
Rend. Sem. Mat. Univ. Pol. Torino 53, 3 (1996), 373-392

n-ARY LIE AND ASSOCIATIVE ALGEBRAS

Peter W. Michor
Alexandre M. Vinogradov

Erwin Schrödinger International Institute of Mathematical Physics, Wien, Austria
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Abstract. With the help of the multigraded Nijenhuis– Richardson bracket and the

multigraded Gerstenhaber bracket from [7] for every n ≥ 2 we define n-ary associative

algebras and their modules and also n-ary Lie algebras and their modules, and we give
the relevant formulas for Hochschild and Chevalley cohomogy.
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1. Introduction

In 1985 V. Filipov [3] proposed a generalization of the concept of a Lie algebra
by replacing the binary operation by an n-ary one. He defined an n-ary Lie algebra
structure on a vector space V as an operation which associates with each n-tuple
(u1, . . . , un) of elements in V another element [u1, . . . , un] which is n-linear, skew
symmetric, and satisfies the n-Jacobi identity:

(1) [u1, . . . , un−1, [v1, . . . , vn]] =
∑

[v1, . . . , vi−1[u1, . . . , un−1, vi], . . . , vn].
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Apparently Filippov was motivated by the fact that with this definition one can
delelop a meaningful structure theory, in accordance with the aim of Malcev’s school:
To look for algebraic structures that manifest good properties.

On the other hand, in 1973 Y. Nambu [13] proposed an n-ary generalization of
Hamiltonian dynamics by means of the n-ary ‘Poisson bracket’

(2) {f1, . . . , fn} = det
(
∂fi
∂xj

)
.

Apparently he looked for a simple model which explains the unseparability of quarks.
Much later, in the early 90’s, it was noticed by M. Flato, C. Fronsdal, and others, that
the n-bracket (2) satisfies (1). On this basis L. Takhtajan [17] developed sytematically
the foundations of of the theory of n-Poisson or Nambu-Poisson manifolds. It seems
that the work of Filippov was unknown then; in particular Takhtajan reproduces
some results from [3] without refereing to it.

Recently Alekseevsky and Guha [1] and later Marmo, Vilasi, and Vinogradov [9]
proved that n-Poisson structures of the kind above are extremely rigid: Locally they
are given by n commuting vector fields of rank n, if n > 2; in other words, n-Poisson
structures are locally given by (2). This rigidity suggests that one should look for
alternative n-ary analogs of the concept of a Lie algebra. One of them is proposed
below in this paper. It is based on the completely skew symmetrized version of
Filippov’s Jacobi identity (2). It is shown in [20] that this approach leads to richer
and more diverse structures which seem to be more useful for purposes of dynamics. In
fact, we were lead in 1990-92 to the constructions of this paper by some expectations
about n-body mechanics and the naturality of the machinary developed in [7]. So,
our motives were quite different from that by Filippov, Nambu and Takhtajian. This
paper is essentailly based on our unpublished notes from 1990-92. In view of the
recent developments we decided to publish them now. In this paper we consider G-
graded n-ary generalizations of the concept of associative algebras, of Lie algebras,
their modules, and their cohomologies; all this is produced by the algebraic machinery
of [7]. Related (but not graded) concepts are discussed in [4] in terms of operads and
their Koszul duality. The recent preprints [2] and [5] propose dynamical models which
correspond to the not graded case with even n in our construction.

2. Review of binary algebras and bimodules

In this section we review the results from the paper [7] in a slightly different point
of view.

2.1. Conventions and definitions. By a grading group we mean a commutative
group (G,+) together with a Z-bilinear symmetric mapping (bicharacter) 〈 , 〉 :
G × G → Z2 := Z/2Z. Elements of G will be called degrees, or G-degrees if more
precision is necessary. A standard example of a grading group is Zm with 〈x, y〉 =∑m
i=1 x

iyi( mod 2). If G is a grading group we will consider the grading group Z×G
with 〈(k, x), (l, y)〉 = kl( mod 2) + 〈x, y〉.

A G-graded vector space is just a direct sum V =
⊕

x∈G V
x, where the elements

of V x are said to be homogeneous of G-degree x. We assume that vector spaces are
defined over a field K of characteristic 0. In the following X, Y , etc will always denote
homogeneous elements of some G-graded vector space of G-degrees x, y, etc.
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By an G-graded algebra A =
⊕

x∈GAx we mean an G-graded vector space which
is also a K algebra such that Ax · Ay ⊆ Ax+y.

(1) The G-graded algebra (A, ·) is said to be G-graded commutative if for homo-
geneous elements X, Y ∈ A of G-degree x, y, respectively,we have X · Y =
(−1)〈x,y〉Y ·X.

(2) If X · Y = −(−1)〈x,y〉Y ·X holds it is called G-graded anticommutative.
(3) By an G-graded Lie algebra we mean a G-graded anticommutative algebra

(E , [ , ]) for which the G-graded Jacobi identity holds:

[X, [Y,Z]] = [[X,Y ], Z] + (−1)〈x,y〉[Y, [X,Z]]

Obviously the space End(V ) =
⊕

δ∈G Endδ(V ) of all endomorphisms of a G-graded
vector space V is a G-graded algebra under composition, where Endδ(V ) is the space
of linear endomorphisms D of V of G-degree δ, i.e. D(V x) ⊆ V x+δ. Clearly End(V )
is a G-graded Lie algebra under the G-graded commutator

(4) [D1, D2] := D1 ◦D2 − (−1)〈δ1,δ2〉D2 ◦D1.

If A is a G-graded algebra, an endomorphism D : A → A of G-degree δ is called a
G-graded derivation, if for X, Y ∈ A we have

(5) D(X · Y ) = D(X) · Y + (−1)〈δ,x〉X ·D(Y ).

Let us write Derδ(A) for the space of all G-graded derivations of degree δ of the
algebra A, and we put

(5) Der(A) =
⊕
δ∈G

Derδ(A).

