LIFTING SMOOTH CURVES OVER INVARIANTS FOR REPRESENTATIONS OF COMPACT LIE GROUPS

DMITRI ALEKSEEVSKY ANDREAS KRIEGL MARK LOSIK PETER W. MICHOR

Erwin Schrödinger International Institute of Mathematical Physics, Wien, Austria

ABSTRACT. We show that one can lift locally real analytic curves from the orbit space of a compact Lie group representation, and that one can lift smooth curves even globally, but under an assumption.

1. INTRODUCTION

In [1] we investigated the following problem. Let $P(t) = x^n - \sigma_1(t)x^{n-1} + \ldots + (-1)^n \sigma_n(t)$ be a polynomial with all roots real, smoothly parameterized by t near 0 in \mathbb{R} . Can we find n smooth functions $x_1(t), \ldots, x_n(t)$ of the parameter t defined near 0, which are the roots of P(t) for each t? We showed that this is possible under quite general conditions: real analyticity or no two roots should meet of infinite order. Some applications to perturbations of unbounded operators in Hilbert space are also given in [1].

This problem can be reformulated in the following way. Let the symmetric group S_n act in \mathbb{R}^n by permuting the coordinates (the roots), and consider the polynomial mapping $\sigma = (\sigma_1, \ldots, \sigma_n) : \mathbb{R}^n \to \mathbb{R}^n$ whose components are the elementary symmetric polynomials (the coefficients). Given a smooth curve $c : \mathbb{R} \to \sigma(\mathbb{R}^n) \subset \mathbb{R}^n$, is it possible to find a smooth lift $\bar{c} : \mathbb{R} \to \mathbb{R}^n$ with $\sigma \circ \bar{c} = c$?

In this paper we tackle the following generalization of this problem. Consider an orthogonal representation of a compact Lie group G on a real vector space V. Let $\sigma_1, \ldots, \sigma_n$ be a system of homogeneous generators for the algebra $\mathbb{R}[V]^G$ of invariant polynomials on V. Then the mapping $\sigma = (\sigma_1, \ldots, \sigma_n) : V \to \mathbb{R}^n$ defines a bijection of the orbit space V/G to the semialgebraic set $\sigma(V) \subseteq \mathbb{R}^n$. A curve $c : \mathbb{R} \to V/G = \sigma(V) \subseteq \mathbb{R}^n$ in the orbit space V/G is called smooth if it is smooth as a curve in \mathbb{R}^n . This is well defined, i.e., does not depend on the choice of generators.

Typeset by \mathcal{AMS} -TEX

1

 $^{{\}rm P.W.M.}$ was supported by 'Fonds zur Förderung der wissenschaftlichen Forschung, Projekt P10037PHY'.

Problem. Given a smooth curve $c : \mathbb{R} \to V/G$ in the orbit space, does there exist a smooth lift to V, i.e., a smooth curve $\bar{c} : \mathbb{R} \to V$ with $c = \sigma \circ \bar{c}$?

Our main results are the following. We show that

- (1) A real analytic curve $c : \mathbb{R} \to V/G$ admits a real analytic lift $\bar{c} : \mathbb{R} \to V$, at least locally.
- (2) A smooth curve c admits a global smooth lift \bar{c} if it satisfies the genericity conditions 3.5.
- (3) If the representation of G on V is polar then a real analytic curve or a smooth one with the genericity conditions admits an orthogonal lift \bar{c} , i.e., a lift meeting orbits orthogonally, which is unique up to a transformation from G.

For a general representation we did not succeed to prove the existence of an orthogonal lift and we suspect that it is not true in general.

Note that in [1], 7.4 we showed the existence of a smooth curve in the orbit space of a (polar) representation which admits a smooth lift but no orthogonal lift. Similar lifting problems have been treated for smooth homotopies in [12].

We thank the referees for helpful and critical comments and, especially, for the intrinsic definition of a generic curve, proposed by one of them. We thank E. B. Vinberg for his interest and helpful remarks.

