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ALL UNITARY REPRESENTATIONS

ADMIT MOMENT MAPPINGS

Peter W. Michor

1. Calculus of smooth mappings

1.1. The traditional differential calculus works well for finite dimen-
sional vector spaces and for Banach spaces. For more general locally
convex spaces a whole flock of different theories were developed, each of
them rather complicated and none really convincing. The main difficulty
is that the composition of linear mappings stops to be jointly continuous
at the level of Banach spaces, for any compatible topology. This was
the original motivation for the development of a whole new field within
general topology, convergence spaces.

Then in 1982, Alfred Frölicher and Andreas Kriegl presented inde-
pendently the solution to the question for the right differential calculus
in infinite dimensions. They joined forces in the further development of
the theory and the (up to now) final outcome is the book [F-K].

In this section I will sketch the basic definitions and the most impor-
tant results of the Frölicher-Kriegl calculus.

1.2. The c∞-topology. Let E be a locally convex vector space. A
curve c : R → E is called smooth or C∞ if all derivatives exist and
are continuous - this is a concept without problems. Let C∞(R, E) be
the space of smooth functions. It can be shown that C∞(R, E) does
not depend on the locally convex topology of E, only on its associated
bornology (system of bounded sets).

The final topologies with respect to the following sets of mappings
into E coincide:

(1) C∞(R, E).
(2) Lipschitz curves (so that { c(t)−c(s)t−s : t 6= s} is bounded in E).
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(3) {EB → E : B bounded absolutely convex in E}, where EB is
the linear span of B equipped with the Minkowski functional
pB(x) := inf{λ > 0 : x ∈ λB}.

(4) Mackey-convergent sequences xn → x (there exists a sequence
0 < λn ↗∞ with λn(xn − x) bounded).

This topology is called the c∞-topology on E and we write c∞E for the
resulting topological space. In general (on the space D of test functions
for example) it is finer than the given locally convex topology, it is not
a vector space topology, since scalar multiplication is no longer jointly
continuous. The finest among all locally convex topologies on E which
are coarser than c∞E is the bornologification of the given locally convex
topology. If E is a Fréchet space, then c∞E = E.

1.3. Convenient vector spaces. Let E be a locally convex vector
space. E is said to be a convenient vector space if one of the following
equivalent (completeness) conditions is satisfied:

(1) Any Mackey-Cauchy-sequence (so that (xn−xm) is Mackey con-
vergent to 0) converges. This is also called c∞-complete.

(2) If B is bounded closed absolutely convex, then EB is a Banach
space.

(3) Any Lipschitz curve in E is locally Riemann integrable.
(4) For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c′1 = c2

(existence of antiderivative).

1.4. Lemma. Let E be a locally convex space. Then the following
properties are equivalent:

(1) E is c∞-complete.
(2) If f : Rk → E is scalarwise Lipk, then f is Lipk, for k > 1.
(3) If f : R→ E is scalarwise C∞ then f is differentiable at 0.
(4) If f : R→ E is scalarwise C∞ then f is C∞.

Here a mapping f : Rk → E is called Lipk if all partial derivatives
up to order k exist and are Lipschitz, locally on Rn. f scalarwise C∞

means that λ ◦ f is C∞ for all continuous linear functionals on E.
This lemma says that a convenient vector space one can recognize

smooth curves by investigating compositions with continuous linear func-
tionals.

1.5. Smooth mappings. Let E and F be locally convex vector spaces.
A mapping f : E → F is called smooth or C∞, if f ◦ c ∈ C∞(R, F ) for
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all c ∈ C∞(R, E); so f∗ : C∞(R, E) → C∞(R, F ) makes sense. Let
C∞(E,F ) denote the space of all smooth mapping from E to F .

For E and F finite dimensional this gives the usual notion of smooth
mappings: this has been first proved in [Bo]. Constant mappings are
smooth. Multilinear mappings are smooth if and only if they are boun-
ded. Therefore we denote by L(E,F ) the space of all bounded linear
mappings from E to F .