The following lemma is standard:

Lemma. If A is an G-graded algebra, then the space Der(A) of G-graded derivations
is an G-graded Lie algebra under the G-graded commutator.

2.2 Graded associative algebras. Let V =
⊕

x∈G V
x be anG-graded vector space.

We define
M(V ) :=

⊕
(k,κ)∈Z×G

M (k,κ)(V ),

where M (k,κ)(V ) is the space of all k + 1-linear mappings K : V × . . .× V → V such
that K(V x0 × . . .×V xk) ⊆ V x0+···+xk+κ. We call k the form degree and κ the weight
degree of K. We define for Ki ∈M (ki,κi)(V ) and Xj ∈ V xj

(j(K1)K2)(X0, . . . , Xk1+k2) :=

=
k2∑
i=0

(−1)k1i+〈κ1,κ2+x0+···+xi−1〉K2(X0, . . . ,K1(Xi, . . . , Xi+k1), . . . , Xk1+k2),

[K1,K2]∆ = j(K1)K2 − (−1)k1k2+〈κ1,κ2〉j(K2)K1.
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Theorem. Let V be an G-graded vector space. Then we have:
(1) (M(V ), [ , ]∆) is a (Z×G)-graded Lie algebra.
(2) If µ ∈M (1,0)(V ), so µ : V × V → V is bilinear of weight 0 ∈ G, then µ is an

associative G-graded multiplication if and only if j(µ)µ = 0.
(3) If ν ∈M (1,n)(V ), so ν : V ×V → V is bilinear of weight n ∈ G, then j(ν)ν = 0

is equivalent to

ν(ν(X0, X1), X2)− (−1)〈n,n〉ν(X0, ν(X1, X2)) = 0

which is the natural notion of an associative multiplication of weigth n ∈ G.

Proof. The first assertion is from [7]. The second and third assertion follows by
writing out the definitions. �

In [7] the formulation was as follows: µ ∈ M (1,0)(V ) is an associative G-graded
algebra structure if and only if [µ, µ]∆ = 2j(µ)µ = 0. For ν ∈ M (1,n)(V ) we have
[ν, ν]∆ = (1 + (−1)〈n,n〉)j(ν)ν.

2.3. Multigraded bimodules. Let V and W be G-graded vector spaces and µ :
V × V → V a G-graded algebra structure. A G-graded bimodule M = (W,λ, ρ) over
A = (V, µ) is given by λ, ρ : V → End(W ) of weight 0 such that

j(µ)µ = 0 so A is associative(1)

λ(µ(X1, X2)) = λ(X1) ◦ λ(X2)(2)

ρ(µ(X1, X2)) = (−1)〈x1,x2〉ρ(X2) ◦ ρ(X1)(3)

λ(X1) ◦ ρ(X2) = (−1)〈x1,x2〉ρ(X2) ◦ λ(X1)(4)

where Xi ∈ V xi and ◦ denotes the composition in End(W ).

2.4. Theorem. Let E be the (Z×G)-graded vector space defined by

E(k,∗) =


V if k = 0
W if k = 1
0 otherwise.

Then P ∈M (1,0)(E) defines a bimodule structure on W if and only if j(P )P = 0.

Proof. We define

µ(X1, X2) := P (X1, X2)

λ(X)Y := P (X,Y )

ρ(X)Y := (−1)〈x,y〉P (Y,X)

where we suppose the Xi’s ∈ V and Y ∈W to be embedded in E. Then if Zi ∈ E is
arbitrary we get

(j(P )P )(Z0, Z1, Z2) = P ((Z0, Z1), Z2)− P (Z0, (Z1, Z2)).

Now specify Zi ∈ V resp. W to get eight independent equations. Four of them vanish
identically because of their degree of homogeneity, the others recover the defining
equations for the G-graded bimodules. �
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2.5 Corollary. In the above situation we have the following decomposition of the
(Z2 ×G)-graded space M(E) :

M (k,q,∗)(E) =


0 for q > 1

L(k+1,∗)(V,W ) for q = 1

M (k,∗)(V )
k+1⊕

(L(k,∗)(V,End(W )) for q = 0

where L(k,∗)(V,W ) denotes the space of k-linear mappings V × . . .× V →W . If P is
as above, then P = µ+ λ+ ρ corresponds exactly to this decomposition. �

2.6. Hochschild cohomology and multiplicative structures. Let V ,W and P
be as in Theorem 2.4 and let ν : W ×W → W be a G-graded algebra structure, so
ν ∈M (1,−1,0)(E). Then for Ci ∈ L(ki,ci)(V,W ) we define

C1 • C2 := [C1, [C2, ν]∆]∆ = ±ν(C1, C2).

Since [C1, C2]∆ = 0 it follows that (L(V,W ), •) is (Z×G)-graded commutative.

Theorem.
1. The mapping [P, ]∆ : M(E) → M(E) is a differential. Its restriction δP to

L(V,W ) is a generalization of the Hochschild coboundary operator to the G-graded
case: If C ∈ L(k,c)(V,W ), then we have for Xi ∈ V xi

(δPC)(X0, . . . , Xk) = λ(X0)C(X1, . . . , Xk)

−
k−1∑
i=0

(−1)iC(X0, . . . , µ(Xi, Xi+1), . . . , Xk)

+ (−1)k+1+〈x0+···+xk−1+c,xk〉ρ(Xk)C(X0, . . . , Xk−1)

The corresponding (Z×G)-graded cohomology will be denoted by H(A,M).
2. If [P, ν]∆ = 0, then δP is a derivation of L(V,W ) of (Z × G)-degree (1, 0). In

this case the product • carries over to a (Z×G)-graded (cup) product on H(A,M).

3. n-ary G-graded associative algebras and n-ary modules

3.1. Definition. Let V be a G-graded vector space. Let µ ∈ M (n−1,0)(V ), so
µ : V ⊗n → V is n-linear of weight 0 ∈ G.

We call µ an n-ary associative G-graded multiplication of weigth 0 ∈ G if j(µ)µ =
0 ∈M (2n−2,0)(V ).