2. Preliminaries

2.1. The setting. Let G be a compact Lie group and $\rho: G \to O(V)$ an orthogonal representation in a real finite dimensional Euclidean vector space V with an inner product $\langle | \rangle$. By a classical theorem of Hilbert and Nagata the algebra $\mathbb{R}[V]^G$ of invariant polynomials on V is finitely generated. So let $\sigma_1, \ldots, \sigma_n$ be a system of homogeneous generators of $\mathbb{R}[V]^G$ of positive degrees d_1, \ldots, d_n . We may assume that $\sigma_1 = \langle v | v \rangle$ is the Euclidean metric. Consider the orbit map $\sigma = (\sigma_1, \ldots, \sigma_n) : V \to \mathbb{R}^n$. Note that if $(y_1, \ldots, y_n) = \sigma(v)$ for $v \in V$, then $(t^{d_1}y_1, \ldots, t^{d_n}y_n) = \sigma(tv)$ for $t \in \mathbb{R}$. The image $\sigma(V)$ is a semialgebraic set in the categorical quotient $V/\!\!/G := \{y \in \mathbb{R}^n : P(y) = 0 \text{ for all } P \in I\}$ where I is the ideal of relations between $\sigma_1, \ldots, \sigma_n$. Since G is compact, σ is proper and separates orbits of G, thus it induces a homeomorphism between V/G and $\sigma(V)$.

2.2. Description of $\sigma(V)$.

Let $\langle | \rangle$ denote also the *G*-invariant dual inner product on V^* . The differentials $d\sigma_i : V \to V^*$ are *G*-equivariant, and the polynomials $v \mapsto \langle d\sigma_i(v) | d\sigma_j(v) \rangle$ are in $\mathbb{R}[V]^G$ and are entries of an $n \times n$ symmetric matrix valued polynomial

$$B(v) := \begin{pmatrix} \langle d\sigma_1(v) | d\sigma_1(v) \rangle & \dots & \langle d\sigma_1(v) | d\sigma_n(v) \rangle \\ \vdots & \ddots & \vdots \\ \langle d\sigma_n(v) | d\sigma_1(v) \rangle & \dots & \langle d\sigma_n(v) | d\sigma_n(v) \rangle \end{pmatrix}.$$

There is a unique matrix valued polynomial \tilde{B} on $V/\!\!/G$ such that $B = \tilde{B} \circ \sigma$. Denote by \tilde{b}_{ij} the entries of the matrix \tilde{B} .

2

For a real symmetric matrix A let $A \ge 0$ indicate that A is positive semidefinite.

Theorem. (Procesi–Schwarz [8]) $\sigma(V) = \{z \in V / / G : \tilde{B}(z) \ge 0\}.$

For each $1 \leq i_1 < \cdots < i_s \leq n, 1 \leq j_1 < \cdots < j_s \leq n, (s \leq n)$ consider the matrix with entries $\langle d\sigma_{i_p} | d\sigma_{j_q} \rangle$ for $1 \leq p, q \leq s$, a minor of B. Denote its determinant by $\Delta_{i_1,\dots,i_s}^{j_1,\dots,j_s}$. Since $\Delta_{i_1,\dots,i_s}^{j_1,\dots,j_s}$ is a G-invariant polynomial on V there is a unique polynomial $\tilde{\Delta}_{i_1,\dots,i_s}^{j_1,\dots,j_s}$ on $V/\!\!/ G$ such that $\Delta_{i_1,\dots,i_s}^{j_1,\dots,j_s} = \tilde{\Delta}_{i_1,\dots,i_s}^{j_1,\dots,j_s} \circ \sigma$.

2.3. The slice theorem. For a point $v \in V$ we denote by G_v its isotropy group and by $N_v = T_v(G.v)^{\perp}$ the normal subspace of the orbit G.v at v. It is well known that there exists a G-invariant neighborhood U of v which is real analytically G-isomorphic to the crossed product (or associated bundle) $G \times_{G_v} S_v = (G \times S_v)/G_v$, where S_v is a ball in N_v with center at the origin. The quotient U/G is homeomorphic to S_v/G_v .

