ON A CONSTRUCTION CONNECTING LIE ALGEBRAS WITH GENERAL
ALGEBRAS

P. Michor, W. Ruppert, K. Wegenkittl

In this paper we introduce a general construction which as-
sociates an algebra A{(L,b)with every pair (£,b), where £ is

a Lie algebra and b is an invariant symmetric bilinear form
“on £. By virtue of this construction several well-known (as-
sociative and non-associative)algebras can be dealt with un-
der a unified view. We give characterizations of those pairs
(L,b)which generate associative algebras A{(L,b) and of those
algebras which can be represented in the form A(f,b).

1. Passing from Lie algebras to algebras

1.1. DEFINITION. Let £ be a Lie algebra over a (commutat-

ive}) field k and let b: £>L—k be an invariant (i.e.
b{[X,Y],2) =b(X,[Y,2]) for all X,Y,Zec £) symmetric bilinear

form on £. Then we define an algebra A(L,b), associated with

the pair (£,b) as follows: As a vector space, A(L,b) is just
-the direct sum £ + k. The multiplication of A{L,b) is defined -
by the formula: '

(X,s)(Y,t) = ([X,Y] +sY + tX, st +Db(X,Y)).

Obviously, A(L,b) is an algebra and (0,1)is its identity.

1.2. PROPOSITION. (i) If char k # 2 then the algebra A(L,b)

is commutative if and only if £ is abelian. If char k = 2

then A(L,b) is always:~ommutative.

(ii) suppose that char k # 2. Then (£,b) is isomorphic with

. (L',b') (i.e. there is a Lie algebra isomorphism ¢: £ — L'
with b(X,Y) = b(¢(X), ¢{¥Y)) ) if and only if A(L,b) is iso-
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morphic with A(L,b). For chark = 2 there are non-isomor-

phic pairs (£,b), (L£',b') generating isomorphic algebras
A{L,b) and A(L',b"').

(iii) A(L,b) is always power associative, i.e. we have
x?x = xx? for all xeA(L,b).

(iv) We write Ass{x,y,z) for the associator x(yz) - (xy)z of
three elements x,y,z. In A(L,b) we have

Ass((X,s), (Y,t),(Z,u)) = (C‘-b(errz) ,0),

ab(X,Y,Z) = =b(X,Y}Z + b(Y,Z)X + [[Z,X],Y].

gé particular, A(L,b) is associative if and only if oy (X,Y,2)=
= 0 for all X,Y,Z L. '

(v) The map ay satisfies the identity

ab(X,Y,Z)+ ab(Y,Z,X}'+ ab(Z,X,Y) = .

‘(vif If char k # 2,3 and'A(L b) is alternative (i.e.;x(xy) =

x?y and (xyly = xy?) then it is associative.

Proof. Assertion (i) follows from the identity (X,s) (Y,s)~
- (¥,s) (X,t) = (2[X,¥],0).

(ii) Obviously, any isomorphism ¢:(L,b)— (£',b"') induces
‘an isomorphism A({(L,b) — A(L',b'), (X,s)— (¢(X),s). Suppose
now that char k # 2 and that Y: A(L,b) — A(L',b’') is an iso-

morphism. Let X e £\{0} and write y(X,s) = (X',s'). Since ¢
preserves units, X' # 0. From ¥((X,0)?) = (V(X,0)* we conclude
that 2s'X' = 0 and b(X,X) = s'‘+b'(X',X"'), thence s' = 0 and

" b(X,X) =b'(X',X'). Thus we get the isomorphism we need by defin-
_ing Pr:L——L', P*(X)= X' if X # 0 and P*(0) = 0.

To construct a counterexample in case char k = 2, let k = Z/2
and choose a 5asis for k’; say { X,Y}. Then we take L to be

k? with the trivial Lie structure and b=0; for £' we take

k? with the Lie structure defined by [X Y] = X+Y; b' is de-
fined by stlpulatlng b (X,X) =b'(Y,Y) =b'(X,¥) =1. Then £ is
not isomorphic with L', but A(L,b) =A(L',b"), via the mor-
phism VY:A(£,b) — A(L',b') given by ¥Y(X,0) = (X,1), Y(Y,0) =

= (Y,1); ¥(X,1) = (X,0), y(v,1) = (¥,0).
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The proof of assertions (iii)-(v) rests on simple computa-

tions and is therefore left to the reader.