1.6. Structure on C∞(E,F ). We equip the space C∞(R, E) with the
bornologification of the topology of uniform convergence on compact
sets, in all derivatives separately. Then we equip the space C∞(E,F )
with the bornologification of the initial topology with respect to all map-
pings c∗ : C∞(E,F )→ C∞(R, F ), c∗(f) := f ◦ c, for all c ∈ C∞(R, E).

1.7. Lemma. For locally convex spaces E and F we have:
(1) If F is convenient, then also C∞(E,F ) is convenient, for any

E. The space L(E,F ) is a closed linear subspace of C∞(E,F ),
so it also convenient.

(2) If E is convenient, then a curve c : R → L(E,F ) is smooth if
and only if t 7→ c(t)(x) is a smooth curve in F for all x ∈ E.

1.8. Theorem. The category of convenient vector spaces and smooth
mappings is cartesian closed. So we have a natural bijection

C∞(E × F,G) ∼= C∞(E,C∞(F,G)),

which is even a diffeomorphism.

Of coarse this statement is also true for c∞-open subsets of convenient
vector spaces.

1.9. Corollary. Let all spaces be convenient vector spaces. Then the
following canonical mappings are smooth.

ev : C∞(E,F )× E → F, ev(f, x) = f(x)

ins : E → C∞(F,E × F ), ins(x)(y) = (x, y)

( )∧ : C∞(E,C∞(F,G))→ C∞(E × F,G)

( )∨ : C∞(E × F,G)→ C∞(E,C∞(F,G))

comp : C∞(F,G)× C∞(E,F )→ C∞(E,G)

C∞( , ) : C∞(F, F ′)× C∞(E′, E)→ C∞(C∞(E,F ), C∞(E′, F ′))

(f, g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏

C∞(Ei, Fi)→ C∞(
∏

Ei,
∏

Fi)
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1.10. Theorem. Let E and F be convenient vector spaces. Then the
differential operator

d : C∞(E,F )→ C∞(E,L(E,F )),

df(x)v := lim
t→0

f(x+ tv)− f(x)
t

,

exists and is linear and bounded (smooth). Also the chain rule holds:

d(f ◦ g)(x)v = df(g(x))dg(x)v.

1.11. Remarks. Note that the conclusion of theorem 1.8 is the starting
point of the classical calculus of variations, where a smooth curve in a
space of functions was assumed to be just a smooth function in one
variable more.

If one wants theorem 1.8 to be true and assumes some other obvious
properties, then the calculus of smooth functions is already uniquely
determined.

There are, however, smooth mappings which are not continuous. This
is unavoidable and not so horrible as it might appear at first sight. For
example the evaluation E × E′ → R is jointly continuous if and only if
E is normable, but it is always smooth. Clearly smooth mappings are
continuous for the c∞-topology.

For Fréchet spaces smoothness in the sense described here coincides
with the notion C∞c of [Ke]. This is the differential calculus used by
[Mic1], [Mil], and [P-S].

A prevalent opinion in contemporary mathematics is, that for infinite
dimensional calculus each serious application needs its own foundation.
By a serious application one obviously means some application of a hard
inverse function theorem. These theorems can be proved, if by assuming
enough a priori estimates one creates enough Banach space situation for
some modified iteration procedure to converge. Many authors try to
build their platonic idea of an a priori estimate into their differential
calculus. I think that this makes the calculus inapplicable and hides the
origin of the a priori estimates. I believe, that the calculus itself should
be as easy to use as possible, and that all further assumptions (which
most often come from ellipticity of some nonlinear partial differential
equation of geometric origin) should be treated separately, in a setting
depending on the specific problem. I am sure that in this sense the
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Frölicher-Kriegl calculus as presented here and its holomorphic and real
analytic offsprings in sections 2 and 3 below are universally usable for
most applications.

Let me point out as a final remark, that also the cartesian closed
calculus for holomorphic mappings along the same lines is available in [K-
N], and recently the cartesian closed calculus for real analytic mapping
was developed in [K-M].

