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Abstract. In commutative differential geometry the Frölicher-Nijenhuis bracket
computes all kinds of curvatures and obstructions to integrability. In [1] the Frölicher-

Nijenhuis bracket was developed for universal differential forms of non-commutative
algebras, and several applications were given. In this paper this bracket and the

Frölicher-Nijenhuis calculus will be developed for several kinds of differential graded

algebras based on derivations, which were introduced by [6].
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1. Introduction

There are several generalizations of the differential calculus of differential forms
in the non-commutative setting [4], [13], [14], [6], [1]. We concentrate here on the
differential calculus based on derivations as generalizations of vector fields, [6], and
we develop the Frölicher-Nijenhuis bracket in this setting, following the lead of [1].
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Let us recall what are the relevant notions of differential forms in this context.
Let A be an associative algebra with a unit 1. As usual we think of A as a gen-
eralization of an algebra of smooth functions. Then it is natural to consider the
Lie algebra Der(A) of all derivations of A with values in A, i.e. of all infinitesimal
automorphisms of A, as a generalization of the Lie algebra of vector fields. Alter-
natively, for an ‘invariant’ theory one may prefer to use the Lie algebra Out(A) of
all derivations of A modulo the inner derivations. Then Out(A) is Morita invari-
ant and it also coincides with the Lie algebra of all vector fields in case that A is
the algebra of smooth functions on a manifold. As for the commutative case (see
[15]) the notions of differential forms can be extracted from the differential algebra
C(Der(A), A) of Chevalley-Eilenberg cochains of the Lie algebra Der(A) with values
in the Der(A)-module A. There are then two natural generalizations of the graded
differential algebra of differential forms: A minimal one, ΩDer(A), which is the
smallest differential subalgebra of C(Der(A), A) which contains A = C0(Der(A), A).
And a maximal one, ΩDer(A) = CZ(A)(Der(A), A), which consists of all cochains
in C(Der(A), A) which are module homomorphisms for the module structure of
Der(A) over the center Z(A) of A. In order to pass to the corresponding notions
for Out(A) we notice that there is a canonical operations, in the sense of H. Car-
tan [2], [3], X 7→ iX for X ∈ Der(A), of the Lie algebra Der(A) in the graded
differential algebra C(Der(A), A). Both ΩDer(A) and ΩDer(A) = CZ(A)(Der(A), A)
are stable under this operation and we define ΩOut(A) and ΩOut(A) to be the
differential subalgebras of ΩDer(A) and ΩDer(A) consisting of all elements which
are basic with respect to the corresponding operation of the ideal Int(A) of in-
ner derivations of Der(A); one defines similarly COut(A)(Der(A), A). These graded
differential algebras are also obvious generalizations of differential forms. Notice,
however, that in contrast to ΩDer(A) and ΩDer(A) there is in general no differential
calculus starting with A in these algebras, since they do not contain A but merely
its center Z(A) = Ω0

Out(A) = Ω0
Out(A) = C0

Out(A)(Der(A), A). The differential alge-
bra COut(A)(Der(A), A) turns out to be the differential algebra C(Out(A), Z(A)) of
all cochains of the Lie algebra Out(A) with values in the center Z(A), which is an
Out(A)-module. Under this identification ΩOut(A) becomes the differential algebra
CZ(A)(Out(A), Z(A)) of Z(A)-multilinear cochains. This implies that ΩOut(A) is
a Morita invariant generalization of the differential algebra of differential forms.
C(Out(A), Z(A)) is of course also Morita invariant.

We shall develop the theory in several directions. Firstly, we shall show that
the derivation d : A → Ω1

Der(A) is universal for the derivations of A in a category
of bimodules containing all bimodules which are isomorphic to sub bimodules of
arbitrary products of A considered as a bimodule: As suggested by A. Connes, we
call these last bimodules diagonal bimodules. This means that when one restricts
attention to the above category of bimodules containing the diagonal ones, the
universal property of the derivation d : A → Ω1(A) factors through the canonical
surjective bimodule homomorphism ζ : Ω1(A)→ Ω1

Der(A).
Secondly, we shall generalize for these differential forms the Frölicher-Nijenhuis

calculus for vector valued differential forms. As generalization of the space of vector
valued differential forms we shall consider Der(A,ΩDer(A)) in the case of ΩDer(A),
and Der(A,ΩDer(A)) in the case of ΩDer(A), etc. For the universal differential
enveloping algebra Ω(A) of A, the generalization of the Frölicher-Nijenhuis bracket
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has already been introduced on Der(A,Ω(A)) in [1], and we shall also define such a
generalization for Der(A,C(Der(A), A)) ∼= C(Der(A),Der(A)). The generalizations
proposed are natural, so that under the sequence of homomorphisms and inclusions
of graded differential algebras

Ω(A)→ ΩDer(A) ⊂ ΩDer(A) ⊂ C(Der(A), A)
the corresponding sequence

Der(A,Ω(A))→ Der(A,ΩDer(A)) ⊂ Der(A,ΩDer(A)) ⊂ Der(A,C(Der(A), A))
is a sequence of homomorphisms for the generalized Frölicher-Nijenhuis brackets.
Moreover we present here a novel approach to the Frölicher-Nijenhuis bracket, which
uses the Chevalley coboundary operator for the adjoint representation and which
works also in other situations, see the proofs of 5.6 and 5.7.

Since it is useful to have a theory which is well suited to topological algebras
we develop from the beginning the whole theory in the setting of convenient vector
spaces as developed by Frölicher and Kriegl. The reasons for this are the following:
If the non-commutative theory should contain some version of differential geometry,
a manifold M should be represented by the algebra C∞(M,R) of smooth functions
on it. The simplest considerations of groups need products, and C∞(M ×N,R) is
a certain completion of the algebraic tensor product C∞(M,R)⊗C∞(N,R). Now
the setting of convenient vector spaces offers in its multilinear version a monoidally
closed category, i.e. there is an appropriate tensor product which has all the usual
(algebraic) properties with respect to bounded multilinear mappings. So multilinear
algebra is carried into this kind of functional analysis without loss. The theory of
convenient vector spaces is sketched in section 2.

We note that all results of this paper also hold in a purely algebraic setting:
Just equip each vector space with the finest locally convex topology, then all linear
mappings are bounded.

2. Convenient vector spaces

2.1. The notion of convenient vector spaces arose in the quest for the right setting
for differential calculus in infinite dimensions: The traditional approach to differen-
tial calculus works well for Banach spaces, but for more general locally convex spaces
there are difficulties. The main one is that the composition of linear mappings stops
being jointly continuous at the level of Banach spaces, for any compatible topology,
so that even the chain rule is not valid without further assumptions. In 1982, Al-
fred Frölicher and Andreas Kriegl presented independently the correct setting for
differential calculus in infinite dimensions, see their joint book [10].

In addition to their importance for differential calculus convenient vector spaces
together with bounded linear mappings and the appropriate tensor product form
a monoidally closed category, the only useful one which functional analysis offers
beyond Banach spaces. So this category is the right setting for us: we shall need
2.7 and 2.8 below.

In this section we will sketch the basic definitions and the most important re-
sults concerning convenient vector spaces and Frölicher-Kriegl calculus. All locally
convex spaces will be assumed to be Hausdorff. Proofs for the results sketched here
can be found in [10] (except for 2.8 which was proved in [1]). A complete coverage
will be in the forthcoming book [18]; [16], [17], and [1] contain overviews.
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2.2. The c∞-topology. Let E be a locally convex vector space. A curve c : R→
E is called smooth or C∞ if all derivatives exist (and are continuous) - this is a
concept without problems. Let C∞(R, E) be the space of smooth curves. It can
be shown that C∞(R, E) does depend on the locally convex topology of E only
through its underlying bornology (system of bounded sets). The final topologies
with respect to the following sets of mappings into E coincide:

(1) C∞(R, E).
(2) Lipschitz curves (so that { c(t)−c(s)t−s : t 6= s} is bounded in E).
(3) {EB → E : B bounded absolutely convex in E}, where EB is the linear

span of B equipped with the Minkowski functional pB(x) := inf{λ > 0 :
x ∈ λB}.

(4) Mackey-convergent sequences xn → x (there exists a sequence 0 < λn ↗∞
with λn(xn − x) bounded).

This topology is called the c∞-topology on E and we write c∞E for the resulting
topological space. In general (on the space D of test functions for example) it
is finer than the given locally convex topology; it is not a vector space topology,
since addition is no longer jointly continuous. The finest among all locally convex
topologies on E which are coarser than the c∞-topology is the bornologification of
the given locally convex topology. If E is a Fréchet space, then c∞E = E.

2.3. Convenient vector spaces. Let E be a locally convex vector space. E is
said to be a convenient vector space if one of the following equivalent conditions is
satisfied (called c∞-completeness):

(1) Any Mackey-Cauchy-sequence (so that (xn − xm) is Mackey convergent to
0) converges.