(vi) By Bourbaki [21], p. 612, an algebra is alternative if
and only if its associator is skew-symmetric. Thus if A(L,b)
is alternative then ab is skew-symmetric and henc~ {v) takes

on the form BGb(X,Y,Z)z 0, so (iv)implies the assertion.

Rémark. Note that in the proof of (v) and {(vi)we did not use
the assumption that b is symmetric,

1.3. NOTATION. We write ¥ for the Cartan-Killing form,
K (X,Y) = Tr(ad X ad Y). The set {Xe £|b(X,L£)= 0} is denoted
with £, and {Xe £|b{X,Y)= 0} with Y. ‘

Throughout the rest of this section we always assume that’
char k = 0 and that £ is finite-dimensional.

1.4. LEMMA. Assume that A(L£,b) is associative. Then

(i) k(X,Y) = (n-1)b(X,Y), where n=dim £;

(ii) every commutative subalgebra €of £ with dimC > 1 lies
in the ideal f£*.

(iii) [£*+,[£,£1) =0

’ ,
(iv) (ad UP V.= b(U,U)V = for all Uef, VeLt
Proof. We infer from 1.2(iv)7that

(*) [X,[Y¥,2]] = b(X,Y¥)Z - b(Z,X)Y for all X,Y,Z2¢ef.

Thus k(X,Y) = Tr(adXady¥) = Tr(b(X,¥)Id -b(X,.)Y) =nb(X,Y)-
- b(X,Y) in - 1)b(X,Y¥), which establishes (i). If in (*)
we put X =Y = U, 2 =V, then we get (iv}.

i

(ii) Let A,B be two linearly independeqt elements of €.
‘Then by (*) we have for any Xe L

0 = [Xi [A:B]] = b(X:A)B - b(B,X)A
and hence b(X,A) = b(Xs3) = 0; that is, A,Be £+. Thus €cft,

(iii) The right hand side of (*) vanishes whenever Xe L%,
thus [£+,[£,£]] = O.
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1.5. LEMMA. Suppose that A({,b) is associative. Then the

following assertions hold:

{i) £ is either solvable or simple of rank 1.

(ii) If 0#L+ # L then £+ = [L£,L] = [L,[L,L]] and £ is com-
mutative. Moreover, Xe £* if and only if b(X,X; - J.

(iii) If £ is solvable then dim £ /Lt 1.

Proof. The assertions are obvious for dim £ < 1, so let us

assume that n = dim £ > 1. Then we have b = ;%EK, by 1.4(1)

(and hence £+ = 0 if and only if £ is semisimple).

(i) If £ is semisimple then by 1.4(ii) every Cartan subal-
geﬁra of £ has dimension 1, so L is actually simple of rank .
Assume now that £ is not semisimplé. Then by our assumption
above, [+ # 0. Suppose that S.is a semisimple subalgebra of €.
Since § = [$,$] . [L,L], 1.4(iii) yields that [L*,£] = 0. Now
any non-zero Y e £+ together‘with any non—-zero S € 8 generates
é two-dimensional COmmutative Lie subalgebra € of £, which

by 1.4(ii) is contained in £t |, so [s,8) _[£42] = 0, a con;

tradiction. This establishes (i).

(ii) Assume that 0#%e £+. Then formula (*) of the proof of
1.4 implies that [X,[Y¥,2]] = b({X,Y)Z for all X, Ye f£. By 1.4
(iii) [Y¥,2z] = 0,and hencé€ b(X,Y) = 0, whenever Ye [L£,L], Xe L.
Thus [L,£] _ . £*. Conversely, let X,Ye £ with b(X,Y) # O.
‘Then Z = b(X,¥Y) '[X;[¥,2]] e [L£,[£,£]]. Thus [L,L] _L£* _
[c,[£,£11 _ [£,£); the commutativity of £ follows from
1.4(4i1). o |

To sho§ the second part of (ii), Suppose that b({X,Y) # 0, but
b(X,X) =0. Then [X,[X,¥Y]] = -b(Y,X)X, hence Xe [L£,L] = L+,

a contradiction.