2. The moment mapping for unitary representations

The following is a review of the results obtained in [Mic2]. We include
only one proof, the central application of the Frölicher-Kriegl calculus.

2.1. Let G be any (finite dimensional second countable) real Lie group,
and let ρ : G→ U(H) be a unitary representation on a Hilbert space H.
Then the associated mapping ρ̂ : G ×H → H is in general not jointly
continuous, it is only separately continuous, so that g 7→ ρ(g)x, G→ H,
is continuous for any x ∈ H.

Definition. A vector x ∈ H is called smooth (or real analytic) if the
mapping g 7→ ρ(g)x, G→ H is smooth (or real analytic). Let us denote
by H∞ the linear subspace of all smooth vectors in H. Then we have an
embedding j : H∞ → C∞(G,H), given by x 7→ (g 7→ ρ(g)x). We equip
C∞(G,H) with the compact C∞-topology (of uniform convergence on
compact subsets of G, in all derivatives separately). Then it is easily seen
(and proved in [Wa, p 253]) that H∞ is a closed linear subspace. So with
the induced topology H∞ becomes a Frèchet space. Clearly H∞ is also
an invariant subspace, so we have a representation ρ : G→ L(H∞,H∞).
For more detailed information on H∞ see [Wa, chapt. 4.4.] or [Kn,
chapt. III.].

2.2. Theorem. The mapping ρ̂ : G×H∞ → H∞ is smooth.

Proof. By cartesian closedness of the Frölicher-Kriegl calculus 1.8 it suf-
fices to show that the canonically associated mapping

ρ̂∨ : G→ C∞(H∞,H∞)

is smooth; but it takes values in the closed subspace L(H∞,H∞) of all
bounded linear operators. So by it suffices to show that the mapping
ρ : G → L(H∞,H∞) is smooth. But for that, since H∞ is a Frèchet
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space, thus convenient in the sense of Frölicher-Kriegl, by 1.7(2) it suffices
to show that

G
ρ−→ L(H∞,H∞) evx−−→ H∞

is smooth for each x ∈ H∞. This requirement means that g 7→ ρ(g)x,
G→ H∞, is smooth. For this it suffices to show that

G→ H∞
j−→ C∞(G,H),

g 7→ ρ(g)x 7→ (h 7→ ρ(h)(g)x),

is smooth. But again by cartesian closedness it suffices to show that the
associated mapping

G×G→ H,

(g, h) 7→ ρ(h)(g)x = ρ(hg)x,

is smooth. And this is the case since x is a smooth vector. �

2.3. we now consider H∞ as a ”weak” symplectic Frèchet manifold,
equipped with the symplectic structure Ω, the restriction of the imag-
inary part of the Hermitian inner product 〈 , 〉 on H. Then Ω ∈
Ω2(H∞) is a closed 2-form which is non degenerate in the sense that

Ω̌ : TH∞ = H∞ ×H∞ → T ∗H∞ = H∞ ×H∞′

is injective (but not surjective), where H∞′ = L(H∞,R) denotes the
real topological dual space. This is the meaning of ”weak” above.

2.4. Review. For a finite dimensional symplectic manifold (M,Ω) we
have the following exact sequence of Lie algebras:

0→ H0(M)→ C∞(M)
gradΩ−−−−→ XΩ(M)

γ−→ H1(M)→ 0

Here H∗(M) is the real De Rham cohomology of M , the space C∞(M) is
equipped with the Poisson bracket { , }, XΩ(M) consists of all vector
fields ξ with LξΩ = 0 (the locally Hamiltonian vector fields), which is a
Lie algebra for the Lie bracket. gradΩ f is the Hamiltonian vector field
for f ∈ C∞(M) given by i(gradΩ f)Ω = df , and γ(ξ) = [iξΩ]. The
spaces H0(M) and H1(M) are equipped with the zero bracket.

Given a symplectic left action ` : G×M →M of a connected Lie group
G on M , the first partial derivative of ` gives a mapping `′ : g→ XΩ(M)
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which sends each element X of the Lie algebra g of G to the fundamental
vector field. This is a Lie algebra homomorphism.

