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THE MOMENT MAPPING FOR UNITARY REPRESENTATIONS

Peter W. Michor
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Abstract. For any unitary representation of an arbitrary Lie group I construct a
moment mapping from the space of smooth vectors of the representation into the dual

of the Lie algebra. This moment mapping is equivariant and smooth. For the space of
analytic vectors the same construction is possible and leads to a real analytic moment

mapping.
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1. Introduction

With the help of the cartesian closed calculus for smooth mappings as explained
in [F-K] we can show, that for any Lie group and for any unitary representation
its restriction to the space of smooth vectors is smooth. The imaginary part of the
hermitian inner product restricts to a ”weak” symplectic structure on the vector space
of smooth vectors. This gives rise to the Poisson bracket on a suitably chosen space of
smooth functions on the space of smooth vectors. The derivative of the representation
on the space of smooth vectors is a symplectic action of the Lie algebra, which can be
lifted to a Hamiltonian action, i.e. a Lie algebra homomorphism from the Lie algebra
into the function space with the Poisson bracket. This in turn gives rise to the moment
mapping from the space of smooth vectors into the dual of the Lie algebra.
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In [K-M] the cartesian closed setting for real analytic mappings in infinite dimen-
sions is fully developed. With its help it can be shown that the moment mapping
restricts to a real analytic mapping from the subspace of analytic vectors into the
dual of the Lie algebra.

For an irreducible representation which is constructed by geometric quantization
of an coadjoint orbit (the Kirillov method), the restriction of the moment mapping
to the intersection of the unit sphere with the space of smooth vectors takes values
has as image exactly the convex hull of the orbit one started with, if the construction
is suitably normalized. This has been proved by Wildberger [Wil]. I thank J. Hilgert
for bringing this paper to my attention.

Let me add some thoughts on the rôle of the moment mapping in the study of
unitary representations. I think that its restriction to the intersection of the unit
sphere with the space of smooth vectors maps to the convex hull of one coadjoint
orbit, if the representation is irreducible (I was unable to prove this). It is known that
not all irreducible representations come from line bundles over coadjoint orbits (alias
geometric quantization), but there might be a higher dimensional vector bundle over
this coadjoint orbit, whose space of sections contains the space of smooth vectors as
subspace of sections which are covariantly constant along some complex polarization.

For the convenience of the reader I have added three sections on the smooth,
holomorphic and real analytic setting, which is used in the rest of the paper. These
sections are of review character.

2. Calculus of smooth mappings

2.1. The traditional differential calculus works well for finite dimensional vector
spaces and for Banach spaces. For more general locally convex spaces a whole flock
of different theories were developed, each of them rather complicated and none really
convincing. The main difficulty is that the composition of linear mappings stops to
be jointly continuous at the level of Banach spaces, for any compatible topology. This
was the original motivation for the development of a whole new field within general
topology, convergence spaces.

Then in 1982, Alfred Frölicher and Andreas Kriegl presented independently the
solution to the question for the right differential calculus in infinite dimensions. They
joined forces in the further development of the theory and the (up to now) final
outcome is the book [F-K].

In this section I will sketch the basic definitions and the most important results of
the Frölicher-Kriegl calculus.

2.2. The c∞-topology. Let E be a locally convex vector space. A curve c : R→ E
is called smooth or C∞ if all derivatives exist and are continuous - this is a concept
without problems. Let C∞(R, E) be the space of smooth functions. It can be shown
that C∞(R, E) does not depend on the locally convex topology of E, only on its
associated bornology (system of bounded sets).

The final topologies with respect to the following sets of mappings into E coincide:
(1) C∞(R, E).
(2) Lipschitz curves (so that { c(t)−c(s)t−s : t 6= s} is bounded in E).
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(3) {EB → E : B bounded absolutely convex in E}, where EB is the linear span
of B equipped with the Minkowski functional pB(x) := inf{λ > 0 : x ∈ λB}.

(4) Mackey-convergent sequences xn → x (there exists a sequence 0 < λn ↗ ∞
with λn(xn − x) bounded).

This topology is called the c∞-topology on E and we write c∞E for the resulting
topological space. In general (on the space D of test functions for example) it is finer
than the given locally convex topology, it is not a vector space topology, since scalar
multiplication is no longer jointly continuous. The finest among all locally convex
topologies on E which are coarser than c∞E is the bornologification of the given
locally convex topology. If E is a Fréchet space, then c∞E = E.

2.3. Convenient vector spaces. Let E be a locally convex vector space. E is
said to be a convenient vector space if one of the following equivalent (completeness)
conditions is satisfied:

(1) Any Mackey-Cauchy-sequence (so that (xn − xm) is Mackey convergent to 0)
converges. This is also called c∞-complete.