(iii) Suppose that £ is solvable and that there are elements
X,Ye £ such that X+ £+ and Y + £+ are linearly independent
in £/£+. Then we get :

W—
L

b(xlx)x - b(XIY)Y = [XI[X:Y]] e [L£,£] = £+,

Thus b(Y,Y¥) = 0 and therefore, by (ii), Ye [L,L] = L%, a

contradiction.
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1.6. THEOREM. A(L,b) is associative if and only if one of

the following assertions hold:

(i) € is a simple Lie algebra of rank 1 and b = B T

where n=dim L.
(ii) £ is nilpotent of step 2 (i.e. [L,[L,L]] =¢C) and b=0.
(iii) dim £ < 1 (and b is arbitrary).

(iv) £+ = [£,L£] and there is an element Xe £ such that Lis

sional subspace kX. Moreover, % is commutative and

(adX)’¥ = b(X,X)Y for all Ye [L,L]; b = — k.

Proof. Suppose first that A(L,b) is associative and that
dim£ > 1. If £¥ = 0 then assertion (i) holds, by 1.4(i) and
1.5(i). If £+ # 0 then, by 1.4(iii), (iv) and 1.5(ii), (iii),

. eithér £+ = £ (which implies (ii)) or dim £/£+ = 1 and hence
(iv) holds. |

Conversely, it is‘immediate that each of the aséertions {ii)

- {iv) impiies that the condition in 1.2(iv), qbf=0,‘is satis-
fied, so that A{(L,b) -is associative. (Note that'in case {iv)
every product [A,[B,C]] vanishes unless A and B, or A and C,
are contained in kX\ {0}.) In the case of (i) we first
remark. that we may assume that k = €, since the condition

o = 0 of 1.2(iv) naturallf extends to the complexification
U;@agbm) and A(L,b) can be considered as a subalgebra of the
a;gebra A(i@&&,bm), taken as algebra over k (cf. Bourbaki [3],
p. 21). Thus we are left to show that A(Sl(E,@),%K) is asso-

ciative; this will be done in Example2.50f the next sectioﬁ.

i
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2. Examples.

2.1, The tfivial cases:

If dim £ = 0, then b = 0 and A(0,0) = k.

If dim £ = 1, then £ k. Let b(X,Y) := aXY for some o k.

Then A(L,b) k[X]/O{ —a> (the isomorphism is given by X-(1,0)).
If k =R, we get for

HY -

(1) a<0 the algebra € of complex numbers.

(ii) =0 the commutative associative algebra generated
by 1 and § with 52 = O, sometimes called the algebra
of dual numbers.

(i1i) «>0 the commutative associative algebra generated
by 1 and ¢ with €2 = 1. |

These are all guadratic algebras over R in the sense of Bourbaki

2;2;'Let £ = sag(3,IR) and let b = x, its Cartan - Killihg form.
Let:E3 be the oriented Euclidean 3 - space with inner product
<*,">» and norméd determinant function D.

Define a cross préductt"x“ iniE3 by stipulating <XxY,Z> = D(X,Y,Z);

Then sp(3,R) is isomorphic to GE3,X) in such way that [X,Y]l = XxY

aﬁd x(X,Y) = ~2<X,¥>. To.see this, put
O 01 01 0) 000
X1=» 000 X2 =|-1 00 ‘X3A= 0O 01
-1 00 . {000 0-10

and notice that [x,.X
- modulo 3. ‘ : »
The product formula in A(sn(3,R),1/2x) is then

i+1] = Xi+2' where we compute thg indices

(1) (X,s)(Y,t) = (XxY¥Y + sY + tX, st - <X,¥>), which yields
exactly the algebra H of quaternions : choose a positively
oriented orthonormal basis i,j,k in:EB and check that the

multiplication - table is :

(2) | (i,0) (3,0) (k,0)
(i,0) | (0,-1) (km) (-3,0)
(3,0)- | (-kx,0) (0,-1). (i,0)
(k,0) | (3,00 (-i,0) (0,-1)
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Then obviously in the algebra A(s8(3,R),ax),aclR, we get
the multiplication - table :

(3) (i,0) (3,0) (x,0)
(i,0) (0,-2a) (k,0) (-3,0)
(3,0) (-kx,0) (0,-2a) (i,0)
(k,0) (3,0) (-i,0) (0,-20)

This is associative if and only if a= 1/2,

2.3. Let £ = s0(3,C) and let b = x be again its (complex)
~ 3

Cartan -~ Killing form. Then L =¢7,I[X,Y] = chY (the
"complexified vector product" with the same coordinate formula
as the real one), and KC(X,Y) = -Zzz:1XlYl. As we just 'take the

product formula 2.2.1 with complex scalars, we get :
A(sn(3,C),1/2 K') SH X € (cf. 2.5.). Likewise the algebra
A(so(3, C),uK )for ae is given by the multiplication - table 2.2.3.,

but now over m A(so(3, C),un ) is associative if and only ifa= 1/2.

2.4. Let £ = s1(2,R) and let b = K; the Cartan - Killing form.
Then £ is the Lie algebra of traceless 2x2 - matrices. Choose
the following basis of L:

1 011 __1_[0 1}' _1[1 o]
xo"2['—‘|o . X1"2,1.o 'Xz'z o -1
2 4zx X, ,zy Y. ) = -xy .+ x y + X7y~ . Now let I.” be the
Lorent21an 3 - space with inner product <.,.> L,w1th signature
+,-,—. Define the Lorentzian vector product Xg cn]LB‘by
<§xLYfZ>L = -det(X,Y,Z). For the standard ba81s ey e1, e, on
I~ we get '

eo* € = ©5 S eyx e, = —ey ezxLeO = e,

Thus (51(23R),<.;.>,%K) is isomorphic to GL3,XL

the multiplication formula of 1.1. becomes on LXR

,—<.,.>L) é?d

(1) T {X,s)(Y,t) = (xﬁ_y + sY + tX, st - <X,Y>L)

-

This gives an associative algebra, sometimes called the algebra

of pseudoquaternions (see Yaglom, [8]) : check the multiplication -
table '
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(2) . (eofo) (e.l :0) (eZ'O-)_
(eolo) (0;“1) (ezlo) (‘“81 IO)
(9110) (_ezto) (0,1) (—eoto)

But in fact this algebra is isomorphic to the full algebra

of 2x2 - matrices :

1 ¢ _ o 1 _ .
(©,1) “'k} 1] - % (€5 0) *[-1 0} = 103
o 1} _ 1 0] _
(ey,0) *{1 o] = 99 (€5:0) *[o ~1} = o3
gives the same multiplication -~ table for the matrix - multi-

plication. Here the o, are the Pauli matrices, very dear to
physicists. Thus A(s1(2,R),3x) = LGR°,R’°), the algebra of
all real 2x2 - matrices. o » :
A(s1(2,R),ax) gives the maltiplication - table (2) with
‘(Of-Za),»(O,Za), {O,2a) in the main diagonal, associative if

.and only if o = 1/2.

?.5, Let £ = s1(2,C), Kc‘itS Cartan - Killing form. Then we
can apply the discussion of 2.4. with complex scalars and
conclude that A($1(2,C),%xc) = A(Sl(zﬂR);%K)X:mp equgls the
algebra of complex. 2x2 - matrices. This is wgll known to

physiciéts via the ﬁormﬁla o,0. = &§,. + v-1 €. for the

i) ij ‘ ljkak
Pauli matrices. ' -

2.6. Let £ be the real 2 -~ dimensional Lie algebra saﬁisfying
[X,Y] = X. (This is the Lie algebré of the "ax + b" - group)
AThén the Cartan - 'Killing form k is given by x(X,£) = O and
k{Y,Y) = 1. This gives an associative algebra A(f,x) which

is isomorphic to the real algebra of all upper triangular

2x2 - matrices :

1 o o 1 (-1 o

gives the correct multiPlication - table.
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2.7. The algebra of Cayley numbers is not of the form
A(L,b) since it is alternative but not associative (cf. 1.2.6).
But it can be represented in a similar form : we use the

isomorphism so(3,C) = (@3,xm) of 2.3. and consider the usual

hermitian inner product (.,.) on ¢3. Then ¢3x¢, with mulciplication
(X,8) (Y, t) = ( Xx Y + sY + tX, st - (X,Y))

is the algebra of Cayley numbers (see Greub, [31]).
In chapter 4 we define a concept generalising this product.

In char k = 2 the Cayley numbers are associative.

2.8. Let £ be a nilpotent Lie algebra of'step‘2. Then

£ = V®W as a vector space, and [£,W] = {0}, [X,Y] =: w(X,Y)E W
‘ for X,Yev, whé:e w:VxV-W is an arbitrary §keﬁ —'symmetric

. bilinear map. If we want an associative algebra, then b = 0O and

A(L,0) = VxWxk as a vector space with préduCt
(V,W,O) (V'IW'rol) = (O:w(V:V');O)

and (0,0,1) as unit.