H0(M) i−−−−→ C∞(M)
gradΩ−−−−→ XΩ(M)

γ−−−−→ H1(M)

σ

x x`′
g g

A linear lift σ : g → C∞(M) of `′ with gradΩ ◦σ = `′ exists if and only
if γ ◦ `′ = 0 in H1(M). This lift σ may be changed to a Lie algebra
homomorphism if and only if the 2-cocycle σ̄ : g × g → H0(M), given
by (i◦ σ̄)(X,Y ) = {σ(X), σ(Y )}−σ([X,Y ]), vanishes in H2(g, H0(M)),
for if σ̄ = δα then σ − i ◦ α is a Lie algebra homomorphism.

If σ : g→ C∞(M) is a Lie algebra homomorphism, we may associate
the moment mapping µ : M → g′ = L(g,R) to it, which is given by
µ(x)(X) = σ(X)(x) for x ∈ M and X ∈ g. It is G-equivariant for a
suitably chosen (in general affine) action of G on g′. See [We] or [L-M]
for all this.

2.5. We now want to carry over to the setting of 2.1 and 2.2 the pro-
cedure of 2.4. The first thing to note is that the hamiltonian mapping
gradΩ : C∞(H∞) → XΩ(H∞) does not make sense in general, since
Ω̌ : H∞ → H∞′ is not invertible: gradΩ f = Ω̌−1df is defined only
for those f ∈ C∞(H∞) with df(x) in the image of Ω̌ for all x ∈ H∞.
A similar difficulty arises for the definition of the Poisson bracket on
C∞(H∞).

Let 〈x, y〉 = Re〈x, y〉+
√
−1Ω(x, y) be the decomposition of the her-

mitian inner product into real and imaginary parts. Then Re〈x, y〉 =
Ω(
√
−1x, y), thus the real linear subspaces Ω̌(H∞) = Ω(H∞, ) and

Re〈H∞, 〉 of H∞′ = L(H∞,R) coincide.

2.6 Definition. Let H∗∞ denote the real linear subspace

H∗∞ = Ω(H∞, ) = Re〈H∞, 〉

of H∞′ = L(H∞,R), and let us call it the smooth dual of H∞ in view of
the embedding of test functions into distributions. We have two canoni-
cal isomorphisms H∗∞ ∼= H∞ induced by Ω and Re〈 , 〉, respectively.
Both induce the same Fréchet topology on H∗∞, which we fix from now
on.
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2.7 Definition. Let C∞∗ (H∞,R) ⊂ C∞(H∞,R) denote the linear sub-
space consisting of all smooth functions f : H∞ → R such that each
iterated derivative dkf(x) ∈ Lksym(H∞,R) has the property that

dkf(x)( , y2, . . . , yk) ∈ H∞∗

is actually in the smooth dual H∗∞ ⊂ H∞′ for all x, y2, . . . , yk ∈ H∞,
and that the mapping

k∏
H∞ → H∞

(x, y2, . . . , yk) 7→ Ω̌−1(df(x)( , y2, . . . , yk))

is smooth. Note that we could also have used Re〈 , 〉 instead of Ω.
By the symmetry of higher derivatives this is then true for all entries of
dkf(x), for all x.

2.8 Lemma. For f ∈ C∞(H∞,R) the following assertions are equiva-
lent:

(1) df : H∞ → H∞′ factors to a smooth mapping H∞ → H∗∞.
(2) f has a smooth Ω-gradient gradΩ f ∈ X(H∞) = C∞(H∞,H∞)

such that df(x)y = Ω(gradΩ f(x), y).
(3) f ∈ C∞∗ (H∞,R).