(2) If B is bounded closed absolutely convex, then EB is a Banach space.
(3) Any Lipschitz curve in E is locally Riemann integrable.
(4) For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c′1 = c2 (existence of

antiderivative).

2.4. Lemma. Let E be a locally convex space. Then the following properties are
equivalent:

(1) E is c∞-complete.
(2) If f : Rk → E is scalarwise Lipk, then f is Lipk, for k > 1.
(3) If f : R→ E is scalarwise C∞ then f is differentiable at 0.
(4) If f : R→ E is scalarwise C∞ then f is C∞.

Here a mapping f : Rk → E is called Lipk if all partial derivatives up to order k
exist and are Lipschitz, locally on Rn. f scalarwise C∞ means that λ ◦ f is C∞ for
all continuous linear functionals on E.

This lemma says that a convenient vector space one can recognize smooth curves
by investigating compositions with continuous linear functionals.

2.5. Smooth mappings. Let E and F be locally convex vector spaces. A mapping
f : E → F is called smooth or C∞, if f ◦ c ∈ C∞(R, F ) for all c ∈ C∞(R, E); so
f∗ : C∞(R, E) → C∞(R, F ) makes sense. Let C∞(E,F ) denote the space of all
smooth mapping from E to F .

For E and F finite dimensional this gives the usual notion of smooth mappings: this
has been first proved in [Bo]. Constant mappings are smooth. Multilinear mappings
are smooth if and only if they are bounded. Therefore we denote by L(E,F ) the
space of all bounded linear mappings from E to F .

2.6. Structure on C∞(E,F ). We equip the space C∞(R, E) with the bornologi-
fication of the topology of uniform convergence on compact sets, in all derivatives
separately. Then we equip the space C∞(E,F ) with the bornologification of the ini-
tial topology with respect to all mappings c∗ : C∞(E,F )→ C∞(R, F ), c∗(f) := f ◦ c,
for all c ∈ C∞(R, E).
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2.7. Lemma. For locally convex spaces E and F we have:
(1) If F is convenient, then also C∞(E,F ) is convenient, for any E. The space

L(E,F ) is a closed linear subspace of C∞(E,F ), so it also convenient.
(2) If E is convenient, then a curve c : R → L(E,F ) is smooth if and only if

t 7→ c(t)(x) is a smooth curve in F for all x ∈ E.

2.8. Theorem. The category of convenient vector spaces and smooth mappings is
cartesian closed. So we have a natural bijection

C∞(E × F,G) ∼= C∞(E,C∞(F,G)),

which is even a diffeomorphism.

Of coarse this statement is also true for c∞-open subsets of convenient vector
spaces.

2.9. Corollary. Let all spaces be convenient vector spaces. Then the following
canonical mappings are smooth.

ev : C∞(E,F )× E → F, ev(f, x) = f(x)

ins : E → C∞(F,E × F ), ins(x)(y) = (x, y)

( )∧ : C∞(E,C∞(F,G))→ C∞(E × F,G)

( )∨ : C∞(E × F,G)→ C∞(E,C∞(F,G))

comp : C∞(F,G)× C∞(E,F )→ C∞(E,G)

C∞( , ) : C∞(F, F ′)× C∞(E′, E)→ C∞(C∞(E,F ), C∞(E′, F ′))

(f, g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏

C∞(Ei, Fi)→ C∞(
∏

Ei,
∏

Fi)

2.10. Theorem. Let E and F be convenient vector spaces. Then the differential
operator

d : C∞(E,F )→ C∞(E,L(E,F )),

df(x)v := lim
t→0

f(x+ tv)− f(x)
t

,

exists and is linear and bounded (smooth). Also the chain rule holds:

d(f ◦ g)(x)v = df(g(x))dg(x)v.

2.11. Remarks. Note that the conclusion of theorem 2.8 is the starting point of
the classical calculus of variations, where a smooth curve in a space of functions was
assumed to be just a smooth function in one variable more.

If one wants theorem 2.8 to be true and assumes some other obvious properties,
then the calculus of smooth functions is already uniquely determined.
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There are, however, smooth mappings which are not continuous. This is unavoid-
able and not so horrible as it might appear at first sight. For example the evaluation
E×E′ → R is jointly continuous if and only if E is normable, but it is always smooth.
Clearly smooth mappings are continuous for the c∞-topology.

For Fréchet spaces smoothness in the sense described here coincides with the notion
C∞c of [Ke]. This is the differential calculus used by [Mic], [Mil], and [P-S].

3. Calculus of holomorphic mappings

3.1. Along the lines of thought of the Frölicher-Kriegl calculus of smooth mappings,
in [K-N] the cartesian closed setting for holomorphic mappings was developed. We
will now sketch the basics and the main results. It can be shown that again convenient
vector spaces are the right ones to consider. Here we will start with them for the sake
of shortness.

3.2. Let E be a complex locally convex vector space whose underlying real space is
convenient – this will be called convenient in the sequel. Let D ⊂ C be the open unit
disk and let us denote by H(D, E) the space of all mappings c : D → E such that
λ ◦ c : D → C is holomorphic for each continuous complex-linear functional λ on E.
Its elements will be called the holomorphic curves.

If E and F are convenient complex vector spaces (or c∞-open sets therein), a
mapping f : E → F is called holomorphic if f ◦ c is a holomorphic curve in F for each
holomorphic curve c in E. Obviously f is holomorphic if and only if λ ◦ f : E → C
is holomorphic for each complex linear continuous functional λ on F . Let H(E,F )
denote the space of all holomorphic mappings from E to F .

3.3. Theorem (Hartog’s theorem). Let Ek for k = 1, 2 and F be complex con-
venient vector spaces and let Uk ⊂ Ek be c∞-open. A mapping f : U1 × U2 → F is
holomorphic if and only if it is separately holomorphic (i. e. f( , y) and f(x, ) are
holomorphic for all x ∈ U1 and y ∈ U2).

This implies also that in finite dimensions we have recovered the usual definition.

3.4 Lemma. If f : E ⊃ U → F is holomorphic then df : U × E → F exists, is
holomorphic and C-linear in the second variable.

A multilinear mapping is holomorphic if and only if it is bounded.

3.5 Lemma. If E and F are Banach spaces and U is open in E, then for a mapping
f : U → F the following conditions are equivalent:

(1) f is holomorphic.
(2) f is locally a convergent series of homogeneous continuous polynomials.
(3) f is C-differentiable in the sense of Fréchet.

3.6 Lemma. Let E and F be convenient vector spaces. A mapping f : E → F is
holomorphic if and only if it is smooth and its derivative is everywhere C-linear.

An immediate consequence of this result is that H(E,F ) is a closed linear subspace
of C∞(ER, FR) and so it is a convenient vector space if F is one, by 2.7. The chain
rule follows from 2.10. The following theorem is an easy consequence of 2.8.
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3.7 Theorem. The category of convenient complex vector spaces and holomorphic
mappings between them is cartesian closed, i. e.

H(E × F,G) ∼= H(E,H(F,G)).

An immediate consequence of this is again that all canonical structural mappings
as in 2.9 are holomorphic.

4. Calculus of real analytic mappings

4.1. In this section we sketch the cartesian closed setting to real analytic mappings in
infinite dimension following the lines of the Frölicher-Kriegl calculus, as it is presented
in [K-M]. Surprisingly enough one has to deviate from the most obvious notion of real
analytic curves in order to get a meaningful theory, but again convenient vector spaces
turn out to be the right kind of spaces.

4.2. Real analytic curves. Let E be a real convenient vector space with dual E′.
A curve c : R → E is called real analytic if λ ◦ c : R → R is real analytic for each
λ ∈ E′. It turns out that the set of these curves depends only on the bornology of E.

In contrast a curve is called topologically real analytic if it is locally given by
power series which converge in the topology of E. They can be extended to germs
of holomorphic curves along R in the complexification EC of E. If the dual E′ of E
admits a Baire topology which is compatible with the duality, then each real analytic
curve in E is in fact topologically real analytic for the bornological topology on E.

4.3. Real analytic mappings. Let E and F be convenient vector spaces. Let U
be a c∞-open set in E. A mapping f : U → F is called real analytic if and only if it
is smooth (maps smooth curves to smooth curves) and maps real analytic curves to
real analytic curves.

Let Cω(U,F ) denote the space of all real analytic mappings. We equip the space
Cω(U,R) of all real analytic functions with the initial topology with respect to the
families of mappings

Cω(U,R) c∗−→ Cω(R,R), for all c ∈ Cω(R, U)

Cω(U,R) c∗−→ C∞(R,R), for all c ∈ C∞(R, U),

where C∞(R,R) carries the topology of compact convergence in each derivative sep-
arately as in section 2, and where Cω(R,R) is equipped with the final locally convex
topology with respect to the embeddings (restriction mappings) of all spaces of holo-
morphic mappings from a neighborhood V of R in C mapping R to R, and each of
these spaces carries the topology of compact convergence.

Furthermore we equip the space Cω(U,F ) with the initial topology with respect
to the family of mappings

Cω(U,F ) λ∗−→ Cω(U,R), for all λ ∈ F ′.

It turns out that this is again a convenient space.
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4.4. Theorem. In the setting of 4.3 a mapping f : U → F is real analytic if and
only if it is smooth and is real analytic along each affine line in E.

4.5. Lemma. The space L(E,F ) of all bounded linear mappings is a closed linear
subspace of Cω(E,F ). A mapping f : U → L(E,F ) is real analytic if and only if
evx ◦f : U → F is real analytic for each point x ∈ E.

4.6. Theorem. The category of convenient spaces and real analytic mappings is
cartesian closed. So the equation

Cω(U,Cω(V, F )) ∼= Cω(U × V, F )

is valid for all c∞-open sets U in E and V in F , where E, F , and G are convenient
vector spaces.

This implies again that all structure mappings as in 2.9 are real analytic. Further-
more the differential operator

d : Cω(U,F )→ Cω(U,L(E,F ))

exists, is unique and real analytic. Multilinear mappings are real analytic if and
only if they are bounded. Powerful real analytic uniform boundedness principles are
available.

5. The Space of Smooth Vectors

5.1. Let G be any (finite dimensional second countable) real Lie group, and let ρ :
G → U(H) be a unitary representation on a Hilbert space H. Then the associated
mapping ρ̂ : G × H → H is in general not jointly continuous, it is only separately
continuous, so that g 7→ ρ(g)x, G→ H, is continuous for any x ∈ H.

Definition. A vector x ∈ H is called smooth (or real analytic) if the mapping g 7→
ρ(g)x, G→ H is smooth (or real analytic). Let us denote by H∞ the linear subspace
of all smooth vectors in H. Then we have an embedding j : H∞ → C∞(G,H),
given by x 7→ (g 7→ ρ(g)x). We equip C∞(G,H) with the compact C∞-topology (of
uniform convergence on compact subsets of G, in all derivatives separately). Then
it is easily seen (and proved in [Wa, p 253]) that H∞ is a closed linear subspace.
So with the induced topology H∞ becomes a Frèchet space. Clearly H∞ is also an
invariant subspace, so we have a representation ρ : G → L(H∞,H∞). For more
detailed information on H∞ see [Wa, chapt. 4.4.] or [Kn, chapt. III.].

5.2. Theorem. The mapping ρ̂ : G×H∞ → H∞ is smooth in the sense of Frölicher-
Kriegl.

Proof. By cartesian closedness 2.8 it suffices to show that the canonically associated
mapping

ρ̂∨ : G→ C∞(H∞,H∞)

is smooth; but it takes values in the closed subspace L(H∞,H∞) of all bounded linear
operators. So by it suffices to show that the mapping ρ : G→ L(H∞,H∞) is smooth.
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But for that, since H∞ is a Frèchet space and thus convenient, by 2.7(2) it suffices to
show that

G
ρ−→ L(H∞,H∞) evx−−→ H∞

is smooth for each x ∈ H∞. This requirement means that g 7→ ρ(g)x, G → H∞, is
smooth. For this it suffices to show that

G→ H∞
j−→ C∞(G,H),

g 7→ ρ(g)x 7→ (h 7→ ρ(h)(g)x),

is smooth. But again by cartesian closedness it suffices to show that the associated
mapping

G×G→ H,

(g, h) 7→ ρ(h)(g)x = ρ(hg)x,

is smooth. And this is the case since x is a smooth vector. �

6. The model for the moment mapping

6.1. We now consider H∞ as a ”weak” symplectic Frèchet manifold, equipped with
the symplectic structure Ω, the restriction of the imaginary part of the Hermitian
inner product 〈 , 〉 on H. Then Ω ∈ Ω2(H∞) is a closed 2-form which is non
degenerate in the sense that

Ω̌ : TH∞ = H∞ ×H∞ → T ∗H∞ = H∞ ×H∞′

is injective (but not surjective), where H∞′ = L(H∞,R) denotes the real topological
dual space. This is the meaning of ”weak” above.

6.2. Review. For a finite dimensional symplectic manifold (M,Ω) we have the
following exact sequence of Lie algebras:

0→ H0(M)→ C∞(M)
gradΩ−−−−→ XΩ(M)

γ−→ H1(M)→ 0

Here H∗(M) is the real De Rham cohomology of M , the space C∞(M) is equipped
with the Poisson bracket { , }, XΩ(M) consists of all vector fields ξ with LξΩ = 0
(the locally Hamiltonian vector fields), which is a Lie algebra for the Lie bracket. Also
gradΩ f is the Hamiltonian vector field for f ∈ C∞(M) given by i(gradΩ f)Ω = df ,
and γ(ξ) = [iξΩ]. The spaces H0(M) and H1(M) are equipped with the zero bracket.