More precisely, $G \times_{G_v} N_v$ carries the structure of an affine real algebraic variety as the categorical (and geometrical) quotient $(G \times N_v)/\!\!/G_v$ with respect to the action $G_v : G \times N_v$ defined by $h(g, x) = (gh^{-1}, hx)$. Denote by [g, x] the point of $G \times_{G_v} N_v$ represented by the pair $(g, x) \in G \times N_v$. The group G acts on $G \times_{G_v} N_v$ via left multiplication of the first component. There is a G-equivariant polynomial map $\phi : G \times_{G_v} N_v \longrightarrow V$, $[g, x] \mapsto g(v + x)$. It induces a polynomial map $\psi : (G \times_{G_v} N_v)/\!\!/G \longrightarrow V/\!\!/G$ mapping $(G \times_{G_v} N_v)/\!/G$ into V/G.

The *G*-equivariant embedding $\alpha : N_v \hookrightarrow G \times_{G_v} N_v, x \mapsto [e, x]$, induces an isomorphism $\beta : N_v /\!\!/ G_v \xrightarrow{\sim} (G \times_{G_v} N_v) /\!\!/ G$ mapping N_v / G_v onto $(G \times_{G_v} N_v) /\!/ G$.

Set $\eta = \phi \circ \alpha$ (so $\eta(x) = v + x$) and $\theta = \psi \circ \beta$. We have the following commutative diagram

$$N_v \xrightarrow{\tau} N_v/G_v \subset N_v /\!\!/ G_v$$
$$\eta \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \theta$$
$$V \xrightarrow{\tau} V/G \subset V /\!\!/ G$$

where τ is the orbit map for the action $G_v: N_v$.

Theorem. (Cf. [7], [11]) 1) There is a ball $S_v \subset N_v$ centered at 0 such that the restriction of ϕ to $G \times_{G_v} S_v$ is an analytic G-isomorphism onto a (G-invariant) neighbourhood of v in V.

2) The map θ is a local analytic isomorphism at 0.

Obviously θ induces a local homeomorphism of N_v/G_v and V/G.

It follows that the problem of local lifting curves in V/G passing through $\sigma(v)$ reduces to the same problem for curves in N_v/G_v passing through 0.

A point $v \in V$ (and its orbit $G.v \in V/G$) is called regular if the representation of G_v in the normal space N_v is trivial. Hence a neighborhood of this point is analytically *G*-isomorphic to $G/G_v \times S_v$. The set V_{reg} of regular points is open and dense in *V*, and the projection $V_{\text{reg}} \to V_{\text{reg}}/G$ is a locally trivial fiber bundle. A nonregular orbit or point is called singular.

2.4. Theorem. [11] For $v \in V$, let $N_v^{G_v}$ be the subspace of G_v -invariant vectors of N_v . Then grad $\sigma_1(v), \ldots$, grad $\sigma_n(v)$ span $N_v^{G_v}$ as a real vector space.

2.5. Stratification of the orbit space.

Let G_v be the isotropy group of $v \in V$ and (G_v) the conjugacy class of G_v which is called the type of the orbit G.v. The union V_H of orbits of type (H), where His a subgroup of G, is called an isotropy stratum of the representation ρ and the image $\sigma(V_H)$ is called an isotropy stratum of $V/G = \sigma(V)$. It is known (see, for example, [2] or [12]), that the isotropy strata of $\sigma(V)$ are real analytic manifolds and their collection gives a stratification of $\sigma(V)$. All the regular points of $\sigma(V)$ constitute a single stratum, called the principal one.

It follows from 2.4 that the dimension of the stratum of V/G of type (G_v) equals $\dim N_v^{G_v} = \operatorname{rk} d\sigma(v) = \operatorname{rk} B(v) = \operatorname{rk} \tilde{B}(\sigma(v)).$

Note that by 2.3 the stratification of V/G in a neighborhood of each $\sigma(v) \in V/G$ is naturally isomorphic to the stratification of N_v in a neighborhood of 0.

3. LOCAL LIFTING CURVES OVER INVARIANTS

3.1. Lemma. Lifting at regular orbits. A smooth (real analytic) curve $c : \mathbb{R} \to V/G = \sigma(V) \subseteq \mathbb{R}^n$ admits a smooth (real analytic) orthogonal lift \bar{c} in a neighbourhood of a regular point $c(t_0) \in V_{\text{reg}}/G$. It is unique up to a transformation from G.