2.9. Theorem. The mapping

gradΩ : C∞∗ (H∞,R)→ XΩ(H∞), gradΩ f := Ω̌−1 ◦ df,

is well defined; also the Poisson bracket

{ , } : C∞∗ (H∞,R)× C∞∗ (H∞,R)→ C∞∗ (H∞,R),

{f, g} := i(gradΩ f)i(gradΩ g)Ω = Ω(gradΩ g, gradΩ f) =

= (gradΩ f)(g) = dg(gradΩ f)

is well defined and gives a Lie algebra structure to the space C∞∗ (H∞,R).
We also have the following long exact sequence of Lie algebras and

Lie algebra homomorphisms:

0→ H0(H∞)→ C∞∗ (H∞,R)
gradΩ−−−−→ XΩ(H∞)

γ−→ H1(H∞) = 0
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2.10. We consider now again as in 2.1 a unitary representation ρ : G→
U(H). By theorem 2.2 the associated mapping ρ̂ : G ×H∞ → H∞ is
smooth, so we have the infinitesimal mapping ρ′ : g→ X(H∞), given by
ρ′(X)(x) = Te(ρ̂( , x)) for X ∈ g and x ∈ H∞. Since ρ is a unitary
representation, the mapping ρ′ has values in the Lie subalgebra of all
linear hamiltonian vector fields ξ ∈ X(H∞) which respect the symplectic
form Ω, i.e. ξ : H∞ → H∞ is linear and LξΩ = 0.

Now let us consider the mapping Ω̌ ◦ ρ′(X) : H∞ → T (H∞) →
T ∗(H∞). We have d(Ω̌ ◦ ρ′(X)) = d(iρ′(X)Ω) = Lρ′(X)Ω = 0, so the
linear 1-form Ω̌ ◦ ρ′(X) is closed, and since H1(H∞) = 0, it is exact.
So there is a function σ(X) ∈ C∞(H∞,R) with dσ(X) = Ω̌ ◦ ρ′(X),
and σ(X) is uniquely determined up to addition of a constant. If we re-
quire σ(X)(0) = 0, then σ(X) is uniquely determined and is a quadratic
function. In fact we have σ(X)(x) =

∫
cx
Ω̌ ◦ ρ′(X), where cx(t) = tx.

Thus

σ(X)(x) =
∫ 1

0
Ω(ρ′(X)(tx), ddt tx)dt =

= Ω(ρ′(X)(x), x)
∫ 1

0
dt

= 1
2Ω(ρ′(X)(x), x).

2.11. Lemma. The mapping

σ : g→ C∞∗ (H∞,R), σ(X)(x) = 1
2Ω(ρ′(X)(x), x)

for X ∈ g and x ∈ H∞, is a Lie algebra homomorphism and gradΩ ◦σ =
ρ′.

For g ∈ G we have ρ(g)∗σ(X) = σ(X) ◦ ρ(g) = σ(Ad(g−1)X), so σ is
G-equivariant.

2.12. The moment mapping. For a unitary representation ρ : G →
U(H) we can now define the moment mapping

µ : H∞ → g′ = L(g,R),

µ(x)(X) := σ(X)(x) = 1
2Ω(ρ′(X)x, x),

for x ∈ H∞ and X ∈ g.
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2.13 Theorem. The moment mapping µ : H∞ → g′ has the following
properties:

(1) (dµ(x)y)(X) = Ω(ρ′(X)x, y) for x, y ∈ H∞ and X ∈ g, so µ ∈
C∞∗ (H∞, g′).

(2) For x ∈ H∞ the image of dµ(x) : H∞ → g′ is the annihilator gΩx
of the Lie algebra gx = {X ∈ g : ρ′(X)(x) = 0} of the isotropy
group Gx = {g ∈ G : ρ(g)x = x} in g′.

(3) For x ∈ H∞ the kernel of dµ(x) is

(Tx(ρ(G)x))Ω = {y ∈ H∞ : Ω(y, Tx(ρ(G)x)) = 0},

the Ω-annihilator of the tangent space at x of the G-orbit through
x.

(4) The moment mapping is equivariant: Ad′(g) ◦ µ = µ ◦ ρ(g) for
all g ∈ G, where Ad′(g) = Ad(g−1)′ : g′ → g′ is the coadjoint
action.

(5) The pullback operator µ∗ : C∞(g,R) → C∞(H∞,R) actually
has values in the subspace C∞∗ (H∞,R). It also is a Lie algebra
homomorphism for the Poisson brackets involved.