Given a symplectic left action ` : G×M →M of a connected Lie group G on M ,
the first partial derivative of ` gives a mapping `′ : g → XΩ(M) which sends each
element X of the Lie algebra g of G to the fundamental vector field. This is a Lie
algebra homomorphism.

H0(M) i−−−−→ C∞(M)
gradΩ−−−−→ XΩ(M)

γ−−−−→ H1(M)

σ

x x`′
g g
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A linear lift σ : g → C∞(M) of `′ with gradΩ ◦σ = `′ exists if and only if γ ◦ `′ = 0
in H1(M). This lift σ may be changed to a Lie algebra homomorphism if and only if
the 2-cocycle σ̄ : g× g→ H0(M), given by (i ◦ σ̄)(X,Y ) = {σ(X), σ(Y )}− σ([X,Y ]),
vanishes in H2(g, H0(M)), for if σ̄ = δα then σ−i◦α is a Lie algebra homomorphism.

If σ : g→ C∞(M) is a Lie algebra homomorphism, we may associate the moment
mapping µ : M → g′ = L(g,R) to it, which is given by µ(x)(X) = σ(X)(x) for x ∈M
and X ∈ g. It is G-equivariant for a suitably chosen (in general affine) action of G on
g′. See [We] or [L-M] for all this.

7. Hamiltonian Mechanics on H∞

7.1. We now want to carry over to the setting of 5.1 and 5.2 the procedure of 6.2. The
first thing to note is that the hamiltonian mapping gradΩ : C∞(H∞)→ XΩ(H∞) does
not make sense in general, since Ω̌ : H∞ → H∞′ is not invertible: gradΩ f = Ω̌−1df
is defined only for those f ∈ C∞(H∞) with df(x) in the image of Ω̌ for all x ∈ H∞.
A similar difficulty arises for the definition of the Poisson bracket on C∞(H∞).

Let 〈x, y〉 = Re〈x, y〉 +
√
−1Ω(x, y) be the decomposition of the hermitian inner

product into real and imaginary parts. Then Re〈x, y〉 = Ω(
√
−1x, y), thus the real

linear subspaces Ω̌(H∞) = Ω(H∞, ) and Re〈H∞, 〉 of H∞′ = L(H∞,R) coincide.

7.2 Definition. Let H∗∞ denote the real linear subspace

H∗∞ = Ω(H∞, ) = Re〈H∞, 〉

of H∞′ = L(H∞,R), and let us call it the smooth dual of H∞ in view of the embedding
of test functions into distributions. We have two canonical isomorphisms H∗∞ ∼= H∞
induced by Ω and Re〈 , 〉, respectively. Both induce the same Fréchet topology
on H∗∞, which we fix from now on.

7.3 Definition. Let C∞∗ (H∞,R) ⊂ C∞(H∞,R) denote the linear subspace con-
sisting of all smooth functions f : H∞ → R such that each iterated derivative
dkf(x) ∈ Lksym(H∞,R) has the property that

dkf(x)( , y2, . . . , yk) ∈ H∞∗

is actually in the smooth dual H∗∞ ⊂ H∞′ for all x, y2, . . . , yk ∈ H∞, and that the
mapping

k∏
H∞ → H∞

(x, y2, . . . , yk) 7→ Ω̌−1(df(x)( , y2, . . . , yk))

is smooth. Note that we could also have used Re〈 , 〉 instead of Ω. By the
symmetry of higher derivatives this is then true for all entries of dkf(x), for all x.
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7.4 Lemma. For f ∈ C∞(H∞,R) the following assertions are equivalent:
(1) df : H∞ → H∞′ factors to a smooth mapping H∞ → H∗∞.
(2) f has a smooth Ω-gradient gradΩ f ∈ X(H∞) = C∞(H∞,H∞) such that

df(x)y = Ω(gradΩ f(x), y).
(3) f ∈ C∞∗ (H∞,R).