(2) If B is bounded closed absolutely convex, then EB is a Banach space.
(3) Any Lipschitz curve in E is locally Riemann integrable.
(4) For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c1 = c′2 (existence of

antiderivative).
(5) If f : R→ E is scalarwise Lipk, then f is Lipk, for k > 1.
(6) If f : R→ E is scalarwise C∞ then f is differentiable at 0.
(7) If f : R→ E is scalarwise C∞ then f is C∞.

Here a mapping f : R → E is called Lipk if all partial derivatives up to order k
exist and are Lipschitz, locally on R. f scalarwise C∞ means that λ ◦ f is C∞ for
all continuous (equivalently: all bounded) linear functionals on E. Obviously c∞-
completeness is weaker than sequential completeness, so any sequentially complete
locally convex vector space is convenient. From 2.2.4 one easily sees that c∞-
closed linear subspaces of convenient vector spaces are again convenient. We always
assume that a convenient vector space is equipped with its bornological topology.
For any locally convex space E there is a convenient vector space Ẽ called the
completion of E, and a bornological embedding i : E → Ẽ, which is characterized
by the property that any bounded linear map from E into an arbitrary convenient
vector space extends to Ẽ.

2.4. Smooth mappings. Let E and F be locally convex vector spaces. A map-
ping f : E → F is called smooth or C∞, if f ◦ c ∈ C∞(R, F ) for all c ∈ C∞(R, E);
so f∗ : C∞(R, E) → C∞(R, F ) makes sense. Let C∞(E,F ) denote the space of
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all smooth mappings from E to F . For E and F finite dimensional this gives the
usual notion of smooth mappings. Multilinear mappings are smooth if and only if
they are bounded. We denote by L(E,F ) the space of all bounded linear mappings
from E to F .

2.5. Differential calculus. We equip the space C∞(R, E) with the bornologifica-
tion of the topology of uniform convergence on compact sets, in all derivatives sep-
arately. Then we equip the space C∞(E,F ) with the bornologification of the initial
topology with respect to all mappings c∗ : C∞(E,F ) → C∞(R, F ), c∗(f) := f ◦ c,
for all c ∈ C∞(R, E). We have the following results:

(1) If F is convenient, then also C∞(E,F ) is convenient, for any E. The space
L(E,F ) is a closed linear subspace of C∞(E,F ), so it is convenient also.

(2) If E is convenient, then a curve c : R → L(E,F ) is smooth if and only if
t 7→ c(t)(x) is a smooth curve in F for all x ∈ E.

(3) The category of convenient vector spaces and smooth mappings is cartesian
closed. So we have a natural bijection

C∞(E × F,G) ∼= C∞(E,C∞(F,G)),

which is even a diffeomorphism. Of course this statement is also true for
c∞-open subsets of convenient vector spaces. Note that this result, for
E = R, is the prime assumption of variational calculus. As a consequence
evaluation mappings, insertion mappings, and composition are smooth.

(4) The differential d : C∞(E,F ) → C∞(E,L(E,F )), given by df(x)v :=
limt→0

1
t (f(x + tv) − f(x)), exists and is linear and bounded (smooth).

Also the chain rule holds: d(f ◦ g)(x)v = df(g(x))dg(x)v.

2.6. The category of convenient vector spaces and bounded linear maps is complete
and cocomplete, so all categorical limits and colimits can be formed. In particular
we can form products and direct sums of convenient vector spaces.

For convenient vector spaces E1, . . . ,En, and F we can now consider the space
of all bounded n-linear maps, L(E1, . . . , En;F ), which is a closed linear subspace
of C∞(

∏n
i=1Ei, F ) and thus again convenient. It can be shown that multilinear

maps are bounded if and only if they are partially bounded, i.e. bounded in each
coordinate and that there is a natural isomorphism (of convenient vector spaces)
L(E1, . . . , En;F ) ∼= L(E1, . . . , Ek;L(Ek+1, . . . , En;F ))

2.7. Result. On the category of convenient vector spaces there is a unique tensor
product ⊗̃ which makes the category symmetric monoidally closed, i.e. there are nat-
ural isomorphisms of convenient vector spaces L(E1;L(E2, E3)) ∼= L(E1⊗̃E2, E3),
E1⊗̃E2

∼= E2⊗̃E1, E1⊗̃(E2⊗̃E3) ∼= (E1⊗̃E2)⊗̃E3 and E⊗̃R ∼= E.

2.8. Result. [1], 2.7. Let A be a convenient algebra, M a convenient right A-
module and N a convenient left A-module. This means that all structure mappings
are bounded bilinear.

(1) There is a convenient vector space M⊗̃AN and a bounded bilinear map
b : M ×N →M⊗̃AN , (m,n) 7→ m⊗A n such that b(ma, n) = b(m, an) for
all a ∈ A, m ∈ M and n ∈ N which has the following universal property:
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If E is a convenient vector space and f : M ×N → E is a bounded bilinear
map such that f(ma, n) = f(m, an) then there is a unique bounded linear
map f̃ : M⊗̃AN → E with f̃ ◦ b = f .

(2) Let LA(M,N ;E) denote the space of all bilinear bounded maps f : M ×
N → E having the above property, which is a closed linear subspace of
L(M,N ;E). Then we have an isomorphism of convenient vector spaces
LA(M,N ;E) ∼= L(M⊗̃AN,E).

(3) If B is another convenient algebra such that N is a convenient right B-
module and such that the actions of A and B on N commute, then M⊗̃AN
is in a canonical way a convenient right B-module.

(4) If in addition P is a convenient left B-module then there is a natural iso-
morphism of convenient vector spaces

M⊗̃A(N⊗̃BP ) ∼= (M⊗̃AN)⊗̃BP

2.9. Remark. In the following all spaces will be convenient spaces, and all multi-
linear mappings will be bounded, even if it is not stated explicitly. So all algebras
will be convenient algebras and all modules will be convenient modules. L(E,F )
etc. will always denote the space of bounded (multi)linear mappings. This setting
includes the purely algebraic theory, where one just equips each vector space with
its finest locally convex topology, because then each multilinear mapping is bounded
automatically.

3. Preliminaries: graded differential algebras,
derivations, and operations of Lie algebras

3.1. Graded derivations. Let A =
⊕

k∈Z Ak be a graded associative algebra
with unit, so that Ak.Al ⊂ Ak+l. We denote by Derk A the space of all (graded)
derivations of degree k, i.e. all linear mappings D : A→ A with D(Al) ⊂ Ak+l and
D(ϕψ̇) = D(ϕ)ψ̇+(−1)klϕḊ(ψ) for ϕ ∈ Al. Then the space DerA =

⊕
k DerkA is a

graded Lie algebra with the graded commutator [D1, D2] := D1 ◦D2−(−1)k1k2D2 ◦
D1 as bracket. This means that the bracket is graded anticommutative, [D1, D2] =
−(−1)k1k2 [D2, D1], and satisfies the graded Jacobi identity

[D1, [D2, D3]] = [[D1, D2], D3] + (−1)k1k2 [D2, [D1, D3]]

(so that ad(D1) = [D1, ] is itself a derivation of degree k1).
Let Z(A)q = {a ∈ Aq : [a, b] = ab − (−1)qlba = 0 for all b ∈ Al and all l ∈ Z}

and consider the graded center Z(A) =
⊕

q∈Z Z(A)q of A, a graded commutative
algebra with unit, which is stable under Der(A). Then Der(A) is a (left) graded
Z(A)-module and we have [a.D1, D2] = a.[D1, D2]− (−1)(q+k1)k2D2(a).D1.

3.2. Graded differential algebras. In this paper, a graded differential algebra
is a Z-graded associative algebra A =

⊕
k∈Z Ak equipped with a graded derivation

d of degree 1 with d2 = 0, called the differential of A.



NON-COMMUTATIVE FRÖLICHER-NIJENHUIS BRACKET 7

3.3. The graded differential algebra of universal differential forms. Let A
be a convenient associative algebra with unit, and let (Ω∗(A), d) be the convenient
graded differential algebra of (universal) (Kähler) differential forms, see for example
[1]. Let us briefly repeat its construction: Ω1(A) is the kernel of the multiplication
µ : A⊗̃A → A, a convenient A-bimodule. The bounded linear mapping d : A →
Ω1(A), given by d(a) = 1⊗ a− a⊗ 1, has the following universal property, and the
pair (Ω1(A), d) is uniquely determined by it:

(1) For any bounded derivation D : A → N into a convenient A-bimodule N
there is a unique bounded A-bimodule homomorphism jD : Ω1(A) → N
such that D = jD ◦ d.

We put Ω0(A) := A, and for k ∈ Z we define Ωk(A) := Ω1(A)⊗̃A . . . ⊗̃AΩ1(A) (k
factors). There is a canonical extension of d : A→ Ω1(A) to a bounded differential
of the graded algebra Ω∗(A), i.e. a bounded derivation of degree 1 satisfying d2 = 0.

A
d−→ Ω1(A) d−→ Ω2(A) d−→ Ω3(A) d−→ . . .

and the resulting convenient graded differential algebra has the following universal
property and is uniquely determined by it:

(2) For any bounded homomorphism ϕ : A→ B of convenient algebras and for
any convenient graded differential algebra (B =

⊕∞
k=0 Bk, dB) with B0 = B

there exists a unique extension of ϕ to a homomorphism Ω(A) → B of
graded differential algebras.