Proof. The orthogonal distribution $V_{\text{reg}} \ni v \mapsto N_v$ of the fiber bundle $\pi : V_{\text{reg}} \to V_{\text{reg}}/G$ defines a real analytic Ehresmann connection in π . A local orthogonal lift of the curve c is the same as a horizontal lift with respect to this connection, near t_0 . See [5], section 9. \Box

To lift a curve in the neighborhood of a singular point we shall need two lemmas.

3.2. Removing fixed points. Let V^G be the space of *G*-invariant vectors, and let V' be its orthogonal subspace in *V*. Then $V = V^G \oplus V'$, $\mathbb{R}[V]^G = \mathbb{R}[V^G] \otimes \mathbb{R}[V']^G$, and $V/G = V^G \times V'/G$. We need the following obvious lemma.

Lemma. Any lift of a smooth (real analytic) curve $c = (c_0, c_1)$ in $V^G \times V'/G$ has the form $\bar{c} = (c_0, \bar{c}_1)$, where \bar{c}_1 is a smooth (real analytic) lift of c_1 to V'. The lift \bar{c} is orthogonal if and only if the lift \bar{c}_1 is orthogonal.

3.3. For a smooth function f defined near 0 in \mathbb{R} let the *multiplicity* or order of flatness m(f) at 0 be the supremum of all integer p such that $f(t) = t^p g(t)$ near 0 for a smooth function g. If $m(f) < \infty$ then $f(t) = t^{m(f)}g(t)$ where now $g(0) \neq 0$. A nonzero function f is called flat if $m(f) = \infty$. Similarly one can define a function flat at $t \in \mathbb{R}$.

Let $c = (c_1, \ldots, c_n)$ be a smooth curve in $\sigma(V) \subseteq \mathbb{R}^n$ with c(0) = 0. Since $c(t) \ge 0$ for all t, we have $m(c_1) = 2r > 0$, where $r \in \mathbb{N}$ or $r = \infty$.

Multiplicity Lemma. We have $m(c_i) \ge rd_i$ $(1 \le i \le n)$.

Proof. Suppose that for some k > 1 we have $m(c_k) < rd_k$. Then $m = \min\{m(c_1)/d_1, \ldots, m(c_n)/d_n\} < r$. We consider the following continuous curve in \mathbb{R}^n for $t \ge 0$: $c_{(m)}(t) := (t^{-2m}c_1(t), t^{-d_2m}c_2(t), \ldots, t^{-d_nm}c_n(t))$. By 2.1, $c_{(m)}(t) \in \sigma(V)$ for t > 0, and since $\sigma(V)$ is closed in \mathbb{R}^n by 2.2, also $c_{(m)}(0) \in \sigma(V)$. Since m < r the first coordinate of $c_{(m)}(t)$ vanishes at t = 0. Then $\sigma^{-1}(c_{(m)}(0)) = \{0\}$ and therefore $c_{(m)}(0) = 0$. In particular, for those k with $c(m_k) = md_k$ we get a contradiction. \Box If $r < \infty$, one can consider the curve

$$c_{(r)}(t) = (t^{-2r}c_1(t), t^{-d_2r}c_2(t), \dots, t^{-d_nr}c_n(t)) \in \sigma(V).$$

We have $c_{(r)}(0) \neq 0$. If $c_{(r)}$ is liftable at 0 and $\overline{c_{(r)}}$ is its smooth (real analytic) lift, then $\overline{c}(t) := t^r \overline{c_{(r)}}(t)$ is a smooth (real analytic) lift of c. If $\overline{c_{(r)}}$ is an orthogonal lift, then also \bar{c} , and conversely, since the action of G commutes with homotheties of V. Moreover the orthogonal lift of c is uniquely determined up to the action of a constant element in G if and only if the orthogonal lift of $c_{(r)}$ has this property.

3.4. Theorem. Local real analytic lifts. Let $c : \mathbb{R} \to \sigma(V) \subset \mathbb{R}^n$ be a real analytic curve. Then there exists a real analytic lift \bar{c} in V of c, locally near each $t \in \mathbb{R}$.