Proof. Clearly (3) =⇒ (2) ⇐⇒ (1). We have to show that (2) =⇒ (3).
Suppose that f : H∞ → R is smooth and df(x)y = Ω(gradΩ f(x), y). Then

dkf(x)(y1, . . . , yk) = dkf(x)(y2, . . . , yk, y1)

= (dk−1(df)(x)(y2, . . . , yk)(y1)

= Ω(dk−1(gradΩ f)(x)(y2, . . . , yk), y1). �

7.5. Theorem. The mapping gradΩ : C∞∗ (H∞,R)→ XΩ(H∞), given by gradΩ f :=
Ω̌−1 ◦ df , is well defined; also the Poisson bracket

{ , } : C∞∗ (H∞,R)× C∞∗ (H∞,R)→ C∞∗ (H∞,R),

{f, g} := i(gradΩ f)i(gradΩ g)Ω = Ω(gradΩ g, gradΩ f) =

= (gradΩ f)(g) = dg(gradΩ f)

is well defined and gives a Lie algebra structure to the space C∞∗ (H∞,R).
We also have the following long exact sequence of Lie algebras and Lie algebra

homomorphisms:

0→ H0(H∞)→ C∞∗ (H∞,R)
gradΩ−−−−→ XΩ(H∞)

γ−→ H1(H∞) = 0

Proof. It is clear from lemma 7.4, that the hamiltonian mapping is defined, and
thus also the Poisson bracket is defined as a mapping { , } : C∞∗ (H∞,R) ×
C∞∗ (H∞,R) → C∞(H∞,R), and it only remains to check that it has values in the
subspace C∞∗ (H∞,R).

So let f , g ∈ C∞∗ (H∞), then {f, g}(x) = dg(x)(gradΩ f(x)) and by the symmetry
of dg(x) we have

d({f, g})(x)y = d2g(x)(y, gradΩ f(x)) + dg(x)(d(gradΩ f)(x)y)

= Ω
(
d(gradΩ g)(x)(gradΩ f(x)), y

)
+Ω

(
gradΩ g(x), d(gradΩ f)(x)y

)
= Ω

(
d(gradΩ g)(x)(gradΩ f(x))− d(gradΩ f)(x)(gradΩ g(x)), y

)
,

since gradΩ f ∈ XΩ(H∞) and for any X ∈ XΩ(H∞) the condition LXΩ = 0 implies
Ω(dX(x)y1, y2) = −Ω(y1, dX(x)y2). So (2) of lemma 7.4 is satisfied and thus {f, g} ∈
C∞∗ (H∞).

For the rest any coordinate free finite dimensional proof works. �
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8. The moment mapping for a unitary representation

8.1. We consider now again as in 5.1 a unitary representation ρ : G → U(H). By
theorem 5.2 the associated mapping ρ̂ : G ×H∞ → H∞ is smooth, so we have the
infinitesimal mapping ρ′ : g→ X(H∞), given by ρ′(X)(x) = Te(ρ̂( , x))X for X ∈ g
and x ∈ H∞. Since ρ is a unitary representation, the mapping ρ′ has values in the
Lie subalgebra of all linear hamiltonian vector fields ξ ∈ X(H∞) which respect the
symplectic form Ω, i.e. ξ : H∞ → H∞ is linear and LξΩ = 0.

Now let us consider the mapping Ω̌ ◦ ρ′(X) : H∞ → T (H∞)→ T ∗(H∞). We have
d(Ω̌ ◦ ρ′(X)) = d(iρ′(X)Ω) = Lρ′(X)Ω = 0, so the linear 1-form Ω̌ ◦ ρ′(X) is closed,
and since H1(H∞) = 0, it is exact. So there is a function σ(X) ∈ C∞(H∞,R) with
dσ(X) = Ω̌ ◦ ρ′(X), and σ(X) is uniquely determined up to addition of a constant.
If we require σ(X)(0) = 0, then σ(X) is uniquely determined and is a quadratic
function. In fact we have σ(X)(x) =

∫
cx
Ω̌ ◦ ρ′(X), where cx(t) = tx. Thus

σ(X)(x) =
∫ 1

0
Ω(ρ′(X)(tx), ddt tx)dt =

= Ω(ρ′(X)(x), x)
∫ 1

0
tdt

= 1
2Ω(ρ′(X)(x), x).

8.2. Lemma. The mapping

σ : g→ C∞∗ (H∞,R), σ(X)(x) = 1
2Ω(ρ′(X)(x), x)

for X ∈ g and x ∈ H∞, is a Lie algebra homomorphism and gradΩ ◦σ = ρ′.
For g ∈ G we have ρ(g)∗σ(X) = σ(X)◦ρ(g) = σ(Ad(g−1)X), so σ is G-equivariant.