3.4 Chevalley-Eilenberg cochains. Let g be a convenient Lie algebra and let
E be a convenient vector space carrying a bounded representation of g, i.e. one
has a bounded Lie algebra homomorphism g→ L(E,E). For each positive integer
k, let Ck(g, E) denote the convenient vector space L(Λkg, E) of all bounded k-
linear skew symmetric mappings of g into E. Notice that one has C0(g, E) = E
canonically. The elements of Ck(g, E) are called (bounded) k-cochains of g with
values in E. The space of all (bounded) cochains of g with values in E is the
convenient graded vector space C(g, E) =

⊕∞
k=0 C

k(g, E). One defines a linear
mapping d : C(g, E)→ C(g, E) of degree one by setting:

dϕ(X0, . . . , Xk) : =
k∑
i=0

(−1)iXi(ϕ(X0, . . . , X̂i, . . . , Xk))

+
∑
i<j

(−1)i+jϕ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

for ϕ ∈ Ck(g, E) and Xi ∈ g.
One has d2 = 0 and therefore (C(g, E), d) is a complex. This is the Chevalley-

Eilenberg complex of E-valued cochains of g and d is the Chevalley coboundary. In
the case when E is a convenient unital algebra A, C(g, A) is canonically a graded
unital algebra with product defined by

(ϕ.ψ)(X1, . . . , Xk+l) = 1
k!l!

∑
σ∈Sk+l

signσ.ϕ(Xσ1, . . . , Xσk).ψ(Xσ(k+1), . . . , Xσ(k+l))
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for ϕ ∈ Ck(g, A), ψ ∈ C`(g, A) and Xi ∈ g.
If furthermore g acts by derivations of A, i.e. if the Lie algebra homomorphism

g→ L(A,A) is valued in the Lie algebra

Der(A) = {X ∈ L(A,A) : X(ab) = X(a)b+ aX(b) for all a, b ∈ A}

then d is an antiderivation of C(g, A) and therefore, (C(g, A), d) is a graded differ-
ential algebra.

In particular, C(Der(A), A) is a (convenient, unital) graded differential alge-
bra. The convenient vector space Der(A) is not only a Lie algebra, its is also a
bounded module over the center Z(A) of A. Moreover, Z(A) is stable by Der(A)
and one has the usual formulas [X, aY ] = X(a)Y + a[X,Y ], etc. Let ΩDer(A) =
CZ(A)(Der(A), A) denote the subspace of C(Der(A), A) of all cochains which are
Z(A)-multilinear. Then, as easily verified, ΩDer(A) =

⊕
k≥0 ΩkDer(A) is a graded

differential subalgebra of C(Der(A), A). The graded differential algebra ΩDer(A)
is a noncommutative generalization of differential forms since it coincides with the
graded differential algebra Ω(M) of differential forms on M whenever A is the
algebra C∞(M) of all smooth functions on a finite dimensional smooth manifold
M .

3.5 H. Cartan’s operations. If g is a convenient Lie algebra and if (A, d) is a
graded differential algebra, an operation in the sense of Cartan of g in A is a linear
mapping g → Der−1(A), written X 7→ iX , such that for LX := iX d + d iX =
[iX , d] ∈ Der0(A) we have for all X, Y ∈ g:

iX iY + iY iX = [iX , iY ] = 0
LX iY − iY LX = [LX , iY ] = i[X,Y ].
LX LY − LY LX = [LX ,LY ] = L[X,Y ].

An element α ∈ A is called horizontal with respect to g whenever iXα = 0 for all
X ∈ g; it is called invariant with respect to g if LXα = 0 for all X ∈ g; and α is
called basic if it is both horizontal and invariant.

The convenient space AH of horizontal elements of A is a graded subalgebra of
A which is stable under LX for all X ∈ g. The convenient space AI of all invariant
elements is a graded differential subalgebra of (A, d), and the convenient space AB
of all basic elements is a graded differential subalgebra of AI , thus also of A.

4. Derivations on universal differential forms

4.1. Let A be a convenient associative algebra with unit, and let (Ω∗(A), d) be the
convenient graded differential algebra of universal differential forms as described in
3.3. In this section we review from [1] the description of all graded derivations on
the graded differential algebra Ω∗(A). This leads directly to what we like to call
the ‘calculus of Frölicher-Nijenhuis’.

4.2 Derivations vanishing on A. For every derivation X ∈ Der(A) there exists
a bounded A-bimodule homomorphism jX : Ω1(A)→ A, by the universal property
3.3.(1). It prolongs uniquely to a graded derivation j(X) = jX : Ω(A) → Ω(A)
of degree −1 which is called the contraction operator of the derivation X. By
definition, jX vanishes on A.
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More generally, let us consider a graded derivation D ∈ Derk(Ω∗(A)) of degree
k which vanishes on A, D | Ω0(A) = 0. Such derivations are called algebraic
derivations; they form a Lie subalgebra of Der(Ω∗(A)). Then D(aω) = aD(ω)
and D(ωa) = D(ω)a for a ∈ A, so D restricts to a bounded bimodule homomor-
phism, an element of HomA

A(Ωl(A),Ωl+k(A)). Since Ωl(A) for l ≥ 1 is generated
by Ω1(A), the derivation D is uniquely determined by its restriction D|Ω1(A) ∈
HomA

A(Ω1(A),Ωk+1(A)).
Let us denote by

K := (D|Ω1(A)) ◦ d ∈ Der(A,Ωk+1(A))

the corresponding derivation on A. We write D = j(K) = jK to express the unique
dependence of D on K. Note the defining equation jK(a1.d(a2).a3) = a1.K(a2).a3

for ai ∈ A.
Conversely for K ∈ Der(A,Ωk+1(A)) with corresponding homomorphism jK ∈

HomA
A(Ω1(A),Ωk+1(A)) and ωi ∈ Ω1(A) the formula

jK(ω0 ⊗A · · · ⊗A ω`) =
∑̀
i=0

(−1)ikω0 ⊗A · · · ⊗A jK(ωi)⊗A · · · ⊗A ωk

defines an algebraic graded derivation jK ∈ DerkΩ(A) and any algebraic derivation
is of this form. The mapping

j : Der(A,Ωk+1(A))→ DerkΩ(A)

induces an isomorphism of convenient vector spaces onto the closed linear subspace
of DerkΩ(A) consisting of all graded bounded derivations which vanish on A.

By stipulating j([K,L]∆) := [jK , jL] we get a bracket [ , ]∆ on the space
Der(A,Ω∗+1(A)) which defines a convenient graded Lie algebra structure with the
grading as indicated, and for K ∈ Der(A,Ωk+1(A)), and L ∈ Der(A,Ωl+1(A)) we
have

[K,L]∆ = jK ◦ L− (−1)k`jL ◦K.

[ , ]∆ is a version of the bracket of Gerstenhaber, De Wilde - Lecomte, see [11],
[12], and [5].

4.3. Lie derivations and the Frölicher-Nijenhuis bracket. The exterior de-
rivative d is an element of Der1Ω(A). We define for K ∈ Der(A,Ωk(A)) the Lie
derivation LK = L(K) ∈ DerkΩ(A) by

LK := [jK , d] = jK d− (−1)k−1d jK .

Then the mapping L : Der(A,Ω∗(A)) → Der∗Ω(A) is obviously bounded and it
is injective by the universal property of Ω1(A), since LKa = jKda = K(a) for
a ∈ A. Note that LK is an extension of the derivation K : A→ Ωk(A) to a graded
derivation of the graded algebra Ω∗(A) of degree k.



10 M. DUBOIS-VIOLETTE, P. MICHOR

Lemma. [1], 4.7. For any graded derivation D ∈ DerkΩ(A) there are unique
homomorphisms K ∈ Der(A,Ωk(A)) and L ∈ Der(A,Ωk+1(A)) such that

D = LK + jL.

We have L = 0 if and only if [D, d] = 0. D is algebraic if and only if K = 0. �

Note that jdω = kω for ω ∈ Ωk(A). Therefore we have Ldω = jd dω − d jdω =
(k + 1)dω − kdω = dω. Thus Ld = d.

Let K ∈ Der(A,Ωk(A)) and L ∈ Der(A,Ωl(A)). Then obviously [[LK ,LL], d] =
0, so we have

[L(K),L(L)] = L([K,L])

for a uniquely defined [K,L] ∈ Der(A,Ωk+l(A)) which is called the (abstract)
Frölicher-Nijenhuis bracket of K and L.

The space Der(A,Ω∗(A)) =
⊕

k Der(A,Ωk(A)) with its usual grading and the
Frölicher-Nijenhuis bracket is a convenient graded Lie algebra. d ∈ Der(A,Ω1(A))
is in the center, i.e. [K, d] = 0 for all K, see [1], 4.9.
L : (Der(A,Ω∗(A)), [ , ]) → DerΩ(A) is a bounded injective homomorphism

of graded Lie algebras. For K ∈ Der(A,Ωk(A)) and L ∈ Der(A,Ωl+1(A)) we have

(1) [LK , jL] = j([K,L])− (−1)klL(jL ◦K).

For Ki ∈ Der(A,Ωki(A)) and Li ∈ Der(A,Ωki+1(A)) we have

[LK1 + jL1 ,LK2 + jL2 ] =(2)

= L
(
[K1,K2] + jL1 ◦K2 − (−1)k1k2jL2 ◦K1

)
+ j

(
[L1, L2]∆ + [K1, L2]− (−1)k1k2 [K2, L1]

)
.

Each summand of this formula looks like a semidirect product of graded Lie alge-
bras, but the mappings

j : Der(A,Ω∗−1(A))→ EndK(Der(A,Ω∗(A)), [ , ])

ad : Der(A,Ω∗(A))→ EndK(Der(A,Ω∗−1(A)), [ , ]∆),

adK L = [K,L],

do not take values in the subspaces of graded derivations. We have instead for
K ∈ Der(A,Ωk(A)) and L ∈ Der(A,Ωl+1(A)) the following relations:

jL ◦ [K1,K2] = [jL ◦K1,K2] + (−1)k1l[K1, jL ◦K2](3)

−
(

(−1)k1lj(adK1 L) ◦K2 − (−1)(k1+l)k2j(adK2 L) ◦K1

)
adK [L1, L2]∆ = [adK L1, L2]∆ + (−1)kk1 [L1, adK L2]∆−(4)

−
(

(−1)kk1 ad(j(L1) ◦K)L2 − (−1)(k+k1)k2 ad(j(L2) ◦K)L1

)
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4.4. Naturality of the Frölicher-Nijenhuis bracket. Let f : A → B be a
bounded algebra homomorphism. Two elements K ∈ Der(A,Ωk(A)) and K ′ ∈
Der(B,Ωk(B)) are called f -related or f -dependent, if we have

(1) K ′ ◦ f = Ωk(f) ◦K : A→ Ωk(B),

where Ω∗(f) : Ω∗(A)→ Ω∗(B) is given by the universal property 3.3.(2). From [1],
4.12. we have the following results:

(2) If K and K ′ are f -related then jK′ ◦ Ω(f) = Ω(f) ◦ jK : Ω(A)→ Ω(B).
(3) If jK′ ◦ Ω(f)|d(A) = Ω(f) ◦ jK |d(A), then K and K ′ are f -related, where

d(A) ⊂ Ω1(A) denotes the space of exact 1-forms.
(4) If Kj and K ′j are f -related for j = 1, 2, then jK1 ◦ K2 and jK′1 ◦ K

′
2 are

f -related, and also [K1,K2]∆ and [K ′1,K
′
2]∆ are f -related.

(5) If K and K ′ are f -related then LK′ ◦ Ω(f) = Ω(f) ◦ LK : Ω(A)→ Ω(B).
(6) If LK′ ◦ Ω(f) | Ω0(A) = Ω(f) ◦ LK | Ω0(A), then K and K ′ are f -related.
(7) If Kj and K ′j are f -related for j = 1, 2, then their Frölicher-Nijenhuis brack-

ets [K1,K2] and [K ′1,K
′
2] are also f -related.

5. The Frölicher-Nijenhuis calculus on Chevalley type cochains

5.1. Insertion operators. Let A be a convenient associative algebra with unit.
Using the setting from 3.4, for X ∈ Der(A) we consider the insertion operator

iX : C∗(Der(A), A)→ C∗−1(Der(A), A),

(iXω)(X1, . . . , Xk) := ω(X,X1, . . . , Xk),

which is a derivation of degree −1 satisfying iX |C0(Der(A), A) = iX |A = 0. Note
that iX maps the graded differential subalgebra CZ(A)(Der(A), A) into itself.

More generally, let K ∈ Ck(Der(A),Der(A)) := Lkskew(Der(A); Der(A)) be a
bounded skew symmetric k-linear mapping Der(A)k+1 → Der(A). Then we may
define:

iK : Cl(Der(A), A)→ Cl+k−1(Der(A), A)

(iKω)(X1, . . . , Xl+k−1) =(1)

= 1
k! (l−1)!

∑
σ∈Sk+l−1

sign(σ) ω(K(Xσ1, . . . , Xσk), Xσ(k+1), . . . )

Note that iIdDer(A)ω = l.ω for ω ∈ Cl(Der(A), A).

Lemma. iK is a derivation of degree k − 1, iK ∈ Derk−1(C∗(Der(A), A)).

Proof. Clearly one may write

(iKω)(X1, . . . , Xl+k−1) =(2)

=
∑

i1<···<ik

(−1)i1+···+ik− k(k+1)
2 ω(K(Xi1 , . . . , Xik), X1, . . . , X̂i1 , . . . , X̂i2 , . . . ).
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Using expression (2) one may check directly that then we have

(3) [iX , iK ] = iK(X,... ) = iiXK for any X ∈ Der(A).

From (3) it is then easy to prove that for ϕ ∈ Cp(Der(A), A) and ψ ∈ Cq(Der(A), A)
we have

iK(ϕ.ψ) = (iKϕ).ψ + (−1)(k−1)pϕ.(iKψ),

by induction on k + p+ q. �

5.2. Remark. In general there exist more bounded graded derivations D in the
space Der(C(Der(A), A)) which vanish on A, than just those of the form iK for
some K ∈ C(Der(A),Der(A)). We shall give an explicit description of all graded
derivations on C(Der(A), A) in section 6 below, but we will not extend the Frölicher-
Nijenhuis calculus to this description: it is too complicated.

5.3. Now let K ∈ Ck(Der(A),Der(A)) and L ∈ Cl(Der(A),Der(A)). Then for the
graded commutator we have

[iK , iL] = iK iL − (−1)(k−1)(l−1)iL iK = i[K,L]∧ , where

[K,L]∧ = iKL− (−1)(k−1)(l−1)iLK ∈ Ck+l−1(Der(A),Der(A))

is the Nijenhuis-Richardson bracket, see [21], a graded Lie bracket on the graded
vector space C∗+1(Der(A),Der(A)). Here iL acts on C(Der(A),Der(A)) by the
same formula as in 5.1.(1).

5.4. Lie derivations. For K ∈ Ck(Der(A),Der(A)) let us now define the Lie
derivation LK along K by the graded commutator

LK = [iK , d] = iK d− (−1)k−1d iK ∈ Derk(C(Der(A), A)).

Note that LIdDer(A) = d.

5.5. Lemma. The Lie derivative of ω ∈ Cl(Der(A), A) along K is given by

(LKω)(X1, . . . , Xk+l) =

= 1
k! l!

∑
σ

signσ LK(Xσ1,...,Xσk)(ω(Xσ(k+1), . . . , Xσ(k+l)))

+ (−1)k
(

1
k! (l−1)!

∑
σ

signσ ω([Xσ1,K(Xσ2, . . . , Xσ(k+1))], Xσ(k+2), . . . )

− 1
(k−1)! (l−1)! 2!

∑
σ

signσ ω(K([Xσ1, Xσ2], Xσ3, . . . ), Xσ(k+2), . . . )
)

Proof. This can be shown by a direct computation starting from formula 5.1.(2). �
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5.6. Proposition. Let K ∈ Ck(Der(A),Der(A)) and L ∈ Cl(Der(A),Der(A)).
Then for the graded commutator we have

[LK ,LL] = LK LL − (−1)(k−1)(l−1)LL LK = L[K,L],

where [K,L] ∈ Ck+l(Der(A),Der(A)) is given by the following formula

[K,L](X1, . . . , Xk+l) =
(1)

= 1
k! l!

∑
σ

signσ [K(Xσ1, . . . , Xσk), L(Xσ(k+1), . . . , Xσ(k+l))]

+ (−1)k
(

1
k! (l−1)!

∑
σ

signσ L([Xσ1,K(Xσ2, . . . , Xσ(k+1))], Xσ(k+2), . . . )

− 1
(k−1)! (l−1)! 2!

∑
σ

signσ L(K([Xσ1, Xσ2], Xσ3, . . . ), Xσ(k+2), . . . )
)

− (−1)kl+l
(

1
(k−1)! l!

∑
σ

signσ K([Xσ1, L(Xσ2, . . . , Xσ(l+1)), Xσ(l+2), . . . )

− 1
(k−1)! (l−1)! 2!

∑
σ

signσ K(L([Xσ1, Xσ2], Xσ3, . . . ), Xσ(l+2), . . . )
)
.

The bracket [K,L] is called the Frölicher-Nijenhuis bracket. It is a graded Lie
bracket on C∗(Der(A),Der(A)).

Proof. Comparing the Chevalley coboundary operator (see 3.4)

∂K(X1, . . . , Xk+1) = 1
k!

∑
σ

signσ [Xσ1,K(Xσ2, . . . , Xσ(k+1))]

− 1
(k−1)! 2!

∑
σ

signσ K([Xσ1, Xσ2], Xσ3, . . . , Xσ(k+1))

for the adjoint representation of the Lie algebra Der(A) with the Frölicher-Nijenhuis
bracket (1) one sees that

(2) [K,L] = [K,L]∧ + (−1)ki(∂K)L− (−1)kl+li(∂L)K,

where we have put

(3) [K,L]∧(X1, . . . , Xk+l) =

= 1
k! l!

∑
σ

sign(σ)[K(Xσ1, . . . , Xσk), L(Xσ(k+1), . . . , Xσ(k+l))]Der(A).

Formula (2) is the same as in [21], p. 100, where it is also stated that from this
formula ‘one can show (with a good deal of effort) that this bracket defines a graded
Lie algebra structure’. Similarly we can write the Lie derivative 5.5 as

(4) LK = L∧(K) + (−1)ki(∂K),
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where the action L of Der(A) on A is extended to L∧ : C(Der(A),Der(A)) ×
C(Der(A), A)→ C(Der(A), A) by

(5) (L∧(K)ω)(X1, . . . , Xq+k) =

= 1
k! l!

∑
σ

sign(σ)L(K(Xσ1, . . . , Xσk))(ω(Xσ(k+1), . . . , Xσ(k+q))).

Using (4) we see that

[LK ,LL] = L∧(K)L∧(L)− (−1)klL∧(L)L∧(K)(6)

+ (−1)ki(∂K)L∧(L)− (−1)kl+kL∧(L)i(∂K)

− (−1)kl+li(∂L)L∧(K) + (−1)lL∧(K)i(∂L)

+ (−1)k+li(∂K)i(∂L)− (−1)kl+k+li(∂L)i(∂K),

and from (2) and (4) we get

L[K,L] = L[K,L]∧ + (−1)kLi(∂K)L − (−1)kl+lLi(∂L)K(7)

= L∧([K,L]∧) + (−1)k+li(∂[K,L]∧)

+ (−1)kL∧(i(∂K)L) + (−1)ki(∂i(∂K)L)

− (−1)kl+lL∧(i(∂L)K)− (−1)kl+ki(∂i(∂L)K).

By a straightforward direct computation one checks that

(8) L∧(K)L∧(L)− (−1)klL∧(L)L∧(K) = L∧([K,L]∧).

If the derivation iK of degree k looks at the expression L∧(L)ω, it sees only the
‘wedge’ product in 3.4, so we may apply lemma 5.1 (or reprove lemma 5.1 in this
situation) and get

(9) iKL∧(L)ω = L∧(iKL)ω + (−1)(k−1)lL∧(L)iKω.

By a straightforward combinatorial computation one can check directly from the
definitions that the following formula holds:

(10) ∂(iKL) = i∂KL+ (−1)k−1iK∂L+ (−1)k[K,L]∧.

Moreover it is obvious that

(11) ∂[K,L]∧ = [∂K,L]∧ + (−1)k[K, ∂L]∧.

We have to show that (6) equals (7). This follows by using (8), twice (9), twice
(10), (11), and ∂∂ = 0.

That the Frölicher-Nijenhuis bracket defines a graded Lie bracket follows now
from the fact that L : C(Der(A),Der(A))→ Der(C(Der(A), A)) is injective. �
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5.7. Lemma. For K ∈ Ck(Der(A),Der(A)) and L ∈ Cl(Der(A),Der(A)) we have

[LK , iL] = i([K,L])− (−1)k(l−1)L(iLK), or

[iL,LK ] = L(iLK) + (−1)k i([L,K]).

Proof. The two equations are obviously equivalent by graded skew symmetry, and
the second one follows by inserting the following formulas, all from 5.6: expand the
equation by (4), (2), and use then (10). �

5.8. Remark. As formal consequences of lemma 5.7 we get the following formulae:
For Ki ∈ Cki(Der(A),Der(A)) and Li ∈ Cki+1(Der(A),Der(A)) we have

[LK1 + iL1 ,LK2 + iL2 ] =(1)

= L
(
[K1,K2] + iL1K2 − (−1)k1k2iL2K1

)
+ i
(
[L1, L2]∧ + [K1, L2]− (−1)k1k2 [K2, L1]

)
.

Each summand of this formula looks like a semidirect product of graded Lie alge-
bras, but the mappings

i : C(Der(A),Der(A))→ EndK(C(Der(A),Der(A)), [ , ])

ad : C(Der(A),Der(A))→ EndK(C(Der(A),Der(A)), [ , ]∧)

do not take values in the subspaces of graded derivations. We have instead for
K ∈ Ck(Der(A),Der(A)) and L ∈ Cl+1(Der(A),Der(A)) the following relations:

iL[K1,K2] = [iLK1,K2] + (−1)k1l[K1, iLK2](2)

−
(

(−1)k1li([K1, L])K2 − (−1)(k1+l)k2i([K2, L])K1

)
[K, [L1, L2]∧] = [[K,L1], L2]∧ + (−1)kl1 [L1, [K,L2]]∧−(3)

−
(

(−1)kl1 [i(L1)K,L2]− (−1)(k+l1)l2 [i(L2)K,L1]
)

The algebraic meaning of these relations and its consequences in group theory have
been investigated in [20]. The corresponding product of groups is well known to
algebraists under the name ‘Zappa-Szep’-product.

Moreover the Chevalley coboundary operator is a homomorphism from the Frö-
licher-Nijenhuis bracket to the Nijenhuis-Richardson bracket:

(4) ∂[K,L] = [∂K, ∂L]∧

Proof. (1) follows from repeated applications of 5.7. It is easy to show that the
images under L of both sides of (2) coincide, using 5.7, then we just note that
L is injective. For (3) it is again easy to show that the images under i of both
sides coincide, again using 5.7; also i : C(Der(A),Der(A))→ Der(C(Der(A), A)) is
injective.

(4) follows from 5.6,(2), (10), and (11), and from 5.3. �
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5.9. The graded differential Lie-subalgebra CZ(A)(Der(A),Der(A)). Clearly
a derivation iK ∈ Der(C(Der(A), A)) for K ∈ Ck(Der(A),Der(A)) maps the graded
differential subalgebra CZ(A)(Der(A), A) into itself if and only if K is skew Z(A)-
multilinear, i.e.

K ∈ CZ(A)(Der(A),Der(A))

K(z1X1, . . . , zkXk) = z1 . . . zkK(X1, . . . , Xk) for all zi ∈ Z(A) and Xi ∈ Der(A).

Then also the Lie derivation LK respects CZ(A)(Der(A), A) = ΩDer(A), and so the
closed linear subspace CZ(A)(Der(A),Der(A)) is a graded Lie subalgebra for both
brackets [ , ]∧ and [ , ], and all formulas in this section continue to hold. But
note that in the simpler formula 5.6.(2), although [K,L] is Z(A)-multilinear, none
of the three summands is in CZ(A)(Der(A),Der(A)). The same applies to 5.6.(4).

5.10. Remark. If K ∈ C1(Der(A),Der(A)) = L(Der(A),Der(A)) then formula
5.6.(1) boils down to

[K,K](X,Y ) = 2([KX,KY ]−K[KX,Y ]−K[X,KY ] +K2[X,Y ]).

So if [K,K] = 0 then the image of K is a Lie subalgebra of Der(A). If K is moreover
a projection, K ◦K = K, then also the kernel is a Lie subalgebra. In this case one
could view K as a ‘connection’ and could say that the kernel and the image of K
are ‘involutive subbundles’ whose ‘curvatures vanish’, compare with [1], section 5.
We shall elaborate on this topic in a later paper.

If K : Der(A) → Der(A) is semisimple with [K,K] = 0, then each eigenspace
of K is also a Lie subalgebra. For if KX = λX and KY = λY then we get
(K − λ)2[X,Y ] = 0 and thus K[X,Y ] = λ[X,Y ]. In particular the kernel of K is a
Lie subalgebra λ = 0.

If moreover K is Z(A)-linear, K ∈ C1
Z(A)(Der(A),Der(A)) = Der(A,Ω1

Der(A)),
then the above Lie subalgebras of Der(A) are also Z(A)-submodules.

6. Description of all derivations in the
Chevalley differential graded algebra

6.1. Insertion operators. The space HomA
A(Cp(Der(A), A), A) is a sort of ‘A-

dual’ of Cp(Der(A), A). Let us write 〈Ξ, ϕ〉A ∈ A for the evaluation of the element
Ξ ∈ HomA

A(Cp(Der(A), A), A) on ϕ ∈ Cp(Der(A), A). Note that for a, b ∈ A
we have 〈Ξ, a.ϕ.b〉A = a.〈Ξ, ϕ〉A.b. Then we consider the (closure of the) linear
subspace ∑

0<i<p

Ci(Der(A), A).Cp−i(Der(A), A) ⊂ Cp(Der(A), A)

and its annihilator

Annp(Der(A), A) : =

 ∑
0<i<p

Ci(Der(A), A).Cp−i(Der(A), A)

©

⊆ HomA
A(Cp(Der(A), A), A),
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and set

Ann1(Der(A), A) = HomA
A(C1(Der(A), A), A),

Ann0(Der(A), A) = Der(A).

For Ξ ∈ Annp(Der(A), A) we consider the ‘insertion operator’

iΞ : C∗(Der(A), A)→ C∗−p(Der(A), A),

(iΞω)(X1, . . . , Xl) := 〈Ξ, ω( , . . . ,︸ ︷︷ ︸
p times

, X1, . . . , Xl)〉A,

which is a derivation of degree −p satisfying iΞ|Cq(Der(A), A) = 0 for q < p, since
Ξ is an A-bimodule homomorphism and annihilates all ‘small’ products.

More generally let K ∈ Ck(Der(A),Annp(Der(A), A)) be a bounded skew sym-
metric k-linear mapping Der(A)k → Annp(Der(A), A). Then we define the bounded
linear mapping iK : Cl(Der(A), A)→ Cl+k−p(Der(A), A) by iK |Cq(Der(A), A) = 0
for q < p, and by

(1) (iKω)(X1, . . . , Xl+k−p) =

= 1
k! (l−1)!

∑
σ∈Sk+l−1

signσ.〈K(Xσ1, . . . , Xσk), ω( , . . . ,︸ ︷︷ ︸
p times

, Xσ(k+1), . . . )〉A.

Lemma. iK is a derivation of degree k − p, iK ∈ Derk−p(C∗(Der(A), A)).

Proof. Clearly one may write

(2) (iKω)(X1, . . . , Xl+k−1) =

=
∑

i1<···<ik

(−1)i1+···+ik− k(k+1)
2 〈K(Xi1 , . . . , Xik),

ω( , . . . ,︸ ︷︷ ︸
p times

, X1, . . . , X̂i1 , . . . , X̂i2 , . . . )〉A.

Using expression (2) one may check directly that then we have

(3) [iX , iK ] = iK(X,... ) = iiXK for any X ∈ Der(A).

From (3) it is easy to prove that for ϕ ∈ Cm(Der(A), A) and ψ ∈ Cn(Der(A), A)
we have

iK(ϕ.ψ) = (iKϕ).ψ + (−1)(k−p)mϕ.(iKψ),

by induction on k − p+m+ n, for each fixed p. �
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6.2. Proposition. Let D ∈ Derk(C(Der(A), A)) be a graded derivation. Then
there are unique K0 ∈ Ck(Der(A),Der(A)) = Ck(Der(A),Ann0(Der(A), A)) and
Kp ∈ Ck+p(Der(A),Annp(Der(A), A)) for p = 1, 2, . . . such that

D = LK0 +
∞∑
p=1

iKp .

Note that on each fixed component Cl(Der(A), A) this is a finite sum.

Proof. Let D ∈ Derk(C(Der(A), A)) be a graded derivation. Then the restriction
D|A of D to A = C1(Der(A), A) is an element of

K0 := D|A ∈ Der(A,Ck(Der(A), A)) =

= Der(A,L(ΛkDer(A), A)) =

= L(ΛkDer(A),Der(A,A)), by 2.6

= Ck(Der(A),Der(A)).

By 5.4 we have the Lie derivation LK0 ∈ Derk(C(Der(A), A)) which coincides with
D on A = C0(Der(A), A), so that the difference D −LK0 ∈ Derk(C(Der(A), A)) is
a graded derivation with (D − LK0)|A = 0. So

K1 := (D − LK0)|C1(Der(A),A) ∈ HomA
A(C1(Der(A), A), Ck+1(Der(A), A))

= HomA
A(L(Der(A), A), L(Λk+1Der(A), A))

= L(Λk+1Der(A),HomA
A(L(Der(A), A), A)) by 2.6

= L(Λk+1Der(A),Ann1(Der(A), A)).

By 6.1 we get a derivation iK1 : C(Der(A), A) → C(Der(A), A) and the difference
D − LK0 − iK1 ∈ Derk(C(Der(A), A)) now vanishes on A = C0(Der(A), A) and
C1(Der(A), A). Thus the restriction is an A-bimodule homomorphism

(D − LK0 − iK1)|C2(Der(A), A) : C2(Der(A), A)→ Ck+2(Der(A), A))

vanishes on all products of 1-forms. If we consider

K2 := (D − LK0 − iK1)|C2(Der(A), A) ∈ HomA
A(C2(Der(A), A), Ck+2(Der(A), A))

= HomA
A(C2(Der(A), A), L(Λk+2Der(A), A))

= L(Λk+2Der(A),HomA
A(C2(Der(A), A), A)) by 2.6,

= Ck+2(Der(A),Ann2(Der(A), A)),

then by lemma 6.1 we have a derivation iK2 ∈ Derk(C(Der(A), A)) which vanishes
on Cq(Der(A), A) for q = 0, 1 and coincides with D−LK0 − iK1 on C2(Der(A), A),
so the derivation D − LK0 − iK1 − iK2 vanishes on Cq(Der(A), A) for q = 0, 1, 2,
and we may repeat the process. �
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6.3. Remarks. If we try to expand the graded commutator [iK , iL] using 6.2, the
resulting formulas are too complicated to be written down easily: we should invent
new notation. We refrain from doing this since we also have no use for it.

For K ∈ Ck(Der(A),Ann1(Der(A), A)) we get [iK , d]|A = LK̂ |A, where K̂ ∈
Ck(Der(A),Der(A)) is given by K̂(X1, . . . , Xk)(a) = K(X1, . . . , Xk)(da). The
higher order part in the expansion of [iK , d] according to 6.2 does not vanish, and
it can be written down in principle.

If we want to classify all derivations in Der(CZ(A)(Der(A), A)) we can just repeat
the development in this section, but have to replace Annk(Der(A), A) everywhere
by the annihilator

AnnpZ(A)(Der(A), A) : =

 ∑
0<i<p

CiZ(A)(Der(A), A).Cp−iZ(A)(Der(A), A)

©

⊆ HomA
A(CpZ(A)(Der(A), A), A),

Ann1
Z(A)(Der(A), A) = HomA

A(C1
Z(A)(Der(A), A)),

Ann0
Z(A)(Der(A), A) = Ann0(Der(A), A) = Der(A).

7. Diagonal bimodules

7.1. The differential graded algebra ΩDer(A). By the universal property of
(Ω∗(A), d) there is a unique bounded homomorphism of graded differential algebras

A
d−−−−→ Ω1(A) d−−−−→ Ω2(A) d−−−−→ · · ·∥∥∥ yζ1 yζ2

A
d−−−−→ C1

Z(A)(Der(A), A) d−−−−→ C2
Z(A)(Der(A), A) d−−−−→ · · ·

which is given by

(ζkω)(X1, . . . , Xk) = jXk . . . jX1ω ∈ Ω0(A) = A,

for ω ∈ Ωk(A) and Xi ∈ Der(A). The kernel of ζ is the space

F 1Ω∗(A) =
⊕
k≥0

F 1Ωk(A)

F 1Ωk(A) = {ω ∈ Ωk(A) : jX1 . . . jXkω = 0 for all Xi ∈ Der(A)},

see [6], which is a closed graded differential ideal in (Ω(A), d) by a short computa-
tion. It is part of an obvious filtration which leads to a spectral sequence, see also
[6]. The image of the homomorphism ζ is denoted by (Ω∗Der(A), d) and it will be
equipped with the quotient structure of a convenient vector space, which is a finer
structure than that induced from CZ(A)(Der(A), A).

Note that ΩDer(A) is not functorial in A in general; its convenient structure
makes it useful as a source for constructions.
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7.2. Derivation based bimodules. The space Ω1
Der(A) = Ω1(A)/{ω ∈ Ω1(A) :

jXω = 0 for all X ∈ Der(A)} has the following remainder of the universal property
3.3.(1):

(1) For any bounded derivation X : A → A there is a unique bounded A-
bimodule homomorphism iX : Ω1

Der(A)→ A such that X = iX ◦ d.
We now say that an A-bimodule M is a derivation-based A-bimodule if the following
property is satisfied:

(2) For any bounded derivation D : A → M there is a bounded A-bimodule
homomorphism iD : Ω1

Der(A) → M such that D = iD ◦ d. In fact, if iD
exists it is unique since the image of d generates Ω1

Der(A) as A-bimodule.
By the universal property 3.3.(1) of Ω1(A) condition (2) is equivalent to the follow-
ing:

(3) HomA
A(Ω1(A),M) = HomA

A(Ω1
Der(A),M).

It is obvious that for an arbitrary index set J the direct product AJ with the product
A-bimodule structure has property (2), and also each of it’s sub A-bimodules. Let
us call a diagonal bimodules any A-bimodule which is isomorphic to a submodule
of some product AJ . So all diagonal bimodules are derivation based. The concept
of diagonal bimodules has been announced in [9].

7.3. Proposition. An A-bimodule K is diagonal if and only if the ‘A-dual’
HomA

A(K,A) separates points on K. For each A-bimodule M there exists a univer-
sal diagonal quotient pM : M → Diag(M) such that each bimodule homomorphism
from M into a diagonal bimodule K factors over Diag(M):

M −−−−→ K

pM

y ∥∥∥
Diag(M) −−−−→ K

Let Bimod be the category of all A-bimodules and let Diag denote the full subcategory
of all diagonal A-bimodules, with ι : Diag → Bimod the embedding and Diag :
Bimod :→ Diag the functor from above. Then Diag is left adjoint to ι, i.e. we have
the following natural correspondence:

HomA
A(Diag(M),K) ∼= HomA

A(M, ιK)

Thus the functor Diag respects colimits, whereas ι respects limits, and the category
Diag is complete: products and submodules of modules in Diag are again in Diag.

Proof. The vector space HomA
A(AJ , A) clearly separates points on AJ , so this is

also true for each sub bimodule of AJ . For an arbitrary A-bimodule M we consider
the following homomorphism of A-bimodules:

M
pM−−→ AHomA

A(M,A), M 3 m 7→ (ϕ(m))ϕ∈HomA
A(M,A) ∈ AHomA

A(M,A),

and we denote by Diag(M) the image of pM , a diagonal A-bimodule. If the vector
space HomA

A(M,A) separates points on M then pM is injective and M is diago-
nal. The kernel of pM is given by ker(pM ) = {m ∈ M : ϕ(m) = 0 for all ϕ ∈
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HomA
A(M,A)}, and obviously any homomorphism M → K into a diagonal A-

bimodule K vanishes on ker(pM ) and thus factors through pM .
The remaining statements follow by basic category theory. �

7.4. Examples. We have Diag(Ω1(A)) = Ω1
Der(A), since any homomorphism

Ω1(A)→ A corresponds to a derivation A→ A and thus factors to a homomorphism
Ω1

Der(A)→ A.
Obviously we have Diag(A) = A, but let us consider Diag(A⊗̃A). We have

HomA
A(A⊗̃A,A) ∼= A by ϕ 7→ ϕ(1⊗1), so ker(pA⊗̃A : A⊗̃A→ Diag(A⊗̃A)) consists

of all

(1)
∑
n an⊗̃bn ∈ A⊗̃A which satisfy

∑
n an.c.bn = 0 for each c ∈ A.

Taking c = 1 in (1) we see that ker(pA⊗A) ⊂ Ω1(A), and for each element in (1) we
have

∑
n

an⊗̃bn =
∑
n

an dbn,

iad(c)

∑
n

an dbn =
∑
n

an.(c.bn − bn.c) = 0,

so that ker(pA⊗A) is the subspace Ω1(A)H−Int(A) of all elements in Ω1(A) which
are horizontal with respect to Int(A), see 3.5.

We also see that 1⊗a−a⊗1 ∈ ker(pA⊗̃A) if and only if a ∈ Z(A), so that pA⊗̃A
factors as follows:

(2) A⊗̃A→ A⊗̃Z(A)A→ Diag(A⊗̃A).

Since Diag is a left adjoint functor, it is right exact, and we get the following
diagram with exact rows and exact columns:

0 0y y
0 −−−−→ F 1Ω1(A) −−−−→ Ω1(A)H−Int(A) −−−−→ Ω1

Der(A)H−Int(A) −−−−→ 0y y 0

y
0 −−−−→ Ω1(A) −−−−→ A⊗̃A −−−−→ A −−−−→ 0

pΩ1(A)

y pA⊗̃A

y ∥∥∥
Ω1

Der(A) −−−−→ Diag(A⊗̃A) −−−−→ A −−−−→ 0y y y
0 0 0

From this and the factorization (2) it follows, that for commutative A we have
Diag(A⊗̃A) = A.



22 M. DUBOIS-VIOLETTE, P. MICHOR

7.5. Lemma. Over the algebra MatN (C) of complex (N × N)-matrices every
bimodule is diagonal.

Proof. It is well known that every irreducible left MatN -module is isomorphic to
CN , and that every left MatN -module is semisimple. From this by transfinite
induction one can show that every left MatN -module L (with its finest locally
convex topology) is isomorphic to the direct sum of copies of CN , L ∼= CN ⊗E for
a vector space E.

Now let M be a MatN -bimodule. As a left MatN -module we have M ∼= CN ⊗E.
Take a minimal projection p ∈ MatN , then p.M ∼= C.v ⊗ E ∼= E is a right MatN -
module. By the argument above, as a right MatN -module we have E ∼= K⊗(CN )∗.
Thus

M ∼= CN ⊗K ⊗ (CN )∗ ∼= CN ⊗ (CN )∗ ⊗K ∼= MatN ⊗K ⊂ MatN K . �

8. Derivations on the differential graded algebra ΩDer(A)

8.1. Theorem. Let A be a convenient algebra. Then we have the following boun-
ded canonical mappings, where on the left hand side all mappings are homomor-
phisms of graded differential algebras

Ω∗(A) Der(A,Ω∗(A))yζ yζ
Ω∗Der(A) Der(A,Ω∗Der(A))

⊂
yζ̄ ⊂

yζ̄
CZ(A)(Der(A), A) Der(A,CZ(A)(Der(A), A)) CZ(A)(Der(A),Der(A))

⊂
y ⊂

y
C(Der(A), A) Der(A,C(Der(A), A)) C(Der(A),Der(A))

Then for every element K of degree k in one of the right hand spaces there is a
canonical graded derivation iK (resp. jK) of degree k − 1 on the corresponding left
hand space which vanishes in degree 0; this corresponds to the graded Lie bracket
[ , ]∧ on the right hand spaces. There is also the corresponding Lie derivation
LK of degree k on the left hand space, which leads to the Frölicher-Nijenhuis bracket
[ , ] on the right hand space. The vertical arrows intertwine all these derivations
and the right hand ones are homomorphisms for all brackets mentioned.

The proof of this theorem will fill the rest of this section 8.

8.2. Let D ∈ Derk(Ω∗Der(A)) be a derivation which vanishes on A = Ω0
Der(A). Then

by setting K := (D|Ω1
Der(A)) ◦ d ∈ Der(A,Ωk+1

Der (A)) we have

(1) D(ω0 . . . ωl) =
∑

(−1)ik(ω0) . . . D(ωi) . . . (ωl),

so D is uniquely determined by D|Ω1
Der(A), thus by K.
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Conversely, let K ∈ Der(A,Ωk+1
Der (A)) and consider the corresponding homo-

morphism j̃K ∈ HomA
A(Ω1(A),Ωk+1

Der (A)) with j̃K ◦ d = K. We extend it to
j̃K : Ω∗(A) → Ω∗+kDer (A) by the right hand side of the universal analog of (1),
i.e.

(2) j̃K(ω0 ⊗A · · · ⊗A ωl) =
∑

(−1)ikζ(ω0) . . . j̃K(ωi) . . . ζ(ωl)

Then j̃K is a graded derivation of degree k along ζ. We are going to show that j̃K
factors to Ω∗Der(A), but we need some preparation.

8.3. For X ∈ Der(A) ∼= HomA
A(Ω1(A), A) ∼= HomA

A(Ω1
Der(A), A) we clearly have

the following factorization:

Ω∗(A)
jX−−−−→ Ω∗−1(A)

ζ

y ζ

y
Ω∗Der(A) iX−−−−→ Ω∗−1

Der (A)y y
C∗Z(A)(Der(A), A) iX−−−−→ C∗−1

Z(A)(Der(A), A)

For K ∈ Der(A,Ωk+1
Der (A)) let us consider the ‘graded commutator’

iX j̃K − (−1)k j̃K jX : Ω∗(A)→ Ω∗+kDer (A)

It is still a graded derivation along ζ, and by applying 8.2 we see that

iX j̃K − (−1)k j̃K jX = j̃[X,K]∆

for [X,K]∆ ∈ Der(A,Ωk+1
Der (A)),

[X,K]∆(ω) = iXK(ω)− (−1)k j̃K(jXω) = (iX ◦K)(ω).

8.4. Lemma. For K ∈ Der(A,Ωk+1
Der (A)) we have j̃K(F 1(Ωl(A))) = 0 for all l.

Proof. We do induction on l + k. For l = 0 we have F 1(A) = 0, so the asser-
tion holds. If k = −1 then K = X ∈ Der(A) and we have j̃X(F 1(Ωl(A))) =
ζ(jX(F 1(Ωl(A)))) ⊂ ζ(F 1(Ωl(A))) = 0.

Now for the induction step we take ϕ ∈ F 1(Ωl(A)), so that jX1 . . . jXlϕ = 0 for
all Xi ∈ Der(A). From 8.3 we get

iX j̃K ϕ = (−1)k j̃K(jXϕ) + j̃iX◦Kϕ = 0,

by induction: the first summand vanishes since jXϕ ∈ F 1Ωl−1(A), and the second
summand vanishes since iX ◦K ∈ Der(A,ΩkDer(A)). �
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8.5. Corollary. For each k the A-bimodule ΩkDer(A) is a derivation based bimod-
ule.

Proof. By the universal property 3.3.(1) and from 8.4 we get

Der(A,ΩkDer(A)) ∼= HomA
A(Ω1(A),ΩkDer(A))

ζ∗←−
∼=

HomA
A(Ω1

Der(A),ΩkDer(A)). �

This result also follows from the fact that ΩkDer(A) is a sub A-bimodule of a
direct product AJ , i.e. a diagonal bimodule, see the last remark in 7.2. By the
same reason the bimodules Ck(Der(A), A) and CkZ(A)(Der(A), A) are also diagonal
bimodules, thus derivation based A-bimodules.

8.6. Insertion operators. For any K ∈ Der(A,Ωk+1
Der (A)) we may now define the

insertion operator iK ∈ Der(Ω∗Der(A)) by the following factorization which is due
to lemma 8.4:

Ω∗(A)
j̃K−−−−→ Ω∗+kDer (A)

ζ

y ∥∥∥
Ω∗Der(A) iK−−−−→ Ω∗+kDer (A)

From 8.2 we may now conclude that any derivationD ∈ Der(Ω∗Der(A)) withD|A = 0
is of the form iK for a unique K ∈ Der(A,Ωk+1

Der (A)).
For K,L ∈ Der(A,Ω∗Der(A)) of degree k + 1 and l + 1, respectively, we have

[iK , iL] = iK iL − (−1)kliL iK = i[K,L]∧ , where

[K,L]∧ = iK ◦ L− (−1)kliL ◦K : Ω1(A)→ Ωk+l+1
Der (A)

8.7. Lie derivations. For K ∈ Der(A,ΩkDer(A)) we define the Lie derivation
along K by

LK = [iK , d] = iK d− (−1)k−1d iK ∈ Derk(Ω∗Der(A)).

Similar as in 4.3 one sees that LId = d.

8.8. Proposition. For any graded derivation D ∈ Derk(Ω∗Der(A)) there are unique
K ∈ Der(A,ΩkDer(A)) and L ∈ Der(A,Ωk+1

Der (A)) such that

D = LK + iL.

We have L = 0 if and only if [D, d] = 0; and K = 0 if and only if D|A = 0.

Proof. D|A : A = Ω0
Der(A)→ ΩkDer(A) is a derivation with values in the derivation

based A-bimodule ΩkDer(A) (7.2), so by the universal property 3.3.(1) and by 8.5
there is a unique K ∈ Der(A,ΩkDer(A)) with D|A = K. But then (D−LK)|A = 0,
so by 8.6 we have D − LK = iL for a unique L ∈ Der(A,Ωk+1

Der (A)). �
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8.9. The Frölicher-Nijenhuis bracket. For K ∈ Der(A,ΩkDer(A)) and L ∈
Der(A,ΩlDer(A)) the graded commutator of the Lie derivations [LK ,LL] commutes
with d, so by 8.8 we have [LK ,LL] = L[K,L] for unique [K,L] ∈ Der(A,Ωk+l

Der(A)).
We may conclude that this bracket [ , ] defines a graded Lie algebra structure
on Der(A,Ω∗Der(A)), because the mapping L is injective. This bracket is called the
Frölicher-Nijenhuis bracket.

8.10. For K ∈ Der(A,ΩkDer(A)) we define ζK ∈ CkZ(A)(Der(A),Der(A)) by

ζK(X1, . . . , Xk) := iXk ◦ . . . ◦ iX1 ◦K : A→ A

If we denote for the moment by ζ̄ : Ω∗Der(A)→ C∗Z(A)(Der(A), A) the embedding of
graded differential algebras, then we have

ζ̄ ◦ iK = iζK ◦ ζ̄ : Ω∗Der(A)→ C∗+k−1
Z(A) (Der(A), A),

So the elements L ∈ CkZ(A)(Der(A),Der(A)) for which iL maps the graded sub-
algebra Ω∗Der(A) into itself are precisely those of the form L = ζK for some
K ∈ Der(A,ΩkDer(A)).

8.11. Proposition. The injective bounded linear mapping
ζ : Der(A,Ω∗Der(A))→ C∗Z(A)(Der(A),Der(A))

is a homomorphism for both brackets [ , ]∧ and [ , ]. If we denote for the mo-
ment also by ζ̄ : Ω∗Der(A)→ C∗Z(A)(Der(A), A) the embedding of graded differential
algebras, then we have

ζ̄ ◦ iK = iζK ◦ ζ̄, ζ̄ ◦ LK = LζK ◦ ζ̄ : Ω∗Der(A)→ C∗Z(A)(Der(A), A),

so all the formulas from section 5 continue to hold on Der(A,Ω∗Der(A)).

Proof. This is obvious from the considerations above. �

8.12. For K ∈ Der(A,Ωk(A)) we consider ζk ◦K ∈ Der(A,CkZ(A)(Der(A), A)), and
the corresponding element

ζk(K) ∈ CZ(A)(Der(A),Der(A)) ∼= Der(A,CkZ(A)(Der(A), A))

then we have:

Lemma. For ω ∈ Ωq(A) and K ∈ Der(A,Ωk(A)) we have
(1) iζk(K)(ζqω) = ζq+k−1(jKω).

Proof. Both sides,
iζk(K) ◦ ζ, ζ ◦ jK : Ω∗(A)→ C∗+k−1

Z(A) (Der(A), A),

are derivations over ζ : Ω(A) → CZ(A)(Der(A), A), a homomorphism of graded
differential algebras, and both vanish on A = Ω0(A), thus it remains to show that
they are equal on Ω1(M). But for ω ∈ Ω1(A) we have by 5.1.(1)

(iζk(K)(ζ1ω))(X1, . . . , Xk) = (ζ1ω)(ζkK(X1, . . . , Xk))
= j(ζkK(X1,...,Xk))ω

= j(jXk ...jX1K)ω

= jXk . . . jX1jKω

= ζk(jKω)(X1, . . . , Xk) �
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8.13. Corollary. For K,L ∈ Der(A,Ω(A)) and ω ∈ Ω(A) we have:
(1) ζ([K,L]∆) = [ζ(K), ζ(L)]∧ for the algebraic brackets.
(2) ζLKω = Lζ(K)ζω for the Lie derivations.
(3) ζ([K,L]) = [ζ(K), ζ(L)] for the Frölicher-Nijenhuis brackets.

9. The differential graded algebra ΩOut(A)

9.1. The differential graded algebra ΩOut(A) is the subspace of all forms
ω ∈ ΩDer(A) which are basic with respect to all inner derivations of A. In more
detail: For a ∈ A let ad(a) : A→ A be given by ad(a)b = [a, b] = ab− ba. Then the
space Int(A) of all these inner derivations ad(a) for a ∈ A is an ideal in Der(A), and
the quotient Out(A) = Der(A)/ Int(A) is called the Lie algebra of outer derivations.
Then we define ΩkOut(A) to be the set of all ω ∈ ΩkDer(A) which satisfy iad(a)ω = 0
and Lad(a)ω = 0 for all a ∈ A. It is easily seen to be a differential graded subalgebra.

9.2. Lemma. The homomorphism ζ : ΩDer(A)→ CZ(A)(Der(A), A) is part of the
following commutative diagram

ΩDer(A)
ζ−−−−→ CZ(A)(Der(A), A) −−−−→ C(Der(A), A)x x x

ΩOut(A)
ζ−−−−→ CZ(A)(Out(A), Z(A)) −−−−→ C(Out(A), Z(A))

where in the lower row we have the graded differential subalgebras of those element
which are basic with respect to all inner derivations of A.

Proof. Clearly the homomorphisms in the upper row of the diagram map ele-
ments which are basic with respect to all inner derivations to themselves. It
just remains to check that in CZ(A)(Der(A), A) and in C(Der(A), A) these ele-
ments form the sets CZ(A)(Out(A), Z(A)) and C(Out(A), Z(A)), respectively. Let
ω ∈ CZ(A)(Der(A), A) or C(Der(A), A) be basic. Since iad(a)ω = 0 for all a ∈ A, the
skew symmetric multilinear mapping ζ(ω) : Der(A)l → A factors to Out(A) → A.
By formula 5.5 we have

0 = (Lad(a)ω)(X1, . . . , Xl)

= ad(a)(ω(X1, . . . , Xl)−
∑

ω(X1, . . . , [ad(a), Xi], . . . , Xl)

= ad(a)(ω(X1, . . . , Xl)− 0

for all a ∈ A, since [ad(a), Xi] ∈ Int(A). But this means that ω has values in
Z(A). �

9.3. Proposition. The graded differential algebra (CZ(A)(Out(A), Z(A)), d) is
Morita invariant.

Proof. Z(A) = HH0(A;A) and Out(A) = HH1(A;A), where HH∗(A;A) is the
Hochschild cohomology of A with values in A, and also the action of Out(A) on
Z(A) is described via Hochschild cohomology. Since Hochschild cohomology is
Morita invariant, the result follows. �
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où opère un groupe de Lie, Colloque de Topologie, C.B.R.M., Bruxelles, 1950, pp. 15–27.
[3] Cartan, H., La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque
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II, Comptes Rendues Acad. Sci. Paris 319, Série I (1994), 927–931.
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