Remark. We are forced to use j(µ)µ = 0 instead of [µ, µ]∆ = 0 since the latter
condition is automatically satisfied for odd n.

3.2. Example. If V is 0-graded, then a ternary associative multiplication µ : V ×
V × V → V satisfies

(j(µ)µ)(X0, . . . , X5) = µ(µ(X0, X1, X2), X3, X4)+

+ µ(X0, µ(X1, X2, X3), X4) + µ(X0, X1, µ(X2, X3, X4)) = 0.
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3.3. Definition. Let V and W be G-graded vector spaces. We consider the (Z×G)-
graded vector space E defined by

E(k,∗) =


V if k = 0
W if k = 1
0 otherwise.

Then P ∈M (n−1,0,0)(E) is called an n-ary G-graded module structure on W over an
n-ary algebra structure on V if j(P )P = 0. Let us denote the resulting n-ary algebra
by A, and the n-ary module by W.

The mapping P is the sum of partial mappings

µ = P : V × . . .× V → V the n-ary algebra structure
P : W × V × . . .× V →W the rightmost n-ary module structure
P : V ×W × V × . . .× V →W

. . .

P : V × . . .× V ×W × V →W

P : V × . . .× V ×W →W the leftmost n-ary module structure

This decomposition of P corresponds exactly to the last line in the decomposition of
M (n−1,0,∗) of 2.5.

The above definition is easily generalized by changing the form degree of W or/and
by augmenting the number of W ’s. For simplicity we don’t discuss this possibility
here.

3.4. Example. If V andW are 0-graded then a ternary module satisfies the following
conditions besides the one from 3.2 describing the ternary algebra structure on V :

P (P (w0, v1, v2), v3, v4) + P (w0, µ(v1, v2, v3), v4) + P (w0, v1, µ(v2, v3, v4)) = 0

P (P (v0, w1, v2), v3, v4) + P (v0, P (w1, v2, v3), v4) + P (v0, w1, µ(v2, v3, v4)) = 0

P (P (v0, v1, w2), v3, v4) + P (v0, P (v1, w2, v3), v4) + P (v0, v1, P (w2, v3, v4)) = 0

P (µ(v0, v1, v2), w3, v4) + P (v0, P (v1, v2, w3), v4) + P (v0, v1, P (v2, w3, v4)) = 0

P (µ(v0, v1, v2), v3, w4) + P (v0, µ(v1, v2, v3), w4) + P (v0, v1, P (v2, v3, w4)) = 0

3.5. Hochschild cohomology for even n. Let V and W be G-graded vector
spaces, and let P ∈M (n−1,0,0)(E) be an n-ary module structure on W over an n-ary
G-graded algebra structure on V as in definition 3.3.

Theorem. Let n = 2k be even. Then we have:
The mapping [P, ]∆ : M(E) → M(E) is a differential. Its restriction δP to

L(V,W ) is called the Hochschild coboundary operator. For a cochain C ∈ M (k,1,c) =
L(k+1,c)(V,W ) and with p = n− 1 we have for Xi ∈ V xi

(δPC)(X0, . . . , Xk+p) =
k∑
i=0

(−1)piC(X0 . . . , P (Xi, . . . , Xi+p), . . . , Xk+p)

−
p∑
j=0

(−1)k(j+p)+〈x0+···+xj−1,c〉P (X0, . . . , C(Xj , . . . , Xj+k), . . . , Xk+p).
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The corresponding (Z×G)-graded cohomology will be denoted by H(A,M).

Proof. We have by the (Z2 ×G)-graded Jacobi identity

[P, [P,Q]∆]∆ = [[P, P ]∆, Q]∆ + (−1)(n−1)2
[P, [P,Q]∆]∆

which implies that [P, ]∆ is a differential since n− 1 is odd and [P, P ]∆ = j(P )P −
(−1)(n−1)2

j(P )P = 2j(P )P = 0. The rest follows from a computation. �

3.6. Remark. We get an easy extension of the Hochschild coboundary operator
for n-ary algebra structures for odd n if we choose the weigth accordingly. Let P ∈
M (n−1,0,p)(E) be an n-ary module structure of weight p on W over an n-ary G-
graded algebra structure of weight p on V , similarly as in definition 3.3: We require
that j(P )P = 0. Let us suppose that ‖(n− 1, 0, p)‖2 = (n− 1)2 + 〈p, p〉 is odd. Then
by 2.2 we have

[P, P ]∆ =
(

1− (−1)(n−1)2+〈p,p〉
)
j(P )P = 2j(P )P = 0,

[P, [P,Q]∆]∆ = [[P, P ]∆, Q]∆ + (−1)(n−1)2+〈p,p〉[P, [P,Q]∆]∆ = 0,

so that we get a differential. A dual version of this can be seen in 7.2.(3) below.

3.7. Ideals. Let (V, µ) be an n-ary G-graded associative algebra. An ideal I in
(V, µ) is a linear subspace I ⊂ V such that µ(X1, . . . , Xn) ∈ I whenever one of the
Xi ∈ I. Then µ factors to an n-ary associative multiplication on the quotient space
V/I. This quotient space is again G-graded, if I is a G-graded subspace in the sense
that I =

⊕
x∈G(I ∩ V x).

Of course any ideal I is an n-ary module over (V, µ) which is G-graded if and only
if I is G-graded. Conversely, any n-ary module W over (V, µ) is an ideal in the n-ary
algebra V ⊕W = E with the multiplication P from 3.3. Here P (X1, . . . , Xn) = 0 if
any two elements Xi lie in W , so that E may be regarded as an G-graded or as a
(Z×G)-graded algebra. It could be called also the semidirect product of V and W .

3.8. Homomorphisms. A linear mapping f : V → W of degree 0 between two
G-graded algebras (V, µ) and (W, ν) is called a homomorphism of G-graded algebras
if it is compatible with the two n-ary multiplications:

f(µ(X1, . . . , Xn)) = ν(f(X1), . . . , f(Xn))

Then the kernel of f is an n-ary ideal in (V, µ) and the image of f is an n-ary
subalgebra of (W, ν) which is isomorphic to V/ ker(f).

Similarly we can define the notion of an n-ary V -module homomorphism between
two V -modules W0 and W1. Then the category of all (G-graded) n-ary V -modules and
of their homomorphisms is an abelian category. We did not investigate the relation
to the embedding theorem of Freyd and Mitchell.

4. Review of G-graded Lie algebras and modules

In this section we sketch the theory from [7] for G-graded Lie algebras from a
slightly different angle. In this section section we need that the ground field K has
characteristic 0.
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4.1. Multigraded signs of permutations. Let x = (x1, . . . , xk) ∈ Gk be a multi
index of G-degrees xi ∈ G and let σ ∈ Sk be a permutation of k symbols. Then we
define the G-graded sign sign(σ,x) as follows: For a transposition σ = (i, i + 1) we
put sign(σ,x) = −(−1)〈xi,xi+1〉; it can be checked by combinatorics that this gives a
well defined mapping sign( ,x) : Sk → {−1,+1}.

Let us write σx = (xσ1, . . . , xσk), then we have the following

Lemma. sign(σ ◦ τ,x) = sign(σ,x). sign(τ, σx). �

4.2 Multigraded Nijenhuis-Richardson algebra. We define the G-graded alter-
nator α : M(V )→M(V ) by

(1) (αK)(X0, . . . , Xk) =
1

(k + 1)!

∑
σ∈Sk+1

sign(σ,x)K(Xσ0, . . . , Xσk)

for K ∈M (k,∗)(V ) and Xi ∈ V xi . By lemma 4.1 we have α2 = α so α is a projection
on M(V ), homogeneous of (Z×G)-degree 0, and we set

A(V ) =
⊕

(k,κ)∈Z×G

A(k,κ)(V ) =
⊕

(k,κ)∈Z×G

α(M (k,κ)(V )).

A long but straightforward computation shows that for Ki ∈M (ki,κi)(V )

α(j(αK1)αK2) = α(j(K1)K2),

so the following operator and bracket is well defined:

i(K1)K2 : =
(k1 + k2 + 1)!

(k1 + 1)!(k2 + 1)!
α(j(K1)K2)

[K1,K2]∧ =
(k1 + k2 + 1)!

(k1 + 1)!(k2 + 1)!
α([K1,K2]∆)

= i(K1)K2 − (−1)〈(k1κ1),(k2,κ2)〉i(K2)K1

The combinatorial factor is explained in [7], 3.4.

4.3. Theorem. 1. If Ki are as above, then

(i(K1)K2)(X0, . . . , Xk1+k2) =

=
1

(k1 + 1)!k2!

∑
σ∈Sk1+k2+1

sign(σ,x)(−1)〈κ1,κ2〉·

·K2((K1(Xσ0, . . . , Xσk1), . . . , Xσ(k1+k2)).

2. (A(V ), [ , ]∧) is a (Z×G)-graded Lie algebra.
3. If µ ∈ A(1,0)(V ), so µ : V × V → V is bilinear G-graded anticommutative

mapping of weight 0 ∈ G, then i(µ)µ = 0 if and only if (V, µ) is a G-graded Lie
algebra.

Proof. For 1 and 2 see [7].
3. Let µ ∈ A(1,0)(V ), then from 1 we see that

(i(µ)µ)(X0, X1, X2) = 1
2!

∑
σ∈S3

sign(σ,x) · µ(µ(Xσ0, Xσ1), Xσ2))

which is equivalent to the G-graded Jacobi expression of (V, µ). �

(A(V ), [ , ]∧) is called the (Z × G)-graded Nijenhuis-Richardson algebra, since
A(V ) coincides for G = 0 with Alt(V ) of [14].
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4.4. Theorem. Let V and W be G-graded vector spaces. Let E be the (Z×G)-graded
vector space defined by

E(k,∗) =


V if k = 0
W if k = 1
0 otherwise.

Let P ∈ A(1,0,0)(E) then i(P )P = 0 if and only if

(a) i(µ)µ = 0

so (V, µ) = g is a G-graded Lie algebra, and

(b) ρ(µ(X1, X2))Y = [ρ(X1), ρ(X2)]Y

where µ(X1, X2) = P (X1, X2) ∈ V and ρ(X)Y = P (X,Y ) ∈ W for X, Xi ∈ V
and Y ∈ W , and where [ , ] denotes the G-graded commutator in End(W ). So
i(P )P = 0 is by definition equivalent to the fact that M := (W,ρ) is a G-graded Lie-g
module.

If P is as above the mapping ∂P := [P, ]∧ : A(E) → A(E) is a differential and
its restriction to ⊕

k∈Z
Λ(k,∗)(g,M) :=

⊕
k∈Z

A(k,1,∗)(E)

generalizes the Chevalley-Eilenberg coboundary operator to the G-graded case:

(∂PC)(X0, . . . , Xk) =
k∑
i=0

(−1)αi(x)+〈xi,c〉ρ(Xi)C(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)αij(x)C(µ(Xi, Xj), . . . , X̂i, . . . , X̂j , . . . )

where {
αi(x) = 〈xi, x0 + · · ·+ xi−1〉+ i

αij(x) = αi(x) + αi(x) + 〈xi, xj〉

We denote the corresponding (Z×G)-graded cohomology space by H(g,M).
If ν : W ×W → W is G-graded symmetric (so ν ∈ A(1,−1,∗)(E)) and [P, ν]∧ = 0

then ∂P acts as derivation of G-degree (1, 0) on the (Z × G)-graded commutative
algebra (Λ(g,M), •), where

C1 • C2 := [C1, [C2, ν]∧]∧ Ci ∈ Λ(ki,ci)(g,M).