Proof. We show that there exist lifts of c locally near each point $t_0 \in \mathbb{R}$, without loss $t_0 = 0$, through any $v \in \sigma^{-1}(c(0))$. We do this by the following algorithm in 4 steps, which always stops, since each step either gives a local lift, or reduces the lifting problem to a smaller group.

Step 1. If $c(0) \neq 0$ corresponds to a regular orbit, unique orthogonal real analytic lifts exist through all $v \in \sigma^{-1}(c(0))$, by 3.1.

Step 2. If $V^{G} \neq 0$ we remove fixed points by 3.2. Step 3. If $V^{G} = 0$, $c(0) \neq 0$ corresponds to a singular orbit, we consider the isotropy representation $G_v \to O(N_v)$ with the orbit map $\tau : N_v \to \mathbb{R}^m$ for $v \in V$ such that $\sigma(v) = c(0)$. By Theorem 2.3 the lifting problem reduces to the smaller (since $V^G = 0$) group G_v , acting on N_v .

If $N_v^{G_v} \neq 0$ we can continue in step 2. If $N_v^{G_v} = 0$ we can continue in step 4.

Step 4. If $V^G = 0$ and c(0) = 0 then $m(c_1) = 2r$ for some integer $r \ge 1$ or $r = \infty$. In the latter case $c_1 = 0$. This implies that c = 0 is constant, which clearly can be lifted. In the former case by the multiplicity lemma 3.3 we have $m(c_i) \geq rd_i$ and the lifting problem reduces to the curve $c_{(r)}$ (see 3.3), for which $c_{(r)}(0) \neq 0$. Now we can continue in step 1, step 2, or step 3. \Box

3.5. Genericity conditions.

Let s be a nonnegative integer. Denote by A_s the union of all the strata S of V/Gwith dim $S \leq s$, and by I_s the ideal of $\mathbb{R}[V/\!\!/G] = \mathbb{R}[V]^G$ consisting of polynomials vanishing on A_{s-1} .

Let $c: \mathbb{R} \to \sigma(V) \subset \mathbb{R}^n$ be a smooth curve, $t \in \mathbb{R}$, and s = s(c, t) a minimal integer such that for a neighborhood J of t we have $c(J) \subset A_s$. The curve c is normally nonflat at t if there is $f \in I_s$ such that $f \circ c$ is nonflat at t, i.e., the Taylor series of $f \circ c$ at t is not identically zero. This automatically holds if $c(t) \notin A_{s-1}$.

A smooth curve $c: \mathbb{R} \to \sigma(V) \subset \mathbb{R}^n$ is called *generic* if c is normally nonflat at t for each $t \in \mathbb{R}$. A real analytic curve is automatically generic.

Proposition. If a smooth curve $c : \mathbb{R} \to \sigma(V)$ is normally nonflat at $t \in \mathbb{R}$, curves which are obtained from it in the above reduction process, i.e., removing of fixed points, passing to the slice representation or replacing c by the curve $c_{(r)}$ (see 3.3), are normally nonflat at t as well.

Proof. Let $V^G \neq 0$. In the notation of 3.2, each stratum S of V/G has the form $V^G \times S_1$, where S_1 is a stratum of V'/G.

Let $c = (c_0, c_1)$ be a smooth curve in $\sigma(V)$. If $f \in I_s$ is a function such that $f \circ c$ is nonflat at t, then $f = \sum_i \phi_i \otimes f_i$, where $\phi_i \in \mathbb{R}[V^G]$, $f_i \in I'_{s-k}$ (the ideal of $\mathbb{R}[V']^G$ consisting of polynomials vanishing on all strata of V'/G of dimension $\langle s - k \rangle$, and $f_i \circ c_1$ is nonflat at t for some i.

If $V^G = 0$ and $c(t) \neq 0$ the statement of the proposition follows from 2.4 and 2.5 since the notion of normal nonflatness is local.

