b_1)}(\varphi(b_2)) \\ \psi(a_1a_2) = \beta'^{f(a_2)}(\psi(a_1)).\psi(a_2) \end{cases}$$

(4)
$$\begin{cases} \Phi_1(\alpha_{b_1}(a_2), \beta^{a_2}(b_1)) = \varphi(b_1).\alpha'_{g(b_1)}(f(a_2)) \\ \Phi_2(\alpha_{b_1}(a_2), \beta^{a_2}(b_1)) = \beta'^{f(a_2)}(g(b_1)).\psi(a_2) \end{cases}$$

(g)
$$\begin{cases} f(a_1a_2) = f(a_1).\alpha'_{\psi(a_1)}(f(a_2)) \\ g(b_1b_2) = {\beta'}^{\varphi(b_2)}(g(b_1)).g(b_2) \end{cases}$$

If f and g are homomorphisms of groups then (g) implies:

(g')
$$\begin{cases} f(a_2) = \alpha'_{\psi(a_1)}(f(a_2)) \\ g(b_1) = \beta'^{\varphi(b_2)}(g(b_1)) \end{cases}$$

Now we decompose the left hand sides of (4) with the help of (e) and get:

(h)
$$\begin{cases} f(\alpha_{b_1}(a_2)).\alpha'_{\psi(\alpha_{b_1}(a_2))}(\varphi(\beta^{a_2}(b_1))) = \varphi(b_1).\alpha'_{g(b_1)}(f(a_2))\\ \beta'^{\varphi(\beta^{a_2}(b_1))}(\psi(\alpha_{b_1}(a_2))).g(\beta^{a_2}(b_1))) = \beta'^{f(a_2)}(g(b_1)).\psi(a_2) \end{cases}$$

2.5. Theorem. Let $A \times_{(\alpha,\beta)} B$ and $A' \times_{(\alpha',\beta')} B'$ be knit products of groups and let $f : A \to A', g : B \to B', \varphi : B \to A', \psi : A \to B'$ be mappings such that (f), (g), and (h) from 2.4 hold. We define $\Phi = (\Phi_1, \Phi_2) : A \times_{(\alpha,\beta)} B \to A' \times_{(\alpha',\beta')} B'$ by 2.4.(e), then Φ is a homomorphism of groups. If f and g are homomorphisms, then we may use (g') instead of (g). *Proof.* It suffices to check (3) of 2.5. This is a difficult computation using 2.4 (a)-(h). \Box

For topological groups and Lie groups all the expected assertions about continuity and smoothness are true.

This theorem may be used to construct representations of $A \times_{(\alpha,\beta)} B$ out of representations of A and B — a sort of generalized induced representation procedure.

Starting from the equations 2.1 for a knit product of Lie groups and deriving the equations of 1.1 for their Lie algebras is a very interesting exercise in calculus on Lie groups.

References

- A. Frölicher, A. Nijenhuis, Theory of vector valued differential forms. Part I., Indagationes Math 18 (1956), 338–359.
- P. W. Michor, Remarks on the Frölicher-Nijenhuis bracket, Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986, D. Reidel, 1987, pp. 198–220.
- J. Szép, On the structure of groups which can be represented as the product of two subgroups, Acta Sci. Math. Szeged 12 (1950), 57–61.

Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria