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1. Introduction

In this short review article we sketch some developments which should ultimately
lead to the analogy of the Chern-Weil homomorphism for principle bundles in the
realm of non commutative differential geometry. Principal bundles there should
have Hopf algebras as structure ‘cogroups’. Since the usual machinery of Lie al-
gebras, connection forms, etc., just is not available in this setting, we base our
approach on the Frölicher–Nijenhuis bracket. See [9] for an account of the classical
theory using this approach.

In this paper we give an outline of the construction of a non commutative anal-
ogy of the Frölicher–Nijenhuis bracket as well as some simple applications. For
simplicity we work in a purely algebraic setting but the whole theory can also be
developed for topological algebras as well as for the so called convenient algebras
(see [5]) which are best suited for differentiation and take care of completed tensor
products. For a detailed exposition in the latter setting see [1] and [2].

2. Universal differential forms

2.1. Let A be a unital associative algebra over a commutative field K of character-
istic zero. Then the graded algebra Ω∗(A) of universal differential forms over A is
constructed as follows (see [6] and [7]): The tensor product A⊗A is an A–bimodule
and the multiplication map µ : A⊗ A→ A is a bimodule homomorphism by asso-
ciativity. Hence the kernel of µ is an A–bimodule which we denote by Ω1(A). We
define d : A→ Ω1(A) by d(a) = 1⊗ a− a⊗ 1.

The map d can be characterized by a universal property as follows: Let M be
an A–bimodule. A linear map D : A → M is called a derivation if and only if for
any a, b ∈ A we have D(ab) = D(a) · b + a ·D(b). Obviously d is a derivation and
thus for any bimodule homomorphism ϕ : Ω1(A) → M the map ϕ ◦ d : A → M is
a derivation. It can be proved that any derivation is of this form:

Supported by Project P 7724 PHY of ‘Fonds zur Förderung der wissenschaftlichen Forschung’

Typeset by AMS-TEX

1



2 CAP, MICHOR

2.2. Proposition. For any A-bimodule M the canonical linear mapping d∗ :
HomA

A(Ω1(A),M)→ Der(A;M), given by ϕ 7→ ϕ ◦ d is an isomorphism.

Clearly the module Ω1(A) is determined by this universal property up to canon-
ical isomorphism.

2.3. Now we define the spaces of differential forms of higher degree by Ωk(A) :=
Ω1(A) ⊗A · · · ⊗A Ω1(A) (k factors). Moreover we put Ω0(A) = A and Ω(A) =
⊕∞k=0Ωk(A). Then Ω(A) is a graded algebra with the tensor product as multi-
plication. Next put Ā := A/K, where the ground field K is identified with the
multiples of the unit of A. Then one proves that the map a ⊗ b̄ 7→ ad(b) is an
isomorphism between A ⊗ Ā and Ω1(A). Consequently the map a0 ⊗ ā1 ⊗ · · · ⊗

āk 7→ a0d(a1) . . . d(ak) defines an isomorphism A ⊗

k-times︷ ︸︸ ︷
Ā⊗ · · · ⊗ Ā → Ωk(A), and it

turns out that a0d(a1) . . . d(ak) 7→ d(a0)d(a1) . . . d(ak) gives a well defined map
d : Ωk(A) → Ωk+1(A) for any k. Then it can be shown that (Ω(A), d) is a graded
differential algebra, i.e. that d(ωpωq) = dωpωq +(−1)pωpdωq for all ωp ∈ Ωp(A) and
ωq ∈ Ωq(A). Again this algebra is characterized by a universal property:

2.4. Proposition. Let (B = ⊕∞k=0Bk, δ) be an arbitrary unital graded differential
algebra, ϕ0 : A → B0 a homomorphism of unital algebras. Then there is a unique
homomorphism ϕ : Ω(A) → B of graded differential algebras which restricts to ϕ0

in degree zero.

In particular this result shows that the construction of the algebra of universal
differential forms is functorial.

3. Construction of the Frölicher–Nijenhuis bracket

The construction is based on the classification of all graded derivations of the
graded algebra Ω(A).

3.1 Definition. The space Derk Ω(A) consists of all (graded) derivations of degree
k, i.e. all bounded linear mappings D : Ω(A) → Ω(A) with D(Ω`(A)) ⊂ Ωk+`(A)
and D(ϕψ) = D(ϕ)ψ + (−1)k`ϕD(ψ) for ϕ ∈ Ω`(A).

Lemma. The space Der Ω(A) =
⊕

k Derk Ω(A) is a graded Lie algebra with the
graded commutator [D1, D2] := D1 ◦ D2 − (−1)k1k2D2 ◦ D1 as bracket. So the
bracket is graded anticommutative, [D1, D2] = −(−1)k1k2 [D2, D1], and satisfies the
graded Jacobi identity [D1, [D2, D3]] = [[D1, D2], D3] + (−1)k1k2 [D2, [D1, D3]].