Let $V^G = 0$, c(t) = 0, s = s(c, t), and $f \in I_s$ be such that $f \circ c$ is nonflat at t. We may suppose that t = 0 and f is homogeneous. Then the function $f \circ c_{(r)}$ is nonflat at 0. \Box

3.6. Theorem. Let $c : \mathbb{R} \to \sigma(V) \subset \mathbb{R}^n$ be a smooth curve. Then c is normally nonflat at $t \in \mathbb{R}$ if

- (1) The functions $\tilde{\Delta}_{i_1,...,i_s}^{j_1,...,j_s} \circ c$ vanish in a neighborhood of t whenever s > r.
- (2) There exists a minor $\tilde{\Delta}_{i_1,\ldots,i_r}^{j_1,\ldots,j_r}$ such that $\tilde{\Delta}_{i_1,\ldots,i_r}^{j_1,\ldots,j_r} \circ c$ is nonflat at t.

Proof. By 2.5, r = s(c, t) and $\tilde{\Delta}_{i_1, \dots, i_r}^{j_1, \dots, j_r} \in I_r$. \Box

This theorem gives the best practical way to check the normal nonflatness of a curve c.

3.7. Theorem. Local smooth lifts. Let $c : \mathbb{R} \to \sigma(V) \subset \mathbb{R}^n$ be a smooth curve which is normally nonflat at $t_0 \in \mathbb{R}$. Then there exists a smooth lift \bar{c} in V of c, locally near t_0 .

Proof. The proof is the same as one of Theorem 3.4 since by Proposition 3.5 one can use the normal nonflatness of c at t_0 instead of the analyticity of c. \Box

3.8. Lemma. Let $c : \mathbb{R} \to \sigma(V) \subset \mathbb{R}^n$ be a smooth curve which is normally nonflat at t_0 . Suppose that $\bar{c}_1, \bar{c}_2 : I \to V$ are smooth lifts of c on an open interval I containing t_0 . Then there exists a smooth curve g in G defined near t_0 such that $\bar{c}_1(t) = g(t).\bar{c}_2(t)$ for all t near t_0 . The real analytic version of this result is also true.

Proof. We prove this by induction on the size (dimension, and number of connected components in the case of the same dimension) of G and use Proposition 3.5 in each step of the next induction process.

Without loss let $t_0 = 0$ and $\bar{c}_1(0) = \bar{c}_2(0)$.

Step 1. If $V^G \neq 0$ we remove the fixed points by 3.2.

Step 2. Let $V^G = 0$ and c(0) = 0. If $c(t) \equiv 0$, the statement is trivial. If $c(t) \neq 0$, then $r = m(c) < \infty$ since c is normally nonflat at 0, and $t^{-r}\bar{c}_1(t), t^{-r}\bar{c}_2(t)$ are smooth lifts of $c_{(r)}$. If we can find $g(t) \in G$ taking $t^{-r}\bar{c}_2(t)$ to $t^{-r}\bar{c}_1(t)$, then we also have $g(t).\bar{c}_2(t) = \bar{c}_1(t)$. Thus we may assume that $c(0) \neq 0$.

Step 3. If $V^G = 0$ and $c(0) \neq 0$, then for a normal slice S_v at $v = \bar{c}_1(0)$ we know that $p: G.S_v \cong G \times_{G_v} S_v \to G/G_v \cong G.v$ is the projection of a fiber bundle associated to the principal bundle $G \to G/G_v$. Then $p \circ \bar{c}_1$ and $p \circ \bar{c}_2$ are two smooth curves in G/G_v defined near t = 0, which admit smooth lifts g_1 and g_2 into G (via the horizontal lift of a principal connection, say), and $t \mapsto g_j(t)^{-1}.\bar{c}_j(t)$ are two smooth curves in S_v , lifts of c. Thus we reduced our problem to the smaller group G_v . If v is a regular point then G_v acts trivially on N_v and these two lifts 6 are automatically the same. If v is a singular point and $N_v^{G_v} \neq 0$ we apply step 1. If v is a singular point and $N_v^{G_v} = 0$ we apply step 2.

In the real analytic situation the proof is the same: one has to use a real analytic principal connection in step 3. \Box

4. GLOBAL LIFTING CURVES OVER INVARIANTS

4.1. Theorem. Global smooth lifts. Let $c : \mathbb{R} \to \sigma(V) \subset \mathbb{R}^n$ be a generic smooth curve. Then there exists a global smooth lift $\bar{c} : \mathbb{R} \to V$ with $\sigma \circ \bar{c} = c$.