In this situation the product • carries over to a (Z × G)-graded symmetric (cup)
product on H(g,M).

Proof. Apply the G-graded alternator α to the results of 2.3, 2.4, 2.5, and 2.6. �
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5. n-ary G-graded Lie algebras and their modules

5.1. Definition. Let V be a G-graded vector space. Let µ ∈ A(n−1,0)(V ), so
µ : V n → V is a G-graded skew symmetric n-linear mapping.

We call µ an n-ary G-graded Lie algebra structure on V if i(µ)µ = 0.

5.2. Example. If V is 0-graded, then a ternary Lie algebra structure on V is a skew
symmetric trilinear mapping µ : V × V × V → V satisfying

0 = (i(µ)µ)(X0, . . . , X4) =
1

3! 2!

∑
σ∈S3

sign(σ)µ(µ(Xσ0, Xσ1, Xσ2), Xσ3, Xσ4)

= +µ(µ(X0, X1, X2), X3, X4)− µ(µ(X0, X1, X3), X2, X4)

+ µ(µ(X0, X1, X4), X2, X3) + µ(µ(X0, X2, X3), X1, X4)

− µ(µ(X0, X2, X4), X1, X3) + µ(µ(X0, X3, X4), X1, X2)

− µ(µ(X1, X2, X3), X0, X4) + µ(µ(X1, X2, X4), X0, X3)

− µ(µ(X1, X3, X4), X0, X2) + µ(µ(X2, X3, X4), X0, X1)

5.3. Definition. Let V and W be G-graded vector spaces. We consider the (Z×G)-
graded vector space E defined by

E(k,∗) =


V if k = 0
W if k = 1
0 otherwise.

Then P ∈ A(n−1,0,0)(E) is called an n-ary G-graded Lie module structure on W over
an n-ary Lie algebra structure on V if i(P )P = 0. Let us denote the resulting n-ary
Lie algebra by g, and the n-ary module by W.

Ordering by degree and using the G-graded skew symmetry we see that P is now
the sum of only two partial n-linear mappings

µ = P : V × . . .× V → V the n-ary Lie algebra structure
ρ = P : V × . . .× V ×W →W the n-ary Lie module structure

5.4. Example. If V and W are 0-graded, then a ternary Lie module satisfies the fol-
lowing condition besides the one from 5.2 describing the ternary Lie algebra structure
on V :

0 = ρ(µ(v0, v1, v2), v3, w)− ρ(µ(v0, v1, v3), v2, w) + ρ(v2, v3, ρ(v0, v1, w))

+ ρ(µ(v0, v2, v3), v1, w)− ρ(v1, v3, ρ(v0, v2, w)) + ρ(v1, v2, ρ(v0, v3, w))

− ρ(µ(v1, v2, v3), v0, w) + ρ(v0, v3, ρ(v1, v2, w))− ρ(v0, v2, ρ(v1, v3, w))

+ ρ(v0, v1, ρ(v2, v3, w)).

5.5. Theorem. If P is as in 5.3 above and if n is even then the mapping ∂P :=
[P, ]∧ : A(E)→ A(E) is a differential. Its restriction to⊕

k∈Z
Λ(k,∗)(V,W ) :=

⊕
k∈Z

A(k,1,∗)(E)
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generalizes the Chevalley-Eilenberg coboundary operator to the G-graded case: For
C ∈ A(c,1,γ)(E) = Λ(c,γ)(V,W ) we have

(∂PC)(X1, . . . , Xk+n) = [P,C]∧(X1, . . . , Xk+n) =

= −1
(n−1)!(k+1)!

∑
σ∈Sk+n

sign(σ,x)(−1)〈xσ1+···+xσ(n−1),γ〉

ρ(Xσ1, . . . , Xσ(n−1)).C(Xσn, . . . , Xσ(k+n))+

+ 1
n!k!

∑
σ∈Sk+n

sign(σ,x)C(µ(Xσ1, . . . , Xσ(n)), Xσ(n+1), . . . , Xσ(k+n))

We denote the corresponding cohomology space by H(g,M).
If ν : W ×W → W is G-graded symmetric (so ν ∈ A(1,−1,∗)(E)) and [P, ν]∧ = 0

then ∂P acts as derivation of (Z×G)-degree (1, 0) on the (Z×G)-graded commutative
algebra (Λ(g,M), •), where

C1 • C2 := [C1, [C2, ν]∧]∧ Ci ∈ Λ(ki,ci)(g,M).

In this situation the product • carries over to a (Z × G)-graded symmetric (cup)
product on H(g,M).

Proof. We have by the (Z2 ×G)-graded Jacobi identity

[P, [P,Q]∧]∧ = [[P, P ]∧, Q]∧ + (−1)(n−1)2
[P, [P,Q]∧]∧

which implies that [P, ]∧ is a differential since n− 1 is odd and [P, P ]∧ = j(P )P −
(−1)(n−1)2

j(P )P = 2j(P )P = 0.
The rest follows from a computation. �

5.6. Ideals. Let (V, µ) be an n-ary G-graded Lie algebra. An ideal I in (V, µ) is
a linear subspace I ⊂ V such that µ(X1, . . . , Xn) ∈ I whenever one of the Xi ∈ I.
Then µ factors to an n-ary Lie algebra structure on the quotient space V/I. This
quotient space is again G-graded, if I is a G-graded subspace in the sense that I =⊕

x∈G(I ∩ V x).
Of course, any ideal I is an n-ary module over (V, µ) which is G-graded if and only

if I is G-graded. Conversely, any n-ary module W over (V, µ) is an ideal in the n-ary
algebra V ⊕W = E with the multiplication P from 5.3. Here P (X1, . . . , Xn) = 0 if
any two elements Xi lie in W , so that E may be regarded as an G-graded or as a
(Z × G)-graded Lie algebra. It could be called also the semidirect product of V and
W .