3.2. A derivation D ∈ Derk Ω(A) is called algebraic if D | Ω0(A) = 0. Then
D(aω) = aD(ω) and D(ωa) = D(ω)a for a ∈ A, so D restricts to a bounded
bimodule homomorphism, an element of HomA

A(Ωl(A),Ωl+k(A)). Since we have
Ωl(A) = Ω1(A) ⊗A · · · ⊗A Ω1(A) and since for a product of one forms we have
D(ω1⊗A · · ·⊗Aωl) =

∑l
i=1(−1)ikω1⊗A · · ·⊗AD(ωi)⊗A · · ·⊗Aωl, the derivation D

is uniquely determined by its restriction K := D|Ω1(A) ∈ HomA
A(Ω1(A),Ωk+1(A));

we write D = j(K) = jK to express this dependence. Note the defining equation
jK(ω) = K(ω) for ω ∈ Ω1(A). Since it will be very important in the sequel we
will use the notation Ω1

k = Ω1
k(A) := HomA

A(Ω1(A),Ωk(A)) and Ω1
∗ = Ω1

∗(A) =⊕∞
k=0 Ω1

k(A).
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It can be shown that for any K ∈ Ω1
k(A) the formula

jK(ω0 ⊗A · · · ⊗A ω`) =
∑̀
i=0

(−1)ikω0 ⊗A · · · ⊗A K(ωi)⊗A · · · ⊗A ωk

for ωi ∈ Ω1(A) defines an algebraic graded derivation jK ∈ Derk Ω(A) and any
algebraic derivation is of this form. Thus K 7→ jK is an isomorphism from Ω1

∗(A)
to the space of algebraic graded derivations of Ω(A) Since the graded commutator
of two algebraic derivations is clearly again algebraic we can define a graded Lie
bracket [ , ]∆ on the space Ω1

∗(A) by j([K,L]∆) := [jK , jL]. This bracket is
called the algebraic bracket; it is an analogy of the one used in [3].

3.3. The differential d is a graded derivation of Ω(A) of degree one which is not
algebraic. In analogy to the well known formula for the Lie derivative along vector
fields we now define the Lie derivative along a field valued form K ∈ Ω1

k(A) by
LK := [jK , d] ∈ Derk Ω(A). Then one proves that for any derivation D ∈ Derk Ω(A)
there are unique elements K ∈ Ω1

k and L ∈ Ω1
k+1 such that D = LK +jL. Moreover

L = 0 if and only if [D, d] = 0 and D is algebraic if and only if K = 0.
For elements K ∈ Ω1

k and L ∈ Ω1
` one immediately verifies that [[LK ,LL], d] = 0,

so we have [L(K),L(L)] = L([K,L]) for a uniquely defined [K,L] ∈ Ω1
k+`. This

vector valued form [K,L] is called the abstract Frölicher-Nijenhuis bracket of K and
L. Clearly this bracket defines a graded Lie algebra structure on the space Ω1

∗(A).

4. Distributions and Integrability

4.1. Distributions. By a distribution in an algebra A we mean a sub-A-bimodule
D of Ω1(A).

The distribution D is called globally integrable if there exists a sub algebra B of
A such that D is the subspace generated by A(d(B)) and d(B)A.

The distribution D is called splitting if it is a direct summand in Ω1(A) or
equivalently if there is a projection P ∈ Ω1

1(A) = HomA
A(Ω1(A),Ω1(A)) onto D,

i.e. P ◦ P = P and D = P (Ω1(A)). Then there is a complementary sub module
kerP ⊂ Ω1(A).

The distribution D is called involutive if the ideal (D)Ω∗(A) generated by D in
the graded algebra Ω∗(A) is stable under d, i.e. if d(D) ⊂ (D)Ω∗(A).

4.2. Comments. One should think of this as follows: In ordinary differential
geometry D should be the A-bimodule of those 1-forms which annihilate the sub
bundle of TM . Global integrability then means that it is integrable and that the
space of functions which are constant along the leaves of the foliation generates those
forms. This is a strong condition: There are foliations where this space of functions
consists only of the constants, and this can be embedded into any manifold. So in
C∞(M) there are always involutive distributions which are not globally integrable.
To prove some Frobenius theorem a notion of local integrability would be necessary.

4.3 Curvature and cocurvature. Let P ∈ Ω1
1(A) = HomA

A(Ω1(A),Ω1(A)) be a
projection, then the image P (Ω1(A)) is a splitting distribution, called the vertical
distribution of P and the complement kerP is also a splitting distribution, called the
horizontal one. P̄ := IdΩ1(A) − P is a projection onto the horizontal distribution.
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We consider now the Frölicher-Nijenhuis bracket [P, P ] of P and define

R = RP = [P, P ] ◦ P the curvature.

R̄ = R̄P = [P, P ] ◦ P̄ the cocurvature,

The curvature and the cocurvature are elements of Ω1
2(A) = HomA

A(Ω1(A),Ω2(A)).
The curvature kills elements of the horizontal distribution, so it is vertical. The
cocurvature kills elements of the vertical distribution.

Then one proves:

Proposition. With P , R and R̄ as above we have:
1. (Bianchi Identity)

[P,R+ R̄] = 0

2[R,P ] = jRR̄+ jR̄R,

where the insertion operators are extended to Ω1
∗(A) in the obvious way.

2. The curvature R is zero if and only if the horizontal distribution is involu-
tive. The cocurvature R̄ is zero if and only if the vertical distribution P (Ω1(A)) is
involutive.
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8. Michor, Peter W., Remarks on the Frölicher-Nijenhuis bracket, Proceedings of the Conference

on Differential Geometry and its Applications, Brno 1986, D. Reidel, 1987, pp. 197–220.

9. Michor, Peter W., Gauge theory for fiber bundles, Monographs and Textbooks in Physical
Sciences, Lecture Notes 19, Bibliopolis, Napoli, 1991.

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Aus-

tria.
E-mail address: cap@awirap.bitnet, cap@pap.univie.ac.at, michor@awirap.bitnet,

michor@pap.univie.ac.at