"
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3. Passing from algebras to Lie algebras

3.1. PROPOSITION. Let A be an algebra with unit over a commu-

tative base field k. Then the commutator [x,y] = xy - yx of

two elements in A satisfies the Jacobi identity it «nd only

if the associator Ass(x,y,z) = x(yz)- (xy)z satisfies
(°) 0253 sgn(c)Ass(xomxomxgw) = 0

for all triplets X;,Xz,X3 of elements in A. If char k # 2,3

and A is alternative then (°) implies that A is associative.

ggggg..The proof of the first assertion is an easy computa- .

tion and therefore left to the reader. For the second we only
have to note -that by Bourbaki [2 ), p. 612, A is associative

if and only if Ass is‘skew-symmétrié; if Ass isAskewusymmet—

ric then the left side of (°) is just 6 Ass(xi,X2,Xs)-

3.2.Remarks. (i) It seems that up to now only conditions stronger
than (°) have been dealt with in the literature; such as

(cf. Nijenhuis and Richardscon [5 ])
Ass(x,y,z) = Ass{y,x,z),

Ass(x,y,z) = Bss(x,z,y),

i

Ass(x,y,2) Ass(z,y,x).

None of these condifions is satified for all of the algebras
A(L,b) in section 1. ' )

(ii) Prbpdsition 3.1 has an obvious generalization tc graded

algebras and graded Lie algebras.

3.3. DEFINITION. Let & be a subgroup of $3;. Then an alge - -

bra A is called & -associative if

Y sgn(o)Ass(x ) = 0.
€%

ok o (002 %0(3

-
-——

3.4. Remarks. (i) By 1.2(v) every algebra A(L,b) is A;-asso-
ciative,”here A; denotes the alternating group in three ele-

ments.
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(ii) The conditions in 3.2 correspond to G-associative alge-
bras, where 6 is a two - element subgroup of $%;.

(iii) The {1}-associative algebras are just the associative

algebras.

(iv) If 6 H then every G-associative algebra is also H-as-
sociative.

{(v) Note the formula

(3) Ass(x,y,z) + Ass(y,x,z)+ Ass(z,x,y) = [x,yz] + [y,zx] +
+ [z,xy].

Thus an .algebra A is 8;-associative if and only if

[x,yz] + [ y,zx] + [z,xy] = 0  for all x,y,z €A.

3.5. Por the following, let char k # 2.

DEFINITION. A Clifford trace T on a unital algebra A over k

- is a k-linear map t: A-——k such that for all X,yeA:
(1)1(1)‘= 1, | »

r(ii) %(xy + yx) = 1{xy)1 + 1{x)y + t(y)x - zrlx}f(y)i.
Writing = for»the complementary projection tOVT,”W(X} = X -
- 1(x), (ii) can be written also in the form

(ii}} ﬁ(x)ﬂ(y) + n(y)ﬁ(x) = 2t{n{x)w(y))1,

that is, m satisfies the Clifford equation. (Note that this
implies w(xy)= m(yx) and [m(x),n(y)] | |

[X:y]-).

A Clifford trace T is said to be }nvariant if for x,y,ie&A
T(l{m(x), mly)]n(z)) = T (x) [7(y), M2)]),
or, equivalently, if for all x,y,2 e ker 1t the equation

x{yz) - (xy)z + z(yx) - (zy)x = x(yz)—- fyz)x + é{xy)-

~ (yx)z
holds.

3.6. THEOREM. Let A be a unital algebra over k with chark # 2.

Then the following assertions are equivalent:

(i) A can be written in the form A = A(f,b) for some Lie al-

gebra £ and invariant bilinear form b.

(ii) A is Z;-associative and admits an invariant Clifford

trace.

— A~
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(ii) A is As-associative and admits an invariant Clifford
trace.

