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CHOOSING ROOTS OF POLYNOMIALS SMOOTHLY, II

Andreas Kriegl, Mark Losik, and Peter W. Michor

Abstract. We show that the roots of any smooth curve of polynomials with real
roots only can be parametrized twice differentiable (but not better).

In [1] we claimed that there exists a smooth curve of polynomials of degree 3
for which no C1-parametrization of the roots exists. Unfortunately there was an
error in the calculation of b3 and we have been informed by Jacques Chaumat
and Anne-Marie Chollet in June 2001 about that and the related papers [2], [5].

We are now going to repair this mistake and improve at the same time the
results of [2]. The smoothness assumptions in the following theorem are certainly
not the best possible but in fact we are mainly interested in the case of smooth
coefficients.

The conclusion of the theorem is the best possible, since even for the char-
acteristic polynomial of a smooth curve of symmetric matrices there needn’t be
a differentiable parametrization of the roots with locally Hölderian derivative as
the first example in [3] shows.

Let P be a curve defined on some subset T ⊆ R of monic polynomials P (t) of
degree n ≥ 1 with real roots only. A parametrization of some class of the roots
of P is a curve x : T → Rn of that class such that for each t ∈ T the values
x1(t), . . . , xn(t) are the roots of P (t) with correct multiplicity.

Theorem. Consider a continuous curve of polynomials

P (t)(x) = xn − a1(t)xn−1 + · · ·+ (−1)nan(t), t ∈ R,

with all roots real. Then there is a continuous parametrization x = (x1, . . . , xn) :
R→ Rn of the roots of P . Moreover:

(1) [2], Theorem 1 and Theorem 2. If all coefficients ai are of class Cn then
the parametrization x : R→ Rn may be chosen differentiable with locally
bounded derivative.

(2) If all ai are of class C2n then any differentiable parametrization x : R→
Rn is actually C1.

(3) If all ai are of class C3n then the parametrization x : R → Rn may be
chosen twice differentiable.
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Proof. The parameterization by order x1(t) ≤ · · · ≤ xn(t) is continuous, see e.g.
[1], 4.1. We prove (2) and (3), and we use the proof of theorem 4.3 in [1]. First
we replace x by x+ 1

na1(t), and consequently assume without loss that a1 = 0.
As noted in the proof of 4.3 in [1] the multiplicity lemma [1], 3.7 remains true

in the Cm-case for m ≥ n in the following sense, with the same proof:
If a1 = 0 then the following two conditions are equivalent

(1) ak(t) = tkak,k(t) for a Cm−k-function ak,k, for all 2 ≤ k ≤ n.
(2) a2(t) = t2a2,2(t) for a Cm−2-function a2,2.

Proof of (2). Let all ai be C2n.
Then we choose a fixed t, say t = 0.
If a2(0) = 0 then it vanishes of second order at 0: if it vanishes only of

first order then ∆̃2(P (t)) = −2na2(t) (see [1], 3.1) would change sign at t = 0,
contrary to the assumption that all roots of P (t) are real, by [1], 3.2. Thus
a2(t) = t2a2,2(t), so by the variant of the multiplicity lemma described above we
have ak(t) = tkak,k(t) for Cn-functions ak,k, for 2 ≤ k ≤ n. We consider the
following Cn-curve of polynomials

P 1(t)(z) = zn + a2,2(t)zn−2 − a3,3(t)zn−3 · · ·+ (−1)nan,n(t).

Then P (t)(tz) = tn P 1(t)(z) and hence z 7→ t z = x gives for t 6= 0 a bijective
correspondance between the roots z of P 1(t) and the roots x of P (t) with correct
multiplicities. Moreover parametrizations z which are continuous at t = 0 cor-
respond to parametrizations x which are differentiable at t = 0. By (1) we may
choose the parametrization z = (z1, . . . , zn) differentiable with locally bounded
derivative. Then the corresponding parametrization t 7→ x(t) := t z(t) is differ-
entiable with derivative x′(t) = t z′(t) + z(t) which is continuous at t = 0 with
x′(0) = z(0).