Proof. By 3.7 there exist local smooth lifts near any $t \in \mathbb{R}$. It is sufficient to prove that each local smooth lift of c defined on an open interval I can be extended to a larger interval whenever $I \neq \mathbb{R}$.

Suppose $\bar{c}_1: I \to V$ is a local smooth lift of c, the open interval I is bounded from above (say), and t_0 is its upper boundary point. By 3.7 there exists a local smooth lift \bar{c}_2 of c near t_0 , and a $t_1 < t_0$ such that both \bar{c}_1 and \bar{c}_2 are defined near t_1 . By Lemma 3.8 there exists a smooth curve g in G, locally defined near t_1 , such that $\bar{c}_1(t) = q(t).\bar{c}_2(t)$. We consider the right logarithmic derivative X(t) = $g'(t).g(t)^{-1} \in \mathfrak{g}$ and choose a smooth function $\chi(t)$ which is 1 for $t \leq t_1$ and becomes 0 before g ceases to exist. Then $Y(t) = \chi(t)X(t)$ is smooth and defined near $[t_1, \infty)$. The differential equation $h'(t) = Y(t) \cdot h(t)$ with initial condition $h(t_1) = g(t_1)$ then has a solution h in G defined near $[t_1,\infty)$ which coincides with g below t_1 . Then $\bar{c}(t) := \bar{c}_1(t)$ for $t \leq t_1$ and $\bar{c}(t) := h(t).\bar{c}_2(t)$ for $t \geq t_1$ is a smooth lift of c on a larger interval. \Box

4.2. Theorem. Polar representations. Let $\rho: G \to O(V)$ be a polar orthogonal representation of a compact Lie group G (see [3], [4]) and $\sigma: V \to \mathbb{R}^n$ the corresponding orbit map. Let $c: \mathbb{R} \to \sigma(V) \subset \mathbb{R}^n$ be a curve which is either real analytic, or smooth but generic. Then there exists a global orthogonal real analytic or smooth lift $\bar{c}: \mathbb{R} \to V$ with $\sigma \circ \bar{c} = c$ which is unique up to the action of a constant in G.

A representation is *polar* if there exists a linear subspace $\Sigma \subset V$, called a *section* or a *Cartan subspace*, which meets each orbit orthogonally. See [3], [4], and [9]. The trace of the G-action is the action of the generalized Weyl group $W(\Sigma) =$ $N_G(\Sigma)/Z_G(\Sigma)$ on Σ , which is a finite group, and is a reflection group for connected G. We shall also need the following generalization of the Chevalley restriction theorem, which is due to Dadok and Kac [4] and independently to C. L. Terng, see [8], 4.12, or [13], theorem D: For a polar representation the algebra $\mathbb{R}[V]^G$ of G-invariant polynomials on V is isomorphic to the algebra $\mathbb{R}[\Sigma]^{W(\Sigma)}$ of Weyl group-invariant polynomials on Σ , via restriction.

Proof. Let Σ be a section. By the above theorem $\sigma | \Sigma : \Sigma \to \mathbb{R}^n$ is the orbit map for the representation $W = W(\Sigma) \to O(\Sigma)$. If c is a smooth curve satisfying the assumption of the theorem, by Theorem 4.1 there exists a global lift $\bar{c} : \mathbb{R} \to \Sigma$, which as curve in V is orthogonal to each G-orbit it meets, by the properties of Σ . Note for further use that \bar{c} is nowhere flat, since otherwise the curve c is not generic at some t.

If c is real analytic there are local lifts over $\sigma | \Sigma$ into Σ by Theorem 3.4. We claim that these local lifts are unique up to the action of a constant element in 7

W. Namely, let \bar{c}_1 and \bar{c}_2 be real analytic lifts defined on an interval I. Choose a convergent sequence $t_i \in I$ and elements $\alpha_i \in W$ with $\alpha_i \cdot \bar{c}_1(t_i) = \bar{c}_2(t_i)$. Since W is finite, by passing to a subsequence we may assume that all $\alpha_i = \alpha \in W$. But then the real analytic curves \bar{c}_2 and $\alpha \cdot \bar{c}_1$ coincide on a converging sequence, so they coincide on the whole interval. Thus we can glue the local lifts to a global real analytic lift \bar{c} in Σ , which as curve in V is an orthogonal lift.