5.7. Homomorphisms. A linear mapping f : V → W of degree 0 between two G-
graded algebras (V, µ) and (W, ν) is called a homomorphism of G-graded Lie algebras
if it is compatible with the two n-ary multiplications:

f(µ(X1, . . . , Xn)) = ν(f(X1), . . . , f(Xn))

Then the kernel of f is an n-ary ideal in (V, µ) and the image of f is an n-ary
subalgebra of (W, ν) which is isomorphic to V/ ker(f).

Similarly, we can define the notion of an n-ary V -module homomorphism between
two V -modules W0 and W1.
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6. Relations between n-ary algebras and Lie algebras

6.1. The n-ary commutator. Let µ ∈ M (n−1,0)(V ), so µ : V × . . . × V → V is
an n-ary multiplication. The G-graded alternator α from 4.2 transforms µ into an
element

γµ := n!αµ ∈ A(n,0)(V ),

which we call the n-ary commutator of µ. From 4.2 we also have:
If µ is n-ary associative, then γµ is an n-ary Lie algebra structure on V .

Definition. An n-ary (Z×G)-graded multiplication µ ∈M (n−1,0)(V ) is called n-ary
Lie admissible if γµ is an n-ary (Z×G)-graded Lie algebra structure. By 5.1 this is
the case if and only if i(γµ)(γµ) = (2n−1)!

(n!)2 α(j(µ)µ) = 0; i. e. the alternation of the
n-ary associator j(µ)(µ) vanishes. For the binary version of this notion see [12] and
[11].

An n-ary multiplication µ is called n-ary commutative if γµ = 0.

6.2. Induced mapping in cohomology. Let V and W be G-graded vector spaces
and let E be the (Z×G)-graded vector space

E(k,∗) =


V if k = 0
W if k = 1
0 otherwise

as in 3.3. Let P ∈ M (n−1,0)(E) be an n-ary G-graded module structure on W over
an n-ary algebra structure on V , i. e. j(P )P = 0.

Then γP = n!αP ∈ A(n−1,0)(E) is an n-ary G-graded Lie module structure on
W over V and some multiple of α defines a homomorphism from the Hochschild
cohomology of (V, µ) with values in W into the Chevalley cohomology of (V, γµ) with
values in the Lie module V .

7. Hochschild operations and non commutative differential calculus

7.1. Let V be a G-graded vector space. We consider the tensor algebra V ⊗ =⊕∞
k=0 V

⊗k which is now (Z × G)-graded such that the degree of X1 ⊗ · · · ⊗ Xi is
(i, x1 + · · ·+ xi). Put also V ⊗n =

⊕∞
k≥n V

⊗k. Obviously, V ⊗o = V ⊗.

The Hochschild operator δK associated with K ∈ M (k,κ)(V ) (as in 2.2) is a map
δK : V ⊗k → V ⊗1 given by

δK = 0 on V ⊗k and

δK(X0 ⊗ · · · ⊗Xl) :=

=
l−k∑
i=0

(−1)ki+〈κ,x0+···+xi−1〉X0 ⊗ · · · ⊗Xi−1 ⊗K(Xi ⊗ · · · ⊗Xi+k)⊗ · · · ⊗Xl

In the natural (Z×G)-grading of L(V ⊗, V ⊗) the operator δK has degree (−k, κ).
The mapping δ is called the Hochschild operation since for an associative multiplica-
tion µ : V × V → V the operator δµ is the differential of the Hochschild homology.

For Ki ∈ M (ki,κi)(V ) with ki > 0 the composition δK1 ◦ δK2 is well–defined as a
map from V ⊗k1+k2

to V ⊗1 .
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7.2. Proposition. For Ki ∈M (ki,κi)(V ) we have
(1) in general δK1 ◦ δK2 6= δj(K1)K2 ,
(2) [δK1 , δK2 ] = δK1 ◦ δK2 − (−1)k1k2+〈κ1,κ2〉δK2 ◦ δK1 = δ[K1,K2]∆ ,
(3) [δK , δK ] = 2δK ◦ δK = 2δj(K)K if and only if ‖deg(δK)‖2 = k2 + 〈κ, κ〉 ≡ 1

mod 2.

Proof. We get

δK1 ◦ δK2(X1 ⊗ · · · ⊗Xs) =

=
∑

j+k2<i

(−1)k1i+〈κ1,x0+···+xi−1〉+k2j+〈κ2,x0+···+xi−1〉

X0 ⊗ · · · ⊗K2(Xj ⊗ · · · ⊗Xj+k2)⊗ · · · ⊗K1(Xi ⊗ · · · ⊗Xi+k1)⊗ · · · ⊗Xs

+
∑

i−k2≤j≤i

(−1)k1i+〈κ1,x0+···+xi−1〉+k2j+〈κ2,x0+···+xi−1〉

X0 ⊗ · · · ⊗K2(Xj ⊗ · · · ⊗K1(Xi ⊗ · · · ⊗Xi+k1)⊗ · · · ⊗Xj+k1+k2)⊗ · · · ⊗Xs

+
∑
j>i

(−1)k1i+〈κ1,x0+···+xi−1〉+k2j+〈κ2,x0+···+xi−1〉+k1k2+〈κ1,κ2〉

X0 ⊗ · · · ⊗K1(Xi ⊗ · · · ⊗Xi+k1)⊗ · · · ⊗K2(Xj ⊗ · · · ⊗Xj+k2)⊗ · · · ⊗Xs.

From this all assertions follow. �

7.3. Rudiments of a non commutative differential calculus. An intrinsic
characterization of the Hochschild operators can be given as follows. For X ∈ V x we
consider the left and right multiplication operators X l, Xr ∈ L(V ⊗m , V

⊗
n )(1,x) which

are given by

X l(X1 ⊗ · · · ⊗Xk) := X ⊗X1 ⊗ · · · ⊗Xk,

Xr(X1 ⊗ · · · ⊗Xk) := (−1)k+〈x,x1+···+xk〉X1 ⊗ · · · ⊗Xk ⊗X.