If a2(0) 6= 0 then we use the splitting lemma [1], 3.4 for the C2n-case: We may
factor P (t) = P1(t) . . . Pk(t) for t in a neighborhood of 0 and some k > 1 where
the Pi have again C2n-coefficients and where each Pi(0) has all roots equal to,
say, ci, and where the ci are distinct. By the argument above applied to each
Pi separately, there is a differentiable parametrization x = (x1, . . . , xn) of roots
whose derivative x′ is continuous at t = 0. Moreover, if Pi(0)(xj(0)) = 0 then
x′j(0) is a root of the polynomial P 1

i (0) which depends only on Pi. We shall use
this for arbitrary t below.

Claim. Any differentiable parametrization y = (y1, . . . , yn) of the roots of P
has y′ continuous at t = 0: Let i ∈ {1, . . . , n}. For tm → 0 there are km ∈
{1, . . . , n} such that yi(tm) = xkm

(tm). Choose a subsequence of the tm again
denoted tm such that yi(tm) = xk(tm) for some fixed k and all m. By the
argument above then we also have y′i(tm) = x′jm(tm) for some jm with xjm(tm) =
xk(tm) = yi(tm). Passing again to a subsequence we find a fixed j such that
yi(tm) = xj(tm) and y′i(tm) = x′j(tm). Then

yi(0) = lim
m
yi(tm) = lim

m
xj(tm) = xj(0)

y′i(0) = lim
m

yi(tm)− yi(0)
tm

= lim
m

xj(tm)− xj(0)
tm

= x′j(0)
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and so y′i(tm) = x′j(tm)→ x′j(0) = y′i(0).
Thus any differentiable parametrization of the roots of P (which exists by (1))

is indeed C1, and (2) is proved.

Proof of (3). Let all ai be C3n. Remember that a1 = 0.
(a) Choose a fixed t, say t = 0. If a2(0) = 0 then we consider again the polyno-

mials P 1(t), which now form a C2n-curve. By (2) its roots can be parametrized
by a C1-curve t 7→ z(t) = (z1(t), . . . , zn(t)). The x(t) = t z(t) are then again
the roots of P (t), now with continuous derivative x′(t) = t z′(t) + z(t) which is
differentiable at t = 0 with x′′(0) = 2 z′(0).

We show by induction on n that for fixed open intervalls I ⊆ R there exists a
twice differentiable parametrization y of the roots of P on I.

Let t0 ∈ I be such that a2(t0) 6= 0. By the splitting lemma [1], 3.4 for the
C3n-case we may factor P (t) = P1(t) . . . Pk(t) for some k > 1 and all t in a
neighborhood I1 ⊆ I of t0 where the Pi(t) have again C3n-coefficients and where
each Pi(t0) has all roots equal to, say, ci, and where the ci are distinct. By
induction there is on I1 a twice differentiable parametriziation of the roots of
each Pi. Note that for n = 1 the root equals the (single) coefficient.

Let now a2(t) 6= 0 for all t ∈ I. We consider twice differentiable parametriza-
tions of the roots defined on open subintervalls I1 ⊆ I. Obviously we may apply
Zorn’s lemma to obtain a twice differentiable parametrization on some maximal
open subintervall I1. Suppose for contradiction that I ) I1 and let the, say right,
endpoint t0 of I1 belong to I. Then there is a twice differentiable parametriza-
tion y on I1 and since a2(t0) 6= 0 a twice differentiable parametrization x in a
neighborhood of t0. Let tm ↗ t0. For every m there exists a permutation π of
{1, . . . , n} such that yπ(i)(tm) = xi(tm) for all i. By passing to a subsequence,
again denoted tm, we may assume that the permutation does not depend on m.
By passing again to a subsequence we may also assume that y′π(i)(tm) = x′i(tm)
and then again for a subsequence that y′′π(i)(tm) = x′′i (tm) for all i and all m.
So we may paste (yπ(i)(t))i for t < t0 with x(t) for t ≥ t0 to obtain a twice
differentiable parametrization on an intervall larger than I1, a contradiction.