2.14. Let again ρ : G → U(H) be a unitary representation of a Lie
group G on a Hilbert space H.

Definition. A vector x ∈ H is called it real analytic if the mapping
g 7→ ρ(g)x, G → H is a real analytic mapping, in the real analytic
structure of the Lie group G.

We will use from now on the theory of real analytic mappings in
infinite dimensions as developed in [K-M]. So the following conditions
on x ∈ H are equivalent:

(1) x is a real analytic vector.
(2) g 3 X 7→ ρ(expX)x is locally near 0 given by a converging power

series.
(3) For each y ∈ H the mapping g 3 X 7→ 〈ρ(expX)x, y〉 ∈ C is

smooth and real analytic along affine lines in g, locally near 0.
The only nontrivial part is (3) ⇒ (1), and this follows from [K-M, 1.6
and 2.7] and the fact, that ρ is a representation.

Let Hω denote the vector space of all real analytic vectors in H. Then
we have a linear embedding j : Hω → Cω(G,H) into the space of real
analytic mappings, given by x 7→ (g 7→ ρ(g)x). We equip Cω(G,H) with
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the convenient vector space structure described in [K-M, 5.4, see also
3.13]. Then Hω consists of all equivariant functions in Cω(G,H) and is
therefore a closed subspace. So it is a convenient vector space with the
induced structure.

The space Hω is dense in the Hilbert space H by [Wa, 4.4.5.7] and
an invariant subspace, so we have a representation ρ : G→ L(Hω,Hω).

2.15. Theorem. The mapping ρ̂ : G ×Hω → Hω is real analytic in
the sense of [K-M].

Proof. Similar to the proof of theorem 2.2. �

2.16. Again we consider now Hω as a ”weak” symplectic real analytic
Fréchet manifold, equipped with the symplectic structure Ω, the restric-
tion of the imaginary part of the hermitian inner product 〈 , 〉 on H.
Then again Ω ∈ Ω2(Hω) is a closed 2-form which is non degenerate in
the sense that Ω̌ : Hω → H′ω = L(Hω,R) is injective. Let

H∗ω := Ω̌(Hω) = Ω(Hω, ) = Re〈Hω, 〉 ⊂ H′ω = L(Hω,R)

again denote the analytic dual of Hω, equipped with the topology in-
duced by the isomorphism with Hω.

2.17 Remark. All the results leading to the smooth moment mapping
can now be carried over to the real analytic setting with no changes
in the proofs. So all statements from 2.9 to 2.13 are valid in the real
analytic situation. We summarize this in one more result:

2.18 Theorem. Consider the injective linear continuous G-equivariant
mapping i : Hω → H∞. Then for the smooth moment mapping µ :
H∞ → g′ from 2.13 the composition µ ◦ i : Hω → H∞ → g′ is real
analytic. It is called the real analytic moment mapping.

2.19. Remarks. It is my conjecture that for an irreducible represen-
tation which is constructed by geometric quantization of an coadjoint
orbit (the Kirillov method), the restriction of the moment mapping to
the intersection of the unit sphere with the space of smooth vectors takes
values exactly in the orbit one started with, if the construction is suitably
normalized.

I have been unable to prove this conjecture in general, but Herbert
Wiklicky [Wi] has checked that this is true for the Heisenberg group.
He also checked that this moment mapping produces the expectation
value for the (angular) momentum in physically relevant situations and
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he claims that this moment mapping describes a sort of classical limit for
the quantum theory described by the unitary representation in question.

Let me add some thoughts on the rôle of the moment mapping in
the study of unitary representations. I think that its restriction to the
intersection of the unit sphere with the space of smooth vectors maps
to one coadjoint orbit, if the representation is irreducible (I was unable
to prove this). It is known that not all irreducible representations come
from line bundles over coadjoint orbits (alias geometric quantization),
but there might be a higher dimensional vector bundle over this coadjoint
orbit, whose space of sections contains the space of smooth vectors as
subspace of sections which are covariantly constant along some complex
polarization.
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