Proof. First we have to check that σ(X) ∈ C∞∗ (H∞,R). Since ρ′(X) : H∞ → H∞
is smooth and linear, i.e. bounded linear, this follows from the formula for σ(X).
Furthermore

gradΩ(σ(X))(x) = Ω̌−1(dσ(X)(x)) =

= 1
2 Ω̌
−1 (Ω(ρ′(X)( ), x) +Ω(ρ′(X)(x), )) =

= Ω̌−1 (Ω(ρ′(X)(x), )) = ρ′(X)(x),

since Ω(ρ′(X)(x), y) = Ω(ρ′(X)(y), x).
Clearly σ([X,Y ])−{σ(X), σ(Y )} is a constant function by 7.5; since it also vanishes

at 0 ∈ H∞, the mapping σ : g→ C∞∗ (H∞) is a Lie algebra homomorphism.
For the last assertion we have

σ(X)(ρ(g)x) = 1
2Ω(ρ′(X)(ρ(g)x), ρ(g)x)

= 1
2 (ρ(g)∗Ω)(ρ(g−1)ρ′(X)(ρ(g)x), x)

= 1
2Ω(ρ′(Ad(g−1)X)x, x) = σ(Ad(g−1)X)(x). �
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8.3. The moment mapping. For a unitary representation ρ : G → U(H) we can
now define the moment mapping

µ : H∞ → g′ = L(g,R),

µ(x)(X) := σ(X)(x) = 1
2Ω(ρ′(X)x, x),

for x ∈ H∞ and X ∈ g.

8.4 Theorem. The moment mapping µ : H∞ → g′ has the following properties:
(1) (dµ(x)y)(X) = Ω(ρ′(X)x, y) for x, y ∈ H∞ and X ∈ g, so µ ∈ C∞∗ (H∞, g′).
(2) For x ∈ H∞ the image of dµ(x) : H∞ → g′ is the annihilator gΩx of the Lie

algebra gx = {X ∈ g : ρ′(X)(x) = 0} of the isotropy group Gx = {g ∈ G :
ρ(g)x = x} in g′.

(3) For x ∈ H∞ the kernel of dµ(x) is

(Tx(ρ(G)x))Ω = {y ∈ H∞ : Ω(y, Tx(ρ(G)x)) = 0},

the Ω-annihilator of the tangent space at x of the G-orbit through x.
(4) The moment mapping is equivariant: Ad′(g)◦µ = µ◦ρ(g) for all g ∈ G, where

Ad′(g) = Ad(g−1)′ : g′ → g′ is the coadjoint action.
(5) The pullback operator µ∗ : C∞(g,R)→ C∞(H∞,R) actually has values in the

subspace C∞∗ (H∞,R). It also is a Lie algebra homomorphism for the Poisson
brackets involved.

Proof. (1). Differentiating the defining equation we get

(a) (dµ(x)y)(X) = 1
2Ω(ρ′(X)y, x) + 1

2Ω(ρ′(X)x, y) = Ω(ρ′(X)x, y).

From lemma 7.4 we see that µ ∈ C∞∗ (H∞, g′).
(2) and (3) are immediate consequences of this formula.
(4). We have

µ(ρ(g)x)(X) = σ(X)(ρ(g)x) = σ(Ad(g−1)X)(x) by lemma 8.2

= µ(x)(Ad(g−1)X) = (Ad(g−1)′µ(x))(X).

(5). Let f ∈ C∞(g′,R), then we have

d(µ∗f)(x)y = d(f ◦ µ)(x)y = df(µ(x))dµ(x)y(b)

= (dµ(x)y)(df(µ(x))) = Ω(ρ′(df(µ(x)))x, y)

by (a), which is smooth in x as a mapping into H∞ ∼= H∗∞ ⊂ H′∞ since g′ is finite
dimensional. From lemma 7.4 we have that f ◦ µ ∈ C∞∗ (H∞,R).

Ω(gradΩ(µ∗f)(x), y) = d(µ∗f)(x)y = Ω(ρ′(df(µ(x)))x, y)

by (b), so gradΩ(µ∗f)(x) = ρ′(df(µ(x)))x. The Poisson structure on g′ is given as
follows. We view the Lie bracket on g as a linear mapping Λ2g → g; its adjoint
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P : g′ → Λ2g′ is then a section of the bundle Λ2Tg′ → g′, which is called the Poisson
structure on g′. If for α ∈ g′ we view df(α) ∈ L(g′,R) as an element in g, the
Poisson bracket for fi ∈ C∞(g′,R) is given by {f1, f2}g′(α) = (df1 ∧ df2)(P )|α =
α([df1(α), df2(α)]). Then we may compute as follows.