Now we consider the closed set E = {t ∈ I: a2(t) = 0} = {t ∈ I:x1(t) = · · · =
xn(t)}. Then I \ E is open, thus a disjoint union of open intervals on which
we have a twice differentiable parametrization x of the roots by the previous
paragraph.

Consider next the set E′ of all accumulation points of E. Then I \ E′ =
(I \ E) ∪ (E \ E′) is again open and thus a disjoint union of open intervals, and
for each point t0 ∈ E \E′, i.e. isolated point of E, we have a twice differentiable
local parametrization of roots yi(t) for t 6= t0 (left and right of t0), and we have
a local C1 parametrization xk(t) for t near t0 which is twice differentiable at t0,
by argument (a). Clearly yi(t)→ x1(t0) = · · · = xn(t0) for t→ t0.

For tm ↘ t0, by passing to a subsequence, we may assume that y′i(tm) =
x′π(i)(tm) → x′π(i)(t0). Thus y′i(t) has at most x′1(t0), . . . x′n(t0) as cluster points
for t ↘ t0. Since y′i satisfies the intermediate value theorem, y′i(t) converges for
t ↘ t0, with limit x′π(i)(t0), since it does so along a sequence tm as above. By
renumbering the yi to the right of t0 we may assume that i = π(i). Similarly for
the left side of t0. Then y′i(t) → x′i(t0) for t → t0, so yi is C1 near t0 and still
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twice differentiable off t0.
In order to get twice differentiability at t0 also, we consider again the situation

at the beginning of the last paragraph. Then we have

y′i(tm)− y′i(t0)
tm − t0

=
x′π(i)(tm)− x′π(i)(t0)

tm − t0
→ x′′π(i)(t0)

so that (y′i(t) − y′i(t0))/(t − t0) has at most {x′′j (t0) : x′j(t0) = y′i(t0)} as cluster
points for t ↘ t0. Since it satisfies the intermediate value theorem it converges
for t↘ t0, with limit x′′π(i)(t0), since it does so along a sequence tm as just used.
Similarly for the left handed second derivative. Thus we may renumber those yi
for which the y′i(t0) agree, to the right of t0 in such a way that the (one sided)
second derivatives agree. Then the (twice) renumbered yi are twice differentiable
also at t0.

Thus we have a twice differentiable parametrization of roots on the open set
I \ E′.

Now let t0 ∈ E′, i.e. an accumulation point of E. Let F the set of all t ∈ I
where x1(t) = · · · = xn(t) and x′1(t) = · · · = x′n(t). Then t0 ∈ F since each x′i(t0)
may be computed using only points in E. Let F ′ be the set of all accumulation
points of F . Thus E′ ⊆ F = (F \ F ′) ∪ F ′ ⊆ E.

Let first t0 ∈ F \ F ′, i.e. an isolated point in F . Then again we have a local
twice differentiable parametrization t 7→ y(t) of the roots for t 6= t0 (left and
right of t0), since near t0 there are only points in I \ E′. We still have a local
C1 parametrization x near t0 which is twice differentiable at t0, by the argument
above. As above we can find a twice differentiable parametrization y of the roots
on the open set (I \ E′) ∪ (F \ F ′).

Finally, let t0 ∈ F ′, i.e. an accumulation point in F . We use again parame-
terizations x near t0, and y as above. Then all xi(t0) agree, all x′i(t0) agree, and
even all x′′i (t0) agree. We extend each yi from (I \E′) ∪ (F \ F ′) by these single
function on F ′ to the whole of (I \E′)∪ (F \F ′)∪F ′ = (I \E′)∪F = I. We have
to check that then each yi is twice differentiable at t0. For tm → t0 we have, by
passing to a subsequences,

yi(tm) = xj(tm)→ xj(t0) = xi(t0) = yi(t0)

yi(tm)− yi(t0)
tm − t0

=
xj(tm)− xj(t0)

tm − t0
→ x′j(t0) = x′i(t0)

y′i(tm)− y′i(t0)
tm − t0

=
x′j(tm)− x′j(t0)

tm − t0
→ x′′j (t0) = x′′i (t0) �
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