It remains to show that for two orthogonal lifts $\bar{c}_1, \bar{c}_2 : \mathbb{R} \to V$ of c there is a constant element $g \in G$ with $\bar{c}_1(t) = g.\bar{c}_2(t)$ for all t. We may assume that \bar{c}_1 lies in a section Σ , by the first assertion.

Since c is generic, \bar{c}_1 meets each stratum of V only in isolated points if it is not entirely contained in this stratum. Since the isotropy group of each point of Σ contains the isotropy groups of all sufficiently close points of Σ , it follows that for an open dense subset of $t \in \mathbb{R}$ the group $G_{\bar{c}_1(t)}$ is the same, say, H, and $H \subset G_{\bar{c}_1(t)}$ for any $t \in \mathbb{R}$.

From Lemma 3.8 we get that $\bar{c}_1(t) = g(t).\bar{c}_2(t)$ for some smooth or real analytic curve $g: I \to G$, locally near each t_0 . We consider the right logarithmic derivative $X(t) := g'(t).g(t)^{-1} \in \mathfrak{g}$. Differentiating $\bar{c}_1(t) = g(t).\bar{c}_2(t)$ we get $\bar{c}'_1(t) - g(t).\bar{c}'_2(t) =$ $X(t).g(t).\bar{c}_2(t) = X(t).\bar{c}_1(t)$, where the left hand side is orthogonal to the orbit through $\bar{c}_1(t)$, and the right hand side is tangential to it, so both sides are zero and X(t) lies in the isotropy Lie algebra $\mathfrak{g}_{\bar{c}_1(t)}$ for each t, and hence X(t) lies in the Lie algebra of H. But then g(t) lies in a right coset of H. Obviously, this coset must be the same, say Hg, for all t_0 and hence $\bar{c}_1(t) = g\bar{c}_2(t)$ for all $t \in \mathbb{R}$. \Box

References

- Alekseevky, D.; Kriegl, A.; Losik, M.; Michor; P. W., Choosing roots of polynomials smoothly, Israel J. Math. (1998), 203–233.
- 2. Bierstone, E., Lifting isotopies from orbit space, Topology 14 (1975), 245–252.
- 3. Dadok, J., Polar coordinates induced by actions of compact Lie groups, TAMS **288** (1985), 125–137.
- 4. Dadok, J.; Kac, V., Polar representations, J. of Algebra 92 (1985), 504–524.
- Kolář, I.; Michor, Peter W.; Slovák, J., Natural operations in differential geometry, Springer-Verlag, Berlin Heidelberg New York, 1993.
- Lojasewicz, S., Triangulation of semi-analytic sets, Ann. Sc. Norm. Sup. Pisa, ser III 1834 (1964), 449–473.
- Luna, D., Sur certaines opérations differentiables des groupes de Lie, Amer. J. Math. 97 (1975), 172–181.
- 8. Procesi, C.; Schwarz, G., Inequalities defining orbit spaces, Invent. Math. 81 (1985), 539–554.
- 9. Palais, R. S.; Terng, C. L., A general theory of canonical forms, Trans. AMS **300** (1987), 771–789.
- 10. Sartori, G., A theorem on orbit structures (strata) of compact linear Lie groups, J. Math. Phys. 24 (1983), 765–768.
- Schwarz, G. W., Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63–68.
- 12. Schwarz, G. W., Lifting smooth homotopies of orbit spaces, Publ. Math. IHES **51** (1980), 37–136.
- 13. Terng, C. L., Isoparametric submanifolds and their Coxeter groups, J. Diff. Geom. **1985** (21), 79–107.

D.V. Alekseevsky: Center 'Sophus Lie', Krasnokazarmennaya 6, 111250 Moscow, Russia

8

 $E\text{-}mail \ address: \texttt{daleksee@esi.ac.at}$

A. Kriegl, P.W. Michor: Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria

 $E\text{-}mail\ address:\ \texttt{kriegl@pap.univie.ac.at, Peter.Michor@esi.ac.at}$

M. Losik: Saratov State University, ul. Astrakhanskaya, 83, 410026 Saratov, Russia

E-mail address: LosikMV@info.sgu.ru

9