(µ∗{f1, f2}g′)(x) = {f1, f2}g′(µ(x))

= µ(x)([df1(µ(x)), df2(µ(x))])

= σ([df1(µ(x)), df2(µ(x))])(x)

= {σ(df1(µ(x))), σ(df2(µ(x)))}(x) by lemma 8.2

= Ω(gradΩ σ(df2(µ(x)))(x), gradΩ σ(df1(µ(x)))(x))

= Ω(ρ′(df2(µ(x)))x, ρ′(df1(µ(x)))x)

= Ω(gradΩ(µ∗f2)(x), gradΩ(µ∗f1)(x)) by (b)

= {µ∗f1, µ∗f2}H∞(x). �

9. The real analytic moment mapping

9.1. Let again ρ : G → U(H) be a unitary representation of a Lie group G on a
Hilbert space H.

Definition. A vector x ∈ H is called it real analytic if the mapping g 7→ ρ(g)x, G→ H
is a real analytic mapping, in the real analytic structure of the Lie group G, in the
setting explained in section 4.

Let Hω denote the vector space of all real analytic vectors in H. Then we have a
linear embedding j : Hω → Cω(G,H) into the space of real analytic mappings, given
by x 7→ (g 7→ ρ(g)x). We equip Cω(G,H) with the convenient vector space structure
described in [K-M, 5.4, see also 3.13]. Then Hω consists of all equivariant functions
in Cω(G,H) and is therefore a closed subspace. So it is a convenient vector space
with the induced structure.

The space Hω is dense in the Hilbert space H by [Wa, 4.4.5.7] and an invariant
subspace, so we have a representation ρ : G→ L(Hω,Hω).

9.2. Theorem. The mapping ρ̂ : G × Hω → Hω is real analytic in the sense of
[K-M].

Proof. By cartesian closedness of the calculus 4.6 it suffices to show that the canoni-
cally associated mapping

ρ̂∨ : G→ Cω(Hω,Hω)

is real analytic. It takes values in the closed linear subspace L(Hω,Hω) of all bounded
linear operators. So it suffices to check that the mapping ρ : G→ L(Hω,Hω) is real
analytic. Since Hω is a convenient space, by 4.5 it suffices to show that

G
ρ−→ L(Hω,Hω) evx−−→ Hω
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is real analytic for each x ∈ Hω. Since the structure on Hω is induced by the
embedding into Cω(G,H), we have to check, that

G
ρ−→ L(Hω,Hω) evx−−→ Hω

j−→ Cω(G,H),

g 7→ ρ(g) 7→ ρ(g)x 7→ (h 7→ ρ(h)ρ(g)x),

is real analytic for each x ∈ Hω. Again by cartesian closedness 4.6 it suffices that the
associated mapping

G×G→ H

(g, h) 7→ ρ(h)ρ(g)x = ρ(hg)x

is real analytic. And this is the case since x is a real analytic vector. �

9.3. Again we consider now Hω as a ”weak” symplectic real analytic Fréchet mani-
fold, equipped with the symplectic structure Ω, the restriction of the imaginary part
of the hermitian inner product 〈 , 〉 on H. Then again Ω ∈ Ω2(Hω) is a closed 2-
form which is non degenerate in the sense that Ω̌ : Hω → H′ω = L(Hω,R) is injective.
Let

H∗ω := Ω̌(Hω) = Ω(Hω, ) = Re〈Hω, 〉 ⊂ H′ω = L(Hω,R)

again denote the analytic dual of Hω, equipped with the topology induced by the
isomorphism with Hω.

9.4 Remark. All the results leading to the smooth moment mapping can now be
carried over to the real analytic setting with no changes in the proofs. So all state-
ments from 7.5 to 8.4 are valid in the real analytic situation. We summarize this in
one more result:

9.5 Theorem. Consider the injective linear continuous G-equivariant mapping i :
Hω → H∞. Then for the smooth moment mapping µ : H∞ → g′ from 8.4 the
composition µ ◦ i : Hω → H∞ → g′ is real analytic. It is called the real analytic
moment mapping.

Proof. It is immediately clear from 9.2 and the formula 8.3 for the smooth moment
mapping, that µ ◦ i is real analytic. �
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liebigen lokalkonvexen Vektorräumen, Monatshefte für Math. 95 (1983), 287–309.
[K-M] Kriegl, Andreas; Michor, Peter W., The convenient setting for real analytic mappings, 52

p., Acta Math. (1989).

[K-M2] Kriegl, A.; Michor, P. W., Aspects of the theory of infinite dimensional manifolds, Differen-
tial Geometry and Applications 1(1) (1990).

[K-N] Kriegl, Andreas; Nel, Louis D., A convenient setting for holomorphy, Cahiers Top. Géo.
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