Then we have [X l, Y r] = 0 in L(V ⊗m , V
⊗
n ) for all X,Y ∈ V .

Proposition. An operator A ∈ L(V ⊗k , V
⊗
1 ) is of the form A = δK for an uniquely

defined K ∈M(V )(k,κ) if and only if A|V ⊗k = O and [X l
0, [X

r
1 , A]] = 0 in L(V ⊗k , V

⊗
1 )

for all Xi ∈ V .

Proof. A computation. �

In view of the theory developed in [18] (see also [6], [19]) the Hochschild operators
δK can be naturaly interpreted as the first order differential operators in the current
non–commutative context.

7.4. Example. An element e ∈ V is the left (resp., right) unit of a binary multi-
plication µ on V if and only if [δµ, el] = id (on V ⊗1 ) (resp., [δµ, er] = id). Differential
calculus touched in 7.3 can be put in the following general cadre.

7.5. Definition. Let A be a G-graded associative (binary) algebra. For A,B ∈
A let Al, Br : A → A be the left and (signed) right multiplications, Al(B) =
(−1)〈a,b〉Br(A) = AB. Then we have

[Al, Br] = Al ◦Br − (−1)〈a,b〉Br ◦Al = 0.
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A differential operator A→ A of order (p, q) is an element ∆ ∈ L(A,A) such that

[X l
1, [. . . , [X

l
p, [Y

r
1 , [. . . , [Y

r
q ,∆] . . . ] = 0 for all Xi, Yj ∈ A,

which we also denote by the shorthand lprq∆ = 0. Obviously this definition also
makes sense for mappings M→ N between G-graded A-bimodules, where now Al is
left multiplication of A ∈ A on any G-graded A-bimodule, etc.

7.6. Example. A = L(V, V ) Let V be a finite dimensional vector space, ungraded
for simplicity’s sake, and let us consider the associative algebra A = L(V, V ).

Proposition. If ∆ : L(V, V )→ L(V, V ) is a differential operator of order (p, q) with
(p, q > 0), then

∆ =


P r, if lp∆ = 0
Ql, if rq∆ = 0
P r +Ql, if lprq∆ = 0

where P and Q are in L(V, V ).

Proof. We shall use the notation lY ∆ := [Y l,∆] and similarly rY ∆ = [Y r,∆], for
Y ∈ L(V, V ). We start with the following
Claim. If lY ∆ = P lY + QrY for each Y ∈ L(V, V ) and suitable P = PY , Q = QY :
L(V, V )→ L(V, V ), then we have ∆ = Al +Br where A = 0 if P = 0. If on the other
hand rY ∆ = P lY +QrY for each Y then we have ∆ = Al +Br where B = 0 if Q = 0.

Let us assume that lY ∆ = P lY + QrY for each Y . By replacing ∆ by ∆ − ∆(1)r

we may assume without loss that ∆(1) = 0. We have (lY ∆)(X) = PX + XQ =
(P + Q)X − [Q,X] =: [R,X] + SX; if we assume that R is traceless then R = −Q
and S = P +Q are uniquely determined, thus linear in Y . Thus

Y∆(X)−∆(Y X) = [RY , X] + SYX

Insert X = 1 and use ∆(1) = 0 to obtain ∆(Y ) = −SY , hence

(1) [RY , X] = Y∆(X) + ∆(Y )X −∆(Y X)

Replacing Y by Y Z and applying the equation (1) repeatedly we obtain

[RY Z , X] = Y Z∆(X) + ∆(Y Z)X −∆(Y ZX)

= Y Z∆(X) + Y∆(Z)X + ∆(Y )ZX − [RY , Z]X

− Y∆(ZX)−∆(Y )ZX + [RY , ZX]

= Y Z∆(X) + Y∆(Z)X − Y Z∆(X)− Y∆(Z)X + Y [RZ , X] + Z[RY , X]

= Y [RZ , X] + Z[RY , X].

The right hand side is symmetric in Y and Z, thus [R[Y,Z], X] = 0; inserting Y = Z =
1 we get also [R1, X] = 0, hence R = 0. From (1) we see that ∆ : L(V, V )→ L(V, V )
is a derivation, thus of the form ∆(X) = [A,X] = (Al − Ar)(X). If P = 0 then
∆ = −S = R − P = 0. So the first part of the claim follows since we already
substracted ∆(1)r from the original ∆.
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The second part of the claim follows by mirroring the above proof.
Now we prove the proposition itself. If lp∆ = 0 then by induction using the first

part of the claim with P = 0 we have ∆ = Br. Similarly for rq∆ = 0 we get ∆ = Al.
If lprq∆ = 0 with p, q > 0, by induction on p + q ≥ 2, using the claim, the result

follows. �

The obtained result is parallel to the obvious fact that differential operators over
0–dimensional manifolds are of zero order.

8. Remarks on Filipov’s n-ary Lie algebras

Here we show how Filoppov’s concept of an n–Lie algabra is related with that of
5.1 and sketch a similar framework for it. For simplicity’s sake no grading on the
vector space is assumed.

8.1. Let V be a vector space. According to [3], an n-linear skew symmetric mapping
µ : V × . . .× V → V is called an F-Lie algebra structure if we have
(1)

µ(µ(Y1, . . . , Yn), X2, . . . , Xn) =
n∑
i=1

µ(Y1 . . . , Yi−1, µ(Yi, X2, . . . , Xn), Yi+1, . . . , Yn)

The idea is that µ( , X2, . . . , Xn) should act as derivation with respect to the ‘mul-
tiplication’ µ(Y1, . . . , Yn).