Proof. Suppose first that A = A(L,b). Then A is ﬁs—aésocia—'
tive and {:A —k, 1(X,s)= s, is an invariant Clifford trace.
In fact, writing =(X,s) = (X,0) @ccording to 3.5), w. 5o

W(X,8) w(Y,t) + w¥,t)7m(X,s) = (X,0)(Y,0) + (¥,0)(X,0)
= (0,2b(X,¥));
Zr(n(X,s)n{¥Y,t) = 27((X,0)(Y,0)) = 27T(([X,¥Y],b(X,Y))
= 2b(X,Y),
which establishes our claim.
Suppose now that (ii) holds. Then M= (a,[ , ]a) is a Lie

algebra (by 3.1). Let 1 :A——k be the invariant Clifford
trace. Ve consider k as one-dimensional (trivial) Lie al—

gebra, so 1is a Lie homomorphism. We deflne £ to be the Lie

algebra ker T, prOVlded with the Lie bracket [, 1 = 2[ ;]A,

~and b{X Y) = t(XY), for all X,Ye £. Since 1 is invariant, b

is invariant, too. Let 17 : A— ker 1t = £ be the complementary
projection, m(x)= x - 1(x); 7 is also a Lie algebra morphism.
Let X,Ye £. Then (XY denoting the product in A)

XY = 3(XY~ ¥X) + 3 (XY + ¥YX) = —;—[x,y]A + T(XY)1
= [X,Y] + b(X,¥)1. '

For arbitrary x,y €A we have x = m(x)+ ©(x)1, y = w{y)+ tly), L

- and we get

xy = (m(x)+ T(x)1) (mly) +'r(y)1; =
= m(x)m(y) + t(x)nly) + t(y)w(x) + T(X)T(yH =
[n(x),ﬂ(y)]g-k T(x)nl{y) + T(y)ni{x) + t(x)tl{y)1 +
. + t{n(x)m(y))1.
Thas the map A — A(L,b), x —+ (m(x),t(x)) is the required

!

isomorphism.

Remark. If in the above.Theorem we drop both the invariance

of T and the invariance of b then the arguments still work.
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4. A final remark.

The following construction is presented here as a concept
generalizing the ideas of Definition 1.1. Using this con-

struction we can also cover the case of the Cayley algebra

-(cf. Example 2.7.)

4.1. Let k be a commutative field, and let A be a unital
(commutative) k - algebra. Let a:A+A be an algebra -

antiautomorphism with aea = id (which we may view as

- conjugation) .

Let £ be an o - balanced Lie - module over A, i.e.

(1) £ is a Lie algebra over k with bracket {.,.]
(2) £ is an A - bimodule

(3) There is a representatlon D of ¢ on A via. (u - crossed)n

. derivations,;a 'Lie algebra homomorphlsm D.ﬂ*Der(a)
XfDX, such that Dx(ab) = Dx(a)b_+‘a(a)Dx(b)
(4) [aX,Y] = u(a)[x Y] ;'D (a)X or equivalently
(4') [X,aY] = u(a)[x Yl + D (a)Yy

{5) {X,Ya]‘= [X Yla + YD (a)

Furthermore let b.Exﬁ*A be k- linekér and equivariant, i.e.
(6) Dx(b(Y{Z)) = b(IX,¥1,2) + b(Y,[X,Z1)

Then we consider the k - vector space LxA with the
follow1ng product:

(7) (X,a)(¥,b) := ([X,Y] + ay + Qé, ab + b(X,Y)).

We leave 1t to the reader to verify that thls definition

ylelds an algebra.

"

o™




e

[1]

[2]
(3]

(3]
(4]
[5)

(6]

7]

[8]

REFERERCES

Birman, G., and K. Nomizu, Trigonometry in Lorentzian

geometry. Amer. Math. Monthly 91 (1984}9

Bourbaki, N., Algebra I, (Hermann) Adison-Wesley1973

Bourbaki, N., Groupes et algebres de Lie, chap. 1

Hermann, Paris 1971.

Greub, W., Multilinear Algebra, 2nd ed. Springer, Berlin -
Heidelberg -New York 1978.

Hilgert, J., and K. H. Hofmann, 01ld and New on S1{2).
 Manuscripta math. 54 (1985) 17 - 52.

Nijenhuis, A., and R. W. Richardson, Cohomology and defor-

' mationé in éraded Lie algebras. Bull. AMS 72(1966)1-29.

O'Meara, O. T., Introduction to quadratic forms.

Springer, Berlin - Gottingen - Heidelberg 1963

Véradafajan, V. S., Lie groups, Lie algebras and their

representations. GTM 102, Springer, Berlin - Heidel-
' . berg - New York 1984.

Yaglom, I. M., Complex numbers in geometry.

Academic Press, London - New York 1968.

__{LI..