8.2. The dot product. For P ∈ Lp(V ;L(V, V )) and Q ∈ Lq(V ;L(V, V )) let
us consider the first entry as the distinguished one (belonging to L(V, V ), so that
P ( , X1, . . . , Xp) ∈ L(V, V )) and then let us define P ·Q ∈ Lp+q(V ;L(V, V )) by

(P ·Q)(Z, Y1, . . . , Yq, X1, . . . , Xp) :=

= P (Q(Z, Y1, . . . , Yq), X1, . . . , Xp)−Q(P (Z,X1, . . . , Xp), Y1, . . . , Yq)−

−
q∑
i=1

Q(Z, Y1, . . . , P (Yi, X1, . . . , Xp), . . . , Yq)

Then µ ∈ Ln−1(V ;L(V, V )) which is skew symmetric in all arguments, is an F-Lie
algebra structure if and only if µ · µ = 0.

8.3. Lemma. We have

Alt(P ·Q) = (p+ 1)!(q + 1)!( 1
p+1 iAltQ AltP − (−1)pqiAltP AltQ),

where Alt : Lp(V,L(V, V ))→ Lp+1
skew(V ;V ) = Ap(V ) is the alternator in all appearing

variables.
In particular, if µ is an n-ary F-Lie algebra structure, then Altµ is a Lie algebra

structure in the sense of 5.1.

Proof. An easy computation. �
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8.4. The grading operator. For a permutation σ ∈ Sp and a = (a1, . . . , ap) ∈ Np0
let the grading operator or (generalized) sign operator be given by

Sa
σ : La1+···+ap(V ;W )→ La1+···+ap(V ;W ),

(Sa
σP )(X1

1 , . . . , X
1
a1
, . . . , Xp

1 , . . . , X
p
ap) = P (Xσ1

1 , . . . , Xσ1
aσ1
, . . . , Xσp

1 , . . . , Xσp
aσp),

which obviously satisfies
Sa
µσ = Sσ(a)

µ ◦ Sa
σ .

We shall use the simplified version Sa1,a2 = Sa1,a2,∗
(12) for the permutation of the first

two blocks of arguments of lenght a1 and a2. Note that also Sa,b(α⊗β⊗γ) = β⊗α⊗γ.
If P is skew symmetric on V , then Sa

σP = sign(σ,a)P , the sign from [7] or 4.1.

8.5. Lemma. For P ∈ Lp(V ;L(V, V )) and ψ ∈ Lq(V,W ) let

(ρ(P )ψ)(X1, . . . , Xp, Y1, . . . , Yq) := −
q∑
i=1

ψ(Y1, . . . , P (Yi, X1, . . . , Xp), . . . , Yq)

then we have for ω ∈ L∗(V ; R)

ρ(P )(ψ ⊗ ω) = (ρ(P )ψ)⊗ ω + Sq,pψ ⊗ ρ(P )ω.

Proof. A straightforward computation. �

8.6. Lemma 8.5 suggests that ρ(P ) behaves like a derivation with coefficients in
a trivial representation of gl(V ) with respect to the sign operators from 8.4. The
corresponding derivation with coefficients in the adjoint representation of gl(V ) then
is given by the formula which follows directly from the definitions:

P ·Q = [P,Q]gl(V ) + ρ(P )Q,

where [P,Q]gl(V ) is the pointwise bracket

[P,Q]gl(V )(X1, . . . ) = [P (X1, . . . ), Q(Xp+1, . . . )].

Moreover we have the following result

8.7. Proposition. For P ∈ Lp(V ;L(V, V )) and Q ∈ Lq(V ;L(V, V )) we have

P · (Q ·R)− Sq,p(Q · (P ·R)) = [P,Q] ·R,

where
[P,Q]S = [P,Q]gl(V ) + ρ(P )Q− Sq,pρ(Q)P

is a graded Lie bracket in the sense that

[P,Q]S = −Sq,p[Q,P ]S ,

[P, [Q,R]S ]S = [[P,Q]S , R]S + Sq,p[Q, [P,R]S ]S .

Also the derivation ρ is well behaved with respect to this bracket,

ρ(P )ρ(Q)− Sq,pρ(Q)ρ(P ) = ρ([P,Q]S).

Proof. For decomposable elements like in the proof of lemma 8.5 this is a long but
straightforward computation. �
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9. Dynamical aspects

It is natural to expect an eventual dynamical realization of algebraic constructions
discussed above when the underlying vector space V is the algebra of observables of
a mechanical or physical system. In the classical approach it should be an algebra of
the form V = C∞(M) with M being the space–time, configuration or phase space of a
system, etc. The localizability principle forces us to limit the considerations to n–ary
operations which are given by means of multi–fferential operators. The following list
of definitions is in conformity with these remarks.

9.1 Definition. An n–Lie algebra structure µ(f1, . . . , fn) on C∞(M) is called
(1) local, if µ is a multi–differential operator
(2) n– Jacobi, if µ is a first–order differential operator with respect to any its

argument
(3) n–Poisson if µ is an n–derivation.

(M,µ) is called an n–Jacobi or n–Poisson manifold if µ is an n–Jacobi or, respectively,
n–Poisson structure on C∞(M).

It seemes plausible that Kirillov’s theorem is still valid for the proposed n–ary
generalization. It so, n–Jacobi structures exhaust all local ones.

9.2 Examples. Any k–derivation µ on a manifold M is of the form

µ(f1, . . . , fk) = P (df1, . . . , dfk)

where P = Pµ is a k–vector field on M and vice versa. If k is even, then µ is an
n–Poisson structure on M iff [Pµ, Pµ]Schouten = 0. In particular, µ is a k–Poisson
structure in each of below listed cases:

(1) Pµ is of constant coefficients on M = Rm
(2) Pµ = X ∧Q where X is a vector field on M such that LX(Q) = 0
(3) Pµ = Q1 ∧ · · · ∧ Qr where all multi–vector fields Qi’s are of even degree and

such that [Qi, Qj ]Schouten = 0, ∀ i, j.
These examples are taken from [20] where the reader will find a systematical exposition
and further structural results.
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